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Abstract

A central problem in business concerns the optimal allocation of limited

resources to a set of available tasks, where the payoff of these tasks is in-

herently uncertain. Typically, such problems are solved using a classification

framework, where task outcomes are predicted given a set of characteris-

tics. Then, resources are allocated to the tasks predicted to be the most

likely to succeed. We argue, however, that using classification to address

task uncertainty is inherently suboptimal as it does not take into account

the available capacity. We present a novel solution that directly optimizes

the assignment’s expected profit given limited, stochastic capacity. This is

achieved by optimizing a specific instance of the net discounted cumulative

gain, a commonly used class of metrics in learning to rank. We demonstrate

that our new method achieves higher expected profit and expected precision

compared to a classification approach for a wide variety of application areas.
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Learning to rank

1. Introduction

Optimally allocating limited resources is a central problem in economics

[1] and operations research [2, 3, 4]. It is often complicated further by uncer-

tainty inherent to the considered problem. On the one hand, future resource

capacity may be limited and not known exactly in advance. On the other

hand, the tasks that require resources might have uncertain payoff. This

situation is commonly encountered in various real-world applications. As a

running example, consider the case of credit card fraud detection. Fraud

analysts can only investigate a limited number of transactions each day. A

priori, it is not known whether investigating a transaction will uncover a

fraudulent case. The general challenge is how to optimally allocate limited

resources to maximize business pay-off, e.g., how to optimally allocate fraud

investigators to suspicious transactions to minimize losses due to fraud. By

learning from historical data, machine learning models can assist decision-

makers by predicting the most relevant tasks (e.g., transactions) based on

their characteristics.

Prior work addresses the problem of uncertain task outcomes via classifi-

cation [e.g., 5, 6, 7, 8, 9, 10, 11]. The most promising tasks can be identified

by estimating the probability of success for each task. The problem of al-

locating stochastic, limited capacity could then be addressed separately in

a second stage, when assignment decisions are made by prioritizing tasks

based on the estimated probabilities to result in a successful outcome. In our

running example, this strategy would correspond to first predicting which
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instances are most likely to be fraudulent, and then investigating the most

suspicious transactions. This strategy is commonly used as a decision support

tool for fraud detection, but also other domains where similar problems arise,

such as direct marketing, churn prediction, or credit scoring. In this article,

however, we argue and demonstrate that this approach based on classifica-

tion models is suboptimal when resources are limited, because a classification

model does not take capacity limitations into account. Hence, although only

the most promising tasks can be executed, the model focuses equally on

accurately predicting probabilities for tasks that are highly unlikely to be

successful and, consequently, to be executed.

To tackle this challenge, we propose a novel approach based on learn-

ing to rank that simultaneously accounts for both resource and task uncer-

tainty. When resources are limited, we demonstrate that this approach is

superior to allocation based on classification. First, we show theoretically

how learning to rank can directly optimize the assignment’s expected profit

given limited, stochastic capacity. By considering the available capacity dur-

ing optimization, the model focuses on correctly ranking the most promising

tasks, proportional to their likelihood of being processed under limited ca-

pacity. Second, while instances are processed individually in classification,

learning to rank explicitly considers a task’s relevance in comparison to the

other available tasks. The benefit of this approach is that we only care about

relative positions in the ranking, corresponding to the need to prioritize tasks

relative to each other.

Our contributions are threefold. First, we formalize the problem of al-

locating limited, stochastic resources to uncertain tasks by framing it as an
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assignment problem. Second, we propose a novel, integrated predict-and-

optimize approach to solve this problem based on learning to rank. We con-

trast our approach with a two-stage predict-then-optimize framework that

first uses a classification model to predict task outcomes and then solves the

assignment problem using the predicted task probabilities. Third, we com-

pare both methods empirically using various real life data sets from different

application areas.

2. Related work

The proposed solution in this paper relates to prior work on uncertainty

in assignment problems, predict-and-optimize, classification, and learning to

rank. In this section, we briefly introduce each line of work, describe its

relationship to our contribution, and clarify the remaining research gap that

our work aims to address.

