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Abstract
Objectives Objective measurements to predict the position of a cochlear electrode during cochlear implantation surgery 
may serve to improve the surgical technique and postoperative speech outcome. There is evidence that electrically evoked 
compound action potentials (ECAP) are a suitable approach to provide information about the site of stimulation. This study 
aims to contribute to the knowledge about the association between the intraoperative intracochlear ECAP characteristics 
and the site of stimulation.
Methods In a retrospective cohort study, patients undergoing cochlear implant surgery with flexible lateral wall electrode 
arrays (12 stimulating channels) between 2020 and 2022 were analyzed. The CDL was measured using a CT-based clini-
cal planning software. ECAP were measured for all electrode contacts and associated to the CDL as well as to the site of 
stimulation in degree.
Results Significant differences among the amplitudes and slopes for the individual stimulated electrode contacts at the 
stimulation sites of 90°, 180°, 270°, 360°, 450° and 540° were found. The values showed a trend for linearity among the 
single electrodes.
Conclusions ECAP characteristics correlate with the electrode’s position inside the cochlea. In the future, ECAP may be 
applied to assess the intracochlear position inside the cochlea and support anatomy-based fitting.
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Introduction

Recently, objective measurement methods are increasingly 
becoming topics of interest in the treatment of patients with 
severe to profound hearing loss with a cochlear implant 
(CI), especially with regard to implant fitting in children 

or patients with poor compliance [1–4]. Furthermore, in 
this context, the position of the electrode and the angle of 
insertion are of interest for improving the hearing percep-
tion outcome [5]. The electrically evoked compound action 
potentials (ECAP) are considered a promising approach 
for CI fitting [6, 7] especially in children, since they are 
able to provide objective information about the stimulation 
thresholds. There is evidence that ECAP are also suitable to 
provide information not only about the neural integrity of 
spiral ganglion neurons but also about the site of stimula-
tion [8–10]. The electrode position inside the cochlear is 
of interest for anatomy-based fitting approaches that have 
been shown to provide improved speech perception [11, 12]. 
However, the size of the human cochlea can significantly 
affect the CI electrode position within the cochlea and con-
sequently structure preservation as well as the final pitch 
discrimination [13, 14]. Consequently, choosing the elec-
trode variant fitting the individual expectations is highly rel-
evant. To predict the postoperative electrode position from 
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preoperative clinical imaging, it has been demonstrated that 
a clinical planning software for measuring the human coch-
lea (Otoplan, Cascination, Bern, Switzerland) is adequate 
to determine the length of the cochlear duct and to select 
the electrode length according to the aimed insertion depth 
[15]. However, it has been shown that there are inaccuracies 
concerning the insertion depth prediction of the software 
[16]. Thus, a feedback mechanism providing intraoperative 
information about the insertion depth is desirable. Thus, 
the aim of this work was to determine reference values for 
ECAP characteristics at different locations inside the coch-
lea. This study aims to contribute to the knowledge about the 
association between changing ECAP characteristics inside 
the cochlea according to the CDL.

Methods

Patients selection

Between 2020 and 2022, patients scheduled for cochlear 
implant surgery due to severe and profound hearing loss 
were assessed for inclusion. Patients implanted with flex-
ible lateral wall electrode arrays with 12 stimulating chan-
nels (Med-el GmbH, Innsbruck, Austria) without functional 
residual hearing were included into the study. Patients with 
insufficient imaging quality to identify the postoperative 
electrode position were excluded. The study protocol was 
approved by the local Ethics Committees in accordance with 
the Helsinki declaration.

Preoperative determination of cochlear duct length 
and estimation of cochlear coverage

All measurements were performed using an otosurgical 
planning software (Otoplan, Cascination AG, Bern, Swit-
zerland). The pre-defined anatomical landmarks (the round 
window and lateral wall of the cochlea) to determine the 
diameter (A value) and the width (B value: perpendicu-
lar to the line segment of the A value, intersecting the A 
value line at the modiolus) of the cochlea were marked 
by a single investigator experienced in the interpretation 
of temporal bone imaging. The calculation of the CDL 
approximation is performed by the software based on an 
elliptic circular approximation [29]. The electrode length 
was chosen to cover 75% of the CDL according to the 
preoperative CDL estimation.

Postperative determination of insertion angle 
and cochlear coverage

The postoperative insertion angle was measured on post-
operative high resolution computed tomography (HRCT) 
imaging control. The round window was localized, and 
the individual electrode contacts were marked manually 
(Fig. 1A). The software output is the insertion angle in 
degree. In addition, the individual electrode contact posi-
tioned at 90°, 180°, 270°, 360°, 450° and 540° were deter-
mined manually (Fig. 1B).

