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ABSTRACT

Local association measures provide useful insights in time-varying changes in asso-
ciation, especially between time-to-event variables. Such local dependence between
two correlated random variables can be measured using the cross ratio function,
introduced by Clayton (1978). The cross ratio function is defined as the ratio of
conditional hazard functions which have been estimated using Bernstein polyno-
mials before. Alternatively, the cross ratio function can be expressed in terms of
(derivatives of) the joint survival function of the two random variables. In this pa-
per, we discuss an alternative Bernstein-based plug-in estimator of the cross ratio
function in which each of the ingredients is estimated separately. Next to asymptotic
normality of the nonparametric estimator, a simulation study is used to assess its
finite-sample performance. Finally, the novel estimator is applied to a real-life data
application.
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1. Introduction

The cross ratio function (CRF) is a measure for the association between two non-
negative time-to-event random variables T1 and T2 [1], defined as

θ(t1, t2) =
λ(t1|T2 = t2)

λ(t1|T2 > t2)
(1)

for event times t1 and t2 being realisations of T1 and T2, respectively, and with λ(·|T2 =
t2) and λ(·|T2 > t2) representing the conditional hazard rate functions for T1 given
T2 = t2 and T2 > t2, respectively. Independence between T1 and T2 corresponds to
θ(t1, t2) ≡ 1 and positive association corresponds to θ(t1, t2) > 1. See also Oakes [2–4]
for a further discussion with regard to the cross ratio function. Several authors have
discussed the use of the cross ratio function to estimate local dependence between T1

and T2 either in a parametric [5], semi-parametric or non-parametric way [6].
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Alternatively, the CRF can be expressed in terms of the derivatives of the joint
survival function of the time-to-event random variables T1 and T2 as follows:

θ(t1, t2) =
f(t1, t2)S(t1, t2)

[∂S(t1, t2)/∂t1] [∂S(t1, t2)/∂t2]
. (2)

In this paper, we focus on the use of an alternative non-parametric estimator for the
CRF, inspired by earlier work by [6]. More specifically, we focus on the Bernstein-based
estimation of the different components of the CRF in equation (2). The estimator in [6]
uses Bernstein estimators for the conditional hazard functions in the numerator and
denominator of (1). However, this requires an additional kernel smoothing approach
leading to a bandwidth to be selected together with the Bernstein order. Therefore, the
novel plug-in estimator proposed in this paper is more straightforward. It is known that
Bernstein estimation provides a good order of the bias, uniformly on the unit square,
and its good performance has been demonstrated in the past in a series of papers by
Janssen, Swanepoel and Veraverbeke (see [7–9]) when estimating the copula function
and copula derivatives.

More specifically, the paper is organized as follows. First, we introduce the notation
and terminology used throughout the paper as well as the novel estimator in Section 2.
We study asymptotic properties of the new estimator in Section 3 and investigate
finite-sample performance using a detailed simulation study in Section 4. The use of
the estimator is illustrated using a real-life data application in Section 5. Finally, we
end with a discussion on future extensions and avenues for further research in Section 6.

2. Estimation of the cross-ratio function

Let (T1, T2) represent a random vector of non-negative time-to-event random variables
with joint and marginal survival functions

S(t1, t2) = P (T1 > t1, T2 > t2),

S1(t1) = P (T1 > t1)

S2(t2) = P (T2 > t2),

and corresponding densities f(t1, t2), f1(t1) and f2(t2). Based on Sklar’s theorem, the
joint survival function S(t1, t2) can be written in terms of the survival copula C(·, ·)
and the marginal survival functions as follows:

S(t1, t2) = C [S1(t1), S2(t2)] .

The cross-ratio function is defined as in equation (1) where

λ(t1|T2 = t2) = lim
∆→0+

1

∆
P (t1 < T1 < t1 +∆ | T1 > t1, T2 = t2)

λ(t1|T2 > t2) = lim
∆→0+

1

∆
P (t1 < T1 < t1 +∆ | T1 > t1, T2 > t2).

