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Integer Programming with GCD Constraints

Anonymous author(s)

Abstract

We study the non-linear extension of integer programming with greatest common divisor con-
straints of the form gcd(f, g) ∼ d, where f and g are linear polynomials, d is a positive integer,
and ∼ is a relation among ≤,=, 6= and ≥. We show that the feasibility problem for these systems
is in NP, and that an optimal solution minimizing a linear objective function, if it exists, has
polynomial bit length. To show these results, we identify an expressive fragment of the existen-
tial theory of the integers with addition and divisibility that admits solutions of polynomial bit
length. It was shown by Lipshitz [Trans. Am. Math. Soc., 235, pp. 271–283, 1978] that this the-
ory adheres to a local-to-global principle in the following sense: a formula Φ is equi-satisfiable
with a formula Ψ in this theory such that Ψ has a solution if and only if Ψ has a solution
modulo every prime p. We show that in our fragment, only a polynomial number of primes of
polynomial bit length need to be considered, and that the solutions modulo prime numbers can
be combined to yield a solution to Φ of polynomial bit length. As a technical by-product, we
establish a Chinese-remainder-type theorem for systems of congruences and non-congruences
showing that solution sizes do not depend on the magnitude of the moduli of non-congruences.
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1 Background and overview of main results1

Integer programming, the problem of finding an (optimal) solution over the integers to a systems2

of linear inequalities A · x ≤ b, is a central problem computer science and operations research.3

Feasibility of its 0-1 variant constituted one of Karp’s 21 seminal NP-complete problems [10]. In4

the 1970s, membership of the unrestricted problem in NP was established independently by Borosh5

and Treybig [3], and von zur Gathen and Sieveking [25]. To show membership in NP, both groups of6

authors established a small witness property: if an instance of integer programming is feasible then7

there is a solution whose bit length is polynomially bounded in the size of the instance. Reductions8

to integer programming have become a standard tool to show membership of numerous problems in9

NP. In this paper, we study a non-linear generalization of integer programming which additionally10

allows to constrain the numerical value of the greatest common divisor (GCD) of two linear terms.11

Throughout this paper, denote by R the set of real numbers, Z the set of integers, N the set
of non-negative integers including zero, and P the set of all prime numbers. For R ⊆ R, denote
by R+ := {r ∈ R : r > 0}. Formally, an instance of integer programming with GCD constraints
(IP-GCD) is a mathematical program of the following form:

minimize c⊺x

subject to A · x ≤ b

gcd(fi(x), gi(x)) ∼i di, 1 ≤ i ≤ k ,

where c ∈ Zn, A ∈ Zm×n, b ∈ Zm, di ∈ Z+, x = (x1, . . . , xn) is a vector of unknowns, the fi and gi12

are linear polynomials with integer coefficients, and ∼i ∈ {≤,=, 6=, ≥}. We call a ∈ Zn a solution if13

setting x = a respects all constraints; a is an optimal solution if the value of c⊺a is minimal among14

all solutions. We will first and foremost focus on the feasibility problem of IP-GCD and discuss15

finding optimal solutions later on in this paper. The main result of this paper is to establish a small16

witness property for IP-GCD and consequently membership of the problem in NP.17

Theorem 1. If an instance of IP-GCD is feasible then it has a solution (and an optimal solution,18

if one exists) of polynomial bit length. Hence, IP-GCD feasibility is NP-complete.19

We remark that IP-GCD feasibility is NP-hard even for a single variable, in contrast to classical20

integer programming, which is polynomial-time decidable for any fixed number of variables [9]. It is21

shown in [1, Theorem 5.5.7] that deciding a univariate system of non-congruences x 6≡ ai (mod mi),22

1 ≤ i ≤ k, is an NP-hard problem. Hardness of IP-GCD then follows from observing that a non-23

congruence x 6≡ a (mod m) is equivalent to gcd(x− a,m) 6= m.24

1.1 The NP upper bound at a glance25

Even decidability of the IP-GCD feasibility problem is far from obvious, but can be approached by26

observing that deciding a GCD constraint is a “Diophantine problem ‘in disguise’” [11]. It follows27

from Bézout’s identity that gcd(x, y) = d if and only if there are a, b, u, v ∈ Z such that u · d = x,28

v · d = y, and d = a · x + b · y. While arbitrary systems of quadratic Diophantine equations are29

undecidable [16], we see that the unknowns a, b, u, v are only used to express divisibility properties.30

Hence, those equations can equivalently be expressed in the existential fragment of the first-order31

theory of the structure Ldiv = (Z, 0, 1,+,≤, |), where m | n holds whenever there exists a unique1
32

1This definition implies that 0 | n does not hold for any n ∈ Z, 0 included. Throughout this paper, we assume

wlog. that f 6= 0 for any divisibility f | g. For GCD, we instead use the standard interpretation where gcd(0, n) = n

for any n ∈ N; this mismatch between the interpretation of divisibility and GCD is for technical convenience only.

2



integer q such that n = q ·m:33

u · d = x ∧ v · d = y ∧ d = a · x+ b · y ⇐⇒ ∃s ∃t : d | x ∧ d | y ∧ x | s ∧ y | t ∧ d = s+ t .

The full first-order theory of Ldiv is easily seen to be undecidable [17]. However, decidability of34

its existential fragment was independently shown by Lipshitz [14, 15] and Bel’tyukov [2], and later35

also studied by van den Dries and Wilkie [23], Lechner et al. [12], and Starchak [21, 22]. The precise36

complexity of the existential fragment is a long-standing open problem. It is known to be NP-37

complete for a fixed number of variables [15, 12], and membership in NEXP has only more recently38

been established [12]. In particular, the bit length of smallest solutions can be exponential [12], as39

demonstrated by the family of formulae Φn := xn > 1 ∧∧n−1
i=0 xi > 1 ∧ xi | xi+1 ∧ xi + 1 | xi+1, for40

which any solution satisfies xn ≥ 22
n
. From those results, it is possible to derive that IP-GCD fea-41

sibility is decidable in NEXP. However, IP-GCD does not require the full expressive power of Ldiv.42

In fact, the first-order theory of Ldiv can be seen to be equivalent to the theory of (Z, 0, 1,+,≤, gcd)43

in which the divisibility predicate is replaced by a full ternary relation gcd(x, y) = z. In contrast,44

IP-GCD only requires countably many binary predicates (gcd(·, ·) = d)d∈Z+ and (gcd(·, ·) ≥ d)d∈Z+45

with the obvious interpretation. Several expressiveness results concerning (fragments of) the ex-46

istential theory of the structure (Z, 0, 1,+,≤, (gcd(·, ·) = d)d∈Z+) have recently been provided by47

Starchak [20]. The question of whether this theory admits solutions of polynomial bit length is48

explicitly stated as open in [20]. Theorem 1 answers this question positively.49

Our starting point for establishing Theorem 1 is Lipshitz’ [14, 15] decision procedure for the50

existential theory of Ldiv that was later refined by Lechner et al. [12]. Given a system of divisibility51

constraints Φ(x) :=
∧m
i=1 fi(x) | gi(x) for linear polynomials fi and gi, Lipshitz’ algorithm first52

computes from Φ an equi-satisfiable formula Ψ in so-called increasing form. Informally speaking, Ψ53

is in increasing form whenever Ψ is a system of divisibility constraints augmented with constraints54

imposing a total (semantic) ordering on the values of the variables in Ψ, and whenever the largest55

variable with respect to that ordering occurring in any non-trivial divisibility f | g implied by Ψ only56

appears in the right-hand side g. For instance, the system x < y∧x+1 | y−2 is in increasing form,57

but adding x+1 | x+ y results in a non-increasing system, since x+1 | y− 2 ∧ x+1 | x+ y implies58

x+1 | x+y− (y−2), i.e., x+1 | x+2. Such implied divisibilities are captured in [12] by the notion59

of a divisibility module that we later formalize in Section 1.3. One conceptual contribution of this60

paper is to identify a weaker notion of formulae in increasing form that is syntactic in nature, as it61

does not explicitly enforce a particular ordering among the variables. Informally speaking, a system62

of divisibility constraints Ψ is r-increasing whenever there exists a partial order ≺ over the free63

variables of Ψ whose longest chain is of length at most r−1, and for any non-trivial divisibility f | g64

implied by Ψ, the set of variables occurring in f | g has a ≺-maximal variable that only appears in65

the right-hand side g. Referring to the previous example, we observe that x+1 | y−2 is 2-increasing,66

witnessed by the (total) order x≺y. This concept is fundamental for establishing Theorem 1, since,67

as we discuss below, for fixed r, any satisfiable r-increasing formula Ψ of Ldiv has a smallest solution68

of polynomial bit length, and Ldiv formulae resulting from IP-GCD instances are 3-increasing.69

Returning to Lipshitz’ approach, the key property of existential Ldiv formulae in increasing form70

is that they enable appealing to a local-to-global property: Lipshitz shows that any Φ in increasing71

form has a solution over Z if and only if Φ has a solution in the p-adic integers Zp for every prime p72

belonging to a finite set of difficult primes P+(Φ), the other primes being “easy” in the sense that a73

p-adic solution for them always exists and that they do not influence the bit length of the minimal74

solution of Φ. In order to combine the p-adic solutions to an integer solution of Φ, Lipshitz invokes75

(a generalized version of) the Chinese Remainder Theorem (CRT):76
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Theorem 2 (CRT). Let M = {m1, . . . ,mk}, b1, . . . , bk ∈ Z be such that mi and mj are coprime77

for all 1 ≤ i 6= j ≤ k. The system of simultaneous congruences x ≡ bi mod mk, 1 ≤ i ≤ k, has a78

solution, and all solutions lie on the shifted lattice a+ Z ·ΠM for some a ∈ Z.79

Here and below, for a finite set M ⊆ Z, we denote by ΠM the product of all elements in M . It80

follows that the smallest non-negative solution of the system of congruences is of polynomial bit81

length. As a key technical contribution of this paper, required to establish Theorem 1, we develop82

the following Chinese-remainder-style theorem that includes additional non-congruences and yields83

a bound for the smallest solution that is, in certain settings, substantially better than the one that84

can be achieved by the CRT. For a finite set S, we write #S for its cardinality.85

Theorem 3. Let d ∈ Z+, M ⊆ Z+ finite, and Q ⊆ P be a non-empty finite set of primes such that
the elements of M ∪Q are pairwise coprime, M ∩Q = ∅, and min(Q) > d. Consider the univariate
system of simultaneous congruences and non-congruences S defined by

x ≡ bm (mod m) m ∈M
x 6≡ cq,i (mod q) q ∈ Q, 1 ≤ i ≤ d .

Then, for every k ∈ Z, S has a solution in the interval {k, . . . , k +ΠM · f(Q, d)}, where86

f(Q, d) :=
(
(d+ 1) ·#Q

)4(d+1)2(3+ln ln(#Q+1))
.87

The strength of Theorem 3 can be seen as follows. While it is possible to deduce from the classical88

CRT that the solutions of S are periodic with period ΠQ · ΠM , we have ΠQ≫ f(Q, d) as the89

magnitude of the primes in Q grows, as in particular f(Q, d) only depends on #Q and d. We further90

discuss some results used to establish Theorem 3 in Section 1.2 below.91

Another key technical contribution towards establishing Theorem 1 is to propose a refinement of92

the set of difficult primes P+(Φ). The definition of this set was changed from [14] to [12] to decrease93

its bit length from doubly to singly exponential. We refine the definition once more, and show that94

we obtain a set of polynomially many primes of polynomial bit length. This result is achieved by an95

in-depth analysis of how the integer solution for Φ is constructed starting from the p-adic solutions.96

The bound on P+(Φ) also enables us to derive an NP algorithm for increasing formulae. It is shown97

in [6] that, for every prime p ∈ P, the existential theory of the p-adic integers with linear p-adic98

valuation constraints is decidable in NP. Deciding an increasing Φ thus reduces to a polynomial99

number of independent queries to an NP algorithm and is hence in NP. It is worth mentioning100

that the family of formulae Φn above is increasing only for the ordering x1 ≺ x2 ≺ · · · ≺ xn (i.e.,101

it is n-increasing but not (n − 1)-increasing). Hence, even though the smallest solution of Φn has102

exponential bit length, our bound on P+(Φ) enables us to witness the existence of a solution in NP.103

Moreover, this bound leads to a further main result of this paper, showing that we can construct104

an integer solution for Φ from the relevant p-adic solutions that is asymptotically smaller when105

compared to the existing local-to-global approaches [14, 12]. These improved bounds also crucially106

rely on Theorem 3. To formally state this result, we require some further definitions. Given v ∈ Zd,107

denote by ||v|| the maximum absolute value of the components of v, and by 〈·〉 the bit length108

encoding an object under some reasonable standard encoding in which numbers are encoded in109

binary. Furthermore, for a system of divisibility constraints Φ :=
∧m
i=1 fi | gi, denote by P(Φ) the110

set of all primes that are less or equal than m or that divide some number occurring in Φ. For111

p ∈ P and a ∈ Z \ {0}, we write vp(a) for the largest k ∈ N such that a = pkb for some b ∈ Z, and112

vp(0) :=∞. We say that Φ has a solution modulo p if there is some bp ∈ Zd such that fi(bp) 6= 0 and113

vp(fi(bp)) ≤ vp(gi(bp)) for all 1 ≤ i ≤ m. Note that every integer solution is a solution modulo p for114

all p ∈ P, and therefore if Φ does not have a solution modulo some prime p, then Φ is unsatisfiable115

4



over Z. The following theorem now gives bounds on the bit length of an integer solution of Φ in116

terms of solutions modulo p for primes in P(Φ).117

Theorem 4. Let Φ(x) be an r-increasing system of divisibility constraints such that Φ has a solution118

bp ∈ Zd modulo p for every prime p ∈ P(Φ). Then Φ has infinitely many solutions, and a solution119

a ∈ Nd such that 〈||a||〉 ≤ (〈Φ〉+max{〈||bp||〉 : p ∈ P(Φ)})O(r).120

The bound achieved in Theorem 4 primarily improves upon existing upper bounds by being expo-121

nential only in r, as opposed to exponential in poly(d) as established in [12], where d is the number122

of variables of Φ. In particular, for r fixed, as is the case for systems of divisibility constraints re-123

sulting from IP-GCD systems, Theorem 4 yields small solutions of polynomial bit length. Observe124

that Theorem 4 does not explicitly invoke the set of difficult primes P+(Φ), but rather the set P(Φ).125

The latter is the subset of those primes p in P+(Φ) for which solutions modulo p might not exist,126

and one of the initial steps in the proof Theorem 4 is to compute solutions modulo q for every127

prime q ∈ P+(Φ) \ P(Φ). We give further details on the proof of Theorem 4 in Section 1.3 and then128

outline in Section 1.4 how it can be used to obtain the NP upper bound for Theorem 1. But first,129

we continue with the promised discussion on some details on Theorem 3.130

1.2 Small solutions to systems of congruences and non-congruences131

Let us introduce some notation. Given a, b ∈ Z, we define [a, b] := {a, a + 1, . . . , b}. We write132

div(a) ⊆ N for the (positive) divisors of a and P(a) for P ∩ div(a). A function m : Z+ → R+ is133

multiplicative if m(a · b) = m(a) ·m(b) for all a, b ∈ N coprime (so, m(1) = 1).134

The proof of Theorem 3 is based on an abstract version of Brun’s pure sieve [4]. Similarly135

to other results in sieve theory, Brun’s pure sieve considers a finite set A ⊆ Z and a finite set of136

primes Q, and (subject to some conditions) derives bounds on the cardinality of the set A\⋃q∈QAq,137

where Aq is the subset of the elements in A that are divisible by q. In other words, the sieve studies138

the number of x ∈ A satisfying x 6≡ 0 (mod q) for every q ∈ Q. In comparison, Theorem 3 requires139

x to be non-congruent modulo q to multiple integers, instead of non-congruent to just 0. The key140

insight in overcoming this difference is to notice that Brun’s result can be established for arbitrary141

sets Aq, as long as a simple independence property holds together with Brun’s density property142

(a formal statement is given below). A second technical issue concerns the bounds obtained from143

Brun’s sieve. In its standard formulation (see e.g. [5, Ch. 6]), given an arbitrary u ∈ Z+, the sieve144

gives an estimate on the cardinality of the set A \⋃q∈Q∩[2,u]Aq that depends on u; and to estimate145

#
(
A\⋃q∈QAq

)
one sets u as the largest prime in Q. The resulting bound is, however, inapplicable146

in our setting as we seek to be independent of the bit length of the primes in Q. This issue is147

overcome by revisiting the analysis of Brun’s pure sieve from [5], and by requiring an additional148

hypothesis: the multiplicative function m : Z+ → R+ used to express Brun’s density property must149

satisfy m(q) ≤ q − 1 for all q ∈ Q. Those insights and requirements lead us to the following sieve.150

Lemma 1. Let A ⊆ Z and Q ⊆ P be non-empty finite sets, and let n := ΠQ and d ∈ Z+. Consider151

a multiplicative function m : Z+ → R+ satisfying m(q) ≤ q−1 on all q ∈ Q, and an (error) function152

σ : N→ R. Let (Ar)r∈div(n) be a family of subsets of A satisfying the following two properties:153

independence: Ar·s = Ar ∩As, for every r, s ∈ div(n) coprime, and A1 = A;154

density: #Ar = #A · m(r)
r

+ σ(r), for every r ∈ div(n).155

Assume |σ(r)| ≤ m(r), and m(q) ≤ d, for every r ∈ div(n) and q ∈ Q. Then,156

1

2
·#A ·Wm(Q)− g(Q, d) ≤ #

(
A \

⋃
q∈Q

Aq

)
≤ 3

2
·#A ·Wm(Q) + g(Q, d),
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where Wm(Q) :=
∏
q∈Q

(
1− m(q)

q

)
and g(Q, d) := (d ·#Q)4(d+1)2(2+ln ln(#Q+1))+2.157

Note that setting Ar = {a ∈ A : r | a} for every r ∈ div(n), as usually done in sieve theory, results158

in a family of subsets of A satisfying the independence property. We defer the proof of Lemma 1159

and only sketch here how to establish Theorem 3. Both proofs are given in full details in Section 2.160

Proof sketch of Theorem 3. Below, the set of primes Q and d ∈ Z+ defined in the statement161

of Theorem 3 coincide with their homonyms in Lemma 1. Let n := ΠQ. By the CRT, the system of162

congruences ∀m ∈M , x ≡ bm (mod m) has a solution set SM that is a shifted lattice with period163

ΠM . Fix some k ∈ Z. We consider the parametric set B(z) := [k, k + z] ∩ SM , and find a small value164

for z ∈ N ensuring that B(z) contains at least one solution to S. To do so we rely on Lemma 1: we165

set A := B(z), and for every q ∈ Q, define Aq := {a ∈ A : there is i ∈ [1, d] s.t. a ≡ cq,i (mod q)}.166

By definition, the sieved set A \ ⋃q∈QAq corresponds to the set of solutions of S that belong in167

[k, k + z]. The definition of Aq is extended to every r ∈ div(n) not prime as Ar := A ∩⋂q∈P(r)Aq.168

We establish that these sets satisfy the independence and density properties of Lemma 1, subject169

to the following multiplicative function: m(r) :=
∏
q∈P(r)#{cq,i mod q : i ∈ [1, d]}, i.e., m(r) is170

the product of the number of distinct values (cq,i mod q), for every q ∈ P(r). By hypothesis171

min(Q) > d, hence m(q) ≤ d ≤ q − 1 for every q ∈ Q. Furthermore, we show that m and the error172

function σ(r) := #Ar −#A · m(r)
r

satisfy the assumption |σ(r)| ≤ m(r), for all r ∈ div(n). Hence,173

by Lemma 1, we obtain a lower bound on the sieved set A \⋃q∈QAq. Lastly, we show that taking174

z = f(Q, d) makes the lower bound strictly positive, concluding the proof.175

1.3 Small solutions to r-increasing systems of divisibility constraints176

We now provide an overview on the technical machinery underlying Theorem 4. Our main goal here177

is to formalize the notion of difficult primes P+(Φ) and to sketch the proof of Theorem 4. The full178

proof is given in Section 3. We first need several key definitions and auxiliary notation. Subsequently,179

Z[x1, . . . , xd] denotes the set of linear polynomials f(x1, . . . , xd) = a1 · x1 + · · ·+ ad · xd + c, often180

written as f(x) = a⊺x+ c; when clear from the context, we omit the vector of variables x and write181

f instead of f(x). The integers a1, . . . , ad are the coefficients of f , c is its constant. A polynomial f182

is primitive if it is non-zero and gcd(f) = 1, where gcd(f) := gcd(a1, . . . , ad, c). For any b ∈ Z,183

we write b · f := b · a⊺x + b · c, and Zf := {b · f : b ∈ Z}. The primitive part of a polynomial184

g is the unique primitive polynomial f such that g = gcd(g) · f . Let Φ(x) :=
∧m
i=1 fi(x) | gi(x)185

be a system of divisibility constraints. We let terms(Φ) := {fi, gi : 1 ≤ i ≤ m}, and, given a finite186

sequence {(ni, xi)}i∈I of integer-variable pairs, write Φ[ni / xi : i ∈ I] for the system obtained from187

Φ by evaluating xi as ni, for all i ∈ I.188

Divisibility modules and r-increasing form. As stated in Section 1.1, when dealing with189

a system of divisibility constraints Φ(x) one has to consider all divisibility constraints that are190

implied by Φ. This is done by relying on the notion of divisibility module. The divisibility module191

of a primitive polynomial f with respect to Φ, denoted by Mf (Φ), is the smallest set such that192

(i) f ∈ Mf (Φ); (ii) Mf (Φ) is a Z-module, i.e., Mf (Φ) is closed under integer linear combinations;193

and (iii) if g | h is a divisibility constraint in Φ and b ·g ∈ Mf (Φ) for some b ∈ Z, then b ·h ∈ Mf (Φ).194

The following property holds: for every g ∈ Mf (Φ) and solution a to Φ, the integer f(a) divides195

g(a). The divisibility module Mf (Φ) is a vector subspace, hence it is spanned by linear polynomials196

h1, . . . , hℓ ∈ Z[x1, . . . , xd], that is Mf (Φ) = Zh1 + · · ·+ Zhℓ; where + is the Minkowski sum.197

We can now formalize the key concept of r-increasing formula. Let ≺ be a syntactic order on198

variables x = (x1, . . . , xd). Given f ∈ Z[x1, . . . , xd], we write LV≺(f) for the leading variable of199
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f , that is the variable with non-zero coefficient in f that is maximal wrt. ≺; if f is constant then200

LV≺(f) := ⊥, and we postulate ⊥≺ xi for all 1 ≤ i ≤ d. We omit the subscript ≺ when it is clear201

from the context. A system of divisibility constraints Φ is in increasing form (wrt. ≺) whenever202

Mf (Φ) ∩ Z[x1, . . . , xk] = Zf for every primitive polynomial f with LV(f) = xk, for every 1 ≤ k ≤ d.203

Given a partition X1, . . . , Xr of the variables x, we write (X1≺ · · · ≺Xr) for the set of all orders ≺204

on x with the property that for any two x, x′, if x ∈ Xi and x′ ∈ Xj for some i < j then x≺ x′.205

Definition 1. A system of divisibility constraints Φ(x) is r-increasing if there exists a partition206

X1, . . . , Xr of x such that Φ is in increasing form wrt. every ordering ≺ in (X1 ≺ · · · ≺Xr).207

Observe that for any ≺ from (X1 ≺ · · · ≺Xr), we have that for every primitive linear polynomial f208

and g ∈ Mf (Φ), if g 6∈ Zf then LV≺(f) ∈ Xi and LV≺(g) ∈ Xj for some i < j.209

The elimination property and S-terms. To handle systems in increasing form, two more210

concepts are required in the context of the local-to-global property. First, to compute the “global”211

integer solution starting from the “local” solutions modulo primes, the divisibility modules of all212

primitive parts of polynomials in a system of divisibility constraints Φ need to be taken into account.213

One way to do this, introduced in [12], is to add bases for these modules directly to Φ. This leads214

to the notion of elimination property: Φ(x) has the elimination property for the order x1 ≺ · · · ≺ xd215

of the variables in x whenever for every primitive part f of a polynomial appearing in the left-hand216

side of some divisibility in Φ, and for every 0 ≤ k ≤ d, {g : LV(g) � xk and f | g appears in Φ} is a217

set of linearly independent polynomials that forms a basis for Mf (Φ)∩Z[x1, . . . , xk], where x0 := ⊥.218

We show that closing a formula under the elimination property can be done in polynomial time.219

Lemma 2. There is a polynomial-time algorithm that, given a system of divisibility constraints220

Φ(x) :=
∧m
i=1 fi | gi and an order x1 ≺ · · · ≺ xd for x, computes Ψ(x) :=

∧n
i=1 f

′
i | g′i with the221

elimination property for ≺ that is equivalent to Φ(x), both over Z and modulo each p ∈ P.222

In a nutshell, for every primitive part f of a polynomial appearing in the left-hand side of a di-223

visibility in Φ, the algorithm first computes a finite set S spanning Mf (Φ). The algorithm then224

uses the Hermite normal form of a matrix, whose entries are the coefficients and constant of the225

elements of S, to obtain linearly independent polynomials h1, . . . , hℓ with different leading variables226

with respect to ≺. The system Ψ is then obtained by replacing divisibility constraints of the form227

f | g appearing in Φ with the divisibilities f | h1, . . . , f | hℓ. Full details are given in Appendix C.228

The second concept is related to how Theorem 4 is proven. In a nutshell, in the proof we itera-229

tively assign values to the variables in a way that guarantees the system of divisibility constraints230

to stay in increasing form. To do that, additional polynomials need to be considered. For an ex-231

ample, consider the following system of divisibility constraints Φ in increasing form for the order232

u≺ v ≺ x≺ y ≺ z, and with the elimination property for that order:233

Φ := v | u+ x+ y ∧ v | x ∧ y + 2 | z + 1 ∧ v | z .234

From the first two divisibility constraints, we have (u+ y) ∈ Mv(Φ); i.e., (u− 2)+ (y+2) ∈ Mv(Φ).235

Therefore, if u were to be instantiated as 2, the resulting formula Φ′ would satisfy (y+2) ∈ Mv(Φ
′)236

and hence (z + 1) ∈ Mv(Φ
′), from the third divisibility constraint. Then, 1 ∈ Mv(Φ

′) would237

follow from the last divisibility, violating the constraints of the increasing form. The reason why238

increasingness is lost when setting u = 2 stems from the fact that in Φ′ we have an implied divisibility239

v | y+2, where y+2 is a left-hand side that was not present in Mv(Φ). We can avoid this problem240

by considering the polynomial u−2 and forcing it to be non-zero. The main issue is then to identify241
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all such problematic polynomials, which is done with the following notion of S-terms. Less refined242

versions of this notion, as considered in [14, 12], result in exponentially larger sets of polynomials.243

Given polynomials f(x) and g(x) with LV(f) = xl and LV(g) = xk, we define their S-polynomial244

S(f, g) := bk · f − al · g, where al and bk are coefficients of xl in f and xk in g, respectively. For245

constant f (resp. g), i.e., LV(f) = ⊥, above al := f (resp. bk := g). Note that if f and g are246

non-constant and LV(f) = LV(g) then LV(S(f, g)) ≺ LV(f). For any X ⊆ Z[x1, . . . , xn], we define247

S(X) := X ∪ {S(f, g) : f, g ∈ X}. Given a system of divisibility constraints Φ with the elimination248

property for ≺ and a primitive polynomial f , we define the set of S-terms for f , denoted as Sf (Φ),249

to be the smallest set such that (i) terms(Φ) ⊆ Sf (Φ), and (ii) if f | g occurs in Φ and h ∈ Sf (Φ)250

with LV(g) = LV(h), then S(g, h) ∈ Sf (Φ). We write ∆(Φ) for the set of all S-terms for f , where251

f is any primitive part of a polynomial in terms(Φ).252

The set of difficult primes. We now turn towards identifying a small set of difficult primes P+(Φ)253

of polynomial bit length. There are two categories of difficult primes: those for which a solution to254

Φ modulo p is not guaranteed to exist, and those for which such a solution always exists, but which255

still influences the size of the minimal integer solution for Φ. The former is the set P(Φ) defined in256

Section 1.1. The next lemma shows that Φ has a solution modulo any prime not in P(Φ).257

Lemma 3. Let Φ(x) :=
∧m
i=1 fi | gi and p ∈ P \ P(Φ). Then, Φ has a solution b ∈ Nd modulo p258

such that vp(fi(b)) = 0 for every 1 ≤ i ≤ m, and ||b|| ≤ p− 1.259

The proof of Lemma 3 is given in Appendix D. In a nutshell, vp(fi(b)) = 0 holds if and only if260

fi(b) 6≡ 0 (mod p), meaning that the solution b can be computed by considering a system of at261

most m non-congruences; one for each left-hand side of Φ. Consider an ordering ≺ of the variables262

in x. Since p 6∈ P(Φ), p does not divide any coefficient or constant appearing in some fi. This263

means that if fi(x) = f ′i+a ·x, with x = LV≺(fi), we can rewrite fi(x) 6≡ 0 (mod p) as x 6≡ −a−1f ′i264

(mod p), where a−1 is the inverse of a modulo p. Then, since p > m, one can find b by picking265

suitable residues in {0, . . . , p−1}; this can be done inductively, starting from the ≺-minimal variable.266

Extending P(Φ) into P+(Φ), hence capturing the second of the two categories above, is a delicate267

matter. In fact, while P(Φ) is defined for an arbitrary system of divisibility constraints, the set P+(Φ)268

can only meaningfully be defined on systems that have the elimination property for an order ≺. For269

systems without the elimination property, one must first appeal to Lemma 2. Let Φ be a system of270

divisibility constraints with the elimination property. The set of difficult primes P+(Φ) is the set of271

primes p ∈ P satisfying at least one the following conditions:272

(P1) p ≤ #S(∆(Φ)),273

(P2) p divides any non-zero coefficient or constant of a polynomial in S(∆(Φ)), or274

(P3) p divides the smallest (in absolute value) non-zero λ ∈ Z such that λ · g ∈ Mf (Φ) for some275

primitive polynomial f occurring in Φ and g ∈ Sf (Φ) (if such a λ exists).276

Note that (P1) and (P2) imply P(Φ) ⊆ P+(Φ). The following lemma establishes bounds on these277

two sets that are central to the proof of Theorem 4.278

Lemma 4. Consider a system of divisibility constraints Φ(x) in d variables. Then, the set of primes279

P(Φ) satisfies log2(ΠP(Φ)) ≤ m2(d+2) · (〈||Φ||〉+2). Furthermore, if Φ has the elimination property280

for an order ≺ on x, then the set of primes P+(Φ) satisfies log2(ΠP+(Φ)) ≤ 64·m5(d+2)4(〈||Φ||〉+2).281

