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Abstract 

Identification of immunogenic cancer neoantigens as targets for therapy is challenging. 
Here, we integrate whole genome and long-read transcript sequencing of cancers to 
identify the collection of neo-open reading frame peptides (NOPs) expressed in 
tumors. We termed this collection of NOPs the tumor framome. NOPs represent tumor-
specific peptides that are different from wild-type proteins and may be strongly 
immunogenic. We describe a class of hidden NOPs that derive from structural genomic 
variants involving an upstream protein coding gene driving expression and translation 
of non-coding regions of the genome downstream of a rearrangement breakpoint, i.e. 
where no gene annotation or evidence for transcription exists. The entire collection of 
NOPs represents a vast number of possible neoantigens particularly in tumors with 
many structural genomic variants and a low number of missense mutations. We show 
that NOPs are immunogenic and epitopes derived from NOPs can bind to MHC class I 
molecules. Finally, we provide evidence for the presence of memory T cells specific for 
hidden NOPs in peripheral blood from a patient with lung cancer. This work highlights 
NOPs as a major source of possible neoantigens for personalized cancer 
immunotherapy and provides a rationale for analyzing the complete cancer genome 
and transcriptome as a basis for detection of NOPs. 

Synopsis 

Identifying immunogenic cancer neoantigens for cancer vaccine design is challenging. The 
authors uncover NOPs as a widespread source of neoantigens derived from structural 
genomic variants and indels. The findings open new avenues towards personalized 
immunotherapies for cancer. 
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Introduction 

Identifying and selecting the most immunogenic cancer neoantigens is a key challenge to 
maximizing the potency of personalized immunotherapy (1, 2). Several studies have 
combined whole exome sequencing (WES) with short-read RNA sequencing to identify 
neoantigens derived from expressed somatic mutations in coding regions of the genome (1, 
3). Although missense mutations are the most frequent type of protein-altering coding 
mutation found in cancer genomes (4), they represent a small difference with respect to 
wild-type (WT) epitopes. There is mounting evidence that the degree of epitope 
dissimilarity to WT self-peptides is a critical determining factor in neoantigen immunogenic 
potential (5, 6), which justifies a search for alternative sources of neoantigens. 

Neoantigens arising from neo-open reading frames (neo-ORFs) produce long stretches of 
completely foreign protein sequences referred to as neo-open reading frame peptides 
(NOPs) (6, 7). NOPs arising from genomic events have been ascribed to four main sources: 
structural genomic variants (SVs) (8–12), small insertions/deletions (indels) (6, 7), 
mutations affecting mRNA splicing (13–15), and mutations disrupting stop codons (16). 

We integrated whole genome sequencing (WGS) with long- and short-read RNA 
sequencing to characterize the tumor framome, the set of all NOPs expressed by a tumor as 
a result of genomic mutations in cis. Our approach detects full-length transcripts encoding 
NOPs at single-molecule resolution, thereby accounting for isoform diversity. The approach 
was applied to 61 tumors across six cancer types, demonstrating a framome size of over 
2,000 amino acids for some tumors. We identify a class of possible neoantigens, which we 
referred to as ‘hidden’ NOPs, in which a known protein coding gene drives transcription and 
translation of a usually non-coding region of the genome that has been placed downstream 
via an SV. The entire tumor framome represents an attractive target for personalized 
immunotherapy. 

Materials and Methods 

Patient samples and ethics 

Fresh frozen tumor biopsies and corresponding blood samples or normal control tissue 
were obtained from 61 patients with cancer treated at different clinical centers as outlined 
in Supplementary Table S1 - Sample Overview. Written informed consent and ethical 

approval were obtained for each sample for studying tumor DNA and RNA sequencing 
information. Patient samples were obtained as part of the following clinical studies: 
OLS041-202100773 Framoma (Oncolifes, University Medical Center Groningen), AMC 2014 
181 BioPAN (Amsterdam UMC), IRBdm21-018 (Netherlands Cancer Institute), 09H050190 
(LREC, University of Liverpool), Pro000074343 (Duke University), PRIMA study (Erasmus 
Medical Center Rotterdam), NCT01792934 (Radboud University Medical Center).  
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Whole genome sequencing 

Genomic DNA was isolated from tumor biopsies and control tissue (blood or adjacent 
normal tissue) using Qiagen DNeasy. As input, 50-200 ng of DNA was sheared to an average 
length of 450 bp using a Covaris ultrasonicator. Standard TruSeq Nano LT library 
preparation (Illumina) with 8 PCR cycles was performed. Barcoded libraries were 
sequenced on Illumina NovaSeq instruments with 2x151bp settings, to an average coverage 
depth of 100X (tumor samples) and 35X (control samples). FASTQ generation was done 
using Illumina bcl2fastq (v2.20.0.42). Sequencing reads were mapped to human reference 
genome GRCh37 using BWA (0.7.17) with settings: 
bwa mem -Y -t ${THREADS} ${GENOME} ${R1} ${R2} 

Somatic genomic variants were called from aligned sequencing data using a custom pipeline (4) 

(https:// 
github.com/hartwigmedical/pipeline5/tree/master/cluster/src/main/jav

a/com/hartwig/pipeline). Detailed whole genome sequencing statistics and variant 

calling methods are outlined in Supplementary Table S2 - WGS Overview. 

Short-read RNA sequencing 

Total RNA was isolated from fresh frozen tumor samples using NucleoSpin RNA isolation 
(Machery Nagel). cDNA library prep was performed with the KAPA RNA HyperPrep kit 
(Roche) with RiboErase, using 100 ng of total RNA, which was chemically sheared for 7 
minutes. cDNA was PCR amplified for 15 cycles. Libraries were sequenced on an Illumina 
NovaSeq system to a minimal depth of 50M paired reads (100M tags) per cDNA library 
based on 2x151bp settings. FASTQ generation was done using Illumina bcl2fastq 
(v2.20.0.42). cDNA sequencing reads were mapped to the human reference genome 
GRCh37 using STAR 

(2.7.9a) with settings: 

STAR --runThreadN ${THREADS} \ 

--genomeDir ${STAR_GENOME} \ 

--readFilesCommand zcat \ 

--readFilesIn ${R1} ${R2} \ 

--outFileNamePrefix ${SAMPLE_NAME} \ 

--twopassMode Basic \ 

--outSAMunmapped Within \ 

--alignMatesGapMax 200000 \ 

--alignIntronMax 200000 \ 

--outSAMattrRGline ID:GRPundef \ 

--outFilterMultimapNmax 100 \ 

--outFilterIntronStrands None \ 

--outSJfilterIntronMaxVsReadN 200000 \ 

--outSAMtype BAM SortedByCoordinate \ 

--chimOutType Junctions WithinBAM SoftClip 
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Detailed short-read cDNA sequencing statistics per tumor sample are outlined in 
Supplementary Table S3 - Short Read RNA Overview. 

Long-read RNA Nanopore sequencing 

About 500ng to 2 microgram of total RNA, isolated as described above (see Short-read RNA 
sequencing), was used as input for double-stranded cDNA preparation using TeloPrime Full-
Length cDNA Amplification kit V2 (Lexogen) according to the manufacturer’s specifications. 
TeloPrime selects mRNA molecules containing a 5’ CAP and a 3’ poly-A tail. For some 
samples, polyA-selected RNA was used as input for TeloPrime cDNA preparation (see 
Supplementary Table S4 Long Read RNA Overview). For those cases, selection of polyA 
mRNA was performed using Dynabeads mRNA Purification kit (Invitrogen) and between 
20-100ng of polyA-selected mRNA was used as input for TeloPrime. Between 11-20 PCR 
cycles were performed for each sample. Double-stranded cDNA was used as input for 
preparation of a Nanopore sequencing library using SQK-LSK109. Libraries were sequenced 
on GridION or PromethION systems (Oxford Nanopore Technologies) to a depth of between 
20M-100M reads. Long cDNA Nanopore reads were mapped to human reference genome 
GRCh37 using Minimap2 (2.17) with settings: 

minimap2 -t 

${THREADS} \ -ax 

splice \ 

--split-prefix tmp \ 

-un \ 

-k14 \ 

--eqx \ 

${GENOME} ${FASTQ_READS} 

Detailed long-read cDNA sequencing statistics per tumor sample are outlined in 
Supplementary Table S4 – Long Read RNA Overview. 

NOP identification methods 

All core steps in the NOP identification pipeline including genome reconstruction, RNA 
isoform identification, isoform translation prediction, and NOP identification were 
implemented in python (https://www.python.org/). Nextflow (17) was used to integrate 
these steps with RNA mapping and read extraction. 

Tumor genome reconstruction 

To identify neo-ORFs and corresponding NOPs, a tumor-specific reference genome was 
generated for each sample onto which long- and short-read RNA could be aligned. These 
tumor-specific reference genomes consisted of collections of contigs that captured the local 
effects of somatic mutations. For SVs, these contigs were identified by taking sets of 
ungapped chimeric RNA alignments and attempting to explain their transcript structure at 
the genome level through SVs. 
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This RNA-guided approach starts with the alignment of RNA to a base reference genome 
as outlined above and proceeds as illustrated in Supplementary Fig. S1. Let R be the set of 
RNA reads with at least one alignment within εsv base pairs (default 200 kB) of an SV 
breakend and that has at least one supplementary or secondary alignment. Let Ar be the set 
of primary, supplementary, and secondary alignments of read r ∈ R. For given alignment ai ∈ 
Ar let aiqs be the start position within the query sequence of ai as measured from the 5’ end of 
the RNA read r. Similarly, let aiqe be the query end position. Let ais, airs, and aire be the 
reference alignment strand, strand-specific reference start, and strand-specific reference 
end of ai, respectively where airs ≤ aire if and only if ais is positive. A set Qr of ordered sets p of 

alignments in Ar can be defined as: 

𝑄𝑟 = {𝒒 ∣ 𝑞𝑖 ∈ 𝐴𝑟 , 𝑞𝑖𝑞𝑠
< 𝑞𝑖+1𝑞𝑠

 and |𝑞𝑖+1𝑞𝑠
− 𝑞𝑖𝑞𝑒| < 𝜖𝑝∀𝑖 ∈ (1, … , ‖𝒒‖ − 1)} 

The elements of Qr represent collections of consecutive segments of the read r that are non-
linearly aligned to the reference genome. A gap or overlap buffer of εp is utilized to allow for 
soft or hard-clipping, erroneous indels, and homology at the beginning and ends of the 
alignments. To arrive at a non-redundant (excluding prefix/suffix paths) set of chimeric 
RNA paths for read r, the set Pr can be defined as: 

𝑃𝑟 = {𝒑 ∣ 𝒑 ∈ 𝑄𝑟 , 𝒑 ⊄ 𝒒∀𝒒 ∈ 𝑄𝑟 ∖ {𝒑}} 

To find possible underlying tumor contig regions from which the proposed chimeric RNA 
structures within Pr may have arisen, it is necessary to find paths of SVs that connect the 
beginning and ends of consecutive chimeric alignments, referred to as chimeric introns. 
Each chimeric RNA path p in Pr contains a set Mp of size ‖𝒑‖ − 1 such chimeric introns m 

where mL and mH represents the lower and upper alignments on each side of the chimeric 
intron. This set Mp can be defined as: 