The cross ratio function has been introduced by [1] and a smooth nonparametric
estimator has recently been studied in [6]. As pointed out in Section 1, the CRF can
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be expressed in terms of the derivatives of the joint survival function. Consequently,
an exact expression for θ(t1, t2) in (2) is given by

θ(t1, t2) =
c [S1(t1), S2(t2)]C [S1(t1), S2(t2)]

C(1) [S1(t1), S2(t2)]C(2) [S1(t1), S2(t2)]
, (3)

where C(1)(u, v) = ∂/∂u C(u, v), C(2)(u, v) = ∂/∂v C(u, v) and c(u, v) = C(1,2)(u, v)
is the density function of the copula function C.

We study a simple nonparametric estimator for θ(t1, t2) which is obtained by re-
placing all quantities in (3) by empirical estimators based on a sample (T11, T21), . . .,
(T1n, T2n) from the random vector (T1, T2), i.e.,

θ̂(t1, t2) =
cm,n [S1n(t1), S2n(t2)]Cm,n [S1n(t1), S2n(t2)]

C
(1)
m,n [S1n(t1), S2n(t2)]C

(2)
m,n [S1n(t1), S2n(t2)]

. (4)

In the aforementioned estimator, S1n(·) and S2n(·) are empirical survival functions of

T1 and T2, and Cm,n, C
(1)
m,n, C

(2)
m,n and cm,n are Bernstein estimators of order m for

C, C(1), C(2) and c, respectively. These estimators have been studied before in [7–9].
More specifically, we have

Cm,n(u, v) =

m∑

k=0

m∑

l=0

Cn

(
k

m
,
l

m

)
Pm,k(u)Pm,l(v),

C(1)
m,n(u, v) = m

m−1∑

k=0

m∑

l=0

[
Cn

(
k + 1

m
,
l

m

)
− Cn

(
k

m
,
l

m

)]
Pm−1,k(u)Pm,l(v),

C(2)
m,n(u, v) = m

m∑

k=0

m−1∑

l=0

[
Cn

(
k

m
,
l + 1

m

)
− Cn

(
k

m
,
l

m

)]
Pm,k(u)Pm−1,l(v),

cm,n(u, v) = m2
m−1∑

k=0

m−1∑

l=0

Pm−1,k(u)Pm−1,l(v) × (5)

[
Cn

(
k + 1

m
,
l + 1

m

)
− Cn

(
k

m
,
l + 1

m

)
− Cn

(
k + 1

m
,
l

m

)
+ Cn

(
k

m
,
l

m

)]
,

where Cn(u, v) = Sn

[
S−1
1n (u), S

−1
2n (v)

]
represents the empirical (survival) copula func-

tion and, for k = 0, . . . ,m,

Pm,k(u) =

(
m
k

)
uk(1− u)m−k (0 ≤ u ≤ 1),

are the Bernstein polynomials of order m.
The natural number m is called the order and in asymptotics we will assume that

m → ∞ as n → ∞. See [7–9] for more details with regard to computational formulas
for these expressions.

3. Asymptotic normality of the estimator

We have the following asymptotic normality result:
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Theorem 3.1. Assume

(C1) C has bounded third order partial derivatives on (0, 1)2;
(C2) The copula density c(u, v) = C(1,2)(u, v) is Lipschitz continuous and c ≥ m0 > 0;

(C3) m = Knα with
2

5
< α <

1

2
and K > 0.

Then for all (t1, t2) such that 0 < S1(t1), S2(t2) < 1, we have, as n → ∞,

( n

m

)1/2 (
θ̂(t1, t2)− θ(t1, t2)

)
d
−→ N (0;

θ(t1, t2)
2

4π

1√
S1(t1) [1− S1(t1)]S2(t2) [1− S2(t2)]

1

c [S1(t1), S2(t2)]

)
.

Proof. We introduce shorthand notations A, C, D1, D2 for c [S1(t1), S2(t2)],

C [S1(t1), S2(t2)], C
(1) [S1(t1), S2(t2)], and C(2) [S1(t1), S2(t2)]. Furthermore, Â, Ĉ, D̂1,

D̂2 denote cm,n [S1n(t1), S2n(t2)], Cm,n [S1n(t1), S2n(t2)], C
(1)
m,n [S1n(t1), S2n(t2)] and

C
(2)
m,n [S1n(t1), S2n(t2)], respectively.

Then θ̂ − θ can be written as follows:

θ̂ − θ =
ÂĈ

D̂1D̂2

−
AC

D1D2

and its asymptotic distribution will be derived from linearisation of this expression
into a linear combination of Â−A, Ĉ − C, D̂1 −D1 and D̂2 −D2.