2.1. Uncertainty in assignment problems

Optimal allocation of resources and decision-making under uncertainty

are key problems in operations research [2, 3]. In this work, we consider an

assignment problem. This is a general problem formulation in which the goal

is to find an optimal matching of workers and tasks subject to certain con-

straints. This type of problem has been analyzed extensively [12] and applied

to a diverse range of tasks [e.g., 13, 14]. Moreover, various extensions con-

sider different sources of uncertainty: uncertain worker capacity, uncertain

task presence (i.e., outcomes), or uncertain task-worker profits [15, 16, 17].

This work focuses on a specific type of linear assignment problem, in which

we simultaneously address two sources of uncertainty: uncertain capacity
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and uncertain task success. However, instead of assuming that task success

follows a probability distribution, we use a predictive model to estimate it.

Although our aim is similar to Johari et al. [18], they consider an online set-

ting, where workers arrive and depart over time with uncertainty, with a focus

on trading-off exploration and exploitation. In contrast, we assume that the

worker capacity follows a known, static probability distribution. Moreover,

they consider fixed job types with certain outcomes, while we learn these

outcomes using a predictive model. In general, our work is different from

most work in this category as we aim to simultaneously tackle the prediction

of task success as well as the optimization of the assignment problem, while

most work in this category is limited to the optimization.

2.2. Predict-and-optimize

The intersection of operations research and machine learning has increas-

ingly drawn the attention of researchers from both fields [19, 20]. In particu-

lar, recent work on predict-and-optimize is relevant [21, 22, 23]. The central

aim in predict-and-optimize is to align a predictive model more closely with

the downstream decision-making context [24]. This is achieved by fusing

the prediction and optimization phases and training the model in an end-to-

end manner, with the aim of obtaining higher quality decisions [25]. Ranking

specifically has been studied in this context. Demirović et al. [26] use ranking

to solve a ranking problem with uncertainty in the objective function–similar

to task uncertainty in our work. However, in contrast to this work, they do

not account for uncertainty in the constraint. Moreover, their method is

limited to pairwise ranking, whereas we optimize a listwise objective, allow-

ing us to consider the stochastic capacity in the optimization of the model.
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Demirović et al. [27] are limited to linear predictive models. In contrast, our

method is compatible with a variety of linear and non-linear machine learn-

ing algorithms. Their analysis considers more general optimization problems

with uncertainty in the objective function. Conversely, our proposed solution

is tailor-made to this specific problem setting, allowing us to use the problem

structure in our solution. In general, most work in predict-and-optimize does

not account for uncertainty in the constraints or optimization problem [28].

2.3. Classification

Classification is a task in machine learning where the goal is to predict the

class of an instance given its characteristics. For instance, classifying a task

as either successful or not is a binary classification problem. Existing work

typically considers the applications in this paper as classification problems,

e.g., fraud detection [10, 11], credit scoring [6, 9], direct marketing [5] and

customer churn prediction [7, 8]. Moreover, to align the models more closely

with the decision-making context, cost-sensitive classification has been used

[29, 30, 31, 32]. Cost-sensitive methodologies incorporate the costs of differ-

ent decisions into the optimization or use of predictive models [33, 34, 35].

Cost-sensitive variants have been proposed for different classification mod-

els, such as logistic regression and gradient boosting [29, 32]. Nevertheless,

these consider a different setting: classify instances. Conversely, our work

aims to prioritize instances, to process given limited worker capacity. The

output of a classification model is often used to rank instances, reflected by

widely used evaluation metrics that analyze this ranking, such as the receiver

operating characteristics curve and precision–recall curve [36]. However, in

contrast to our work, these approaches do not consider the available capac-
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ity during optimization of the models. Although limited capacity has been

acknowledged in the literature (e.g., in fraud detection [37], direct market-

ing [38] or churn prediction [39]), no existing solution explicitly addresses

this issue. Shifman et al. [40] consider a cost-sensitive classification problem

with resource constraints. However, in contrast to our work, they consider

misclassification costs to be unknown and do not consider uncertainty in the

capacity constraint.

