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Abstract—Data collection is a critical challenge in Emotion
Recognition (ER), especially as demand grows for in-the-wild
data that includes contextual information. The collection of data
is continuously needed to investigate new ER modalities, sensors,
stimuli, models, and methods. This necessitates the development
of tools and frameworks that facilitate emotion data collection.
In this paper, we introduce ColEmo, an open-source software
interface for collecting emotion data. ColEmo was developed
using Flutter allowing it to be compiled for both desktop
and mobile devices. The architecture and interface of ColEmo
provides a high degree of flexibility to be customized or extended
to suit specific experiment requirements. We tested ColEmo in
an ER data collection study which was extended to include Voice
Activity Detection (VAD) and motion context, demonstrating
its effectiveness in lab environments. Further investigation is
recommended to evaluate ColEmo’s potential for in-the-wild data
collection setups.

Index Terms—Data Collection, Affective Computing, Emotion
Recognition, Context Awareness, Open Source Software

I. INTRODUCTION

Emotions are among the most influential factors in people’s

lives, which can affect many of their activities, communica-

tions, and daily routines [1]. They are derived from a variety

of external and internal human body data. External representa-

tions of emotion include a range of human perceptible emotion

expressions. Facial [2], [3] and vocal [4], [5] modalities are

among the most prominent studies in this category, which

have received much attention from the research community.

However, external emotion representations are not limited to

facial and speech data. Tactile expressions [6], movements [7],

[8], and textual demonstration [9] are also among the external

emotion representations. Internal emotion representations, on

the other hand, consist of a set of physiological signals.

Electroencephalogram (EEG), Elegtromyogram (EMG), Heart

Rate (HR), Heart Rate Variability (HRV), Respiration Rate

(RR), and Electro-dermal Activity (EDA) are among the com-

monly used internal modalities for emotion recognition [10].

Emotion Recognition (ER) is constantly being improved

through the development of new methods based on Artificial

Intelligence (AI), as well as the creation of new datasets.

Preparing a dataset for ER requires a number of decisions

regarding several requirements. These requirements include
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TABLE I
REQUIREMENTS FOR COLLECTING DATASETS IN EMOTION RECOGNITION

(ER). THESE INCLUDE THE SELECTION OF APPROPRIATE MODALITIES

AND CORRESPONDING SENSORS, STIMULI THAT ELICIT INTENDED

AFFECTIVE STATES, AN EMOTION MODEL AND RATING SCALE FOR HUMAN

ANNOTATIONS, EXPERIMENTAL SETUP, PARTICIPANT RECRUITMENT

CRITERIA, AND RESPECTING RESEARCH ETHICS IN ALL STAGES.

Requirement Options

Modalities
Facial; Speech; Gait; Gesture; Brain signals; Heart
activity; EDA; EMG; EOG; RSP

Sensors
Medical; Commercial
Local memory; Connected (wired, wireless)

Stimuli Picture; Music; Video; Environment; Memories

Emotion model Discrete emotions; Dimensional emotions

Rating scales PANAS [11]; SAM [12]; DES [13]

Experiment setup Lab (controlled); In the wild

Conditions on
participants

Quantity; Age groups; Gender balance; Culture

Research ethics Depending on experiment content and design

Acronyms used in the table: DES: Differential Emotion Scale, EDA:
Electro-dermal Activity, EMG: Elegtromyogram, EOG: Electrooculo-
gram, PANAS: Positive and Negative Affective Scheme, RSP: Respiration,
SAM: Self-Assessment Manikins,

(but are not limited to): modalities involved, sensors, ex-

periment environment, stimuli, emotion model, ground truth

verification, number and conditions put on subjects. Table I

lists these requirements with some of their possible choices,

taken from the current literature.

The multiple possible combinations of the individual pa-

rameters reduce the chance of finding a perfect match out

of the available emotion datasets. Therefore, for many future

ER studies, proprietary data will have to be collected to keep

updated with the advent of new ground truth verification

methods, field data collection techniques, and new modalities

or sensors. Moreover, as AI is fed with data, in order for

ER to reach a higher level of maturity, long way is still to

go regarding emotion data collection. All of this necessitates

the development of tools and frameworks that facilitate the

collection of emotion data.