Applying Lemma 4.1 in [10] gives that under condition (C1)

Ĉ − C = Op(n
−1/2) +O(m−1).

Multiplication with the scaling factor (n/m)1/2 gives

( n

m

)1/2 (
Ĉ − C

)
= op(1), (6)

if condition (C3) holds with α > 1/3.
Applying Lemma 4.2 in [10], we have that for j = 1, 2:

D̂j −Dj = Op

(( n

m1/2

)−1/2
)
.

Hence, for j = 1, 2,

( n

m

)1/2 (
D̂j −Dj

)
= op(1). (7)

The conditions needed to establish this result are (C1) and m = Knα with
2

5
< α <

3

5
(which is ensured under condition (C3)).

From equations (6) and (7) it follows that the contributions of Ĉ −C, D̂1−D1 and

D̂2 − D2 are negligible and that Â − A will determine the asymptotic behaviour of
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θ̂ − θ:

θ̂ − θ ∼
C

D1D2

(
Â−A

)
=

θ

A

(
Â−A

)

It remains to establish the asymptotic normality of Â − A. An application of the
Lemma in Appendix A gives that

Â−A = cm,n [S1(t1), S2(t2)]− c [S1(t1), S2(t2)]

+Op

(
n(3α/2)−1 (log n)1/2 (log log n)3/4 +m−1 + n−1/2

)
.

After multiplication with (n/m)1/2, the Op-term tends to zero in probability if α <

1/2. Therefore, Â − A has the same asymptotic distribution as cm,n [S1(t1), S2(t2)] −
c [S1(t1), S2(t2)]. For the latter, we have the asymptotic normality result in [8].

From this the theorem follows.

Remark 1. The difference in terms of asymptotic variance between our novel estima-
tor and the smooth estimator studied in [6] is best visible in the denominator of the
expression of the asymptotic variance. Kernel smoothing in the estimator in [6] implies
the presence of marginal density functions, say f1(t1) and f2(t2), related to T1 and T2,
respectively. This differs from the denominator in the asymptotic variance in Theo-
rem 3.1, in which, for example, f1(t1) is now replaced by the term

√
(S1(t1)[1− S1(t1)].

A comparison between these two quantities is possible thanks to a result of Parzen [11].

From that result, it follows that
√

(S1(t1)[1− S1(t1)] is asymptotically larger than
f1(t1) (i.e., as t1 → ∞) for all random variables T1 with medium tails (e.g., exponential,
Weibull or normal distributed random variables) and long tails (e.g., Cauchy or Pareto

distributions) (see also Remark 5 in [9]). Similarly, for f2(t2) and
√

(S2(t2)[1− S2(t2)]
the same holds. Consequently, this leads to a smaller asymptotic variance for the novel
estimator as compared to the asymptotic variance of the estimator proposed by [6].

4. Simulation study

Based on simulations we show the finite sample performance of our estimator θ̂(t1, t2)
in equation (4). First, we describe the simulation procedure after which we summarize
the simulation results.

4.1. Simulation procedure

We generate n pairs of event times (t1j , t2j), j = 1, . . . , n using the Copula.surv -
package in R. More specifically, random samples (u1j , u2j) are drawn from three dif-
ferent copula functions with various tail dependencies (independence, Clayton and
Gumbel copula function) after which dependent exponentially distributed event times
are obtained with rate parameters equal to λ1 = 0.03 and λ2 = 0.05 for T1 and T2,
respectively, as follows:

tij = −
ln(uij)

λi
.
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The Clayton copula captures lower tail dependence, while the Gumbel copula captures
upper tail dependence. In our simulation study, we generate simulation sets of sample
size n = 500. However, additional simulation results for varying sample sizes and
copula functions are provided in Appendix A of the Supplementary Material. We
consider m = Knα, with α = 9/20 (i.e., the average of the theoretical bounds on α)
and K = 2. The impact of considering different K-values is illustrated in Appendix A
of the Supplementary Material.