𝑀𝒑 = (𝑚|𝑚𝐿 = 𝒑𝑖 and 𝑚𝐻 = 𝒑𝑖+1∀𝑖 ∈ (1, … , ‖𝒑‖ − 1)) 

A chimeric RNA path is considered supported by somatic genomic events if there is a 
conceivable path through the tumor genome that connects the end of the first chimeric 
intron alignment to the start of the second chimeric intron alignment for each chimeric 
intron in the path. To determine this for each path, a directed graph Gp is constructed that 

represents all possible connections within the tumor genome. The end/start loci of each 
chimeric intron can then be anchored onto Gp in order to find a valid path across the 

chimeric intron. To construct this graph, let the sample SVs be represented by a set B of 
breakends b where bc, bp, bs, bm are the breakend chromosome, position, strand, and mate 
breakend, respectively. Let the vertex set V (Gp) consist of vertices v where vc, vp, vs 

correspond to chromosome, position, and strand of genomic loci. Let two identical sets of 
breakend vertices be Vsource and Vsink be defined as: 

 

𝑉𝑠𝑜𝑢𝑟𝑐𝑒𝑠 = {𝑣 ∣ 𝑣𝑐 = 𝑏𝑐 and 𝑣𝑝 = 𝑏𝑝 and 𝑣𝑠 = 𝑏𝑠∀𝑏 ∈ 𝐵} 

𝑉𝑠𝑖𝑛𝑘𝑠 = {𝑣 ∣ 𝑣𝑐 = 𝑏𝑐  and 𝑣𝑝 = 𝑏𝑝 and 𝑣𝑠 = 𝑏𝑠∀𝑏 ∈ 𝐵} 
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Let the sets of lower-alignment and upper-alignment chimeric intron vertice sets be defined 
as: 

𝑉𝐿 = {𝑣 ∣ 𝑣𝑐 = 𝑚𝐿𝑐
 and 𝑣𝑝 = 𝑚𝐿𝑝

 and 𝑣𝑠 = 𝑚𝐿𝑠
∀𝒑 ∈ 𝑃𝑟∀𝑚 ∈ 𝑀𝒑} 

𝑉𝐻 = {𝑣 ∣ 𝑣𝑐 = 𝑚𝐻𝑐
 and 𝑣𝑝 = 𝑚𝐻𝑝

 and 𝑣𝑠 = 𝑚𝐻𝑠
∀𝒑 ∈ 𝑃𝑟∀𝑚 ∈ 𝑀𝒑} 

The vertex set V (Gp) is then: 

𝑉(𝐺𝒑) = 𝑉𝑠𝑜𝑢𝑟𝑐𝑒𝑠 ∪ 𝑉𝑠𝑖𝑛𝑘𝑠 ∪ 𝑉𝐿 ∪ 𝑉𝐻  

Two types of connections between genomic loci are possible within the rearranged tumor 
genome: those which occur between points on the same strand of the same chromosome in 
the normal reference genome and those which occur due to SVs. The edge set EWT 

represents WT connections which point from source vertices to sink vertices: 

𝐸𝑊𝑇+ = (𝑣, 𝑢) ∣ 𝑣 ∈ 𝑉𝑠𝑜𝑢𝑟𝑐𝑒𝑠, 𝑢 ∈ 𝑉𝑠𝑖𝑛𝑘𝑠, 𝑣𝑐 = 𝑢𝑐 , 𝑣𝑠 = +, 𝑣𝑠 = −, 𝑣𝑝 ≤ 𝑢𝑝 

 𝐸𝑊𝑇− = {(𝑣, 𝑢) ∣ 𝑣 ∈ 𝑉𝑠𝑜𝑢𝑟𝑐𝑒𝑠, 𝑢 ∈ 𝑉𝑠𝑖𝑛𝑘𝑠, 𝑣𝑐 = 𝑢𝑐, 𝑣𝑠 = −, 𝑣𝑠 = +, 𝑣𝑝 ≥ 𝑢𝑝}  

𝐸𝑊𝑇 = 𝐸𝑊𝑇+ ∪ 𝐸𝑊𝑇−  

The edge set ESV represents connections between breakpoints due to SVs which point from 
sink vertices to their partner breakend source vertices: 

𝐸𝑆𝑉 = {(𝑣, 𝑢) ∣ 𝑣 ∈ 𝑉𝑠𝑖𝑛𝑘𝑠, 𝑢 ∈ 𝑉𝑠𝑜𝑢𝑟𝑐𝑒𝑠, 𝑣𝑐 = 𝑏𝑐, 𝑣𝑝 = 𝑏𝑝, 𝑣𝑠 = 𝑏𝑠, 𝑢𝑐 = 𝑏𝑚𝑐
, 𝑢𝑝 = 𝑏𝑚𝑝

, 𝑢𝑠

= 𝑏𝑚𝑠
∀𝑏 ∈ 𝐵} 

The edge set EM represents the connections between lower chimeric intron alignments to 
sink breakend loci as well as the connections between source breakend loci to upper 
chimeric intron alignments: 

𝐸𝐿+ = (𝑣, 𝑢) ∣ 𝑣 ∈ 𝑉𝐿 , 𝑢 ∈ 𝑉𝑠𝑖𝑛𝑘𝑠, 𝑣𝑐 = 𝑢𝑐 , 𝑣𝑠 = +, 𝑣𝑠 = −, 𝑣𝑝 ≤ 𝑢𝑝 

𝐸𝐿− = { (𝑣, 𝑢) ∣∣ 𝑣 ∈ 𝑉𝐿 , 𝑢 ∈ 𝑉𝑠𝑖𝑛𝑘𝑠, 𝑣𝑐 = 𝑢𝑐 , 𝑣𝑠 = −, 𝑣𝑠 = +, 𝑣𝑝 ≥ 𝑢𝑝 } 

 𝐸𝐻+ = {(𝑣, 𝑢) ∣ 𝑣 ∈ 𝑉𝑠𝑜𝑢𝑟𝑐𝑒𝑠, 𝑢 ∈ 𝑉𝐻 , 𝑣𝑐 = 𝑢𝑐, 𝑣𝑠 = +, 𝑣𝑠 = +, 𝑣𝑝 ≤ 𝑢𝑝} 

𝐸𝐻− = { (𝑣, 𝑢) ∣∣ 𝑣 ∈ 𝑉𝑠𝑜𝑢𝑟𝑐𝑒𝑠, 𝑢 ∈ 𝑉𝐻 , 𝑣𝑐 = 𝑢𝑐 , 𝑣𝑠 = −, 𝑣𝑠 = −, 𝑣𝑝 ≥ 𝑢𝑝 } 

𝐸𝑀 = 𝐸𝐿+ ∪ 𝐸𝐿− ∪ 𝐸𝐻+ ∪ 𝐸𝐻−  

The edge set 𝐸(𝐺𝒑) can now be specified as: 

𝐸(𝐺𝒑) = 𝐸𝑊𝑇 ∪ 𝐸𝑆𝑉 ∪ 𝐸𝑀 

Let the weight of edge tuples in E(Gp) be defined as the genomic distance between each loci 

vertex, where connections between mate breakends have a distance of zero: 

 𝑤(𝑒) = {
|𝑒1𝑝

− 𝑒2𝑝|,        𝑒2 ∈ 𝑉𝑠𝑖𝑛𝑘

0,                               𝑒2 ∈ 𝑉𝑠𝑜𝑢𝑟𝑐𝑒
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Together V (Gp), E(Gp), and 𝑤: 𝑒 → ℕ0 fully define Gp. This RNA-SV graph was built using the 

python networkx package (18), and Dijkstra’s algorithm was used to find the shortest 
weighted genomic path between every mL to mH chimeric intron vertices through an 
alternating set of sink and source breakend vertices. The genomic paths of each chimeric 
intron were appended in the order of appearance in each path p to produce a contig starting 

at the first chimeric intron start anchor and ending at the final chimeric intron end anchor. 
The contigs specified by the set of these shortest chimeric intron paths were padded at the 
beginning and end by prepending/appending enough sequence to encompass the full 
chimeric RNA alignment at the start/end of the contig and any annotated genes overlapping 
these start/end alignments. Additionally, to better resolve RNA structures with exons 
overlapping a structural variant (a minority of cases), 500 bps on either side of the 
breakpoints were added as buffer to allow for structural breakpoint position uncertainty. 
This set of contigs was collapsed by removing all contigs whose sequence was a strict 
subset of another. This set of non-redundant contigs was appended to the tumor-specific 
reference genome. Of note, the cell line NOPs were identified by an earlier version of the 
approach that also appended genic regions affected by SVs to the tumor reference genome 
without prior chimeric RNA support. 

Small variants predicted to lead to NOPs were also used as a basis for tumor-specific 
contig construction. To identify all indels possibly leading to NOPs, indels within the bounds 
of protein coding genes were identified. If the indel was within the exonic boundaries of any 
protein coding exon, it was selected for inclusion in variants used for reconstruction. If the 
indel was in a non-protein coding region of the gene such as an intron or UTR, the variant 
was included if there was at least one long RNA read which covered the indel locus. Stoploss 
variants were identified by selecting variants which disrupted an annotated known stop 
codon. Mutations leading to novel splice junctions were also selected for inclusion in the 
reconstruction. A portion of the reference chromosome containing each variant was 
extracted to include the entire region of any genes and/or long reads overlapping each 
variant position. The genomic change specified by each small variant was then applied to 
this contig with each variant producing a contig that was appended to the tumor-specific 
reference genome. 

Novel Splice Junction Identification 

Short-read RNA splice junctions were considered novel and tumor-specific if they were 
absent in the healthy tissues sequenced as part of the GTEx database (19) and were 
associated with a predicted causal somatic variant. The pre-compiled STAR splice junctions 
for GTEx v6 were downloaded from the Recount2 webserver and used as the normal tissue 
splice junction database (20). Two general classes of variants are considered to potentially 
cause novel splice junctions. The first class consists of variants near un-annotated splice 
sites of expressed splice junctions. These splice-gain variants are known to often lead to the 
formation of more-canonical splicing signals (13). The second class of genomic variants 
leading to novel RNA splice junctions are variants that disrupt annotated splice sites by 
changing the genomic context of an annotated splice donor or acceptor. This splice site 
disruption may lead to full exon skipping or partial intron retention/truncation. The effect 
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zone of these splice-disrupting variants was therefore taken as the 5’ start of the exon 
before the variant-affected exon up through the 3’ end of the exon after the variant-affected 
exon, including intronic regions. Any tumor-specific splice junction with splice points 
within this genomic range was considered caused in cis by the splice-disrupting variant. 

