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Abstract—Forecasting is the process of predicting future events
or values based on past data to support, for instance, strategic
business decisions. This historical data often takes the form of
multivariate time series. Recently, graph networks emerged as a
powerful forecasting framework by considering spatiotemporal
relations in the data. In this paper, we describe the adoption
of a forecasting model built in an encoder-decoder architecture.
The encoder projects the spatiotemporal relations into a lower
dimension subspace, whereas the decoder uses the generated
embeddings to produce the predicted value for a given period. We
test the model on three datasets with data from different areas.
Two datasets are public benchmarks with data from disease
spread and street traffic scenarios which are used to evaluate the
performance of our architecture. Additionally, we also evaluate
our model on a new private company-owned dataset with product
sales on a chain of restaurants. This dataset is more diverse,
especially in terms of variety across different restaurants. We
provide a deep dive on the challenges posed by it. We experiment
with various state-of-the-art models to compare the performances
on all datasets. The results show that our model obtains overall
good predictions, outperforming all SOTA models, in terms
of accuracy, by 5.2% and 9.8%, on the benchmark datasets.
On the real-world restaurant data, our model outperforms all
benchmarks and surpasses the second best by 140%.

Index Terms—Time series, Forecasting, Deep Learning, Graph
Networks.

I. INTRODUCTION

Forecasting models support strategic decisions in several

sectors, as they use historical multivariate time series to

predict future trends and, thus, effectively help in decision

making. Sales forecast shows several challenges, as many

factors can affect sales [1]. Some factors are part of the

retailer’s marketing plan (such as pricing and promotions).

There can be “secondary” effects like interaction or canni-

balization, delisted or promoted substitute or complementary

products. Sales can be affected also by external factors (such

as sporting events, seasons and holidays), and by unpredictable

factors and anomalous events (e.g., COVID, strikes or terrorist

attacks). There are also some extra factors that may need to

be revealed or even anticipated (e.g., competitive behavior,

local/national economy, weather, etc). Complex relationships

between variables, including static and dynamic variables, and

predictable and latent relationships, make it possible to extract

more information from time series.

Modeling these complex relationships and behavior is es-

sential, not only to characterize the latent dependence between

variables, but also to model temporal relationships. Traditional

methods, such as autoregressive integrated moving average

(ARIMA), and vector auto-regression (VAR) approaches, fo-

cus mainly on modeling relationships between a variable, past

observations of itself and past observations of other variables.

Deep learning models can handle non-linear relationships in

the data and, therefore, obtain remarkable prediction results.

However, it is difficult to provide these models with spatial

relationships between time series, even with methods based on

recurrent networks. Therefore, these methods are inefficient

in processing the space-time dependencies of time series.

Thus, a new representation of the input data can allow these

dependencies to be considered.

Graph networks allow characterizing the complex relation-

ships between several objects of interest, where each one is

considered as a graph node. These nodes have characteristics

that vary over time, for example, the sales in different stores.

The relationships between the nodes are represented by edges,

which can reflect a static or dynamic relationship, i.e., the

edges can remain the same for the whole time series or

change from time to time. This data representation can be

processed by a group of neural networks called graph neural

networks (GNN), which can be directly applied to graphs and

provide an easy way to do node-level, edge-level, and graph-

level prediction tasks.

In this paper, we focus on an end-to-end graph-based deep

learning model and apply this in a real-world restaurant

setting. The main contributions of our work are summarized

as follows:

• We develop a spatiotemporal encoder-decoder architec-

ture with an attention mechanism, where the encoder

projects the spatiotemporal relations into a lower di-

mension subspace, and the decoder uses the generated

embeddings to produce the predicted forecast value for a

given period;

• We execute extensive experiments on two benchmark

datasets on disease spread and street traffic. These very

different datasets were used to validate the model’s

performance in the forecasting task. The results show

that our model outperforms the benchmark state-of-the-

art (SOTA) models by 5.2% and 9.8%, respectively;

• We introduce a private dataset on restaurant sales for

which our forecasting model ranks second. We discuss

in detail the challenges and constraints with real-world

data and potential mitigations. Our model outperforms

the benchmark state-of-the-art (SOTA) models by 140%

when compared to the second best model.
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The paper has the following structure: An overview of

related work can be found in Section II. Section III contains

a descriptive analysis of the real-world restaurant dataset. In

Section IV, the proposed forecasting model architecture is

presented. We discuss the experimental results in Section V

and the challenges of forecasting on real data in Section VI.

This work concludes with Section VII.