The proof of Lemma 4 is given in Appendix D. Note that 〈S〉 = O(log2(ΠS)) for any finite set S of282

positive integers, and therefore the above lemma bounds 〈P(Φ)〉 and 〈P+(Φ)〉 polynomially.283
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Proof sketch of Theorem 4. Recall that Theorem 4 establishes a local-to-global property for284

r-increasing systems of divisibility constraints Φ(x): if such a system has a solution bp ∈ Zd modulo p285

for every prime p ∈ P(Φ), then it has infinitely many integer solutions, and a solution a ∈ Nd such286

that 〈||a||〉 ≤ (〈Φ〉+max{〈||bp||〉 : p ∈ P(Φ)})O(r). We give a high-level overview of the proof of this287

result, focusing on the part of the statement that constructs a solution over N. The full proof is288

given in Section 3.2. Fix an order ≺ in X1 ≺ · · · ≺ Xr. We compute a map ν :
(⋃r

j=1Xj

)
→ Z+289

such that ν(x) is a solution for Φ by induction on r, populating ν according the order ≺.290

If r = 1, the system Φ is of the form
∧ℓ
i=1 ci | gi(x) ∧

∧m
j=ℓ+1 fj(x) | aj · fj(x), with ci ∈ Z \ {0}291

and aj ∈ Z, and ν can be computed using the CRT. Given p ∈ P(Φ), one considers the natural292

number µp := max
{
vp(f(bp)) : f(x) left-hand side of a divisibility in Φ}, which determines up to293

what power of p the integer solution given by ν has to agree with the solution bp. Then, the CRT294

instance to be solved is xk ≡ bp,k (mod pµp+1) for every p ∈ P(Φ) and 1 ≤ k ≤ d, where x1≺· · ·≺xd295

are the variables in Φ and bp,1, . . . , bp,d are their related values in bp.296

When r ≥ 2, the construction is much more involved. The goal is to define ν for the variables297

in X1 in such a way that the formula Φ′ := Φ[ν(x) / x : x ∈ X1] is increasing for X2 ≺ · · · ≺ Xr,298

and has solutions modulo p for every p ∈ P(Φ′). This allows us to invoke Theorem 4 inductively,299

obtaining a solution ξ :
(⋃r

j=2Xj

)
→ Z+ for Φ′. An integer solution for Φ is then given by the300

union ν ⊔ ξ of ν and ξ, i.e., the map defined as ν(x) for x ∈ X1 and as ξ(y) for y ∈ ⋃r
j=2Xj . To301

construct ν for X1, we first close Φ under the elimination property following Lemma 2, obtaining302

an equivalent system Ψ, and extend the solutions bp to every p ∈ P+(Ψ) thanks to Lemma 3. We303

then populate ν following the order ≺, starting from the smallest variable. In the proof, this is304

done with a second induction. Values for the variables in X1 are found using Theorem 3. When305

a new value ak ∈ Z+ for a variable xk ∈ X1 is found, new primes need to be taken into account,306

since substituting ak for xk yields a complete evaluation of the polynomials in S(∆(Φ)) with leading307

variable xk, i.e., these polynomials become integers that may be divisible by primes not belonging308

to P+(Ψ). For subsequent variables in X1, we make sure to pick values that keep the evaluated309

polynomials as “coprime as possible” with respect to these new primes. This condition is necessary310

to obtain the new solutions bp for the formula Φ′, modulo every p ∈ P(Φ′). The precise system of311

(non-)congruences considered when computing xk is312

{
xk ≡ bp,k (mod pµp+1) p ∈ P+(Ψ)

g(ν(y), xk) 6≡ 0 (mod q) q ∈ Q \P+(Ψ), g(y, xk) ∈ S(∆(Ψ)) with LV≺(g) = xk

where Q is the set of new primes obtained when fixing the variables y = (x1, . . . , xk−1), and313

µp := max
{
vp(f(bp)) : f(x) left-hand side of a divisibility in Ψ}. Theorem 3 can be applied on the314

system above because primes in Q \P+(Ψ) do not satisfy the properties (P1) and (P2).315

To show that Theorem 4 can be applied inductively on Φ′, we rely on (P3) and the elimination316

property of Ψ to show that Φ′ has solutions modulo every p ∈ P(Φ′), and on properties of S-terms317

and again on the elimination property of Ψ to show that Φ′ is increasing for X2 ≺ · · · ≺Xr.318

1.4 Solving an instance of IP-GCD319

We now briefly discuss the proof of Theorem 1, full details are deferred to Section 4. In a nutshell,320

this result is shown by giving an algorithm that reduces an IP-GCD system Φ(x) := A · x ≤ b ∧321 ∧k
i=1 gcd(fi(x), gi(x)) ∼i ci into an equi-satisfiable disjunction of several 3-increasing systems of322

divisibility constraints with coefficients and constants of polynomial bit length. We then study323

bounds on the solutions of each of these systems modulo the primes required by the local-to-324

global property, and conclude that IP-GCD has a small witness property over the integers directly325

from Theorem 4.326
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Our arguments heavily rely on syntactic properties of the systems of divisibility constraints we327

obtain when translating an IP-GCD system Φ. These syntactic properties are captured in Section 4328

with the notion of gcd-to-div triple. The formal definition is rather lengthy, for this overview it329

suffices to know that a triple (Ψ,u, E) is a gcd-to-div triple if Ψ is a system of divisibility constraints330

in which all numbers appearing are positive, and u and E are a vector and a matrix that act as a331

change of variables between the variables in Ψ and the variables in Φ. The following proposition332

formalizes the role of gcd-to-div triples.333

Proposition 1. Let Φ be an IP-GCD system in d variables. There is a set C of gcd-to-div triples334

such that the set of integer solutions to Φ is {u+E ·λ : (Ψ,u, E) ∈ C and λ ∈ Nm solution to Ψ}.335

Every (Ψ,u, E) ∈ C has bit length polynomial in 〈Φ〉 and is such that Ψ is in 3-increasing form.336

Above, m is the number of free variables in Ψ, which is also the number of columns in E. The337

algorithm showing this proposition, cf. Lemma 10 and Lemma 13 in Section 4, performs a series of338

equivalence-preserving syntactic transformations of Φ that are mainly divided into two steps: we339

first compute from Φ a set of gcd-to-div triples B satisfying {x ∈ Zd : x solution to Φ} = {u+E ·λ :340

(Ψ,u, E) ∈ B and λ ∈ Nm solution to Ψ}, and then obtains C by manipulating every system of341

divisibility constraints in B to make it 3-increasing. Below we give a summary of these two steps.342

Step I: from IP-GCD to divisibility constraints. This step is split into three sub-steps:343

1. Reduce the input IP-GCD system Φ into an equi-satisfiable disjunction of IP-GCD system344

having GCD of the form gcd(f(x), g(x)) = c or gcd(f(x), g(x)) ≥ c, and a system of inequal-345

ities A · x ≤ b fixing a sign for every polynomial h(x) appearing in a GCD constraint, i.e.,346

A · x ≤ b has either h(x) ≤ −1 or h(x) ≥ 1 as a row.347

2. Let G be the set of systems computed at the previous step. The algorithm erases the system348

of inequalities A · x ≤ b from every IP-GCD system Ψ ∈ G by performing a change of349

variables. In particular, relying on a well-known result by von zur Gathen and Sieveking [25],350

the algorithm computes a finite set {(ui, Ei) : i ∈ IΨ} such that {x ∈ Zd : A · x ≤ b} =351

{ui + Ei · λ : λ ∈ Nm, i ∈ IΨ}. For every i ∈ IΨ, the algorithm constructs a system of GCD352

constraints Ψi by replacing x in all GCD constraints of Ψ with ui + Ei · y, where y is a353

family of fresh variables. The latter transformation also ensures that all numbers in the Ψi354

are positive.355

3. The algorithm translates every GCD constraint in every Ψi into a divisibility. Each constraint356

gcd(f(y), g(y)) = c is replaced by ∃z ∈ N : c | f ∧ c | g ∧ f | z ∧ g | z + c , following357

Bézout’s identity, whereas gcd(f(y), g(y)) ≥ c becomes ∃z ∈ N : z + c | f ∧ z + c | g. The358

triple (Ψi,ui, Ei) obtained after these replacements is a gcd-to-div triple.359

Step II: enforcing increasingness. The algorithm considers each gcd-to-div triple (Ψ,u, E)360

computed in the previous step and further manipulates it, producing a set of gcd-to-div triples D361

having only systems of divisibility constraints in 3-increasing form, and satisfying362

{u+E ·λ : λ ∈ Nm solution for Ψ} = {u′+E′ ·λ : (Ψ′,u′, E′) ∈ D, λ ∈ Nm′

solution for Ψ′}. (1)

The set D is computed as follows. If Ψ is already 3-increasing, then D := {(Ψ,u, E)}. Otherwise,363

properties of gcd-to-div triples ensure that there is a non-constant primitive polynomial f with364

positive coefficients and constant such that Mf (Ψ)∩Z 6= {0}. The algorithm computes the smallest365

positive integer c belonging to Mf (Ψ). We have that Ψ entails f | c. Let λ1, . . . , λj be all the366
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variables in f . Since the coefficients and constant of f are all positive and variables are now367

interpreted over the naturals, such a divisibility constraint can only be satisfied by assigning to each368

variable an integer in [0, c]. The algorithm iterates over each assignment ν : {λ1, . . . , λj} → [0, c]369

satisfying f | c, computing from (Ψ,u, E) the gcd-to-div triple (Ψν ,uν , Eν) where Ψν
:= Ψ[ν(λi) /370

λi : i ∈ [1, j]], and uν and Eν are obtained from u and E based on ν too. All such triples are371

added to D to replace (Ψ,u, E). However, some newly added system Ψν may not be 3-increasing.372

If that is the case, Step II is iteratively performed on (Ψν ,uν , Eν). Termination is guaranteed373

because Ψν has strictly fewer variables than Ψ and the set of computed gcd-to-div triples is the set374

C from Proposition 1.375

Bounds on the solutions modulo primes and proof sketch of Theorem 1. Following Propo-376

sition 1, what is left to apply Theorem 4 is to compute the solutions modulo primes in P(Ψ), for all377

(Ψ,u, E) ∈ C. In Section 4.2 we rely on properties of gcd-to-div triples to show the result below.378

Lemma 5. Let (Ψ,u, E) be a gcd-to-div triple in which Ψ has d variables, and consider p ∈ P(Ψ).379

If Ψ has a solution modulo p, then it has a solution bp ∈ Zd modulo p with ||bp|| ≤ (d+ 1) · ||Ψ||3p2.380

Proposition 1, and Lemmas 4 and 5 imply the part of Theorem 1 not concerning optimization381

as a corollary of Theorem 4. For optimization, consider a linear objective c⊺x to be minimized (the382

argument is analogous for maximization) subject to an IP-GCD system Φ(x), and let C be the set383

of gcd-to-div triples computed from Φ following Proposition 1. We show in Section 4.3 the following384

characterization that implies the optimization part of Theorem 1: an optimal solution exists if and385

only if (i) there is (Ψ,u, E) ∈ C such that Ψ satisfiable over N, and (ii) for every (Ψ,u, E) ∈ C with386

Ψ satisfiable over N, c⊺(u+ E · λ) has no variable with a strictly negative coefficient. Moreover,387

if there is an optimal solution, then there is one with polynomial bit length with respect to 〈Φ〉388

and 〈c〉. Briefly, the double implication comes from the fact that the construction required to389

establish Theorem 4 also shows that for each variable in λ there are infinitely many values that390

yield a solution to Ψ, both in the positive and negative direction, and therefore the existence of a391

variable in c⊺(u+ E · λ) having a negative coefficient entails the non-existence of an optimum. For392

the bound, one shows that min{c⊺u : (Ψ,u, E) ∈ C} is a lower bound to every solution of Φ. Then,393

the polynomial bound follows directly from Proposition 1.394

1.5 Conclusion and future work395

We have established a polynomial small witness property for integer programming with additional396

GCD constraints over linear polynomials. Our work also sheds new light on the feasibility problem397

for systems of divisibility constraints between linear polynomials over the integers, and more broadly398

on the existential fragment of the first-order theory of the structure Ldiv = (Z, 0, 1,+,≤, |), which399

is known to be NP-hard and decidable in NEXP [15, 12]. Proposition 2 shows that systems of400

divisibility constraints in increasing form are decidable in NP. Thus, in order to improve the known401

NEXP upper bound of existential Ldiv, it would suffice to provide an algorithm that translates an402

arbitrary existential Ldiv formula in increasing form without the exponential blow-up that existing403

algorithms incur [14, 12].404

Our work may also enable obtaining improved complexity results for other problems that reduce405

to the existential theory of Ldiv. For instance, [13] Lin and Majumdar reduce deciding a special406

class of word equations with length constraints and regular constraints to existential Ldiv, hence407

obtaining an NEXP for their problem. The formulas resulting from their reduction are of a special408

shape, and showing them to be r-increasing for some fixed r would directly yield a PSPACE decision409

procedure for the aforementioned class of word equations.410
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2 A Chinese remainder theorem with non-congruences411

In this section, we prove our Chinese-remainder-style theorem for simultaneous congruences and412

non-congruences (Theorem 3) as well as the abstract version of Brun’s pure sieve (Lemma 1).413

Throughout this paper, e is reserved for Euler’s number, and exp(x) := ex.414

We start by providing the proof of Lemma 1, which following the original proof by Brun is415

established by analyzing a truncated inclusion-exclusion principle.416

Lemma 1. Let A ⊆ Z and Q ⊆ P be non-empty finite sets, and let n := ΠQ and d ∈ Z+. Consider417

a multiplicative function m : Z+ → R+ satisfying m(q) ≤ q−1 on all q ∈ Q, and an (error) function418

σ : N→ R. Let (Ar)r∈div(n) be a family of subsets of A satisfying the following two properties:419

independence: Ar·s = Ar ∩As, for every r, s ∈ div(n) coprime, and A1 = A;420

density: #Ar = #A · m(r)
r

+ σ(r), for every r ∈ div(n).421

Assume |σ(r)| ≤ m(r), and m(q) ≤ d, for every r ∈ div(n) and q ∈ Q. Then,422

1

2
·#A ·Wm(Q)− g(Q, d) ≤ #

(
A \

⋃
q∈Q

Aq

)
≤ 3

2
·#A ·Wm(Q) + g(Q, d),

where Wm(Q) :=
∏
q∈Q

(
1− m(q)

q

)
and g(Q, d) := (d ·#Q)4(d+1)2(2+ln ln(#Q+1))+2.423

Proof. We define S(A,Q) := #
(
A\⋃q∈QAq

)
. By definition of S(A,Q) we have:

S(A,Q) = #A−
∑

q∈Q

#Aq +
∑

s 6=r∈Q

#(As ∩Ar)− · · · ±#
( ⋂

p∈Q

Ap

)

= #A1 −
∑

q∈Q

#Aq +
∑

s 6=r∈Q

#As·r − · · · ±#AΠQ by the independence property.

Truncating the inclusion-exclusion sequence above, after an even (resp. odd) number of terms results424

in a lower bound (resp. upper bound) for S(A,Q). Truncating the sequence too early would result425

in a useless bound; e.g., stopping at the second term might result in a negative lower bound for Q426

sufficiently large. Conversely, truncating it too late would make the hypotheses of the lemma too427

weak. To emphasize better this point, let us first clarify the truncation. Let ω(r) := #P(r) be the428

prime omega function and, given k ∈ N, define Q(k) := {r ∈ div(ΠQ) : ω(r) ≤ k}. Fix ℓ ∈ N+. We429

consider the (truncated) sequence T (ℓ, A,Q) given by430

T (ℓ, A,Q) := #A1 −
∑

q∈Q

#Aq +
∑

s 6=r∈Q

#As·r − · · · ±
∑

r product of
ℓ distinct primes in Q

#Ar

which can be also written as
∑

r∈Q(ℓ)(−1)ω(r)#Ar. From the density property, T (ℓ, A,Q) equals431

#A ·
∑

r∈Q(ℓ)

(−1)ω(r)m(r)

r
+

∑

r∈Q(ℓ)

(−1)ω(r)σ(r). (2)

Note that µ(x) := (−1)ω(x) is the Möbius function [7], which is multiplicative. Let us look at the432

two sides of the sum above. Note that for ℓ = #Q the left term #A ·∑r∈Q(ℓ)
(−1)ω(r)m(r)

r
can be433

factorized as #A ·∏q∈Q

(
1 + µ(q)·m(q)

q

)
, because both µ and m are multiplicative. This is equal to434
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#A ·Wm(Q), by definition of Wm(Q) and using the fact that µ(q) = −1 for q prime. In practice, the435

higher the ℓ, the closer the left term of the sum in (2) becomes to #A ·Wm(Q). However, increasing436

ℓ comes at the cost of increasing the error term given by the right term in the sum. Indeed, note437

that for ℓ = #Q the sum
∑

r∈Q(ℓ)(−1)ω(r)σ(r) can a priori be larger than σ(ΠQ), which from the438

hypotheses can at best be bounded as |σ(ΠQ)| ≤ m(ΠQ) ≤ d#Q. Hence, to obtain the bounds in439

the statement of Lemma 1, we need to find a value of ℓ making the left term in (2) close enough440

to #A ·Wm(Q) while keeping the error term small (in absolute value). Below, we first analyze the441

two terms of the sum in (2), and then optimize the value of ℓ. For brevity, we focus on computing442

the lower bound of S(A,Q) (which is all we need for Theorem 3); thus setting ℓ to be odd, so that443

S(A,Q) ≥ T (ℓ, A,Q). The computation of the upper bound is analogous.444

Lower bound on the error term of (2): Since |σ(r)| ≤ m(r) ≤ dω(r) ≤ dℓ when ω(r) ≤ ℓ,445

∑

r∈Q(ℓ)

µ(r) · σ(r) ≥
∑

r∈Q(ℓ)

−|σ(r)| ≥
∑

r∈Q(ℓ)

−dℓ ≥ −
(e ·#Q

ℓ

)ℓ
dℓ, (3)

where the rightmost inequality is derived by applying a well-known upper bound on the partial446

sums of binomial coefficients: #Q(ℓ) =
∑ℓ

i=0

(
#Q
i

)
≤
(
e·#Q
ℓ

)ℓ
.447

Lower bound on the left term of (2): Correctly computing a lower bound for this term requires448

a long manipulation using properties of the Möbius function and bounds on prime numbers. The449

following claim (proven in Appendix A) summarizes this computation.450

Claim 1.
∑

r∈Q(ℓ)

µ(r) ·m(r)

r
≥Wm(Q)

(
1−

(e · α
ℓ

)ℓ
α · eα

)
, with α := (d+1)2(2+ ln ln(#Q+1)).451

Optimizing the value of ℓ: To obtain the lower bound for S(A,Q) presented in the statement452

of the lemma, we want ℓ to be chosen so that453

#A ·
∑

r∈Q(ℓ)

µ(r) ·m(r)

r
≥ 1

2
·#A ·Wm(Q).

Following Claim 1, it suffices to pick an ℓ making the inequality
(
e·α
ℓ

)ℓ
α · eα ≤ 1

2 true. Note that,
since d ≥ 1 and #Q ≥ 1, we have α > 6.5 . Then, we see that ℓ ≥ 1.44 · e · α does the job:

(e · α
ℓ

)ℓ
α · eα ≤

(
1

1.44

)1.44·e·α

· eα+lnα ≤ eα+lnα

1.441.44·e·α
≤ e1.3·α

1.441.44·e·α
≤
(

e1.3

1.441.44·e

)6.5

≤ 1

2
.

Hence, we pick ℓ to be an odd number in [1.44 · e · α, 1.44 · e · α+ 2]. From Equation (3) we obtain

∑

r∈Q(ℓ)

µ(r) · σ(r) ≥ −
( e ·#Q
1.44 · e · α+ 2

)1.44·e·α+2
· d1.44·e·α+2 ≥ −

(
d ·#Q

)4(d+1)2(2+ln ln(#Q+1))+2
.

As S(A,Q) ≥ T (ℓ, A,Q) = #A·∑r∈Q(ℓ)
µ(r)·m(r)

r
+
∑

r∈Q(ℓ) µ(r)·σ(r), that completes the proof.454

We now move to the proof of Theorem 3.455
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Theorem 3. Let d ∈ Z+, M ⊆ Z+ finite, and Q ⊆ P be a non-empty finite set of primes such that
the elements of M ∪Q are pairwise coprime, M ∩Q = ∅, and min(Q) > d. Consider the univariate
system of simultaneous congruences and non-congruences S defined by

x ≡ bm (mod m) m ∈M
x 6≡ cq,i (mod q) q ∈ Q, 1 ≤ i ≤ d .

Then, for every k ∈ Z, S has a solution in the interval {k, . . . , k +ΠM · f(Q, d)}, where456

f(Q, d) :=
(
(d+ 1) ·#Q

)4(d+1)2(3+ln ln(#Q+1))
.457

Proof. Expanding on the sketch of the proof given in Section 1.2, recall that the set of primes Q458

and d ∈ Z+ defined in the statement of Theorem 3 coincide with their homonyms in Lemma 1.459

Furthermore, we let n := ΠQ, and define:460

• SM to be the solution set to the system of congruences ∀m ∈M , x ≡ bm (mod m), which is461

a shifted lattice with period ΠM by the CRT,462

• B(z) := [k, k + z] ∩ SM , where k is the integer in the statement of the theorem,463

• some integer z to be optimized. We will show that z = f(Q, d) yield the theorem,464

• A := B(z), and given q ∈ Q, Aq := {a ∈ A : there is i ∈ [1, d] s.t. a ≡ cq,i (mod q)},465

• for r ∈ div(n) not prime, Ar := A ∩⋂q∈P(r)Aq,466

• for r ∈ div(n), m(r) :=
∏
q∈P(r)#{cq,i mod q : i ∈ [1, d]}, which is a multiplicative function,467

• and we take σ(r) := #Ar −#A · m(r)
r

as an error function.468

Note that, by definition, A\⋃q∈QAq corresponds to the set of solutions of S that belong to [k, k+z].469

We show that the objects above satisfy the hypothesis of Lemma 1, and that taking z = f(Q, d)470

makes the cardinality of A \⋃q∈QAq strictly positive, yielding Theorem 3.471

The assumptions of Lemma 1 hold: By hypothesis min(Q) > d, hence m(q) ≤ d ≤ q − 1 for472

every q ∈ Q. Below, we show that the independence and density properties are satisfied, and that473

|σ(r)| ≤ m(r) for every r ∈ div(n). This allows us to apply Lemma 1 in the second part of the474

proof. The independence property is trivially satisfied: given r, s ∈ div(n) coprime, we have475

Ar·s = A ∩
⋂

q∈P(r·s)

Aq =
(
A ∩

⋂

q∈P(r)

Aq

)
∩
(
A ∩

⋂

p∈P(s)

Ap

)
= Ar ∩As.

Below, fix r ∈ div(n). The density property and the condition |σ(r)| ≤ m(r) are proved together.476

By definition of Ar,477

Ar =
⋃

α : P(r)→[1,d]

(A ∩ Sα,r) , where Sα,r := {ℓ ∈ Z : for every q ∈ P(r), ℓ ≡ cq,α(q) (mod q)}.

The following claim bounds the cardinality of each (A ∩ Sα,r). It is proven in Appendix B.478

Claim 2.
#A

r
− 1 ≤ #(A ∩ Sα,r) ≤

#A

r
+ 1.479
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Directly form their definition, given two functions α1, α2 : P(r) → [1, d], the sets Sα1,r and Sα2,r480

satisfy one of the two following properties:481

• Sα1,r ∩ Sα2,r = ∅ (this occurs when cq,α1(q) 6≡ cq,α2(q) (mod q) for some q ∈ P(r)), or482

• Sα1,r = Sα2,r (this occurs when cq,α1(q) ≡ cq,α2(q) (mod q), for every q ∈ P(r)).483

With this in mind, we note that the number of disjoint sets in {Sα,r : α : P(r)→ [1, d]} corresponds484

to the value of the multiplicative function m(r). Then, by Claim 2, (#A
r
− 1) · m(r) ≤ #Ar ≤485

(#A
r

+ 1) ·m(r). This implies that σ(r) = #Ar −#A · m(r)
r

is such that |σ(r)| ≤ m(r), as required,486

and also shows that the density property holds.487

Applying Lemma 1: The previous part of the proof shows that we can apply Lemma 1, from488

which we obtain #
(
A \⋃q∈QAq

)
≥ 1

2 ·#A ·Wm(Q)− g(Q, d). Remember that A = [k, k+ z]∩SM489

and that A \⋃q∈QAq corresponds to the set of solutions of S that belong to [k, k+ z]. To conclude490

the proof it suffices to make 1
2 ·#A ·Wm(Q)−g(Q, d) greater or equal to 1 by opportunely selecting491

the value of the parameter z. We want #([k, k + z] ∩ SM ) ≥ 2 ·Wm(Q)−1(1 + g(Q, d)) which, from492

the fact that SM is periodic in ΠM , holds as soon as z ≥ 2 ·Wm(Q)−1(1 + g(Q, d)) ·ΠM .493

The following claim on an upper bound for Wm(Q)−1 is proven in Appendix B.494

Claim 3. Wm(Q)−1 ≤ (d+ 1)10d ln(#Q+ 1)3d.495

Claim 3 and the definition of g show that setting z :=
(
(d+ 1) ·#Q

)4(d+1)2(3+ln ln(#Q+1)) ·ΠM suf-496

fices to satisfy z ≥ 2 ·Wm(Q)−1(1 + g(Q, d)) ·ΠM , concluding the proof.497

3 A novel strategy for Lipshitz’s local-to-global property498

In this section we establish Theorem 4, providing an asymptotical improvement over the local-to-499

global properties for systems of divisibility constraints discovered by Lipshitz [14] and later refined500

by Lechner et al. [12]. Most of the definitions and some intermediate lemmas required for this result501

were already formally presented in Section 1.3. To avoid repeating them, we refer the reader to that502

section, and consider here only concepts for which further details are required in order to give the503

proof of Theorem 4. On a high-level, recall that the main concepts discussed in Section 1.3 are:504

• The notions of divisibility module and r-increasing form. In general, only systems of divisibility505

constraints in increasing form can be solved via the local-to-global property.506

• The notions of elimination property, S-polynomials and S-terms. The first notion relies on507

divisibility modules to close a system under a finite representation of all its entailed divisibili-508

ties. The latter two terms are required to establish Theorem 4 inductively; we will use them509

to ensure that increasingness is not lost after fixing the value of a variable.510

• The notion of difficult primes P+(Φ), that is primes p for which either the system of divisibility511

constraints Φ might not have a solution modulo p, or the solution always exists but still512

influences the minimal integer solution for Φ.513

Except for Theorem 4, we defer all proofs of intermediate results to Appendices C and D.514
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Assumptions and further basic definitions. Let Φ(x) :=
∧m
i=1 fi(x) | gi(x) be a system of515

divisibility constraints in d variables. Throughout the section, wlog. we tacitly assume the systems516

to be non-empty (m ≥ 1) and reduced, that is such that the GCD of all coefficients and constants517

appearing in divisibilities f | g is 1, i.e., gcd(gcd(f), gcd(g)) = 1. Recall that we assume that fi 6= 0518

for all 1 ≤ i ≤ m.519

Given b ∈ Zi and a polynomial f(x1, . . . , xd), we write f(b, xi+1, . . . , xd) for the polynomial in520

variables (xi+1, . . . , xd) obtained from f by evaluating xj as the j-th entry of b, for all j ∈ [1, i].521

Given v = (v1, . . . , vn) ∈ Zd, ||v|| := max{|vi| : i ∈ [1, n]} stands for the (infinity) norm of v.522

We define ||S|| := max{||s|| : s ∈ S}, for every finite set S of objects having a defined notion of523

infinity norm. The norm ||A|| of a matrix A is the norm of the set of its columns. Given a polynomial524

f = a⊺x+ c, ||f || := max(||a||, |c|). For a system of divisibility constraints Φ, ||Φ|| := ||terms(Φ)||.525

We write 〈a〉 := 1+⌈log2(|a|+ 1)⌉ for the bit length of a ∈ Z. The bit length of a set (or vector) S526

of n objects s1, . . . , sn having a defined notion of bit length 〈.〉 is itself defined as 〈S〉 := n+
∑n

i=1〈si〉.527

We define 〈f〉 := 〈a〉+ 〈c〉+1 and 〈Φ〉 := 〈terms(Φ)〉 for the bit length of a polynomial f = a⊺x+ c528

and of a system of divisibility constraints Φ, respectively. Note that 〈||S||〉 is simply the bit length529

of the infinity norm of S; where S is any object having a defined notion of infinity norm.530

3.1 Bounds on divisibility modules, elimination property, S-terms, and P+(Φ)531

For the proof of Theorem 4 we need to refine some of the bounds given in Section 1.3. In that section532

we have briefly discussed the existence of an algorithm to close a system of divisibility constraints533

under the elimination property (Lemma 2). This algorithm relies on a procedure computing a span534

for the divisibility module Mf (Φ) of a primitive polynomial f with respect to a system of divisibility535

constraints Φ. Recall that Mf (Φ) is a vector subspace encoding all the divisibilities of the form f | g536

implied by Φ. From the formal definition of divisibility module, it is simple to convince ourselves537

that a set spanning Mf (Φ) can be found by taking f together with a subset of the right-hand sides538

of the divisibilities in Φ, possibly scaled. In Appendix C we show that computing such a span can539

be done in polynomial-time by a fix-point algorithm chaining computations of integer kernels.540

Lemma 6. There is a polynomial-time algorithm that, given a system Φ(x) :=
∧m
i=1 fi | gi and a541

primitive polynomial f , computes c1, . . . , cm ∈ Nm such that {f, c1 · g1, . . . , cm · gm} spans Mf (Φ)542

and ci ≤ ((m+ 3) · (||Φ||+ 2))(m+3)3 for all 1 ≤ i ≤ m.543

Regarding the computation of formulae with the elimination property, Lemma 2 is not precise544

enough for our purposes to establish Theorem 4. We restate it, tracking the growth of constants545

and coefficients, as well as structural properties of the output system of divisibility constraints.546

Lemma 7. There is a polynomial-time algorithm that, given a system of divisibility constraints547