Tumor-specific RNA isoform identification 

After alignment to the reconstructed tumor genome, tumor-specific RNA isoforms were 
identified through a combination of high-accuracy short reads and long but error prone 
long reads. Short-read junctions were used to correct the splice points of long-read 
alignments via a novel Bayesian splice-correction model illustrated in (Supplementary Fig. 
S2). Long-read splice sites were corrected to short-read splice sites using short-read 
junctions in which both the 5’ and 3’ splice sites were within a εsplice basepair (default 15) 
window of the respective long read splice sites. For cases in which multiple short-read 
junctions satisfied this criteria for a given long-read junction, the most likely short read 
junction was chosen via a Bayesian model in which the posterior probability that an 
observed long read junction arose from an mRNA with a given short read junction was 
calculated according to: 
 

𝑃(𝑠𝑖 ∣ 𝐹𝑖 , 𝑇𝑖) =
𝑃(𝐹𝑖 , 𝑇𝑖 ∣ 𝑠𝑖)𝑃(𝑠𝑖)

𝑃(𝐹𝑖 , 𝑇𝑖)
 

  

where the event si is the long read arising from the splice junction i, and the event Fi,Ti is the 
observation of a long read having a given 5’ or 3’ distance pair from its underlying original 
splice sites. The prior probability that a long read arose from an RNA molecule with splice 
junction i was calculated according to: 

 𝑃(𝑠𝑖) =
𝑅𝑖

𝑅
  

where Ri is the number of short reads supporting junction i and R is the total spliced reads 
within the long read splice site window. The probability of observing the splice offset pair 
Fi,Ti given that the long read arose from an RNA molecule with splice junction i was 
calculated according to: 

𝑃(𝐹𝑖 , 𝑇𝑖 ∣ 𝑠𝑖) =
𝑁𝐹𝑖𝑇𝑖

𝑁
 

 where NFiTi is the number of times the given offset pair occurred in all other long-read splice 

junction corrections which were unambiguous because a single short-read junction was present 

within the correction window and N is the total number of unambiguously corrected junctions. 

Both NFiTi and N were calculated for each sample based on mapping of the short- and long-read 

RNA to the base reference genome. The total probability of observing the long-read offset pair 

Fi,Ti irrespective of any given short read junction can be calculated according to: 

𝑃(𝐹𝑖 , 𝑇𝑖) = ∑ 𝑃(𝐹𝑖 , 𝑇𝑖 ∣ 𝑠𝑗)𝑃(𝑠𝑗)

𝑛

𝑗=1
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where the summation is taken over the n splice junctions within the long-read junction 
window. Combining these expression gives: 

𝑃(𝐹𝑖 , 𝑇𝑖) =
𝑁𝐹𝑖𝑇𝑖

𝑅𝑖

∑ 𝑁𝐹𝑗𝑇𝑗
𝑅𝑗

𝑛

𝑗=1

 

 

Splice junctions with the highest probability were chosen, and long-read splice junctions for 
which no short-read junctions had a correction probability of at least psplice (default 0.9) 
were considered uncorrected. Reads that had one or more uncorrected junctions were not 
considered further for isoform identification. Splice corrected long-read tumor-genome 
alignments were collapsed into RNA isoform structures by grouping reads with identical 
splice junctions together if their start loci and end loci were within εisoform basepairs (default 
10) of each other. 

A summary of the application of this algorithm to all long-read splice junctions for the 
samples considered in this work is provided in (Supplementary Fig. S2D). For most 
samples, more than 90% of long-read splice junctions were within the vicinity (15 bps) of a 
corresponding short-read junction. In >75% of these cases only a single splice junction was 
present leading to an unambiguous correction of the long-read splice coordinates to the 
short-read coordinates. For the remaining junctions the correction algorithm was 
employed, and in the vast majority (>99%) of cases a short-read splice junction could be 
confidently selected leading to a correction. 

Translation prediction 

Known protein coding transcript structures were used to predict the translation start sites 
of RNA isoforms. ENSEMBL gene annotations were parsed using the pyensembl python 
package (21). These annotations were transposed onto the reconstructed tumor reference 
genome. For each RNA isoform, the set of most consistent transcript structures was 
identified by selecting the structures that had the most contiguous matching splice 
junctions, starting from the most 5’ transcript splice site. If a unique translation start site 
overlapping the RNA isoform could be identified for this collection of transcript structures, 
the protein sequence of the RNA isoform was predicted. If more than one translation start 
site was consistent with the transcript structure, the protein sequence of the isoform was 
considered ambiguous and a translation prediction was not performed. If the most 
consistent transcript structure was of a non-coding biotype, the RNA isoform was 
annotated as non-coding. 

NOP identification 

Once full-length protein isoforms arising from RNA aligned to the reconstructed reference 
genome were identified, the tumor-specific portions of each peptide were annotated as 
NOPs. Each amino acid of each protein coding isoform was annotated as novel or WT based 
on the following set of criteria, and strings of consecutive novel amino acids were 
considered distinct NOPs. For an amino acid to be considered novel it has to: 
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1. not overlap in-frame with a known WT protein coding isoform 

2. be a part of at least one 8, 9, 10, or 11mer amino-acid sequence that was not in the set 
of known WT peptides 

3. arise from a position in the RNA isoform that was downstream of the first potentially 
causal variant position 

The first criteria was considered to be satisfied if the first nucleotide of the amino acid’s 
codon did not align to a genomic position that was a known WT P-site. To rapidly check this 
for each amino acid in each protein isoform, a P-site genome was pre-compiled by 
annotating each position of each reference chromosome as either not overlapping with any 
known P-site, overlapping a P-site in the sense strand, overlapping a P-site in the antisense 
strand, or overlapping in both strands. Pyensembl (21) with ENSEMBL reference version 75 
(GRch37) was used to determine the P-site status of each position in the reference genome. 
This P-site genome was compiled in a coded string format and stored as a fasta file that was 
loaded for each sample. This format can easily be extended to include other gene references 
or WT P-sites from other sources such as RiboSeq experiments. 

Lack of overlap with a WT P-site indicated that a portion of the genome was being 
translated that was not known to be translated. However, homology between the novel 
translated region and other normally translated regions of the genome may exist for a 
portion of an otherwise novel protein isoform. To avoid considering these portions as part 
of NOPs, each amino acid had to be a part of at least one k-mer that was not present in the 
set of known WT peptides. As NOPs represent potentially interesting neoantigen targets, 
the k-mer sizes corresponding to potential MHC-I epitopes were chosen. A pre-compiled 
WT k-mer database was compiled by decomposing all peptides in ENSEMBL and RefSeq 
protein databases into all possible 8-11mers. This set was made unique and stored as a flat 
file that was loaded as a set for each sample run. For each amino acid in each isoform, all 
possible 8-11mers that contained the amino acid in that peptide (max 38) were screened 
against the WT k-mer set. If all of the 8-11mers were contained within the WT set, the 
amino acid was not considered novel. 

To be considered novel, an amino acid had to also arise from a codon that was 
downstream of the first variant that would potentially be driving tumor-specific translation. 
For indels, stoploss, and structural variants the amino acid had to be downstream of the 
first variant spanned by the RNA isoform. For SV NOPs, the donor and acceptor loci of the 
first SV-spanning splice junction had to be at least 200 kB away in the base reference 
genome and then less than 200 kB away in the reconstructed tumor reference. For splice 
NOPs, the amino acid had to be downstream of the first novel splice junction. To avoid 
considering amino acids novel due to likely un-annotated splice isoforms that were not 
altered by the underlying somatic variants, the first exon downstream of the first novel 
splice junction had to contain at least one novel amino acid for any of the amino acids in the 
peptide isoform to be considered novel. Additionally, amino acids in peptides spanning SVs 
were not considered novel if they were within the boundary of the anchor gene that was 
driving translation. NOPs that had no stop codon but were exact prefixes of other NOPs 
were removed to avoid duplication in NOP isoform counting due to truncated long reads. Of 
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note, the cell line NOPs were identified by an earlier version of the approach that allowed 
for chimeric introns under 200kB as long as they were explained by a structural variant and 
where hidden NOPs and fusion genes could arise from the same parent gene. 

EasyFuse comparison 

EasyFuse version 1.3.5 was run using default input parameters. The authors of the EasyFuse 
tool analyzed a normal tissue set (N=136) and observed a high fraction of the cis-near 
fusion genes identified in tumor samples by the tools that underlie their methodology as 
also appearing in normal tissue samples. This led them to conclude that these events are 
often not tumor-specific and thus their tool aimed to improve trans-like fusion gene calls as 
a means of producing reliable neoantigen identifications. Accordingly, these cis-near fusion 
genes were discarded from the final EasyFuse fusion gene peptide set to leave only the 
ostensibly tumor-specific ”neo frame” (coding gene onto non-coding gene fusion) and ”out 
of frame” (coding to coding fusion gene with frame mismatch) neoantigen calls. 

To compare the long-read and WGS NOP with the EasyFuse fusion gene tumor specificity, 
the 17,350 healthy short-read RNA tissue samples obtained from the Genotype-Tissue 
Expression (GTEx) database were processed through STAR (2.7.9a) to extract chimeric and 
non-chimeric RNA junctions with the following settings: 

STAR –runThreadN ${THREADS} \ 

--genomeDir ${STAR_GENOME} \ 

--readFilesCommand zcat \ 

--readFilesIn ${R1} ${R2} \ 

--outFileNamePrefix ${SAMPLE_NAME} \ 

--outSAMtype None \ 

--chimSegmentMin 15 \ 

--chimOutType Junctions \ 

--alignMatesGapMax 200000 \ 

--alignIntronMax 200000 \ 

--twopassMode Basic \ 

--outSJfilterIntronMaxVsReadN 200000 \ 

--chimMultimapNmax 20 \ 

--chimSegmentReadGapMax 3 \ 

--chimMultimapScoreRange 10 

Both the GRCh37 and GRCh38 genomes were used as a reference in order to produce 
junctions that could be cross referenced to junctions arising from EasyFuse (GRCh38) and 
to this manuscript’s NOP identification methodology (GRCh37). For the SV support analysis, 
EasyFuse RNA junction coordinates were converted from GRCh38 coordinates to GRCh37 
coordinates using the liftover python package (https://github.com/jeremymcrae/liftover) 
version 0.4. A small fraction of junctions (2%) was not able to be lifted over, and these were 
considered unsupported. The SV genome graph approach described above was then used to 
find a path from the donor to the acceptor splice junction site less than 200 kB in length.  
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Simulated data generation and analysis 

Samples were selected to form the basis of the simulated data sets based on high structural 
variant content. Artificial target NOP sequences were generated for each sample using the 
sample’s actual observed genomic variants. To generate target indel NOPs, the indels in 
coding regions were inserted into the overlapping ENSEMBL transcript structures and 
which were then translated. To generate fusion genes, each gene in the vicinity of an SV was 
paired with another randomly selected gene and random isoform structures were selected 
from each gene. The isoform structures were randomly truncated at an exon–intron 
boundary and fused in the proper orientation. If a path through the samples SVs could be 
identified that connected the donor truncation site to the acceptor truncation site in less 
than 200 kB, then the isoform structure was translated. If this produced a NOP, the fusion 
gene was accepted. Each gene near an SV was given 100 such attempts at forming a fusion 
gene with a partner, with the first success ending the trials for that gene. Hidden NOP RNA 
structures were generated in a similar fashion, but the downstream novel structure was 
randomly generated by creating a transcript with a number of exons taken from the 
distribution of exon counts of the normal human reference transcriptome with intron 
distances also taken from the distribution of annotated introns. If a structural breakpoint 
was within the range of a randomly generated intron, it was crossed with 50% probability. 
Exon lengths were also selected from the normal exon length distribution, with edges 
trimmed to converge on canonical GT–AG splice sites to not interfere with RNA mapping 
approaches that use such heuristics. In total, 911 hidden NOPs, 722 fusion genes, and 162 
indel NOPs were simulated. 

