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Abstract—Millions of videos are watched per minute on
the Internet. Due to real-time performance demands, such as
high-quality video streaming, network administrators face new
challenges to control the network and cope with the expected
quality of experience (QoE). Automatic control is a necessity to
reduce the OPEX, because it could reduce the need for resource
overprovisioning, as well as the number of human administrators.
Dynamic rate in video streaming alleviates the resource usage,
but it worsens the video quality when a network bottleneck
occurs, lowering the QoE. This paper dynamically adjusts the
IEEE 802.11 parameters to improve the network condition and
hence maintain a higher QoE. While traditional networks are not
aware of the application, in our proposal the controller learns the
configuration of the access points (APs) (in terms of transmission
power and channel number) that provide the best QoE, using
double deep Q-learning (DDQL). The proposal improves video
QoE by 91% in the best case, when compared to three baselines.
It also balances the QoE among clients, improving the fairness
up to 115% when compared to the baselines.

Index Terms—Deep Reinforcement Learning, Adaptive Con-
trol, Wireless Networks, Quality of Experience

I. INTRODUCTION

A recent study shows that an adult in the UK spends

an average of 3 hours 52 minutes a day watching videos

online (June 2020) [1], before the pandemic it was 30 minutes

less. Real-time and resource demanding applications, such

as high-quality video streaming, brought new challenges to

network control, as users expect high levels of quality to be

upheld. However, improving user satisfaction and minimizing

customer turnover while still maintaining a competitive ad-

vantage can be a significant challenge for service providers.

Quality of Experience (QoE) is hard to measure because it

is perceived subjectively by users, as a result of the user’s

feelings and personality (e.g., predispositions, expectations,

motivation, mood), the characteristics of the application (e.g.,

complexity, purpose, usability, functionality), and the context

within which the application is experienced.

Wireless Local Area Networks (WLAN) have become com-

monplace in office and campus sites, and the number of public

Wi-Fi hotspots is growing significantly year over year (e.g.

from 169 million in 2018 to 628 million by 2023 [2] and

much effort exists to estimate QoE using known parameters

obtained from the network devices and applications [3].

Automatic Wireless local area network (WLAN) manage-

ment is quite challenging. First, the wireless medium is subject

to performance problems, and the communication deteriorates

due to the dynamics of the medium. Second, the radio spec-

trum is often crowded, which requires frequent interventions

to maintain the communication quality. Third, WLAN are

more prone to packet loss, delay and low connection speeds

than wired networks. State-of-the-art (SOTA) IEEE 802.11

networks have yet to exhibit dynamic QoE. This is due to the

fact that devices still implement QoE statically, while centrally

controlled APs remain unaware of the specific application.

Moreover, these platforms are closed source, leaving clients

dependent on vendors for new features [4]. Thus, automatic

management approaches in WLAN should be studied for

the following reasons: (i) access providers offload WLAN

management to the end-users for legal reasons or because

of technical difficulties due to the large number of users;

(ii) WLAN users are non-technical, hence they cannot un-

dertake complex configurations by themselves; (iii) problems

in the network take a long time to be identified, as users

only notice that there is a problem when their QoE degrades

significantly or applications freeze [5]; (iv) manual operation

of networking services is costly. For example, automation can

provide network operation gains up to 2% and 13%, for ISPs

and mobile network operators, respectively [6].

Numerous studies have examined QoE on wireless net-

works, with a subset of these studies focusing on IEEE 802.11

networks. Some of these studies investigate client parameters

[7], [8], while others explore video server parameters [9]. For

instance, dynamic rate in video streaming, such as dynamic

adaptive streaming over HTTP dynamic adaptive streaming

over HTTP (DASH)), enables the adaptation of video quality

to the instantaneous link quality. Further optimizations are

possible if the WLAN automatically optimizes the media

access control and physical layers. However, the studies do not

improve the Access Point (AP) channel control algorithms.