II. RELATED WORK

Predicting future events using mathematical forecasting

models is a classic problem researched for decades. These

models use historical (i.e., timestamped) observations to pre-

dict future values over a period of time or at a specific

point in the future. As these future values are unavailable,

they can only be estimated. Early studies mainly employ

model-driven approaches such as ARIMA [2], VAR [3], and

Kalman filters [4], which are still widely adopted in real-world

applications. However, they fail to deal with complex nonlinear

variables as they assume that the time series is stationary,

which is only satisfied under limited conditions. On the

other hand, data-driven methods employ machine learning to

automatically discover patterns in historical data. Algorithms

like support vector regression [5, 6], k-nearest neighbors, and

tree-based regressions, e.g., XGBoost [7, 8, 9], among others,

can handle complex non-linear data. Due to the great advances

in deep learning, research with sequence-by-sequence meth-

ods, such as deep belief networks, stacked autoencoders and,

mainly, recurrent neural networks (RNN), proved practical to

harvest time dependencies in time series [10]. However, spatial

correlations are often neglected by RNNs. New methods based

on convolutional neural networks (CNN) were created and,

more recently, integrated into RNNs [11]. However, CNN

applications are limited to grid structures.

Several forecasting problems have a topology nature as

a graph. Graph convolutional networks (GCN) is a variant

of a CNN, which operates directly on graphs [12]. This

model became part of graph-based forecasting models, such

as in spatiotemporal graph convolutional networks [13]. Other

neural networks can be combined to improve forecasting

performance. For example, Guo et al. [14] created a GCN

with attention mechanisms. GCN can be combined with RNN,

as proposed in [15, 16, 17, 18, 19, 20, 21]. A3T-GCN [17]

improves T-GCN [19] by adding an attention layer to re-weight

the influence of historical states before the prediction layer.

This idea was incorporated in our proposal. GCN and RNN

blocks can be arranged in an encoder-decoder structure, as

proposed in GC-LSTM [22] and DyGrPr [23]. They project, in

the encoding phase, each time-step into a d-dimensional space

considering both the dynamic and the structure of the graph.

The learned representation is fed to a decoder for prediction.

MTGNN [24] and Graph Wavenet [25] are similar, where the

former builds inter-variate relationships using a graph-learning

module and the latter creates a soft graph where each pair

of nodes has a continuous probability of being connected.

Instead of a gated temporal convolution, our proposed model

uses a convolutional LSTM, which is a similar module as

AGCRN [18]. Our proposal follows a similar idea by learning

spatiotemporal features and then feeding the concatenated

features into a prediction layer (decoder) mediated by an

attention mechanism.

Even the input graph can be pre-processed before feeding

a GNN, e.g., creating a motif-based hypergraph based on the

original graph [26] or using graph Fourier transform operator

to work on spectral domain [27]. Also, uncertainty can be

incorporated into GNNs, as shown by Fu et at. [28]. Ordinary

differential equations (ODE) can be incorporated to graph

forecasting by creating a continuous analog to GNN to process

both spatial and temporal dependencies using tensor-based

ODE [29] or graph neural controlled differential equation [30].

Our proposed model does not use these methods, but they can

be incorporated since they are orthogonal to the architecture

adopted in this paper. For example, Deng et al. [31] proposes

a normalization module, which could be incorporated in a

future work, specially to deal with the low-frequency versus

high-frequency components of the time series. There are also

forecasting methods using heterogeneous graphs [32], which

is a graph with multiple node and/or edge types. This method

predicts values associated with nodes or edges, the structure of

the graph (adjacency), or a global value related to the graph.

As we focus on homogeneous graphs, we will not elaborate

on this.

In general, forecasting models proposed for sales often

require more information than is available, such as periodic

inventory and waste auditing, and external information (e.g.,

weather, events). Several forecasting strategies have been

proposed in the literature. Graph-based methods stand out for

their greater capacity for data representation.

III. REAL-WORLD RESTAURANT SALES DATA

One of the challenges in the fresh food sector is good

product demand forecasting, which helps achieve a balance

between waste and shortage. The RESTOS dataset is a private

dataset, which contains the aggregated daily sales by product

for some restaurants of a fresh food chain. The time series

represents the product sales between December 10, 2018 and

March 6, 2022.

Given the historical sales for a certain product in a certain

restaurant, we want to predict the sales quantities for this

product in this restaurant for the next k days. In addition to

the quantities sold, the dataset contains several features used

as covariates. A group of them relates to information external

to the restaurant, such as weather information (minimum and

maximum temperature and daily precipitation volume), the

daily number of COVID cases, and bank or school holidays.

