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Abstract Global warming has largely advanced spring vegetation phenology, which has subsequently
affected terrestrial carbon and water cycles. However, further shifts in vegetation phenology under future
climate change remain unclear. We estimated the start of the growing season (SOS) by applying multiple
extraction methods based on the NDVI3g data set, and then parameterized and evaluated 11 spring vegetation
phenology models that included chilling, forcing, and the photoperiod. Based on scenario data from three
Shared Socioeconomic Pathways (SSP126, SSP245, and SSP585) derived from eight climate models, future
vegetation phenology was predicted using the phenology models. Results showed that all the phenology models
performed better than the NULL model (mean of the SOS), with the performance of one‐phase models broadly
matching that of two‐phase models, although the best models varied by vegetation type. The spatial pattern of
simulated SOS was similar among the models, and it explained >75% of the variation. Based on the mean
predicted SOS, we found that spring vegetation phenology will continue to advance under strong warming
conditions (SSP245 and SSP585), but that the trend of advance will reverse at around 2060 under the SSP126
scenario. The continued trend in SOS advance is likely related to rapid forcing fulfillment under stronger
warming conditions. However, under moderate warming, chilling might be reduced and it might require longer
to compensate for higher forcing, which ultimately would result in SOS delay. Our findings highlight that trends
will likely change under different warming conditions, potentially causing widespread impact on species
interaction, biodiversity, and ecosystem function.

Plain Language Summary Phenological change, which is often seen as an indicator of climate
change, has received widespread attention. However, despite this focus, comprehension of how vegetation
phenology might alter under different climate change scenarios remains inadequate. We used 11 process‐based
phenology models to forecast changes in the start of the growing season (SOS) in the Northern Hemisphere
under 3 climate change scenarios (SSP126, SSP245, and SSP585). Results showed that the one‐phase models
and the two‐phase models exhibited similar performance, which exceeded that of the NULL model (mean of the
SOS). Under the strong warming scenarios (SSP245 and SSP585), spring phenology was projected to continue
to advance, whereas under the moderate warming scenario (SSP126), the trend of advance was predicted to
reverse at around 2060. Our findings suggest that climate change might alter the competition between species
for spring resources, and thereby have widespread impact both on biodiversity and on the structure and function
of ecosystems.

1. Introduction
Evidence for recent warming of Earth's climatic system is incontrovertible (Solomon, 2007). During 1880–2012,
the mean surface temperature of Earth increased by 0.85°C (Stocker, 2014). Compared with 1850–1900, the 20‐
year mean global surface temperature rose by 0.99°C during 2001–2020, whereas the 10‐year mean global surface
temperature increased by approximately 1.09°C during 2011–2020 (Masson‐Delmotte et al., 2021), implying that
surface warming is ongoing. Changes in the climatic system broadly affect every region on Earth, and the role of
human activities in the recent warming of the atmosphere, oceans, and land has been identified (Masson‐Delmotte
et al., 2021). Because some changes in the climatic system of Earth are irreversible, it is critical to assess the
impact of future climate change on terrestrial ecosystems.
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Vegetation phenology is a key indicator of climate change (Fu et al., 2019; Jeong et al., 2011), and obtaining
phenological metrics is the underlying premise of the study of climate change through phenology. The methods
used to obtain vegetation phenology can be divided into three categories: ground‐based phenology observations,
remote‐sensing‐based phenology observations, and phenology modeling. Ground‐based phenology observations
often rely on volunteer observations of the phenological period of natural and cultivated species (Cleland
et al., 2007). As a traditional and widely used method, it can accurately and continuously describe the pheno-
logical status of specific plant species (Piao et al., 2019). Although ground‐based phenology observations can be
used as reference, they are constrained by the limited number of observed plant species, limited distribution range,
and level of observational skill (Menzel, 2002; Piao et al., 2019).

In recent decades, with the development of remote sensing technology, phenology observations based on remote
sensing have received increasing attention (Berra & Gaulton, 2021). The vegetation phenology obtained using
remote sensing techniques is usually based on time series of vegetation indexes such as the normalized difference
vegetation index (NDVI), enhanced vegetation index, and Sun‐induced chlorophyll fluorescence calculated from
the reflectance of the vegetation canopy (Chen et al., 2021; F. Meng et al., 2021; L. Meng et al., 2021; Reed
et al., 2009). Although remote sensing has advantages in large‐scale phenological research, it is limited by
problems such as mixed pixels (Zeng et al., 2020). Neither ground‐based phenology observations nor remote‐
sensing‐based phenology observations can predict future phenology. In contrast, the phenology modeling
approach is based on the impact of environmental factors on vegetation phenology and therefore it can be used for
phenological prediction.

