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Abstract—Cloud and edge Data-center (DC) are designed to
allocate computing resources dynamically to users based on
the agreed Service Level Agreement (SLA). However, the ever-
increasing demand for beyond 5G services necessitates an efficient
workload management. A key challenge in this regard is auto-
scaling, a dynamic process that adjusts computing resources to
meet fluctuating system demands, optimizing resource utilization
and cost efficiency. Traditional auto-scaling algorithms, which
rely on fixed thresholds or control-theory, may face limitations
in modern DC which are characterized by diverse, dynamic, and
multi-user workloads. In this paper, we propose a Reinforcement
Learning (RL)-based controller that extends the capacity of the
state-of-the-art RL-based auto-scalers to the multi-user workload
scenario. We compare the proposed RL agent against the well-
known Proportional–Integral (PI) controller and a Threshold
(THD)-based controller in a multi-user workload scenario in
terms of created Cloud-native Network Functions (CNFs) and
peak latency performed in a discrete event simulator.

Index Terms—Auto-scaling, Workload Management, Rein-
forcement Learning, Cloud-Native Network Function.

I. INTRODUCTION

In the rapidly evolving landscape of cloud and edge Data-

center (DC), the demand for beyond 5G services has created

new challenges for managing workloads efficiently [1]. One

such challenge is the need for auto-scaling, a process that dy-

namically adjusts the available resources to meet the changing

demands of the system. Auto-scaling is pivotal in ensuring

optimal resource utilization and cost-efficiency in cloud and

edge DC [2]. An example of technological transformations that

have triggered the need for novel 5G workloads auto-scaling

mechanisms is Mobile Network Operator (MNO) migrating

to a Telco Cloud environment. This has been possible as the

latest 5G Standalone (5G-SA) network framework includes

Cloud-native Network Functions (CNFs), which empowers

5G network functions to operate within a cloud environment.

These adaptations grant MNOs the ability to establish a

”web-scale” Telco Cloud capable of scaling up and down

in response to varying user demands for tailored services.

Therefore, the dynamic demands of a ”web-scale” Telco Cloud
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imposes the need for innovative auto-scaling algorithms to

manage resource allocation and ensure optimal performance

effectively.

In traditional single-user workload management, a cloud

provider allocates resources independently to each user [3].

However, this model is not well-suitable for some of the novel

beyond 5G workloads, where the cloud provider needs to

dynamically allocate and distribute resources among multiple

users and their respective workloads, ensuring fair and efficient

utilization while adapting to fluctuations in demand. Examples

of these workloads are those generated in a Neutral Host

Service Provider (NHSP) [4]. A NHSP offers an infrastructure

that can be shared among multiple MNOs. As resources

are virtualized for each MNO using the Neutral Host (NH)

infrastructure, it is critical to ensure that the resource allocation

for the different CNFs of each MNO fulfills the MNOs Service

Level Agreement (SLA). Therefore, designing a multi-user

auto-scaling mechanism that can cope with the dynamics of

such environments is fundamental.

Up to date, auto-scaling algorithms in DC have relied on

fixed thresholds or control-theory to adjust resource alloca-

tion [5]. These algorithms monitor system metrics such as

Central Processing Unit (CPU), storage, memory utilization,

or number of replicas and trigger scaling actions when pre-

defined thresholds are crossed. While these approaches have

been effective in simple scenarios, they face limitations in

modern DC characterized by a) heterogeneous, b) dynamic,

and c) multi-user workloads. For example, fixed thresholds

may fail to capture the complexities of user demands, leading

to over provisioning or under provisioning of resources. This

is where Machine Learning (ML), particularly Reinforcement

Learning (RL), has emerged as a powerful solution to address

the first two aspects [3], [6]. By leveraging historical data,

user behavior patterns, and system performance metrics, RL

algorithms can learn and adapt to changing user demands and

optimize resource allocation through direct interaction with the

environment.

Most current auto-scalers for multi-user workloads still rely

on traditional approaches, which may not capture the complex

nature of multi-user workloads, or ML trained in a supervised

approach, which requires full training if workloads change

drastically [1], [7], [8]. Therefore, there is a clear need to



design novel algorithms that achieve similar performance as

the ones developed for single-user workload scenarios but are

tailored specifically to handle the multi-user complexities.