We propose a WLAN manager with a reinforcement learn-

ing control loop that optimizes the network and, consequently,

improves video QoE. Our proposal employs a Software-

defined Networking (SDN) architecture. We evaluate our pro-

posal with a prototype over a realistic testbed, where the

control loop automatically assigns the wireless channel and

the transmission power to each AP. Results show that the

control loop improves video QoE by up to 91% and the

regret by up to 84% when compared to the baselines. It also

improves the fairness index up to 115% and increases the

mean opinion score (MOS) when compared to the baselines.

Our main contributions are an automatic control loop, based



on double deep Q-learning, that improves QoE via dynamic

channel assignment and transmission power control, and an

experimental analysis of the proposed control loop.

The remainder of this paper is organized as follows. Section

II shows the proposed control loop. Section III describes the

scenario used to test our prototype. The QoE predictor is

evaluated in Section IV. Section V discusses the results of our

prototype. Related work is discussed in Section VI. Finally,

Section VII concludes and discusses future work.

II. NETWORK ARCHITECTURE OF THE QOE-AWARE

CONTROL LOOP

This section introduces the network architecture of the QoE-

aware control loop proposed in this work. In this paper, the

Deep RL control loop optimises the QoE of DASH video flows

by automatically adjusting the transmission power and the

channel of Wi-Fi APs. The controller runs the Deep RL control

loop, and the control loop can manage several Wi-Fi APs

in a network, as shown in Figure 1. The controller interacts

with the APs, requesting information to serve as input for the

Deep RL algorithm, and the output of the algorithm defines

changes on the Wi-Fi parameters of the APs. This interaction

can employ SDN protocols, or protocols such as REST. The

presented network architecture is flexible, being able to treat

other use cases, such as in previous works that controlled

the QoE of web flows (employing traditional reinforcement

learning) using Ethanol as SDN substrate [10].
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Figure 1. Network architecture of the control system.

The components of the Deep Reinforcement learning con-

troller for Video QoE are shown in Figure 2. The control relies

on a southbound SDN interface to interact with the APs, which

in this paper is a simple REST API. The Deep RL controller

has four components: a flow identification component, the

Reinforcement Learning Control Loop, a MOS Predictor, and

the Reward Function.

The control loop cycle operates as follows. First, flow iden-

tification (§II-A) helps the controller identify the video flows.

Next, the controller collects data from the APs to compose

the system states and determine the suitable actions (§II-B).

The controller also collects information to calculate the mean

opinion score (MOS – §II-C) of the video flows. Finally,

the Deep reinforcement learning (RL) control loop decides

the next action, i.e., the AP configuration that maximize the

video flows QoE (§II-D). This configuration is transmitted

using the southbound SDN interface. Finally, the cycle restarts.

Below we present details about the flow identification, Deep

Reinforcement Learning Control Loop, and reward function.

A. Flow identification

The flow classification module identifies that a certain flow

is a video session. Our control loop relies on the state of

the art for flow classification, since this is already a well-

studied topic, and many effective classifiers already exist in

the literature (e.g. [11], [12]).

Thus, for simplicity reasons, the implementation described

in Section V identifies whether the flow is directed to our

video server or not, i.e., it is based on the server address and

port. Also, we assume that all video traffic is DASH video.

We chose DASH over other streaming video protocols because

it is used in the most popular video streaming systems today

(e.g. YouTube, VIMEO, and Netflix).

B. Deep Reinforcement Learning Control Loop

The control loop uses a double deep Q-learning (DDQL)

model to select the best transmission power and the wireless

channel for each controlled AP. The components of the Deep

RL agent are explained below.

Deep RL algorithm: The agent employs DDQL, this is an

actor-based algorithm, and in future work we plan to explore

actor-critic approaches in order to improve the convergence

time. The neural networks were implemented using temporal

convolutional neural network (TCN), in order to reduce its

computation time. Further, our agent uses an ϵ–greedy [13]

exploration strategy.

In very broad terms, the agent decides which action A

maximizes the reward when it is on a certain state S. The

following paragraphs detail how our agent models states and

actions, while §II-D details the reward function.

States: The state is represented by a tuple (st−1, st), that

contains the features of the current and previous timesteps.

