
Vol.:(0123456789)

 Discover Mechanical Engineering             (2024) 3:7  | https://doi.org/10.1007/s44245-024-00036-9

Discover Mechanical Engineering

Research

Online tracking of dynamically time‑varying inertia using 
an enhanced SDFT‑based estimation methodology

David Ceulemans1,2 · Foeke Vanbecelaere3,4 · Nick Van Oosterwyck1,2 · Jasper De Viaene3,4 · Jan Steckel2,5 · 
Stijn Derammelaere1,2

Received: 31 August 2023 / Accepted: 28 February 2024

© The Author(s) 2024  OPEN

Abstract
The overall motion performance of mechatronic machines depends heavily on proper knowledge of the machine’s char-
acteristics, among which the inertia. Moreover, the inertia of most multi-body mechanisms, for example, reciprocating 
slider-crank mechanisms, varies as a function of the machine position, thereby challenging optimal control. Nevertheless, 
the inertia’s variation is sometimes not known accurately enough or changes over time due to, e.g. a production process 
or premature wear, forcing an online control/correction of the inertia profile. Therefore, earlier, the author developed a 
new computational-friendly online method based on a frequency-specific magnitude response to estimate the machine’s 
position-dependent load side inertia, assuming good knowledge of all other machine properties. Yet, to guarantee 
accuracy, the maximum machine speed during estimation had to be strongly reduced, resulting in an undesirable longer 
motion time. Therefore, in this work, the failure mechanism of the earlier proposed estimator is analysed and overcome 
by intelligently separating estimation and motion signals. As a result, the estimator is no longer limited by the machine’s 
motion speed but rather by a maximum in the inertia variation per signal excitation period and, thus, time. Moreover, 
given this limiting variation, a guideline was established to evaluate the new method’s estimation quality. Finally, both 
in simulation and on a physical machine, by taking advantage of the newly proposed method, the minimal required 
estimation time is reduced significantly (up to 50% on the machine) without diminishing the estimation accuracy.
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1 Introduction

1.1  Motivation

Repetitive reciprocating movements with machine-standstill at both extremes, frequently referred to as rest-to-rest 
(RtR) motions, characterize numerous high-dynamic industrial applications. To drive these movements, machine 
builders often use a single-axis-driven multi-body mechanism, e.g., a slider-crack mechanism, because of the inherent 
conversion from rotation to a more complex motion and its control simplicity [3]. Furthermore, during the machine 
design phase, machine builders typically only define the RtR start and end positions, allowing the optimization of 
the intermediate position profile to, e.g., minimal motion time [2], minimal energy usage [22], or minimal peak motor 
torque [21]. Nevertheless, since the optimization is usually model-based, the eventual yield of the optimized trajec-
tory depends heavily on the accurate knowledge of the system properties such as inertia, load torque, and friction. 
Given the multi-body mechanism, the machine load properties often vary as a function of the motor’s position. 
Consequently, accurate knowledge of inertia’s time/position dependence is indispensable to exploit the potential 
of trajectory optimization fully.

1.2  Related work

Previous work showed that the inertia of the load system could be calculated analytically [24] or extracted with high 
accuracy using CAD motion simulations assuming an accurate 3D model [21]. However, in various scenarios, as illus-
trated in Fig. 1, the mass and, thus, the inertia at the load side changes regularly, e.g., because of varying machine 
loads. Consequently, a method that doesn’t necessitate a standstill, referred to as an online method, is required to 
ensure continuous optimal performance. 

Specific literature on the online estimation of position-dependent system properties of a 2-mass model, shown in 
Fig. 2, is relatively scarce. Nevertheless, much research has been done in the past decades on estimating one or more 
time-variant system properties. The state-of-the-art can be divided into direct estimation methods based on, e.g., the 
least squares [1, 5, 16] or Kalman filters [18, 19], and indirect methods [4, 6, 10, 11, 13] approximating the unknown 
variables through a (non-)linear combination of standard functions such as polynomials or wavelets. 

Direct estimation based on the least-squares has been widely described and argued in the literature. [16] demon-
strated that LS could fit the position and hence time-dependent variables of a linearised two-mass model. Although 
[16] proves the effectiveness, it is well known that LS-based algorithms are sensitive to initial conditions and noise 
and can convert slowly, which makes them less suitable for online identification of relatively fast varying parameters 

Fig. 1  Illustration of the inertia J as a function of machine position �l , and the time variation of the position dependant inertia J(�l)

Fig. 2  A basic two-mass model with position-dependent inertia Jl(�l) and load torque Tl(�l)
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[10, 13, 14]. Also, Kalman filters, known for their excellent estimation performance under noisy conditions, can be 
used to estimate a system’s frequency response [15]. Both [19] and [18] estimated the time-varying inertia using an 
(extended) Kalman filter, respectively, in simulation and on a physical slider-crank mechanism. Yet, given the relatively 
slow variation of the system properties over time (respectively ±0.025 and ±0.02 kg·m2/s), the accuracy of both esti-
mation results is unsatisfying. Moreover, as noted in [18], proper knowledge of the initial state and noise properties 
is vital for fast and accurate convergence. Also, an advanced estimator, such as the Sigma-Point Kalman filter [20], is 
promising for inertia estimation but converges relatively slowly, as shown in [17]. Fixed-time observers, guaranteed 
to converge within a pre-specified time interval, have already demonstrated excellent results in the literature but 
require the design of gain factors [9], which is less straightforward for machine builders.