4.2. Independence copula

First, we depict the simulation results under the assumption of independence of T1 and
T2. More specifically, we generate 100 simulation sets of size n = 500 under indepen-
dence and estimate the cross ratio function with the true cross ratio being constant
and equal to one. In Figure 1, we graphically show a heatplot of the difference be-
tween the estimated cross ratio values θ̂m(t1, t2) averaged over the simulation runs
and the true values θ(t1, t2) (left upper panel), and the estimated cross ratio function

θ̂m(t1, t2) (black solid lines in the other panels) as a function of one time component
by fixing the other (t1 = F−1

1 (0.5) in the right upper panel, or t2 = F−1
2 (0.5) in

the left lower panel, respectively). Furthermore, the Bernstein order is taken equal to
m = 2n9/20 with sample size n = 500 in each of the simulation runs. Pointwise 95%
simulation-based confidence bands (gray shaded areas) and true cross ratio values
(red dashed lines) are included as well. In the right lower panel, we plot the cross ratio

function θ̂m[F−1
1 (u), F−1

2 (u)] against u ∈ (0, 1). Overall, the estimator is performing
well. Clearly the simulation-based variability is larger for small t1 and/or t2-values
as depicted in Figure 1. This is as expected based on the expression for the asymp-
totic variance (see Theorem 3.1) in which the denominator will become small in the
aforementioned situation.

4.3. Clayton copula

We now consider the Clayton copula function with parameter θ = 0.5. Consequently,
the true underlying cross ratio function takes constant value 1+θ = 1.5. In Figure 2,
we graphically show a heatplot of the difference between the estimated cross ratio val-
ues θ̂m(t1, t2) averaged over the 100 simulation runs and the true values θ(t1, t2) (left

upper panel), and the estimated cross ratio function θ̂m(t1, t2) (black solid lines in the
other panels) as a function of one time component by fixing the other (t1 = F−1

1 (0.5) in
the right upper panel, or t2 = F−1

2 (0.5) in the left lower panel, respectively). Further-

more, the Bernstein order is taken equal tom = 2n9/20 with sample size n = 500 in each
of the simulation runs. Pointwise 95% simulation-based confidence bands (gray shaded
areas) and true cross ratio values (red dashed lines) are included as well. In the right

lower panel, we plot the cross ratio function θ̂m[F−1
1 (u), F−1

2 (u)] against u ∈ (0, 1). In
general, the estimator performs well in terms of estimating the true underlying cross
ratio surface, except for (t1, t2)−values corresponding to higher quantiles. This can be
explained by the fact that a Clayton copula function implies lower tail dependence,
hence, estimation is more difficult for higher quantiles.
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Figure 1. Independence copula cross ratio function estimation with m = 2nα, α = 9/20 and n = 500:
heatplot representing the difference between the estimated cross ratio function θ̂m(t1, t2) averaged over 100
simulation runs and the true cross ratio function θ(t1, t2) (left upper panel) and intersections of the estimated
cross ratio surface given t1 = F−1

1
(0.5) (right upper panel; black solid line), t2 = F−1

2
(0.5) (left lower

panel) and F−1

1
(u) = F−1

2
(u) (right lower panel) with pointwise 95% simulation-based confidence bands

(gray region). True cross ratio curves are graphically depicted in red dashed lines.

4.4. Gumbel copula

Finally a Gumbel copula function is considered with association parameter θ = 1.25
and expression for the cross ratio function equal to

θ(t1, t2) = 1 + (θ − 1)
(
{− ln [S1(t1)]}

θ + {− ln [S2(t2)]}
θ
)−1/θ

.

In Figure 3, we graphically depict the difference between the average estimated cross
ratio function ϑ̂m(t1, t2) and the true cross ratio function (heatplot in left upper panel).
Intersections of the averaged estimated cross ratio function (black solid lines) are shown
together with pointwise 95% simulation-based confidence bands for m = 2n9/20 and
n = 500. Although on average the nonparametric estimator for the cross ratio is in close
to the true CRF, θ(t1, t2) is slightly underestimated for small values of (t1, t2) in the
lower left corner of the surface (see white regions on the heatplot). Here, the Gumbel
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Figure 2. Clayton copula cross ratio function estimation with m = 2nα, α = 9/20 and n = 500: heatplot
representing the difference between the estimated cross ratio function θ̂m(t1, t2) averaged over 100 simulation
runs and the true cross ratio function θ(t1, t2) (left upper panel) and intersections of the estimated cross ratio
surface given t1 = F−1

1
(0.5) (right upper panel; black solid line), t2 = F−1

2
(0.5) (left lower panel) and

F−1

1
(u) = F−1

2
(u) (right lower panel) with pointwise 95% simulation-based confidence bands (gray region).