Collecting data for ER can be a challenging task. Framing

the requirements listed in Table I provides some insight into

the components that are common to any task of collecting

ER data which are in line with the previous datasets on

ER [14]–[17]. These common components which are also
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Fig. 1. Common components of any software-based Emotion Recognition
(ER) data collection task derived from ER data collection requirements
(Table I) and the existing ER datasets [14]–[17]. The software for experi-
ment control is in charge of presenting emotional stimuli, collecting human
annotations and communicating with the sensors. Research ethics must be
respected in all aspects of the data collection.

briefly demonstrated in Figure 1 include:

1) Research Ethics: Respecting research ethics in all detail

of the data collection before, during, and after the

experiments is vital,

2) Sensor Setup: Preparation and setup of the sensors used

for data collection is a common part of the experiments

which often involves helping participants wear wearable

sensors among other setups,

3) Emotional Stimuli: Presenting effective emotional stim-

uli is necessary for eliciting different emotional states in

the subjects,

4) Human Annotations: Collecting self-reported or other-

reported annotations that help getting close to ground

truth information for the subject’s affective state is

crucial.

In addition, experiment control software, usually in the form of

a User Interface (UI) is required to coordinate the experiments

by presenting the stimuli, interacting with user inputs and

sensor data throughout the trials. Experiment builder tool-

boxes help researchers create their own experiment setups and

present them to subjects in the form of a UI application [18]–

[22]. However, these toolboxes come with limitations such

as being platform-restricted, closed source, or requiring paid

licenses. We will further discuss these existing software in

Section IV (Table II).

In this paper, we present an open-source UI application soft-

ware developed initially for the ER data collection research.

We tested our software within a context data collection study

covering emotion, voice, and activity, which we present in this

paper. Please note that the main focus of the current paper is to

introduce our open-source UI application software, while our

dataset itself, along with its detailed data description will form

a separate future contribution. We named our software ColEmo

(abbreviating Collecting Emotions). ColEmo is developed

using a cross-platform Software Development Kit (SDK). This

helps ER researchers interested in collecting in-the-wild data

to compile their app with minimal programming effort for

mobile platforms (Android, iOS, or web) according to their

own needs. Furthermore, ColEmo is a modular application

that can be integrated with different sensors, different stimuli,

and/or different human annotation rating scales. Flexibility

of ColEmo is threefold: modularity, extensibility via Python

Application Programming Interface (API), and cross-platform

compatibility. Such versatility makes ColEmo suitable for

data collection in research areas that require human data,

including sensed data, self-reported data, or third-person an-

notations. This opens up usefulness of ColEmo in various

application domains, such as emotion recognition, context-

awareness, psycho-physiological analysis, and more. ColEmo

is accessible at: https://gitlab.ilabt.imec.be/emowear/colemo.

The remainder of this paper is organized as follows: Sec-

tion II first provides an introduction to the features of ColEmo,

followed by its underlying architecture. Then a description of

its interface within a working framework is given. Section III

describes our use case of data collection using ColEmo as a

practical example. Section IV discusses the technical aspects

of the various elements used and the results of our experience

with ColEmo, and provides suggestions for future work.

Finally, conclusions are drawn in Section V.

II. COLEMO APPLICATION SOFTWARE

We developed ColEmo using Flutter1. Flutter is an open-

source SDK for cross-platform UI application design, created

by Google. ColEmo is written in Dart2 programming language.

The same codebase can be compiled natively for Android,

iOS, Linux, macOS, Windows, and the web platforms. To

maintain the modularity of the whole framework, ColEmo

can work in conjunction with other pieces of software that

handle independent tasks through APIs. ColEmo performs the

following operations during the user data collection session:

• Provides instructions that guide the user through the

programmatically-defined phases of the data collection

session,

• Presents emotional stimuli to elicit different emotional

states in the participants,

• Collects user input data i.e. the pre-study questionnaire,

intermittent self-assessment surveys, and microphone

recordings,

• Generates timestamped Message Queuing Telemetry

Transport (MQTT) log messages for every application-

related event.

In this section, we make a closer look into the capabilities of

ColEmo as our proposed user data collection interface for ER

applications.