In this paper, we present a solution to the auto-scaling

problem by designing a RL-based controller that extends the

capacity of the state-of-the-art RL-based auto-scalers to the

multi-user workload scenario. The proposed controller can

learn diverse user demands and optimize resource allocation

simultaneously. This approach goes beyond state-of-the-art

since a) it removes the need of having multiple single-user

controllers for each type of workload, which have to be also

tailored to each type of workload or adapted to work sub-

optimal on all of them, and b) it achieves a good performance

in terms of peak latency while bounding the number of used

resources in multi-user workload scenarios.

II. SYSTEM MODEL

Auto-scaling is a technique used in cloud and edge comput-

ing to dynamically adjust computational resources in response

to workload changes. It aims to optimize resource allocation

by either increasing or decreasing computing resources like

CPU and memory (vertical scaling) or by adjusting the number

of servers/micro-services (horizontal scaling) for functions,

services, or applications. Auto-scaling controllers typically

target various objectives, such as reducing application delays,

improving resilience, or load balancing. However, this paper

focuses on two primary objectives: meeting Key Performance

Indicators (KPIs) specified in SLA agreements and avoiding

over-provisioning to optimize resource utilization and min-

imize costs, especially in edge DCs, where resources are

limited and cost considerations are crucial [9].

In the last years, RL-based algorithms have been proposed

to solve the auto-scaling problem with outperforming results

compared to traditional methods such as expert and ruled-

base methods and control theoretic approaches in single

user’s workload setups [3], [6], [10], [11]. These results have

demonstrated that RL-based auto-scalers can learn the alloca-

tion of computing resources directly from complex workload

patterns without needing expert knowledge or complex and

time-consuming engineering design procedures. However, the

traditional approach of using single-user scalers in parallel to

dynamically allocate and distribute resources in a multi-user

setup can not ensure a fair and efficient utilization of resources

while adapting to fluctuations in demand as their decisions are

based on only local information, missing the side-effects of

other scalers making decisions over a shared infrastructure.

In order to design RL-based auto-scalers that can manage

the resource allocation of multi-user workload simultaneously,

we first need to extend the single-user’s workload Markov

Decision Process (MDP) framework to cover the multi-user

workload setup. An MDP is defined by a discrete-time stochas-

tic framework for modeling decision-making problems that can

be solved by algorithms such as RL. This process is defined

by a tuple (S,A, p, r) where S is a set of states, A is a set of

actions, p is the transition probability between states s and s′

after action a is taken, and r is the immediate reward obtained

after acting with a in state s. The policy, defined as π, is a

mapping function from states to actions. The solution to an

MDP is an optimal policy that maximizes the expected long-

term reward (discounted sum of immediate rewards). To solve

the MDP, several tools can be employed, RL being one of

those. The optimal policy is found in RL after many agent

interactions with the environment.

For the auto-scaling problem, the state can be defined using

the information retrieved from the computing infrastructure.

More precisely, at any time step t, and set U of users, a system

state s(t) can be defined as:

1) Mean CPU usage ctu among the active CNFs associated

to a given user u ∈ U .

2) Peak (maximum) latency dtu from the active CNFs

associated to a given user u.

3) The number of active CNFs nt
u associated to a given

user u ∈ U .

Based on this information, the RL agent decides if the

number of CNF instances of each user must be increased,

decreased, or kept the same. In other words, the agent needs

to take a discrete action atu per user u, given the state s(t)
and CNF traffic atu. This specific action definition is a multi-

discrete action space, which refers to a RL scenario where

an agent has to select multiple actions simultaneously from

separate action dimensions.

Finally, and without loss of generalization, in this article,

we assume that the SLA associated with the user workload is

the same for all users; this allows us to serve all users with

identical type of CNF, the number of CNF will be determined

by each user workload patterns.

The reward function is defined similarly as in [3] but

extended to the multi-user workload setup. Our agent takes

multi-discrete actions to maintain a given continuous variable

(e.g., latency) at a certain level while controlling the number of

CNF instantiated per user. Consequently, the agent is rewarded

if the actions lead towards that goal. More specifically, the

reward function at time step t is defined as

r(t) =
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1/3 |d
(t)
u − dtgt| < ϵ · dtgt∨

|cpu
(t)
u − cputgt| < ϵ · cputgt, ∀u ∈ U

0 |d
(t)
u − dtgt| ≥ ϵ · dtgt∨

|cpu
(t)
u − cputgt| ≥ ϵ · cputgt

−100 in episode termination cases

(1)