Fig. 1  Postoperative angular 
insertion depth determina-
tion. A Postsurgical CT-scan 
oblique coronal view. Electrode 
array positioned along the 
lateral cochlear wall. Electrode 
contacts entering the cochlea 
90°, 180°, 270° and 360° are 
marked in orange. B Postsurgi-
cal CT-scan axial view. Scale 
bar 5 mm. C Three-dimensional 
electrode array reconstruction 
from oblique coronal view. 
Electrode contacts entering the 
cochlea 90°, 180°, 270° and 
360° are marked in orange. D 
Three-dimensional electrode 
array reconstruction from axial 
view. Scale bar 1 mm
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ECAP measurements

ECAP measurements were performed using the Med-el fit-
ting software (Maestro version 6.0.1, 7.0.1 and 8.0.1, Med-el 
GmbH, Innsbruck, Austria). The ECAP stimulation of every 
individual electrode was recorded. The electrode located api-
cal to the stimulating electrode was used as the recording 
electrode. When electrode 1 (most apical) was stimulated, 
electrode 2 (more basal electrode) was used as the recording 
electrode. The stimulation protocol was chosen as follows: 
inter phase gap 2.10E−06 s; maximum charge: 35 qu, phase 
duration 4.00E−05 s. The stimulation charge was increased 
up to 50 qu when no threshold was detected. For reason of 
homogeneity, we only used stimulation charges of 35 qu for 
the sub-analysis of the different insertion angles in degrees.

Statistical analysis

ECAP amplitude was defined as the voltage difference 
between the negative N1 peak and the following positive 
P2 peak. Slope of the ECAP amplitude growth function 
was calculated at the 50% level. Statistical analyses were 
performed using Prism (version 8, GraphPad Software, La 
Jolla, CA, USA). The significance level was set to p < 0.05. 
The assumption of normality was tested graphically using 
quantile–quantile plots. If not otherwise specified, data are 
presented as mean with standard deviation (SD) or absolute 
numbers with percentages. Correlations were assessed using 
Spearman’s correlation coefficient. For comparison of > 2 
groups, a one-way ANOVA was performed.

Results

A total of 64 ears from 64 CI users (mean age: 64.5 years, 
SD 7.8  years) were included in the present study. The 
patients’ demographics are shown in Table 1. The electrode 
was inserted by round window approach in every case. The 

round window niche was accessed by mastoidectomy and 
posterior tympanotomy. Implantation and full insertion of 
the flexible lateral wall electrode array was achieved in all 
cases as verified by intraoperative impedance and ECAP 
measurements as well as by postoperative CT imaging. The 
mean cochlear duct length was 43.7 mm (SD: 2.8 mm). 
Mean cochlear coverage (CC) of the electrode array was 
65.1% (SD 8.2%) of the CDL (Fig. 2), which corresponds 
to an average insertion angle of 586 degrees (SD: 73). In 36 
out of 64 subjects ECAPs could be measured with a maxi-
mum stimulation charge of 35qu, in 45 patients ECAPs were 
measured with a maximum charge of 50qu.

ECAP measurements

There was a significant effect of electrode location on ECAP 
threshold, with lower thresholds at the more apical elec-
trodes (F (11, 367) = 4,675, p < 0.0001; Fig. 3A). ECAP 
amplitudes were larger towards the apical end of the elec-
trode array (F (11, 524) = 2.083, p = 0.02; Fig. 3B). The 
slope of the ECAP amplitude growth function, measured at 
the 50% level of the growth function also increased towards 
the apical end of the electrode array F (11, 362) = 9.729, 
p < 0.0001; Fig. 3C). The effect was identical when only the 
subjects were included in whom ECAPs were measured up 
to a maximum charge of 35qu (Fig. 3D–F).

Postoperative CT reconstructions of the electrode arrays, 
revealed an insertion angle of 90° to correspond with elec-
trode 9–12 (range: 3, mean: 10.20, SD: 0.78), 180° with 
electrode 6–10 (range 4, mean: 7.89, SD: 1.01), 270° with 
electrode 3–8 (range 5, mean: 5.70, SD: 1.03), 360° with 
electrode 1–6 (range 5, mean: 4.00, SD: 1.04), 450° with 
electrode 1–5 (range 4, mean: 3.05, SD: 0.94), 540° with 
electrode 1–4 (range 3, mean: 2.02, SD: 0.91). Figure 4 
shows the increase in ECAP amplitude (F (5, 171) = 3.164, 
p = 0.009; Fig. 4A) and slope (F (5, 104) = 4,188, p < 0.0001; 
Fig. 4B) with increasing insertion angle. Simple linear regres-
sion between the insertion angles at 90°, 180°, 270°, 360°, 
450° and 540° showed a significant linearity between these 
insertion angles and the ECAP slopes (r = 0.98, p < 0.001) 
as well as the ECAP amplitudes (r = 0.95, p = 0.004, Fig. 5).