A. Architecture

Flutter apps are made from widgets as their central class

hierarchy of the framework. Although widgets are immutable

by definition, mutable states can be associated with them re-

sulting in stateful widgets. Within the architecture of ColEmo,

BLoC state management library3 is used to control the major

parts of the UI state.

1https://flutter.dev/
2https://dart.dev/
3https://bloclibrary.dev/



Fig. 2. The underlying architecture of ColEmo. Business Logic Component
(BLoC) state management library is used to separate UI from the business
logic. The “Main BLoC” controls the flow of the experiments. The “Signal
BLoCs” take care of MQTT messages containing sensors data. The “Audio
BLoC” controls the state of a special widget that is only responsible for the
voice data acquisition phase.

Figure 2 illustrates the underlying architecture of ColEmo.

Within the implemented architecture, ColEmo can be ex-

plained in three top-view segments: the user interface, the

business logic, and the data handling. Ideally, in the context

of the BLoC pattern, the user interface segment should consist

only of elements that manipulate UI and have nothing to do

with the app’s business logic. Therefore, the app’s business

logic can be separated from the UI design and manipulated

elsewhere. The same strategy is applied in ColEmo design.

Three major BLoC types control ColEmo’s states. The Main

BLoC, the Signal BLoCs and the Audio BLoC. We will take

a look at each of them in the following paragraphs.

The Main BLoC plays a key role in the app. The order of

the UI widgets that appear on the screen, and thus the flow

of the experiments, is programmed in the Main BLoC. The

Main BLoC controls which widget is presented and switches

it based on either the widget’s function calls or the BLoC’s

own internal elapsed time. It also decides which stimulus to

present to the user.

The Signal BLoCs are in charge of communication with the

sensors through the MQTT server. The idea is that each Signal

BLoC would be in charge of managing messages from one

sensor. By subscribing to the topics where different sensor data

are published, Signal BLoCs help providing a visual feedback

on whether or not the sensor data are continuously present

during the experiments.

The Audio BLoC is instantiated with the creation of the

audio widget in the app’s widget tree. Within the audio widget,

the subject can record their voice, listen to the recording,

manually review, edit, or remove individual chunks of the

processed recording, repeat any of the previous steps, or

submit the reviewed timestamps. Since the audio widget is

relatively more complex than the other widgets, a separate

BLoC manages the states of this widget.

B. Interface

Emotion data is always collected in a complete framework

consisting of a package of the necessary hardware and soft-

ware. We also used ColEmo inside a data collection framework

(Figure 3) that is further explained in Section III. The data

interface provided by ColEmo application is crucial in un-

derstanding its role within the framework. Figure 3 illustrates

the flow of various data within our data collection framework,

showing the setup of an MQTT server and a FastAPI server to

communicate with the ColEmo application. Additionally, the

experimenter can remotely monitor the experiments’ progress

and intervene using control commands if necessary. Dashed

lines in the figure indicate parts that have not been imple-

mented or used in the final used framework.

A Voice Activity Detection (VAD) system is developed as

a separate Python API using the FastAPI toolkit4. To host this

API, a FastAPI server is run locally with which the Audio

BLoC communicates through HTTP requests. The API is

programmed to process retrieved audio recordings and respond

with the timestamps indicating the beginning and the end of

the voiced chunks of the recording. Once the processing results

arrive, the Audio BLoC of ColEmo updates the UI with the

detected audio chunks, which can then be manually reviewed

and accepted, edited, or removed. If the chunks are verified

by the user, corresponding timestamps are published to their

dedicated MQTT topic.

MQTT has been selected as the main message handling

system in our proposed framework. ColEmo needs to con-

nect to an MQTT server to log its data. Timestamped logs

of all events, user input data including the self-assessment

ratings and the pre-study questionnaire, as well as the verified

voice annotations from the VAD system are published to

their corresponding MQTT topics. Consumers of these topics

include the Logger application and a monitoring application on

the experimenter’s laptop (over the network). Within MQTT,

nodes can subscribe to their topics of interest. The Logger

application subscribes to all topics (using the ‘#’ wildcard)

and stores all messages in an SQLite database file. Therefore,

the database file is the final product of all the data that ColEmo

collects.