The principle of the indirect estimators is based on basic function expansion within a considered (time) frame. Generally, 
the idea is to approximate/expand the time-varying parameters by a (non-)linear combination of a predefined set of basic 
functions so that the estimation problem is rephrased to the regression selection of functions and the estimation of these 
function’s constant coefficients [10]. Recently, progress has been made in this area, resulting in a wide range of proven basis 
functions (e.g., polynomials, wavelets, B-splines, etc.) with each of their advantages. In [4], the time-dependent stiffness of a 
mass-spring-damper system is estimated with LS by approximating it as linear varying within the considered window. [13] 
approximated the time-varying properties of a generic servomechanism through polynomials using a Taylor expansion. 
Employing multi-wavelet decomposition, [6] showed that a single mass-spring-damper system’s discrete varying stiffness 
could be more adequately tracked than a classical RLS algorithm with a forgetting factor. Nevertheless, as referred to in [10], 
an unknown inertia variation requires a solid basis of standard functions to approximate its instantaneous value. Therefore, 
an indirect method may require much computational effort. Hence, given the often real-time character of the estimation, the 
computational requirements may undermine the implementation on an, e.g., an industrial motor drive, making this second 
group of indirect methods less applicable.

1.3  Contribution

In [24] and [25], the authors of this paper developed a new method to estimate the time-dependent inertia of a two-mass 
system. Similar to [16], the time-varying property is tracked through a frequency-specific gain employing a discrete Fourier 
transform (DFT) filter, followed by a mathematical conversion to the inertia via the system’s transfer function. Contrary to the 
indirect methods, this principle only requisites analyses of a single frequency, limiting the required real-time computational 
power. Moreover, unlike most direct estimation methods, thanks to the spectral filter, the new method convergence time is 
fixed to the fundamental period of the excitation signal. Besides, it has the inherent property of eliminating noise, making it 
an attractive technique. However, as explained in [25], the use of [24] imposes requirements on the minimum disturbance-
to-position (DRP) ratio, eventually limiting the minimal motion time. As a result, [25] prolongs the minimum feasible motion 
time by a factor of 10 to the original motion time. Thus, the current DRP ratio restricts using [24] at higher machine speeds. 
Nevertheless, convinced of [24]’s added value, this work’s main objective is to decrease the minimum achievable motion 
time. To this end, this work analyses the failure mechanism(s) at high speed/lower motion time and, as the main contribution, 
formulates the following improvement to the existing methodology to enable high-speed estimation:

As deduced in this paper, the [25] estimator’s failure at lower rest-to-rest motion times is mainly due to the insufficiently 
accurate separation of the excitation torque and its speed response (signal) on the one hand, and the motor control loop 
executing the RtR movement (noise) on the other hand. As a main contribution, based on the superposition principle for 
linear systems, this work proposes a method that separates signal and noise, thus reducing the RtR motion time. Moreover, 
a maximum inertia variation (MIV) and position deviation quality check are developed since system nonlinearities bound 
the newly proposed estimation technique.

The remainder of this work is structured as follows: chapter 2 briefly explains the estimation principle of [24]. Next, chap-
ter 3 decomposes the cause of failure of the current estimation principle and presents a renewed estimation methodology. 
Chapter 4 introduces a nonlinearity quality check. Chapter 5 validates the proposed approach using measurements. Finally, 
chapter 6 concludes the outcome of this work and proposes some future work.
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2  Estimation principle

2.1  Machine model

The physical behavior of many industrial single-axis driven machines can eventually be approximated by the two-mass model 
presented in Fig.  2. The motor’s rotor inertia Jr and the driven load inertia Jl are linked via a coupling with stiffness k and damp-
ing b properties. As a result, subject to the machine’s motion principle, e.g., a rod mechanism inspired pick-and-place unit, the 
motor often experiences an inertia Jl and load torque Tl that varies as a function of the machine’s position �l (see Fig.  8) and, 
therefore, the time t. Friction coefficients represent friction in both the motor br and the load bl . Next, the relation between 
the motor torque Tm , the load position �l , and its derivatives, as described in [23] and derived in Appendix A, is formulated as:

where �r and �l represent the motor and load position, respectively. Moreover, equation (1) can be linearised and trans-
formed into the Laplace domain [23], so that the relationship between the input motor torque Tm and the load position 
�l can easily be studied in the frequency domain:

Moreover, preliminary research [24] has shown that especially the frequency region around the resonance and anti-
resonance is the most interesting because of the sensitivity of the load inertia Jl and the limited influence of friction 
br and bl . Therefore, it is reasonable to neglect both the motor and load friction since their impact near this frequency 
region is neglectable, simplifying the complex model from (2) to:

In the remainder of this work, equation (3), describing the system’s behaviour near the anti-resonance peak, serves as 
the basic equation for estimating the position-dependent inertia Jl(�).