We used two periods because the MOS predictor considers

two periods (see Section IV). The number of periods can

be increased provided that the predictor employs the same

number of periods. The length of the period is a fixed number

of seconds (configurable by the administrator) that represents

the time between two consecutive actions.

For the system to learn a Q-function that can be generalized,

the state must be independent of which AP is providing

information to the learner. We chose information related to

the state of the wireless medium as well as the usage of the

Wi-Fi network, as listed below. We show in brackets if the

feature is continuous [C] or discrete [D].

• #stations [D]: Represents the number of wireless

clients connected to the AP at a given moment;

• ch1, ch2, . . . , ch11 [D]: Identifies the transmission chan-

nel;

• tx_power [D]: The current transmission power of the

AP. It measures the configured power in dBm;

• #num_neighbors [D]: It indicates how many controlled

APs are in the vicinity of the current AP;
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Figure 2. Architecture of the Deep RL controller.

• ch_noise_max [C]: indicates the maximum noise de-

tected in the current channel by the AP;

• perc_phy_busy_time [C]: measures the occupation of

the channel as the percentage of PHY busy time;

• Some features are related to the clients of the AP:

– sta_signal_min [C]: is the minimum signal received

by the AP from the connected client;

– rec_bitrate_min [C]: is the minimum received bitrate

from the clients;

– tx_byte_avg [C]: the number of bytes transmitted by

the clients in the period;

– rx_byte_avg [C]: is the number of bytes received from

the clients in the period.

Actions: any discrete action is suitable for the control loop

in DDQL. Examples are turn on/off the use of RTS/CTS or

adjust the contention window parameters. This paper’s control

loop alters two parameters of the APs:

• tx_power — the transmission power is in the range of

1 dBm up to 15 dBm, in our devices; and

• ch_number — the channel used in the wireless network.

Example – One network with three APs. Suppose we

have one controller automatically configuring three APs. Each

AP will have its own DDQL agent, with its own states.

Hence, the first controller will have the states (st−1,1, st,1), the

second will have the states (st−1,2, st,2), and so on. Agents

periodically calculate tx_poweri, ch_numberi, which is the

adequate transmission power and channel number for AP i.

The choice of having one agent per AP, instead of one single

agent controlling the whole network, reduces the convergence

time of the algorithm. Studies with one single agent have

shown similar performance, however with a more complex

state space [10].

C. MOS Prediction

The reward of the Deep RL algorithm relies on an estima-

tion of the QoE of each video flow. Our architecture employs

an objective metric, calculated as a Mean Opinion Score

(MOS), a five-point scale where 1 represents bad quality and 5

represents excellent quality. The MOS estimator eliminates the

need to inquire the user about his or her perception, thus being

more scalable and easier to implement on a closed control

loop. The predictor estimates the MOS experienced by the

user based only on QoS metrics.

We have based our QoE metric on a common metric

used in video quality evaluations, called Peak signal to noise

ratio (PSNR) [14]. PSNR was used because it is a simple

and well accepted metric in the literature. PSNR identifies

the differences between the frames from both videos, and

determines how much the received video has changed in the

transmission. Other more complex metrics could be used as

well, as long as they output a numeric value, which then could

be used to calculate the reward of the control loop.

PSNR compares the original video stored on the server with

the video received by the video client. Our estimator, on the

other hand, eliminates interactions with the video client. This

occurs because we trained a supervised learning model, trained

off-line using real samples of video playback over wireless

links. This is detailed in Section IV.

D. Reward Function

RL methods use a scalar reward to drive learning. The pro-

posed reward was modeled using two premises: a) the agent

should maximize the average MOS perceived by the video

clients; and b) clients should experience similar QoE levels,

i.e. the overall fairness of the system should be maximized.

Fairness is a very broad concept [15]. We consider in our work

that a system is fair when all users receive the same minimum

allocation, and unused resources can be reassigned to users

that demand more than this minimum.