Φ(x) :=
∧m
i=1 fi | gi and an order x1 ≺ · · · ≺ xd for x, computes Ψ(x) :=

∧n
i=1 f

′
i | g′i with the548

elimination property for ≺ that is equivalent to Φ(x), both over Z and modulo each p ∈ P. The549

algorithm ensures that:550

1. For any divisibility constraint f | g such that f is not primitive, f | g occurs in Φ if and only551

if f | g occurs in Ψ. Moreover, for every f ′i | g′i in Ψ such that f ′i is primitive, there is some552

fj | gj in Φ such that f ′j is the primitive part of fj.553

2. For every primitive polynomial f , Mf (Φ) = Mf (Ψ) (in particular, if Φ is increasing for some554

order ≺′ then so is Ψ, and vice versa).555

3. ||Ψ|| ≤ (d+ 1)O(d)(m+ ||Φ||+ 2)O(m3d) and n ≤ m · (d+ 2).556
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Let us sketch this algorithm. For every primitive part f of a polynomial appearing in the left-hand557

side of a divisibility constraint in Φ, the algorithm first computes the set S := {f, c1 ·g1, . . . , cm ·gm}558

spanning Mf (Φ), using the algorithm of Lemma 6. The set S can be represented as the matrix A ∈559

Z(d+1)×(m+1) in which each column (ad, . . . , a1, c) contains the coefficients and the constant of a560

distinct element of S, with ai being the coefficient of xi for i ∈ [1, d], and c being the constant561

of the polynomial. The algorithm puts A in column-style Hermite normal form, obtaining linearly562

independent polynomials h1, . . . , hℓ with different leading variables with respect to ≺. Because563

of how the coefficients and constants are arranged in A, we can obtain the system Ψ by simply564

replacing divisibility constraints of the form f | g appearing in Φ with the divisibility constraints565

f | h1, . . . , f | hℓ. Items 1 and 2 are then easily seen to be satisfied, whereas Item 3 follows from the566

bound on c1, . . . , cm given in Lemma 6 together with known bounds for putting an integer matrix567

in Hermite normal form [24]. Full details are given in Appendix C, together with the proof of the568

following lemma.569

Lemma 8. Let Φ(x,y) and Ψ(x,y) be input and output of the algorithm in Lemma 7, respectively.570

For every ν : x→ Z and primitive polynomial f , Mf (Φ(ν(x),y)) ⊆ Mf (Ψ(ν(x),y)).571

This lemma, established by relying on the definition of divisibility module together with Items 1572

and 2 of Lemma 7, is used in the proof of Theorem 4 to establish that if Ψ(ν(x),y) is in increasing573

form for some order, then so is Φ(ν(x),y).574

To prove Theorem 4 we also need a bound on the number of S-terms of a system of divisibility575

constraints. We have already claimed in Section 1.3 that systems with the elimination property only576

have polynomially many S-terms. The precise bound, computed following the relevant definitions,577

is given in the following lemma (see Appendix D for the complete proof).578

Lemma 9. Let Φ :=
∧m
i=1 fi | gi be a system of divisibility constraints in d variables with the579

elimination property for ≺. Then, (i) #∆(Φ) ≤ 2·m2(d+2) and (ii) 〈||∆(Φ)||〉 ≤ (d+2)·(〈||Φ||〉+1).580

Lastly, let us restate the two lemmas from Section 1.3 analyzing properties of P+(Φ) and P(Φ);581

they are proven in Appendix D and are fundamental to obtain the upper bound in the statement582

of Theorem 4. Recall that P(Φ) := {p ∈ P : p ≤ m or p divides a coefficient or constant appearing583

in some fi} is the set of primes p for which Φ may not have a solution modulo p. For primes that584

lie outside P(Φ) we always have a small solution:585

Lemma 3. Let Φ(x) :=
∧m
i=1 fi | gi and p ∈ P \ P(Φ). Then, Φ has a solution b ∈ Nd modulo p586

such that vp(fi(b)) = 0 for every 1 ≤ i ≤ m, and ||b|| ≤ p− 1.587

Following the next lemma, the bit lengths of P(Φ) and P+(Φ) are polynomially bounded:588

Lemma 4. Consider a system of divisibility constraints Φ(x) in d variables. Then, the set of primes589

P(Φ) satisfies log2(ΠP(Φ)) ≤ m2(d+2) · (〈||Φ||〉+2). Furthermore, if Φ has the elimination property590

for an order ≺ on x, then the set of primes P+(Φ) satisfies log2(ΠP+(Φ)) ≤ 64·m5(d+2)4(〈||Φ||〉+2).591

3.2 Proof of Theorem 4: the local-to-global property592

We are now ready to formalize the local-to-global property (Theorem 4). Simliar to Lipshitz’593

approach [14], the proof of this property is constructive and yields a procedure that given an r-594

increasing system of divisibility constraints Φ and solutions for Φ modulo p for every p ∈ P(Φ),595

constructs an integer solution for Φ. Algorithm 1 provides the pseudocode of this procedure, which596

we mainly give as a way of summarizing the various steps of the proof of Theorem 4.597
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Algorithm 1 An algorithmic summary of the local-to-global property

Input: a system of divisibility constraints Φ(x) increasing for X1 ≺ · · · ≺Xr,
and a solution bp for Φ modulo p for every p ∈ P(Φ).

Output: a solution ν : x→ Z+ for Φ.

1: ν := ǫ ⊲ empty map
2: let ≺ be an ordering in (X1 ≺ · · · ≺Xr)
3: (x1, . . . , xd) := variables in X1, in increasing order for ≺
4: if r = 1 then ⊲ base case
5: for p ∈ P(Φ) do µp := max

{
vp(f(bp)) : f(x) left-hand side of a divisibility in Φ}

6: for ℓ from 1 to d do
7: for p ∈ P(Φ) do bp,ℓ := value of bp for the variable xℓ

8: insert (xℓ 7→ a) in ν where a ∈ Z+ is a solution for the system ⊲ CRT

9:

{
xℓ ≡ bp,ℓ (mod pµp+1) p ∈ P(Φ)

10: return ν

11: else ⊲ r ≥ 2, recursive case
12: Ψ ← closure of Φ for the elimination property for the order ≺ ⊲ Lemma 7
13: for p ∈ P+(Ψ) \ P(Φ) do
14: bp := solution for Φ modulo p satisfying vp(f(bp)) = 0 for every
15: f(x) in the left-hand side of a divisibility in Φ ⊲ Lemma 3

16: for p ∈ P+(Ψ) do µp := max
{
vp(f(bp)) : f(x) left-hand side of a divisibility in Ψ}

17: Q := ∅
18: for ℓ from 1 to d do
19: for p ∈ P+(Ψ) do bp,ℓ := value of bp for the variable xℓ

20: insert (xℓ 7→ a) in ν where a ∈ Z+ is a solution for the system ⊲ Theorem 3

21:

{
xℓ ≡ bp,ℓ (mod pµp+1) p ∈ P+(Ψ)

g(ν(y), xℓ) 6≡ 0 (mod q) q ∈ Q \P+(Ψ), g(y, xℓ) ∈ S(∆(Ψ)) with LV≺(g) = xℓ

22: Q← Q ∪ {p ∈ P : there is h(y) ∈ S(∆(Ψ)) such that LV≺(h) = xℓ and p | h(ν(y))}
23: Φ′ := Φ[ν(x) / x : x ∈ X1]
24: for p ∈ P(Φ′) do b′p := solution for Φ′ modulo p ⊲ Claim 7

25: ξ := result of calling Algorithm 1 on Φ′, X2 ≺ · · · ≺Xr and {b′p : p ∈ P(Φ′)}
26: return ν ⊔ ξ ⊲ union of disjoint functions

Theorem 4. Let Φ(x) be an r-increasing system of divisibility constraints such that Φ has a solution598

bp ∈ Zd modulo p for every prime p ∈ P(Φ). Then Φ has infinitely many solutions, and a solution599

a ∈ Nd such that 〈||a||〉 ≤ (〈Φ〉+max{〈||bp||〉 : p ∈ P(Φ)})O(r).600

Proof. Throughout the proof, fix and order (≺) ∈ (X1 ≺ · · · ≺Xr). For simplicity, we focus on the601

part of the statement that builds a solution over N (in fact, we will build a solution over Z+). The602

fact that there are infinitely many solutions follows from the fact that the solution is built by solely603

relying on systems of (non-)congruences over the integers.604

Let us first expand on the overview of the proof given in Section 1.3 by referring to the pseudocode605

in Algorithm 1. The goal is to compute a map ν :
(⋃r

j=1Xj

)
→ Z+ such that ν(x) is a solution606

for Φ. The proof proceeds by induction on r, populating the map ν according the order ≺.607
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When r = 1 (line 4 in Algorithm 1) ν can be computed using the (standard) Chinese remainder608

theorem, with little to no problem (line 8). The main ingredient here is given by the natural number609

µp := max
{
vp(f(bp)) : f(x) left-hand side of a divisibility in Φ} (line 5), that given p ∈ P(Φ) tells610

us up to what power of p should the integer solution given by ν agree with the solution bp.611

When r ≥ 2, the goal is to define ν for the variables in X1 in such a way that the formula612

Φ′ := Φ[ν(x) / x : x ∈ X1] is increasing for X2 ≺ · · · ≺ Xr, and has solutions modulo p for613

every p ∈ P(Φ′). This allows us to call for Theorem 4 inductively (line 25), obtaining a solution614

ξ :
(⋃r

j=2Xj

)
→ Z+ for Φ′. An integer solution for Φ is then given by the union ν⊔ξ of ν and ξ, i.e.,615

the map defined as ν(x) for x ∈ X1 and as ξ(y) for y ∈ ⋃r
j=2Xj , (line 26). To construct ν for X1, we616

first close Φ under the elimination property following Lemma 7 (line 12), and extend the solutions617

bp to every p ∈ P+(Ψ) thanks to Lemma 3 (line 13). We then populate ν following the order ≺,618

starting from the smallest variable (line 18). In the proof, this is done with a second induction.619

Values for the variables in X1 are found using Theorem 3 (line 20). When a new value a ∈ Z+ for620

a variable x ∈ X1 is found, new primes need to be taken into account (line 22), since substituting a621

for x yields a complete evaluation of the polynomials in S(∆(Φ)) with leading variable x, and the622

resulting integers might be divisible by primes not belonging to P+(Ψ). For subsequent variables623

in X1, we make sure to pick values that keep the evaluated polynomials as “coprime as possible”624

with respect to these new primes (see the induction hypothesis (IH2) below, as well as the system625

of (non-)congruences in line 20). This condition is necessary to obtain the new solutions bp for the626

formula Φ′, modulo every p ∈ P(Φ′) (line 24).627

We now formalize the proof. To ease the presentation, we postpone the analysis on the bound of628

the minimal positive solution to after the main induction showing the existence of such a solution.629

In a nutshell, the bound fundamentally comes from repeated applications of Theorem 3.630

Base case r = 1: As Φ is 1-increasing, it is of the form
∧ℓ
i=1 ci | gi(x) ∧

∧m
j=ℓ+1 fj(x) | aj · fj(x),

where every ci and aj are in Z. By hypothesis, every ci and fj is non-zero. If ci = 1 for every
i ∈ [1, ℓ], then x = 0 is trivially a solution. Otherwise, P(Φ) is non-empty. Let x = (x1, . . . , xd)
and, given p ∈ P(Φ), let µp := max{vp(f(bp)) : f is in the left-hand side of a divisibility of Φ}.
Note that since bp is a solution for Φ modulo p, we have fj(bp) 6= 0 for every j ∈ [ℓ+1,m], and thus
vp(f(bp)) ∈ N. Denote with bp,k the value of bp for the variable xk, with p ∈ P(Φ) and k ∈ [1, d].
Consider the system of congruences

xk ≡ bp,k (mod pµp+1) p ∈ P(Φ), 1 ≤ k ≤ d. (4)

According to the Chinese remainder theorem, this system has a positive solution a = (a1, . . . , ad).631

To conclude the base case, it suffices to show that fj(a) 6= 0 for every j ∈ [ℓ + 1,m], and that632

ci | gi(a) for every i ∈ [1, ℓ]. First, consider j ∈ [ℓ + 1,m] and pick a prime p ∈ P(Φ). From the633

system of congruences in Equation (4) we have fj(a) ≡ fj(bp) (mod pµp+1), and by definition of µp,634

fj(bp) 6≡ 0 (mod pµp+1). We conclude that fj(a) 6≡ 0 (mod pµp+1), and so fj(a) 6= 0.635

Consider now i ∈ [1, ℓ]. To prove that ci | gi(a), concluding the base case, we show that for636

every prime p dividing ci, vp(ci) ≤ vp(gi(a)). By definition, any such prime p satisfies p ∈ P(Φ) and637

moreover vp(ci) ≤ µp. We distinguish two cases:638

• if vp(gi(bp)) ≤ µp, then according to Equation (4) we have vp(gi(bp)) = vp(gi(a)). Since bp is639

a solution for Φ modulo p, this implies vp(ci) ≤ vp(gi(a)).640

• If vp(gi(bp)) > µp, then gi(bp) ≡ 0 (mod pµp+1) and so gi(a) ≡ 0 (mod pµp+1) by Equa-641

tion (4). Therefore vp(gi(a)) > µp and by definition of µp we get vp(ci) ≤ vp(gi(a)).642
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Induction step r ≥ 2: by induction hypothesis, we assume the theorem to be true for every643

s-increasing system with s < r. By Lemma 3, for every prime p ∈ P \ P(Φ) there is a solution644

bp for Φ modulo p such that max{vp(f(bp)) : f in the left-hand side of a divisibility of Φ} = 0.645

Together with the solutions bp for primes p ∈ P(Φ), this means that Φ has solutions modulo646

every prime. We apply Lemma 7 in order to obtain from Φ a system Ψ with the elimination647

property for ≺. The system Ψ is used to produce the map ν for the variables in X1. Adding the648

elimination property does not change the set of solutions (neither over the integers nor modulo a649

prime), and therefore the above solutions bp are still solutions for Ψ modulo p. Below, among these650

solutions we only consider the ones for primes p ∈ P+(Ψ). Given such a prime p ∈ P+(Ψ), define651

µp := max{vp(f(bp)) : f is in the left-hand side of a divisibility of Ψ}. As already observed in the652

base case, given f left-hand side of a divisibility in Ψ, f(bp) 6= 0 and so vp(f(bp)) ∈ N. Moreover,653

from Item 1 in Lemma 7 we conclude that µp = 0 for every p ∈ P+(Ψ) \ P(Φ).654

As Ψ is r-increasing (see Item 1 in Lemma 7), it is of the form655

(
ℓ∧

i=1

ci | gi(x)
)
∧
(

n∧

i=ℓ+1

fi(x) | gi(x) + g′i(y)

)
∧
(

t∧

i=n+1

fi(x) + f ′i(y) | gi(x) + g′i(y)

)
, (5)

where x are the variables appearing in X1, y are the variables appearing in
⋃r
j=2Xj , ℓ ≤ n ≤ t, and656

for every i ∈ [n+ 1, t], f ′i(y) and g′i(y) have 0 as a constant and are non-constant. Moreover, since657

Ψ is increasing, for every i ∈ [ℓ+ 1, n] gi(x) and g′i(y) are such that either g′i = 0 and gi = a · fi for658

some a ∈ Z, or g′i is non-constant and has 0 as a constant. Let X1 = {x1, . . . , xd}, with x1≺· · ·≺xd.659

Denote by bp,k the value of bp for the variable xk, with p ∈ P+(Ψ) and k ∈ [1, d]. We build the660

map ν defined on the variables in X1, inductively starting from x1. In the induction step, when661

searching for a value to the variable xk+1, the following induction hypotheses hold:662

IH1: For every p ∈ P+(Ψ) and j ∈ [1, k], ν(xj) ≡ bp,j (mod pµp+1),663

IH2: For every prime p /∈ P+(Ψ), for every h, h′ ∈ ∆(Ψ) with leading variable at most xk, if S(h, h′)664

is not identically zero, then p does not divide both h(ν(x1, . . . , xk)) and h′(ν(x1, . . . , xk)).665

IH3: h(ν(x1, . . . , xk)) 6= 0 for every h ∈ ∆(Ψ) that is non-zero and with LV(h) � xk.666

base case k = 0. In this case, (IH1) and (IH3) trivially hold (for (IH3) note that h is constant).667

In (IH2) we only consider constant polynomials h, h′, hence S(h, h′) = 0 by definition.668

induction step. Let us assume that ν is defined for the variables x1, . . . , xk with k ∈ [0, d− 1], so669

that the induction hypotheses hold. Let us provide a value for xk+1 so that ν still fulfils the670

induction hypotheses. We define the following set of primes:671

Pk := {p ∈ P : p ∈ P+(Ψ) or p | h(ν(x1, . . . , xk)) for h ∈ S(∆(Ψ))\{0} with LV(h) � xk} .

In the hypothesis that Pk = P+(Ψ), we add to Pk the smallest prime not in P+(Ψ). Hence,
below, assume Pk 6= P+(Ψ). We consider the following system of (non-)congruences:

xk+1 ≡ bp,k+1 (mod pµp+1) p ∈ P+(Ψ)

h(ν(x1, . . . , xk), xk+1) 6≡ 0 (mod q) q ∈ Pk \P+(Ψ) and

h ∈ S(∆(Ψ)) s.t. LV(h) = xk+1.

With respect to the h above, let us write h(ν(x1, . . . , xk), xk+1) = ch + ah · xk+1, where ch is672

the constant term obtained by partially evaluating h with respect to ν(x1, . . . , xk), and ah is673

20



the coefficient of xk+1 in h. Since q ∈ Pk \P+(Ψ), then q ∤ ah from Condition (P2). Then ah674

has an inverse a−1
h modulo q, and the system of (non-)congruences above is equivalent to675

xk+1 ≡ bp,k+1 (mod pµp+1) p ∈ P+(Ψ)

xk+1 6≡ −a−1
h ch (mod q) q ∈ Pk \P+(Ψ) and h ∈ S(∆(Ψ)) s.t. LV(h) = xk+1.

(6)

In this system of (non-)congruences, elements in P+(Ψ) and Pk \P+(Ψ) are pairwise coprime,676

Pk \P+(Ψ) is a set of primes, and moreover min(Pk \P+(Ψ)) > #S(∆(Ψ)) by Condition (P1).677

Hence, we can apply Theorem 3 and conclude that Equation (6) has a solution w ∈ Z+. Let678

us update ν so that ν(xk+1) = w. We show that ν satisfies the induction hypotheses.679

1. By the congruences in Equation (6), ν(xk+1) ≡ bp,k+1 (mod pµp+1), hence (IH1) holds.680

2. Consider h, h′ ∈ ∆(Ψ) such that LV(h) � LV(h′) = xk+1 and S(h, h′) is not identically681

zero. Note that the case where LV(h′) � LV(h) = xk+1 is analogous, whereas if both682

LV(h) and LV(h′) are at most xk then (IH2) already holds by induction hypothesis. We683

divide the proof into two cases, depending on LV(h).684

• if LV(h) ≺ xk+1, consider p 6∈ P+(Ψ) such that p | h(ν(x1, . . . , xk)). By definition,685

p ∈ Pk, and thus from the non-congruences in Equation (6), p ∤ h(ν(x1, . . . , xk+1)).686

• if LV(h) = LV(h′) = xk+1, assume ad absurdum that there is p 6∈ P+(Ψ) such that687

p | h(ν(x1, . . . , xk+1)) and p | h′(ν(x1, . . . , xk+1)). Then, p | S(h, h′) by definition688

of S. However, S(h, h′) ∈ S(∆(Ψ)) \ {0} and LV(S(h, h′)) � xk, from which we689

conclude that p ∈ Pk. Again from the non-congruences in Equation (6), this implies690

p ∤ h(ν(x1, . . . , xk+1)) and p ∤ h′(ν(x1, . . . , xk+1)), a contradiction.691

In both cases, we conclude that (IH2) holds.692

3. Let h ∈ ∆(Ψ) with LV(h) = xk+1 (else (IH3) directly holds by induction hypothesis). As693

there is a prime p ∈ Pk \P+(Ψ), from the non-congruences of Equation (6) we conclude694

p ∤ h(ν(x1, . . . , xk+1)), and thus h(ν(x1, . . . , xk+1)) cannot be 0. Hence, (IH3) holds.695

The innermost induction we have just completed yields a map ν defined for the variables in X1696

and satisfying (IH1)–(IH3) for every k ∈ [1, d]. Consider the system Ψ′(y) := Ψ[ν(x) / x : x ∈ X1]697

obtained from Ψ by evaluating as ν(x) every variable x in X1. With reference to Equation (5), we698

note that the subsystem
∧ℓ
i=1 ci | gi(ν(x)) evaluates to true (proof as in the base case r = 1 of the699

induction and by using (IH1)). Then, Ψ′(y) is of the form700

(
n∧

i=ℓ+1

αi | βi + g′i(y)

)
∧
(

t∧

i=n+1

αi + f ′i(y) | βi + g′i(y)

)
, (7)

where αi = fi(ν(x)) ∈ Z and βi = gi(ν(x)) ∈ Z, for every i ∈ [ℓ+ 1, t]. Note that αi 6= 0 for every701

i ∈ [ℓ+ 1, n], thanks to (IH3), so ν satisfies all trivial divisibilities of the form f(x) | a · f(x).702

The next step is to show that Ψ′ is increasing for (X2 ≺ · · · ≺ Xr) and to provide solutions703

modulo p for every p ∈ P+(Ψ
′). These two properties, formalized below in Claim 4 and Claim 5,704

follow from the induction hypotheses (IH1)–(IH3) we kept during the construction of ν, together705

with the fact that the system Ψ has the elimination property. Their proofs are very technical and706

lengthy, and we therefore defer them to Appendix E. Observe that the condition (P3) of the difficult707

primes is required to establish Claim 5, but otherwise does not appear anywhere else in this proof.708

Claim 4. The system Ψ′ is increasing for (X2 ≺ · · · ≺Xr).709

21



Claim 5. For every p ∈ P+(Ψ), the solution bp for Ψ modulo p is, when restricted to y, a solution710

for Ψ′(y) modulo p. For every prime p 6∈ P+(Ψ), there is a solution bp for Ψ′ modulo p such that711

(i) every entry of bp belongs to [0, pu+1 − 1], where u := max{vp(αi) : i ∈ [ℓ+1, n]}, and (ii) for712

every g ∈ terms(Ψ′), vp(g(bp)) is either 0 or u.713

Thanks to Claim 4 and Claim 5, we can inductively apply the statement of Theorem 4 on Ψ′
714

in order to obtain an integer solution for Ψ, and thus a solution for the original system Φ. While715

this would prove the local-to-global property, it is not enough to obtain the upper bound on the716

size of the minimal positive solution stated in Theorem 4. Instead, we wish to apply the induction717

hypothesis on the system Φ′(y) := Φ[ν(x) / x : x ∈ X1], hence disregarding the work done to close718

Φ under the elimination property. The main point in favour of this strategy is that the subsequent719

applications of Lemma 7, required to inductively construct the integer solutions for the remaining720

variables y, yield smaller systems of divisibility constraints (for instance, note that Φ′ has at most m721

divisibilities, whereas Ψ′ can have close to m · (d+ 2) divisibilities).722

To prove that we can apply the induction hypothesis on Φ′, we need to show that this system723

satisfies properties analogous to the ones in Claim 4 and Claim 5. While the proofs of these claims724

require the elimination property to be established, we can transfer them to Φ′ thanks to the fact725

that Ψ is defined from Φ following the algorithm of Lemma 7.726

Claim 6. The system Φ′ is increasing for (X2 ≺ · · · ≺Xr).727

Proof. Ad absurdum, assume that Φ′(y) is not increasing for some order (≺′) ∈ (X2 ≺ · · · ≺ Xr).728

Let y = (y1, . . . , yj) with y1 ≺′ · · · ≺′ yj . There is i ∈ [1, j] and a primitive term f with LV(f) = yi729

such that Zf  Mf (Φ
′) ∩ Z[y1, . . . , yi]. By Lemma 8 we get Zf  Mf (Ψ

′) ∩ Z[y1, . . . , yi]. However,730

this implies that Ψ′ is not increasing for ≺′, contradicting Claim 4.731

Claim 7. For every p ∈ P, the solution bp for Ψ′ modulo p ensured in Claim 5 is also a solution732

for Φ′ modulo p. If p 6∈ P+(Ψ), then for every polynomial f ′ appearing in the left-hand side of a733

divisibility of Φ′, we have either vp(f ′(bp)) = 0 or vp(f ′(bp)) = max{vp(αi) : i ∈ [ℓ+1, n]}.734

Proof. For the first statement of the claim, consider a solution bp for Ψ′(y) modulo p (such as the735

one ensured by Claim 5). From the definition of Ψ′, the tuple (ν(x), bp) is a solution for Ψ(x,y)736

modulo p. Then, by Lemma 7, (ν(x), bp) is a solution for Φ(x,y) modulo p; and so by definition737

of Φ′, bp is a solution for Φ′(y) modulo p.738

The second statement of this claim follows from Claim 5 together with the property (1) of739

Lemma 7, and by definitions of Ψ′ and Φ′. In particular, for every polynomial f ′(y) occurring in a740

left-hand side of a divisibility of Φ′, there is a polynomial f(x,y) occurring in a left-hand side of Φ741

such that f ′(y) = f(ν(x),y). From (1) of Lemma 7, f occurs in a left-hand side of Ψ and thus f ′742

occurs in a left-hand side of Ψ′. The statement then follows by Claim 5.743

From Claim 6 and Claim 7, and by induction hypothesis, there is a map ξ :
(⋃r

j=2Xj

)
→ Z+744

such that ξ(y) is a solution for Φ′. Note that in constructing ξ we can rely on the order ≺ restricted745

to
⋃r
j=2Xj ; since Φ′ is increasing for that order. Then, by definition of Φ′, a positive integer solution746

for Φ is given by the union ν ⊔ ξ of ν and ξ. This concludes the proof of existence of a solution.747

We now study its bit length.748

In what follows, let O ∈ Z+ be the minimal positive integer greater or equal than 4 such that the749

map x 7→ O(x+ 1) upper bounds the linear functions hidden in the O(.) appearing in Lemma 7. We750

write Γ(r, ℓ, w,m, d), with r, ℓ, w,m, d ∈ Z+ and r ≤ d, for the maximum bit length of the minimal751

positive solution of any system of divisibility constraints Φ such that:752

• Φ is r-increasing.753
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• The maximum bit length of a coefficient or constant appearing in Φ, i.e., 〈||Φ||〉, is at most ℓ.754

• For every p ∈ P(Φ), consider a solution bp of Φ modulo p minimizing µp := max{vp(f(bp)) :755

f is in the left-hand side of a divisibility in Φ}. Then, log2

(∏
p∈P(Φ) p

µp+1
)
≤ w.756

• Φ has at most m divisibilities.757

• Φ has at most d variables.758

The constraint r ≤ d is without loss of generality, as every increasing formula is d-increasing.759

Since we want to find an upper bound for Γ, assume without loss of generality that Γ(r, ℓ, w,m, d)760

is always at least min(ℓ, w). In Appendix F we study the growth of Γ and prove the following claim.761

Claim 8.





Γ(1, ℓ, w,m, d) ≤ w + 3

Γ(r + 1, ℓ, w,m, d) ≤ Γ(r,

2105m27(d+ 2)38O · log2(O)6(ℓ+ w) · (log2(ℓ+ w))6,

2109m29(d+ 2)39O · log2(O)6(ℓ+ w) · (log2(ℓ+ w))6,

m,

d).

762

Let us show that the recurrence system above yields the bound in the statement of the theorem.763

Remark that Γ is monotonous by definition. By induction on k ∈ [0, r − 1] we show that764

Γ(r, ℓ, w,m, d) ≤ Γ(r − k, δk, δk,m, d) where δk :=
1

2
· (2110m29(d+ 2)39O · log2(O)6(ℓ+ w))2(k+1).

base case k = 0. Directly follows from δ0 ≥ max(ℓ, w) and the fact that Γ is monotonous.765

induction case k ≥ 1. Let us define C := 2110m29(d+ 2)39O · log2(O)6. By induction hypothesis,
Γ(r, ℓ, w,m, d) ≤ Γ(r − (k − 1), δk−1, δk−1,m, d). By Claim 8 and the monotonicity of Γ:

Γ(r − (k − 1), δk−1, δk−1,m, d)

≤Γ(r − k, C
2
· (2 · δk−1) · (log2(2 · δk−1))

6,
C

2
· (2 · δk−1) · (log2(2 · δk−1))

6, m, d)

≤Γ(r − k, δk, δk m, d),

as indeed

C

2
· (2 · δk−1) · (log2(2 · δk−1))

6

≤ C
2
·
(
C · (ℓ+ w)

)2k(
log2((C · (ℓ+ w))2k)

)6

≤ C
2
·
(
C · (ℓ+ w)

)2k
(2 · k)6 log2(C · (ℓ+ w))6

≤ C
2
·
(
C · (ℓ+ w)

)2k ·
√
C · log2(C · (ℓ+ w))6 from k < r ≤ d and (2 · d)6 ≤

√
C

≤ C
2
·
(
C · (ℓ+ w)

)2k ·
√
C ·
√
C · (ℓ+ w) from log2(x)

6 ≤ √x for x ≥ 275

≤ 1

2
·
(
C · (ℓ+ w)

)2(k+1)
= δk.
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The inequality we just showed, together with the base case of the recurrence system, entails766

Γ(r, ℓ, w,m, d) ≤ (2110m29(d+ 2)39O · log2(O)6(ℓ+ w))2·r. (8)

Take now the formula Φ in the statement of the theorem. This formula belongs to Γ(r, ℓ, w,m, d)
where ℓ := 〈||Φ||〉 and w := log2

(∏
p∈P(Φ) p

µp+1
)
. We have

w ≤ max{1 + vp(f(bp)) : f is in a left-hand side of Φ, p ∈ P(Φ)} · log2
( ∏

p∈P(Φ)

p
)

≤ max{〈f(bp)〉 : f is in a left-hand side of Φ, p ∈ P(Φ)} · log2
( ∏

p∈P(Φ)

p
)

≤ (max{〈||bp||〉 : p ∈ P(Φ)}+ 〈||Φ||〉+ d+ 1) · log2
( ∏

p∈P(Φ)

p
)

≤ (max{〈||bp||〉 : p ∈ P(Φ)}+ 〈||Φ||〉+ d+ 1) ·m2(d+ 2) · (〈||Φ||〉+ 2) Lemma 4

≤ (max{〈||bp||〉 : p ∈ P(Φ)}+ 1) ·m2(d+ 2)2(〈||Φ||〉+ 2)2.