There is also information about the product, e.g., if it was

on sale and on promotion on a particular day. The product

graph used for graph-based learning was created using co-

purchase similarity, i.e., how likely two products are sold

together. Product pairs are matched for all restaurants, and

the relative number of occurrences is used as the weight.

The variability in product sales time series lengths poses

challenges for demand forecasting, driven by diverse restaurant
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Fig. 1. Example of RESTOS time series. Each curve corresponds to the
smoothed sales of the same product at different restaurants.

types, locations, and operating hours. COVID-related closures

further complicated the data, which we tried to capture by

adding a feature indicating non-sales during restaurant closing

days. Figure 1 depicts these complexities, with a pandemic-

related sales hiatus, varied reopening times, and divergent

sales patterns across restaurants. The plot contains the sales

of the same product on several restaurants. In Section VI, we

delve into these real-world challenges in restaurant sales data

analysis.

IV. SPATIOTEMPORAL REGRESSIVE FORECASTING WITH

ATTENTION

This section states the problem we are facing in this paper,

and describes the architecture proposed to solve it.

Problem definition: In this paper, demand forecasting is

used to predict future demand according to historical sales

states on restaurants. Since demand is hard to measure, we

use sales as a proxy. Generally, demand can refer to previous

sales, weather, local events, etc.

a) Definition 1: Sales graph: The topological structure

of sales in a restaurant r is described as G(r) = (V (r), E(r)),

where V (r) = {v
(r)
1 , v

(r)
2 , . . . , v

(r)
N } is the set of products sold

in a restaurant r, and N is the number of products. E(r) is

the set of edges, which reflects that both products are sold on

the same ticket. The whole connectivity information is stored

in the adjacent matrix R
N×N , where rows and columns are

indexed by products, and the value of each entry indicates

the connectivity between corresponding products. The entry

value is 0 if there is no existing link between products

and 1 (unweighted graph) or non-negative (weighted graph)

if otherwise. In the latter case, the weight can reflect, for

example, the probability of both products being sold together.

b) Definition 2: Feature matrix X: The covariates in

sales forecasting can be composed (semi-)static features, e.g.,

the number of cash registers or tables in the restaurant, and

dynamic features, e.g., weather information (temperature, rain,

etc), local events, if it is a promotion or not, etc. These

values can be represented as feature matrix X ∈ R
T×N×F ,

where F is the number of node attribute features, and T is the

length of historical time series (input data), i.e., the number

of days/weeks/months used to evaluate the prediction function

(train the prediction model).

c) Definition 3: Model: Then, modeling the sales fore-

casting temporal and spatial dependencies can be viewed as

learning a mapping function f on the basis of the sales G(r)

and feature matrix X(r) for restaurant r. Sales Y
(r)
t+1, . . . , Y

(r)
t+T ′

of future T ′ timesteps are calculated by
[

Y
(r)
t+1, . . . , Y

(r)
t+T ′

]

=

f
(

G
(r)
t−T+1, . . . , G

(r)
t , X

(r)
t−T+1, . . . , X

(r)
t

)

.

Architecture: We introduce spatiotemporal regressive fore-

casting with attention (STeRFA), consisting of a set of layers

that process graph information to provide a prediction as

shown in Figure 2. The architecture can be seen as an encoder-

decoder, where the first two blocks shown in the figure are

the encoder, and the rest corresponds to the decoder. The

model takes two required inputs and one optional input. The

mandatory inputs are At ∈ R
T×N×N , which represents the

N ×N adjacency matrix of the graph T timesteps (i.e., from

time t−T +1 up to t) and Xt ∈ R
T×N×F , a matrix with the

time series values for the F variables used in the forecast. The

optional entry is named key (explained later in the section).

The first layer processes the spatial information, i.e., the

relationships between the nodes. This layer uses a graph neural

network operator from Morris et al. [33] named hierarchi-

cal local k-GNN that hierarchically combines representations

learned at different granularities. We always use 1-GNN with

two graphconv layers. Notice that adding the hierarchical com-

ponent reduces the indistinguishability problem highlighted by

Deng et al. [31]. Thus, we shall explore this aspect in future

work. The second layer processes temporal information.

The temporal layer uses convLSTM proposed by Seo et al.