The framework should also collect data of the intended

modalities from the subjects, i.e. the data of the sensors. In

our final setup, all sensors are set to store data in their internal

memory. However, the dashed lines in Figure 3 show the path

that sensor data could take to be stored and/or visualized if

an online sensor data collection scheme were in place. This

path has been completely implemented and tested confirming

its functionality; however, it was eventually set aside in our

4https://fastapi.tiangolo.com/
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Fig. 3. Illustration of the data flow within our data collection use case. The green rectangles are standalone application software. The FastAPI server is an
optional extension used to provide Python API for audio processing. Sensor data can be stored in the sensors’ internal memory or streamed via Bluetooth.
The sensor controller(s) can be both desktop or smartphone apps. The data paths with dashed lines were ignored in the final presented use case.

use case to reduce the complexity of the overall system among

other reasons (Sections III-A and IV).

III. DATA COLLECTION USE CASE

In this section, we describe our data collection as a use case

for ColEmo. Providing an actual use case helps future users

to gain familiarity with the potential capabilities of ColEmo

through a practical example and to learn about the existing

elements of the first released version. The modularity of the

framework allows researchers to integrate their own hardware

and experiment protocol with ColEmo, as long as they adhere

to its interface. The purpose of this section is to show the

usefulness of ColEmo in a practical data collection example.

Our data collection use case is extended to include extra

contextual modalities other than emotions: voice activity as

a hint to person’s social context, and gait as an indication of

person’s activities. As stated in Section I, the collected data

itself will be a future contribution which is still in progress.

A. Measurement Hardware

As for the ultimate purpose of context-awareness, we only

used mobile wearable sensors in our experiments. In a previous

survey paper, we showed the usefulness of chest-worn Inertial

Measurement Units (IMUs) for obtaining data in several areas,

including ER [23]. To further explore this, we used two ST

SensorTile.box sensors, one on the sternum and the other on

the back of the subjects, exactly on the opposite side of the first

sensor. Both boxes are pressed against the body via a manually

designed elastic strap around the chest at sternum height.

Also, we used two different wearable sensor sets to collect

physiological signals: Zephyr Bioharness 3 and Empatica E4.

Zephyr Bioharness 3 is equipped with Electrocardiography

(ECG), Respiration (RSP), and inertial sensors, embedded on

an elastic strap [24] that must be worn on the chest and pressed

against skin. Empatica E4 is a wristband capable of sensing

Photoplethysmogram (PPG), EDA, Temperature (TMP), as

well as inertial data. This device is frequently used in the

literature for emotion and stress detection [25]–[28]. Figure 4

shows how the mentioned wearable devices were worn in this

study.

ST SensorTile.box

Zephyr Bioharness 3

Empatica E4

Fig. 4. Utilized wearable hardware, including noise-cancelling headphones,
chest strap holding two ST SensorTile.boxes, Zephyr Bioharness 3 strap, and
Empatica E4 wristband.



Although all of the sensors used offer wireless data stream-

ing via Bluetooth, we set them to record sensory data on their

internal memory that can later be read out via a computer

device. This is to minimize the risk of data loss due to possible

signal interference or poor connection and to maximize the

performance of the sensors, especially considering their battery

capacity.

B. Experiment Protocol

The experiments lasted about two hours and were performed

in a room at our institute. Forty nine subjects participated

in the experiments. The subjects were first informed about

all details of the data collection process. They were asked

to fill out and sign an informed consent if they agreed to

participate in the experiments. The ColEmo app was run on

a laptop dedicated to the experiments, which we refer to as

the participant laptop. To avoid unnecessary complexity, the

FastAPI server, the MQTT server, and the Logger application

were all run on the participant laptop. The participant laptop

was connected to an external 24-inch monitor running ColEmo

in full-screen mode. Next, the subject was asked to sit on a

chair in front of the monitor. First, they filled out a pre-study

questionnaire implemented inside the UI. Next, they were

helped to put on the sensors and perform three consecutive

jumps to facilitate sensor synchronization. They sit back in

front of the monitor afterwards. The subjects were then asked

to read ten sentences that appeared on the screen. At this

stage, we temporarily recorded their voice to perform a VAD

task as an extension to the ER purpose. Their voice served to

mark precisely the beginning and end of their vocal activity.