2.2  Estimation principle

The foundation of this work’s estimation principle lies in the determination of a frequency-specific gain between the motor 
torque Tm on the one hand and the resulting motor speed �̇�r on the other hand. Starting from equation (3)’s left term, a gain 
Gfest

 can be formulated as:

Furthermore, the frequency-specific gain Gfest
 can also be determined using the magnitude of equation (3) and the sub-

stitution of s = j�est:
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Then, equation (5) can be reformulated as equation (6) in which the load inertia Jl is isolated:

Equation (6) allows estimating the load inertia Jl(�r) , provided that the other system properties, such as coupling stiffness 
k and damping b are well known. Thus, the inertia estimation is reduced to estimating the amplitude of both velocity |�̇�r|fest 
and torque |Tm|fest signals at a frequency fest for which the frequency response of the considered model closely approxi-
mates reality. The Sliding DFT (SDFT) filter, further deepened in section 2.3., is suggested to estimate these amplitudes.

Furthermore, for high-dynamic industrial positioning applications, it is common to use a classic cascade-controlled 
PMSM motor. To provide sufficient excitation at the desired frequency fest and allow analysis, [24] proposes to inject an 
additional sinusoidal torque signal on top of the controller’s outgoing torque signal. The resulting combined control and 
estimation scheme, consisting of a classical cascade controller, excitation torque signal Tadd , spectral filters, and the actual 
estimator, is shown in Fig. 3. Moreover, in [25], a guideline on the disturbance-to-position ratio (DPR) was proposed to 
guarantee the success of the estimate. The DPR is calculated following:

with |Tadd| the amplitude of the excitation signal, || �̇�r (s)

Tadd (s)
||fest the gain of the machine speed �̇�r to the excitation torque Tadd 

at the excitation frequency fest , Δ�RtR the RtR trajectory distance to be travelled and || �̇�r (s)𝜃∗
r
(s)
||fRtR the gain from the desired 

position to the velocity at fRtR . The frequency fRtR can, in turn, be determined by approximating the RtR position trajectory 

as a sinusoid with fRtR =
1

2tRtR
 , given that tRtR is the time in which the RtR motion is completed. The DPR was experimentally 

determined to be greater than 0.05 in simulation to ensure the estimation quality. 
Note that the gains from equation (7) are mainly determined by the cascade control loop parameters, which for high-
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nonadjustable. Moreover, during the machine design phase, a machine builder typically imposes requirements on both 
the trajectory and the motion execution time-frame tRtR . And finally, since the system response gain Gfest

 with respect to 
the load inertia Jl is most sensitive near the anti-resonance region, which led to the reduced model equation (3) in 2.1, 
the excitation frequency fest is also more or less fixed [24]. Consequently, only the amplitude of the excitation signal |Tadd| 
is adjustable and, according to [25], should be chosen large enough so that the prescribed minimum ratio is reached, 
naturally within the margin of the maximum available motor torque Tmax.
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Fig. 3  Conceptual presentation of the inertia estimation principle presented in [24]
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2.3  Spectral filter

At base, as explained in section 2.2, the inertia estimator relies on the amplitude estimations of both the motor torque 
|Tm| and the motor velocity |�̇�r| at the chosen excitation frequency fest . The recursive sliding version of the discrete 
Fourier transform (SDFT) is proposed to estimate both amplitudes computationally efficiently and guarantee online 
implementation. The SDFT per iteration transfers a full window of equally sampled data from the non-frequency 
domain (usually the time domain) to the frequency domain following

with Xk(n) the complex result of the  kth harmonic after transformation of the  nth recursive sample, Xk(n − 1) the complex 
result of the previous sample, x(n) the newest sample within the considered window and x(n − N) the oldest sample 
within the considered window. Employing

the spectral filtered signal can be reconstructed in the original (time) domain. Next, to analyze the behaviour of the SDFT 
filter, the combination of the (S)DFT and iDFT (9) is often considered in the complex domain [7]:

filtering out a one-sided specific harmonic k. Reconstructing the original time signal can be done simply by adding both 
sides ( +k & −k ) together. Moreover, from (10), it is deduced that the foundation of the SDFT filter consists of a comb-filter 
1 − z−N , a complex resonator (1 − ej2�

k

N z−1)−1 and a magnitude/phase correction term 1
N

 . While the comb filter introduces 
N equally spaced zeros on the unit circle in the complex z-plane, the complex resonator introduces a single pole on 
that same unit circle. Then, by colocating the resonator’s pole with one of the zeros, a so-called pole-zero cancellation 
is obtained, filtering out one specific frequency. Finally, the magnitude/phase correction term rescales the complex 
result to the signal’s original scale. Figure (4) shows the magnitude frequency response of the filter with a fundamental 
frequency (k = 1) of 50Hz and 100Hz, respectively, which are the estimation frequencies for the machine considered in 
the remainder. Note that due to the lobe structure of the filter, only the fundamental harmonic and its integer multiples 
are neutralized, and intermediate noise is not completely suppressed. 

Finally, starting from the analysis of (8) and (10), one can deduce that the comb-filter introduces a buffer of N 
samples by removing the oldest sample n − N each time a new sample n is added, thus introducing a delay in the 
estimation. Therefore, a discrete change in the magnitude of the harmonic content on sample n is only fully cor-
rected N samples later. Accordingly, strongly depending on the dynamics of the signal to be estimated, an SDFT 
filter introduces, on average, a delay of N

2
 samples on the filtered magnitude estimate. To correctly estimate the load 

inertia in either the time or the angular domain, the delay introduced by the SDFT-filter must be compensated, as 
demonstrated in [24]. For a time-domain inertia estimation, assuming a sampling strategy with a constant time base, 
the filter’s result is best shifted back in time over half a signal period ( N

2
 samples) to minimize the mean error.