For the reward to achieve the first objective, we first define

m̄t,a, the mean MOS perceived by all the clients in a certain

AP in time t, and m̄t, the mean of all m̄t,a. Then, the first

objective is achieved when the reward increases with m̄t:

rt = m̄t (1)

Next, we refine the equation above to add fairness into

the objective. We adopted the fairness index defined by [16],

which is bounded in the closed interval [0, 1], with 1 indicating

perfect fairness. The reward is changed into Equation 2:

rt = 1 + (m̄t − 1)× FC
t (2)



The term FC
t is a fairness multiplier, and the constant C

adjusts the impact of the fairness index Ft in the reward. The

index Ft proposed by [16] is the following:

Ft = 1−
2× se(S)

H − L
(3)

where se(S) is the standard deviation of the set S, and H and

L are the upper and lower MOS bounds, respectively. Ft will

be zero in the most unbalanced situation, and Ft = 1 when

all MOS values are equal.

Finally, we penalize the clients with a higher than average

MOS (r̄t) in order to free network resources, so clients with

a lower than average MOS have room to improve. To do so,

we adopt a reward rat for each AP a as follows:

rat =

{

r̄t if m̄t,a ≤ m̄t

1 + (m̄t − 1)× FC
t otherwise

(4)

where r̄t is the average reward among the interfering APs.

Only APs that are on the same channel compete for capacity,

because they are co-interfering1. Hence, Ft is calculated only

over the set of co-interfering APs.

III. EXPERIMENT SETUP

This section describes the scenario and testbed. The scenario

is used for collection of video for the MOS predictor (Section

IV) as well as for the evaluation of the Deep RL control loop

(Section V).

The scenario simulates a site with multiple APs managed

by a single administrator, such as in a company or campus.

The controller manages two APs, which receive commands via

a Representational State Transfer (REST) API. Each AP has

one wireless client. Data collected from clients relies only on

standard IEEE 802.11 messages. The video server, controller,

and APs are connected to a gigabit Ethernet network, as shown

in Figure 1. The controller uses Ethernet to send and receive

control data. The APs use Ethernet to receive control data

from the controller, and also to transmit the video flow to the

Internet. Each AP provides access to wireless clients. The APs

are started on the same channel and with the same power.

The video file is split into several chunks of the same

duration. In each experiment, the server streams a video

to wireless clients, and the video loops during the whole

experiment. The streamed video is Big Buck Bunny2, which is

available in our video server with several resolutions in two-

second chunks. Each video chunk is encoded with the bitrates

shown in Table I. The video buffers from both client and server

were configured to one minute, so each loop starts fresh. The

video server and the clients use the DASH protocol.

The video player used is Firefox with the Dash.js video

player. It is an open source player, and it can log video per-

formance metrics. Dash.js has three adaptive bitrate algorithms

[17]: (1) throughput, (2) Buffer Occupancy based Lyapunov

Algorithm (BOLA), and (3) a heuristic that switches between

1APs co-interfere if they are on overlapping channels, and at least one of
them detects the other using IEEE 802.11 “Neighbor Report” messages.

2https://peach.blender.org/download/

BOLA and the throughput strategies. We used the heuristic,

since [17] claim that it shows the strengths of both strategies.

Table I
EXPERIMENT’S VIDEO PARAMETERS

Parameter Value

Codec
avc3.640032; hev1.1.6.L60.90; vp09.00.40.08;
av1.experimental

Resolutions

256x144; 320x180; 384x216; 512x277;604x360;
768x432; 1024x576; 1280x720; 1920x1080;
2560x1440; 3840x2160

Frame rate 30 fps
Chunk size 2 s

The southbound API was implemented using a REST API,

so the controller can access and manipulate textual represen-

tations of the agent resources using a uniform and predefined

set of stateless operations. The control model proposed in

our paper can be used with several southbound APIs. In

previous work [10], we implemented this three-tier control

using software defined networking (SDN) instead of REST

in the southbound API. Therefore, similar results could be

obtained on other platforms (e.g. 5G-emPOWER).

The experiments run on an open RF environment to perform

experiments that are closer to real life, at the expense of limited

reproducibility of the radio frequency (RF) interference profile.