A completely separate Python API was used to process the

recording. The time markers were then immediately displayed

on ColEmo for a manual check by the experiment supervisor.

The provision of the VAD extension is useful to demonstrate

ColEmo’s ability to integrate with additional modules imple-

mented with different codebases.

The main experiments were composed of 38 repeated se-

quences with different stimuli. In each sequence, a one-minute

stimulus video was shown on the screen. Next, the well known

Self-Assessment Manikins (SAM) were used for the subject’s

self-assessment. Finally, ColEmo asked the subject to stand

up, walk a few steps in a certain route, and return to their seat

for the next sequence. Walking was added for various reasons,

above all, to make the experiments more similar to real-world

scenarios where physical activity can significantly influence

physiological signals [29], [30]. Before the main experiments

began, subjects were shown a trial sequence to familiarize

them with the procedure they will face. In addition, a five-

minute break was provided after the 19th sequence, during

which subjects were offered refreshments that did not contain

caffeine or alcohol.

IV. RESULTS AND DISCUSSION

ColEmo provides a responsive, beautiful, clear, and easy-to-

use UI for ER data collection. It covers all the necessary com-

ponents for collecting ER datasets while being open-source,

adaptable, and extensible. Figure 5 shows a few screenshots

from inside ColEmo. Earlier in Section I, we presented four

components common to any ER data collection task (Figure 1).

Now, the screenshots are selected to demonstrate ColEmo’s

relation to each of those components i.e. communicating

with sensor devices (Figure 5a), providing stimulus content

(Figure 5b), collecting subjective self-reported assessments

(Figure 5c), and obtaining consents in alignment with research

ethics (Figure 5d). It is important to mention that obtaining

participant consent for collecting their data does not address

all necessary ethical concerns, but it is a helpful step.

Table II lists the existing software used for collecting ER

data. In the second column it indicates whether each software

provides a tool for building the experiment structure that

participants will follow. Although ColEmo does not offer the

convenience of easily building experiment structures without

modifying its codebase, it provides other unique benefits that

have not been available in a single application software before.

For example, ColEmo can be compiled for multiple platforms

from the same codebase, which enables in-the-wild data

collection studies. Its support for the MQTT communication

interface allows for the integration of sensors directly or via

standalone third-party apps that wrap those sensor data with

MQTT interface. Additionally, its capability of being extended

through a FastAPI Python backend provides the opportunity

to leverage existing tools that can handle instant processing of

requests and response with the results, a capability not offered

by the other listed software, which distinguishes ColEmo from

them. In our presented use case, we used FastAPI to provide

accurate voiced time markers for the extended VAD task.

The ColEmo application was put into practice within the

framework presented in section III. In a nutshell and from

a technical point of view, ColEmo is a Flutter application,

with the BLoC library as its major state management pattern,

MQTT as its main communication gateway, and FastAPI as

its extended backend support (Figure 3). Let’s discuss Flutter,

BLoC, MQTT, and FastAPI.

Flutter enables cross-platform UI application development.

Consequently, ColEmo’s codebase can be compiled natively

for any target platform with high performance. Since ColEmo

is an open-source application, made to adapt with various

requirements in ER data collection, platform independence

is a big plus, especially with ER moving more and more

towards in-the-wild research scenarios. The ability to collect

data from computers, tablets, and smartphones better supports

the future needs of ER. However, there is currently no single

cross-platform SDK that also covers compilation for wearable

technology such as smartwatches. This marks a limitation of

ColEmo, as it cannot be compiled for wearable technology.

However, to overcome this limitation in the short term, MQTT

offers the possibility of integration with independent software

for wearable technology.

The use of BLoC within the ColEmo architecture separates

the UI from the app’s business logic. Table I listed part of the

wide options that exist for different requirements of an ER

data collection task. BLoC ensures that adapting the app to
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Fig. 5. Sample screenshots from ColEmo app that reflect correspondence to each of the main components of any Emotion Recognition (ER) data collection
task previously listed in Figure 1.