The expression levels of these NOP RNA structures were then determined by multiplying 
the anchor-gene expression level as determined by Kallisto for that sample by either 0.1, 1, 
or 10 with equal probability to represent various levels of mixing of NOP RNA sequences 
with normal background gene transcripts. These expression levels along with the normal 
background gene Kallisto quantification were combined with the short- and long-read RNA 
library sizes sequenced for the given sample to generate a target number of reads for each 
RNA species. The short reads were simulated with Rsubread 2.12.3 (22) simReads module 
that capped total simulated reads at 100 million. The short-read quality scores were 
randomly selected from the LUN029 non-synthetic short-read dataset. The long reads were 
simulated with Trans-NanoSim (23) using an error model trained on the most recently 
sequenced sample (LUN029) so as to provide a best view of the error rates expected in the 
future, but with a read-length and truncation module trained on a sample of more average 
RNA integrity (LUN022). 

The resultant RNA FASTQ files were combined with the non-synthetic genomic variants 
for NOP identification. The usual long read–guided NOP identification was carried out as 
described above. The reconstructed tumor genome generated during this approach was 
then used for the short read–based NOP identification. The short-read assembly-based 
approach was based on feeding the short-reads mapped to the reconstructed tumor 
genome into Stringtie 2.2.1 (24) for assembly using the following settings: 

stringtie -o ${SAMPLE}_stringtie.gtf \ 

-t \ 
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-p ${THREADS} \ 

-M 1 \ 

-j 0.0000001 \ 

-v \ 

-f 0.0000001 \ 

-c 0.001 \ 

-u ${BAM} 

The input settings were chosen in an attempt to provide higher sensitivity to very lowly 
expressed isoforms. These isoforms were then translated according exactly as corrected 
long-read isoforms as described above. For the RNA junction-centric NOP identification, all 
splice junctions identified by STAR during the mapping of the short reads to the 
reconstructed tumor genome that spanned an SV and that had a base-genome donor 
acceptor distance of over 200kB were identified. For the junctions that started and ended at 
or within the exon boundaries of annotated transcripts, all possible upstream and 
downstream isoform structures were merged to form fusion gene isoforms. For junctions 
that started in a protein coding gene exon and ended in an intergenic region, a pileup of the 
short-read RNA in the downstream region was taken and the downstream hidden NOP exon 
was taken to extend from the novel junction acceptor site up to the first non-covered base. 
These SV NOP isoforms were then translated and annotated as novel according to the 
methods described for the long-read approach. 

MHC-binding prediction 

Polysolver (25) was used to predict HLA types using WGS data. NetMHCpan4.1 (26) was 
used to predict MHC-binding using an EL percentile rank score cutoff of 2 for binders. 

Self similarity 

Self similarity of epitopes was computed as described in (27). As a normal reference the 
ENSEMBL GRCH38 proteome was used. To generate random epitopes, random strings of 
1,000 nucleotides were generated with a GC content of 40.9% to match the bias of the 
human genome (28). These nucleotide strings were translated and a random 9-mer epitope 
was selected from the collection of resultant 9-mers. This process was repeated until 
enough random epitopes were generated to match the number of NOP epitopes. 

In-silico vaccine design 

To construct patient-specific framome vaccine designs of a given amino-acid length the 
longest NOPs were chained together with the remainder of the vaccine consisting of a NOP 
portion. Missense vaccines of a given length were constructed by chaining together 21 
amino acid long sequences with the variant amino acid in the center. Any remaining 
required length consisted of an amino-acid sequence of the required length with the 
missense mutation in the middle to provide the most potential CD8 epitopes. For both 
classes the minimum number of amino acids appended was 8. The number of possible CD8 

D
ow

nloaded from
 http://aacrjournals.org/cancerim

m
unolres/article-pdf/doi/10.1158/2326-6066.C

IR
-23-0158/3440236/cir-23-0158.pdf by U

niversity of Antw
erp user on 08 April 2024



16 

epitopes was calculated as the number of tumor-relevant 8-11mers included within the 
design, not accounting for MHC-I binding predictions. 

Cell culture 

MCF-7 [https://www.atcc.org/products/htb-22, delivery date May 18 2021, grown in 
DMEM (Gibco, 41965039), 10% FCS. Passaged every 2 to 3 days in T75 culture flask 1:5 to 
1:10.], A375 [https://www.atcc.org/products/crl-1619, delivery date June 23 2021, grown 
in DMEM (Gibco, 41965039), 10% FCS. Passaged every 2 to 3 days in T75 culture flask 1:3 
to 1:8.] and 786O [https://www.atcc.org/products/crl-1932, delivery date June 29 2021, 
medium: RPMI 1640 (Gibco, 11875-093), 10% FCS. Passed every 2 to 3 days in T75 culture 
flask 1:4 to 1:12.] cells were obtained from ATCC. Mycoplasma testing was performed for 
the cell lines. Original vials were thawed and passaged for about 10 passages before 
processing for further analysis. Cell line authentication was ensured based on sequencing.  

RiboSeq Analysis 

Thawed MCF-7, A375 and 786O cells were lysed in 1 mL lysis buffer (final composition: 1X 
Mammalian Polysome Buffer (100 mM Tris-Cl pH 7,4 (Cat#T2663, Sigma-Aldrich), 750 mM 
NaCl (Cat#AM9760G, Fisher Scientific), 25 mM MgCl2 (Cat#AM9530G, Fisher Scientific) 
diluted in nuclease free water (NFW) (Cat#11-05-01-14, IDT)), 1% Triton X-100 
(Cat#T878750ML, Sigma-Aldrich), 0.1% Igepal CA-630 (Cat#I8896-50ML, Sigma-Aldrich), 1 
mM DTT (Cat#64656310X.5ML, Sigma-Aldrich), 10 U/mL Dnase I (Cat#D9905K, Lucigen), 0.1 
mg/mL Cycloheximide (Cat#C48591ML, Sigma-Aldrich) and NFW to final volume) on ice for 
10 minutes. Samples were centrifuged at 20,000g for 10 minutes at 4°C for the precipitation of 

cell debris. Ribosome footprints were obtained by treating 200 ul lysate with Rnase I 
(Cat#N6901K, Lucigen) and purified using Sephacryl S400 columns (Cat#GE27-5140-01, 
Sigma-Aldrich). Next, RNA was extracted using TRIzol LS (Cat#10296028, Fisher Scientific) 
followed by the Direct-zol RNA Microprep kit (Cat#R2062, Zymo Research). Ribosomal RNA 
(rRNA) was removed using siTOOLs Ribo-Seq riboPOOL Homo Sapiens (RiboPOOL ID 0.52, 
siTOOLs BioTech) and subsequently ribosome footprints were polyacrylamide gel 
electrophoresis (PAGE) purified using Novex 15% TBE-Urea gel (Cat#EC68852BOX, Fisher 
Scientific). 3’ linker ligation and Reverse Transcription (RT) reaction (EpiScript Rnase H – 
Reverse Transcriptase, Cat#ERT12925K, Lucigen) was performed before PAGE purification 
using Novex 10% TBE-Urea gel (Cat#EC68752BOX, Fisher Scientific). cDNA fragments were 
circularized using Circligase I (Cat#CL4115K, Lucigen), and amplified with 12 PCR cycles 
using 2X Phusion HiFi Master Mix (Cat#F531L, Fisher Scientific). After PAGE purification 
using Novex 8% TBE PAGE gel (Cat#EC62152BOX, Fisher Scientific), libraries were quantified 
using Qubit dsDNA HS Assay Kit (Cat#Q32854, Fisher Scientific). Last, quality and fragment 
size were assessed using the High Sensitivity DNA assay (Cat#5067-4626, Agilent 
Technologies) on the Bioanalyzer 2100 (Agilent Technologies). To perform multiplex 
sequencing, barcodes (Illumina TruSeq Small RNA Adapters (RPI series)) were used and 
sequencing pools were made containing an equal amount of each sample. Libraries were 
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sequenced on Illumina NextSeq2000 (1x50bp) to an average depth of 301 million reads per 
sample. 

RiboSeq data were mapped to human reference GRCh37. Ribosomal P-site offsets were 
calculated using the Ribo-SeQC R package. Long-read Nanopore RNA sequencing was 
performed on A375, MCF-7, and 786O cells as described above. Short RNA reads for A375, 
MCF-7, and 786O (SRA accession numbers SRR8616020, SRR8615758 and SRR8615642 
respectively) and SV calls (SvABA calls) were obtained from the CCLE (29). SV calls were 
converted to breakend format. Subsequently all neo-ORFs and corresponding NOPs for this 
cell line were determined. RiboSeq read mapping locations (P-sites) were intersected with 
the portions of neo-ORF long-read RNA mappings leading to hidden NOPs. The periodicity 
of RiboSeq read P-site coverage in these regions was identified using custom scripts 
available in the repository accompanying this manuscript 
(https://github.com/bioinformatics-papers/framome) 

Protein mass spectrometry analysis 

Protein mass spectrometry data were obtained for A375 cells by ProteiQ 
(www.proteiq.com). In brief, 3 replicate samples of A375 cells were grown in standard 
media. Cells were lysed in buffer containing 2% SDS and 100mM Tris. Protein was extracted 
from each sample and 50 µg was used for further analysis. Cysteines were reduced in 10 
mM DTT at 45℃ following by alkylation in 2 mM IAA for 30 minutes in the dark. Proteins 
were precipitated by addition of equal volume of ethanol on magnetic beads using a 
KingFisher Flex (Thermo). Protein pellets were washed 2x with 80% ethanol and 1x with 
acetonitrile, proteins were resuspended in 50mM ammonium bicarbonate and digested 4 
hours at 37 using trypsin in a 1:50 ratio (trypsin:protein). For chymotrypsin digestion, 
proteins were resuspended in 50 mM ammonium bicarbonate, 10 mM CaCl2 and digested 
for 1 hour at 25℃ using chymotrypsin in a 1:20 ratio (chymotrypsin:protein). 27 peptides 
were purchased from JPT peptide technologies, resuspended in 20% acetonitrile, 100mM 
ammonium bicarbonate to a concentration of 1pmol/µl per peptide. The pool was spiked-in 

to the samples before the MS measurements were obtained. All samples were measured 
with a combination of a nanoLC ultraperformance liquid chromatography (UPLC) system 
(Dionex Ultimate 3000 UHPLC) and a Thermo Scientific Orbitrap Fusion Lumos Mass 
Spectrometer (Thermo Fisher Scientific, Waltham, MA, USA). Peptides were separated on a 
C18 50 cm analytical column (EasySpray PepMap ES903) with a flowrate of 300 nL/min 
(buffer A, 2% ACN in HPLC H2O, 0.1% formic acid; buffer B, 98% ACN, 0.1% formic acid; 60 
min run method). MS was run in positive ion mode. For MS data acquisition, the SureQuant 
(Thermo) approach was used. Survey Run was used to determine intensity of internal 
standards, to build spectral library and create SureQuant method for custom panel. For the 
targeted sample runs, MS1 resolution was set to 120,000 and MS2 resolution was set to 
7,500; triggering intensity of the precursors was set to the 1% of the maximum intensity of 
every precursor. Identification of heavy and endogenous peptides was performed in Skyline 
v21.2 and peptide chromatograms were manually validated. 
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Immunopeptidomics analysis 