[20], which replaces the Euclidean 2D convolution with the

graph convolution. A residual connection transmits to the

temporal layer the original information Xt in the graph. It

is combined with the output of the spatial layer X
′

t , which

can be understood as an information enrichment layer for

the temporal layer X̂
′

t . The output from the first (X
′

t) and

second layers (X
′′

t ) are combined to create an embedding X̂
′′

t

that contains spatiotemporal information that can be processed

by the decoder. Since the literature highlights that attention

mechanisms help prediction models to focus on the most

relevant information, attention was added to the proposed

model to control the input of the decoder layer. The attention

layer receives X
′′′

t as input, which is the same value as X̂
′

t

with the temporal T and feature F dimensions combined in a

dimension of size F
′′′

. Another input of the attention layer is

the key. There are two options: an explicit key kr provided as

input for each graph or, if kr is not given, the model assumes

its value as X̂
′′

t (the spatiotemporal embeddings generated

by the previous layers). This external key is important in

cases where we have graphs that represent different groups of

information. The result from the attention feeds a regression

layer, which produces the final forecast Yt ∈ R
N×T

′

, i.e., T
′

days of forecasts (length of the output data) for each of the N

nodes (object of interest). This regression layer uses a multi-

layer perceptron with two hidden layers of size 512 and ReLU
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Fig. 2. SpatioTEmporal Regressive Forecasting with Attention (STeRFA)

activation functions, with creates a non-linear combination of

the enriched features of different timesteps.

In a restaurant, sales often involve purchase of multiple

products simultaneously, influenced by factors like personal

preferences, offers, product seasonality, and events. The first

two layers of the model reduce problem complexity, enhance

forecasting features, and uncover relationships between sales

over time, such as seasonal trends. The encoder-decoder struc-

ture extracts meaning from spatiotemporal data and encodes

predictions, enabling end-to-end training using available inputs

and outputs.

V. EXPERIMENTS

This section starts with the description of the experimental

setup, followed by the results of predictive performance on

three datasets.

A. Experimental setup

We describe the computer resources used in the exper-

iments, the public datasets, training and testing creation,

the benchmark models, the hyperparameters, optimizer and

learning rate, and the evaluation metric used for evaluation.

1) Computer environment: Models were trained and evalu-

ated on a virtual machine with 64 GB of RAM, 2 Intel(R)

Xeon(R) Silver 4108 CPU @ 1.80GHz, and one GeForce

GTX 1080 Ti. The machine runs Ubuntu 20.04 LTS with

Python 3.10 and PyTorch 1.12.1.

2) Public datasets: We consider two public datasets for

evaluating performance:

1) Chickenpox dataset: It contains the weekly number

of chickenpox cases reported by general practitioners

composed of county-level time series with the disease

evolution in Hungary [34]. The time series are joined in

a graph with an edge between two counties if they share

a geographic border. Data covers the weeks between

January 2005 and January 2015. The graph has 20

nodes and 61 edges. The values in the time series are

standardized. Input time series of a 4-weeks length are

used to predict the next week.

2) METR-LA dataset: It contains Los Angeles County

highway traffic data obtained by 207 vehicle loop de-

tectors, collected between March 1, 2012 and June 30,

2012. The adjacency matrix of the network graph was

created as defined by Lu et al. [35]. We divided the

data into 5-minute windows, as small traffic flow time

intervals are easily affected by outliers, while if the

intervals are too large, the data provide little information

for prediction [35]. The input length of the time series is

60 minutes (12 data points), and the model is trained to

predict the next 60 minutes (the largest range in [35]).

We’re testing STeRFA against public datasets to see if

it matches SOTA models. Public datasets are simpler than

RESTOS, which covers multiple restaurants. Public sales

datasets, to the best of our knowledge, are relatively basic and

lack real sales data or the necessary information for creating

graphs.

3) Train and test dataset: All the datasets were divided

into two non-intersecting parts: train and test sets. The train

set is divided as 90% for training and the remaining 10% for

validation. The test set contains the most recent value and is

not used during training or hyperparameter tuning.

4) Benchmark models: As we saw in Section II, there

are several forecasting models using graphs. To limit the

number of benchmark models, we have selected models

listed in the papers that describe the two public datasets.

From Rozemberczki et al. [34], we selected three graph-based

forecasting models as a benchmark, named DyGrPr [36, 23],

DCRNN [21], and STGCN [13]: DyGrPr obtained the best

result among the three, DCRNN uses recurrent networks and

STGCN uses spectral convolution networks. The latter two

models are also evaluated on [35]. In addition, we added a

newer variation of STGCN, called ASTGCN [37].