True cross ratio curves are graphically depicted in red dashed lines.

copula function gives rise to upper tail dependence thereby implying difficulties when
estimating the cross ratio function for lower quantiles.
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Figure 3. Gumbel copula cross ratio function estimation with m = 2nα, α = 9/20 and n = 500: heatplot
representing the difference between the estimated cross ratio function θ̂m(t1, t2) averaged over 100 simulation
runs and the true cross ratio function θ(t1, t2) (left upper panel) and intersections of the estimated cross ratio
surface given t1 = F−1

1
(0.5) (right upper panel; black solid line), t2 = F−1

2
(0.5) (left lower panel) and

F−1

1
(u) = F−1

2
(u) (right lower panel) with pointwise 95% simulation-based confidence bands (gray region).

True cross ratio curves are graphically depicted in red dashed lines.
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5. Data application

The use of the estimator θ̂(t1, t2) for the cross ratio function is demonstrated based on
hospital data collected amidst the first wave of the Belgian COVID-19 epidemic. The
hospitalization data used in this paper consists of patient information with regard
to patients admitted to Ziekenhuis Oost Limburg (ZOL), Genk, Limburg, Belgium,
after severe infection with the novel Severe Acute Respiratory Syndrome Coronavirus
2 (SARS-CoV-2). More specifically, the data were collected during the first COVID-19
wave in Belgium with patients admitted to ZOL between March 16, 2020 and May 30,
2020. This study was approved by the Medical Ethical Comittee of ZOL.

In total, 300 patients were hospitalized of which 47 died in the hospital. In the
further analysis, we confine attention to the n = 253 patients that recovered and have
been discharged from the hospital.

The presence of SARS-CoV-2 is determined using a semi-quantitative RT-PCR test
(AllplexTM 2019-nCoV Assay, Seegene, Seoul, Korea), a molecular technique to detect
a selection of genes (E-gene, RdRP, N-gene) related to the virus, following an oro-
nasopharyngeal swab. The length of stay in the hospital (before discharge or death)
for SARS-CoV-2 infected patients is studied in relation to their age. In Figure 4, we
graphically depict the length of stay in the hospital in relation to the age of individuals.
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Figure 4. Scatterplot of the observed length of stay in relation to the age of patients hospitalized in Ziekenhuis
Oost Limburg (ZOL) during the first COVID-19 wave.

The global association between age at admission and hospital length of stay, ex-
pressed in terms of Kendall’s tau (τ = 0.149, 95% asymptotic confidence interval:
[0.065, 0.232]), is estimated to be relatively small though positive. This implies that
older individuals tend to have larger recovery times before leaving the hospital.

In order to measure the local strength of association between the age of the patient
and the length of stay in the hospital following COVID-19 infection, we estimate the
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cross-ratio function θ̂(t1, t2), where T1 represents the length of stay in the hospital
and T2 denotes the age of a patient at hospital admission. In Figure 5, we show the
estimated cross-ratio surface (with m = 2nα, where α = 0.45) for the dependence
between the age of hospitalized COVID-19 positive patients and their length of stay
in the hospital. Clearly, the strength of association is highest in the left lower corner
of the surface plot, thereby indicating that the association between length of stay and
age is strongest among younger patients.
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Figure 5. Hospital data application: Cross-ratio function surface showing the relation between age at admis-
sion and hospital length of stay for recovered COVID-19 patients.

In order to estimate the variability associated with the estimation of the cross
ratio function, a bootstrap approach is considered in which the data is resampled
nonparametrically. In total, B = 500 bootstrap samples have been generated and the
cross ratio estimate, denoted by θ̂(b)(t1, t2), was obtained based on boostrap sample
b = 1, . . . , B. In Figure 6, we present the estimated cross ratio curves for patients of age
t2 = 50 years (upper left panel), t2 = 60 years (upper right panel), t2 = 70 years (lower
left panel), or t2 = 80 years (lower right panel). Pointwise 95% bootstrap-percentile
confidence bands are shown as gray shaded areas. A strong positive local association
is observed for relatively young patients thereby implying a shorter recovery time as
compared to older patients (cfr. hazard interpretation of cross ratio function). For
older patients, the cross ratio values are not significantly different from one across all
hospital lengths of stay, thereby leading to the conclusion that the local association
between age and length of stay vanishes for older patients. Essentially, the discharge
rate stabilizes for older patients (aged > 60 years) as compared to the oldest patients
in the sample.