2.4. Learning to rank

In learning to rank, the goal is to predict the order of instances relative

to each other, based on their characteristics. Although learning to rank orig-

inated in the field of information retrieval, it is a general framework that has

been applied to a variety of problems that have traditionally been solved with

classification models, such as software defect prediction [41], credit scoring

[42] and uplift modeling [43]. Moreover, similar to cost-sensitive classifica-

tion, the learning to rank framework has been extended to incorporate costs

of instances to align the optimization of the model more closely with the re-

sulting decisions [44]. However, our approach is the first to explicitly consider

the available capacity during the optimization of the ranking model.

3. Problem formulation

This work addresses the problem of optimally assigning limited and stochas-

tic resources to tasks with uncertain outcomes to maximize the expected

profit. In our running example of fraud detection, the goal would be to

uncover fraudulent transactions by having fraud investigators look at them,

with the aim of minimizing that day’s losses due to fraud. On the one hand,
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Figure 1: Problem overview. Our setting concerns a type of linear assignment problem

with two sources of uncertainty: stochastic worker capacity and uncertain task outcomes.

To account for stochastic capacity in the assignment problem, the capacity distribution

is converted to workers with decreasing processing probabilities. Task outcomes are also

uncertain and need to be predicted. The key objective is to assign workers to tasks to

maximize the resulting expected profit.

there is task uncertainty. Before investigating a transaction, the outcome

of the investigation is uncertain–though this could be estimated based on

historical data. On the other hand, there is an uncertain resource constraint.

The availability of fraud investigators is uncertain, as well as their produc-

tivity on that day. Using historical data, we assume that a worker capacity

distribution can be estimated. In the following, we formalize this problem as

a general optimization problem.

In this section, we formalize this setting as a linear assignment problem,

in which the goal is to optimally assign workers to tasks, where both workers

and tasks are sources of uncertainty. The exact number of workers is uncer-

tain at the time when resources need to be allocated, but we assume it is

governed by a known probability distribution. In practice, this distribution

can be estimated from historical data on the available resources or based

on domain knowledge. Alternatively, a deterministic capacity can be con-

8



sidered. Second, task outcomes are also uncertain and need to be predicted

using historical data on similar tasks. A graphical overview of the problem

is shown in Figure 1. In the following, we introduce and formally define each

element of the assignment problem.

Stochastic capacity

The available resources or number of workers W is a discrete random

variable described by a known probability distribution: W ∼ Dist. In

this work, we consider a common situation where the expected capacity

is smaller than the number of available tasks: E(W ) ≪ N . In expecta-

tion, the stochastic capacity can be converted to a sequence of N work-

ers with monotonically decreasing expected success rates. Each rate wj

equals the worker’s probability of being available given W ∼ Dist and is

described by the complementary cumulative probability distribution func-

tion: wj = P (W ≥ j) = 1 − FW (j). This yields a monotonically decreasing

sequence of N worker success rates W = (w1 . . . wN) = {1 − FW (j)}Nj=1
with w1 ≥ . . . ≥ wN . Given E(W ) ≪ N , we expect that most tasks will not

be executed and most wj will be (close to) zero. This formulation will allow

us to optimize the expected objective in section 4.

Uncertain tasks

There is also uncertainty regarding task outcomes. To address this uncer-

tainty, we predict it using historical data on similar tasks. Let T = (X ,Y ,V)
be the domain of all possible tasks ti = (xi, yi,vi), where xi ∈ X ⊂ R

d
is a

set of characteristics and yi ∈ Y = {0, 1} is a binary label equal to 1 if the

task is successful and 0 otherwise. Moreover, vi = {v+i , v−i } ∈ V ⊂ R
2
denotes
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Symbol Definition (with an example for fraud detection)

W Stochastic worker capacity (number of tasks processed

by fraud specialists)

W Vector of worker probabilities wj with wj = P (W ≥ j)
T Number of tasks (transactions considered)

R Task rewards ri (transaction payoff, i.e., fraud amount

intercepted - processing cost)

Y Task outcome yi (fraudulent or legitimate)