Table 1  Patients’ demographics

Patients (n = 64)

Mean age—years (SD) 64.5 (SD 7.8)
Sex, female:male—n (%) 28 (43.8); 36 (56.2)
Side, right:left—n (%) 31 ((48.4); 33 (51.6)
Cochlear duct length (mm) 43.7 (2.8)
Cochlear coverage (%) 65.1 (2.8)
Insertion angle (°) 585.7 (73.4)
Electrode length—n (%)
31.5 mm 38 (59.4)
28.0 mm 22 (34.4)
26.0 mm 4 (6.2)

Fig. 2  Correlation of cochlear coverage (%) and cochlear duct length. 
Solid line represents linear regression line. r, Spearman’s rank cor-
relation coefficient
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Discussion

In the present study, we found a correlation between ECAP 
characteristics, i.e. threshold, amplitude and slope, and the 
site of stimulation inside the human cochlea. This is in line 
with a number of studies reporting variances in ECAP char-
acteristics throughout the cochlea [9, 17–19]. A recent study 
reported significantly higher ECAP amplitudes throughout 
the apical and middle regions of the cochlea and signifi-
cantly lower ECAP thresholds in patients with preserved 
low-frequency acoustic hearing  [2]. Other explanations 
influencing ECAP characteristics are (1) the decreasing 
diameter of the cochlear turns towards the apex reducing 
the distance between the electrode and the neural tissue [20] 
and (2) an increasing density of neurons in the apical regions 
[21]. Nevertheless, ECAP may be a promising approach to 
monitor the electrode’s position during insertion.

Furthermore, the choice of the electrode array length 
according to the CDL seems to be feasible since there was 
no correlation between the CDL and the CC. Consequently, 
when choosing the electrode array according to the CDL 
homogenous ECAP characteristics among different individu-
als are observed. However, the mean CC was underestimated 
by preoperative estimation which is in line with recent stud-
ies investigating the accuracy of CC prediction [16, 22].

The findings of this study contribute to optimize exist-
ing methodologies to more accurately determine the post-
operative insertion angle of the electrode array, without the 
need of postoperative CT imaging. This has become even 
more important since approaches to fit the patients speech 
processor to the CT-based anatomical data, is reported to 
result in improved hearing outcomes, music appreciation and 
improvements in quality of life [23–26]. In addition, it might 
aid in future development of methods for continuous ECAP 

Fig. 3  ECAP characteristics and site of stimulation. A–C Violin plot 
of ECAP measured with a maximum stimulation rate of 50 qu. A 
Violin plot of ECAP threshold B Violin plot of ECAP amplitude and 
C Violin plot of ECAP slope for each individual stimulated electrode. 
D–F Violin plot of ECAP measured with a maximum stimulation rate 
of 35 qu. D Violin plot of ECAP threshold E Violin plot of ECAP 

amplitude and F Violin plot of ECAP slope for each individual stimu-
lated electrode. The “violin” covers the entire range of the datasets 
with the width indicating frequency, in analogy to a vertical diagram. 
Bold horizontal line indicates median, soft horizontal lines indicate 
interquartile ranges
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measurements to monitor and predict the intracochlear elec-
trode array position during surgery. This can be especially 
relevant for cochlear implantation with the goal of electroa-
coustic stimulation [9] in which the position of the electrode 
array is adjusted to the residual hearing.

Limitations

This study is limited by heterogeneous stimulation strategies. 
The standard stimulation charge was set to 35 qu. However, 
in cases of missing thresholds, the charge was increased up 
to 50 qu. Consequently, comparisons among these different 
charges are limited. For reason of homogeneity, we only 
used stimulation charges of 35 qu for the sub-analysis of the 

different insertion angles in degrees. However, this reduced 
the number of values that could be analyzed. Thus, the effect 
of linearity needs to be reproduced in larger cohorts.

Conclusion

ECAP characteristics are reliably associated with the 
electrode’s position inside the cochlea. We encourage 
prospective studies with standardized stimulation proto-
cols to strengthen the results from our study under the 
aim of identifying standard ECAP values for the site of 
stimulation.

Fig. 4  ECAP characteristics and site of stimulation determined from 
angular electrode positioning. A Violin plot of ECAP amplitude and 
B violin plot of ECAP slope for the individual stimulated electrode 
at 90°, 180°, 270°, 360°, 450° and 540° insertion depth. The “vio-

lin” covers the entire range of the datasets with the width indicating 
frequency, in analogy to a vertical diagram. Bold horizontal line indi-
cates median, soft horizontal lines indicate interquartile ranges

Fig. 5  Simple linear regres-
sion between the insertion 
angles at 90°, 180°, 270°, 360°, 
450° and 540° and A ECAP 
thresholds, B ECAP amplitudes 
and C ECAP slopes. Solid line 
represents linear regression line. 
r, Spearman’s rank correlation 
coefficient
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