6. Discussion

In this paper we propose a Bernstein-based estimator for the CRF which is an alter-
native to the smooth estimator studied in Abrams et al. [6]. The choice for Bernstein-
based estimators is made therein because of their well known good bias and variance
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Figure 6. Hospital data application: Cross ratio curves (black solid lines) for the age of individuals equal
to t2 = 50 years (upper left panel), t2 = 60 years (upper right panel), t2 = 70 years (lower left panel), or
t2 = 80 years (lower right panel) together with pointwise 95% bootstrap-percentile confidence bands (gray
shaded area).

properties, in particular the absence of boundary effects. More specifically, this work
is based on the seminal paper by Leblanc [15] on Bernstein estimation for a cumu-
lative distribution function on [0, 1] and on more recent work by Janssen et al. [7]
with respect to the use of Bernstein polynomials in copula estimation. In Ouimet [16]
there is, next to an excellent overview of the Bernstein literature, a generalization to
the d-dimensional simplex. For distribution functions on [0,∞), Bernstein estimation
with Poisson weights instead of binomial weights has been considered by Chaubey et
al. [17,18] for smooth estimation of univariate and multivariate survival and density
functions.

In Abrams et al. [6], the conditional hazard rate functions in the definition (5) of the
CRF are estimated by first applying Bernstein methods to the cumulative hazard rate
functions, followed by a kernel smoothing approach. Our new proposal uses Bernstein
estimators for the four components of the CRF in (4), and avoiding a further smoothing
step. A direct comparison between our estimator and the one proposed by Abrams
et al. [6] is complicated by different restrictions in terms of the Bernstein order and
bandwidth related to the latter one.

Our new estimator θ̂(t1, t2) in (4) is not smooth due to the presence of the empirical
survival functions S1n(t1) and S2n(t2) for the marginal survival functions. They can

be replaced by kernel survival function estimators S̃1n(t1) and S̃2n(t2) defined, for
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j = 1, 2, as

S̃jn(tj) =
1

n

n∑

i=1

K

(
Tji − tj

hn

)
,

where K is a known distribution function having a density function K that is contin-
uous and symmetric about zero and hn > 0 is a bandwidth sequence with hn → 0 as
n → ∞.

It can be shown in a similar way that the same asymptotic normality result is valid
under the extra assumptions that T1 and T2 have densities f1 and f2 with f ′

1 and f ′
2

bounded and that hn = n−β with β ≥ 1/4.
Further smoothing of the different components in the cross ratio function and the

corresponding asymptotic normality result is available though not shown in this paper.
The proposed estimators of the cross ratio function are derived under the assump-

tions of no censoring. Extensions to randomly right-censored data are currently under
investigation. This requires new results for copulas and derivatives under different
types of censoring. Relevant references are Khardani [19] for distributions on [0, 1] and
Geerdens et al. [20] for copula estimation under different types of bivariate censoring.

A challenging problem is the estimation of the optimal Bernstein polynomial order
m which is closely related to the finding the optimal kernel bandwidth in kernel-based
estimation methods. In the literature, plug-in and cross-validation approaches have
been discussed for determining the optimal bandwidths in kernel-based estimation of
the density or distribution function. These approaches typically consider the (asymp-
totic) mean integrated squared error as a criterion to study the trade-off between bias
and variance. Despite the use of least-squares leave-one-out cross-validation in univari-
ate and multivariate kernel density estimation, it has been questioned in the context
of distribution estimation [13,14]. A detailed study of different bandwidth selection
methods is therefore required in the context of the estimation of the cross ratio func-
tion. An interesting open research question is to explore minimax properties of the
proposed CRF estimator. A recent reference from the extensive literature on minimax
estimation is particularly relevant here, i.e., Bertin et al. [21].
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Appendix A.

Lemma. If the second order partial derivatives C(1,1), C(2,2) and C(1,2) = c exist and

are continuous on [0, 1]2, if c is Lipschitz continuous and if m = Knα,
1

3
< α <

1

2
,

K > 0, then

cm,n [S1n(t1), S2n(t2)]− c [S1(t1), S2(t2)]

= cm,n [S1(t1), S2(t2)]− c [S1(t1), S2(t2)]

+Op

(
n(3α/2)−1 (log n)1/2 (log log n)3/4 +m−1 + n−1/2

)
.