The wireless devices are aligned: the APs are 45 cm apart, the

clients are 90 cm apart, and the APs and clients are separated

by 3.5 m. The experiments are performed in an environment

with more than 72 interfering APs. The average signal of the

testbed APs perceived by the clients is -45.5 dB.

The controller is an Intel i5 computer with 16GB of RAM.

The APs have an Intel i7 CPU @ 1.80GHz with 8GB of

RAM and Atheros AR9485 2.4 GHz IEEE 802.11n and gigabit

Ethernet. The clients are notebooks with Atheros ath9k IEEE

802.11n and one gigabit Ethernet NICs. The clients run Firefox

version 69.0.2. The video server is a VM with 2GB RAM and

an Intel 2.3GHz processor, running nginx with the MPEG-TS

Live Module.

IV. MOS PREDICTOR

This section presents the data collection, training and eval-

uations of the MOS predictor.

A. Dataset

The dataset consists of network parameters as features, and

PSNR as outputs. PSNR compares the original video stored

on the server with the video received by the client. This

was calculated using Video Quality Measurement Tool (https:

//mmspg.epfl.ch/downloads/vqmt/). The dataset was collected

over a testbed. Traffic generation between clients and AP uses

Firefox. Each round takes 12 hours. Data was collected in a

1-second period for 15 days, providing over 1 million samples.

The label of each instance, called MOS_PSNR, converts

PSNR into a MOS, which from now on we call MOS_PSNR.

MOS_PSNR incorporates video stalls, which lower the MOS.



Table II
MAPPING PSNR TO MOS SCALE

PSNR in dB MOS Quality

> 37 5 Excellent

31 – 77 4 Good

25 – 31 3 Fair

20 – 25 2 Poor

< 20 1 Bad

The reference resolution is the highest resolution in our dataset

(4K). Table II, obtained in [18] presents MOS_PSNR.

The MOS_PSNR metric at time t is the weighted mean

of the perceived MOS in the interval and the stalled MOS:

MOS_PSNRt =

m∑

j=1
F(PSNR

(j)
t )×p

(j)
t +ιt

Tt
, where Tt =

m
∑

j=1

p
(j)
t + ιt is the total sampling time in the interval t, p

(j)
t

is the time that the chunk j ran in the video player, ιt is

how much time the video stopped during the interval t, and

F(PSNRt) is the MOS value for frame j using Table II.

B. Model Training

We trained the classifier for the videos with the dataset

presented previously. In a production environment, there must

be a MOS predictor that generalizes to a wide variety of videos

available for streaming (e.g. [19], [20]). Previous works show

that it is possible to train QoE models using a few videos,

and this model is able to generalize to other videos as long as

they use the same video parameters and codecs [21]. The MOS

predictor provides 100% accuracy in our train and test set. The

model return the PSNR of the videos we are streaming, as

desired. The frame sent by the server and the frame received

by the client do not need to be compared in real time and,

therefore, overfitting does not influence the result.

V. CONTROL LOOP EVALUATION

This section describes the performance evaluation of the

complete control loop. The experiment aims to show that the

proposed control loop improves the QoE of DASH videos.

A. Baselines

There are no QoE-aware techniques in the literature that

adjust wireless parameters. We consider three baselines:

• overlapping channel baseline: The APs run in the same

channel (channel 1, the channel with the largest number of

interfering APs in the neighborhood of our testbed), and

with the highest transmission power. Due to the physical

configuration of our testbed, this generates the highest level

of co-interference generated by the clients.

• non-overlapping channel baseline: The APs are con-

figured in opposite channels (channels 1 and 11), and the

highest transmission power. The channels do not overlap, so

one client’s transmissions do not affect the other’s. The full

power ensures that the client can achieve the highest possible

bitrate and, minus the interference of third party networks.

• ACS baseline: This algorithm is implemented in all

Linux-based AP. It selects the best channel based on the

automatic channel selection (ACS) function implemented in

hostapd3. It is calculated for each channel, and the algorithm

selects the channel with the lowest interference factor. The

transmission power is always set to the maximum value.