Vegetation phenology is driven by abiotic and biotic factors (Lieth, 1974; Pau et al., 2011; Wolkovich
et al., 2014). Biotic factors include competition between plant species (Morales et al., 2005), while abiotic factors
include CO2 concentration, climate change, nitrogen deposition, and land use change (Piao et al., 2020). Envi-
ronmental factors that affect vegetation phenology include the temperature, photoperiod, and precipitation (Fu
et al., 2020). The manifestation of spring vegetation phenology is closely associated with dormancy, which
encompasses three distinct phases: paradormancy, endodormancy, and ecodormancy (Lang et al., 1987). In
phenological modeling, a model that explains only ecodormancy (forcing) is called a one‐phase model, whereas a
model that explains both endodormancy and ecodormancy (chilling and forcing) is called a two‐phase model. The
earliest one‐phase model based on environmental factors was introduced by Reaumur (1735). The model, which
considers only the effect of temperature and uses accumulated heat to measure phenological progress, is known as
the “thermal time” model (Basler, 2016). Subsequently, with consideration of new explanations for dormancy,
many more one‐phase and two‐phase models were gradually developed. Accounting for the temperature response
function (linear and sigmoid) and environmental driving factors (temperature and photoperiod), one‐phase
models include the TT, TTs, M1, and M1s thermal time models, and the PTT and PTTs photothermal time
models (Chuine et al., 1999; Hunter & Lechowicz, 1992; Wang, 1960). Based on the order of onset of the chilling
process and the forcing process, two‐phase models can be classified as sequential, parallel, and alternate models
(Cannell & Smith, 1983; Hänninen, 1990; Kramer, 1994; Murray et al., 1989).

Spring vegetation phenology regulates the photosynthesis of the canopy and subsequent terrestrial ecosystem
processes, thereby affecting biosphere–atmosphere interaction (Piao et al., 2019), which also affects interspecific
competition and the structure and function of ecosystems (Huang et al., 2017). The continuous advance of spring
vegetation phenology has had huge impact on the carbon sink of terrestrial ecosystems (Keenan et al., 2014).
Consequently, large‐scale phenological monitoring is important for understanding the carbon cycling processes
of terrestrial ecosystems. Phenology models are often established at the site scale and used for prediction of the
spring phenology for specific tree species; thus, large‐scale phenological simulations are relatively rare.
Therefore, there is urgent need to evaluate large‐scale spring vegetation phenology forecasts under different
climate change scenarios, especially the latest Shared Socioeconomic Pathway (SSP) scenarios, owing to the
great importance for future management and protection of terrestrial ecosystems.

In this study, 11 spring phenology models were parameterized by combining the start of the growing season
(SOS) derived from remote sensing and meteorological data from the historical period (1982–2015). The spring
phenological models included six one‐phase models and five two‐phase models. Then, predictions of future
spring vegetation phenology for 2016–2100 were produced using data from three SSP scenarios. The objectives
of this study were (a) to compare the performance of different spring vegetation phenology models, and (b) to
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evaluate the changes in spring phenology and reveal whether spring phenology will continue to advance in the
future under different warming scenarios.

2. Materials and Methods
2.1. Study Region and Vegetation Type

The study region comprised the Northern Hemisphere above 30°N. The vegetation map we used was obtained by
aggregation of the Moderate Resolution Imaging Spectroradiometer standard land cover data product
(MCD12C1) with spatial resolution of 1/12° (Figure 1). The International Geosphere–Biosphere Program (IGBP)
classification system was used to reclassify the pixels, and we adopted the following criteria: (a) exclusion of
crop‐dominated areas because cropland is susceptible to disturbance by human activity, and (b) selection of pure
pixels of each vegetation type that have not changed during 2000–2020 (the fraction of a given vegetation type is
equal to 100). Ultimately, seven vegetation types were obtained: evergreen needleleaf forest (ENF), deciduous
needleleaf forest (DNF), deciduous broadleaf forest (DBF), mixed forest (MF), open shrubland (OSL), woody
savannas (WS), and grassland (GL).