The immunopeptidomic analysis was performed by Biognosys, Switzerland. For DDA LC-
MS/MS measurements, peptides were injected to an in-house packed reversed phase 
column on a Thermo Scientific™ EASY-nLC™ 1200 nano-liquid chromatography system 

connected to a Thermo Scientific™ Orbitrap™ Exploris 480 ™ mass spectrometer operated 

in positive mode equipped with a Nanospray Flex™ ion source and a FAIMS Pro™ion 

mobility device (Thermo Scientific™). LC solvents were A: water with 0.1% FA; B: 80% 

acetonitrile, 0.1% FA in water. The LC gradient was 1 - 30% solvent B followed by a column 
washing step in 90% B, and a final equilibration step of 1% B in nano flow. MS1 precursor 
scans were followed with data-dependent MS2 scans and the cycle time was kept constant. 
Only precursors with charge state 2-6 were isolated for dependent MS2 scans. The mass 
spectrometric data was analyzed using SpectroMine and the false discovery rate was set to 
1%. A human UniProt fasta database (Homo sapiens, 2022-01-07) combined with a list of 
A375 NOP protein sequences (including upstream WT portion) was used for the search 
engine, allowing for non-specifically digested peptides (no trypsin cleaved termini) with a 
length between 7 and 12 amino acids for MHC class I and between 8 and 23 amino acids for 
MHC class II, max. 2 variable modifications (N-term acetylation, phosphorylation (STY) for 
MHC class I and carbamidomethylation (C) for MHC class I and II) and requiring methionine 
oxidation as fixed modification. Downstream data analysis, including peptide length 
distribution, peptide motifs and protein group sequence coverage, was performed in 
SpectroMine. Isotopic peak pattern of specific peptides was extracted from the raw data 
using SpectroMine. Fragment ion annotation of the best MS2 spectrum and correlation of 
predicted versus measured fragment ion intensities were visualized using SpectroMine. 

Tumor suppressor genes 

NOPs were classified as arising from tumor suppressor genes if their gene of origin was in 
the TSGene database (30). 

Validation of RNA junctions by PCR 

Target template regions were taken as the 200 bps centered on the junction 100 bp 
upstream and downstream of the novel RNA junction leading to an NOP. PCR primers 
(Supplementary Table S5) for RNA junctions were designed using a python 
implementation of Primer3 software with default input parameters and a minimum 
distance from the center of the template of 10 bps. cDNA produced by TeloPrime Full-
Length cDNA Amplification kit V2 (Lexogen) was used as template. PCR reactions were 
performed using Phusion high-fidelity polymerase (Thermo Scientific) according to 
manufacturer’s specifications. PCR reactions (ProFlex PCR System, Applied Biosystems) 
were performed on cDNA derived from tumor samples with the identified junctions and an 
unrelated cDNA sample as a negative control. PCR products were analyzed on agarose gel 
and manually scored. 
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In vitro immunogenicity assay 

The immunogenicity of selected A375 NOP-derived epitopes was determined as described 
previously using previously published protocol (6), (31) with minor adaptations. PBMC 
from buffy coats of healthy individuals with at least one HLA-A*02:01 or HLA-A*01:01 allele 
(Sanquin Bloedvoorziening, Amsterdam, Netherlands) were isolated using Percoll gradient 
isolation and stored in liquid nitrogen for further use. On the day of the assay, the cells were 
thawed and plated in U-bottom 96-well plate at 105 cells/well in X-VIVO 15 medium 
(LONZA). The cells were first stimulated with a mixture of GM-CSF (1000UI/mL, 
Peprotech), IL-4 (500IU/mL, R&D Systems), and Flt-3L (50ng/mL, R&D Systems) for 24h. 
Next day, peptides (each peptide at 1µg/mL, GeneCust) and adjuvants LPS (0.1µg/mL, 
Enzo), R848 (10µM, Enzo), and IL-1 (10ng/mL, R&D Systems) were added. As a negative 
control, cells cultured without any peptide were used. As a positive control CEFT mixture of 
viral peptides was used (1µg/mL, JPT). The day after, IL-2 (10IU/mL, Peprotech), IL-7 
(10ng/mL, Peprotech), and IL-15 (10ng/mL, Peprotech) were added to the cell culture in 
R10 medium (RPMI, LONZA, 10% heat inactivated human serum, Sanquin 
Bloedvoorziening, Netherlands, HEPES 10mM, penicillin/streptomycin). Medium was 
refreshed on day 5 with fresh cytokines. On day 7, the cells were refreshed with R10 
medium without cytokines. On day 9 the cells were harvested and plated in fresh R10 
medium overnight. Next day, for HLA-A*02:01 donors, T2 cells (ATCC) were exogenously 
loaded with respective peptides or with myelin oligodendrocyte glycoprotein (MOG, 
negative control) to present epitopes to CD8+ T cells, or the peptides were added directly to 
the cell culture. Anti-CD28 and anti-CD49d (both 0.5mg/mL, BD Biosciences) were added 
for co-stimulation. Where depicted, PMA (50ng/mL, Sigma Aldrich) and ionomycin 
(1µg/mL, Sigma Aldrich) were added as a positive control. After 1h, Brefeldin A and 
monensin (5mg/mL and 2mM, respectively, both BioLegend) were added, followed by an 
additional 5h of incubation. Subsequently, the cells were stained for surface and 
intracellular markers (CD3 FITC, clone UCHT1, cat#300405; CD8 PerCp Cy5.5, clone RPA-
T8, cat#301031; CD4 APC/Fire 750, clone RPA-T4, cat#300559;  IFNγ PE, clone B27, 
cat#506507; TNFα APC, clone Mab11, cat#502912; and IL-2 PE Cγ7, clone MQ1-17H12, 
cat#500326, all BioLegend). Acquisition of the data was performed on a BD Symphony (BD) 
and analysis performed using FlowJo software (FlowJo, version V10, 
https://www.flowjo.com/solutions/flowjo). 

In vitro dextramer staining 

FRM0469-specific MHC I Dextramer reagent (conjugated to PE) was custom-generated by 
Immudex. Immunogenicity assay was performed as described above using PBMCs from 
three healthy individuals (ImmunXperts) with at least one HLA-B*57:01 allele. PBMCs were 
either primed with peptide of interest FRM0469 or with irrelevant peptide FRM0460 
(negative control) on day 2 of the immunogenicity assay. To perform FRM0469-dextramer 
staining, FRM0469-primed or negative control cells were resuspended in 50 uL FACS buffer 
(PBS with 3% human albumin [200 g/L; Sanquin], filtered through a 0.2 µm filter to remove 
particles) per 3 million cells to which 10 µL FRM0469-dextramer reagent was added. 
FRM0469-dextramer reagent was centrifuged prior to use [3,300 g, 4℃, 5 mins] and only 
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supernatant was used. Cells were incubated with the FRM0469-dextramer reagent for 30 
mins on melting ice and in the dark, after which a cocktail of extracellular surface and 
viability markers was added (CD3-FITC [clone UCHT1]; CD8-PerCP-Cy5.5 [clone SK1]; 
Zombie Aqua Fixable viability dye; all BioLegend) and cells were incubated another 30 mins 
on melting ice and in the dark. After incubation, cells were washed twice with FACS buffer 
and pelleted via centrifugation for 5 mins, 500 g, break 6, and 4℃. Cells were subsequently 
fixated with 1X Cyto-Fast Fix/Perm Buffer (BioLegend) for 15 mins on melting ice after 
which they were washed twice again with FACS buffer and pelleted via centrifugation for 5 
mins, 500 g, break 6, and 4C. Cells were resuspended in 600 uL FACS buffer and acquired on 
the BD FACS Symphony within 24 hours of staining with a maximum of 8,000 events/sec. 
FRM0469-dextramer-specific CD8+ T cells were gated as described in Supplementary Fig. 
S3. Cells primed with irrelevant peptide FRM0460 were used as a negative control to 
determine the background staining of FRM0469-dextramer (Supplementary Fig. S3). 

In vitro MHC binding and tetramer staining 

Selected epitopes for the assessment of in vitro binding were synthesized by GeneCust 
(GeneCust). In vitro binding was performed as described previously (32). Briefly, a 
conditional HLA class I complex was stabilized through a photolabile peptide, which could 
be dissociated through UV irradiation. If the cleavage occurred in the presence of another 
HLA class I peptide, the reaction resulted in net exchange of the cleaved peptide, yielding an 
HLA class I complex with an epitope of choice. The peptide exchange efficiency was then 
analyzed using an HLA class I ELISA. The combined technologies allowed the identification 
of ligands for an HLA class I molecule of interest. HLA–peptide complexes with binding 
affinity > 40% were then used to prepare fluorescently labeled tetramers for combinatorial 
coding and phenotyping, as described previously (33). 

Data Availability 

WGS and long- and short-read RNA sequencing data are accessible via the European 
Genome Archive (accession number EGAS00001006021). Code used for NOP identification 
can be furnished upon reasonable request. Code used to produce all figures in this paper 
can be accessed at https://github.com/bioinformatics-papers/framome. This resource also 
contains html files with supporting data for all identified NOPs in this work. 

Results 

Whole-genome and full-length transcriptome sequencing of 61 human cancers 

Recent studies have evaluated personalized neoantigen cancer vaccines in early-stage 
clinical trials with a primary focus on missense neoantigens identified from exome 
sequencing (34–36). To systematically extend the repertoire of possible neoantigens 
expressed in tumors, herein, we focused on the identification of NOPs derived from neo-
ORFs resulting from cis genomic mutations, including genomic rearrangements, indel 
frameshifts, splice mutations, and stoploss mutations (6–11, 13–16). 
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As a basis for our analysis, we collected a series of 61 tumor samples from patients with 
non-small lung cancer, pancreatic ductal adenocarcinoma, head and neck squamous cell 
carcinoma, colorectal cancer, glioblastoma, and triple-negative breast cancer 
(Supplementary Table S1 – Sample Overview). Tumor samples and corresponding normal 

tissue or blood samples were whole genome sequenced (tumor WGS - 100X) to identify all 
classes of somatic genetic changes based on an existing and validated analysis pipeline (4). 
We identified on average 26,287 (208 - 418,406) single-nucleotide variants (SNVs); 1,847 
(65 - 24,160) short indels, and 261 (3 - 2,417) SVs per tumor sample (Supplementary Fig. 
S4, Supplementary Table S2 – WGS Overview). 