Finally, the results present the performance of the proposed

control loop, which are marked as Learning.

B. Control loop hyperparameters

The experiments begin with the system having zero knowl-

edge. We empirically set the hyperparameters as shown in

Table V. The value of γ was selected to favor an immediate

reward. We wanted the control loop to guarantee a high reward

quickly, mainly because an improvement in network perfor-

mance can be amplified as a result of the DASH adaptability,

which thus improves the result for the client. The control loop

runtime is 30 seconds, which is 25% of the video playtime, and

recent players (e.g. DASH.js) can switch to a higher quality

segment immediately (even in the middle of a chunk). The

control loop is executed every thirty seconds. Therefore, state

and reward information is aggregated with this granularity. We

will analyze the effect of changing parameters in future work.

C. MOS results

Figure 3 presents the cumulative distribution function (CDF)

of MOS_PSNR. The average MOS using our proposal is

approximately 4.58 out of 5, while the best result using the

baselines is 3.8. The non-overlapping baseline obtains better

results than the overlapping baseline, and yet the control loop

gives better results than both. This is true even despite the

prediction errors, because there is still a good correlation

between the prediction value and the actual MOS_PSNR

value. We observed that about 50% of the control loop results

reach the maximum MOS, while the non-overlapping and

overlapping baselines only reach this value for 30% and 10%

of their results, respectively.

Table III shows the regret obtained during the whole ex-

periments. Regret measures the absolute difference between

the sum of the rewards obtained by the strategy adopted by

the agent, and the optimal strategy, i.e., a perfect MOS of 5.

In other words, lower regrets indicate more effective control

loops. Note that these results consider the entire experiment,

including the initial learning phase, because the control loop

reaches the maximum MOS in about 3 intervals. The table

also shows the confidence interval with 95% confidence.

The proposed control loop has the lowest regret value. The

control loop improves the regret by 65%, 84%, and 82%

if compared to the non-overlapping, overlapping, and ACS

baselines, respectively. Non-overlapping has lower regret than

overlapping, because in the former, the APs are on non-

interfering channels. However, we expected ACS to behave

similar to non-overlapping, but its results are close to the

overlapping configuration. This occurs because in many cases

ACS selects the same channel for both APs.

As mentioned previously, one of the objectives of the

proposed control loop is to provide a more homogeneous QoE

3https://wireless.wiki.kernel.org/en/users/documentation/acs
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Figure 3. Comparison among the baselines using
MOS_PSNR.

Table III
COMPARISON OF THE REGRET OBTAINED USING

THE CONTROL LOOP.

Stats Mean Impr.

Non-overlapping 1.167 ± 0.024 64.5%
Overlapping 2.602 ± 0.019 84.1%
ACS 2.286 ± 0.029 81.9%
Learning 0.414 ± 0.004 —

Table IV
COMPARISON OF THE FAIRNESS INDEX OBTAINED

DURING THE EXPERIMENT.

Stats Mean Impr.

Non-overlapping 0.667 ± 0.008 49.0%
Overlapping 0.518 ± 0.006 91.9%
ACS 0.461 ± 0.010 115.6%
Learning 0.994 ± 0.001 —

Table V
HYPERPARAMETERS

Where Hyperparameter Value

TCN

Number of filters 24
Padding causal
Kernel size 2
Kernel initialization He normal [22]

Activation function relu1

Dilation levels 4
Dropout 5 %

Optimization

Optimizer Adam
Learning rate (α) 0.002
Epochs 50

Replay
Episodes 10
Batch size 32
Capacity 2000

Q-Learning

Initial epsilon (ϵ0) 0.1
Epsilon decay (ϵδ) 0.995
Discount factor (γ) 0.95

Notes: 1The last layer uses a linear activation function.

among the video users. We adopt the Hossfeld fairness index

as our measure of homogeneity among clients. Table IV shows

the Hossfeld fairness index values for the baselines and the

proposed control loop. The row with the mean shows the

confidence interval with 95% confidence. For the mean values,

the overlapping baseline obtained the worst value, while the

best value is obtained with the proposed control loop. The

control loop improves the fairness index by 49%, 92%, and

116% when compared, respectively, to the non-overlapping,

overlapping, and ACS baselines.