2.2. NDVI and Phenological Extraction

Retrieval of phenological information is prerequisite for parametric phenology models. In this study, the
Advanced Very High Resolution Radiometer Global Inventory Modeling and Mapping Studies third‐generation
15‐day composite NDVI product (NDVI3g) was used to extract vegetation spring phenology, because it is widely
used for extraction of phenological metrics (Mo et al., 2019; Piao et al., 2006). The data set spans 1982–2015 and
has spatial resolution of 1/12°. It eliminates effects such as orbital drift and sensor calibration, and undergoes
quality control with higher resolution data (Pinzon & Tucker, 2014).

Figure 1. Distribution of the considered vegetation types within the study area.
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Extraction of vegetation phenology based on the NDVI typically involves two steps: fitting the NDVI curve and
determining the phenological metrics. Considering the uncertainty in using a single method (White et al., 2009),
five methods were used to retrieve the SOS data. The NDVI curve fitting methods used in this study were
Gaussian, Spline, Harmonic Analysis of Time Series, Polyfit, and the Savitzky‒Golay filter (Jakubauskas
et al., 2001; Jonsson & Eklundh, 2002; Jönsson & Eklundh, 2004; Piao et al., 2006; Roerink et al., 2000; White
et al., 2009; Wu et al., 2010; Yu et al., 2010). The methods adopted for determination of the phenological period
included the dynamic threshold method and the maximum change rate method based on the fitting of the NDVI
curve. The dynamic threshold method takes the date when the NDVI value reaches a specific ratio between the
minimum NDVI and the maximum NDVI of the year as the SOS, and commonly used ratios are 20% and 50%.
The maximum change rate method takes the date with the maximum rate of change of the fitted NDVI curve as the
SOS. In this study, the Gaussian and Spline methods used the 50% dynamic threshold method for determination of
the phenological period, the Harmonic Analysis of Time Series and Polyfit methods used the maximum change
rate method, and the Savitzky‒Golay filter used the 20% dynamic threshold method (Cong et al., 2013). The curve
fitting functions for the five methods and the method adopted for determination of the SOS are summarized in
Table S1 in Supporting Information S1. We used the mean of the five methods as input data to parameterize the 11
models (Figure 2l).

2.3. Meteorological Data

2.3.1. Historical Climate Data Set

The historical climate data used for model parameterization were extracted from the ERA‐Interim data set. ERA‐
Interim is a new generation of reanalysis products following ERA‐40 that incorporates new technologies to
improve data quality. The ERA‐Interim data set offers global atmospheric reanalysis data extending from 1
January 1979–31 August 2019 at various spatial resolutions from 0.125° to 2.5° (Berrisford et al., 2009, 2011).
We downloaded daily atmospheric temperature data from 1982 to 2015 at 2‐m height above the ground with
0.125° spatial resolution. The average of the temperature at four instances (06, 12, 18, and 24 hr) was calculated as
the daily mean temperature.

2.3.2. Climate Scenario Data Set

The international Coupled Model Intercomparison Project Phase 6 (CMIP6) of the World Climate Research
Program developed a new set of scenarios run in the 21st century that represent different degrees of socioeco-
nomic development and different pathways for change in atmospheric greenhouse gas concentrations (Eyring
et al., 2016; Li et al., 2021; O’Neill et al., 2016). The five main SSP scenarios are SSP1‐1.9, SSP1‐2.6, SSP2‐4.5,
SSP3‐7.0, and SSP5‐8.5, where the first number represents the SSP and the second number represents the
radiative forcing level by 2100. For example, the SSP1‐2.6 scenario represents an approximate total radiative
forcing level of 2.6 W m− 2 by 2100 under the SSP1 socioeconomic pathway, which broadly corresponds to
Representative Concentration Pathway (RCP) 2.6 used in the previous generation of climate change scenarios
(Meinshausen et al., 2020). This study selected three SSP scenarios: SSP1‐2.6 (SSP126), SSP2‐4.5 (SSP245), and
SSP5‐8.5 (SSP585). Considering the uncertainty associated with individual climate models, we estimated the
phenology using eight CMIP6 climate models (i.e., BCC‐CSM2‐MR, INM‐CM4‐8, INM‐CM5‐0, MIROC6,
MPI‐ESM1‐2‐LR, MRI‐ESM2‐0, NorESM2‐LM, and NorESM2‐MM) and computed their average as the pro-
jected future spring vegetation phenology. Information regarding the global climate models employed in this
study is summarized in Table S2 in Supporting Information S1.