To characterize the effects of genomic changes on the tumor transcriptome, we 
performed RNA sequencing using a combination of short-read RNA sequencing and long-
read sequencing of mRNA transcripts (Supplementary Table S3 - Short Read RNA Overview, 

Supplementary Table S4 - Long Read RNA Overview). We developed a method to extract 

intact mRNAs from tumor samples, by a cDNA preparation process involving 3’-polyA and 
5’-CAP selection. Double-stranded cDNA was sequenced on Nanopore sequencing devices 
reaching a throughput of 1M-97M RNA sequences per sample. Up to 92.3% of long-read 
mRNA sequences mapping to a protein coding gene spanned a full transcript molecule 
known in the ENSEMBL database, indicating the strength of the long-read data to determine 
complete transcript sequences at the single molecule level (Supplementary Fig. S5). 
Despite the difference in the intended RNA content captured by each sequencing approach 
(fully mature vs total), the gene expression quantification was reasonably concordant 
between short and long reads (Supplementary Fig. S6A). Additionally, due to the minority 
of non-full length long-read RNA reads the 5’ and 3’ coverage biases were also similar in 
magnitude to the edge-effects of ribo-depleted short read RNA sequencing 
(Supplementary Fig. S6B). 

Identification of expressed neo-ORFs 

Identification of possible neoantigens from sequencing data is often limited to the detection 
of coding mutations, followed by analysis of their expression using short-read RNA 
sequencing (2). The neoantigenic peptide sequence is subsequently inferred from known 
annotated transcript structures. However, a preferred method would be to directly 
determine peptide sequences based on the repertoire of expressed transcript isoforms in 
the tumor. We leveraged the WGS and short- and long-read RNA sequencing data as input 
for an analysis workflow that maps complete tumor-specific transcript sequences caused by 
cis somatic mutations, including SVs, indels, and SNVs within and outside coding regions. 

The analysis approach consists of four steps that integrate somatic mutation data with 
transcriptome sequences to identify all neo-ORFs and corresponding NOPs (Fig. 1). In a 
first step, the collection of somatic small and structural variants is combined with chimeric 
long-and short-read RNA mappings to construct tumor-specific contigs that together create 
a tumor-specific reference for each sample. In a subsequent step, short-read and long-read 
RNA sequences are mapped to the tumor-specific reference to identify transcripts in the 
vicinity of a somatic mutation. In this step, the short-read RNA sequences are used to 
correct (splice-junction) errors inherent to long-read single-molecule Nanopore sequencing 
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data. Subsequently, individual corrected transcript reads are used for in silico translation 
based on annotated translation start sites (Ensembl) to derive entire protein sequences. In 
a final step, NOPs (or neo-epitopes from the NOPs) are derived from the protein sequences 
by trimming of the WT portions of each protein sequence. 

This analysis approach is what we believe to be the first to internally integrate full-length 
sample-specific transcript structures with variant protein effect prediction as well as what we 
believe to be the first method to directly couple WGS with long-read transcriptome sequencing 
for the discovery and validation of SV-driven tumor specific isoforms. We used the workflow to 
analyze neo-ORFs and corresponding NOPs caused by SVs, frame-shift indels, splice mutations, 
and stoploss mutations (Supplementary Table S6 - NOP Annotations and 

https://github.com/bioinformaticspapers/framome). PCR across identified tumor-specific RNA 
junctions confirmed 78% of junctions, supporting the validity of our approach (Supplementary 
Table S5 - PCR Validation). An example of each class of NOP is provided in Fig. 2. A known 

category of SV-driven NOPs is a fusion gene event (Fig. 2A). While the canonical source of NOPs 
arising from fusion genes is through a mismatch in reading frame between the upstream and 
downstream genes, the example depicts translation initiation in the CAMSAP1 gene, which is 
predicted to lead to a 27 amino acid NOP partially overlapping with the 5’-UTR of the URM1 gene. 
An example of a NOP derived from a canonical exonic indel frame-shift is depicted in Fig. 2B, 
which displays a 57 amino acid NOP in the TP53 tumor suppressor gene in non-small cell lung 
cancer (NSCLC) sample LUN011. Frame-shift derived NOPs are commonly found in tumor 
suppressor genes (24 genes across 26 samples), which form a source of shared antigens (7). We 
also identified NOPs caused by either mutations affecting known splice sites or mutations 
introducing new splice sites (Fig. 2C), as well as NOPs derived from mutations in known stop 
codons (Fig. 2D). 

Identification of hidden NOPs 

Gene fusions represent a frequent outcome of somatic SVs in cancer genomes and in-frame 
gene fusions can be drivers of tumorigenesis (37). However, the majority of gene fusions are 
out-of-frame, creating a novel gene encoding a NOP (9) (Fig. 2A). We observed between 0 
and 76 unique expressed NOPs corresponding to out-of-frame gene fusions per tumor 
sample, representing a substantial class of potentially neoantigenic sequences, particularly 
in tumors with high SV loads. An additional, yet largely uncharacterized configuration of 
genomic rearrangements involves the fusion between the 5’ part of a known gene and a 
non-coding genomic region, i.e. where no gene annotation or evidence for transcription 
exists. Based on in silico annotation of SV breakpoint junctions in the tumor samples, we 
observed that 3,002 (19%) of somatic SV breakpoint junctions involved a 5’-part of a 
known gene fused to a non-coding genomic region downstream of the SV breakpoint 
junction (Fig. 3A). Next, we analyzed the RNA sequences overlapping the SV breakpoint 
junctions in such regions and we observed that for 8% (245) of such SV junctions involving 
the 5’-end of a known gene and a non-coding region, breakpoint junction–spanning 
transcripts were identified aligning with the 5’-end of a known gene and with a 3’-end that 
involved one or more novel cryptic exons. We have termed these chimeric transcripts and 
their resulting tumor-specific peptide products ’hidden NOPs’. An example of a hidden NOP 
identified in NSCLC sample LUN004 is depicted in Fig. 3B, which shows the fusion of the 5’ 

D
ow

nloaded from
 http://aacrjournals.org/cancerim

m
unolres/article-pdf/doi/10.1158/2326-6066.C

IR
-23-0158/3440236/cir-23-0158.pdf by U

niversity of Antw
erp user on 08 April 2024



23 

exons of gene TIMM8B, located on chromosome Chr11, coupled to cryptic exons encoded by 
a genomic region on Chr2. The novel chimeric transcript was confirmed by 21 long and 
corrected transcript reads. 

To understand the translation of tumor-specific chimeric transcripts that encode hidden 
NOPs, we performed analysis of WGS and transcriptome sequencing data of human cell 
lines A375 (melanoma), MCF7 (breast adenocarcinoma), and 786O (renal cell 
adenocarcinoma) resulting in the identification of 7, 51, and 6 hidden NOPs, respectively. 
We complemented the analysis with ribosome profiling (RiboSeq), which enables the 
identification of translation of mRNA sequences, including the reading frame in which an 
mRNA is translated (38). An example of a highly-expressed hidden NOP identified in this 
way is depicted in (Fig. 3C); it shows RiboSeq reads in the expected reading frame across 
the novel exons triggered by a set of genomic SVs in MCF7. For the majority of the hidden 
NOPs in these three cell lines, RiboSeq coverage was observed for the expressed novel exons 
derived from intergenic (non-coding) genomic regions, with the majority of the RiboSeq 
reads indicating the expected reading frame that was inferred from the translation start site 
of the partner gene (Fig. 3D). To complement these results and further demonstrate that 
hidden NOPs lead to proteins expressed by cancer cells, we performed protein mass 
spectrometry analysis of intracellular proteins of A375 cells. Using spike-in of 27 heavy 
labeled peptides corresponding to 11 different NOP sequences, we observed the presence of 
5 unique peptides corresponding to both hidden NOPs and fusion gene NOPs 
(Supplementary Fig. S7, Supplementary Table S7 - A375 MS Peptides). Three of these 

identified peptides arose from three different hidden NOP protein isoforms anchored in the 
AHCY gene (Fig. 3E), further supporting the presence of NOP protein in A375 cells. 

Whole-genome and full-length transcriptome sequencing improves quality of NOP 
identification 

Existing methods for identifying neoantigens arising from SVs are not guided by full-length 
transcript sequences or knowledge of how the tumor genome has been rearranged. 
Additionally, most available tools are canonical fusion-gene callers that focus on identifying 
aberrant RNA structures bridging two annotated genes while ignoring gene-intergenic 
hidden NOPs. To compare the structural variant NOPs identified via full-length 
transcriptome sequencing and WGS with a state-of-the-art fusion gene identification tool, 
EasyFuse (39) was run on 39 samples (Supplementary Table S8 - EasyFuse Results). 

The overlap in the potential neoantigens identified by EasyFuse and the approach 
presented here was quantified by breaking down the full-length peptides into non-
reference protein amino acid 9mers in order to allow for partial protein isoform overlap. 
Only frame-shift and neo-frame non cis-near EasyFuse fusion genes were considered. 
EasyFuse and the long-read RNA and WGS approach identified 15,613 and 12,968 9mer-
sample pairs, respectively. The overlap between the peptide sets derived from both 
approaches was low (1,424 (5.2%) sample-9mer pairs). This overlap is on-par with the 
overlap observed between the individual fusion gene callers underlying EasyFuse (39). 

While it is recognized that there is a lack of tumor specificity of cis-near fusion genes 
identified by short-read RNA sequencing using EasyFuse, the size and scope of the normal-
tissue reference was limited in that study (N=136) (39). To gain a better understanding of 
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the tumor specificity of short-read only fusion gene calls as compared to NOPs identified 
through a combination of long-read RNA and WGS, we searched for evidence of the 
identified RNA structures underlying these neoantigen calls in the 17,350 healthy tissue 
samples in the GenotypeTissue Expression (GTEx) database (19). To do this, we remapped 
all GTEx short-read RNA samples to the human reference genome and extracted the 
chimeric and non-chimeric RNA junctions identified by the STAR aligner. We then cross-
referenced these exact junction coordinates with the breakpoint coordinates (junctions) of 
the EasyFuse fusion gene calls and of the NOPs identified via long-read RNA and WGS 
(Supplementary Fig. S8A). This showed that 22% (229 out of 1054) of the EasyFuse 
junctions were present in the GTEx normal tissue samples at support levels of up to 
thousands of junction-spanning reads per sample while only 0.9% (5 out of 543) of the 
long-read RNA and WGS NOP junctions were present (Supplementary Fig. S8B, 
Supplementary Table S9 - GTEx Junction Overlap). To quantify how wide-spread such 

potential false positives were in the neoantigen calls generated by each approach, the 
amino-acid sample-9mer pairs were classified according to whether they arose from a 
protein with a defining novel RNA junction present in GTEx. The results shown in 
Supplementary Fig. S8C illustrate that 44.3% of potential neoantigen sequence content 
identified by EasyFuse arose from breakpoint RNA junctions that can also be found in 
healthy tissues while only 1.4% of long-read RNA and WGS identified NOP sample-9mers 
fell into this category. Additionally, sample-9mers were classified by whether a path from 
the donor to the acceptor site of the defining RNA junction could be found through SVs. 
While an SV event can be found that supports all SV-NOP protein sequences identified in 
our methodology, only 33% of the EasyFuse sample-9mer pairs were supported by WGS. 
Overall, the combination of WGS with full-length transcriptome sequencing appears to 
dramatically increase the tumor specificity of identified SV neoantigens. 