3  Spectral filter influences on a dynamic estimation

As explained in chapter 2 and as visually apparent in Fig.  5d, the estimator fails in general at lower motion times 
due to the under-reached DPR-ratio. As shown in 3.1, the leading cause of failure of the inertia estimator can be 
boiled down to a mismatch between the spectral content of the torque and velocity signals on the one hand and 
the characteristics of the SDFT filter on the other hand. Therefore, in sections 3.2 and 3.3, a new method is presented 
dealing with the DPR-ratio. 
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3.1  Failure mechanism

The total ingoing machine torque Tm consists of the motor controller torque Tc and the excitation torque Tadd . The 
controller primarily facilitates the execution of the RtR motion, while the excitation torque Tadd ensures sufficient 
harmonic content at the desired frequency. The excitation signal has a fixed frequency fest and amplitude |Tadd| over 
time. Conversely, due to the rest-to-rest motion, the motor controller torque signal’s dominant spectral content var-
ies over time. At both machine rest points, e.g., only the static load torque Tl has to be overcome ( �̇� = 0 ). A torque of 
varying magnitude is required to realise the desired motion. Thus, the dominant content in the frequency space varies 
as a function of the required RtR motion time for a generic system. As motion time decreases, the torque magnitude 
and the maximum spectral frequency will increase. Figure 6a shows the spectrogram of the injected torque signal Tm 
for a classic 5th-order polynomial RtR trajectory executed at 200 ms. Notice the quasi-stable 50 Hz excitation signal 
with constant magnitude and the varying RtR torque between 1 s and 1.2 s. For a 2-mass system, in analogy with the 
torque signal, the resulting velocity frequency spectrum is similar. 

Additionally, the estimator relies on the system’s excitation torque Tm and speed response �̇�r amplitude estima-
tion employing an SDFT filter. So, both signals’ excitation frequency spectral content must be separated from the 
rest of the frequency spectrum caused by the amplitude and frequency variable RtR control and considered by the 
estimator as ’noise’. As shown in Fig.  4, the SDFT filter’s magnitude consists of a lob structure with unit amplification 
and amplification roll-off from the pass frequency fest . So, due to the filter’s principle, only the DC component and all 
integer multiples of the pass frequency fest are fully neutralised, while intermediate spectral content is only partially 

Fig. 4  SDFT-filter magnitude frequency response with fundamental filter frequency of 50Hz (blue) and 100Hz (orange) and harmonic pas-
sage at k = 1

Fig. 5  Demonstration in simulation of the influence of the newly proposed denoising methodology on the position-dependant inertia esti-
mation for an RtR trajectory. ( t∗

RTR
= 200ms , Kpp = 60

rad

s
 , Kps = 7

Nms

rad
 , Tis = 8ms , Tadd = 50% of Tmax)
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suppressed. These non-fully suppressed frequency components are carried through the filter, as shown in Fig.  6b, 
yet resulting in an erroneous estimate of the harmonic. Eventually, this results in an incorrect inertia Jl estimation. 
Thus, the leading cause of the estimator’s failure can be simplified as the insufficient accurate/dynamic separation 
of signal and noise due to leakage.

Moreover, in addition to the spectral leakage, the ratio of the ’ground wave’ (in our case, the excitation signal) 
to the RtR noise also plays a vital role in the magnitude of leakage and, thus, failure. As shown in Fig.  4, the SDFT 
filter rescales its complex result to a unity gain at the pass frequency fest . Consequently, as the signal-to-noise ratio 
decreases due to, e.g. limited excitation torque or a short motion time, the influence of noise on the magnitude esti-
mate increases. Finally, due to the filter’s lobe structure (Fig.  4), noise at frequencies closer to the pass frequency is 
suppressed worse. Therefore, at faster motion times, due to the higher required motor torque introducing fundamen-
tally higher frequencies, RtR-introduced noise is suppressed less, thus increasing the chance of an erroneous estimate.

In summary, the performance of the current estimation mechanism is thus limited by the spectral filter and the ratio 
between the excitation signals and RtR controller signals and fails more easily at higher speeds due to spectral noise. [25] 
previously anticipated this by defining the DPR-ratio from section 2.2 high-enough.

3.2  Enhanced spectral filtering of the torque and speed’s magnitude

Fundamentally improving the estimation principle, as shown in the previous section, can be narrowed to enhancing the 
instantaneous magnitude estimation of both the fest components of input torque Tm and speed �̇�r under ’noisy’ conditions. 
Therefore, this work proposes to suppress the ’noise’ by subtracting both clean RtR motion torque TmRtR

(t) and velocity 
�̇�rRtR

(t) profiles from respectively time-aligned RtR motion profiles �̇�rest (t) , Tmest
(t) during estimation:

resulting in the newly proposed methodology of Fig.  7. 
In this work, the considered 2-mass model from Fig.  2 exhibits non-linear behaviour due, among other parameters, 

the position-dependent inertia Jl(�l) and the load torque Tl(�l) . However, superposition can be applied assuming that 
the machine can be approximated locally linear. To derive equation 11, the linear model from equation (3) is adopted, 
and further represented by operator S. Also, the system is assumed closed-loop controlled, as in Fig.  7. Hence, the torque 
TcRtR (t) requested by the motor controller results in a pure RtR motion profile �̇�rRtR (t):