5) Hyperparameters: We used Neural Network Intelli-

gence [38] for hyperparameter optimization, as it is an active

project with a large option of tuners. The tuner used is Tree-

structured Parzen Estimator, which is a lightweight sequential

model-based optimization algorithm, with no extra depen-

dency and it supports all search space types [39]. Table I shows

the hyperparameters that have been set. We list the parameter

name, whether the parameter applies to a specific model or

to the optimizer and the data type of the parameter. Finally,

the last column lists ranges (values separated by an hyphen)

or enumerations (between braces). If a hyperparameter is not

listed, it is set to the default value.
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TABLE I
HYPERPARAMETER SEARCH GRID USED FOR TUNING THE MODEL

Hyperparameter name Applies to Type Values

Number of hidden channels

STCONV

Integer 1 – 64

Kernel size Integer {1, 2, 4, 8, 16}
Order of Chebyshev filter Integer 1 – 8

Normalization scheme for the graph Laplacian String {no, sym, rw}*

Number of GCN blocks

ASTGCN

Integer {1, 2, 3}
Number of Chebyshev filter Integer 1 – 8

Order of Chebyshev filter Integer 1 – 8

Time strides during temporal convolution Integer {1, 2}
Normalization scheme for the graph Laplacian String {no, sym, rw}*

Number of units
DCRNN

Integer {1, 2}
Order of Chebyshev filter Integer 1 – 8

Number of convolutional layers

DyGrPr

Integer 2 – 8

Number of RNN layers Integer 2 – 4

Aggregation on convolutional layer String {add, avg, max}**

Spatial - Learn an additive bias

STeRFA

Bool {True, False}
Temporal - Number of RNN layers Integer 2 – 4

Attention - Number of attention heads Integer 1 – 8

Regression - Hidden layer size Integer [512]

Dropout Regularization Float 0.0 – 0.2

β1***
Optimizer

Float {0.9, 0.95, 0.99}
β2 Float {0.9, 0.95, 0.99}
Weight decay Float {0, 0.01}
Learning rate Float 0.01

NOTES:

* No normalization, symmetric or random-walk normalization

** Reduction after message passing on GCN: addition, average or maximum.

*** More information at https://pytorch.org/docs/stable/generated/torch.optim.AdamW.html

6) Optimizer and learning rate: Among the large number

of optimizers currently available, we chose AdamW [40],

which extends stochastic gradient descent and runs repeated

cycles of adaptive momentum estimation. Learning rate (LR)

controls how quickly or slowly a neural network model learns

a problem. In general, a large LR allows the model to learn

faster, at the cost of arriving on a sub-optimal final set of

weights. On the other hand, a smaller LR may allow the

model to learn more (globally) optimal weights but may take

significantly longer to train. We opt to use a decaying strategy

that reduces LR, i.e., after 33 epochs LR is divided by 10.

The initial learning rate is 0.01. Some optimizer parameters

are treated as hyperparameters as shown on Table I.

7) Evaluation metric: The root mean square error (RMSE)

is used to measure prediction error [41]. RMSE is the standard

deviation of the prediction errors (the difference between the

actual and the predicted values). It measures how spread out

the residuals are, i.e., how concentrated the data is around the

line of best fit. RMSE was selected as it has an advantage in

exacerbating large errors. Then, minimize RMSE is the goal.

B. Experimental results

This section compares the forecasting performance of our

model compared to the benchmark models on all three

datasets. In addition, we performed ablation of our model and

showed how it affects performance.

1) Performance on datasets: The results obtained with the

Chickenpox dataset using all considered models can be found

in Table II. STeRFA shows an improvement of the result

of 5.2%.

Table III shows the results obtained with the METR-LA

dataset. Again, STeRFA outperforms the benchmark models,

TABLE II
PERFORMANCE METRIC DURING TEST RESULTS USING THE CHICKENPOX

DATASET FOR THE BASELINE AND PROPOSED MODELS.

Model
Time per epoch

(in seconds)

RMSE

test
Improvement

STeRFA 15.7086 0.8963 —

DyGrPr 12.9048 0.9433 5.2%

STGCN 1.4220 0.9502 6.0%

ASTGCN 2.0000 1.0905 21.7%

DCRNN 142.4904 1.3603 51.8%

with a 9.8% improvement compared to the second ranked

model STGCN. However, we highlight that the latter was

trained for 50 epochs, while STeRFA was trained for 30

epochs. Thus, STeRFA is 10x slower in order of magnitude.

The number of weights to be trained in our model depends on

the input data size, and the number of products and features.

It is especially affected by the quadratic complexity of the

attention mechanisms, which makes the training of STeRFA

slower than that of the benchmarks.

TABLE III
PERFORMANCE METRIC DURING TEST RESULTS USING THE METR-LA

DATASET FOR THE BASELINE AND PROPOSED MODELS.