A Assignment matrix aij (which transactions fraud

specialists should investigate)

v Payoff when executing a task

c Cost matrix

x Task characteristics (time and place where

transaction was made)

fθ Predictive model

π Permutation of instances, i.e., a ranking

Table 1: Notation table. We give an overview of the notation used in this work. For

each symbol, we give both the general name and its role in our running example of fraud

detection.
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the payoff if the task is executed, with v
+

i if task i was successful (yi = 1) and

v
−

i otherwise. A task’s reward is defined as ri = yiv
+

i + (1 − yi)v−i . We have

N available tasks to be allocated T = {(xi, yi,vi) ∶ i = 1, . . . , N}, although
yi is unknown when resources need to be allocated. Given historical data, a

(deterministic) predictive model can estimate task outcomes yi resulting in

N predictions.

Matching workers and tasks

Workers and tasks can then be combined in an expected profit matrix

P = (pij), where pij = riwj is the profit of assigning task i to worker j for

i, j = 1, . . . , N . Given P , the goal is to find the optimal assignment matrix

A = (aij), where aij = 1 if worker i is assigned to task j and 0 otherwise, for

i, j = 1, . . . , N . This results in the following linear assignment problem:

maximize
N

∑
i=1

W

∑
j=1

aijri (1)

subject to
N

∑
i=1

aij ≤ 1 i = 1, . . . , N ; (2)

W

∑
j=1

aij = 1 j = 1, . . . ,W ; (3)

aij ∈ {0, 1} i = 1, . . . , N ; j = 1, . . . ,W ; (4)

W ∼ Dist (5)

where conditions 2 and 3 specify that each task is assigned to exactly one

worker and vice versa; condition 4 imposes absolute assignments by restrict-

ing aij to 0 or 1. Condition 5 specifies that the resource capacity or number

of workers is described by a known probability distribution Dist.
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4. Methodology

We present two approaches for the problem presented in Section 3. On

the one hand, a two-stage predict-then-optimize framework can be used. In

the first stage, we predict the task successes Ŷ. Here, we show how different

types of classification objectives can be used to predict task success. In the

second stage, we optimize the assignment of tasks to workers to obtain an

assignment matrix A. For this, we provide an analytical solution and prove

its optimality. On the other hand, we present an integrated predict-and-

optimize framework for prediction and optimization by leveraging learning

to rank techniques.

4.1. Two-stage predict-then-optimize

This section presents a conventional two-stage approach for solving the

problem. In the first stage, a classification model predicts each task’s proba-

bility of success. Existing approaches in classification can be used to optimize

this model for either accuracy or profit [32]. In the second stage, tasks are

assigned to workers based on these predicted probabilities. We present a

straightforward procedure for this assignment and prove its optimality.

4.1.1. Predicting task outcomes using classification

To handle the uncertainty regarding task outcomes, we train a classifica-

tion model to predict whether a task will be successful. Given historical data

DTrain, the goal is to predict yi using a classifier fθ ∶ X → [0, 1] ∶ x ↦ fθ(x)
defined by parameters θ ∈ Θ that predicts the probability of a task being

successful. Classifier training can be accomplished with different objective
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functions. We present two alternatives: one that focuses optimization on

accuracy and one that optimizes the classification cost.

The conventional approach is to train the classifier with the aim of max-

imizing accuracy. This can be achieved using the maximum likelihood ap-

proach or, equivalently, by minimizing the cross-entropy loss function:

L
CE

= yilog fθ(xi) + (1 − yi)log(1 − fθ(xi)). (6)

A drawback of this approach is that the solution ignores some of the

problem specifications. Some tasks are more important to classify correctly

than others, depending on their cost (or profit) when executed. Therefore,

in cost-sensitive learning, these costs are incorporated into the training of a

model. In classification, the cost of a decision depends on whether it was

classified correctly and on the task itself. These costs are formalized with

the concept of a cost matrix ci [33]:

Actual class yi

0 1

Predicted class ŷi
0

1

⎛
⎜⎜⎜⎝

c
TN
i c

FN
i

c
FP
i c

TP
i

⎞
⎟⎟⎟⎠

(7)

This way, we can directly minimize the average expected cost of predictions,

as an alternative to the cross-entropy loss [29, 32]:

L
AEC

= yi(fθ(xi)cTP
i + (1 − fθ(xi))cFNi )

+ (1 − yi)(fθ(xi)cFPi + (1 − fθ(xi))cTN
i ).