where d
(t)
u is the peak latency from the active CNFs at time

step t for user u (taken from the system state), dtgt is the target

latency as defined by the SLA and ϵ is a range of tolerance

allowed by the SLA (e.g., 20% above or below the target

value). Notice that the reward function considers all the users

equally important; therefore, if the computing resource is well

optimized, the reward sum equals one. Also, similar to [3],

the reward considers both the peak latency and CPU usage to

trade them off; otherwise, the agent will take the most obvious

action: to keep increasing the number of CNF instances,

disregarding the economic impact of such a decision, or



maintain the CPU in a range reducing it to a threshold-based

algorithm. Finally, the agent is highly penalized if it incurs a

termination situation, e.g., very high latency or the number

of CNF instances surpasses the maximum capacity of the

infrastructure (see Section III).

Traditionally, RL algorithms fall into two categories based

on how they determine the optimal policy [12]. Action-value

methods learn action values to make action selections, while

policy gradient approaches directly acquire a parameterized

policy for action decisions, bypassing action-value estimates.

While action-value RL algorithms offer the advantage of learn-

ing both the optimal policy and value function simultaneously,

they face challenges in environments with large or continuous

action spaces, requiring explicit estimation of action values

for all state-action pairs. In contrast, policy gradient methods

stand out in handling extensive and continuous action spaces

by directly optimizing the policy function but may encounter

high gradient estimate variance, affecting learning stability.

As described in the MDP model, given the multi-discrete

action space of the problem and continuous state space,

policy gradients are better suited. In this paper, we have

selected the policy-gradient Proximal Policy Optimization

(PPO) algorithm, which combines some of the performance

improvements that have been introduced by Advantage Actor

Critic (A2C), such as having multiple workers, with a trust

region to improve the learning of the actor component from

Trust Region Policy Optimization (TRPO) [13]. In general,

the main idea of PPO is that after an update, the new policy

should not be too far from the old policy. For that, PPO

uses clipping to avoid too large updates. PPO agents have

demonstrated a good balance between sample complexity, ease

of implementation, computational cost, and performance [13].

III. EXPERIMENTAL SETUP AND EVALUATIONS

A. Experimental scenario

Our base computing resource scenario comprises two

servers, three users, and three dedicated load balancers (one

for each user), as depicted in Figure 1. Each CNF instance

requests resources from the servers based on the workload to

be processed while ensuring that the specified thread limit is

not exceeded. As explained in Section II, a user workload in

our system model can represent a set of computing jobs or

aggregated traffic to be processed by a computing unit, where

each workload has a specific pattern. We use DynamicSim,

a simulator that enables the creation of edge-cloud network

scenarios and provides several metrics such as CPU usage

and peak latency. Notice that DynamicSim tracks the latency

of the jobs and reports the maximum of those latencies

per tick as peak latency. More details about the simulation

platform can be found in [3]. The parameters used to constrain

the servers operation and the CNF are described next. Each

server can execute up to 20 CNF instances with up to 16GB

of RAM. On the other hand, a CNF instance can process

a maximum of 300 jobs per tick (i.e., every discrete time

step in the simulator). In addition, the expected performance,

i.e., SLA, is predetermined between well-defined boundaries.

Fig. 1. Scenario used for the evaluation which is composed of three users’
workloads and two servers.

First, a CPU consumption of 75% provides a target value

to avoid the non-linear energy consumption above this level

[14] and a latency threshold of 20ms to process the jobs,

which is a value expected in processing cloud-based interactive

streaming content [15], with an accepted deviation margin for

both measures set at 20%. Notice also that instantiating new

CNF instances is facilitated through load balancers, which use

the least-load distribution strategy to allocate CNF instances

across servers.

In terms of the workload generation, the traces used to

generate the workloads are based on the facebooklive18

dataset [16], which periodically fetched Facebook live video

broadcasts and viewers metadata, such as geo-location and

video resolution, using the APIs provided by Facebook (which

were disabled in 2019). Specifically, data was captured in con-

secutive intervals of 300sec, and the dataset is available during

several days in May, June, and July of 2018 for all geographic

regions (Europe, Asia, North America, South America, Asia,

Africa, and Oceania). To use such metadata for our purpose,

we assume that the work (i.e., number of jobs) the Facebook

live servers do is proportional to the number of live streams in

nearby geographic locations and their video resolution. This

assumption makes sense for live streams as they rely on low

or even zero-latency video encoding using simple devices.