(11)
�̇�rdenoised

(t) = �̇�rest
(t) − �̇�rRtR

(t)

Tmdenoised
(t) = Tmest

(t) − TmRtR
(t),

Fig. 6  Spectrogram of a typical a) ingoing system torque Tm , b) SDFT filtered ingoing torque, c) motion cancelled ingoing torque and d) 
motion cancelled + SDFT filtered torque
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Alternatively, during estimation, the total machine-injected motor torque Tmest
(t) , composed of the additional excitation 

torque Tadd(t) and the controller torque Tcest (t) executing the RtR movement, ultimately results in the speed �̇�rest (t) . In turn, 
the controller torque Tcest (t) can be subdivided into a part purely responsible for the RtR trajectory TcRtR (t) and a fraction 
that aims to counteract the additional excitation Tcadd (t) (which the controller considers as noise):

Both preceding scenarios are easily implementable on an industrial drive. Subsequently, by subtracting the torque of the 
excited Tmest

 and non-excited TmRtR
 motions following the superposition principle, the torque purely responsible for RtR 

motion TmRtR
(t) is neutralised. So as a system’s input, the sum of the excitation torque Tadd(t) and controller counteracting 

torque Tcadd (t) remains, resulting in the speed �̇�rdenoised (t)

Since the additional excitation torque frequency fTadd is imposed, and a linear system and speed controller are assumed, 
both the system speed response �̇�rdenoised (t) and the counteracting response torque Tcadd (t) will have the same fixed fre-
quency. Besides, the magnitude of the speed, and hence, the magnitude of the counteracting excitation torque and the 
total machine torque, correlate with the system properties among the load side inertia. Thus, by obtaining �̇�rdenoised (t) and 
Tmdenoised

(t) over time, the inertia can be estimated ’noise’-free following the method from chapter 2. Yet, the instantane-
ous amplitudes |�̇�rdenoised |(t) and |Tmdenoised

|(t) still need to be estimated using, e.g., an SDFT filter. Alternatively to the sliding 
DFT, the configurable and, therefore, faster converging generalised DFT ( m = 4 , l = ±1 ) was evaluated in simulation [8]. 
Unfortunately, the profit made by a more dynamic estimation is undermined by a poorer suppression of residual noise. 
Therefore, the SDFT filter is retained in this work. Again, reconsidering the load torque signal from section 3.1, the result 
of both the motion denoising and the denoising + SDFT filter are shown in Figs. 6.c and 6.d. Note the apparent improve-
ment in lower harmonic content between the original (Fig. 6a) and the newly proposed method.

(12)S{TmRtR
(t)} = S{TcRtR (t)} = �̇�rRtR

(t)

(13)

S{Tmest
(t)} = �̇�rest

(t)

S{Tcest (t) + Tadd(t)} = �̇�rest
(t)

↔ S{TcRtR (t) + Tcadd (t) + Tadd(t)} = �̇�rest
(t)

(14)

S{Tmest
(t)} − S{TmRtR

(t)} = �̇�rest
(t) − �̇�rRtR

(t)

↔ S{Tadd(t) + Tcadd (t)} = �̇�rest
(t) − �̇�rRtR

(t)

↔ S{Tmdenoised
(t)} = �̇�rdenoised

(t).

Fig. 7  Newly proposed estimation principle employing a RtR motion cancellation to suppress estimator’s noise
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3.3  Simulation results

To evaluate the effectiveness of the proposed method, in simulation, the inertia J(�l) of the system described by 
the parameters summarized in Table 1 and Fig. 8, is estimated during an RtR motion of 200 ms given an additional 
torque injection with an amplitude |Tadd| of 50% of maximum torque Tmax at fest = 50 Hz. The excited and non-excited 
torque and velocity profiles are respectively shown in Fig. 5a and e. Next, given these signals, subplots 6b and 6f show 
the SDFT filtered signals with corresponding amplitude following the original method (without noise reduction). 
Subplots 6c and 6g show the SDFT filtered signals according to the newly proposed method after first applying the 
proposed denoising. Note that, e.g., the amplitude of the filtered velocity signal under the original method contains 
more substantial fluctuations than the new method. 

Finally, subplots 6d and 6h, respectively, show the inertia estimation following the original and new methods. As 
visually apparent, the original method fails, while the proposed denoising of both signals yields a good estimate. The 
remaining imperfections can be attributed to the dynamics of the SDFT filter and the influence of the non-linearity of 
the considered machine (see chapter 3).