TABLE II
COMPARING EXISTING SOFTWARE THAT CAN BE USED FOR COLLECTING EMOTION DATA. ALL THESE SOFTWARE ALLOW FOR PROVISION OF EMOTIONAL

STIMULI, COLLECTING HUMAN ANNOTATIONS, AND SYNCHRONIZED SENSOR DATA.
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Sensor Integration API Extensibility Software Communication Interface

AWARE [31] ✓ ✓ ✓ Smartphone sensors - MQTT, HTTP

OpenSesame [18] ✓ ✓ ✓ ✓ ✓ Limited plug-ins - -

Tobii Pro Lab [19] ✓ ✓ ✓ ✓ Limited partners - -

Presentation® [20] ✓ ✓ Limited products1 - -

[21]2 ✓ Limited products1 - -

E-Prime® [22] ✓ ✓ Limited products - -

ColEmo (current work) ✓ ✓ ✓ ✓ ✓ ✓ ✓ Through MQTT or offline3 Python API support MQTT, HTTP

1- Products that support communication through Presentation’s general port I/O facilities.

2- A Presentation® script.

3- Offline sensors must be equipped with accelerometers.

different choices can be done easily by properly separating the

software elements. Removing the existing experiment phases,

replacing them with other designs, or adding new phases in

between, can all be done within the main BLoC of the app.

MQTT is a common communication protocol for Internet of

Things (IoT) [32]. Considering the rising trend for in-the-wild

ER research scenarios, MQTT is interesting as it facilitates

lightweight communications over the internet. MQTT provides

three levels of Quality of Service (QoS) which is a great

feature for reliable delivery of messages [33]. Despite the

great capabilities of MQTT for sensor control in IoT, it is not

designed for collecting data from multiple sensors with high

sample rates. To this end, and as a future improvement, we

propose the integration of Robot Operating System (ROS) a

framework from the robotics community. ROS works similarly

to MQTT in a publish/subscribe messaging scheme and is

perfectly suited to handle large amounts of sensor data [34].

We had the following two options for collecting sensor data:

storing data in internal memory (offline mode) or streaming via

Bluetooth (online mode). Each option has its own advantages

and disadvantages. In both cases, all sensor data must be

synchronized. We will continue covering both modes in the

following.

In online mode, sensor data is sent in packets. In this

way, the moment a packet is received can be correlated with

the moment data was actually sensed. However, different

communication speeds can result in incorrect data timing,

especially with respect to other sensors. We also noticed

some packet loss due to interference from other existing Wi-

Fi and Bluetooth signals in the room. Moreover, there were



individual challenges with each sensor in online mode, e.g.,

the SensorTile boxes ran out of battery very quickly and the

Bioharness offered less data sampling rates in online mode

than in offline scheme.

In offline mode, sensor data is stored in internal memory

and read out afterward. Offline mode ensures higher security

in terms of data loss but does not provide constant feedback

that the data is being recorded correctly. In this mode, each

sensor stores its data in its own internal memory without being

aware of the other sensors. Therefore, synchronization is still

necessary in offline mode which must be done afterward.

To avoid any probable signal interference and packet loss

in the online approach, we opted for the offline mode, with-

drawing from the advantage of constant feedback. In [25] an

Empatica E4 and a chest strap are synchronized manually by

two double tap gestures at the beginning and the end of the

experiments. As all our sensor units are also equipped with

IMUs, we utilized a similar approach, taking advantage of

synchronized movement gestures during the experiments. To

obtain meaningful timestamps from ColEmo, synchronization

between the participant’s laptop and the sensors was also

required. This was accomplished by updating the Bioharness

sensor clock with that of the laptop prior to each data collec-

tion. However, since the sensor has its own Real Time Clock

(RTC), the clocks can get drifted over time. Although such

drift is negligible in our short-duration scope, synchronization

remains a challenge for long-term and in-the-wild research

scenarios.

Finally, we turn to the potential applications of ColEmo for

future research. ColEmo has the basic elements required for

ER data collection including the presentation of stimulus con-

tent, and the collection of the self-assessments (Section III).

Beyond these, we extended our use case towards more context

awareness by adding a VAD task and a walking phase to

the ER basics. The provision of FastAPI backend support

can extend the capabilities of ColEmo to any use case where

integration with Python toolboxes is intended (e.g., image or

audio processing). In addition, BLoC provides the ability to

easily add or remove elements from the UI. ColEmo is open-

source and can be downloaded, adapted, and used without

restriction, allowing researchers to use it for any type of user

study, such as affective, cognitive, or context-aware research.