To understand the effect of full-length transcriptome sequencing on NOP identification 
and partially separate its contribution from that of WGS, simulated short- and long-read 
RNA sequencing datasets containing a priori designed ground-truth NOPs were generated. 
NOPs were identified from the simulated data using the described combined long- and 
short-read methodology as well as by two short-read only approaches. For the first 
approach, short-reads remapped to the reconstructed tumor genome were assembled and 
the resulting RNA isoforms were translated into NOPs using the same technique as for the 
long-reads. Secondly, novel RNA junctions spanning structural variant breakpoints in the 
reconstructed tumor genome were identified and the long-range upstream and 
downstream structures were assumed from annotations and coverage (similar to the 
method employed by traditional fusion gene callers). The results of each approach were 
then compared to the ground-truth via amino acid 9mer overlap. The results presented in 
Supplementary Fig. S9A illustrate that the overall sensitivity of the long-read guided 
approach is essentially the same as for the short-read junction translation, with both 
methods reaching a high recall of ∼70% of sample-9mers. The short-read assembly 
approach is less sensitive, possibly due to an inability of the assembler to detect minority 
NOP isoforms mixed with obfuscating normal gene expression. The short-read junction 
approach identified more false-positive neoantigens than the long-read guided approach 
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(∼10% vs ∼1% FDR). This difference is especially true for the fusion gene NOPs 
(Supplementary Fig. S9B). Comparing the target expression level of ground-truth NOPs 
versus the recall rate, in Supplementary Fig. S9C all methods perform poorly on lowly 
expressed (<1 TPM) sequences but that the sensitivity is essentially unchanged beyond this 
level of expression. Additionally, filtering called NOPs based on estimated expression level 
can reduce FDR but at a high cost to sensitivity. These results illustrate the power of long-
read RNA sequencing to achieve high sensitivity while avoiding erroneous neoantigen calls 
resulting from the transcript structure ambiguity inherent to short-read RNA sequencing. 

Many tumors have large framomes 

We identified 998 unique NOPs amongst the 61 tumor samples described in this work 
(Supplementary Table S6 – NOP Annotations), and we classified the NOPs according to 

their genomic origin (Fig. 2, Fig. 3A). On average we identified 16 NOPs with a combined 
length of 383 amino acids per tumor sample (Fig. 4A). We found that hidden NOPs were the 
major source of NOPs with 49% of novel amino acid sequence arising from this source. 
Fusion genes and indels contributed 37% and 12% respectively, with the remaining 2% 
made up of the infrequent stoploss and splice NOPs. Taken together, hidden NOPs and 
fusion genes made up 86% of all NOPs identified, highlighting the importance of SVs as a 
source of neoantigens. Different cancer types express NOP classes at different frequencies. 
We observed that glioblastomas often express hidden NOPs and gene-fusion NOPs (97% of 
novel amino acids), as a result of the high load of somatic SVs and a low number of exonic 
indels. For NSCLC, we found a higher amount of indel-derived NOPs (20% of novel amino 
acids) than average, which reflects the relative amount of frame-shift indels and SVs in this 
cancer type. 

We have termed the entire collection of NOPs expressed by a specific tumor sample ’the 
framome’. Representative examples of tumor framomes are given in Fig. 4B,C. Glioblastoma 
sample GBM005 expressed 86 unique NOPs, for a total of 1,806 amino acids, almost all of 
which are derived from somatic SVs. In contrast, the framome of NSCLC sample LUN013 
represented 1,196 amino acids across 49 NOPs, many of which resulted from canonical 
frame-shift indels. 

Expression level and clonality are important features for selection of neoantigens as 
immunotherapy targets (40, 41). The expression levels of mRNAs encoding NOPs were 
measured based on the long-read RNA sequencing data generated for each tumor sample 
and quantified as transcripts per million (TPM) where the denominator of the calculation 
was taken as the total number of full-length translatable long-reads (Fig. 4D). Expression 
levels of NOPs largely fell into the distribution of the expression levels observed for other 
genes (Supplementary Fig. S10A). A slight shift in the average expression of NOPs 
compared to missense variants was observed for some tumor samples, which is likely an 
effect of nonsense-mediated decay (Supplementary Fig. S10B) (42). The variant allele 
frequency of the underlying somatic genetic changes was determined from the whole 
genome sequencing data and corrected for tumor purity Fig. 4D (4). We observed that 
variants encoding NOPs have an average purity corrected VAF of 0.37, similar to other 
somatic variants in the analyzed tumor genomes (Supplementary Fig. S10C). Of note, SVs 
underlying hidden NOPs and fusion NOPs have a lower average VAF, likely representing 

D
ow

nloaded from
 http://aacrjournals.org/cancerim

m
unolres/article-pdf/doi/10.1158/2326-6066.C

IR
-23-0158/3440236/cir-23-0158.pdf by U

niversity of Antw
erp user on 08 April 2024



26 

technical difficulties in accurately estimating the number of discordant read-pairs 
supporting such variants. 

Complex chromosomal rearrangements, such as chromothripsis, are a frequent 
phenomenon in cancer genomes (43). For 18% of the genomic events leading to hidden 
NOPs or out-of-frame gene fusions, the genomic connection between the 5’-end of the 
known gene and the non-coding genomic segment or downstream out-of-frame gene was 
formed by more than one genomic breakpoint-junction (Fig. 4E, Supplementary Fig. S11). 
The analysis of single full-length transcript molecules using our approach enabled us to 
identify the entire spectrum of transcript isoforms encoding a hidden NOP. The majority 
(60%) of SVs leading to hidden NOPs involved transcripts that encoded a single unique NOP. 
However, we observed multiple instances of hidden NOPs that were caused by different 
transcript isoforms derived from the same genomic SV. For example, a hidden NOP in a 
triple-negative breast tumor involved multiple splice isoforms encoding 4 different unique 
NOP sequences (Supplementary Fig. S12). Isoform diversity may thus enlarge the 
neoantigenic potential of hidden NOPs. 

To understand the amount of possible HLA-binding epitopes among NOPs expressed in 
tumors, we performed in silico characterization of HLA class I binding. While the overall 
percentage of candidate epitopes predicted to bind was similar between NOPs and 
missense mutations (2.20% and 2.28%, respectively), Supplementary Fig. S13A illustrates 
striking tumor-type specific differences in the absolute number of predicted binders arising 
from the two neoantigen sources. In most glioblastoma, pancreas, and triple-negative breast 
tumors, NOPs represented a larger source of binding epitopes than missense mutations, 
while for NSCLC, head and neck squamous cell carcinoma, and colon tumors, the number of 
binders arising from the two classes was more even except for several outliers with high 
missense mutation loads. These results indicate NOPs may increase the immunotherapy 
target landscape, especially in indications such as glioblastoma which have traditionally 
been considered to have a low neoantigen burden. 

To understand whether a cancer vaccine based on NOPs would be advantageous with 
respect to the number of possible MHC class I epitopes, as compared to vaccines based on 
commonly used missense variants, we generated cancer vaccine designs in silico. In 
Supplementary Fig. S13B a comparison is made between the number of potential MHC 
class-I sized kmers (k=8 through 11)for the two classes of antigens in the context of a 
neoantigen-based personalized therapeutic cancer vaccine designed in silico for each of the 
tumors reported in this study. This analysis shows that for many tumors an ∼2 fold increase 
in targeted sequence can be achieved through the use of NOPs compared to missense 
variants. Targeting NOPs may also allow for a superior quality of each epitope as there is 
increasing evidence that neoantigen dissimilarity to self proteins is important for effective 
immune response (27). The long out-of-frame peptide sequences represented by NOPs are, 
in principle, fully tumor-specific and the same sequences should not be expressed in normal 
(non-tumor) cells. We determined the similarity to self for all 9-mers derived from NOPs 
and missense variants expressed by each of the 61 tumors analyzed in our study 
(Supplementary Fig. S13C). This demonstrated that NOP epitopes were nearly as 
dissimilar from self as completely random epitopes (mean 0.7 vs 0.74), while missense 
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epitopes which differ from wild-type epitopes by only a single point mutation were highly 
self-similar (mean 0.86). 

Framome-derived epitopes are presented on tumor cells and can induce polyfunctional 
CD8+ T-cell responses in vitro 

To validate the presence of HLA-binding epitopes derived from NOPs, we performed 
immunopeptidomics analysis of A375 cells. We identified 10,537 peptides eluted from 
A375 MHC class I molecules, matching to 4,824 protein groups. For 2 peptides, a match was 
found to two hidden NOPs, each representing a different transcript isoform encoded by the 
same SV (Fig. 5A and Supplementary Fig. S14), demonstrating presentation of hidden 
NOP–derived epitopes on cancer cells. For one of the identified peptides, FRM0469 with 
high predicted affinity to HLA-B*57:01, we generated HLA-B*57:01 fluorescently labeled 
dextramers that we used to stain PBMCs isolated from three individual donors carrying this 
allele. We detected a low frequency of antigen-specific CD8+ T cells in two out of three 
donors at baseline and we observed their expansion upon a 10-day culture in the presence 
of FRM0469 peptide (Fig. 5B with gating strategy in Supplementary Fig. S3). 

To further complement these findings, the immunogenicity of framome-derived antigens 
was assessed by in vitro immunogenicity assays using PBMCs of healthy donors with at 
least one HLA-A*02:01 or HLA-A*01:01 allele. This assay is suitable to rapidly prime naive T 
cells (adapted from (6)). The cells were primed with CD8+ T-cell epitopes derived from 
NOPs identified in melanoma cell line A375 and predicted to bind to HLA-A*02:01 or HLA-
A*01:01 using NetMHCpan (Supplementary Table S10 - A375 Tested Epitopes). After the 

expansion phase the cells were re-stimulated either with relevant peptides or a negative 
control (MOG). Antigen-specific CD8+ T-cell responses were measured as IFNɣ and TNFα 
production using intracellular cytokine staining and detected by flow cytometry. A total of 8 
HLA-A*02:01 peptides and 4 HLA-A*01:01 peptides were tested leading to reactivity in 
three out of ten donors (Fig. 5C). In total, NOP-specific CD8+ T cells were identified in five 
out of 13 tested donors (Fig. 5D). This confirms that NOPs can contain immunogenic 
epitopes with the potential to induce (polyfunctional) antigen-specific CD8+ T-cell 
responses. 