4  Limitations of the renewed estimation method

Section 3 revealed the estimator’s cause of the failure at faster motion times and showed that clever filtering increases 
the estimator’s deployability. However, as visible in Fig.  9, the estimator fails when further reducing the motion time 
using an estimation frequency fest of 50 Hz. The denoising principle proposed in section 3.2 assumes that the considered 

Table 1  Properties of the 
considered machine model in 
simulation

Motor Coupling Load

Tmax [Nm] Jr [kgm2] br [Nms/rad] k [Nm/rad] b [Nms/rad] bl [Nms/rad]

233 0.012 0.2 24963 8.62 0.1

Fig. 8  Position-dependant inertia Jl(�l) and load torque Tl(�l) of both the considered simulation model (3.3) and the physical machine

Fig. 9  Effect of the excitation frequency fest on the non-linear behaviour of the model and accompanying estimation accuracy. 
( t∗
RTR

= 100ms , Kpp = 60
rad

s
 , Kps = 7

Nms

rad
 , Tis = 8ms , Tadd = 20% of Tmax)
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nonlinear model exhibits approximate linear behaviour, allowing the superposition principle to suppress the estimator’s 
noise. The failure of the estimator is suspected to be caused by excessive variation in inertia Jl within a single excitation 
period 1∕fest , resulting in a more pronounced response from the controller and consequently distorting the torque and 
velocity at the estimation frequency. Therefore, in the case of quasi-constant load inertia, employing the new method 
no longer limits the minimal motion time at all. The previous estimator [25] does set boundaries to the maximal estima-
tion speed, even under the assumption of constant inertia over time. Nevertheless, the applicability area of the newly 
proposed estimator is again limited by non-neglectable variations in the inertia, introducing nonlinearities undermining 
the denoising principle. Consequently, a method is required to restrict the estimator’s applicability. 

4.1  Cause and restraints for non‑linear machine behaviour

For the considered model, non-linear behaviour is caused by the position-dependent load torque Tl(�l) and inertia Jl(�l) . 
Since the nonlinearities are primarily due to inertia, the load torque is further neglected. In terms of inertia J, the impact 
of the position dependency strongly correlates with the inertia gradient dJ

dt
 over time and the excitation signal-induced 

position error �Est − �RtR . The smaller the inertia gradient dJ
dt

 over time, the smaller the excitation signal’s impact. Moreover, 
given the sinusoidal nature of the excitation signal, the average excitation signal’s contribution to the machine position 
is zero. Thus, the smaller the signal’s magnitude |Tadd| , and the higher its excitation frequency fest , the lower the induced 
position error and, thus, the better the nonlinearities. Also, the position controller helps to reduce the position error since 
its main task is to execute the pre-described RtR trajectory.

In summary, the estimator’s range can be maximised by a) choosing the highest possible estimation frequency fest 
combined with the lowest allowable amplitude of the torque signal |Tadd| . A higher frequency fest results in a minor local 
position variation and thus inertia variation, as shown in Figs. 9b and d (note the difference between the left and right 
axis). And b) by minimising the inertia variation over time dJ

dt
 . The latter can be done by choosing motion profiles where 

the maximum rotor speed �̇�r is lower, such as e.g. a standard 1/3 motion profile. Figure 9 shows the estimator’s result 
for an RtR movement of roughly tRtR = 100ms at both fest 50 Hz and 100 Hz to demonstrate the effect of the estimation 
frequency on the system nonlinearities. As apparent in subplot a), the estimation fails for a 50 Hz signal, while the 100 
Hz estimation nicely follows the theoretical CAD-extracted inertia profile.

4.2  An estimation quality check

Since the estimation may fail, a validation method is necessary to verify the estimation quality. After all, if the inertia 
profile is unknown, simulation shows that a deviation due to excessive nonlinearities cannot be easily derived visually 
from the course of the estimated inertia profile itself. In addition, it is challenging to establish a conclusive analytical 
formulation to evaluate the accuracy. To statistically validate the extent to which two signals are linearly related over time, 
e.g. the denoised torque and speed signals, the magnitude-squared coherence (MSC) is often used in the literature [12]. 
However, the MSC requires a multiple of the fundamental signal period (at least two, but often more) to yield a meaningful 
result. Given the dynamics of the estimation, in practice, only a limited number of estimation periods per motion cycle 
exist so that the coherence is an averaged value over the entire estimation period. Unfortunately, simulations showed 
that the average coherence is not the right measure to evaluate the estimation quality.

Simulations, however, show that a combination of the estimated inertia variation (IV) and the denoised position signal 
�rdenoised

 are good guides to the estimation reliability. In simulation, through trial-and-error, an excessively fast variation 
of the inertia profile per excitation period can be arbitrarily linked to an erroneous estimate. Therefore, in this work, the 
maximum inertia variation MIV is defined as:

with J(i) the i’th inertia estimation sample and N the total number of samples per excitation period. As a guideline, 
given various observations, for both considered estimation frequencies, all estimates with an instantaneous MIV below 
0.05 were successful. Estimates with MIV between 0.05 and 0.08 are typically more choppy and sometimes unreliable. 
Estimates with peak values above 0.08 were always unreliable. Illustrative Figs. 10a–c show the estimation result Jl(�r) , 
instantaneous inertia variation IV and estimation error �Jl(�r) for different motion times and frequencies, respectively. 
Moreover, in addition to the MIV, bright deviant behaviour is also well reflected in the denoised position signal:

(15)MIV = max(|IV (i)|) = max(|Ji − Ji−N|)
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with �rest (t) the actual position trajectory travelled during an estimate, and �rRtR (t) the actual position trajectory of the 
reference motion. Ideally, the perfectly ingoing sinusoidal torque results in a sinusoidal denoised position trajectory with 
varying amplitude due to the variable inertia, as shown in Fig.  10d in blue and purple. As experimentally observed, a 
too-strong deviation from a perfect sinusoid indicates a too-rapid inertia variation, resulting in an erroneous estimate. 
As circled in Fig.  10d, if the MIV is high, a DC component arises locally in the denoised position signal �rest . The size of this 
DC component can be seen as a measure of nonlinearity. However, as with the estimation, the calculated MIV is subject 
to correct values for the stiffness k and damping b. Therefore, a combined check with the MIV and the denoised position 
signal is recommended to check for nonlinearities.