Another important measure in control loops in general is

how long the control loop takes to converge to its best solution.

Figure 4 shows the MOS convergence time. The X-axis shows

the timesteps required for convergence (120 timesteps equals

one-hour, which is the test maximum execution time). The

proposed control loop shows better results than the others,

converging in 50% of cases at least twice as fast. Table

VI shows the average, the maximum and the percentage

improvement in convergence time observed for each case.

These results reinforce the fact that our control loop achieves

better average MOS than the others during all the experiment.

We observe in our data that using the control loop, whenever

the MOS falls below 5, the algorithm can return to the

maximum MOS situation on average in 111.0±13.0 seconds as

shown in Table VI, i.e., the algorithm can recover to full MOS

in up to four interactions (on average) after the disturbance.

In our experiments, due to the simplicity of our testbed, the

agent reached the maximum MOS, and only in about 20% of

cases the MOS drops to less than 4.

VI. RELATED WORK

Reference [23] controls the transmission power using RL,

however, their proposal applies to small long term evolution

(LTE) cells, and only to voice transmission. Reference [24]

also controls the transmission power and use QoE to guide

the Q-learning (QL) algorithm, but their proposal alters the

bitrate of the downloaded video and data, while ours selects

the channel and the transmission power. Their proposal applies

to secondary users in 5G cognitive networks, and limits the

amount of interference over the primary users below a limit,

while our proposal maximizes the QoE and copes with the

co-interference from other APs.

In [25] the authors improve the quality of the video stream

by allowing the client to request different chunks of one

segment of the video using different links. They use policy

iteration to find the best action, i.e., select the resolution

of chunk for each link. Thus, their proposal is for a multi-

link client, which performs load balancing and rate adaptation

among the links, but does not control the network.

Some approaches control the video transmission at the

source or the destination, while ours uses the default DASH

configuration and alters the users connection to the network.

Reference [26] uses RL to improve the video quality at the

wireless client, and the learner adapts the client requests to

the DASH server. Further, it does not control the network.

Meanwhile, [20] also uses RL to decide what is the best

video quality segment, which is very similar to [26]. Also,

the decision is different, the former proposal defines the value

needed, while the latter decides if the quality should increase,

decrease or remain the same. The authors in [27] alter the

video sender bitrate (SBR) at the video server, according to

users’ QoE requirement, thus they do not control the network.

Also, their proposal defines a function that predicts the SBR.

Finally, as far as we know there is only one proposal

that modifies the WiFi parameters to improve video quality.

EdgeDASH [28] adapts the airtime of clients to improve video

quality, together with a client-assisted selection of the quality

level being played. Their article assumes a perfect wireless

medium, disregarding the interference of neighboring APs.

VII. CONCLUSION AND FUTURE WORK

This paper showed an intelligent control loop to improve

QoE in video applications. The control loop employs Deep



Table VI
TIME (S) TAKEN BY THE SYSTEM TO CONVERGE

TO MAXIMUM MOS

Stats Mean Max Impr.

Non-overlapping 185.5 810.0 40.5%
Overlapping 252.8 1,260.0 56.3%
ACS 167.3 930.0 34.0%
learning 111.0 420.0 —
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Figure 4. CDF of convergence time to MOS.

Reinforcement Learning to decide the best transmission power

and wireless channel to be used on many APs managed by a

controller. The video client’s QoE is estimated using a MOS

model running on the controller, eliminating the need for

periodic user feedback.

The proposed control loop improves the regret by up to

84% when compared to the baselines. The control loop also

improves the fairness by up to 115%. We simplified the state

representation using interpretability techniques. The perfor-

mance of the system with fewer features is similar to that

obtained with the initial proposal. Future work will improve

the practicality of the system as well as the models.
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