2.4. Spring Vegetation Phenology Models

Spring phenology in the study area is controlled mainly by temperature and the photoperiod. We selected 11
spring vegetation phenology models for use in this study, of which 3 models considered only the influence of
temperature and 8 models considered the influence of both temperature and photoperiod (Table 1). From the
perspective of dormant release, six one‐phase models and five two‐phase models were used, which included
between three and eight parameters. Tables S3 and S4 in Supporting Information S1 summarize the functions
used by the 11 models and provide descriptions of the parameters.

Earth's Future 10.1029/2023EF003788

MO ET AL. 4 of 17

 23284277, 2024, 3, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023E

F003788 by U
niversiteit A

ntw
erpen, W

iley O
nline L

ibrary on [04/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



2.5. Model Calibration

To improve model robustness, we used the SOS for each pixel for 26 years (i.e., 1986–2011) to parameterize the
spring phenology model, and we used that for another 8 years (i.e., 1982–1985 and 2012–2015) to evaluate model
performance. Our modeling study was based on the PHENOR phenology modeling framework (Hufkens
et al., 2018), and the model parameterization method was based on the generalized simulated annealing package
(Xiang et al., 2013).

We used the correlation coefficient (r), root mean square error (RMSE), and Akaike information criterion (AIC)
to evaluate model performance. The RMSE is often used to measure the difference between the predicted and
observed values of a model. The smaller the RMSE value, the closer the predicted and observed values. The
RMSE is calculated using the following formula:

Figure 2. Spatial pattern of the multiyear mean start of the growing season (SOS) (a–k) predicted by each of the 11 spring
phenology models and (l) observed by satellite.
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RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑n
i=1(OBSi − PREi)2

n

√

(1)

where OBSi is the ith observation, PREi is the ith predicted value, and n is the number of observations.

The AIC, which accounts for both the model complexity and the goodness‐of‐fit to the data, is widely employed
for model selection. A smaller AIC value indicates better model performance. The AIC is calculated as follows:

AIC = n∗log(RMSE2) + 2k +
2k(k + 1)
n − k − 1

(2)

where k is the number of parameters included in the model.

3. Results
3.1. Model Validation and Performance Comparison

We used satellite‐derived SOS and ERA‐Interim meteorological data to parameterize and validate the phenology
models for the seven types of vegetation in spring in the Northern Hemisphere. The simulation of SOS by each of
the 11 models (Figures 2a–2k) produced a similar spatial pattern to that of the satellite‐derived SOS (Figure 2l).
Overall, the SOSwas progressively delayedwith increasing latitude.However, themean and the standard deviation
of the SOS varied depending on vegetation type (Figure S1 in Supporting Information S1). Specifically, OSL had
the earliest SOS, averaging approximately 90 days, whereas ENF had the latest SOS, which was approximately
30 days later than that ofOSL.DNFhad the smallest standard deviation of SOS at approximately 5.6 days, followed
by that of DBF at approximately 9.5 days; GL had the largest standard deviation of SOS at over 22 days. These

Table 1
Spring Vegetation Phenology Models Used in This Study

Model
abbreviation Full model name Release Drivers Structure

No.
parameters Comments/References

NULL NULL model Mean of the SOS (Table S3 in Supporting
Information S1)

TT Thermal Time model Ecodormancy release F One‐phase 3 Chuine et al. (1999), Kramer (1994), and
Reaumur (1735)

TTs Thermal Time model Ecodormancy release F One‐phase 4 Hänninen (1990) and Kramer (1994)

PTT Photothermal Time model Ecodormancy release PF One‐phase 3 Masle et al. (1989)

PTTs Photothermal Time model Ecodormancy release PF One‐phase 4 Basler (2016), Landsberg (1974), and Črepinšek
et al. (2006)

M1 M1 model Ecodormancy release PF One‐phase 4 Blümel and Chmielewski (2011)

M1s M1 model Ecodormancy release PF One‐phase 5 M1 model using a sigmoidtemperature response

AT Alternating model Endo‐ and ecodormancy
releases

CF Two‐phase 5 Murray et al. (1989)

SM1 Sequential model (M1
variant)