Then, following Equation (8), the minimal positive solution of Φ is bounded by

(
2111O · log2(O)6m31(d+ 2)41(〈||Φ||〉+ 2)2(max{〈||bp||〉 : p ∈ P(Φ)}+ 2)

)2r
,

which is in (〈Φ〉+max{〈||bp||〉 : p ∈ P(Φ)})O(r).767

Remark 1. Let us briefly discuss how the infinitely many solutions of Φ ensured by Theorem 4 look768

like. Since solutions are constructed by solving the systems of (non-)congruences in Equations (4)769

and (6) (see Algorithm 1 for a summary), Theorem 3 ensures that Φ has infinitely many solu-770

tions. More precisely, the following property holds: let (≺) ∈ (X1 ≺ · · · ≺ Xr), x ∈
⋃r
j=1Xj, and771

ν :
⋃r
j=1Xj → Z be the solution of Φ computed by Algorithm 1. The system Φ[ν(y) / y : y ≺ x] has772

a solution for infinitely many positive and negative values of x.773

3.3 Deciding systems of divisibility constraints in increasing form in NP774

Theorem 4 provides a way of constructing integer solutions of bit length exponential in r for775

r-increasing systems of divisibility constraints. A different approach not relying on constructing776

integer solutions shows that the feasibility problem for systems of divisibility constraints in increas-777

ing form is in NP.778

Let Φ(x) :=
∧m
i=1 fi | gi be a formula in increasing form for an order ≺. According to Theorem 4,779

Φ is satisfiable over the integers if and only if there are solutions bp for Φ modulo p for every prime780

p belonging to P(Φ). From Lemma 4, the bit length of P(Φ) is polynomial in 〈Φ〉, and therefore781

only polynomially many primes of polynomial bit length need to be considered. Recall that Φ has a782

solution modulo p whenever the system
∧m
i=1 vp(fi(x)) ≤ vp(gi(x))∧fi(x) 6= 0 has a solution. In [6]783

it is shown that the feasibility problem for these constraint systems is in NP (this result holds for784

solutions over the integers, p-adic integers, and p-adic numbers), and therefore there are certificates785

of feasibility having size polynomial in 〈p〉 and 〈Φ〉. The set of these certificates, one for each prime786

in P(Φ), is a polynomial size certificate for the feasibility of Φ.787

Proposition 2. Feasibility for systems of divisibility constraints in increasing form is in NP.788
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Of course, we know from the family of formulae Φn introduced in Section 1.1 (and the one after The-789

orem 4) that systems in increasing form might have minimal solutions of exponential bit length.790

Therefore, Proposition 2 is of no use when establishing Theorem 1. However, it still has an inter-791

esting implication: if the feasibility problem for systems of divisibility constraints lies outside NP,792

then there is no polynomial time non-deterministic Turing machine for finding an equisatisfiable793

system in increasing form.794

4 IP-GCD systems have polynomial size solutions795

In this section we expand the summary provided Section 1.4 and establish Theorem 1, i.e., that796

every feasible IP-GCD system has solutions of polynomial bit length, and that this polynomial797

bound still holds when looking at minimization or maximization of linear objectives. As explained798

in Section 1.4, we prove Theorem 1 by designing an algorithm that reduces an IP-GCD system into a799

disjunction of (exponentially many) 3-increasing systems of divisibility constraints with coefficients800

and constants of polynomial size, to then study bounds on their solutions modulo primes. Then,801

the polynomial small witness property follows from Theorem 4.802

Without loss of generality, throughout the section we consider IP-GCD systems of the form803

A · x ≤ b ∧
k∧

i=1

gcd(yi, zi) ∼i ci ,

where, A ∈ Zm×d, b ∈ Zm, ci ∈ Z+, x = (x1, . . . , xd) is a vector of variables, ∼i ∈ {≤,=, 6=, ≥}, and804

the yi and zi are variables occurring in x. Systems with GCD constraints gcd(f(w), g(w)) ∼ c can805

be put into this form by replacing gcd(f(w), g(w)) ∼ c with y = f(w) ∧ z = g(w) ∧ gcd(y, z) ∼ c,806

where y and z are fresh variables.807

4.1 Translation into 3-increasing systems808

The procedure generating the 3-increasing systems of divisibility constraints starting from an IP-809

GCD system Φ is divided into two steps: we first (Algorithm 2) compute several systems of di-810

visibility constraints whose disjunction is equivalent to Φ (under some changes of variables). We811

now describe these two steps in detail, and study bounds on the obtained 3-increasing formulae812

(Lemma 13). Both steps rely on the following notion of gcd-to-div triple, which highlights proper-813

ties of the system of divisibility constraints obtained by translation from IP-GCD systems. A triple814

(Ψ,u, E) is said to be a gcd-to-div triple whenever there are d,m ∈ N and three disjoint families of815

variables z, y and w for which the following properties hold:816

1. Ψ(z,y,w) is a system of divisibility constraints in m variables, u ∈ Zd and E ∈ Zd×m, where817

each column of E (implicitly) corresponds to a variable in Ψ.818

2. Each divisibility in Ψ is of the form h(z) | f(y) or of the form f(y) | g(w), with g being a non-819

constant polynomial. Each polynomial only features non-negative coefficients and constants,820

and each left-hand side of a divisibility has a (strictly) positive constant.821

3. In Ψ, each variable in z appears in a single polynomial h(z), where h(z) is of the form z + c,822

for some c ∈ Z+, and occurs in precisely two divisibilities (as left-hand side).823

4. In Ψ, each variable in w appears in exactly two polynomials g1(w) and g2(w), each occurring824

in Ψ exactly once (as right-hand sides). They have the form g1(w) = w and g2(w) = w + c,825

for some c ∈ Z+.826
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Algorithm 2 Translate a IP-GCD system into gcd-to-div triples

Input: An IP-GCD system Φ(x) = A · x ≤ b ∧∧k
i=1 gcd(yi, zi) ∼i ci with x = (x1, . . . , xd).

Output: A finite set B of gcd-to-div triples satisfying {a ∈ Zd : a solution to Φ} = JBK.

1: G := {Ψ1(x), . . . ,Ψℓ(x)} such that Φ is equivalent to
∨ℓ
i=1Ψi and every Ψ ∈ G is a IP-GCD

system in which every GCD constraint gcd(y, z) ∼ c is such that (i) for both w ∈ {y, z}
either w ≤ −1 or w ≥ 1 appear in Ψ, and (ii) the relation ∼ is either = or ≥

2: B := ∅ ⊲ Set to be returned by the procedure
3: for Ψ in G do
4: Ψ′ := linear inequalities in Ψ
5: S := {(ui, Ei) : i ∈ I} s.t.

⋃
i∈I{ui + Ei · y : y ∈ Nℓ} solutions set of Ψ′ ⊲ Proposition 3

6: for (u, E) in S do
7: Ψ′′ := system of GCD constraints obtained from Ψ by performing the change of

variables x← u+ E · y, where y is a vector of fresh variables (over N)

8: replace every polynomial f in Ψ′′ having only negative coefficients or constant with −f
9: replace every constraint gcd(f, g) = c in Ψ′′ with (c | f)∧ (c | g)∧ (f | w)∧ (g | w+ c),

where w is a fresh variable (distinct GCD constraints gets distinct fresh variables)

10: replace every constraint gcd(f, g) ≥ c in Ψ′′ with (z + c | f) ∧ (z + c | g),
where z is a fresh variable (distinct GCD constraints gets distinct fresh variables)

11: add to B the triple (Ψ′′,u, E′) where E′ is obtained form E by adding a zero column
for each auxiliary variable z and w added in lines 9 and 10

12: return B

5. Every column in E corresponding to a variable in z or w is zero (see line 11 of Algorithm 2).827

For a set of gcd-to-div triples S, let JSK := {u+E · λ : (Ψ,u, E) ∈ B and λ ∈ Nm solution to Ψ}.828

Step I: from IP-GCD to systems of divisibility constraints. This step is implemented829

by Algorithm 2. As highlighted in its signature, given as input an IP-GCD system Φ(x) having830

d variables and k GCD constraints, this procedure returns a set B of gcd-to-div triples satisfying831

the equivalence {a ∈ Zd : a solution to Φ} = JBK. This equivalence clarifies the role of the vector832

u and matrix E of a gcd-to-div triple (Ψ,u, E): they are used to perform a change of variables833

between the variables (z,y,w) in Ψ and the variables x in Φ. Note that, according to the definition834

of JBK, the values of (z,y,w) range over N instead of Z. This discrepancy stems from the use of835

the forthcoming Proposition 3.836

Let us discuss how Algorithm 2 computes B. As a preliminary step, the procedure computes the
formula

∨ℓ
i=1Ψi in line 1. The role of this formula is to reduce the problem of translating IP-GCD

systems into systems of divisibility constraints to only those systems in which the GCD constraints
gcd(y, z) ≤ c and gcd(y, z) 6= c do not appear, and given a GCD constraint gcd(y, z) ∼ c (with ∼
either = or ≥), the variables y and z are forced to be positive or negative (in particular, non-zero).
The formula

∨ℓ
i=1Ψi can be computed from Φ by opportunely applying the following tautologies:

y ≤ −1 ∨ y = 0 ∨ y ≥ 1 , gcd(y, z) 6= c+ 2 ⇐⇒ gcd(y, z) ≤ c+ 1 ∨ gcd(y, z) ≥ c+ 3 (c ∈ N) ,

gcd(y, z) 6= 1 ⇐⇒ y = z = 0 ∨ gcd(y, z) ≥ 2 , gcd(y, z) ≤ c ⇐⇒
c∨

j=1

gcd(y, z) = j ,

y = 0 =⇒ (gcd(y, z) ∼ c ⇐⇒ |z| ∼ c) , y 6= 0 ∧ z = 0 =⇒ (gcd(y, z) ∼ c ⇐⇒ |y| ∼ c) ,
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where in the last two tautologies ∼ is = or ≥, and |x| ∼ c := (x ≥ 0 ∧ x ∼ c) ∨ (x < 0 ∧ −x ∼ c).837

Let G := {Ψ1, . . . ,Ψℓ} (as defined in line 1). The next step of the algorithm is to remove the system838

of inequalities from every formula Ψ ∈ G via changes of variables (lines 4–7). This can be done839

thanks to a fundamental result by von zur Gathen and Sieveking [25] that characterises the set of840

solutions of linear inequalities as a union of discrete shifted cones. The following formulation of this841

result is from [12, Theorem 3].842

Proposition 3 ([25]). Consider matrices A ∈ Zm×d, C ∈ Zn×d, and vectors b ∈ Zm, d ∈ Zn. Let843

r := rank(A) and s := rank
(
A
C

)
. Then,844

{x ∈ Zd : A · x = b ∧ C · x ≤ d} =
⋃

i∈I

{ui + Ei · y : y ∈ Nd−r} ,

where I is a finite set, ui ∈ Zd, Ei ∈ Zd×(d−r)and ||ui||, ||Ei|| ≤ (d+1)(s·max(2, ||A||, ||C||, ||b||, ||d||))s.845

Let S = {(ui, Ei) : i ∈ I} be the set of pairs given by Proposition 3 on the linear inequalities846

of Ψ, as written in line 5, and given (u, E) ∈ S consider the system Ψ′′ defined in line 7. Follow-847

ing Proposition 3, Ψ′′ is interpreted over N. By definition of G, in Ψ, every variable x appearing in848

a GCD constraint also appears in a (non-zero) sign constraint x ≤ −1 or x ≥ 1. This means that849

in the system x = u+E · y, the row corresponding to x is of the form x = f(y) where f is a linear850

polynomial having coefficients and constant with the same polarity, i.e., they are all negatives (if851

x ≤ −1) or positives (if x ≥ 1). Therefore, all GCD constraints in Ψ′′ are of the form gcd(f, g) ∼ c852

where f and g are polynomials with coefficients and constant having the same polarity. Line 8853

modifies Ψ′′ so that every polynomial in it becomes of positive polarity, thanks to the equalities854

gcd(f, g) = gcd(−f, g) and gcd(f, g) = gcd(g, f). What is left is to translate Ψ′′ into a system of855

divisibilities. This is done in lines 9 and 10 by simply relying on the following two tautologies:856

gcd(f, g) = c ∧ f 6= 0 ∧ g 6= 0 ⇐⇒ ∃w ∈ N : c | f ∧ c | g ∧ f | w ∧ g | w + c ,

gcd(f, g) ≥ c ⇐⇒ ∃z ∈ N : z + c | f ∧ z + c | g.
(9)

Above, note that we can assume f 6= 0∧g 6= 0 in Ψ′′, again because of the sign constraints appearing
in Ψ. While the second tautology should be self-explanatory, the first one merits a formal proof:

gcd(f, g) = c ∧ f 6= 0 ∧ g 6= 0

⇐⇒ ∃a, b ∈ Z : c | f ∧ c | g ∧ a · f + b · g = c Bézout’s identity

⇐⇒ ∃w, z ∈ Z : w ≤ 0 ∧ c | f ∧ c | g ∧ f | w ∧ g | z ∧ w + z = c set w = a · f and z = b · g
Bézout’s identity allows picking w ≤ 0

⇐⇒ ∃w ∈ Z : w ≤ 0 ∧ c | f ∧ c | g ∧ f | −w ∧ g | c− w eliminate z, and f | w ⇔ f | −w
⇐⇒ ∃w ∈ N : c | f ∧ c | g ∧ f | w ∧ g | w + c change of variable −w ← w.

Note that the divisibilities in (9) ensure that Ψ′′ satisfies the constraints required by gcd-to-div857

triples. After translating GCDs into divisibilities, the procedure computes a matrix E′ by enrich-858

ing E with zero columns corresponding to the new variables z and w, and adds the resulting triple859

(Ψ′′,u, E′) to B (line 11). We obtain the following result:860

Lemma 10. Algorithm 2 respects its specification. Given as input a system Φ with d variables and k861

GCD constraints, every triple (Ψ,u, E) in the output set B is such that Ψ has at most d+k variables862

and 4k divisibilities, E has at most d non-zero columns, and ||Ψ||, ||u||, ||E|| ≤ (d+1)d+2(||Φ||+1)d+1.863
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Algorithm 3 Translates the systems in gcd-to-div triples into 3-increasing form

Input: A finite set B of gcd-to-div triples.
Output: A finite set C of gcd-to-div triples such that JBK = JCK

and for every (Ψ,u, E) ∈ C, Ψ is a 3-increasing system of divisibility constraints.

1: C := ∅ ⊲ Set to be returned by the procedure
2: while (Ψ,u, E)← pop(B) do ⊲ exits when B becomes empty
3: if Mf (Ψ) ∩ Z = {0} for every non-constant f primitive part of some l.h.s. in Ψ then
4: add to C the triple (Ψ,u, E) ⊲ Ψ in increasing form
5: else
6: f := non-constant primitive part of some l.h.s. in Ψ, satisfying Mf (Ψ) ∩ Z 6= {0}
7: λ1, . . . , λj := the variables appearing in f
8: c := minimum positive integer in Mf (Ψ)
9: for ν : {λ1, . . . , λj} → [0, c] such that f(ν(λ1), . . . ,ν(λj)) divides c do

10: Ψν
:= Ψ[ν(λi) / λi : i ∈ [1, j]] ⊲ Ψν has fewer variables than Ψ

11: uν
:= u+

∑j
i=1 ν(λi) ·pi where pi is the column of E corresponding to the variable λi

12: Eν
:= E without the columns corresponding to λ1, . . . , λj

13: add to B the triple (Ψν ,uν , Eν) ⊲ triple to be considered again in line 2

14: return C

Proof. The fact that Algorithm 2 respects its specification follows from the discussion given above.864

In particular, {a ∈ Zd : a solution of Φ} = JBK stems from the fact that the procedure treats the865

original formula Φ by only relying on tautologies and on Proposition 3.866

Let us study the bounds on (Ψ,u, E). For the bound on the number of variables in Ψ and non-867

zero columns in E, note that by Proposition 3, the change of variables of line 7 does not increase868

the number of variables, and therefore the only lines where the number of variables increases are869

lines 9 and 10. Overall, these two lines introduce k many variables, one for each GCD constraint; so870

the number of variables in Ψ is bounded by d+k. Each new variable introduces a zero column in E,871

which has thus at most d non-zero columns (line 11). For the bound on the number of divisibilities,872

only lines 9 and 10 matter, and they introduce at most 4 divisibilities per GCD constraint; hence873

Ψ has at most 4k divisibilities. Lastly, let us derive the bound on the infinity norm of Ψ, u and E.874

The rewritings done in line 1 increase the infinity norm by at most 1; this occurs when relying on875

the tautology gcd(y, z) 6= c+ 2 ⇐⇒ gcd(y, z) ≤ c+ 1 ∨ gcd(y, z) ≥ c+ 3. The bound on u and E876

then follows from a simple application of Proposition 3: ||u||, ||E|| ≤ (d + 1) · (d · (||Φ|| + 1))d. The877

change of variables in line 7 yields ||Ψ′′|| ≤ (d + 1) ·max(||u||, ||E||) · (||Φ|| + 1). Lines 8–11 do not878

change the infinity norm, and therefore we obtain the bound in the statement of the lemma.879

Step II: force increasingness. We now move to Algorithm 3, whose role is to translate the880

systems of divisibility constraints computed by Algorithm 2 into 3-increasing systems. As such, the881

procedure takes as input a set B of gcd-to-div triples. We first need the following result:882

Lemma 11. Let (Ψ,u, E) be a gcd-to-div triple. If the system Ψ is not in increasing form, then there883

is a non-constant polynomial f primitive part of a left-hand side in Ψ such that Mf (Ψ) ∩ Z 6= {0}.884

If Ψ is in increasing form, then it is increasing for z ≺ y ≺w, where z, y and w are the families885

of variables appearing in the definition of gcd-to-div triple.886

Proof. For the first statement, we prove a stronger result: if Ψ is not increasing for z≺y≺w, then887

there is a non-constant polynomial f primitive part of a left-hand side in Ψ s.t. Mf (Ψ) ∩ Z 6= {0}.888
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Observe that then, by definition of divisibility module and increasing form, Ψ cannot be in increasing889

form for any order; which shows the second statement in the lemma by contrapositive.890

Consider an order x1 ≺ · · · ≺ xd of the variables in Ψ that belongs to z ≺ y ≺w, and suppose891

that Ψ is not in increasing form for this order. Therefore, there is a primitive part f of a left-892

hand side of a divisibility in Ψ such that Mf (Ψ) ∩ Z[x1, . . . , xj ] 6= Zf , where xj = LV(f). Let893

g ∈ Mf (Ψ) ∩ Z[x1, . . . , xj ] \ Zf . We show that g must be a constant polynomial. We distinguish894

two cases, depending on whether the leading variable of f belongs to z or to y (note that it cannot895

belong to w, as no left-hand sides with variables from this family exists).896

case LV(f) is in z. Since LV(g) � LV(f), all variables in g are from z. By Property 2 of gcd-to-div897

triple, each divisibility in Ψ is of the form h(z) | h′(y) or of the form h(y) | h′(w). By Lemma 6,898

a set spanning Mf (Ψ) is given by {f, c1 · g1, . . . , cm · gm} where ci ∈ N and gi is a right-hand899

side of a divisibility in Ψ, for every i ∈ [1,m]. This means that every gi has variables from y900

or w. Since g does not have any variable from y or w and belongs to Zf , we conclude that901

it must be a constant polynomial.902

case LV(f) is in y. Again from Property 2 of gcd-to-div triple, f only appears as left-hand side in903

divisibilities of the form a · f(y) | h(w), with a ∈ Z \ {0}. Since no non-constant polynomial904

h(w) appears in a left-hand side of Ψ, the set {f, c1 ·g1, . . . , cm ·gm} spanning Mf (Ψ) computed905

via Lemma 6 is such that ci 6= 0 if and only if gi only has variables from w, for every i ∈ [1,m].906

Since ≺ belongs to z≺y≺w, from LV(g)≺LV(f) we then conclude that g must be a constant907

polynomial.908

Consider (Ψ,u, E) ∈ B. Algorithm 3 relies on Lemma 11 to test whether Ψ is increasing (line 3).909

If it is not, it computes the minimum positive integer c ∈ Mf (Ψ), for some f non-constant (line 8).910

By definition of divisibility module, for every primitive polynomial f and polynomial g ∈ Mf (Ψ), we911

have that Ψ entails f | g, that is for every a ∈ Zm solution to Ψ, f(a) divides g(a); and therefore Ψ912

entails f | c. We can now eliminate all variables that occur in f : by definition of gcd-to-div triple,913

f has coefficients and constant that are all positive, and Ψ is interpreted over N. We conclude914

that every solution of Ψ is such that it assigns an integer in [0, c] to every variable in f . The for915

loop in line 9 iterates over the subset of these (partial) assignments satisfying f | c. Each of these916

assignments ν yields a new triple (Ψν ,uν , Eν), defined as in lines 10–12, which is a gcd-to-div triple917

thanks to the lemma below (that follows directly from the definition of gcd-to-div triple).918

Lemma 12. Let (Ψ,u, E) be a gcd-to-div triple, with u ∈ Zd, and X be a subset of the variables919

appearing in left-hand sides of Ψ. Consider a map ν : X → Z. Let Ψ′ := Ψ[ν(x) / x : x ∈ X],920

u′ ∈ Zd, and E′ be the matrix obtained from E by removing the columns corresponding to variables921

in X. The triple (Ψ′,u′, E′) is a gcd-to-div triple.922

The key equivalence, from which the correctness of the algorithm directly stems, is:923

{u+E ·λ : λ ∈ Nm solution for Ψ} =
⋃

ν substitution
considered in line 9

{uν+Eν ·λ : λ ∈ Nm−j solution for Ψν}, (10)

where j ≥ 1 is the number of variables in f . The procedure adds each triple (Ψν ,uν , Eν) to the924

set B (line 13), so that it will be tested for increasingness in a later iteration of the while loop of925

line 2. Termination is guaranteed from the fact that f is non-constant and so each Ψν has strictly926

fewer variables than Ψ.927
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Lemma 13. Algorithm 3 respects its specification. On input B such that, for every (Ψ,u, E) ∈ B,928

Ψ has at most d variables and k GCD constraints, and E has at most ℓ non-zero columns, each929

output triple (Ψ′,u′, E′) ∈ C is such that Ψ′ has at most d variables and k GCD constraints, E′ has930

at most ℓ non-zero columns, ||Ψ′|| ≤ 215(d+ 1) · (||B||+ 1)7, ||u′|| ≤ (ℓ+ 1) · ||B||2, and ||E′|| ≤ ||B||.931

Above, ||B|| is the maximum among ||Ψ||, ||u||, and ||E||, over all gcd-to-div triples (Ψ,u, E) ∈ B.932

The most difficult parts of the proof are the bounds on Ψ′ and u′. These, however, follow from933

the properties of gcd-to-div triples and, in particular, from the special shape of the divisibility934

constraints that they allow. Together, Lemmas 10 and 13 imply Proposition 1 in Section 1.4.935

Proof. The fact that Algorithm 3 respects its specification follows from the discussion given above,936

and in particular from Lemma 11 and Equation (10). Let us then focus on the bounds on an output937

triple (Ψ′,u′, E′). Note that ||B|| ≥ 1, if B contains at least one divisibility. Following the while938

loop of Algorithm 3, there is a sequence of triples939

(Ψ1,u1, E1) → (Ψ2,u2, E2) → . . . → (Ψk,uk, Ek) = (Ψ′,u′, E′),

where (Ψ1,u1, E1) ∈ B and for every i ∈ [1, k − 1], the triple (Ψi+1,ui+1, Ei+1) is computed from940

(Ψi,ui, Ei) following lines 6–13. In particular, given i ∈ [1, k − 1]:941

• there is a non-constant polynomial f̂i that is the part of a left-hand side in Ψi satisfy-942

ing M
f̂i
(Ψi) ∩ Z 6={0} and with variables λ̂i := (λi,1, . . . , λi,ji), and943

• there is a map νi : {λi,1, . . . , λi,ji} → [0, ĉi] such that f̂i(νi(λ̂i)) divides ĉi, where ĉi is the944

minimum positive integer in M
f̂i
(Ψi),945

such that Ψi+1 = Ψi[νi(λi,r) / λi,r : r ∈ [1, ji]], ui+1 = ui +
∑j

r=1 νi(λi,r) · pr, where pr is the946

column of Ei corresponding to the variable λi,r, and Ei+1 is obtained from Ei by removing the947

columns corresponding to variables in λ̂i. Note that this implies that ||E′|| ≤ ||Ei|| ≤ ||B|| and that948

E′ and Ei have at most ℓ non-zero columns, as required by the lemma.949

We show the remaining bounds in the statement of the lemma by induction on i ∈ [1, k], with950

the induction hypothesis stating that (Ψi,ui, Ei) is a gcd-to-div triple where:951

(A) Ψi is a system with at most d variables and k GCD constraints, having the form952

Ψi =

l∧

j=1

cj | fj(y)∧
n∧

j=l+1

(
zj+cj | fj(y)∧zj+cj | gj(y)

)
∧

m∧

j=n+1

(
fj(y) | wj∧gj(y) | wj+cj

)
,

where y, z = (zl+1, . . . , zn) and w = (wn+1, . . . , wm) are disjoint families of variables (accord-953

ing to the definition of gcd-to-div triple), cj ∈ Z+ for every j ∈ [1,m], and954

(B) for every j ∈ [1, l], cj ≤ 215 · (2 + ||B||)7, and for every j ∈ [l + 1,m], cj ≤ ||B||, and955

(C) for every j ∈ [l + 1,m], h(y) ∈ {fj(y), gj(y)} has variable coefficients bounded by ||B||, and956

constant bounded by (d+ 1− d′) · ||B||2, where d′ is the number of variables in h, and957

(D) if i ∈ [2, k], then for every r ∈ [1, ji−1], if λi−1,r belongs to y then νi(λi−1,r) ≤ ||B||, and958

if λi−1,r belongs to z then νi(λi−1,r) ≤ 214(2 + ||B||)7.959

Note that Item (D) implies ||u′|| ≤ (ℓ + 1) · ||B||2, since all non-zero columns of E1 correspond to960

variables in y, by definition of gcd-to-div triple. Items (B) and (C) imply ||Ψ′|| ≤ 215(d+1)·(||B||+1)7.961
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base case i = 1. In this case (Ψ1,u1, E1) ∈ B and the hypothesis above trivially holds since962

(Ψ1,u1, E1) is a gcd-to-div triple and Properties 2–4 ensure that Ψ1 has the form in Item (A).963

induction step i+ 1 ≥ 2. We assume the induction hypothesis for (Ψi,ui, Ei), and establish it964

for (Ψi+1,ui+1, Ei+1). By Lemma 12, (Ψi+1,ui+1, Ei+1) is a gcd-to-div triple, hence Item (A)965

follows. So, let us focus on establishing the part of the induction hypothesis related to the966

infinity norm of Ψi+1 and νi (Items (B) to (D)). Let z, y and w be the families of variables967

witnessing that (Ψi,ui, Ei) is a gcd-to-div triple, according to the definition of such triples.968

By Property 2, f̂i has variables from either z or y (not both). We divide the proof depending969

on these two cases.970

case f̂i has only variables from y. From Property 2 of gcd-to-div triples, f̂i only appears971

as a left-hand side in divisibilities of the form a · f̂i(y) | h(w), with a ∈ Z \ {0}. From972

Property 4 of gcd-to-div triples together with the fact that M
f̂i
(Ψi) ∩ Z 6= {0}, we973

conclude that there must be a variable w in w and c ∈ Z+ such that a1 · f̂i | w and974

a2 · f̂i | w+ c are divisibilities in Ψi, for some a1, a2 ∈ Z \ {0}. Then, c ∈ M
f̂i
(Ψi) and by975

definition ĉi ≤ c. By induction hypothesis (Item (B)), ĉi ≤ ||B||, which shows Item (D)976

directly by definition of νi. Item (B) is also trivially satisfied: since we are replacing977

only variables in y, all polynomials in Ψi+1 with variables from z or w are polynomials978

in Ψi, and no new coefficient c′ can appear in divisibilities of the form c′ | f(y).979

To prove Item (C), let h′ be a polynomial obtained from some h(y) in Ψi by evaluating980

each λi,r as νi(λi,r) (r ∈ [1, j]). By induction hypothesis (Item (C)), h has variable981

coefficients bounded by ||B||, and constants bounded by (d + 1 − d′) · ||B||2, where d′ is982

the number of variables in h. Let d′′ be the number of variables in h′. Because of the983

substitutions done by νi, we conclude that the coefficients of h′ are bounded by ||B||,984

whereas its constant is bounded by (d+1−d′) · ||B||2+(d′−d′′) · ||B||2 = (d+1−d′′) · ||B||2.985

case f̂i has only variables from z. In this case, f̂i is of the form z + c for some c ∈ Z+,986

and by Property 3 of gcd-to-div triple it appears in exactly two divisibilities z+ c | f(y)987

and z+ c | g(y). In order to upper bound ĉi, we divide the proof in two cases, depending988

on whether (Zf + Zg) ∩ Z = {0}.989

case (Zf + Zg) ∩ Z = {0}. Since M
f̂i
(Ψi)∩Z 6= {0}, by Properties 2 and 4 of gcd-to-div990

triples there must be two polynomials f ′(y) and g′(y), a variable w in w and991

a′, b′, c′ ∈ Z+ such that f ′(y) | w, g′(y) | w + c′ and {a′ · f ′, b′ · g′} ⊆ (Zf + Zg).992

Then, by definition of divisibility module, a′ · b′ · c′ ∈ M
f̂i
(Ψi). By induction hy-993

pothesis c′ ≤ ||B|| (Item (B)), and therefore to find a bound on ĉi is suffices to994

bound a′ and b′. Let us study the case of a′ (the bound is the same for b′). The995

set S := {−f ′, f, g} can be represented as a matrix A ∈ Z(d+1)×3 in which each996

column contains the coefficients and the constant of a distinct element of S. We ap-997

ply Proposition 3 on the system A · (x1, x2, x3) = 0, and conclude that a′ is bounded998

by 4 · (3 ·max(2, ||A||))3 ≤ 108 · (||B||+ 1)3. Therefore, ĉi ≤ 214(||B||+ 1)7.999

case (Zf + Zg) ∩ Z 6= {0}. In this case, we consider the set S := {f, g} and the matrix1000

A ∈ Z(d+1)×2 in which each column contains the coefficients and the constant of1001

a distinct element in S, with the constant being places in the last row. To find a1002

non-zero value c′ ∈ (Zf + Zg) ∩ Z, we solve the system A · (x1, x2) + x3 · (0, 1) = 0.1003

By Proposition 3, ĉi ≤ |c′| ≤ 4 · (3 ·max(2, ||A||))3 ≤ 108 · (||B||+ 1)3.1004

Therefore, νi(z) ≤ ĉi ≤ 214(||B||+1)7, which shows Item (D) of the induction hypothesis.1005

Item (C) is trivially satisfied, since νi replaces only the variable z, which does not belong1006
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to y. Item (B) follows from the fact that in the polynomial z+c the integer c is bounded1007

by ||B|| by induction hypothesis, and therefore ν(z) + c ≤ 215(||B||+ 1)7.1008

4.2 Bound on the solutions modulo primes1009

Through Algorithms 2 and 3 we are able to compute from a IP-GCD system Φ a set of gcd-to-div1010

triples C such that {a ∈ Zd : a is a solution to Φ} = JCK. To apply Theorem 4, what is left is to1011

study bounds on the solutions modulo primes in P(Ψ), for every (Ψ,u, E) ∈ C.1012

Lemma 5. Let (Ψ,u, E) be a gcd-to-div triple in which Ψ has d variables, and consider p ∈ P(Ψ).1013

If Ψ has a solution modulo p, then it has a solution bp ∈ Zd modulo p with ||bp|| ≤ (d+ 1) · ||Ψ||3p2.1014

Proof. Let us assume there exists a solution ν : λ→ Z to Ψ(λ) modulo p. We build another solution1015

ν ′ : λ→ Z to Ψ(λ) modulo p such that ||ν ′(λ)|| ≤ (d+ 1) · ||Ψ||3p2. According to Properties 2–4 of1016

gcd-to-div triples, the formula Ψ is of the form:1017

Ψ =
l∧

i=1

ci | fi(y) ∧
n∧

i=l+1

(
zi + ci | fi(y) ∧ zi + ci | gi(y)

)
∧

m∧

i=n+1

(
fi(y) | wi ∧ gi(y) | wi + ci

)
,

where y, z = (zl+1, . . . , zn) and w = (wn+1, . . . , wm) are disjoint families of variables, and ci ∈ Z+

for every i ∈ [1,m]. Recall that the variables zi (i ∈ [l + 1, n]) are all distinct, and the same holds
true for the variables wi (i ∈ [n+ 1,m]). We define µi := vp(ci), µ := maxmi=1 µi, and ν ′ as:

ν ′(x) :=





(ν(x) modulo pµ) if x belongs to y,

1 if x = zi for some i ∈ [l + 1, n] and p divides ci,

0 if x = zi for some i ∈ [l + 1, n] and p does not divide ci,

pµ+1gi(ν
′(y))− ci if x = wi for some i∈ [n+1,m] and pµi+1 does not divide fi(ν(y)),

pµ+1fi(ν
′(y)) otherwise (x = wi for some i ∈ [n+ 1,m]).