Model
Time per epoch

(in seconds)

RMSE

test
Improvement

STeRFA 19320.0999 0.5256 —

STGCN 874.3749 0.5770 9.8%

ASTGCN 73.7699 0.5958 13.4%

DCRNN 7378.9430 0.7077 34.7%

DyGrPr 844.5275 0.7840 49.2%

The graph on the public datasets refer to one county or
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an area. RESTOS contains several restaurants that sell the

same range of products. Thus, they share the same spatial

topology (equal adjacency matrix). Our model was trained

using three combinations of keys: (a) the self-attention option

(X
′′′

t ), (b) the restaurant identifier (kr) and (c) both values

concatenated. In (a), a restaurant identifier was added to all

nodes on the input graph. Table IV shows the results obtained

with the RESTOS dataset using the best graph-based models,

all trained for 20 epochs. The result shown in the table refers

to a model using kr as key. Using the restaurant identifier

drastically improves the forecasting error, which is almost 2.5

times lower than for DyGrPr. A drawback of STeRFA is the

training time, which is much higher than the DyGrPr. We

discuss this performance difference in section VI-0b.

TABLE IV
PERFORMANCE METRIC DURING TEST RESULTS USING THE RESTOS

DATASET FOR THE BASELINE AND PROPOSED MODELS.

Model
Time per epoch

(in seconds)

RMSE

test
Improvement

STeRFA w/resto key (b) 2069.7797 6.5449 —

STeRFA w/mixed key (c) 1934.9073 11.6237 77.6%

DyGrPr 162.5629 15.8365 142.0%

STeRFA – self key (a) 1934.9073 23.8927 265.1%

DCRNN 8.3123 25.4177 288.4%

ASTGCN 55.8376 25.4504 288.9%

A3TGCN 67.0844 25.6768 292.3%

2) Model ablation: We performed an ablation study to

investigate how the performance of the model is affected by

removing certain components to understand the contribution

of that component to the overall performance. This study

was performed on the Chickenpox dataset only, since it

was simpler and, thus, easier to retrain. We tested three

configurations of Figure 2: “no ablation”, i.e., the complete

model, “no temporal”, where the Temporal layer is replaced

by the identity function and “no spatial”, where the Spatial

layer is replaced by the identity function. The RMSE are,

respectively, 0.8963, 0.9850, and 0.9939. Thus, the removal

of layers negatively influences the performance of the model.

Since this model works with a time series, it might seem that

removing the Temporal layer should affect performance more

significantly than removing the Spatial layer. However, it is

important to remember that the encoder uses a combination of

features at different timestamps, i.e., it allows the creation of

an autoregressive model even with the removal of the temporal

layer. Thus, we can assume that the function of these two

layers is to encode a set of features in a lower dimension that

better represents the behavior of the time series, allowing the

encoder part of the model to produce a result with a lower

RMSE, and, that the spatial encoding cannot be compensated

by the encoder as well as it can do for the temporal component.

VI. DISCUSSION ON REAL-WORLD DATA

We assess if GNNs perform well on our private dataset,

which hasn’t been used with graph models before. This unique

representation offers improved insights into data variability

and relationships not captured by traditional methods. We

conduct two assessments: (1) Suitability of the proposed

product graph, and (2) Consistency of the model’s forecasts

across all restaurants.

a) Graph structure: To evaluate how changes to the

graph structure affect performance, we propose to change its

structure by varying the number of edges and edge weights.

We considered three edge configurations: “Fully connected”,

where each product is connected to all other products, “Ran-

dom edges”, where 10% of possible edges are randomly

replaced and “Same edges”, which considers the product co-

occurrences as described in Section III. For each configuration

of edges in the resulting graph, the weights can be altered so

that they all have the value 1 or that the value assigned to each

edge is randomly chosen between 0 and 1 (inclusive). Recall

that the edge weights are used in the graph Laplacian used

by the spectral graph convolutional operator. The idea behind

this procedure is to confirm (or not) the quality of edges and

the assigned weights. If the quality of the proposed graph is

good, we expect the errors obtained with the models trained

with the variations to be greater than these of the base model.

Using DyGrPr (from Table IV), we trained it with 114

different product graphs generated from the combinations.