V. CONCLUSION

In this paper, we presented an open-source cross-platform

application software for emotion data collection studies called

ColEmo5. Due to its versatility, ColEmo is especially useful

for applications of emotion data collection where context

information is also needed. ColEmo provides a graphical

interface that elicits intended emotional states in subjects

and collects their input such as self-assessments. Availing of

the well-known BLoC state management, FastAPI backend

support, and MQTT communication bus, makes ColEmo easily

customizable depending on the experimenters’ requirements.

5https://gitlab.ilabt.imec.be/emowear/colemo

Within the proposed framework for ColEmo, modality data

can be collected either by independent controller software that

provides an MQTT interface or through the internal memories

of the sensors. We used ColEmo in a data collection study with

forty nine volunteers and explained our experimental setup as

an example use case. We are currently processing the collected

data and will publish the results in the near future.

To further improve the software, we propose the integration

in ROS, a framework from the robotics community. We also

suggest investigation of sensor synchronization methods for

long-term data collection scenarios where sensors may go

out of sync over time. Currently, we are not planning any

experiments in-the-wild ourselves, but we encourage other re-

searchers to use and improve our software in such settings. We

look forward to seeing our software used in future experiments

and provide support for this.

ETHICAL IMPACT STATEMENT

In this paper we presented ColEmo, a software application

that facilitates control of the experiments for emotion data

collection. Since our software is intended to collect data from

human subjects, it will inevitably raise ethical concerns such as

privacy, confidentiality, informed consent, and potential harm

to participants that must be addressed. Also we will address

how we coped with ethical concerns during our presented data

collection use case (i.e. Section III).

ColEmo can be compiled for desktop and mobile devices,

providing the opportunity for in-the-wild data collection. De-

pending on the chosen combination of stimulus contents and

the coupled sensors, it can cover data collection for a range of

applications from affective computing to context awareness

and psychological or neurobehavioral sciences. Using this

software has the potential risk of having a negative impact such

as emotional distress on the participants through misuse of the

stimulus contents. The selection of stimulus contents is critical

to the intended purpose of the study and its ethical impact. In

this regard, sufficiently and accurately informing the subjects

about the nature of the presented stimuli or any kind of harm

associated with it, is an important task of the experimenters

prior to the experiments. An additional workaround can be

to arrange order of the presented stimuli in a way that the

participant leaves the study with a positive content and thus

a positive feeling where possible. This was exactly what we

did in our presented use case next to sufficiently informing

the participants about the contents in advance. It is worth

mentioning that we have excluded our own stimulus contents

from the published source code due to copy right issues.

The subjects must be properly informed on the experiment

details prior to their participation. Their explicit consent for

participation is needed, and their right of withdrawal from

the experiments at any stage of the data collection procedure

must be informed and respected. Although the experimenter is

responsible for these steps, ColEmo provides tools to facilitate

participant guidance via “Info Widgets” (see Figure 2) as

well as the provision of an initial trial sequence that walks

the subject through different phases of the experiment. We



encourage researchers to make use of these existing leverages

to precisely guide their participants through the study.

Another potential risk associated with data collection using

ColEmo is the leak of the data and privacy concerns. This

concern is especially heightened in studies that collect personal

information, in-the-wild studies, and studies that make use

of privacy intrusive sensors like cameras, microphones, or

localization services like the Global Positioning System (GPS).

To overcome this, ColEmo makes use of the well-established

and standardized IoT communication protocol, MQTT. We

recommend future researchers to properly secure their MQTT

servers and the communication with strong authentication

processes. As a future work, encrypting messages before

sending them can further increase data security in ColEmo.

The conducted data collection study (Section III) was re-

viewed in advance by the ethics committees of the University

of Antwerp under the file SHW 22 035 and received a positive

decision regarding ethical clearance. The participants were

sufficiently informed about the study and their consent was

obtained. They were informed of their right to withdraw from

the study at any time. It is worth noting that no private data

was saved from the participants.
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