Endo‐ and ecodormancy
releases

CFP Two‐phase 8 Basler (2016)

SM1b Sequential model (M1
variant)

Endo‐ and ecodormancy
releases

CFP Two‐phase 8 SM1 model using a bell‐shapedchilling response

PM1 Parallel M1 model Endo‐ and ecodormancy
releases

CFP Two‐phase 8 Basler (2016)

PM1b Parallel M1 model Endo‐ and ecodormancy
releases

CFP Two‐phase 8 PM1 model using a bell‐shapedchilling response

Note. Model description: SOS: start of the growing season; s: using a sigmoid temperature response for forcing rather than a growing‐degree‐day temperature response;
b: using a bell‐shaped temperature response for chilling rather than a triangular temperature response. Driver abbreviations: C: chilling temperature, F: forcing tem-
perature, and P: photoperiod. Combinations of different letters in the driver column represent those drivers that are driving the model.
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results suggest that the SOS of woody plants is relatively concentrated, whereas that of herbaceous plants spans a
longer period.

Overall, the percentage of variance explained by the 11models ranged from 75% (SM1) to 76.6% (M1), with slope
of 0.78–0.79 for the linear fits (Figure 3). For all vegetation types, the RMSEs of the 11 models were smaller than
those of the NULLmodel (Table 2). For all models, the RMSEwas within 15 days for most pixels; however, there
were large differences between the results for different vegetation types (Figure S2 in Supporting Information S1).
Specifically, DNFhad the smallest RSME, averaging approximately 5.2 days, whereas ENF had the largest RMSE,
averaging 13.2 days (Table 2, Figure S1 in Supporting Information S1). ForWS andGL, themodel‐simulated SOS
had the highest correlation coefficient with the satellite‐derived SOS, both averaging 0.9, whereas the correlation
coefficient was smallest for DNF, averaging 0.6.

Overall, the one‐phase models demonstrated performance comparable to that of the two‐phase models; however,
it varied depending on vegetation type (Table 2). The two‐phase models exhibited slightly better performance
than the one‐phase models for DBF and MF, whereas the one‐phase models demonstrated slightly better

Figure 3. Heat plots of model‐predicted and satellite‐derived SOS: (a–k) for each of the 11 spring phenology models and (l) for the mean predicted SOS of all 11 models.
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performance than the two‐phase models for the remaining vegetation types. We used the AIC to identify the best
model for each vegetation type. Results showed that ENF was best represented by the AT model, while the M1s
model performed best for DNF, and the M1 model showed best performance for the remaining five vegetation
types.

The RMSE does not reflect the relative magnitude between the model simulations and the satellite observations;
therefore, we calculated the difference between the average model‐simulated SOS and the satellite‐derived SOS
for 1982–2015. Overall, the errors in the model‐simulated SOS had similar spatial distribution (Figure 4). The
mean error was <6 days for most pixels, and there was no clear pattern of distribution in the latitudinal direction.
However, the distribution of errors varied considerably between vegetation types. Specifically, the model‐
simulated SOS for WS was smaller than that observed by satellite for most pixels, whereas the model‐
simulated SOS was generally larger than that observed by satellite for the other vegetation types.

3.2. Temperature‐Change‐Induced Variation in Chilling Days

To evaluate how chilling days might vary under the different scenarios, we first calculated the change in mean
temperature over 2016–2100 under three SSP scenarios in the regions where the seven vegetation types are
located (Figure S3 in Supporting Information S1). Regions containing OSL exhibited the highest mean annual
temperature, whereas areas containing DNF had the lowest mean annual temperature. Temperature variations
were notably distinct across the three scenarios, particularly post‐2060. Under the SSP126 scenario, temperatures
initially exhibited a trend of increase followed by gradual decline; however, by 2100, the average temperature
remained higher than that of 2016. Under the SSP245 scenario, the rate of increase in temperature diminished
after 2060, resulting in overall warming of over 2°C during 2016–2100. Under the SSP585 scenario, average
temperatures across all vegetation types demonstrated a consistent and progressive increase, with the average rise
exceeding 5°C in 2100 relative to 2016.