5  Validation

The methodology proposed in Sects. 3 and 4 is validated using the mechanism presented in Fig.  11. For validation, the 
machine’s position-dependent inertia is estimated at different motion times using a standard 1/3 motion profile and 
two different injection frequencies.

5.1  Validation mechanism and motion platform

The motor’s datasheet inertia was used as the validation application’s driving inertia Jr . As load inertia Jl(�r) , is the inertia to 
be estimated, a CAD model was used to extract the inertia as a function of the motor position �r for validation purposes [21]. 
The load inertia Jl and the load torque Tl are visualised in Fig. 8. Moreover, Fig. 12 shows the corresponding machine’s system 
response as a function of frequency. As deduced from the system response, the machine’s dynamic behaviour can be simplified 
to the two-mass model presented in Fig.  2. Employing the response, the stiffness k and damping b values of the machine’s 
coupling were determined and further tuned using the reference estimation result from section 5.2. The theoretical system 
response following the model described by equation (3) is also shown in Fig.  12. The theoretical and measured responses are 
mainly similar. Finally, by analogy with the procedure in [24], possible estimation frequencies fest of 50 and 100 Hz were derived. 

(16)�rdenoised
(t) = �rest

(t) − �rRtR
(t)

Fig. 10  Demonstration of the influence of the newly proposed denoising methodology on the position-dependant inertia estimation for an 
RtR trajectory. ( t∗

RTR
= 200ms , Kpp = 60

rad

s
 , Kps = 7

Nms

rad
 , Tis = 8ms , Tadd = 50% of Tmax)

Fig. 11  The application used to validate the newly established estimation method

Crank
Connecting rod

Sledge

Supporting linkage
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All measurements were performed via Beckhoff’s commercial motion platform, Twincat Engineering. Therefore, the 
method worked out is relatively easily implementable and, thus, quickly deployable.

5.2  Reference estimation

As a baseline for the minimum required motion time tRtR , the considered machine’s inertia Jl(�r) is estimated using 
the previously published method [24, 25]. For the selected controller settings Kpp, Kps, Tn, injected torque amplitude 
|Tadd| and estimation frequency fest of 50Hz, a DPR ratio of 0.075 was achieved at a desired motion time t∗

RtR
 of 500ms. 

A generic 1/3 profile is used as the desired position setpoint �∗
r
 signal. The controller values were tuned to limit the 

maximum tracking error to a few degrees. Any form of feedforward was disabled. Figure 13 shows the estimation 
result with associated error �J(�r) as a function of machine position �r . Similarly, the position trajectory �r(t) , speed 
�̇�r(t) and torque signal during the estimation Tm(t) are shown over time. Since, as a reference, the old method is 
regarded, in the light of chapter 3.2, solely the estimation signals �̇�rest (t) and Tmest

(t) are used. A statistical analysis 

Fig. 12  Measured bodes of the validation mechanism at both minimal and maximal inertia positions. Moreover, surplus to the measured 
bodes, for both positions, the theoretical two-mass system bodes, tuned employing the measured bodes, are visualized. One can see that 
the bode characteristic changes due to a change in load inertia. Finally, the amplitude errors between the measured and tuned bodes are 
given

Fig. 13  Inertia reference estimation according to the former published method explained in chapter 2, without denoised torque and veloc-
ity signals ( t∗

RTR
= 500ms , fest = 50Hz , Kpp = 100

rad

s
 , Kps = 5.65

Nms

rad
 , Tn = 8ms , Tadd = 20% of Tmax , DPR = 0.075)
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of the estimation result with respect to the CAD-extracted inertia profile is summarised in table 2. Note that the 
estimation result is already quite inaccurate, so the motion time was not pushed further from a DPR of 0.075 to 0.05.  

Similarly, estimates were performed at 100 Hz. However, in line with previous publications, this estimation fre-
quency results in a non-significant result, making it unusable for further analysis ( Tsample = 125ms).

5.3  Validation measurements

Three estimate attempts with a motion time t∗
RtR

 of 0.3 s, 0.25 s and 0.2 s, respectively, were performed to validate the 
newly proposed method. A 1/3 profile was used as the desired position trajectory �∗

r
 . The position trajectory �r and 

accompanying estimation variables were measured for each considered motion time during movements with and 
without additional torque Tadd . Subsequently, the speed �̇�r(t) and torque Tm(t) signals were denoised for each motion 
time t∗

RtR
 , followed by the actual inertial estimate Jl(�r) . The speed and torque signals can easily be aligned using the 

drive’s start command trigger. Finally, both the MIV and position variation �Est − �RtR are calculated.
For each motion time t∗

RtR
(t) , the estimation result Jl(�r) , the error on the estimate �Jl(�r) , the MIV, position varia-

tion �Est − �RtR , the position trajectory tRtR(t) and the denoised velocity �̇�rdenoised (t) and torque signals are displayed in 
Fig. 14. Again, the statistical analysis of the estimation result is summarised in table 2. 