In contrast, further video compression/post-processing can be

done at the edge server with more computing resources.

Moreover, we extracted seven consecutive days from three

geographic regions (Europe, North America, and South Amer-

ica) and applied cubic spline interpolation (with some added

Gaussian noise) to increase the granularity to 1sec. For the dif-

ferent implemented algorithms, the first five days of the trace

can be used as training data to find/learn the controller param-

eters, and the last two days are used for testing/validation. This

strategy is very well known in the ML community to evaluate

the performance of the algorithms under unseen input data

(generalization).

B. Implemented algorithms

In order to evaluate the performance of the RL agent

designed in the previous section, we implement a PPO-based

controller to realize it together with two more controllers as

baselines: one based on rules and one based on control theory.

The details of their implementation are below:



Fig. 2. Performance of the three proposed agents in terms of the number of
created CNFs and peak latency, together with the actual users’ workloads.

Threshold based controller: Threshold (THD)-based re-

source allocation in a multi-client scenario involves using

reactive scalers, one per user. They employ THD-based rules,

which rely on the observed performance metric (e.g., service

latency) to execute the pre-set scaling actions (e.g., increase,

decrease, nothing). For our implementation, we use CPU

usage and peak latency as metrics to monitor and define

the thresholds, similar to the RL agent reward function and

fully aligned to the objectives to optimize. More precisely, the

latency thresholds are set at 24ms (upper) and 16ms (lower),

and CPU thresholds are set at 90% (upper) and 60% (lower).

An action is triggered if a monitored metric goes above or

below any of the two thresholds. After taking action, the

system continues to monitor the system metrics. If the action

was adequate, the metrics should return to acceptable levels.

If not, further action may be needed.

Proportional–Integral (PI)-based controller: A PI con-

troller is commonly used for auto-scaling in various systems,

including cloud computing, industrial processes, and network

management. In our implementation, the PI controller uses the

current dtu and previous dt−1
u peak latency to decide how to

set the number of CNF instances. In particular, it keeps track

of a variable ϕt
u at time step t:

if dtu > θU : ϕt+1
u = ϕt

u + α
(

dtu − θU
)

+ β
(

dtu − dt−1
u

)

if dtu < θL : ϕt+1
u = ϕt

u + α
(

dtu − θL
)

+ β
(

dtu − dt−1
u

)

(2)

with θU , θL, α and β tunable parameters. Notice that if dtu
lies between the two thresholds, i.e., θL and θU , referred to as

the dead zone, ϕt
u is not updated. If, at the beginning of time

step t+ 1,

• if ϕt+1
u exceeds the the number of CNF instances by more

than 1, that number of CNF instances is increased by 1,

• if ϕt+1
u subceeds the number of CNF instances by more

than 1, that number of CNF is decreased by 1,

• otherwise the number of CNF instances is kept the same.

The integral and proportional elements are represented by

the second and third components in equation (2), correspond-

TABLE I
COMPARISON OF THE CNFS AND PEAK LATENCY PERFORMANCE

Metric Method Users Mean Std min Max

#CNF

PPO
User 1 4.76 0.93 2 7
User 2 3.82 0.86 2 5
User 3 7.59 1.24 4 10

THD
User 1 2.59 1.94 1 7
User 2 2.28 1.46 1 6
User 3 4.40 2.82 1 12

PID
User 1 2.82 1.37 2 6
User 2 2.55 0.96 2 5
User 3 4.28 2.35 2 11

Peak
Latency

PPO
User 1 0.0064 0.0030 0.0033 0.1377
User 2 0.0076 0.0153 0.0038 0.4819
User 3 0.0154 0.0865 0.0041 1.0957

THD
User 1 0.0082 0.0023 0.0033 0.0267
User 2 0.0083 0.0018 0.0043 0.0243
User 3 0.0086 0.0011 0.0056 0.0195

PID
User 1 0.0076 0.0018 0.0033 0.0228
User 2 0.0077 0.0017 0.0033 0.0223
User 3 0.0085 0.0015 0.0033 0.0234

ingly. The integral element aims to maintain the maximum

delay close to the upper threshold if it exceeds that threshold

and close to the lower threshold if it succeeds that threshold.