 

NOP epitopes bind to MHC and are recognized by memory CD8+ T cells of an NSCLC 
patient 

To further characterize the immunogenic properties of NOPs, we assessed the affinity of 
framome-derived epitopes to various HLA-A and -B alleles by performing in vitro HLA-
binding assays. First, we selected ∼30 epitopes derived from the framomes of each of three 
patients with advanced NSCLC (LUN024, LUN026, and LUN029) and we tested the binding 
of these epitopes using in vitro binding assays. As the framomes of patients LUN026 and 
LUN029 provided many predicted epitopes, we limited our selection to those with the 
highest predicted affinity (EL rank score below 2) for each relevant HLA allele 
(Supplementary Table S11 - Lung Sample NetMHCpan). In vitro binding analysis revealed a 

number of epitopes binding to HLA-A and HLA-B specific for each patient (Fig.6A). In the 
next step, we generated fluorescently labeled HLA tetramers carrying epitopes with at least 
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40% binding affinity, as determined by the in vitro binding assays (Supplementary Table 
S12 - In Vitro Binding). These tetramers, specific to each patient’s HLA allele, along with 

relevant positive and negative controls, were then used to stain low frequency antigen-
specific CD8+ T cells within the PBMC population of each patient’s peripheral blood using 
combinatorial coding. Additionally, antigen-specific CD8+ T cells recognizing individual 
epitopes were phenotyped to determine their antigen experience status (for the gating 
strategy see Supplementary Fig.S15). We detected the presence of effector memory type 
(CD8+CD45RA–CD27–/dim) T cells in the blood of patient LUN029, specific for two epitopes, 
FRM0417 and FRM0433 (Fig.6B). Each of the epitopes originated from a different hidden 
NOP (Fig.6C). No CD8+ T cells could be detected by staining with any of the other tetramers 
carrying different NOP-derived peptides from the three lung cancer patients. Finally, we 
used the FRM0417 and FRM0433 peptides to expand CD8+ T cells from two healthy donors. 
We observed expansion of CD8+ T-cell populations upon priming with FRM0417 and 
FRMA0433 peptides in both healthy donors (Supplementary Fig.S16). These data confirm 
that some of the antigens derived from hidden NOPs can bind to various HLA alleles and can 
induce antigen specific immune responses in vitro using PBMCs from healthy donors and 
can be detected in a patient with cancer. 

Discussion 

The work described here provides a technological and bioinformatics framework to exploit 
the full potential of NOPs encoded in the tumor genome as a result of cis-acting somatic 
mutations. Identification of the full spectrum of expressed NOPs in tumors requires WGS as 
a basis complemented with RNA sequencing to map mutated transcripts. Only WGS 
captures the complete catalogue of somatic mutations arising in cancer genomes (4). 
Although commonly used as an efficient technology for detection of exonic mutations (e.g., 
frameshift indels), exome sequencing falls short with respect to identification of intronic 
and intragenic variants and SVs (e.g. splicesite creating mutations) (14). The approach 
outlined in our manuscript will become more feasible with the decreasing costs and efforts 
needed for WGS and long-read RNA sequencing. Internally, we are capable of generating 
good quality genome and transcriptome sequencing data within 10 days of obtaining a thin 
needle biopsy of a tumor. This makes the approach potentially applicable for routine clinical 
practice, e.g. in the context of personal cancer vaccine trials. Application of our approach to 
FFPE tumor specimens would likely results in suboptimal detection of NOPs, because of 
lower RNA integrity. 

Our work demonstrates that SVs provide a rich source of possible cancer neoantigens, 
beyond well-described neoantigenic sequences derived from fusion genes (10). We find that 
SVs often drive expression of non-coding genomic regions via fusion with the 3’-end of a 
known gene. We designate these as hidden NOPs as their existence cannot be identified 
from genome sequencing alone, but requires the integrated analysis of cancer transcripts 
sequences with somatic SVs. We observed that ∼50% of the amino acid sequences 
contributed by NOPs are derived from hidden NOPs caused by SVs. Personalized neoantigen 
based immunotherapy strategies targeting tumors with a high level of SVs (e.g., 
glioblastoma, triple-negative breast), or with both high SV and high indel count (e.g. NSCLC) 
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would benefit from a neoantigen discovery approach as outlined here. We propose that a 
complete analysis of the cancer genome will enable optimal design of personalized cancer 
vaccines. 

In addition to genomic analysis of the tumor, faithful mapping of mutation-derived 
transcripts encoding possible neoantigens is required to precisely determine tumor-specific 
peptide sequences. The wide diversity of transcript isoforms encoded by the human 
genome has become apparent through full-length transcript sequencing (44). Direct 
mapping of the isoforms of a gene would be a preferred approach to infer neoantigenic 
peptide sequences, rather than the commonly used approach to use existing transcript 
annotations. The combined approach of whole genome and long-read transcriptome 
sequencing enables analysis of neoantigenic sequences derived from individual transcript 
sequences based on the identification of translation start sites and accurate transcript 
structure and sequence. Our current approach involves the use of short-read RNA 
sequencing to refine transcript splice-junction sequencing, but we expect that future 
generations of long-read sequencing will make such an approach obsolete. 

In conclusion, we here present a universally applicable workflow that enables systematic 
identification of neo-ORFs and corresponding NOPs resulting from somatic cancer 
mutations. Our work provides the foundation for developing new generations of 
personalized immunotherapies. 
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Figure Legends 
 

Figure 1: Overview of tumor NOP identification workflow. Tumor specific variants are 
identified from tumor/normal WGS and used in combination with short- and long-read 
RNA sequencing to reconstruct the tumor genome. RNA is remapped to this tumor specific 
reference to produce translatable full-length isoforms and a database of WT peptide k-mers 
and P-sites are used to identify which portions of these predicted peptides are novel. These 
NOPs are extracted to produce the framome. 

 

Figure 2: Examples of NOP categories identified by our workflow. Reconstructed tumor 
contigs are shown as thick purple/green lines. Annotation isoforms from ENSEMBL are 
shown below the contigs. Full-length isoforms created through correction/collapsing of 
long-reads are shown above the contigs. The known/predicted protein coding structure of 
each isoform is provided with green for 5’-UTRs, brown for WT coding, red for NOP, multi-
colored for zoomed-in NOP amino acids, and blue for 3’-UTRs. Non-coding isoforms are 
shown in grey. (A) An 8 Mb inversion within chromosome 9 leads to a fusion gene between 
the CAMSAP1 and URM1 genes in the glioblastoma sample GBM002. Beginning translation 
at the CAMSAP1 start site gives an NOP partially overlapping the 5’-UTR of URM1. (B) A 
basepair deletion in an exon of the TP53 gene in lung sample LUN011 leads to out-of-frame 
translation of a portion of an exon. The 57 amino acid NOP represents a truncation of the 
normal protein isoform. (C) A point mutation in the head and neck tumor HAN001 leads to 
a splicing signal in the intron of the MLLT10 gene. This splicing leads to a partial 3’ intron 
retention and drives translation of a 10 amino acid NOP. (D) A point mutation within the 
stop codon of the CHCHD6 gene in the head-and-neck sample HAN002 leads to a translation 
elongation and a 15 amino acid NOP. 

 

Figure 3: Hidden NOPs are a frequent result of genomic structural variants. (A) Schematic 
outline of the origin of hidden NOPs. A somatic genomic breakpoint junction involving the 
5’-end of a protein coding gene is fused to a non-coding genomic region. Transcription is 
driven by the promoter of the 5’-gene and continues across the structural variant 
breakpoint. The resulting transcript is spliced leading to a novel open reading frame 
encoding a tumor-specific NOP. (B) Example of a hidden NOP identified in LUN004, 
involving the TIMM8B gene. (C) Example of RiboSeq fragments across a hidden NOP 
involving the BCAS4 gene in MCF7 cells. (D) Barplot indicating RiboSeq signal for three 
different open reading frame phases for hidden NOPs identified in MCF7, A375 and 786O 
cancer cell lines. The RiboSeq fragment counts were obtained from the novel sequence (3’ 
portion) of the mRNA transcript encoding the hidden NOP. (E) Results of protein mass 
spectrometry analysis of NOPs for A375 cells. Each horizontal bar represents a hidden NOP 
peptide sequence driven by the AHCY gene, with each amino acid indicated with a different 
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color. The blue bar underneath each NOP sequence depicts the peptide identified by mass 
spectrometry. 

 

Figure 4: Analysis of NOPs across cancer types. (A) Framome sizes, as measured in number 
of amino acids across 61 tumor samples included in this study. Different categories of NOPs 
are indicated. (B) and (C) Examples of the framomes of a lung tumor (LUN013) and 
glioblastoma (GBM005). Each horizontal bar represents the amino acid sequence of a single 
NOP expressed by the tumor. Different amino acids are depicted using different colors. The 
NOP sequences are sorted by length. (D) NOP expression plotted against NOP genomic 
variant allele frequency. Each dot represents one NOP. Dot size indicates NOP length in 
amino acids. Variant allele frequencies were adjusted for tumor purity. NOP expression is 
measured as transcripts per million (TPM). A small amount of jitter has been added to the 
points to avoid overplotting. (E) Overview of the origin of hidden NOPs and out-of-frame 
gene fusions categorized by SV type. Each item on the y-axis represents a (complex) 
structural variant event leading to the expression of one or more NOPs. The left barplot 
illustrates the number of unique NOPs arising from the given event colored by whether the 
NOP was a fusion gene or hidden NOP. The right barplot illustrates the number of genomic 
junctions involved in the structural variant event, with colors denoting junction class. 
Intergenic = SV breakpoint junctions for which there is no gene in the strand of the 
breakpoint on either side of the junction. Intragenic = SV breakpoint junctions where the 
breakpoints are located in the same gene. Gene-Intergenic = SV breakpoint junctions 
involving a 5’-end of a gene coupled to a genomic region where there is no gene in the 
strand of the breakpoint. Gene-Gene = SV breakpoint junctions involving a 5’-gene fused to 
a 3’-gene in the correct orientation to possibly form a fusion transcript. 

 

Figure 5: Immunopeptidomics and in vitro immunogenicity of NOP-derived antigens in 
A375 cells. (A) Illustration of the A375 framome, the hidden NOP derived epitopes 
identified as presented via immunopeptidomics, and the number of framome peptides 
arising from various source genes selected for in-vitro immunogenicity testing in the 
context of the HLA on which they were predicted to bind. B) Dot plots showing percentage 
of FRM0469-specific CD8 T cells at the baseline, after stimulation with FRM0460 (negative 
control peptide), and with FRM0469 for the three tested donors. C) Lower panel: The total 
percentage of NOP-derived epitope-specific CD8+ T cells of six HLA-A02:01 donors (left) or 
four HLA-A01:01 donors (right). Donors D2 and D3 were tested twice in two independent 
experiments. The values were corrected for the background staining in MOG re-stimulated 
condition. Upper panel: A representative flow cytometry analysis of IFNɣ and TNFα 
production by antigen specific CD8+ T cells of donor D3 and D9 for priming and re-
stimulation with NOP-derived peptides (turquoise dots) or re-stimulation with negative 
control peptide MOG (orange dots). D) Summary of in vitro immunogenicity and dextramer 
staining responses across the 13 tested donors. 
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Figure 6: HLA binding and in vivo immunogenicity of NOPs. A) NOP-derived epitopes from 
three patients with NSCLC bound to patient specific HLA-A or B alleles as determined by in 
vitro binding assays. Positive control for each allele with high affinity was used to set 100% 
binding affinity and binding affinity of each peptide was calculated as relative to the 
positive control. Epitopes with at least 40% binding affinity are depicted. B) Analysis of 
PBMCs of patient LUN029 using combinatorial coding and immune phenotyping. The cells 
double positive for NOP-derived epitope-HLA tetramer complex are considered specific for 
the epitope. Phenotyping of epitope-tetramer complex double positive cells (black dots) 
was performed by staining with anti-CD45RA, anti-CD27, and anti-PD-1 to determine 
antigen experience status of the cells. C) Genomic origin of hidden NOPs identified in 
patient LUN029 for which CD8+ T cells were identified in patient PBMCs. 
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