To reflect the differences in the change in average temperature over different periods and under the different
scenarios, we calculated the difference between the average temperature of four periods, that is, 2021–2040,
2041–2060, 2061–2080, and 2081–2100, and the average temperature of the historical period, that is, 1982–2015
(Figure S4 in Supporting Information S1). Under all three scenarios, the average temperature of regions of WS
during 2021–2040 was lower than that of the historical period. Under scenario SSP126, the magnitude of the
temperature increase gradually increased from 2021 to 2040 to 2061–2080 and then it dropped to the 2041–2060
level during 2081–2100, although there were differences in the temperature changes among the different vege-
tation types. Under the SSP245 and SSP585 scenarios, the magnitude of the temperature increase gradually
increased from 2021–2040 to 2081–2100, with the average temperature of regions of WS changing from a value
below the historical level to a value above the historical level.

With change in temperature, especially warming, the effect of chilling might be impacted. We employed the
concept of chill days to evaluate the fulfillment of chilling requirements, which is characterized by the accumu-
lation of the number of dayswithin a specific temperature range. In this study, chill dayswere defined as the number
of dayswith a temperature of 0–10°Cbetween 1 September of the previous year and the average SOS (Figures 5 and
6). On average, the number of chill days gradually increased under the warming scenarios, and the trend of increase
under moderate warming conditions shifted at around 2060 (Figure 5h). Specifically, under the various warming
scenarios, the number of chill days gradually increased (decreased) for ENF, DNF, MF, WS, and GL (DBF and
OSL). Under the moderate warming scenarios, the trend of chill days shifted at around approximately 2060.
Comparedwith that under the SSP126 andSSP245 scenarios, pronounced increase in the spatial extent of chill days
was evident under the SSP585 scenario, which would be expected to result in reduction in the temperature
accumulation required for the spring plant forcing process, thereby leading to SOS advancement (Figure 6).

3.3. Future Spring Phenological Changes

Under the different warming scenarios, the phenological changes of the different vegetation types vary (Figure 7).
On average, during 2016–2060, the SOS had a similar trend under both the SSP126 and the SSP245 scenarios.
After 2060, the SOS under the SSP245 scenario tended to advance gradually, whereas it was gradually delayed
under the SSP126 scenario. Under the SSP585 scenario, the SOS advanced gradually during 2016–2100 at a rate
of approximately 0.12 days per year (Figure 7h). Under the SSP126 scenario, the SOS for the various vegetation
types exhibited initial advancement followed by subsequent delay, except for OSL. Under the SSP245 scenario,
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the SOS experienced gradual advancement, and the rate of progression
diminished to varying extents post‐2060. The SOS of all seven vegetation
types under the SSP585 scenario showed a trend of gradual advance, with that
of ENF having the highest rate of advancement (approximately 0.21 days per
year), and that of OSL and GL having the smallest rate of advancement
(approximately 0.07 days per year).

To capture the average phenological changes across different periods and
under different scenarios, we computed the differences between the mean
SOS of the four periods (2021–2040, 2041–2060, 2061–2080, and 2081–
2100) and the mean SOS of the historical period (1982–2015), as shown in
Figure 8. Generally, the changes in SOS were similar under the SSP126 and
SSP245 scenarios, with differences mainly occurring after 2060. Specifically,
the SOS of DNF and WS was later than the average of 1982–2015, whereas
the SOS of the other vegetation types was earlier. Under the SSP585 scenario,
the SOS generally became earlier, with the SOS of WS gradually shifting
from being later than the historical average to being earlier than the historical
average. Although the SOS of DNF remained later than the average of 1982–
2015, the magnitude of the difference gradually decreased.

4. Discussion
4.1. Model Performance

Our results showed that the predictions of all 11 models were generally close,
although the models demonstrating the best performance varied with vegeta-
tion type. Previous studies that compared models, conducted at both the site
scale and the large scale (based on remote sensing), yielded similar results.
This variation might arise owing to differences in the mechanisms driving
phenological development across distinct regions or vegetation types.
Currently, phenological modeling research lacks a unified model capable of
comprehensively simulating all scenarios. For example, Vitasse et al. (2011)
tested phenologymodels using phenological observations of six European tree
species compiled over 2–3 years and found that for most species, one‐phase
models demonstrated comparable performance to that of two‐phase models.
Basler (2016) tested existing phenology models and their combinations using
long‐term phenological observations from Central Europe and found that one‐
phase models had similar or better performance than two‐phase models. Zhao
et al. (2021) compared four existing models using European phenological
observations and found that two‐phase models performed slightly better than
the one‐phase model. In terms of large‐scale model comparison, Liu
et al. (2018) compared the performance of one‐phase and two‐phase models
using satellite‐based Northern Hemisphere phenology and found that the best‐
performing model varied by vegetation type. Our recent large‐scale model
comparison study demonstrated that one‐phase and two‐phase models yield
comparable results (Mo, Zhang, Jiang, et al., 2023; Mo, Zhang, Liu,