Proof. Define

bm(u, v) =m2
m−1∑

k=0

m−1∑

l=0

Pm−1,k(u)Pm−1,l(v) ×

[
C

(
k + 1

m
,
l + 1

m

)
− C

(
k

m
,
l + 1

m

)
− C

(
k + 1

m
,
l

m

)
+ C

(
k

m
,
l

m

)]
.

From this and the expression of cm,n(u, v) in (5), we have:

cm,n [S1n(t1), S2n(t2)]− c [S1(t1), S2(t2)]

= cm,n [S1n(t1), S2n(t2)]− bm [S1n(t1), S2n(t2)]

− {cm,n [S1(t1), S2(t2)]− bm [S1(t1), S2(t2)]}

+ cm,n [S1(t1), S2(t2)]− c [S1(t1), S2(t2)]

+ bm [S1n(t1), S2n(t2)]− bm [S1(t1), S2(t2)]

=: (I) + (II) + (III).

From the proof of the Theorem in [8], we obtain

(III) = c [S1n(t1), S2n(t2)]− c [S1(t1), S2(t2)] +O(m−1),

and since c is Lipschitz continuous

(III) = Op(n
−1/2) +O(m−1).
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We now deal with term (I):

(I) = m2
m−1∑

k=0

m−1∑

l=0

{[
Cn

(
k + 1

m
,
l + 1

m

)
− C

(
k + 1

m
,
l + 1

m

)]
−

[
Cn

(
k

m
,
l + 1

m

)
− C

(
k

m
,
l + 1

m

)]
−

[
Cn

(
k + 1

m
,
l

m

)
− C

(
k + 1

m
,
l

m

)]
+

[
Cn

(
k

m
,
l

m

)
− C

(
k

m
,
l

m

)]}
×

{
Pm−1,k [S1n(t1)]Pm−1,l [S2n(t2)]− Pm−1,k [S1(t1)]Pm−1,l [S2(t2)]

}

=
m2

n1/2

m−1∑

k=0

m−1∑

l=0

[
αC
n

(
k + 1

m
,
l + 1

m

)
− αC

n

(
k

m
,
l + 1

m

)
−

αC
n

(
k + 1

m
,
l

m

)
+ αC

n

(
k

m
,
l

m

)]
×

{
[S1n(t1)− S1(t1)]P

′
m−1,k (θ1)Pm−1,l (θ2)+

[S2n(t2)− S2(t2)]Pm−1,k (θ1)P
′
m−1,l (θ2)

}
,

where (θ1, θ2) lies between (S1n(t1), S2n(t2)) and (S1(t1), S2(t2)), and where

αC
n (u, v) = n1/2 [Cn(u, v)− C(u, v)]

is the empirical copula process.
For a rectangle R in [0, 1]2 we denote

αC
n (R) = n1/2

[
µC
n (R)− µC(R)

]
,

where µC
n and µC are the measures corresponding to the distribution functions Cn and

C.
Also denote, for 0 ≤ k, l ≤ m− 1:

Rk,l =

]
k

m
,
k + 1

m

]
×

]
l

m
,
l + 1

m

]
.

Then,

(I) =
m2

n1/2

m−1∑

k=0

m−1∑

l=0

αC
n (Rk,l)×

{
[S1n(t1)− S1(t1)]P

′
m−1,k (θ1)Pm−1,l (θ2)+

[S2n(t2)− S2(t2)]Pm−1,k (θ1)P
′
m−1,l (θ2)

}
. (A1)

We now use an almost sure representation of Stute [12], i.e., if the second order partial
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derivatives of C exist and are continuous on [0, 1]2, then uniformly

Cn(u, v)− C(u, v) =
1

n

n∑

i=1

[I(Ui ≤ u, Vi ≤ v)− C(u, v)]−

C(1)(u, v)

[
1

n

n∑

i=1

I(Ui ≤ u)− u

]
−

C(2)(u, v)

[
1

n

n∑

i=1

I(Vi ≤ v)− v

]
+

O
(
n−3/4 (log n)1/2 (log log n)1/4

)
a.s.

Here the vectors (U1, V1), . . . , (Un, Vn) are independent with common joint survival
function C.