The best result uses a graph with randomly changed 10%

of the edges that received a weight equal to 1 (the other

edges remain unchanged) and provides an RMSE equal to

14.7080, i.e., an improvement of 7.7%. Three reasons explain

this behavior: (1) the behavior of sales in different restau-

rants is quite different, thus removing an edge can prevent

noise from propagating in the exchange of messages between

nodes that occurs during training; (2) some products are not

sold in certain restaurants or during certain periods due to

commercial decisions for this restaurant, thus removing the

edges for other products with active sales and at the same

time maintaining this edge for products that are also not

sold, facilitates the forecasting process; and (3) the graph is

static, i.e., the edges and weights remain the same for all

timesteps, and this does not reflect sales decisions for each

restaurant (e.g., promotions). These reasons can be minimized

by using a distinct graph for each restaurant and/or a dynamic

graph (varies with time). Another approach is suggested

by Yun et al. [42]. A graph transformer can to learn the

(static or dynamic) graph from the data. This idea is suitable

to our problem since missing/spurious connections in noisy

graph results in ineffective (graph) convolution with wrong

neighbors, hindering the performance. Our current graph is

homogeneous but the available data can be easily converted

to heterogeneous form since, e.g., a new set of edges can be

created based on similar category, which is now a feature of the

node (product). However, we decided on a simpler approach

since it is the first time this data is used in such a fashion. Also,

the expert opinion of the business partner is that the relation

between the products does not change much, which can be

perceived by pairing the top-seller products throughout the

year. Besides that, a more complex graph network increases

the time for the training and forecasting phases. Thus, we will

pursue this line of research in future work.
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TABLE V
PERFORMANCE DURING TEST RESULTS USING SELECTED RESTAURANTS.

Model
All restos Resto-A Resto-B

(baseline) RMSE Improv RMSE Improv

STeRFA – self-key 23.8927 11.9722 99.6% 0.2732 8645%

DyGrPr 15.8365 8.0100 97.7% 1.7329 814%

b) Restaurant-specific forecasting: The RESTOS results

in Table IV are provided by feeding the GNN with data from

all restaurants. Thus, generating one model that can forecast

sales for all restaurants is the best strategy from a business

point of view. Products are identified since one product corre-

sponds to a specific graph node. However, the restaurants are

identified by features concatenated to each node embedding.

We hypothesized that this set of features may not identify each

restaurant well enough, having the opposite effect of injecting

noise, affecting the performance. This statement is reinforced

by the differences that we observed when we used STeRFA

with a key that uniquely identifies the restaurant (best result)

and the other options where the key fed to the attention layer

is a mix of the key with the result or when no key is presented.

To check that, we trained STeRFA with self-key input on the

attention layer and DyGrPr with data that comes from only

one restaurant. We trained the models on two restaurants with

different sales patterns. Resto-A is standalone while Resto-B

is in-store: besides having different customer profiles (Resto-A

is open to the general public), both restaurants were affected

differently by COVID restrictions. Table V shows the results.

The rows contain model, identified in the first column. The

second column shows the RMSE of the model trained with

all restaurants (baseline). The following columns show the

RMSE and percent improvement relative to the baseline when

trained only with Resto-A or Resto-B. Both models showed

improvement when trained with only one restaurant (on par

with or better than the best model in Table IV), meaning these

models cannot discriminate well between restaurants when

training with the whole dataset, worsening the general result.

We argue, therefore, that distinguishing between restaurants is

an important aspect to improve the model’s performance as ob-

tained by our model with the key. In addition, from a business

perspective, there is a trade-off between the cost of maintaining

multiple forecasting models and accuracy. We see that STeRFA

with the restaurant id is a good option, as it allows training a

single model with good performance. Here, we also observed

different results for the two restaurants, which reinforces our

observation that the sales of some restaurants are more easily

forecasted, implying the need for a better method to identify

the restaurants. Improving the identification of restaurants as

well as the model’s ability to identify different cycles and

trends depending on location are matters for future research.

c) Challenges of real-world data: Figure 3 helps to

explain the results obtained for all datasets and models, par-

ticularly with STeRFA. The graphs show the individual object

of interest (county, sensor, or product) on the X-axis. The

Y-axis displays the mean absolute percentage error (MAPE).

Fig. 3. Distribution of MAPE results with STeRFA on all datasets.

This metric is mostly used for checking forecast accuracy. An

optimal forecast will provide zero error. Two curves are shown

for each graph: the average (in red) and the median (in blue)

MAPE. Figure 3 (c) shows the results for only one restaurant.

Comparing the three graphs, we observe that the dashed curve

is more horizontal and closer to zero in (a) and (b) than in

RESTOS (c). This reflects the quality of the forecasts as the

RMSE values showed in the previous section, i.e., the model

provides better predictions on the two public datasets.

When comparing the patterns of the curves, we see that

the first two are similar: for most counties and sensors, the

median MAPE is very close to zero. This shows that the

model manages to provide good predictions in a large number

of cases, with forecasts for some being affected by outliers.

However, in Figure 3 (c) the pattern is different. For most

products, the median MAPE is rather high. The average

MAPE indicates that the results are not necessarily affected

by outliers, but rather show that the model has much more

difficulty in learning the product behavior through time.