et al., 2023). It should be noted that Liu et al. (2018) and Zhao et al. (2021) both used only a single one‐phasemodel
in their studies,whichmight have introduced somedegree of uncertainty in their results. To enhance the accuracy of
vegetation phenology simulation, improvements could be pursued on two fronts: augmentation of the mechanistic
aspects of models to enhance their ability to simulate complex scenarios, and selection of the optimal model form
for specific regions or vegetation types, which is crucial for improved precision.

4.2. Impact and Change of Chilling

Temperature exerts a dual influence on spring phenology, that is, low temperatures are necessary to terminate
endodormancy and the accumulation of heat is required for cessation of ecodormancy (Chuine et al., 2016). A

Figure 4. Spatial distribution and histogram of the mean error of the model
simulation results for the seven vegetation types. (a1–l1) Spatial
distributions of the average errors of the simulation results of the 11 spring
phenology models and their mean, and (a2–l2) error histograms of the SOS
of the seven vegetation types simulated by the 11 models and their mean.
The seven vegetation types comprise evergreen needleleaf forest (ENF),
deciduous needleleaf forest (DNF), deciduous broadleaf forest (DBF),
mixed forest (MF), open shrubland (OSL), woody savannah (WS), and
grassland (GL).
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two‐phase model considers the additional requirement of accumulated chilling compared with a one‐phase model.
The similar performance of the two types of models suggests that the requirement for chilling has already been
met under current conditions. It is worth noting that there are differences in sensitivity to chilling accumulation
and heat accumulation among different tree species. For example, the flowering date for chestnut trees in Beijing
(China) is dominated by the heat accumulation rate, the leaf‐unfolding time of walnut trees in Davis (California,
USA) is mainly affected by the chilling accumulation rate, and the flowering time of cherry trees in Klein‐
Altendorf (Germany) is affected by both chilling accumulation and heat accumulation (Luedeling et al., 2013).
Under the background of global warming, the spring phenology of tree species that are sensitive to heat accu-
mulation might advance owing to faster heat accumulation, while the flowering or leaf‐unfolding time of tree
species that are sensitive to chilling accumulation might be delayed owing to insufficient chilling accumulation.
However, some studies have shown that ongoing global warming might not necessarily reduce chilling

Figure 5. Temporal variation in the number of chill days under the three scenarios in the regions where the seven vegetation types are located: (a) evergreen needleleaf
forest (ENF), (b) deciduous needleleaf forest (DNF), (c) deciduous broadleaf forest (DBF), (d) mixed forest (MF), (e) open shrubland (OSL), (f) woody savannah (WS),
and (g) grassland (GL). (h) Temporal variation in mean chill days across the study area under the three scenarios. Shading represents one standard deviation of chill days
calculated based on temperature data from the eight CMIP6 climate models under each scenario.

Earth's Future 10.1029/2023EF003788

MO ET AL. 11 of 17

 23284277, 2024, 3, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023E

F003788 by U
niversiteit A

ntw
erpen, W

iley O
nline L

ibrary on [04/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



accumulation. For example, Juknys et al. (2016) noted that chilling at 55°N increased at a rate of 3.6 hr per year
during 1920–2013. Our results showed that under the intense warming (i.e., the SSP585 scenario), the number of
chill days gradually increased (except for DBF and OSL). This result might be because the average annual
temperature of the areas where DBF and OSL are located is >10°C, and thus warming would cause reduction in
the number of chill days. Conversely, the average annual temperature of the areas of the other vegetation types is
<10°C, and for some it is even <0°C (i.e., DNF); thus, warming would increase the number of chill days. For GL,
studies have shown that chilling accumulation is not an effective predictor of the vegetation green‐up date. This
inadequacy primarily arises because of the predominant influence of water limitation (i.e., precipitation and
relative humidity) on vegetation phenology in such regions.