Note that ν ′ is defined recursively in the last two cases; this recursion is on variables from y and1018

thus ν ′ is well-defined. By definition, pµ+1 ≤ ||Ψ|| · p, and therefore ||ν ′(x)|| ≤ (d + 1) · ||Ψ||3p2 for1019

every variable x in λ. To conclude the proof, let us show that ν ′ is a solution for Ψ modulo p. The1020

fact that f(ν ′(λ)) 6= 0 for every polynomial f in the left-hand side of a divisibility in Ψ stems from1021

ν ′ being defined to be non-negative for every variable in z and y, and f having a positive constant1022

by Property 2 of gcd-to-div triples. So, we focus on showing that vp(f(ν
′(λ))) ≤ vp(g(ν

′(λ))) for1023

every divisibility f | g in Ψ.1024

Let i ∈ [1, l], and consider ci | fi(y). By definition of ν ′, fi(ν
′(y)) ≡ fi(ν(y)) (mod pµ+1), and1025

therefore vp(fi(ν
′(y))) = min(µ+ 1, vp(fi(ν(y)))). By definition of µ, we have ci 6≡ 0 (mod pµ+1),1026

i.e., vp(ci) < µ+ 1. We conclude that vp(ci) ≤ vp(fi(ν ′(y))).1027

Let i ∈ [l+1, n], and consider the divisibilities zi+ci | fi(y) and zi+ci | gi(y). By definition of ν ′
1028

we have vp(ν
′(zi)+ci) = 0, and so vp(ν

′(zi)+ci) ≤ vp(fi(ν ′(y))) and vp(ν
′(zi)+ci) ≤ vp(fi(ν ′(y))).1029

Let i ∈ [n + 1,m]. Assume first that pµi+1 does not divide fi(ν(y)), and so ν ′ is defined so1030

that ν ′(wi) = pµ+1gi(ν
′(y)) − ci. The divisibility gi(y) | wi + c is trivially satisfied by ν ′ over the1031

integers, and thus also modulo p. By definition of ν ′ we have fi(ν
′(y)) ≡ fi(ν(y)) (mod pµ+1) and1032

therefore pµi+1 does not divide fi(ν
′(y)). By definition of µi, this implies vp(fi(ν

′(y))) ≤ vp(ci).1033

From the definition of µ, vp(p
µ+1gi(ν

′(y))) > vp(ci) and therefore vp(ν
′(wi)) = vp(ci), which yield1034

vp(fi(ν
′(y))) ≤ vp(ν

′(wi)). Let us now assume that pµi+1 divides fi(ν(y)), and so ν ′ is defined1035

so that ν ′(wi) = pµ+1fi(ν
′(y)). Clearly, the divisibility fi(y) | wi is satisfied by ν ′ over the1036
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integers, and thus also modulo p. Since ν is a solution for Ψ modulo p, and pµ+1 divides fi(ν(y)),1037

we conclude that pµ+1 divides ν(wi). Then, by definition of µ, vp(ν(wi)) > vp(ci) and therefore1038

vp(gi(ν(y))) ≤ vp(ν(wi) + ci) = vp(ci). By definition of ν ′, gi(ν
′(y)) ≡ gi(ν(y)) (mod pµ+1) and1039

vp(ν
′(wi) + ci) = vp(ci). We conclude that vp(gi(ν

′(y))) ≤ vp(ν ′(wi) + ci).1040

4.3 Proof of Theorem 11041

Thanks to Lemmas 4, 5, 10 and 13, we obtain the part of Theorem 1 not concerning optimization1042

as a corollary of Theorem 4.1043

Corollary 1. Each feasible IP-GCD system has a solution of polynomial bit length.1044

Let us now discuss the related integer programming optimization problem. Consider an IP-GCD1045

system Φ(x) and the problem of minimizing (or maximizing) a linear objective c⊺x subject to Φ(x).1046

We apply Lemmas 10 and 13 on Φ(x) to obtain a set C of gcd-to-div triples only featuring 3-1047

increasing systems of divisibility constraints , and with {a ∈ Zd : a solution to Φ} = JCK. We show1048

the following characterization that implies the optimization part of Theorem 1:1049

I. if for every (Ψ,u, E) ∈ C, Ψ is unsatisfiable over N, then Φ is unsatisfiable;1050

II. else, if there is (Ψ,u, E) ∈ C such that Ψ is satisfiable over N and the linear polyno-1051

mial c⊺(u+ E · λ) has a variable in λ with strictly negative (resp. positive) coefficient, then1052

an optimal solution minimizing (resp. maximizing) c⊺x subject to Φ(x) does not exist;1053

III. else, an optimal solution does exist, and in particular one with polynomial bit length with1054

respect to 〈Φ〉 and 〈c〉.1055

Item I. follows directly from the equivalence {a ∈ Zd : a solution ot Φ} = JCK. Let us focus1056

on Item II., which we show for the case of minimization (the case of maximization being analogous).1057

Consider a triple (Ψ,u, E) ∈ C such that Ψ is satisfiable and the linear polynomial f(λ) := c⊺(u+1058

E ·λ) has a variable in λ with strictly negative coefficient. Let z, y and w be the disjoint families of1059

variable witnessing the fact that (Ψ,u, E) is a gcd-to-div triple, according to the definition of such1060

triples. By Lemma 11, Ψ is increasing for z ≺ y ≺w, and from Property 5 of gcd-to-div triples, all1061

variables appearing in f(λ) with a non-zero coefficient are from y. Let ŷ be a variable appearing1062

in f with a negative coefficient, and consider an order (≺) ∈ (z ≺ y ≺w) for which ŷ is the largest1063

of the variables appearing in y. Since Ψ is satisfiable over N, it is satisfiable modulo every prime1064

in P(Ψ), and we can apply Algorithm 1 to compute a solution ν over N satisfying the property1065

highlighted in Remark 1: the formula Ψ[ν(x) / x : x≺ ŷ ] has a solution for infinitely many positive1066

values of ŷ. Since ŷ is the largest (for ≺) variable appearing in f , and its coefficient in f is negative,1067

we conclude that min{f(λ) ∈ Z : λ is a solution to Ψ} is undefined, which in turn implies that an1068

optimal solution minimizing c⊺x subject to Φ(x) does not exist.1069

Lastly, let us consider Item III.. Again we focus on the case of minimization. Below, let1070

C ′ := {(Ψ,u, E) ∈ C : Ψ is satisfiable over N} and note that {x ∈ Zd : Φ(x)} = JC ′K. As Items I.1071

and II. do not hold, C ′ 6= ∅ and every gcd-to-div triple (Ψ,u, E) ∈ C ′ is such that the linear1072

polynomial c⊺(u + E · λ) only has non-negative coefficients. Since the variables λ are interpreted1073

over N, this means that ℓ := min{c⊺u : (Ψ,u, E) ∈ C ′} is a lower bound to the values that c⊺x1074

can take when x is a solution to Φ; i.e., the optimal solution exists. Lemmas 10 and 13 ensure that1075

the lower bound ℓ has polynomial bit length with respect to 〈Φ〉 and 〈c〉. We also have an upper1076

bound u to the optimal solution: it suffices to take the minimum of the values (u + E · λ), where1077

(Ψ,u, E) ∈ C ′ and λ is the positive integer solution to Ψ computed with Algorithm 1 using the1078
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solutions modulo p ∈ P(Ψ) of Lemma 5. Again, u has polynomial bit length with respect to 〈Φ〉 and1079

〈c〉, thanks to Lemmas 4, 10 and 13, and Theorem 4. Item III. then follows by reduction from the1080

feasibility problem of IP-GCD systems: it suffices to find the minimal v ∈ [ℓ, u] such that the IP-1081

GCD system Φv(x) := Φ(x)∧(c⊺x ≤ v) is feasible. Since every v ∈ [ℓ, u] is of polynomial bit length,1082

by Corollary 1 if Φv(x) is satisfiable, then it has a solution x ∈ Zd such that 〈x〉 ≤ poly(〈Φ〉, 〈c〉).1083
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A Lemma 1: proof of Claim 11084

In this appendix, we present the technical manipulation yielding Claim 1, hence finishing the proof1085

of Lemma 1. Below, µ and ω stand for the Möbius function and the prime omega function, respec-1086

tively. Recall that µ(n) = (−1)ω(n) and ω(n) = #P(n), for every n ∈ Z+.1087

Proposition 4 (Möbius inversion [7, Theorem 266]). Consider two functions f, g : Z+ → R such1088

that for every n ∈ Z+, f(n) =
∑

d∈div(n) g(d). For every m ∈ Z+, g(m) =
∑

d∈div(m) f(d) · µ(md ).1089

Proposition 5 (Möbius sums [7, Theorem 263]). For n ∈ Z+ greater than 1,
∑

s∈div(n) µ(s) = 0.1090

The following lemma tells us what to expect when we truncate the sum of the previous propo-1091

sition so that it only considers elements with at most ℓ divisors.1092

Lemma 14. Let n, ℓ∈N with n square-free. If ω(n) > ℓ then
∑

r∈div(n), ω(r)≤ℓ µ(r) = (−1)ℓ
(
ω(n)−1

ℓ

)
.1093

Proof. We write LHS (resp. RHS) for the left-hand (resp. right-hand) side of the equivalence in the1094

statement. Note that ω(n) > ℓ implies n ≥ 1. The proof is by induction on ℓ.1095

Base case: ℓ = 0: In this case, LHS = µ(1) = 1 = (−1)0
(
ω(n)−1

0

)
= RHS.1096

Induction step: ℓ ≥ 1: We have,

LHS =
∑

r∈div(n), ω(r)<ℓ

µ(r) +
∑

s∈div(n), ω(r)=ℓ

µ(s)

= (−1)ℓ−1

(
ω(n)− 1

ℓ− 1

)
+

∑

s∈div(n), ω(r)=ℓ

µ(s)
by induction hypothesis;

recall ω(n) > ℓ

= (−1)ℓ−1



(
ω(n)− 1

ℓ− 1

)
−

∑

r∈div(n), ω(r)=ℓ

1


 since µ(r) = (−1)ℓ iff ω(r) = ℓ

= (−1)ℓ−1

((
ω(n)− 1

ℓ− 1

)
−
(
ω(n)

ℓ

))
from n square-free

= (−1)ℓ
(
ω(n)− 1

ℓ

)
= RHS Pascal’s rule.

We are now ready to prove Claim 1:1097

Claim 1.
∑

r∈Q(ℓ)

µ(r) ·m(r)

r
≥Wm(Q)

(
1−

(e · α
ℓ

)ℓ
α · eα

)
, with α := (d+1)2(2+ ln ln(#Q+1)).1098

Let us recall the hypothesis under which this claim must be proved: ℓ ∈ N+ is odd, d ≥ 1, Q is a1099

non-empty finite set of primes, Q(ℓ) := {r ∈ div(ΠQ) : ω(r) ≤ ℓ}, m is a multiplicative function1100

such that m(q) ≤ q − 1 and m(q) ≤ d on all q ∈ Q, and Wm(Q) :=
∏
q∈Q

(
1− m(q)

q

)
.1101

Proof. We start by defining the truncated Möbius function µℓ and its companion function ψℓ:1102

µℓ(x) :=

{
µ(x) if ω(x) ≤ ℓ
0 otherwise

and ψℓ(x) :=
∑

r∈div(x)

µℓ(x).
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The proof proceeds by performing two term manipulations. In the first one, we use the fact that m1103

is multiplicative, together with properties of the Möbius function (e.g. Proposition 4), to show that1104

∑

r∈Q(ℓ)

µ(r) ·m(r)

r
=Wm(Q) ·


1 +

∑

s∈div(ΠQ)
ω(s)>ℓ

ψℓ(s) ·m(s)

s ·Wm(P(s))


 . (11)

In the second manipulation, we look at the sum
∑

s∈div(ΠQ)\{1}
ψℓ(s)·m(s)
s·Wm(P(s)) from the equation above,1105

and (also thanks to Lemma 14) bound it in absolute terms as follows:1106

∣∣∣∣∣∣∣∣

∑

s∈div(ΠQ)
ω(s)>ℓ

ψℓ(s) ·m(s)

s ·Wm(P(s))

∣∣∣∣∣∣∣∣
≤
(e · α

ℓ

)ℓ
· α · eα, where α := (d+ 1)2(2 + ln ln(#Q+ 1)). (12)

Claim 1 follows directly from Equation (11) and Equation (12). Note that these equations can be1107

used to also establish the upper bound to
∑

r∈Q(ℓ)
µ(r)·m(r)

r
required for the upper bound of Lemma 1.1108

Manipulation resulting in Equation (11):

∑

r∈Q(ℓ)

µ(r) ·m(r)

r

=
∑

r∈div(ΠQ)

µℓ(r) ·m(r)

r
by def. of µℓ

=
∑

r∈div(ΠQ)

(∑
s∈div(r) ψℓ(s) · µ

(
r
s

))
·m(r)

r
by Proposition 4

=
∑

r∈div(ΠQ)

∑

s∈div(r)

ψℓ(s) · µ
(
r
s

)
·m(r)

r

=
∑

s∈div(ΠQ)

∑

r∈div(ΠQ

s )

ψℓ(s) · µ(r) ·m(r · s)
r · s

invert summations using the

change of variable r ← r · s

=
∑

s∈div(ΠQ)

ψℓ(s) ·m(s)

s
·

∑

r∈div(ΠQ

s )

µ(r) ·m(r)

r
multiplicity of m

=
∑

s∈div(ΠQ)

ψℓ(s) ·m(s)

s
·

∏

q∈Q\div(s)

(
1 +

µ(q) ·m(q)

q

) multiplicity of µ and m;

factorization thanks to r being

square-free, for all r ∈ div
(
ΠQ
s

)

=
∑

s∈div(ΠQ)

ψℓ(s) ·m(s)

s
·
∏
q∈Q

(
1− m(q)

q

)

∏
q∈P(s)

(
1− m(q)

q

) µ(q) = −1 for q prime

and simple manipulation

=
∑

s∈div(ΠQ)

ψℓ(s) ·m(s)

s
· Wm(Q)

Wm(P(s))
by def. of Wm
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= Wm(Q) ·
∑

s∈div(ΠQ)

ψℓ(s) ·m(s)

s ·Wm(P(s))

= Wm(Q) ·



∑

s∈Q(ℓ)

ψℓ(s) ·m(s)

s ·Wm(P(s))
+

∑

s∈div(ΠQ)
ω(s)>ℓ

ψℓ(s) ·m(s)

s ·Wm(P(s))




split depending on ω(s) ≤ ℓ,
and by def. of Q(ℓ)

= Wm(Q) ·



∑

s∈Q(ℓ)

(∑
r∈div(s) µ(r)

)
·m(s)

s ·Wm(P(s))
+

∑

s∈div(ΠQ)
ω(s)>ℓ

ψℓ(s) ·m(s)

s ·Wm(P(s))


 def. of ψℓ

= Wm(Q) ·


1 +

∑

s∈div(ΠQ)
ω(s)>ℓ

ψℓ(s) ·m(s)

s ·Wm(P(s))




in the left summation:

for s = 1 the addend is 1,

and for s > 1 the addend is 0

by Proposition 5.

Manipulation resulting in Equation (12):

∣∣∣∣∣∣∣∣

∑

s∈div(ΠQ)
ω(s)>ℓ

ψℓ(s) ·m(s)

s ·Wm(P(s))

∣∣∣∣∣∣∣∣
≤

∑

s∈div(ΠQ)
ω(s)>ℓ

(
ω(s)− 1

ℓ

)
· m(s)

s ·Wm(P(s))
by Lemma 14 and def. of ψℓ

=

#Q∑

k=ℓ+1



(
k − 1

ℓ

)
·

∑

s∈div(ΠQ)
ω(s)=k

m(s)

s ·Wm(P(s))


 split on the value of ω(s).

We focus on the summation
∑

s∈div(ΠQ), ω(s)=k
m(s)

s·Wm(P(s)) . Since the function m is multiplicative,

and similarly Wm(A∪B) =Wm(A) ·Wm(B) for A,B disjoint finite sets of primes (and Wm(∅) = 1
by definition), for k ≥ 1 we have:

∑

s∈div(ΠQ)
ω(s)=k

m(s)

s ·Wm(P(s))
=

∑

q1<...<qk∈Q

(
k∏

i=1

m(qi)

qi ·Wm({qi})

)
≤ 1

k!

∑

q1,...,qk∈Q

(
k∏

i=1

m(qi)

qi ·Wm({qi})

)

=
1

k!


∑

q∈Q

m(q)

q ·Wm({q})



k

=
1

k!


∑

q∈Q

m(q)

q −m(q)



k

.

We further analyse the summation
∑

q∈Q
m(q)
q−m(q) . Below, we write Qd+1 for the set of the first

min(#Q, d+ 1) many primes in Q (recall d ≥ 1), and denote by pi the i-th prime.

∑

q∈Q

m(q)

q −m(q)
=

∑

q∈Qd+1

m(q)

q −m(q)
+

∑

q∈Q\Qd+1

m(q)

q −m(q)

≤
∑

q∈Qd+1

d+
∑

q∈Q\Qd+1

m(q)

q −m(q)

since m(q) ≤ d
and q −m(q) ≥ 1
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≤ d · (d+ 1) +
∑

q∈Q\Qd+1

d

q − d m(q) ≤ d < q, for all q ∈ Q \Qd+1

≤ d · (d+ 1) +

#Q∑

i=d+2

d

pi − d
def. of Q \Qd+1

and pi > d for i ≥ d+ 2

≤ d · (d+ 1) + d ·
#Q∑

i=d+2

1

(i ln i)− d
pi ≥ i ln i [18]

and i ln i > d for i ≥ d+ 2

≤ d · (d+ 1) + d · (d+ 1)

#Q∑

i=d+2

1

i ln i

since
1

x lnx− y ≤
y + 1

x lnx

for all x ≥ 3 and 0 ≤ y ≤ x− 1

≤ d · (d+ 1) ·
(
1 +

#Q∑

i=3

1

i ln i

)

≤ d · (d+ 1) ·
(
1 +

∫ #Q+1

2

1

x lnx
dx
) Riemann over-approximation

note: #Q+ 1 ≥ 2

≤ d · (d+ 1) · (1 + ln ln(#Q+ 1)− ln ln 2)

≤ (d+ 1)2(2 + ln ln(#Q+ 1)) = α.

We combine this bound with the previous two to obtain complete the proof of Equation (12):
∣∣∣∣∣∣∣∣

∑

s∈div(ΠQ)
ω(s)>ℓ

ψℓ(s) ·m(s)

s ·Wm(P(s))

∣∣∣∣∣∣∣∣
≤

#Q∑

k=ℓ+1

((
k − 1

ℓ

)
· 1
k!
· αk

)

=

#Q−ℓ−1∑

j=0

((
ℓ+ j

ℓ

)
· 1

(ℓ+ 1 + j)!
· αℓ+1+j

)
change of variable

k ← ℓ+ 1 + j

=

#Q−ℓ−1∑

j=0

(
(ℓ+ j)!

ℓ! · j! · (ℓ+ 1 + j)!
· αℓ+1+j

)

≤ αℓ+1

ℓ!
·

∞∑

j=0

αj

j!

note: all terms in the

summation are non-negative

≤ αℓ+1

ℓ!
· eα

def. of ex as a series

i.e., ex =
∑∞

i=0
xi

i!

≤
(e · α

ℓ

)ℓ
· α · eα from x! ≥ xx

ex
.

This completes the proof of Claim 1.1109

B Theorem 3: proofs of Claim 2 and Claim 31110

The mathematical objects appearing in the statements of the two claims below are defined in the1111

proof of Theorem 3 and the statement of Lemma 1; see Section 2.1112

Claim 2.
#A

r
− 1 ≤ #(A ∩ Sα,r) ≤

#A

r
+ 1.1113
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Proof. Recall that A = [k, k+ z]∩SM , and so A∩Sα,r = [k, k+ z]∩SM ∩Sα,r. Since that elements1114

in M ∪Q are pairwise coprime and M ∩Q = ∅, we can apply the CRT and conclude that SM ∩Sα,r1115

is an arithmetic progression with period r · ΠM . Let u be the largest element of SM ∩ Sα,r that is1116

strictly smaller than k. By definition of u and from the fact that SM ∩ Sα,r has period r ·ΠM , we1117

get #(A∩Sα,r) =
⌊
k+z−u
r·ΠM

⌋
. Similarly, because SM is periodic in ΠM ,

⌊
k+z−u
ΠM

⌋
is over counting #A1118

by at most r−1, i.e., there is τα,r ∈ [0, r−1] such that #A =
⌊
k+z−u
ΠM

⌋
− τα,r. Since

⌊
a
b

⌋
=
⌊
⌊a⌋
b

⌋
for1119

every a ∈ R and b ∈ Z+, we get #(A∩Sα,r) =
⌊
1
r
· (#A+ τα,r)

⌋
. With a simple manipulation using1120

⌊a⌋+ ⌊b⌋ ≤ ⌊a+ b⌋ ≤ ⌊a⌋+ ⌊b⌋+ 1 and
⌊ τα,r

r

⌋
= 0, we derive #A

r
− 1 ≤ #(A∩ Sα,r) ≤ #A

r
+ 1.1121

Claim 3. Wm(Q)−1 ≤ (d+ 1)10d ln(#Q+ 1)3d.1122

Proof. Let Qd be the set containing the min(#Q, d) smallest primes in Q. Recall that by definition1123

m(q) ≤ d ≤ q − 1 for every q ∈ Q. We have,1124

Wm(Q)−1 =
∏

q∈Q

q

q −m(q)
≤
∏

q∈Q

q

q − d ≤
∏

q∈Qd

q

q − d ·
∏

q∈Q\Qd

q

q − d ≤ (d+ 1)d ·
∏

q∈Q\Qd

q

q − d,

where the last inequality holds because x
x−c ≤ c+ 1 for every x ≥ c+ 1 and c ∈ Z+. Below, let us1125

denote by pi the i-th prime. We further inspect the product
∏
q∈Q\Qd

q
q−d :1126

∏

q∈Q\Qd

q

q − d ≤
#Q∏

i=d+1

pi
pi − d

≤
#Q∏

i=d+1

i · ln i
i · ln i− d

pi ≥ i · ln i for all i ∈ Z+, see [18];

x 7→ x

x− d decreasing for x > 1

≤ exp

(
#Q∑

i=d+1

ln
( i · ln i
i · ln i− d

))
= exp

(
−

#Q∑

i=d+1

ln
(
1− d

i · ln i
))

≤ exp

(
#Q∑

i=d+1

3 · d
i · ln i

)
≤ exp

(
#Q∑

i=2

3 · d
i · ln i

)
first term from ln

(
1− 1

x

)
≥ −3

x
for all x ≥ ln 3;

for corner case d = 1 and i = 2, note 2 ln 2 > ln 3

≤ exp

(
3 · d
2 · ln 2 +

#Q∑

i=3

3 · d
i · ln i

)
≤ exp

(
3 · d
2 · ln 2 +

∫ #Q+1

2

3 · d
x lnx

dx

)
Riemann over-approximation

note: #Q+ 1 ≥ 2

≤ exp

(
3 · d
2 · ln 2 + 3 · d ·

(
ln ln(#Q+ 1)− ln ln 2

))
≤ exp

(
3 · d ·

(
2 + ln ln(#Q+ 1)

))
.

We plug this bound on the afore-derived bound for Wm(Q)−1 to complete the proof of Claim 3:

Wm(Q)−1 ≤ (d+ 1)d exp
(
3 · d ·

(
2 + ln ln(#Q+ 1)

))
≤ (d+ 1)d · e6·d ln(#Q+ 1)3·d

≤ (d+ 1)d · 29·d ln(#Q+ 1)3·d ≤ (d+ 1)10·d ln(#Q+ 1)3·d.

C Algorithms related to the elimination property1127

In this appendix we establish Lemma 6 and Lemma 7. Proving these lemmas require the standard1128

notion of kernel and Hermite normal form of a matrix, which we now recall for completeness.1129

Consider a matrix A ∈ Zn×d. The kernel of A is the vector space ker(A) := {v ∈ Zd : A · v = 0}.1130

We represent bases of ker(A) as matrices K ∈ Zd×(d−r), where r is the rank of A and ker(A) =1131

{K · v : v ∈ Zd−r}. A matrix H ∈ Zn×d is said to be the column-style Hermite normal form of A1132

(HNF, in short) if there is a square unimodular matrix U ∈ Zd×d such that H = A · U and1133
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1. H is lower triangular,1134

2. the pivot (i.e., the first non-zero entry in a column, from the top) of a non-zero column is1135

positive and it is strictly below the pivot of the column before it, and1136

3. elements to the right of pivots are 0 and elements to the left are non-negative and smaller1137

than the pivot.1138

Recall that U being unimodular means that it is invertible over the integers.1139

Given a vector v, we write v[i] for the i-th entry of v, starting at i = 1. Similarly, for a matrix A,1140

we write A[i] for its i-th row, again starting at i = 1.1141

Proposition 6 ([19, Section 4.2]). The HNF H of a matrix A ∈ Zn×d always exits, it is unique,1142

and A and H generate the same lattice, i.e., {A · λ : λ ∈ Zd} = {H · λ : λ ∈ Zd}.1143

The following proposition refers to the LLL-based algorithm for the HNF in [8]. A basis for the1144

integer kernel can be retrieved from the HNF together with the associated unimodular matrix.1145

Proposition 7 ([24]). There is a PTIME algorithm computing a basis K of the integer kernel and1146

the HNF H of an input matrix A ∈ Zn×d. The algorithm yields ||K||, ||H|| ≤ (n · ||A||+ 1)O(n).1147

Note that we can also upper bound the GCDs of the rows of the integer kernel K in terms of1148

the rank of A by appealing to Proposition 3.1149

Corollary 2. Consider a basis K of the integer kernel of a matrix A ∈ Zn×d. Let r := rank(A).1150

For every i ∈ [1, d], || gcd(K[i])|| ≤ (d+ 1) · (r ·max(2, ||A||))r.1151

C.1 Computing a set spanning the divisibility module1152

Lemma 6. There is a polynomial-time algorithm that, given a system Φ(x) :=
∧m
i=1 fi | gi and a1153

primitive polynomial f , computes c1, . . . , cm ∈ Nm such that {f, c1 · g1, . . . , cm · gm} spans Mf (Φ)1154

and ci ≤ ((m+ 3) · (||Φ||+ 2))(m+3)3 for all 1 ≤ i ≤ m.1155

This lemma follows from the forthcoming Proposition 8 and Proposition 9.1156

For the whole section, let Φ :=
∧m
i=1 fi | gi and f be a primitive polynomial. As already explained1157

in Section 3, the algorithm Lemma 6 refers to performs a fix-point computation where, at the ℓ-th1158

iteration, the values contained in v characterize a spanning set of a particular submodule Mℓ
f (Φ) of1159

Mf (Φ). More precisely, we define M0
f (Φ) ⊆ M1

f (Φ) ⊆ · · · ⊆ Mℓ
f (Φ) ⊆ . . . to be the sequence of sets1160

given by1161

1. M0
f (Φ) := Zf , and1162

2. for ℓ ∈ N, Mℓ+1
f (Φ) := Mℓ

f (Φ)+
{∑m

j=1 aj · gj : for all i ∈ [1,m], ai ∈ Z and ai · fi ∈ Mℓ
f (Φ)

}
.1163

Let ℓ ∈ N. Note that, by definition, Mℓ
f (Φ) is a Z-module and moreover if Zfi ∩Mℓ

f (Φ) = {0} for1164

some i ∈ [1,m], then ai in the definition of Mℓ+1
f (Φ) equals 0. We define the canonical representation1165

of Mℓ
f (Φ) as the vector (v1, . . . , vm) ∈ Nm such that for every i ∈ [1,m],1166

• if ℓ = 0 then vi := 0,1167

• if ℓ ≥ 1 then vi := gcd{λ ∈ N : λ · fi ∈ Mℓ−1
f (Φ)}.1168
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Lemma 16 shows that this vector represents a spanning set of Mℓ
f (Φ), but first we need an auxiliary1169

lemma.1170

Lemma 15. Let ℓ ∈ N. Let (v1, . . . , vm) and (v′1, . . . , v
′
m) be the canonical representations of Mℓ

f (Φ)1171

and Mℓ+1
f (Φ), respectively. For every i ∈ [1,m], vi = v′i = 0 or v′i divides vi (so, v′i 6= 0 if vi 6= 0).1172