To illustrate this, we present, in Figure 4, the MAPE

distribution considering each of the products sold in one of

the restaurants in the RESTOS dataset with a 1-day forecast

period using STeRFA. Each curve corresponds to a product

and shows the errors obtained in each of the 1286 sequences

of 180 days generated in the dataset. The graph qualitatively

presents the model’s difficulty in predicting each of the prod-

ucts. The closer the curve is to zero, the better. As discussed in

Section III, the time series length for each product-restaurant

pair varies, which implies the imputation of a large volume of

data with zeros, thus the same product in each restaurant has

a different evolution pattern. Furthermore, the behavior also

depends on the customers served by a restaurant, thus, even

in periods when two restaurants sell the same product, they

show quite different trends and cycles.

d) Cross-correlation: Finally, cross-correlation is a way

of measuring the similarity between a time series and a lagged

version of another time series [43, 44]. In other words, it can

tell us whether a time series is a leading indicator for another

time series. An analysis of the distributions of the graph nodes’

time-series pairs can provide a broader view of the reason for
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Fig. 4. Distribution of MAPE results with STeRFA for RESTOS dataset for
all products on one restaurant.

Fig. 5. Distribution of main cross correlation lag on the Chickenpox, METR-

LA and RESTOS datasets

the performance of the prediction models in each of the studied

datasets.

Figure 5 displays kernel density estimation of cross-

correlations between node time series lags on a log scale for

a single restaurant. A left peak indicates strong explanatory

relationships between time series. As the peak shifts rightward,

model complexity increases due to the need to correlate distant

data blocks. Larger lag values also add complexity, requiring

the GCN to remember older values with fewer training data

points. For a single restaurant, within 35 days, all time

series pairs correlate, suggesting patterns related to opening

hours, promotions, or consumer behavior. This underscores

the model’s need to handle shorter sequences compared to the

public datasets, emphasizing spatial correlation over temporal.

e) Operational aspects: Training time is a crucial factor

in model selection, but it should not be assessed in isola-

tion. Our best model has a longer training time compared

to the second-best model. However, improving the latter’s

performance needs training multiple instances across different

restaurants, resulting in increased OPEX, including technical

staff, training time, and computational resources. Model train-

ing is a batch and offline process, with the frequency of up-

dates being a business decision that balances cost and forecast

quality. None of the tested models was designed for online

updating, and the evaluation of performance degradation and

update methods is a future research work. Other business con-

siderations include forecast generation time, typically during

night hours, and the required computational resources. Our

prototype, deployed in a partner’s environment (VM using

Intel(R) Xeon(R) E5-2673 1 core @ 2.30GHz server with 4GB

RAM and no GPU), provides daily forecasts for 3 restaurants

with an average per-restaurant forecast time of 112.075 ms.

The total execution time per restaurant, including program

loading, database queries, forecasting, and central system

updates, is 10.27 s on average, with queries accounting for

most of the time (9.57 s). This configuration allows forecasting

for over 100 restaurants per hour.

VII. CONCLUSION AND FUTURE WORK

This study explores GCN and RNN models for time series

forecasting, introducing STeRFA, which leverages attention

for spatiotemporal embeddings to capture relevant data au-

tomatically. We calibrated and validated our model using

publicly available well-studied datasets. Extensive experiments

on diverse data confirm our approach’s effectiveness, outper-

forming baseline models on both public and private datasets.

We also delve into the challenges encountered in real-world

applications in detail.

The main idea of using a graph approach on RESTOS is

to capture spatiotemporal relationships that are not tackled by

traditional forecasting methods. Most forecasting approaches

in the literature are one-dimensional, i.e., the forecast mainly

depends on historical sales and other features [45]. These

approaches do not consider the effect of other sales. They

fail, therefore, to capture the correlations between different

restaurants and products in situations such as (i) competi-

tion between similar products, (ii) out-of-stock effect on a

competing product, (iii) launching of new products/competing

offers and (iv) cold start offers or offers with very limited

historical sales data. For business efficiency, it’s desirable

to maintain a single forecasting model for all restaurants.

The proposed model incorporates a restaurant identifier in

its pipeline, enabling it to make more accurate predictions

compared to baseline models.

Our research suggests room for improving the graph cre-

ation process for the RESTOS dataset. Currently, a single

topology is used, overlooking potential variations in sales

patterns among different restaurants and their unique product

relationships, which requires further investigation. Addition-

ally, adapting the loss function to business requirements,

such as prioritizing D + 1 forecasting errors over D + 5,

could enhance performance. The model shows varying success

across different restaurants, hinting at the potential benefits of

transitioning from a homogeneous to a heterogeneous graph

for richer data representation. We plan to explore this avenue

in future research.
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