4.3. Changes in Future Phenology

Phenological patterns of vegetation in temperate and boreal regions are responsive to shifts in environmental
factors, with pronounced emphasis on temperature variations. The advancement of spring phenology resulting
from temperature increase has been extensively documented (Fu et al., 2015; Menzel et al., 2006; Peñuelas &
Filella, 2001). Our research showed that spring phenology will advance with increasing temperature and will be
delayed when temperature decreases. Previous phenology prediction studies were based mainly on different RCP
scenarios. For the scenario of temperature increase (e.g., RCP 8.5), spring phenology mainly showed a trend of
advance, although variation in the predicted advancement of phenology might reflect differences in study scale
and models used (Asse et al., 2020; F. Meng et al., 2021; L. Meng et al., 2021; Wang et al., 2022; Zimmer
et al., 2022). Under the optimistic climate change scenario (e.g., RCP 2.6), the temperatures of some regions
might continue to increase, whereas the temperatures in other regions might gradually decrease (Liu et al., 2019).
The spring phenology of vegetation primarily exhibits delay in response to decreasing temperatures (Jeong
et al., 2013). Our findings indicated that spring phenology can track temperature changes, and as the temperature
trends shift, the phenology trends also shift accordingly. Our results showed that under strong warming condi-
tions, the phenology of all vegetation types will advance. This is because warming increases the number of chill
days, thereby reducing the heat requirements, which are quickly satisfied and result in advancement of spring
phenology. However, early phenology does not necessarily imply sustained greening because vegetation growth
might be inhibited once temperatures exceed the optimal temperature range (Zhang et al., 2022). For the case of
reduced chill days, advance in phenology might be due to the accumulation of heat caused by warming
compensating for the increased heat demand caused by the reduction in chill days. In the case of moderate
warming, the reversal of the trend of phenology advancement might reflect the increase in heat requirements
caused by reduction in chill days.

4.4. Uncertainty

The models used in this study account for the influences of chilling, forcing, and the photoperiod on spring
phenology; however, it should be noted that other environmental factors might also exert an impact. For example,
it has been demonstrated that the effects of daytime and nighttime temperatures on spring phenology are
asymmetrical and vary depending on vegetation type (Fu et al., 2016; Mo, Zhang, Jiang, et al., 2023; Mo, Zhang,

Figure 6. Spatial pattern of trend of chill days under the (a) SSP126, (c) SSP245, and (c) SSP585 scenarios. Dots represent regions with a statistically significant trend.
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Liu, et al., 2023). Additionally, extreme weather events, especially frost, affect spring phenology (Mo, Zhang,
Jiang, et al., 2023; Mo, Zhang, Liu, et al., 2023). Future spring phenology models should incorporate these new
findings to better simulate phenological changes. With the rapid advancement of computer science in recent
years, machine learning methods have also been applied to phenology prediction (Fu et al., 2022). Compared with
process‐based models, machine learning models lack theoretical interpretation; however, they can achieve higher
simulation accuracy. In the future, a combination of process‐based and machine learning models could be used to
improve phenology prediction accuracy.

5. Conclusions
The performance of each of the 11 spring phenology models considered in this study was relatively close and
better than that of the NULL model. The performance of the one‐phase models was found comparable to that of

Figure 7. Temporal variation in the mean SOS of the seven vegetation types during 2021–2100 under the three warming scenarios: (a) evergreen needleleaf forest (ENF),
(b) deciduous needleleaf forest (DNF), (c) deciduous broadleaf forest (DBF), (d) mixed forest (MF), (e) open shrubland (OSL), (f) woody savannah (WS), and
(g) grassland (GL). (h) Temporal variation in the mean SOS across the study area under the three warming scenarios. Shading represents one standard deviation of the
predicted SOS based on temperature data from the eight CMIP6 climate models under each scenario.
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the two‐phase models, although the best model varied depending on vegetation type. The simulated SOS of each
model had a similar spatial pattern, with all models explaining >75% of the variation. Under the strong warming
scenario (SSP585), spring phenology will continue to advance, whereas under the SSP126 scenario, the trend of
advance in spring phenology will reverse by approximately 2060. The sustained trend of advance of the SOS
might be related to the rapid fulfillment of forcing under strong warming conditions, whereas moderate warming
might reduce chilling, which requires longer to compensate for the higher forcing requirement, thereby leading to
a delay in the SOS. Our results indicated that under different warming conditions, phenological trends might
exhibit different patterns, which could have broad impact on species interactions, biodiversity, and ecosystem
function.
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