Proof. Let i ∈ [1,m]. If vi = 0 then either v′i is 0 or it divides vi, hence the statement is trivially1173

satisfied for that particular i. Suppose that vi 6= 0. By definition of canonical representation, ℓ ≥ 11174

and vi · fi ∈ M ℓ−1
f (Φ). By definition of Mℓ

f (Φ), we conclude that vi · fi ∈ M ℓ
f (Φ). By definition of1175

canonical representation v′i = gcd{λ ∈ N : λ · fi ∈ Mℓ
f (Φ)}, and therefore v′i divides vi.1176

Lemma 16. Let ℓ ∈ N and let (v1, . . . , vm) ∈ Nm be the canonical representation of Mℓ
f (Φ). Then,1177

the set of linear polynomials {f, v1 · g1, . . . , vm · gm} spans M ℓ
f (Φ).1178

Proof. The statement follows by induction on ℓ ∈ N.1179

base case ℓ = 0. From M0
f (Φ) = Zf we have (v1, . . . , vm) = (0, . . . , 0) and {f} spans M0

f (Φ).1180

induction step ℓ ≥ 1. From the induction hypothesis, {f, v∗1 · g1, . . . , v∗m · gm} spans M ℓ−1
f (Φ);1181

with (v∗1, . . . , v
∗
m) being the canonical representation of M ℓ−1

f (Φ). We consider the two inclu-1182

sions of the equivalence Zf + Z(v1 · g1) + · · ·+ Z(vm · gm) =M ℓ
f (Φ).1183

(⊆) : This direction follows directly by definition of M ℓ
f (Φ).1184

(⊇) : Let h ∈ Mℓ
f (Φ). By definition, h = h1+h2 where h1 ∈ Zf + Z(v∗1 · g1) + · · ·+ Z(v∗m · gm)1185

and h2 =
∑m

i=1 ai · gi ∈ Mℓ
f (Φ) satisfying ai · fi ∈ Mℓ−1

f (Φ) for every i ∈ [1,m]. By Lemma 151186

Z(v∗i · gi) ⊆ Z(vi · gi) and therefore h1 ∈ Zf + Z(v1 · g1) + · · · + Z(vm · gm). By definition1187

vi = gcd{λ ∈ N : λ·fi ∈ Mℓ−1
f (Φ)} and thus vi | ai. So, h ∈ Zf+Z(v1 ·g1)+· · ·+Z(vm ·gm).1188

Lemma 17. (A) For every ℓ ∈ N, Mℓ
f ⊆ Mℓ+1

f ⊆ Mf (Φ).1189

(B) There is ℓ ∈ N such that Mℓ
f (Φ) = Mℓ+1

f (Φ).1190

(C) For every ℓ ∈ N, if Mℓ
f (Φ) = Mℓ+1

f (Φ) then Mℓ
f (Φ) = Mf (Φ).1191

Proof. Proof of (A): By definition, Mℓ
f ⊆ Mℓ+1

f . An induction on ℓ ∈ N shows M ℓ
f (Φ) ⊆ Mf (Φ):1192

base case ℓ = 0: By definition of Mℓ
f (Φ) and of divisibility module, M0

f (Φ) = Zf ⊆ Mf (Φ).1193

induction case ℓ ≥ 1: From the induction hypothesis, M ℓ−1
f (Φ) ⊆ Mf (Φ). By definition, M ℓ

f (Φ)1194

is defined from M ℓ−1
f (Φ) by taking linear combinations of elements in M ℓ−1

f (Φ) together with1195

elements b · h such that b · g ∈ M ℓ−1
f (Φ) and g | h is a divisibility of Φ. From the definition1196

of divisibility module, Mf (Φ) is closed under such combinations, since for every b · g ∈ Mf (Φ)1197

and g | h divisibility of Φ, b · h ∈ Mf (Φ) (see Property (iii) in the def. of divisibility module).1198

From M ℓ−1
f (Φ) ⊆ Mf (Φ) we then conclude that M ℓ

f (Φ) ⊆ Mf (Φ).1199

Proof of (B): This statement follows from Lemma 15. Indeed, for a given ℓ ∈ N, consider the canoni-1200

cal representations (v1, . . . , vm) and (v′1, . . . , v
′
m) of Mℓ

f (Φ) and Mℓ+1
f (Φ), respectively. By Lemma 15,1201

if Mℓ
f (Φ) 6= Mℓ+1

f (Φ) then one of the following holds:1202

1. there is i ∈ [1,m] such that vi = 0 and v′i 6= 0, or1203

2. there is i ∈ [1,m] such that vi 6= 0, v′i 6= vi and v′i divides vi.1204
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Algorithm 4 Computes a set spanning a divisibility module

Input: A system of divisibility constraints Φ(x) =
∧m
i=1 fi(x) | gi(x) and a primitive polynomial

f .
Output: A tuple (c1, . . . , cm) ∈ Nm such that {f, c1 · g1, . . . , cm · gm} spans Mf (Φ).
1: v := (0, . . . , 0) ∈ Nm
2: while true do
3: u := v

4: for i in [1,m] do
5: Fi := {−fi, f, u[1] · g1, . . . , u[m] · gm}
6: Ki := basis of the integer kernel of the matrix representing Fi
7: v[i]← gcd(row of Ki corresponding to −fi)
8: if v = u then return v

Again from Lemma 15, for every j ∈ [1,m], if vj 6= 0 then v′j divides vj . This implies that both1205

Items (1) and (2) cannot occur infinitely often, and therefore Mr
f (Φ) = Mr+1

f (Φ) for some r ∈ N.1206

Proof of (C): From Part (A), Mℓ
f (Φ) ⊆ Mf (Φ). We show that Mℓ

f (Φ) satisfies the Properties (i)–(iii)1207

of divisibility modules. Then, Mf (Φ) ⊆ Mℓ
f (Φ) follows from the minimality condition required by1208

these modules. Properties (i) and (ii) are trivially satisfied. To establish Property (iii), consider1209

b · g ∈ Mℓ
f (Φ) and a divisibility g | h of Φ. By definition b · h ∈ Mℓ+1

f (Φ), and from Mℓ
f = Mℓ+1

f (Φ)1210

we get b · h ∈ Mℓ
f (Φ). Therefore, Mℓ

f (Φ) satisfies Property (iii).1211

In view of Lemmas 16 and 17, the algorithm required by Lemma 6 presents itself: it suffices to1212

iteratively compute canonical representations of every Mℓ
f (Φ) until reaching a fix-point. Algorithm 41213

performs this computation. In a nutshell, during the ℓ-th iteration (ℓ ≥ 1) of the while loop of1214

line 2, the variable u contains the canonical representation of Mℓ−1
f (Φ), and the algorithm updates1215

the vector v with the canonical representation of Mℓ
f (Φ). To update the value v[i] associated to gi1216

the algorithm needs to compute gcd{λ ∈ N : λ · fi ∈ Mℓ−1
f (Φ)} (line 7). This is done by finding a1217

finite representation for all the scalars λ, which is given by those entries corresponding to −fi in a1218

basis of the integer kernel of the matrix for the set Fi defined in line 5. As explained in Section 3.1,1219

a set of polynomials F := {h1, . . . , hℓ} in variables x1 ≺ · · · ≺ xd (where ≺ is an arbitrary order)1220

can be represented as the matrix A ∈ Z(d+1)×ℓ in which each column (ad, . . . , a1, c) contains the1221

coefficients and the constant of a distinct element h of F , with ai being the coefficient of xi for1222

i ∈ [1, d], and c being the constant of h. This matrix is unique up-to permutation of columns.1223

It might not be clear for the moment whether Algorithm 4 runs in PTIME: in each iteration,1224

the integer kernel computation done in line 6 might a priori increase the bit length of the entries in1225

the canonical representation by a polynomial factor, yielding entries of exponential bit length after1226

polynomially many iterations – an effect similar to naïve implementations of Gaussian elimination1227

or kernel computations via suboptimal algorithms for the Hermite normal form of a matrix. We1228

show later that our worries are unjustified, as the GCD computed in line 7 prevents this blow-up.1229

For the moment, let us formally argue on the correctness of Algorithm 4.1230

Proposition 8. Algorithm 4 respects its specification.1231

Proof. We write uℓ for the value that the tuple u declared in line 3 of Algorithm 4 takes during1232

the (ℓ+ 1)-th iterations of the while loop of line 2, with ℓ ∈ N and assuming that the while loop1233

is iterated at least ℓ+ 1 times. We show the following claim:1234
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Claim 9. For every ℓ ∈ N, the tuple uℓ is the canonical representation of Mℓ
f (Φ).1235

Since Algorithm 4 terminates when uℓ−1 is found to be equal to uℓ for some ℓ ≥ 1, its correctness1236

follows directly from Lemma 16 and Lemma 17. The proof of this claim is by induction on ℓ.1237

base case. We have u0 = (0, . . . , 0) ∈ Nm, which is the canonical representation of M0
f (Φ).1238

induction step. By induction hypothesis, let us assume that uℓ = (v1, . . . , vm) is the canonical1239

representation of Mℓ
f (Φ). We show that when exiting the for loop of line 4, for every i ∈ [1,m],1240

v[i] equals v′i := gcd{λ ∈ N : λ · fi ∈ Mℓ
f (Φ)}. Thanks to the declaration of line 3, this implies1241

that uℓ+1 is the canonical representation of Mℓ+1
f (Φ). Since uℓ = (v1, . . . , vm) is the canonical1242

representation of Mℓ
f (Φ), by Lemma 16 we have Mℓ

f (Φ) = Zf + Z(v1 · g1) + · · ·+ Z(vm · gm).1243

Therefore, v′i = gcd{λ ∈ N : λ · fi = µ0 · f +
∑m

i=1 µi · (vi · gi) for some µ0, . . . , µm ∈ Z}. The1244

set of tuples (λ, µ0, . . . , µm) ∈ Zm+2 such that λ · fi = µ0 · f +
∑m

i=1 µi · (vi · gi) corresponds1245

to the solutions to the system of equations A · (λ, µ0, . . . , µm) = 0 over the integers, where A1246

is the matrix representing the set {−fi, f, vi · g1, . . . , vm · gm}, i.e., Fi in line 5. This set1247

corresponds to ker(A), and so can be finitely represented with an integer kernel basis, i.e., Ki1248

in line 6. Computing v′i only requires to compute the GCD of the row of Ki corresponding to1249

the variable λ of −fi. This is exactly how v[i] is defined in line 7.1250

We move to the runtime analysis of Algorithm 4. We need the following lemma studying the1251

growth of the GCDs of the rows of bases K of ker(A) when columns of A are scaled by positive1252

integers. In the lemma below, diag(c1, . . . , cd) stands for the d×d diagonal matrix having c1, . . . , cd1253

in the main diagonal.1254

Lemma 18. Consider a matrix A ∈ Zn×d of rank r, integers c1, . . . , cd > 0, and let K,K ′ ∈ Zd×(d−r)
1255

be bases of the integer kernels of A and A′ := A · diag(c1, . . . , cd), respectively. For every i ∈ [1, d],1256

1. if gcd(K[i]) = 0 then gcd(K ′[i]) = 0, and1257

2. if gcd(K[i]) > 0 then gcd(K ′[i]) 6= 0 and gcd(K ′[i]) divides lcm(c1, . . . , cd) · gcd(K[i]).1258

Proof. Note that A′ is the matrix obtained from A by scaling the j-th column of A by cj (j ∈ [1, d]).1259

Let i ∈ [1, d] and (M,J) ∈ {(A,K), (A′,K ′)}. By definition of kernel, {J · λ : λ ∈ Zm} = {x ∈ Zd :1260

M · x = 0}. This fact has three direct consequences:1261

(A) if gcd(J [i]) = 0, then no vector x = (x1, . . . , xd) ∈ Zd satisfies both xi 6= 0 and M · x = 0,1262

(B) if gcd(J [i]) > 0, then there is x = (x1, . . . , xd) ∈ Zd such that xi = gcd(J [i]) and M · x = 0,1263

(C) if gcd(J [i]) > 0, then for every x = (x1, . . . , xd) ∈ Zd satisfyingM ·x = 0 we have gcd(J [i]) | xi.1264

Items 1 and 2 in the statement of the lemma are derived from these three properties.1265

Proof of (1): By contrapositive, assume that gcd(K ′[i]) 6= 0. Hence, gcd(K ′[i]) > 0 and by Item (B)1266

there is x = (x1, . . . , xd) ∈ Zd such that xi = gcd(K ′[i]) and A′ ·x = 0. Let y := (c1 ·x1, . . . , cd ·xd).1267

We have A · y = A · (diag(c1, . . . , cd) · x) = (A · diag(c1, . . . , cd)) · x = A′ · x = 0. Since ci > 0 we1268

have ci · xi 6= 0, which together with A · y = 0 implies gcd(K[i]) 6= 0 by Item (A).1269

Proof of (2): Suppose gcd(K[i]) > 0. By Item (B), there is x = (x1, . . . , xd) ∈ Zd with A · x = 01270
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and xi = gcd(K[i]). Define C := lcm(c1, . . . , cd) and y := ( C
c1
· x1, . . . , Ccd · xd). Note that y ∈ Zd is1271

well-defined, since c1, . . . , cd > 0. Moreover, C
ci
· xi = C

ci
· gcd(K[i]) > 0. We have,1272

A′ · y = A′ · (diag( C
c1
, . . . , C

cd
) · x) = (A · diag(c1, . . . , cd)) · (diag( C

c1
, . . . , C

cd
) · x)

= A · (diag(c1, . . . , cd) · diag( C
c1
, . . . , C

cd
)) · x = C ·A · x = 0.

Then, by Item (A), gcd(K ′[i]) > 0, which in turn implies that gcd(K ′[i]) | C
ci
· xi, directly from1273

Item (C). Therefore, gcd(K ′[i]) divides lcm(c1, . . . , cd) · gcd(K[i]).1274

We are now ready to discuss the runtime of Algorithm 4.1275

Proposition 9. Algorithm 4 runs in PTIME, and on an input (Φ, f) such that Φ =
∧m
i=1 fi | gi it1276

returns a vector v satisfying ||v|| ≤ ((m+ 3) · (||Φ||+ 2))(m+3)3 .1277

Proof. As done in the proof of Proposition 8, let uℓ ∈ Zm be the value that the tuple u declared in1278

line 3 takes during the (ℓ+1)-th iteration of the while of line 2, with ℓ ∈ N and assuming that the1279

while loop is iterated at least ℓ+1 times. Similarly, given j ∈ [1,m], let Fℓ,j and Kℓ,j be the set of1280

polynomial and matrix declared in lines 5 and 6, respectively, during the (ℓ+ 1)-th iteration of the1281

while loop and at the end of the iteration of the for loop of line 5 where the index variable i takes1282

value j. Lastly, following the code in line 7, we define vℓ,j := gcd(row of Kℓ,j corresponding to −fj).1283

A few preliminary remarks that follow directly form the definitions above:1284

For the runtime of the algorithm, first consider the case where Mf (Φ) ∩ Zfj = {0} for every1285

j ∈ [1,m], which implies Mf (Φ) = Zf , by definition of divisibility module. Focus on the first1286

execution of the body of the while loop. Since u0 = (0, . . . , 0), for every j ∈ [1,m], F0,j = {−fj , f}.1287

Since Mf (Φ) ∩ Zfj = {0}, the row of K0,j corresponding to −fj contains only zeros. This implies1288

v = (0, . . . , 0) = u0 in line 8, and Algorithm 4 returns (0, . . . , 0) after a single iteration of the while.1289

Consider now the case where Mf (Φ) ∩ Zfj 6= ∅ for some j ∈ [1,m]. Note that this implies1290

fj = a · f for some a ∈ Z \ {0} and j ∈ [1,m], hence 〈f〉 ≤ poly(〈Φ〉). This allows us to bound the1291

size of the output of Algorithm 4 in terms of Φ, hiding factors that depend on f (as done in the1292

statement of the proposition). A few auxiliary definitions are handy (ℓ ∈ N and j ∈ [1,m]):1293

• We associate to uℓ the vector ûℓ ∈ {0, 1}m given by ûℓ[i] = 1 iff uℓ[i] 6= 0, for every i ∈ [1,m].1294

• We associate to Fℓ,j the set F̂ℓ,j := {−fj , f, ûℓ[1] · g1, . . . , ûℓ[m] · gm}.1295

• We associate to Kℓ,j a basis K̂ℓ,j for the integer kernel of the matrix representing F̂ℓ,j .1296

• We associate to vℓ,j the integer v̂ℓ,j := gcd(row of K̂ℓ,j corresponding to −fj).1297

In a nutshell, ûℓ “forgets” the magnitude of the integers stored in uℓ, keeping only whether their1298

value was 0 or not. The other objects defined above reflect this change at the level of matrices,1299

kernels and GCDs. Up to permutation of columns, the matrix representing Fℓ,j can be obtained by1300

multiplying the matrix of F̂ℓ,j by a diagonal matrix having in the main diagonal (a permutation of)1301

(1, 1,uℓ[1], . . . ,uℓ[m]). From the definition of K̂ℓ,j and by Lemma 18, we conclude that1302

if v̂ℓ,j = 0 then vℓ,j = 0, and if v̂ℓ,j 6= 0 then vℓ,j 6= 0 and vℓ,j divides lcm(uℓ) · v̂ℓ,j . (†)

Recall that the matrix representing F̂ℓ,j has d+ 1 rows and m+ 2 columns. Since ||F̂ℓ,j || ≤ ||Φ||1303

for every ℓ ∈ N and j ∈ [1,m], by Corollary 2 there an integer N ∈ [2, ((m+ 3) · (||Φ||+ 2))(m+3)]1304

such that N is greater than v̂ℓ,j , for every ℓ ∈ N and j ∈ [1,m]. We use (†) above to bound the1305

number of iterations and magnitude of the entries of uℓ during the procedure. We show that1306
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1. maxℓ∈N(lcm(uℓ)) = maxmℓ=0(lcm(uℓ)) ≤ Nm3
and for every j ∈ [1,m], um[j] ≤ Nm2

, and1307

2. the while loop of line 2 is iterated at most m3 · log2(N) +m many times.1308

In Item (1) above we slightly abused our notation, as uℓ is undefined for ℓ ∈ N greater or equal1309

than the number of iterations of the while loop performed by the algorithm. In these cases, we1310

postulate lcm(uℓ) = 0 in order to make the equivalence in Item (1) well-defined. From the bound1311

N ≤ ((m + 3) · (||Φ|| + 2))(m+3), Items (1) and (2) imply that Algorithm 4 runs in PTIME and1312

outputs a vector v with ||v|| ≤ ((m+ 3) · (||Φ||+ 2))(m+3)3 ; proving the proposition.1313

Proof of (1): Informally, Item (1) states that lcm(u) is always bounded by Nm2
, and that lcm(u)1314

achieves its maximum at most after the first m iterations of the while loop. We start by prov-1315

ing that maxmℓ=0(lcm(uℓ)) ≤ Nm3
and that for every j ∈ [1,m], um[j] ≤ Nm2

This is done by1316

induction on ℓ ∈ [1,m], by showing that (whenever defined) uℓ is such that, for every j ∈ [1,m],1317

if uℓ[j] 6= 0 then v̂ℓ−1,j 6= 0 and uℓ[j] divides
(
v̂ℓ−1,j ·

∏ℓ−2
i=0 lcm(v̂i,1, . . . , v̂i,m)

)
. Note that then1318

uℓ[j] ≤ Nm(ℓ−1)+1, since N is an upper bound on every v̂ℓ,j , and thus for ℓ = m we get um[j] ≤ Nm2
1319

and lcm(um) ≤ Nm3
, as required. Below, let uℓ = (c1, . . . , cm). Note that, from line 7 of the algo-1320

rithm, if ℓ ≥ 1, then cj = vℓ−1,j for every j ∈ [1,m].1321

base case ℓ = 1. From u0 = (0, . . . , 0) we have F0,j = F̂0,j = {−fj , f} for every j ∈ [1,m]. This1322

implies v̂0,j = v0,j . From cj = v0,j , we conclude that cj = v̂0,j , completing the base case.1323

induction step ℓ ≥ 2. Let j ∈ [1,m] such that cj 6= 0. From (†) and cj = vℓ−1,j , we get v̂ℓ−1,j 6= 01324

and cj | (lcm(uℓ−1) · v̂ℓ−1,j). Let uℓ−1 = (c∗1, . . . , c
∗
m). From the induction hypothesis, for1325

every k ∈ [1,m], if c∗k 6= 0 then v̂ℓ−2,k 6= 0 and c∗k |
(
v̂ℓ−2,k ·

∏ℓ−3
i=0 lcm(v̂i,1, . . . , v̂i,m)

)
. Therefore,1326

lcm(uℓ−1) | lcm
(
(v̂ℓ−2,1 ·

ℓ−3∏

i=0

lcm(v̂i,1, . . . , v̂i,m)), . . . , (v̂ℓ−2,m ·
ℓ−3∏

i=0

lcm(v̂i,1, . . . , v̂i,m))
)
.

From the equivalence lcm(a · b, c · b) = lcm(a, c) · b, the right-hand side of the divisibility above1327

equals
∏ℓ−2
i=0 lcm(v̂i,1, . . . , v̂i,m). Then, the fact that cj divides

(
v̂ℓ−1,j ·

∏ℓ−2
i=0 lcm(v̂i,1, . . . , v̂i,m)

)
1328

follows directly from cj | (lcm(uℓ−1) · v̂ℓ−1,j).1329

To complete the proof of (1), we now show that maxℓ∈N(lcm(uℓ)) = maxmℓ=0(lcm(uℓ)). Directly1330

from Claim 9 in the proof of Proposition 8, we have that for every ℓ ≥ 1, the vector uℓ is the1331

canonical representation of Mℓ
f (Φ). We have,1332

(A) for every j ∈ [1,m], if uℓ[j] 6= 0 then uℓ+1[j] divides uℓ[j] (assuming both uℓ and uℓ+11333

defined).1334

This follows directly from Lemma 15.1335

(B) If uℓ, uℓ+1 and uℓ+2 are defined, and uℓ and uℓ+1 have the same zero entries, then also uℓ1336

and uℓ+2 have the same zero entries.1337

Indeed, in this case ûℓ = ûℓ+1 which implies v̂ℓ,j = v̂ℓ+1,j for every j ∈ [1,m]. Now, if1338

uℓ+2[j] 6= 0 then vℓ+1,j 6= 0 and so v̂ℓ+1,j 6= 0 by (†). Then v̂ℓ,j 6= 0, and again by (†) we get1339

vℓ,j 6= 0. If instead uℓ+2[j] = 0, then uℓ[j] = 0 follows from Lemma 15.1340

Since u is a tuple with m entries, Item ((B)) above ensures that every uℓ and ur with ℓ, r ≥ m1341

share the same zero entries. Item ((A)) states instead that every non-zero entry of uℓ upper bounds1342

the corresponding entry of uℓ+r, for every r ∈ N, and that this latter entry is always non-zero.1343
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Together, Items ((A)) and ((B)) imply that maxℓ∈N(lcm(uℓ)) = maxmℓ=0(lcm(uℓ)).1344

Proof of (2): Assume that the while loop iterates at least m + 1 times (otherwise (2) is trivially1345

satisfied). From (2), the vector um such that um[j] ≤ Nm2
for every j ∈ [1,m]. As we have just1346

discussed above, by Item ((B)), every subsequent um+r with r ∈ N has the same zero entries as um.1347

Whenever um+r and um+r+1 are both defined (meaning in particular that um+r 6= um+r+1), there1348

must be j ∈ [1,m] such that um+r[j] 6= um+r+1[j], and moreover by Item ((A)), um+r+1[i] divides1349

um+r[i] for every i ∈ [1,m], which in particular implies that um+r+1[j] ≤ um+r[j]
2 . Therefore, the1350

product of all non-zero entries of u (at least) halves at each iteration of the while loop after the1351

m-th one. By (1), for every j ∈ [1,m] we have um[j] ≤ Nm2
, so the product of all non-zero entries1352

in um is bounded by Nm3
. We conclude that the number of iterations of the while loop after the1353

m-th one is bounded by log2(N
m3

) = m3 ·log2(N); i.e., m3 ·log2(N)+m many iterations overall.1354

C.2 Closing a system of divisibility constraints under the elimination property1355

Lemma 7. There is a polynomial-time algorithm that, given a system of divisibility constraints1356

Φ(x) :=
∧m
i=1 fi | gi and an order x1 ≺ · · · ≺ xd for x, computes Ψ(x) :=

∧n
i=1 f

′
i | g′i with the1357

elimination property for ≺ that is equivalent to Φ(x), both over Z and modulo each p ∈ P. The1358

algorithm ensures that:1359

1. For any divisibility constraint f | g such that f is not primitive, f | g occurs in Φ if and only1360

if f | g occurs in Ψ. Moreover, for every f ′i | g′i in Ψ such that f ′i is primitive, there is some1361

fj | gj in Φ such that f ′j is the primitive part of fj.1362

2. For every primitive polynomial f , Mf (Φ) = Mf (Ψ) (in particular, if Φ is increasing for some1363

order ≺′ then so is Ψ, and vice versa).1364

3. ||Ψ|| ≤ (d+ 1)O(d)(m+ ||Φ||+ 2)O(m3d) and n ≤ m · (d+ 2).1365

Proof. The algorithm is simple to state:1366

1: F := {f primitive : a · f is in the left-hand side of a divisibility of Φ, for some a ∈ Z \ {0}}1367

2: for f ∈ F do1368

3: v := (c1, . . . , cm) ∈ Zm s.t. {f, c1 · g1, . . . , cm · gm} spans Mf (Φ) ⊲ Lemma 61369

4: H := HNF of the matrix representing {f, c1 · g1, . . . , cm · gm} ⊲ Proposition 71370

5: Φ ← Φ purged of all divisibilities of the form f | g for some polynomial g1371

6: for (ad, . . . , a1, a0) non-zero column of H do1372

7: Φ ← Φ ∧ (f | ad · xd + · · ·+ a1 · x1 + a0)1373
13741375

8: return Φ1376

Below, let Ψ be the system returned by the algorithm on input Φ.1377

The fact that Ψ has the elimination property follows from properties of the Hermite normal form.1378

Consider F defined as in line 1, and f ∈ F . Starting from the matrix A ∈ Z(d+1)×(m+1) representing1379

the spanning set S := {f, c1 · g1, . . . , cm · gm} computed in line 3, by Proposition 6 we conclude that1380

H in line 4 spans Mf (Φ). Moreover, by properties of the HNF, all non-zero columns of H are linearly1381

independent, hence the for loop in line 6 is adding divisibilities f | h1, . . . , f | hℓ where h1, . . . , hℓ1382

is a basis of Mf (Φ); and ℓ ≤ m+ 1. Note that line 5 has previously removed all divisibilities of the1383

form f | g. Hence, in Ψ only the divisibilities f | h1, . . . , f | hℓ have f as a left-hand side. Recall1384

now that each column (ad, . . . , a1, c) of the matrix A contains the coefficients and the constant of a1385

distinct element h ∈ S, with ai being the coefficient of xi for i ∈ [1, d], and c being the constant of h.1386

Again since H is in HNF, it is lower triangular, and the pivot of each non-zero column is strictly1387
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below the pivot of the column before it. Following the order x1≺· · ·≺xd, this allows us to conclude1388

that, for every k ∈ [0, d], the family {g1, . . . , gj} := {g : LV(g) � xk and f | g appears in Ψ} is such1389

that g1, . . . , gj are linearly independent polynomials forming a basis for Mf (Φ) ∩ Z[x1, . . . , xk]; i.e.,1390

Ψ has the elimination property. We also note that, by virtue of the updates done in 7, Items 11391

and 2 in the statement of Lemma 7 directly follow.1392

The fact that Ψ and Φ are equivalent both over Z and for solutions modulo a prime follows1393

from Items 1 and 2 together with the following property of divisibility modules: given a system of1394

divisibility constraints Φ′ and a primitive term f ,1395

• for every a integer solution of Φ′ and every g ∈ Mf (Φ
′), f(a) divides g(a),1396

• for every p ∈ P, b solution of Φ′ modulo p and every g ∈ Mf (Φ
′), vp(f(b)) ≤ vp(g(b)).1397

Here, note that given polynomials g1 and g2 with vp(f(b)) ≤ vp(g1(b)) and vp(f(b)) ≤ vp(g2(b))1398

we have vp(f(b)) ≤ vp(a1 · g1(b) + a2 · g2(b)) for every a1, a2 ∈ Z, as the p-adic evaluation1399

satisfies vp(x · y) = vp(x) + vp(y) and min(vp(x), vp(y)) ≤ vp(x+ y), for all x, y ∈ Z.1400

Let us now move to the bounds on Ψ stated in Item 3. Directly from #F ≤ m and the fact
that H is lower triangular we conclude that at most m · (d + 1) divisibilities are added, and so Ψ
has at most m · (d + 2) divisibilities. We analyze the norm of Ψ. It suffices to consider a single
f ∈ F . By definition, ||f || ≤ ||Φ||, and from Lemma 6, the infinity norm of the matrix A representing
{f, c1 · g1, . . . , cm · gm} is bounded by ((m+3) · (||Φ||+2))(m+3)3 · ||Φ||. Note that A has d+1 many
rows. By Proposition 7, the matrix H in line 4 is such that

||H|| ≤ ((d+ 1) · ||A||+ 1)O(d)

≤
(
(d+ 1) ·

(
((m+ 3) · (||Φ||+ 2))(m+3)3 · ||Φ||

)
+ 1
)O(d)

≤ (d+ 1)O(d)(m+ ||Φ||+ 2)O(m3d).