In contrast, the proportional component is designed to actively

respond to changing trends in latency progression. If the

latency lies in the dead zone between the two thresholds, the

PI-based controller does not react. Note that the PI controller

only requires the maximum latency (both current and past

values) for its input and does not require information about

CPU utilization. The optimal values for its parameters, θU , θL,

α, and β, are usually established through several trial runs on

training data. In the experiments in Section III-C, we found

θU = 0.012 (sec), θL = 0.007 (sec), α = 10 (1/sec) and

β = 300 (1/sec) by running an extensive set of tests with

different parameters on the training set (of two days).

PPO-based controller: In this paper, we use the PPO

implementation provided by Stable Baselines1 with its default

parameters since a) this is a popular and widely-used library

that provides a collection of robust and reliable RL algorithms

to provide benchmarks for reproducibility, and b) it offers the

implementation of state-of-the-art algorithms, such as PPO,

which have been extensively tested and optimized. We trained

the RL-based controller using 1, 2, 3, and 4 days of workload

traces. After testing each one of them, we observed that the

agent trained for one day yielded superior results, and we

selected it for the performance evaluation.

C. Performance evaluation results

Figure 2 shows the distribution of different user workloads

and, together with Table I, how each controller can manage

them in terms of the number of created CNFs and peak

latency. We can see that THD restricts the creation of CNF

more effectively in relation to the workloads compared to

the other two algorithms, providing the best performance in

terms of created CNFs. This feature makes THD a suitable

candidate for scenarios where cost savings, energy efficiency,

1https://stable-baselines3.readthedocs.io/en/master/



and more efficient resource utilization are the most critical

priority. Moreover, it is also suitable when there are computing

constraints to run the controller algorithm.

Results also reveal that the PPO is the controller with

the lowest performance in the number of created CNFs, on

average, although their maximum values are better than the

other two. However, the proposed PPO algorithm outperforms

the other two algorithms when considering latency, which

could be particularly beneficial in real-time applications where

low latency is crucial, such as high-frequency trading, video

streaming, or online gaming. Of course, having a lower

latency directly results from having a more significant number

of CNFs than required (over-provisioning), but the over-

provisioning is still bounded. The performance of the PPO

controller also demonstrates that extending the RL agent to a

multi-user workload setup is more challenging than its single-

user counterpart. Some hypotheses of this performance can

be related to the multi-discrete action spaces of our MDP,

which impacts exploration and credit assignment problems.

More precisely:

Exploration: Multi-discrete action spaces tend to have a

more significant number of possible action combinations com-

pared to simple action spaces, resulting in the agent exploring

a more extensive set of combinations, which can lead to slower

learning or convergence to suboptimal policies.

Sample efficiency: Learning in multi-discrete action spaces

often requires significantly more samples (i.e., interactions

with the environment) than single action spaces. This also

makes it challenging to gather enough diverse experiences to

effectively train the agent.

Credit assignment: Determining which actions led to the

obtained rewards, e.g., the assigning credit problem, is more

difficult in multi-discrete action spaces since it may not be

straightforward to identify which specific combinations were

responsible for the observed outcomes, making it harder for

the agent to learn from its experiences.

The PI algorithm, while not excelling in either latency or

CNF creation, offers a balanced performance that might be

preferable in certain situations. PI can be a viable choice when

neither latency nor CNF creation is the sole deciding factor,

but rather a combination of both. Moreover, PI controllers are

well known for their simplicity and robustness when deployed,

making them a good choice for systems where simplicity and

reliability are important, and the resources to run the algorithm

are constrained. However, their time-consuming design and

lack of adaptability when workloads change drastically may

limit their usability.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a RL-based controller that

extends the capability of state-of-the-art RL-based auto-scalers

to the multi-user workload scenario and compared its per-

formance with two well-known controllers, one THD-based

and one PI-based, which have been adapted to run in this

setup. Although our RL-based controller did not outperform

the other two in all evaluations, the THD-based controller

outperformed the others in terms of the lower number of

CNFs and the PI-based one trading off both CNFs and peak

latency, it did provide better latency control while bounding

better the maximum number of created CNFs. However, some

deficiencies need to be studied further. First, it is necessary

to investigate how to design a reward function for a MDPs

that strikes a better balance between optimization objectives.

Second, this paper did not consider complex scenarios, such as

distributed and federated domains. In these cases, it is required

to adapt our algorithm to enable multi-agent and federated

operation by combining federated learning techniques with

multi-agent RL, aiming for more robust and scalable resource

allocation in such scenarios.
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