(8)

L
AEC

is a semidirect predict-and-optimize method: it incorporates some in-

formation of the downstream decision-making task, but learning is still sep-

arated from optimization [26, 27].
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4.1.2. Optimizing worker–task assignments

Given task predictions Ŷ, we can optimize the task–worker assignments.

Although various general algorithms have been proposed to solve assignment

problems, our formulation can be solved analytically. Here, we present this

solution and prove its optimality. The key insight is that, in expectation, the

worker capacity can be seen as a sequence of workers with decreasing success

rates, with each success rate the probability of that working existing given

W ∼ Dist. In other words, this probability is given by the complementary

cumulative probability distribution function: wj = P (W ≥ j) = 1 − FW (j).
Based on this, we can sort the tasks in terms of expected reward and the

workers in terms of expected probability. Matching these two sortings then

optimizes the assignment problem, where the most promising tasks are as-

signed to the most likely workers.

Theorem 1. W = {wi}Ni=1 is a sequence of monotonically decreasing worker

success rates such that w1 ≥ ⋅ ⋅ ⋅ ≥ wN with wi ∈ [0, 1] for i = 1, . . . , N .

R̂ = (r̂1 . . . r̂N) are the predicted task rewards arranged in decreasing order

such that r̂1 ≥ . . . ≥ r̂N . For the resulting expected profit matrix P = (pij)
with pij = wir̂j, the optimal assignment is A

∗
= IN .

Proof. Proof of Theorem 1.

A
∗
= IN is a feasible solution: it is straightforward to verify that the

identity matrix satisfies constraints 2, 3 and 4 of the assignment problem.

Moreover, the solution is the result of a greedy strategy: at each step m, we

assign worker w with probability wm to the highest remaining task m with

payoff r̂m. To prove the optimality of this strategy, we show that it does not

deviate from the optimal solution at each step up until the final solution is
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obtained.

First, the best single worker–task assignment is selected: the highest

profit pij is p11 = w1r̂1; no other higher profit exists as no higher wi or

r̂j exist. Next, we continue this strategy of selecting the best remaining

worker–task assignment until there are no tasks left. We can show that,

at each step, no other assignment matrix leads to a larger profit than this

one. At step m, the profit obtained given assignment matrix A
∗
equals

p11 + p22 + . . . + pmm = w1r̂1 + w2r̂2 + . . . + wmr̂m.

Deviating from A
∗
at a certain step means that at least one worker must

be assigned to another task. We prove that no alternative assignment leads

to a higher profit. Consider switching the assignments of tasks i and j with

i < j. In the case that task j has already been assigned to a worker, we have:

pii + pjj ≥ pij + pji

⟺ wir̂i + wj r̂j ≥ wir̂j + wj r̂i

⟺ wi(r̂i − r̂j) ≥ wj(r̂i − r̂j)
⟺ wi ≥ wj and r̂i − r̂j ≥ 0.

In the case that task j has not yet been assigned, we have:

pii ≥ pij

⟺ wir̂i ≥ wir̂j

⟺ wi ≥ 0 and r̂i ≥ r̂j

In both cases, the final statements follow fromW and R̂ being monotonically

decreasing and i < j, or from wi ∈ [0, 1].

15



4.2. Integrated predict-and-optimize using learning to rank

In this section, we present a novel integrated approach for solving the

assignment problem in Section 3. Previously, we showed how the optimal

assignment is A
∗
= IN if W and R̂ are arranged in decreasing order. Given

that W is defined as a decreasing sequence, the challenge of optimizing the

assignment can also be seen as correctly predicting the order of expected task

rewards R̂. This formulation is equivalent to an alternative interpretation

of the assignment problem as finding the optimal assignments by permuting

the rows and columns of the profit matrix P such that the resulting sum of

the elements on the diagonal is maximized, or formally [16]:

max
π∈Πn

N

∑
i=1

pi,π(i) (9)

for π ∈ ΠN with ΠN the set of all permutations of the indices {1, . . . , N},
i.e., π ∶ {1, . . . , N} ↦ {1, . . . , N}. In our case, we need to find the optimal

permutation of available tasks π(T).
In this formulation, the assignment problem can be seen as predicting

the optimal permutation π(T) based on characteristics of the available tasks.