From the updates done in line 7, we conclude that ||Ψ|| ≤ (d+ 1)O(d)(m+ ||Φ||+ 2)O(m3d).1401

Lemma 8. Let Φ(x,y) and Ψ(x,y) be input and output of the algorithm in Lemma 7, respectively.1402

For every ν : x→ Z and primitive polynomial f , Mf (Φ(ν(x),y)) ⊆ Mf (Ψ(ν(x),y)).1403

Proof. Let f be a primitive polynomial. By definition of divisibility module, the lemma is true1404

as soon as we prove (i) f ∈ Mf (Ψ(ν(x),y)), (ii) Mf (Ψ(ν(x),y)) is a Z-module, and (iii) for1405

every divisibility g′ | h′ (with g′ non-zero) appearing in Φ(ν(x),y), if b · g′ ∈ Mf (Ψ(ν(x),y)) for1406

some b ∈ Z, then b · h′ ∈ Mf (Ψ(ν(x),y)). Indeed, by definition Mf (Φ(ν(x),y)) is the smallest set1407

fulfilling these three properties, and therefore it must then be included in Mf (Ψ(ν(x),y)).1408

The first two properties trivially follow by definition of Mf (Ψ(ν(x),y)), hence let us focus1409

on Property ((iii)). Consider a divisibility g′ | h′ appearing in Φ(ν(x),y) and such that b · g′ ∈1410

Mf (Ψ(ν(x),y)). By definition of Φ(ν(x),y), there is a divisibility g | h appearing in Φ such that1411

(g | h)[ν(x) / x] = (g′ | h′). We split the proof depending on whether g is a primitive polynomial.1412

g is not a primitive polynomial. By Item 1 in Lemma 7 the divisibility g | h occurs in Ψ. So,1413

g′ | h′ is in Ψ(ν(x),y) and directly by definition of divisibility module, b·h′ ∈ Mf (Ψ(ν(x),y)).1414

g is a primitive polynomial. Let g̃ and c′ ∈ Z\{0} be such that g′ = c′·g̃. By Item 2 in Lemma 7,1415

since g | h appears in Φ, h ∈ Mg(Ψ). By the elimination property of Ψ, there are divisibilities1416

g | h1, . . . , g | hk such that h = λ1 · h1 + · · · + λk · hk for some λ1, . . . , λk ∈ Z \ {0}. Every1417

divisibility (g | hi)[ν(x) / x] with i ∈ [1, k] appears in Ψ(ν(x),y). Since g′ = g(ν(x),y) and1418
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b ·g′ ∈ Mf (Ψ(ν(x),y)) we have b ·hi(ν(x),y) ∈ Mf (Ψ(ν(x),y)) for every i ∈ [1, k]. Note that1419

h′ = h(ν(x),y) = λ1 · h1(ν(x),y) + · · ·+ λk · hk(ν(x),y), and therefore since the divisibility1420

module is a Z-module, b · h′ ∈ Mf (Ψ(ν(x),y)).1421

D Bounding the number of difficult primes1422

In this appendix, we establish Lemmas 3, 4 and 9.1423

Lemma 3. Let Φ(x) :=
∧m
i=1 fi | gi and p ∈ P \ P(Φ). Then, Φ has a solution b ∈ Nd modulo p1424

such that vp(fi(b)) = 0 for every 1 ≤ i ≤ m, and ||b|| ≤ p− 1.1425

Proof. We remark that p not dividing any coefficients nor constants appearing in the left-hand sides1426

of Φ implies that all the left-hand sides are non-zero. We show that the system of non-congruences1427

defined by fi 6≡ 0 (mod p) for every i ∈ [1,m], admits a solution b. This solution can clearly be1428

taken with entries in [0, p − 1]. Furthermore, vp(fi(b)) = 0 and fi(b) 6= 0 for every i ∈ [1,m], and1429

therefore b is a solution for Φ modulo p no matter the values of vp(gi(b)) (i ∈ [1,m]).1430

Consider an arbitrary ordering x1≺ · · · ≺ xd on the variables in x. We construct b by induction1431

on k ∈ [0, d]. At the k-th step of the induction we deal with the linear terms h having LV(h) = xk.1432

Below, we write F0 for the set of the left-hand sides in Φ that are constant polynomials, and Fk1433

with k ∈ [1, d] for the set of the left-hand sides f in Φ such that LV(f) � xk.1434

base case: k = 0. Every f ∈ F0 is a non-zero integer. Then, f 6≡ 0 (mod p) directly follows from1435

the hypothesis that p does not divide any constant appearing in the left-hand sides of Φ.1436

induction step: k ≥ 1. From the induction hypothesis, there is bk−1 = (b1, . . . , bk−1) ∈ Zk−1 such
that for every f ∈ Fk−1, f(bk−1) 6≡ 0 (mod p). We find a value bk for xk so that the following
system of non-congruences is satisfied

f(bk−1, xk) 6≡ 0 (mod p) f ∈ Fk \ Fk−1.

Linear polynomials f in Fk \ Fk−1 are of the form f(x) = f ′(x1, . . . , xk−1) + cf · xk. Since by1437

hypothesis p ∤ cf , we consider the multiplicative inverse c−1
f of cf modulo p, and rewrite the1438

above system as xk 6≡ −c−1
f · f ′ for every f ∈ Fk \ Fk−1. This system as a solution directly1439

from the fact that p > m ≥ #(Fk \ Fk−1).1440

Before proving Lemmas 4 and 9, we need the following result on system of divisibility constraints1441

with the elimination property, that will later be used also in the proof of Claim 4.1442

Lemma 19. Let Φ(x1, . . . , xd) be a system of divisibility with the elimination property for the order1443

x1 ≺ · · · ≺ xd. For every primitive term f and j ∈ [1, d], the set F := {g : (f | g) appears in Φ} has1444

at most one element with leading variable xj.1445

Proof. If f does not appear in the left-hand side of a divisibility of Φ, then F = ∅ and the lemma1446

holds. Suppose f in a left-hand side. For simplicity, let us define x0 := ⊥. By definition, for every1447

k ∈ [0, d], the elimination property forces {g1, . . . , gℓ} := {g : LV(g) � xk and f | g appears in Φ} to1448

be such that g1, . . . , gℓ are linearly independent polynomials forming a basis for Mf (Φ)∩Z[x1, . . . , xk].1449

Given k ∈ [0, d], let us write Fk := {g : LV(g) � xk and (f | g) appear in Φ}. For j ∈ [1, d], by1450

the elimination property, Fj−1 and Fj are sets of linearly independent vectors, that respectively1451

generates Mf (Φ) ∩ Z[x1, . . . , xj−1] and Mf (Φ) ∩ Z[x1, . . . , xj ]. To conclude the proof, we show by1452

induction on j that the set Fj has at most one element with leading variable xj .1453
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base case j = 0. In this case F0 only contains constant polynomials (and might be empty, in that1454

case it generates the subspace {0}). By elimination property, F is a set of linearly independent1455

vectors, hence F0 contains at most one element.1456

induction step j ≥ 1. Ad absurdum, suppose there are two distinct g1, g2 ∈ Fj \ Fj−1 such that1457

LV(g1) = LV(g2) = xj . By definition of S-polynomial, S(g1, g2) ∈ Mf (Φ) ∩ Z[x1, . . . , xj−1].1458

Since Fj−1 generates Mf (Φ) ∩ Z[x1, . . . , xj−1], there is a sequence of integers (λh)h∈Fj−1
such1459

that
∑

h∈Fj−1
λh · h = S(g1, g2). However, Fj−1 ∪ {g1, g2} ⊆ Fj (by definition) and Fj is1460

a set of linearly independent vectors. Therefore, every λh above must be 0, and we obtain1461

S(g1, g2) = 0, i.e., g1 and g2 are linearly dependent, in contradiction with g1, g2 ∈ Fj .1462

Lemma 9. Let Φ :=
∧m
i=1 fi | gi be a system of divisibility constraints in d variables with the1463

elimination property for ≺. Then, (i) #∆(Φ) ≤ 2·m2(d+2) and (ii) 〈||∆(Φ)||〉 ≤ (d+2)·(〈||Φ||〉+1).1464

Proof. Consider a primitive term f . If f is not a primitive part of any fi, with i ∈ [1,m], then1465

Sf (Φ) = terms(Φ) and so Sf (Φ) is included in any Sf ′(Φ) where f ′ is a primitive part of a left-hand1466

side of Φ. Hence, we can upper bound #∆(Φ) and 〈||Φ||〉 by only looking at these primitive parts.1467

Proof of (i): For f primitive part of some polynomials in a left-hand side of Φ, the elements of Sf (Φ)1468

have the form S
(
gk, S(gk−1, . . . S(g1, h))

)
where h ∈ terms(Φ) and f | gi is a divisibility in Φ, for1469

all i ∈ [1, k]. Moreover, each gi has the same leading variable as hi := S(gi−1, S(gi−2, . . . , S(g1, h))).1470

Since Φ has the elimination property, by Lemma 19, given hi there is at most one g such that f | g1471

and LV(g) = LV(hi); that is gi. Therefore, each element of Sf (Φ) can be characterized by a pair1472

(k, h) where h ∈ terms(Φ) and k ∈ [0, d + 1], i.e., #Sf (Φ) ≤ #terms(Φ) · (d + 2) ≤ 2 ·m · (d + 2),1473

since #terms(Φ) ≤ 2 ·m. The number of f to be considered is bounded by m, i.e., the number of1474

left-hand sides, which means #∆(Φ) ≤ 2 ·m2(d+ 2).1475

Proof of (ii): Recall that 〈||f ||〉 is the maximum bit length of a coefficient or constant of a poly-1476

nomial f , and that 〈||R||〉 = maxf∈R〈||f ||〉 for a finite set R of polynomials. By examinating the1477

definition of S-polynomial, we get that for every f and g, 〈||S(f, g)||〉 ≤ 〈||f ||〉 + 〈||g||〉 + 1. Let f1478

be a primitive polynomial. As discussed in the proof of ((i)), an element of Sf (Φ) is of the form1479

S
(
gk, S(gk−1, . . . S(g1, h))

)
, where h ∈ terms(Φ), f | gi is a divisibility in Φ, for all i ∈ [1, k], and1480

k ≤ d + 1. Then, 〈||S
(
gk, S(gk−1, . . . S(g1, h))

)
||〉 ≤ 〈||h||〉 +

(∑k
i=1〈||gi||〉

)
+ k. We conclude that1481

〈||∆(Φ)||〉 ≤ (d+ 2) · (〈||Φ||〉+ 1).1482

Lemma 4. Consider a system of divisibility constraints Φ(x) in d variables. Then, the set of primes1483

P(Φ) satisfies log2(ΠP(Φ)) ≤ m2(d+2) · (〈||Φ||〉+2). Furthermore, if Φ has the elimination property1484

for an order ≺ on x, then the set of primes P+(Φ) satisfies log2(ΠP+(Φ)) ≤ 64·m5(d+2)4(〈||Φ||〉+2).1485

Proof. We first analyse log2(ΠP(Φ)). Recall that P(Φ) is the set of those primes p such that either1486

(i) p ≤ m or (ii) p divide a coefficient or a constant of a left-hand side of Φ. The product of the1487

primes satisfying (i) is bounded by m! ≤ mm. The product of the primes satisfying (ii) is bounded1488

by the product of the coefficients or the constants in the left-hand sides of Φ, which is at most1489

||Φ||m·(d+1). From these two bounds, we obtain the bound on log2(ΠP(Φ)) stated in the lemma.1490

Let us analyse log2(ΠP+(Φ)). Without loss of generality, assume that the order ≺ is such that1491

x1 ≺ · · · ≺ xd. We consider the three conditions defining P+(Φ) separately, and establish upper1492

bounds for each of them. Recall that the number of primes dividing n ∈ Z is bounded by log2(n),1493

and that Lemma 9 implies #S(∆(Φ)) ≤ 8 ·m4(d+2)2 and 〈||S(∆(Φ))||〉 ≤ 2 · (d+2) · (〈||Φ||〉+1)+1.1494

(P1): Directly from the bounds above, the primes satisfying (P1) are at most 8 ·m4(d+ 2)2, and1495

thus the log2 of their product is at most 8 ·m4(d+ 2)2 log2(8 ·m4(d+ 2)2), which is bounded1496

by 64 ·m5(d+ 2)3.1497
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(P2): The product of the primes dividing a coefficient or constant of a polynomial f in S(∆(Φ))1498

is bounded by the product of these coefficients and constants. There are at most (d + 1) ·1499

#S(∆(Φ)) such coefficients and constants. Therefore, the log2 of this product is bounded by1500

(d+ 1) ·#S(∆(Φ)) · 〈||S(∆(Φ))||〉, which is bounded by 16 ·m4(d+ 2)4(〈||Φ||〉+ 2).1501

(P3): If f is a primitive term such that a · f does not occur in the left-hand sides of Φ, for any1502

a ∈ Z\{0}, then Sf (Φ) = terms(Φ) and Mf (Φ) = Zf , and therefore λ, if it exists, equals to 1.1503

Consider f primitive such that a · f ∈ terms(Φ) appears on the left-hand side of a divisibility1504

in Φ, for some a ∈ Z\{0}, and consider g ∈ Sf (Φ). We first compute a bound on the minimal1505

positive λ such that λ · g ∈ Mf (Φ), if such a λ exists. Let xj := LV(g), with j ∈ [0, d] and1506

x0 := ⊥. Consider the set {h1, . . . , hℓ} := {h : LV(h) ≤ LV(g) and f | h is in Φ}; where ℓ ≤ m.1507

From the elimination property, this set is a basis for Mf (Φ) ∩ Z[x1, . . . , xj ], and therefore λ1508

exists if and only if Zg ∩ Zh1 + · · ·+ Zhℓ 6= {0}. Then let K be a basis for the kernel of the1509

matrix representing the set {−g, h1, . . . , hℓ}. As observed in the context of Algorithm 4, if1510

λ exists then it is the GCD of the row of K corresponding to −g. From Corollary 2, λ ≤1511 (
m+3)m+3max(2, ||Φ||)m+2. In the proof of Lemma 9 we have shown #Sf (Φ) ≤ 2 ·m · (d+2),1512

hence the number of pairs (f, g) to consider is bounded by 2 ·m2 · (d+ 2). Similarly to (P2),1513

the product of the primes dividing all λs is bounded by the product of these λs, which is at1514

most
(
(m+3)m+3max(2, ||Φ||)m+2

)2·m2·(d+2)
. Therefore, the log2 of the product of the primes1515

satisfying (P3) is at most 32 ·m4(d+ 2) · (〈||Φ||〉+ 1).1516

Summing up the bounds we have just obtained yield the bound stated in the lemma.1517

E Theorem 4: proofs of Claim 4 and Claim 51518

In this section, we prove Claim 4 and Claim 5, which are required to establish Theorem 4. In the1519

context of this theorem, recall that Ψ(x,y) is a formula that is increasing for (X1 ≺ · · · ≺Xr) and1520

has the elimination property for an order (≺) ∈ (X1 ≺ · · · ≺ Xr). Here, x = (x1, . . . , xd) are the1521

variables appearing in X1, ordered as x1 ≺ · · · ≺ xd, and y are the variables appearing in
⋃r
j=2Xj .1522

We also have solutions bp for Ψ modulo p, for every p ∈ P+(Ψ), and we have inductively computed1523

a map ν : X1 → Z the following three properties:1524

IH1: For every p ∈ P+(Ψ) and x ∈ X1, ν(x) ≡ bp,x (mod pµp+1), where bp,x is the entry of bp corre-1525

sponding to x, and µp := max{vp(f(bp)) ∈ N : f is in the left-hand side of a divisibility of Ψ}.1526

IH2: For every prime p /∈ P+(Ψ) and for every h, h′ ∈ ∆(Ψ) with leading variable in X1, if S(h, h′)1527

is not identically zero, then p does not divide both h(ν(x)) and h′(ν(x)).1528

IH3: h(ν(x)) 6= 0 for every h ∈ ∆(Ψ) that is non-zero and with LV(h) ∈ X1.1529

The formula Ψ′(y) considered in Claim 4 and Claim 5 is defined as Ψ′ := Ψ[ν(x) / x : x ∈ X1].1530

Claim 4. The system Ψ′ is increasing for (X2 ≺ · · · ≺Xr).1531

At first glance, Claim 4 might appear intuitively true: since the notion of r-increasing form is
mainly a property on sets X1≺· · ·≺Xr of orders of variables, and during the proof of Theorem 4 we
are inductively handling the smallest set X1, it might seem trivial that instantiating the variables in
X1 preserve increasingness for X2 ≺ · · · ≺Xr. However, in general, this is not the case. To see this,
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we repropose the example given in Section 1.3. Consider the system of divisibility constraints Ψ in
increasing form for the order u≺ v ≺ x≺ y ≺ z and with the elimination property for that order:

v | u+ x+ y

v | x
y + 2 | z + 1

v | z .

From the first two divisibilities, we have (u+y) ∈ Mv(Ψ); i.e., (u−2)+(y+2) ∈ Mv(Ψ). Therefore,1532

if u were to be instantiated as 2, the resulting formula Ψ′ would satisfy (y + 2) ∈ Mv(Ψ
′) and1533

hence (z + 1) ∈ Mv(Ψ
′), from the third divisibility. Then, 1 ∈ Mv(Ψ

′) would follow from the last1534

divisibility, violating the constraints of the increasing form. Fortunately, due to the definition of1535

Sf (Ψ), u = 2 contradicts the property (IH3) kept during the proof of Theorem 4, meaning that the1536

above issue does not occur in our setting. Indeed, note that S(y + 2, u + x + y) = 2 − u − x is in1537

Sv(Ψ), and so is S(2−u−x, x) = 2−u. Then, (IH3) forces 2−u 6= 0, excluding u = 2 as a possible1538

solution. This observation is the key to establish Claim 4.1539

Given a set A of polynomials, an integer a ∈ Z and a variable x occurring in those polynomials,1540

we define A[a/x] := {f(a,y) : f(x,y) ∈ A}, that is the set obtained by partially evaluating x as a in1541

all polynomials in A. This notion is extended to sequences of value-variable pairs as A[ai/xi : i ∈ I].1542

Proof of Claim 4. To show the statement, we consider an order ≺′ in (X1≺· · ·≺Xr). Note that any1543

order (X2≺· · ·≺Xr) can be constructed from elements in (X1≺· · ·≺Xr) by simply forgetting X1.1544

Let y = (y1, . . . , yj), with y1 ≺′ · · · ≺′ yj , be the variables in
⋃r
i=2Xi. To simplify the presentation,1545

we denote by a′, b′, . . . and f ′, g′, . . . integers and polynomials related to Ψ′, and by a, b, . . . and1546

f, g, . . . integers and polynomials related to Ψ. By definition of increasing form, we need to establish1547

that for every k ∈ [1, j] and primitive polynomial f ′(y) such that a′ ·f ′ appears in the left-hand side1548

of a divisibility in Ψ′, for some a′ ∈ Z\{0}, and LV(f ′) = yk, we have Mf ′(Ψ
′)∩Z[y1, . . . , yk] = Zf ′.1549

By definition of Ψ′ and since a′ · f ′ appears in a left-hand side, there is a primitive polynomial1550

f(x,y) and a scalar a ∈ Z \ {0} such that a · f is in the left-hand side of some divisibility in Ψ,1551

and a′ · f ′(y) = a · f(ν(x),y). Note that this implies a | a′ and LV(f) 6∈ X1. We prove that1552

a′

a
·Mf ′(Ψ

′) ⊆ Mf (Ψ)[ν(x) / x : x ∈ X1]. Note that this inclusion implies Ψ′ in increasing form. To1553

see this, take g′ ∈ Mf ′(Ψ
′) ∩ Z[y1, . . . , yk]. We have a′

a
· g′ ∈ Mf (Ψ)[ν(x) / x : x ∈ X1], and thus1554

there is g(x,y) ∈ Mf (Ψ) such that a′

a
· g′ = g(ν(x),y). Since LV(g′) ≺′ yk, we have LV(g) ≺′ yk.1555

Since Ψ is increasing for ≺′, we conclude that g ∈ Zf . Note that (Zf)[ν(x) / x ∈ X1] ⊆ Zf ′. Then1556

a′

a
· g′ ∈ Zf ′. Since f ′ is primitive, we get g′ ∈ Zf ′. This shows Mf ′(Ψ

′) ∩ Z[y1, . . . , yk] ⊆ Zf ′, and1557

the other inclusion directly follows by definition of Mf ′(Ψ
′). We conclude that Ψ′ is increasing.1558

To conclude the proof of Claim 4, let us show that a′

a
·Mf ′(Ψ

′) ⊆ Mf (Ψ)[ν(x) / x : x ∈ X1]. By1559

definition of Mf ′(Ψ
′), this follows as soon as we prove the following three properties:1560

(A) a′

a
· f ′ belongs to Mf (Ψ)[ν(x) / x : x ∈ X1],1561

(B) Mf (Ψ)[ν(x) / x : x ∈ X1] is a Z-module, and1562

(C) If g′ | h′ is a divisibility in Ψ′ and b′ · g′ ∈ Mf (Ψ)[ν(x) /x : x ∈ X1] for some b′ ∈ Z \ {0}, then1563

b′ · h′ ∈ Mf (Ψ)[ν(x) / x : x ∈ X1].1564

By definition of divisibility module, a
′

a
·Mf ′(Ψ

′) is the smallest set that satisfies the three properties1565

above, and therefore it must be included in Mf (Ψ)[ν(x) / x : x ∈ X1].1566
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Proof of (A): By definition of f , a′ · f ′ = a · f(ν(x),y) and a | a′, hence a′

a
· f ′ = f(ν(x),y), and1567

by definition of divisibility module f(ν(x),y) ∈ Mf (Ψ)[ν(x) / x : x ∈ X1].1568

Proof of (B): This follows directly from the definition of divisibility module being a Z-module.1569

Indeed, substitutions preserve the notion of Z-module.1570

Proof of (C): This property follows from our definition of Sf (Ψ) together with the property (IH3)1571

and the fact that Ψ has the elimination property for the order ≺ (not to be confused with the1572

order ≺′, which does not guarantee the elimination property). Consider a divisibility g′(y) | h′(y)1573

occurring in Ψ′ and b′ ∈ Z \ {0} such that b′ · g′ ∈ Mf (Ψ)[ν(x) / x : x ∈ X1]. By definition of1574

Ψ′, there is a divisibility g(x,y) | h(x,y) in Ψ such that g′ = g(ν(x),y) and h′ = h(ν(x),y).1575

Also, by definition of Mf (Ψ)[ν(x) / x : x ∈ X1], there is a polynomial ĝ(x,y) ∈ Mf (Ψ) such that1576

b′ · g′ = ĝ(ν(x),y).1577

To conclude the proof, it suffices to show that b′ · g = ĝ. Indeed, since g | h appears in Ψ1578

and ĝ ∈ Mf (Ψ), we then get b′ · h ∈ Mf (Ψ) by the definition of divisibility module, which implies1579

b′ · h′ ∈ Mf (Ψ)[ν(x) / x : x ∈ X1] by definition of h; concluding the proof.1580

Since ĝ ∈ Mf (Ψ) and Ψ has the elimination property for ≺, there are linearly independent poly-1581

nomials h1, . . . , hℓ such that the divisibilities f | hi appear in Ψ and there are λ1, . . . , λℓ ∈ Z \ {0}1582

such that ĝ =
∑ℓ

i=1 λi · hi. Thanks to Lemma 19, we can arrange these polynomials so that1583

LV(h1) ≺ · · · ≺ LV(hℓ). We write ci for the coefficient corresponding to the leading variable of hi.1584

Since LV(f) 6∈ X1 (stated earlier) and Ψ is increasing, LV(hi) ∈
⋃r
k=2Xk holds for every i ∈ [1, ℓ].1585

From g′ = g(ν(x),y) and b′ · g′ = ĝ(ν(x),y) we directly get b′ · g(ν(x),y) = ĝ(ν(x),y). There-1586

fore, (b′ · g − ĝ)(ν(x),y) = 0, implying that b′ · g − ĝ is either constant or has its leading variable1587

in X1. This implies that b′ · g −∑ℓ
i=1 λi · hi is either constant or has its leading variable in X1.1588

Since the λi are non-zero, and moreover LV(hi) is not in X1 and LV(h1) ≺ · · · ≺ LV(hℓ), we have1589

LV(b′ · g −∑ℓ
i=k+1 λi · hi) = LV(hk) for every k ∈ [1, ℓ], and the coefficient corresponding to the1590

leading variable of b′ · g −∑ℓ
i=k+1 λi · hi is exactly λk · ck.1591

We show by induction on k ∈ [1, ℓ+1], with base case k = ℓ+1, that αk · (b′ · g−
∑ℓ

i=k λi ·hi) =1592

b′ · S(g, hℓ, . . . , hk), where αk :=
∏ℓ
i=k ci, and S(f1, . . . , fn) is short for S(. . . (S(f1, f2), . . . ), fn);1593

e.g., S(f1, f2, f3) = S(S(f1, f2), f3).1594

base case k = ℓ+ 1: For the base case, αℓ+1 = 1 and the equivalence becomes b′ · g = b′ · g.1595

induction step k ≤ ℓ: we have αk+1(b
′ · g −∑ℓ

i=k+1 λi · hi) = b′ · S(g, hℓ, . . . , hk+1) by induction
hypothesis. Note that, from the left-hand side of this equation, the coefficient corresponding
to the leading variable of b′ · S(g, hℓ, . . . , hk+1) is ck · αk+1 · λk. Then,

αk · (b′ · g −
ℓ∑

i=k

λi · hi)

= ck · αk+1(b
′ · g −

ℓ∑

i=k

λi · hi) definition of αk

= ck · αk+1(b
′ · g −

ℓ∑

i=k+1

λi · hi)− ck · αk+1 · λk · hk

= ck · (b′ · S(g, hℓ, . . . , hk+1))− (ck · αk+1 · λk) · hk induction hypothesis

=S(b′ · S(g, hℓ, . . . , hk+1), hk) coeff. leading var. hk is ck

coeff. leading var. (b′ · S(g, hℓ, . . . , hk+1)) is ck · αk+1 · λk
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= b′ · S(g, hℓ, . . . , hk) S(b′ · f1, f2) = b′ · S(f1, f2), by definition of S-polynomial.

Thanks to the equality αk ·(b′ ·g−
∑ℓ

i=k λi ·hi) = b′ ·S(g, hℓ, . . . , hk) we just established, we conclude1596

that α1 · (b′ · g − ĝ) = b′ · S(g, hℓ, . . . , h1). Moreover, from LV(b′ · g −∑ℓ
i=k+1 λi · hi) = LV(hk) we1597

conclude that LV(S(g, hℓ, . . . , hk+1)) = LV(hk), for every k ∈ [1, ℓ]. Then, since g ∈ terms(Ψ)1598

and the divisibilities f | h1, . . . , f | hℓ appear in Ψ, by definition of Sf (Ψ), we conclude that1599

S(g, hℓ, . . . , h1) ∈ Sf (Ψ). Recall that b′ · g − ĝ is either constant or has its leading variable in X1.1600

The same is true for S(g, hℓ, . . . , h1), and we have (α1 ·(b′ ·g− ĝ))(ν(x)) = b′ ·S(g, hℓ, . . . , h1)(ν(x)).1601

From (b′ ·g− ĝ)(ν(x)) = (b′ ·g− ĝ)(ν(x),y) = 0 and b′ 6= 0 we get S(g, hℓ, . . . , h1)(ν(x)) = 0. From1602

the property (IH3), this can only occur when S(g, hℓ, . . . , h1) = 0, and so α1 · (b′ · g − ĝ) = 0. By1603

definition α1 6= 0, and therefore b′ · g = ĝ, concluding the proof of ((C)).1604

Claim 5. For every p ∈ P+(Ψ), the solution bp for Ψ modulo p is, when restricted to y, a solution1605

for Ψ′(y) modulo p. For every prime p 6∈ P+(Ψ), there is a solution bp for Ψ′ modulo p such that1606

(i) every entry of bp belongs to [0, pu+1 − 1], where u := max{vp(αi) : i ∈ [ℓ+1, n]}, and (ii) for1607

every g ∈ terms(Ψ′), vp(g(bp)) is either 0 or u.1608

Proof. The first statement of the claim follows from (IH1) and the definition of µp (the reasoning1609

is analogous to the one in the base case r = 1 of the induction of Theorem 4). For the second1610

statement, consider a prime p not belonging to P+(Ψ). We provide a solution bp for Ψ′(y) modulo p.1611

Let y = (y1, . . . , yj) with y1 ≺ · · · ≺ yj . To compute bp = (bp,1, . . . , bp,j), where bp,k is the value1612

assigned to yk, we consider two cases that depend on whether p divides some αi appearing in the1613

first block of divisibilities of Equation (7) (i.e., these are the αi with i ∈ [ℓ+ 1, n]).1614

case p ∤ αi for all i ∈ [ℓ+ 1, n]. This case is relatively simple. Starting from y1 and proceeding in
increasing order of variables, we compute bp,k+1 (k ∈ N) by solving the system

h(bp,1, . . . , bp,k, yk+1) 6≡ 0 (mod p) h ∈ terms(Ψ′) s.t. LV(h) = yk+1. (13)

With respect to the h above, let us write h(bp,1, . . . , bp,k yk+1) = ch+ ah · yk+1 where ch is the
constant term obtained by partially evaluating h with respect to (bp,1, . . . , bp,k) and ah is the
coefficient of yk+1 in h. By definition of Ψ′, the term h is obtained by substituting x for ν(x)
in a polynomial of Ψ, and in that polynomial yk+1 has coefficient ah. Since p 6∈ P+(Ψ), from
Condition (P2) we conclude that p ∤ ah, and so ah has an inverse a−1

h modulo p. The system
of non-congruences above is equivalent to the system Sk+1 given by

yk+1 6≡ −a−1
h · ch (mod p) h ∈ terms(Ψ′) s.t. LV(h) = yk+1.

From Condition (P1) we have p > #terms(Ψ) ≥ #terms(Ψ′), and so it suffices to take bp,k+11615

to be an element in [0, p− 1] that differs from every −a−1
h · ch appearing in the rows of Sk+1.1616

The solution bp resulting from the systems of non-congruences S1, . . . ,Sj is such that, for1617

every h ∈ terms(Ψ′), vp(h(bp)) = 0. Therefore, bp is a solution for Ψ′ modulo p.1618

case p | αi for some i ∈ [ℓ+ 1, n]. This case is involved. Since p divides some αi = fi(ν(x)), and1619

p 6∈ P+(Ψ), by Condition (P2) we have p | f(ν(x)), where f is the primitive polynomial ob-1620

tained by dividing every coefficient and constant of fi by gcd(fi). Recall that x = (x1, . . . , xd)1621

with x1≺· · ·≺xd≺y1≺· · ·≺yj , and note that LV(f) � xd. Below, let us define u := vp(f(ν(x))).1622

The idea is to use f to iteratively construct the solution bp for y = (y1, . . . , yj). We rely on1623

the following induction hypotheses (k ∈ [0, j]):1624
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IH1′: for every non-zero polynomial g(x, y1, . . . , yt) ∈ terms(Ψ) such that t ≤ k,
if Zg ∩Mf (Ψ) 6= {0} then vp(g(ν(x), bp,1, . . . , bp,t)) = u, and

1625

IH2′: for every non-zero polynomial h(x, y1, . . . , yt) ∈ Sf (Ψ) such that t ≤ k,
if Zh ∩Mf (Ψ) = {0} then vp(h(ν(x), bp,1, . . . , bp,t)) = 0.