Introduce

Gn(u, v) =
1

n

n∑

i=1

I(Ui ≤ u, Vi ≤ v)

G(u, v) = C(u, v)

Also, the two-dimensional empirical process

αG
n (u, v) = n1/2 [Gn(u, v)−G(u, v)]

and the one-dimensional empirical processes

αG
1n(u) = n1/2 [Gn(u, 1)−G(u, 1)]

αG
2n(v) = n1/2 [Gn(1, v)−G(1, v)] .

From the result of Stute [12] we then have

αC
n (Rk,l) =αG

n (Rk,l)−[
C(1)

(
k + 1

m
,
l + 1

m

)
− C(1)

(
k + 1

m
,
l

m

)]
αG
1n

(
k + 1

m

)

+

[
C(1)

(
k

m
,
l + 1

m

)
− C(1)

(
k

m
,
l

m

)]
αG
1n

(
k

m

)

−

[
C(2)

(
k + 1

m
,
l + 1

m

)
− C(2)

(
k

m
,
l + 1

m

)]
αG
2n

(
l + 1

m

)

+

[
C(2)

(
k + 1

m
,
l

m

)
− C(2)

(
k

m
,
l

m

)]
αG
2n

(
l

m

)

+O
(
n−1/4 (log n)1/2 (log log n)1/4

)
a.s.

Now use that C(1) and C(2) are Lipschitz continuous and that sup
0≤u≤1

|αG
1n(u)| and
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sup
0≤v≤1

|αG
2n(v)| are O

(
(log log n)1/2

)
a.s. to obtain

sup
0≤k,l≤m−1

|αC
n (Rk,l)| ≤ sup

0≤k,l≤m−1
|αG

n (Rk,l)|+O
(
m−1 (log log n)1/2

)
+

O
(
n−1/4 (log n)1/2 (log log n)1/4

)
a.s. (A2)

For the first term in the right hand side of this inequality, we recall a result of Stute [12]
on the oscillation behaviour of the multivariate empirical process. For the empirical
process αG

n we define the oscillation modulus as

ωn(a1, a2) = sup
y1−x1≤a1,y2−x2≤a2

|αG
n (Rx

∼

,y
∼

)|,

where Rx
∼

,y
∼

= ]x1, y1]× ]x2, y2].

Theorem 2 of Stute [12] says: if C has a continuous density c on [0, 1]2 with c ≥
m0 > 0 and if (a2n) is a bandsequence, then

ωn(an, an) = O

(√
a2n log

(
1

a2n

))
a.s.

We have

sup
0≤k,l≤m−1

|αG
n (Rk,l)| ≤ ω

(
1

m
,
1

m

)
. (A3)

Apply Theorem 2.1 of Stute [12] to the last expression. Here an = m−1 and we can
check that (a2n) = (m−2) is a bandsequence:

(i) na2n = nm−2 = n1−2α if m = nα and this tends to +∞ if α <
1

2
;

(ii) log

(
1

a2n

)
= 2α log n = o(n1−2α);

(iii) log

(
1

a2n

)
/ log log n → ∞.

Hence,

ωn

(
1

m
,
1

m

)
= O

(
m−1 (log n)1/2

)
a.s. (A4)

From (A2), (A3) and (A4)

sup
0≤k,l≤m−1

|αC
n (Rk,l)| = O

(
m−1 (log n)1/2

)
+O

(
n−1/4 (log n)1/2 (log log n)1/4

)
a.s.

This, combined with (A1) gives that, a.s.,

(I) = O

(
m2

n1/2

(
m−1 (log n)1/2 + n−1/4 (log n)1/2 (log log n)1/4

)(
n−1/2 (log log n)1/2m1/2

))
.
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The last factor m1/2 comes from the fact that
∑m−1

k=0 |P ′
m−1,k(θ1)| and∑m−1

l=0 |P ′
m−1,l(θ2)| are O(m1/2) (see Lemma 1 in [8]).

With m = Knα this becomes

(I) = O
(
n(3α/2)−1 (log n)1/2 (log log n)1/2 + n(5α/2)−5/4 (log n)1/2 (log log n)3/4

)
a.s.

= O
(
n(3α/2)−1 (log n)1/2 (log log n)3/4

)
a.s.,

since
3α

2
− 1 <

5α

2
−

5

4
< 0 for

1

4
< α <

1

2
.
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