Given the values of the root-mean-squared error RMSE on the estimation result Jl(�r) , the standard deviation � of 
the estimation error �Jl(�r) , and the maximum estimation error value �Jl(�r)max , one can observe that the motions 
with an RtR time of 0.3 s en 0.25 s score better than the reference trajectory of 0.5 s from section 5.2 using the old 
[24] estimation method. Moreover, note that the MIV, shown in Fig. 14b, ascends above 0.05 at a motion time of 
0.2 s. Thus, according to the guideline in section 4.2, this estimate is considered less reliable. Besides, in the position 
variation shown in Fig. 14d, apparent local deviations can be observed, circled in black, reinforcing the MIV exceed-
ance. To conclude, using the newly elaborated method on this machine, the desired RtR time t∗

RtR
 can be halved while 

estimating without quality deterioration in comparison with the earlier published estimator [24, 25].

Table 2  Statistical analysis of 
the estimation results with 
respect to the CAD-extracted 
inertia profile

Case t∗
RtR

 [ms] RMSE [kgm2] � [kgm2] �J(�r)max

Reference 500 0.0073 0.0066 0.0224
New method 300 0.0068 0.0054 0.0160

250 0.0059 0.0058 0.0150
200 0.0070 0.0069 0.0185

Fig. 14  Estimation of the load-side inertia of the machine in Fig. 11 at three different motion times following the execution of a trapezoidal 
RtR position trajectory ( fest = 50Hz , Kpp = 100

rad

s
 , Kps = 5.65

Nms

rad
 , Tn = 8ms , Tadd = 20% of Tmax)
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6  Conclusion

By elaborating on an earlier published method [24, 25], this paper aims to lower the minimum achievable motion time, 
allowing a position-dependent inertia estimation. In the long run, this information enhances the machine’s real-time 
performance, i.e. by using this for motion profile optimisation as in [25]. This work revealed that the present estimator’s 
failure mechanism at fast motion times is due to the insufficient separation of the spectral content at the estimation 
frequency and other spectral energy introduced by the rest-to-rest motion. Therefore, as its main contribution, this work 
presents the idea of stripping the velocity and torque estimation signal of spectral noise prior to estimation by subtract-
ing the non-exited from the exited speed and torque signals so that the latter is disposed of by spectral noise caused by 
the rest-to-rest motion. Consequently, the newly developed estimation principle is no longer bounded by the motion 
time or related speed but rather by the (non-)linear behaviour of the considered machine. Given the maximum allowed 
nonlinearities, to asses/guarantee the quality and accuracy of the inertia estimation, this work proposes a maximum 
inertia variation (MIV) metric, which should be lower than 0.05.

To demonstrate the impact of the proposed methodology, on a physical machine, three estimation attempts with a 
motion time of 0.3 s, 0.25 s and 0.2 s, respectively, were performed. Utilising the original methodology [24], a baseline 
motion time of 0.5 s was found as a reference. By employing the new methodology, the minimum achievable motion 
time was halved to 0.25 s without exceeding the predetermined quality control criteria and without statistically sacrificing 
the quality of the estimation itself. Future work can focus on analyzing the cause of failure at higher estimation frequen-
cies (different positions in the bode plot), as this would lower machines’ nonlinearities’ impact on the estimate and thus 
shorten the required motion time. Alternatively, given prior inertia information, evaluating if the proposed method is 
applicable to estimate the machine’s damping can be interesting.
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Appendix A Derivation of the torque equations for a two‑mass position‑varying‑inertia 
system

Consider a two-mass system (see Fig. 2) with a fixed rotor inertia Jr and load inertia Jl varying as a function of the system’s 
position �l . Moreover, the system is subject to a driving motor torque Tm and load torque Tl , which depends on the system 
position �l . In addition, both system masses are subject to frictional torques Tfriction , which can be described using the friction 
coefficients br , bl and the system speeds �̇�r , �̇�l . Since friction drains energy from the system, the system is non-conservative. 
Finally, the connection between both masses is described by a spring k and damper b component in parallel. For this two-
mass model, in general, the kinetic energy K, the potential energy V, and the compensating term Q used in the Euler-Lagrange 
equation for non-conservative systems can be described as:

http://creativecommons.org/licenses/by/4.0/
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Then, the Lagrangian L is defined as:

So that:

The partial derivative of L to �r , �l , �̇�r and �̇�l results in

So that

Therefore, finally, the equilibrium equations for each individual mass system can be derived:

(A1)

K =
1

2
Jr �̇�r

2
+

1

2
Jl(𝜃l)�̇�l

2

V =
1

2
k(𝜃r − 𝜃l)

2

Q
𝜃r
= Tmotor − b ⋅ (�̇�r − �̇�l) − br �̇�r

Q
𝜃l
= Tload(𝜃l) + b ⋅ (�̇�r − �̇�l) − bl �̇�l

(A2)L = K − V =
1

2
Jr �̇�r

2
+

1

2
Jl(𝜃l)�̇�l

2
−

1

2
k(𝜃r − 𝜃l)

2
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