1626

Let us first show that by constructing bp so that it satisfies the hypotheses above for k = j1627

implies that bp is a solution for Ψ′ modulo p. Consider a divisibility αi + f ′i(y) | βi + g′i(y)1628

in Ψ′, with i ∈ [ℓ + 1,m] and f ′i = 0 if i ≤ n. Recall that αi = fi(ν(x)) and βi = gi(ν(x)),1629

and given h := fi+ f ′i and h′ := gi+ g′i, the divisibility h | h′ occurs in Ψ. We have two cases:1630

• Zh ∩Mf (Ψ) 6= {0}. In this case, by definition of Mf (Ψ) we have Zh′ ∩Mf (Ψ) 6= {0}.1631

According to (IH1′), vp(h(ν(x), bp)) = vp(h
′(ν(x), bp)) = u. By definition of h and h′,1632

we get vp(αi + f ′i(bp)) = vp(βi + g′i(bp)) = u. Note that f(ν(x)) is non-zero by (IH3),1633

hence its p-adic evaluation u belongs to N, which forces αi + f ′i(bp) to be non-zero.1634

• Zh ∩Mf (Ψ) = {0}. Recall that terms(Ψ) ⊆ Sf (Ψ), by definition. Hence, directly from1635

(IH2′) we get vp(h(ν(x), bp)) = vp(αi+f
′
i(bp)) = 0. This implies αi+f

′
i(bp) non-zero, and1636

moreover vp(αi+ f
′
i(bp)) ≤ vp(βi+ g′i(bp)) no matter what is the value of vp(βi+ g

′
i(bp)).1637

Note moreover that (IH1′) and (IH2′) directly imply max{vp(g(bp)) ∈ N : g ∈ terms(Ψ′)} ≤ u.1638

To conclude the proof, we show how to construct bp satisfying (IH1′) and (IH2′).1639

base case k = 0. We establish (IH1′) and (IH2′) for polynomials with variables in x, by show-1640

ing the three properties below, for every non-zero polynomial h ∈ ∆(Ψ) with LV(h) � xd.1641

(A) Either Zf ∩ Zh 6= {0} or p ∤ h(ν(x)).1642

(B) If Zf ∩ Zh 6= {0}, then vp(h(ν(x))) = vp(f(ν(x))).1643

(C) If p ∤ h(ν(x)) then vp(h(ν(x))) = 0 and Zh ∩Mf (Ψ) = {0}.1644

These three items imply (IH1′) and (IH2′). To establish (IH1′), take g(x) ∈ terms(Ψ)1645

such that Zg∩Mf (Ψ) 6= {0}. From ((C)) we must have p | g(ν(x)). Hence, Zf ∩ Zh 6= {0}1646

by ((A)), and from ((B)) we get vp(h(ν(x))) = vp(f(ν(x))). For (IH2′), take h(x) ∈1647

Sf (Ψ) such that Zh ∩ Mf (Ψ) = {0}. By definition of Mf (Ψ), Zh ∩ Zf = {0} and so1648

p ∤ h(ν(x)) by ((A)). From ((C)), vp(h(ν(x))) = 0. We conclude the base case by1649

establishing ((A))–((C)).1650

Proof of ((A)): Since Ψ has the elimination property, f ∈ terms(Ψ). Then, ((A)) follows1651

directly from (IH2); remark that S(f, h) = 0 is equivalent to Zf ∩ Zh 6= {0}.1652

Proof of ((B)): By Zf∩Zh 6= {0} there are λ1, λ2 ∈ Z\{0} such that λ1 ·f = λ2 ·h. With-1653

out loss of generality, gcd(λ1, λ2) = 1, and thus gcd(λ2, gcd(f)) = λ2. The polynomial1654

f is primitive, hence λ2 = 1 and we get h = λ1 · f . Since p 6∈ P+(Ψ), from Condi-1655

tion (P2) and λ1 | gcd(h) we derive p ∤ λ1. Therefore, vp(h(ν(x))) = vp(λ1 · f(ν(x))) =1656

vp(f(ν(x))).1657

Proof of ((C)): Trivially, p ∤ h(ν(x)) equals vp(h(ν(x))) = 0. To show Zh ∩Mf (Ψ) = {0},1658

first note that Zh∩Zf = {0}, directly from p | f(ν(x)) and ((B)). Ad absurdum, assume1659

Zh∩Mf (Ψ) 6= {0}. Since Ψ is increasing for χ := (X1≺· · ·≺Xr), and LV(h) and LV(f)1660

are both in X1, Ψ is increasing no matter the order of the variables imposed on X1. Take1661

an order (≺′) ∈ χ for which LV≺′(h) �′ LV≺′(f), and let x′1 ≺′ · · · ≺′ x′d be the order for1662

the variables x1, . . . , xd. Since Ψ is increasing for ≺′, Mf (Ψ) ∩ Z[x′1, . . . , x′LV
≺′ (f)

] = Zf .1663

However, Zh ⊆ Z[x′1, . . . , x′LV
≺′ (f)

] by definition of ≺′, hence from Zh∩Mf (Ψ) 6= {0} we1664

obtain Zh ∩ Zf 6= {0}, a contradiction. This proves ((C)).1665
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induction step. Let us assume that bp,1, . . . , bp,k are defined for the variables y1, . . . , yk with1666

k ∈ [0, j−1], so that the induction hypotheses hold. We provide the value bp,k+1 for yk+11667

while keeping (IH1′) and (IH2′) satisfied. We divide the proof into two cases, depending1668

on whether there is a term g ∈ terms(Ψ) with LV(g) = yk+1 such that Zg∩Mf (Ψ) 6= {0}.1669

case g does not exist. In this case, (IH1′) is fulfilled no matter the value of bp,k+1, so
we focus on finding such a value satisfying (IH2′). It suffices to consider the system

h(bp,1, . . . , bp,k, yk+1) 6≡ 0 (mod p) h ∈ Sf (Ψ) s.t. LV(h) = yk+1.

Similarly to the system in Equation (13), writing ch+ah·yk+1 for h(bp,1, . . . , bp,k, yk+1),
we obtain the equivalent system of non-congruences

yk+1 6≡ −a−1
h · ch (mod p) h ∈ Sf (Ψ) s.t. LV(h) = yk+1.

Since p 6∈ P+(Ψ) and from (P1), this system admits a solution bp,k+1 in [0, p − 1].1670

Note that (IH2′) is satisfied, since every polynomial in that hypothesis is considered1671

in these non-congruence systems.1672

case g exists. Recall that g is a polynomial in terms(Ψ) such that LV(g) = yk+1 and
Zg ∩Mf (Ψ) 6= {0}. Let u := vp(f(ν(x))). In order to satisfy (IH1′) it suffices to
find bp,k+1 ∈ Z satisfying the following (non-empty) system of non-congruences

∀g ∈ terms(Ψ) s.t. LV(g) = yk+1 and Zg ∩Mf (Ψ) 6= {0},
g(bp,1, . . . , bp,k, yk+1) ≡ 0 (mod pu)

g(bp,1, . . . , bp,k, yk+1) 6≡ 0 (mod pu+1).

Similarly to the system in Equation (13), writing cg+ag·yk+1 for g(bp,1, . . . , bp,k, yk+1),
we obtain the equivalent system of non-congruences

∀g ∈ terms(Ψ) s.t. LV(g) = yk+1 and Zg ∩Mf (Ψ) 6= {0}, (14)

yk+1 ≡ −a−1
g · cg (mod pu)

yk+1 6≡ −a−1
g · cg (mod pu+1).

Focus on the congruences yk+1 ≡ −a−1
g ·cg (mod pu) of this system. These only have1673

a solution if the right-hand side is the same modulo pu for every g ∈ terms(Ψ) with1674

LV(g) = yk+1 and Zg ∩Mf (Ψ) 6= {0}. We prove that this is indeed the case. Con-1675

sider g1 and g2 such that gi ∈ terms(Ψ) with LV(gi) = yk+1 and Zgi ∩Mf (Ψ) 6= {0},1676

for i ∈ {1, 2}. Let λ1 and λ2 be the smallest positive integers such that both λ1 · g11677

and λ2 · g2 belong to Mf (Ψ). By definition of divisibility module and S-polynomial,1678

S(λ1 · g1, λ2 · g2) ∈ Mf (Ψ) ∩ Z[x1, . . . , xd, y1, . . . , yk]. According to the elimination1679

property of Ψ, there is a (finite) basis B for Mf (Ψ) ∩ Z[x1, . . . , xd, y1, . . . , yk] such1680

that for every h ∈ B, f | h is a divisibility in Ψ. Moreover, LV(h) � yk and thus1681

by (IH1′) we get vp(h(ν(x), bp,1, . . . , bp,k)) = u. Now, since S(λ1 ·g1, λ2 ·g2) is a linear1682

combination of elements in B, we conclude that pu | S(λ1 · g1, λ2 · g2). By writing1683

gi(x, y1, . . . , yk+1) as g′i(x, y1, . . . , yk) + ai · yk+1, for i ∈ {1, 2}, this divisibility can1684

be rewritten as the congruence:1685

(λ2 · a2) · (λ1 · g′1) ≡ (λ1 · a1) · (λ2 · g′2) (mod pu).

From p 6∈ P+(Ψ), (P2) and (P3), we conclude that p ∤ λ1 ·λ2 · a1 · a2. By multiplying1686

both sides of the above congruence by the inverse (λ1 ·λ2 · a1 · a2)−1 of λ1 ·λ2 · a1 · a21687

55



modulo pu, we conclude that a−1
1 ·g′1 ≡ a−1

2 ·g′2 (mod pu). This shows that the right-1688

hand side is the same across all the congruences and non-congruences of the system1689

in Equation (14). Moreover, p > #terms(Ψ) by (P1), and therefore this system is1690

feasible, and more precisely has a solution bp,k+1 of the form bp,k+1 := pu ·γ for some1691

γ ∈ [1, p− 1]. Pick such a solution, which by construction satisfies (IH1′).1692

We show that bp,k+1 also satisfies (IH2′). Here is where the existence of the polyno-1693

mial g ∈ terms(Ψ) satisfying LV(g) = yk+1 and Zg∩Mf (Ψ) 6= {0} plays a role. From1694

Zg ∩Mf (Ψ) 6= {0} and since Ψ has the elimination property, we can find a polyno-1695

mial g0 such that f | g0 is in Ψ, and LV(g0) = yk+1. We prove (IH2′) arguing by con-1696

traposition. Let h ∈ Sf (Ψ) such that LV(h) = yk+1 and p | h(ν(x), bp,1, . . . , bp,k+1).1697

If S(h, g0) is zero, i.e., h and g0 are linearly dependent, then Zh ∩ Mf (Ψ) 6= {0}1698

follows by definition of g0, and (IH2′) holds for h. Suppose that S(h, g0) is non-zero.1699

From the construction of bp,k+1 and since g0 is a polynomial considered in Equa-1700

tion (14), we have p | g0(ν(x), bp,1, . . . , bp,k+1). Then, by definition of S-polynomial,1701

p | S(h, g0)(ν(x), bp,1, . . . , bp,k). By definition of Sf (Ψ), note that h ∈ Sf (Ψ) and1702

g0 ∈ terms(Ψ) implies S(h, g0) ∈ Sf (Ψ). Since S(h, g0) is non-zero, the induction1703

hypothesis (IH2′) implies that ZS(h, g0) ∩Mf (Ψ) 6= {0}. Then, Zh ∩Mf (Ψ) 6= {0}1704

follows directly from the fact that f | g0 appears in Ψ (and so Zg0 ∩Mf (Ψ)). Once1705

more, we conclude that (IH2′) holds for h.1706

Following the case analysis above, we construct solutions bp for Ψ′(y) modulo p, for every p ∈ P+(Ψ
′).1707

This concludes the proof of Claim 5.1708

F Theorem 4: proof of Claim 81709

We recall that O ∈ Z+ is the minimal positive integer greater or equal than 4 such that the map1710

x 7→ O(x+ 1) upper bounds the linear functions hidden in the O(.) appearing in Lemma 7. The1711

integer Γ(r, ℓ, w,m, d), with r, ℓ, w,m, d ∈ Z+ and r ≤ d, is the maximum bit length of the minimal1712

positive solution of any system of divisibility constraints Φ such that:1713

• Φ is r-increasing.1714

• The maximum bit length of a coefficient or constant appearing in Φ, i.e., 〈||Φ||〉, is at most ℓ.1715

• For every p ∈ P(Φ), consider a solution bp of Φ modulo p minimizing µp := max{vp(f(bp)) :1716

f is in the left-hand side of a divisibility in Φ}. Then, log2

(∏
p∈P(Φ) p

µp+1
)
≤ w.1717

• Φ has at most m divisibilities.1718

• Φ has at most d variables.1719

Since we want to find an upper bound for Γ, assume without loss of generality that Γ(r, ℓ, w,m, d)1720

is always at least min(ℓ, w). Let us prove Claim 8.1721

Claim 8.





Γ(1, ℓ, w,m, d) ≤ w + 3

Γ(r + 1, ℓ, w,m, d) ≤ Γ(r,

2105m27(d+ 2)38O · log2(O)6(ℓ+ w) · (log2(ℓ+ w))6,

2109m29(d+ 2)39O · log2(O)6(ℓ+ w) · (log2(ℓ+ w))6,

m,

d).

1722
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Analysis on Γ(1, ℓ, w,m, d): This case corresponds to the base case of the main induction, where1723

the solutions are found thanks to the system of congruences in Equation (4), where for p ∈ P(Φ),1724

µp := max{vp(f(bp)) : f is in the left-hand side of a divisibility of Φ}. From the Chinese remainder1725

theorem, this system of congruences has a solution where every variable is in [1,
∏
p∈P(Φ) p

µp+1].1726

Therefore, every variable is bounded by 2w by definition of w, and therefore its bit length is bounded1727

by w + 3, since 〈x〉 = 1 + ⌈log2(|x|+ 1)⌉ ≤ ⌈log2(|x|)⌉+ 2 ≤ log2(|x|) + 3, and w is positive.1728

Analysis on Γ(r, ℓ, w,m, d) with r ≥ 2: This case corresponds to the induction step of the main1729

induction, where the solutions are found thanks to the system of (non)congruences in Equation (6).1730

At the start of the induction, we add the elimination property to Φ. According to Lemma 7, we1731

obtain a system Ψ with n ≤ m · (d + 2) divisibilities and 〈||Ψ||〉 ≤ O(m3d + 1) · log2((d + 1)(m +1732

||Φ|| + 2)) + 3. We find solutions bp for Ψ modulo p, for every p ∈ P+(Ψ). For p ∈ P(Φ), these are1733

the solutions bp for Φ modulo p stated in the hypothesis of the theorem. For p ∈ P+(Ψ) \ P(Φ),1734

we compute bp as a solution for Φ modulo p, taken such that for every f left-hand side of a1735

divisibility in Φ, vp(f(bp)) = 0. The existence of such a solution is guaranteed by Lemma 3, and1736

as discussed when presenting the procedure the vector bp is a solution for Ψ modulo p such that1737

for every f left-hand side of a divisibility in Ψ, vp(f(bp)) = 0. As usual, given p ∈ P+(Ψ), let1738

µp := max{vp(f(bp)) : f is in the left-hand side of a divisibility of Ψ}.1739

Suppose that the set X1 = {x1, . . . , xd′} of variables considered in this step is ordered as1740

x1 ≺ · · · ≺ xd′ (with d′ ≤ d). Recall that the values assigned to these variables are chosen in-1741

ductively, starting with x1 and following the order ≺. Let ν be the map computed in this way.1742

Given k ∈ [0, d− 1], at the (k + 1)-th iteration we defined the set Pk as1743

Pk := {p ∈ P : p ∈ P+(Ψ) or there is h ∈ S(∆(Ψ))\{0} s.t. LV(h) � xk and p | h(ν(x1, . . . , xk))} ,

and added to it the smallest prime not in P+(Ψ), if the above definition yields Pk = P+(Ψ).1744

For simplicity, below let s := #S(∆(Ψ)), t := ||S(∆(Ψ))|| and w1 := log2(
∏
p∈P+(Ψ) p

µp+1), which1745

are all at least 1.1746

Inductively on k ∈ [0, d− 1], we show that log2(ν(xk+1)) ≤ B where1747

B := C · (log2(C))3 and C := 24 · w1 · s3 ·
(
5 + log2 log2(t · (d+ 1))

)2
.

Therefore, 〈ν(xk+1)〉 ≤ B+3 ≤ 218 ·s4 ·
(
5+log2 log2(t ·(d+1))

)3 ·w1 ·(log2(w1)+2)3, where this last1748

inequality follows from a straightforward computation together with the fact that (log2(x))
3 ≤ 5 · x1749

for every x ≥ 1. Note that we do not simplify (log2(w1 + 2))3 into 5 · (w1 + 2), as this would yield1750

an exponentially worse bound for Γ(r, ℓ, η,m, d) later on.1751

base case k = 0. In this case, P0 = P+(Ψ) ∪ {p} where p is the smallest prime not in P+(Ψ).
Then, #P0 = #P+(Ψ) + 1. We bound ν(x1) ∈ Z+ by applying Theorem 3 to the system of
(non)congruences in Equation (6). We get:

ν(x1) ≤
( ∏

p∈P+(Ψ)

pµp+1
)
·
(
(s+ 1) ·#(P0 \P+(Ψ))

)4·(s+1)2(3+ln ln(#(P0\P+(Ψ))+1))

≤
( ∏

p∈P+(Ψ)

pµp+1
)
· (s+ 1)12·(s+1)2

Therefore, log2(ν(x1)) ≤ w1 + 12 · (s+ 1)2 log(s+ 1).1752
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induction step k ≥ 1. Let us first bound #(Pk \P+(Ψ)). By definition,1753

Pk\P+(Ψ) = {p ∈ P\P+(Ψ) : LV(h) � xk and p | h(ν(x1, . . . , xk)) for some h ∈ S(∆(Ψ))\{0}}.

By induction hypothesis, for every h ∈ S(∆(Ψ)), |h(ν(x1, . . . , xk))| ≤ (k · 2B + 1) · t, and
therefore #(Pk \ P+(Ψ)) ≤ s · log2((k · 2B + 1) · t) ≤ s · log2(2B · t · (d + 1)). Note that
s · log2(2B · t · (d+1)) ≥ 1, hence this bound on #(Pk \P+(Ψ)) already capture the case where
one prime had to be added to Pk in order to make this set different form P+(Ψ). We bound
ν(x1) ∈ Z+ by applying Theorem 3 to the system of (non)congruences in Equation (6):

ν(xk+1) ≤
( ∏

p∈P+(Ψ)

pµp+1
)
·
(
(s+ 1) ·#(Pk \P+(Ψ))

)4·(s+1)2(3+ln ln(#(Pk\P+(Ψ))+1))

≤
( ∏

p∈P+(Ψ)

pµp+1
)
·
(
(s+ 1)2 · log2(2Bt · (d+ 1))

)4·(s+1)2(3+ln ln(1+s·log2(2
Bt·(d+1))))

.

Then, a simple analysis using properties of logarithms shows that log2(ν(xk+1)) is at most

24 · w1 · s3 ·
(
5 + log2 log2(t · (d+ 1))

)2 · (log2(B))2

=C · (log2(B))2 definition of C.

≤B,

where the latter inequality holds from the fact that, whenever C ≥ 45, every element xi of1754

the recurrence relation
(
x0 = C, xi+1 = C · (log2(xi))2

)
is bounded by C · (log2(C))3, i.e., B.1755

We have established that the bit length of the solutions for the variables in X1 can be bounded
with B + 3. Next, we want to bound B + 3 using the arguments of Γ. To do so, we first derive
upper bounds for s, t and w1. For s and t, from Lemma 9 we obtain s ≤ 8 · m4 · (d + 2)6 and
log2(t) ≤ 2 · (d+ 2) · (〈||Φ||〉+ 1) + 1. For w1, we have

w1 ≤ log2

( ∏

p∈P+(Ψ)

pµp+1
)

≤ log2

( ∏

p∈P+(Ψ)\P(Φ)

pµp+1 ·
∏

p∈P(Φ)

pµp+1
)

≤ log2

( ∏

p∈P+(Ψ)\P(Φ)

pµp+1
)
+ w

≤ log2

( ∏

p∈P+(Ψ)\P(Φ)

p
)
+ w µp = 0 for all p 6∈ P(Φ)

≤ log2

( ∏

p∈P+(Ψ)

p
)
+ w

≤ 64 · n5(d+ 2)4(〈||Ψ||〉+ 2) + w by Lemma 4

≤ 64 · (m · (d+ 2))5(d+ 2)4(O(m3d+ 1) · log2((d+ 1)(m+ ||Φ||+ 2)) + 5) + w

≤ 128 ·O ·m9(d+ 2)11 · (ℓ+ w).

Then, B + 3 is bounded as follows:

B + 3 ≤ 218 · s4 ·
(
5 + log2 log2(t · (d+ 1))

)3 · w1 · (log2(w1) + 2)3

58



≤ 230 ·m16(d+ 2)24
(
5 + log2 log2(t · (d+ 1))

)3 · w1 · (log2(w1) + 2)3 bound on s

≤ 238 ·m16(d+ 2)25(1 + log2(〈||Ψ||〉+ 1))3 · w1 · (log2(w1) + 2)3 bound on log2(t)

≤ 254 ·m17(d+ 2)26 log2(O)3 · (2 + log2(ℓ))
3 · w1 · (log2(w1) + 2)3 bound on 〈||Ψ||〉

≤ 2104 ·m27(d+ 2)38O · log2(O)6 · (ℓ+ w) · (log2(ℓ+ w))6 bound on w1.

1756

The procedure continues by recursively computing a positive integer solution for the formula1757

Φ′(y) := Φ[ν(x) / x : x ∈ X1], which is s-increasing for some s ≤ r − 1. In the recursion, the1758

procedure uses solutions bp for Φ′ modulo p for every p ∈ P(Φ′), computed according to Claim 7.1759

Hence, to conclude the analysis on Γ, it suffices to find positive integers ℓ′, w′,m′, d′ such that Φ′ is1760

one of the formulae considered for Γ(r − 1, ℓ′, w′,m′, d′). Let us bound these integers:1761

• Φ′ has fewer variables and divisibilities than Φ, therefore we can choose m′ = m and d′ = d.1762

• The coefficients of the variables in the polynomials of Φ′ are all from Φ, therefore their bit-
length is bounded by ℓ. Let us bound the constants of the polynomials in Φ′. These constants
have the form f(ν(x)) with f being a polynomial with coefficients and constant bounded
from Φ. So, 〈||f(ν(x))||〉 ≤ 〈2B · ||Φ|| · d+ ||Φ||〉, and from the bounds on B + 3 we can set

ℓ′ = 2105 ·m27(d+ 2)38O · log2(O)6 · (ℓ+ w) · (log2(ℓ+ w))6.

• Let µp := max{vp(f(bp)) : f is in the left-hand side of a divisibility in Φ′}. Thanks to Claim 7,
if p ∈ P+(Ψ), then µp = max{vp(f(bp)) : f is in the left-hand side of a divisibility in Ψ}, and
otherwise if p 6∈ P+(Ψ), then µp is the p-adic valuation of a constant left-hand side of Φ′. We

derive the following bound on log2

(∏
p∈P(Φ′) p

µp+1
)
, which yields a value for w′:

log2

( ∏

p∈P(Φ′)

pµp+1
)

= log2

( ∏

p∈P(Φ′)\P+(Ψ)

pµp+1
)
+ log2

( ∏

p∈P(Φ′)∩P+(Ψ)

pµp+1
)

≤ log2

( ∏

p∈P(Φ′)\P+(Ψ)

pµp
)
+ log2

( ∏

p∈P(Φ′)\P+(Ψ)

p
)
+ log2

( ∏

p∈P+(Ψ)

pµp+1
)

≤ log2

( ∏

α constant and
left-hand side in Φ′

α
)
+ log2

( ∏

p∈P(Φ′)

p
)
+ w1 from Claim 7

≤m · 〈||Φ′||〉+ log2

( ∏

p∈P(Φ′)

p
)
+ w1

≤m · 〈||Φ′||〉+m2(d+ 2)(〈||Φ′||〉+ 2) + w1 from Lemma 4

≤ 2109 ·m29(d+ 2)39O · log2(O)6 · (ℓ+ w) · (log2(ℓ+ w))6 = w′.

Note that since the bound we obtained for ℓ′ is greater than B + 3, the value1763

Γ(r − 1, 2104 ·m27(d+ 2)38O · log2(O)6 · (ℓ+ w) · (log2(ℓ+ w))6, w′, m, d)

bounds not only the bit length of the minimal positive solution of Φ′, but also of the solutions1764

assigned to variables in X1. This concludes the proof of Claim 8.1765

59



References1766

[1] Eric Bach and Jeffrey Shallit. Algorithmic Number Theory, Vol 1: Efficient Algorithms. Foun-1767

dations of Computing. MIT Press, 1996. ISBN 978-0262024051.1768

[2] A. P. Bel’tyukov. Decidability of the universal theory of natural numbers with addition and1769

divisibility. J. Sov. Math., pages 1436–1444, 1980. doi: 10.1007/BF01693974.1770

[3] Itshak Borosh and Leon Bruce Treybig. Bounds on positive integral solutions of linear dio-1771

phantine equations. Proc. Am. Math. Soc., 55(2):299–304, 1976. doi: 10.2307/2041711.1772

[4] Viggo Brun. Über das Goldbachsche Gesetz und die Anzahl der Primzahlpaare, volume 34(8)1773

of Arch. Math. Naturvidenskab. 1915.1774

[5] Alina Carmen Cojocaru and M. Ram Murty. An Introduction to Sieve Methods and Their1775

Applications. Cambridge University Press, 2005. doi: 10.1017/CBO9780511615993.1776

[6] Florent Guépin, Christoph Haase, and James Worrell. On the existential theories of Büchi1777

arithmetic and linear p-adic fields. In Proc. Symposium on Logic in Computer Science, LICS,1778

pages 1–10, 2019. doi: 10.1109/LICS.2019.8785681.1779

[7] G. H. Hardy and E. M. Wright. An Introduction to the Theory of Numbers. 4th edition, 1975.1780

[8] George Havas, Bohdan S. Majewski, and Keith R. Matthews. Extended GCD and Hermite1781

normal form algorithms via lattice basis reduction. Exp. Math., 7(2):125–136, 1998.1782

[9] Hendrik W. Lenstra Jr. Integer programming with a fixed number of variables. Math. Oper.1783

Res., 8(4):538–548, 1983. doi: 10.1287/moor.8.4.538.1784

[10] Richard M. Karp. Reducibility among combinatorial problems. In Complexity of Computer1785

Computations, The IBM Research Symposia Series, pages 85–103, 1972.1786

[11] Jochen Koenigsmann. Undecidability in Number Theory, pages 159–195. Springer Berlin Hei-1787

delberg, 2014. doi: 10.1007/978-3-642-54936-6.1788

[12] Antonia Lechner, Joël Ouaknine, and James Worrell. On the complexity of linear arithmetic1789

with divisibility. In Proc. Symposium on Logic in Computer Science, LICS, pages 667–676,1790

2015. doi: 10.1109/LICS.2015.67.1791

[13] Anthony W. Lin and Rupak Majumdar. Quadratic word equations with length constraints,1792

counter systems, and Presburger arithmetic with divisibility. Log. Methods Comput. Sci., 171793

(4), 2021. doi: 10.46298/lmcs-17(4:4)2021.1794

[14] Leonard Lipshitz. The Diophantine problem for addition and divisibility. Trans. Am. Math. Soc,1795

pages 271–283, 1978. doi: 10.2307/1998219.1796

[15] Leonard Lipshitz. Some remarks on the Diophantine problem for addition and divisibility. Bull.1797

Soc. Math. Belg. Sér. B, 33(1):41–52, 1981.1798

[16] Yuri Matijasevič. Enumerable sets are diophantine. J. Sov. Math., 11:354–357, 1970. doi:1799

10.2307/2272763.1800

[17] Julia Robinson. Definability and decision problems in arithmetic. J. Symb. Log., 14(2):98–114,1801

1949. doi: 10.2307/2266510.1802

60



[18] Barkley Rosser. The n-th prime is greater than n log(n). Proc. London Math. Soc., pages1803

21–44, 1939. doi: 10.1112/plms/s2-45.1.21.1804

[19] Alexander Schrijver. Theory of linear and integer programming. Wiley-Interscience series in1805

discrete mathematics and optimization. Wiley, 1999. ISBN 978-0-471-98232-6.1806

[20] Mikhail R. Starchak. Positive existential definability with unit, addition and coprimeness. In1807

Proc. International Symposium on Symbolic and Algebraic Computation, ISSAC, pages 353–1808

360, 2021. doi: 10.1145/3452143.3465515.1809

[21] Mikhail R. Starchak. A proof of Bel’tyukov–Lipshitz theorem by quasi-quantifier elimination.1810

I. definitions and GCD-lemma. Vestnik St. Petersb. Univ. Math., 54:264–272, 2021. doi:1811

10.1134/S1063454121030080.1812

[22] Mikhail R. Starchak. A proof of Bel’tyukov–Lipshitz theorem by quasi-quantifier elimina-1813

tion. II. the main reduction. Vestnik St. Petersb. Univ. Math., 54:372–380, 2021. doi:1814

10.1134/S106345412104018X.1815

[23] Lou van den Dries and Andrew J. Wilkie. The laws of integer divisibility, and solution sets of1816

linear divisibility conditions. J. Symb. Log., 68(2):503–526, 2003. doi: 10.2178/jsl/1052669061.1817

[24] Wilberd Van Der Kallen. Complexity of the Havas, Majewski, Matthews LLL Hermite normal1818

form algorithm. J. Symb. Comput., 30(3):329–337, 2000. doi: 10.1006/jsco.2000.0374.1819

[25] Joachim von zur Gathen and Malte Sieveking. A bound on solutions of linear integer equalities1820

and inequalities. Proc. Am. Math. Soc., 72(1):155–158, 1978. doi: 10.2307/2042554.1821

61


	Background and overview of main results
	The NP upper bound at a glance
	Small solutions to systems of congruences and non-congruences
	Small solutions to r-increasing systems of divisibility constraints
	Solving an instance of IP-GCD
	Conclusion and future work

	A Chinese remainder theorem with non-congruences
	A novel strategy for Lipshitz's local-to-global property
	Bounds on divisibility modules, elimination property, S-terms, and P+()
	Proof of theorem:local-to-global: the local-to-global property
	Deciding systems of divisibility constraints in increasing form in NP

	IP-GCD systems have polynomial size solutions
	Translation into 3-increasing systems
	Bound on the solutions modulo primes
	Proof of thm:small-model

	lem:extended-brun: proof of lem:extended-brun:left-term
	thm:mixed-crt: proofs of thm:mixed-crt:claim1 and claim:CRT:bound-on-W
	Algorithms related to the elimination property
	Computing a set spanning the divisibility module
	Closing a system of divisibility constraints under the elimination property

	Bounding the number of difficult primes
	theorem:local-to-global: proofs of claim:still-increasing and claim:new-primes-are-ok
	theorem:local-to-global: proof of eq:gamma-inductive-bound