Formally, let gθ ∶ X → R ∶ x ↦ gθ(x) be a ranking model. The goal is to find

parameters θ ∈ Θ such that the ordering of the mapping of tasks gθ(x1) ≥

. . . ≥ gθ(xn) corresponds to the ordering of their rewards r1 ≥ . . . ≥ rN . A

ranking based on gθ can be seen as a permutation π of the indices {1, . . . , n}.
The expected profit of a permutation π(T) given a capacity W can be

optimized directly using learning to rank. The key insight is that for a given

permutation π of tasks T, the expected profit ∑N

i=1 wir̂π(i) of a ranking is

equivalent to its discounted cumulative gain (DCG), which is a commonly
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used class of metrics in learning to rank [45]. Typically, the DCG is defined

with discount 1

log2(i+1) and gain 2
ti
− 1 for i ∈ {1, . . . , n}. However, to match

the expected profit, our formulation uses discount {wi}Ni=1 corresponding to

the capacity distribution, gain equal to 1 for all i, and relevance r̂i. By

dividing the DCG by its ideal value (IDCG), the normalized DCG (NDCG)

is obtained: NDCG = DCG

IDCG
with NDCG ∈ [0, 1].

Optimizing the NDCG (or equivalently, the expected profit) directly is

challenging as it depends on the predicted relative positions of instances

instead of the model’s outputs gθ(xi). Nevertheless, various algorithms have

been proposed for this task in the literature on learning to rank. In this

work, we use the widely used LambdaMART [46], which uses a combination

of the LambdaRank loss and gradient boosting of decision trees to construct

the ranking model. In this way, we can train a ranking model gθ to optimize

the NDCG or expected profit of the assignments directly.

Finally, we need to specify each task’s relevance, which serves as a label

according to which the ranking would ideally be constructed. Because the

ranking corresponds to the priority that should be given to tasks, it should

respect the ordering in terms of both outcome yi and task payoffs vi. In other

words, successful tasks should be more relevant than unsuccessful tasks, and

a more profitable task should be more relevant. Therefore, we use a task’s

reward ri as a cost-sensitive relevance, as it uses an instance’s class label

yi and its cost matrix ci (see Equation (7)). By means of this approach,

a positive task’s relevance is the profit (or equivalently, the negative cost)

obtained by classifying it positively minus the profit obtained by classifying

it negatively; vice versa for negative tasks. Thus, we obtain the relevance or
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reward ri as follows:

ri = yiv
+

i + (1 − yi)v−i = yi (cFNi − c
TP
i ) + (1 − yi) (cTN

i − c
FP
i ) .

Alternatively, if the goal is to optimize for accuracy rather than cost, we can

use class label yi as the relevance of instance i.

5. Empirical results

In this section, we empirically evaluate and compare the two-stage and

the integrated approach for a variety of tasks. We use publicly available

data from a variety of application areas. For each application, the goal is to

optimally allocate resources to optimize the expected cost given stochastic

capacity. All code for the experimental analysis will be made available online

upon publication of this paper.

To compare the different approaches, we use gradient boosting to train

the predictive models. Four different objectives are compared, depending

on the task (classification or learning to rank) and on whether they aim to

maximize precision or profit. First, xgboost and csboost are conventional

approaches based on classification. More specifically, xgboost denotes a con-

ventional classification model using the cross-entropy loss L
CE

(see Equa-

tion (6)), while csboost uses a cost-sensitive objective function L
AEC

(see

Equation (8)). Second, LambdaMART and csLambdaMART are integrated

predict-and-optimize approaches based on learning to rank. LambdaMART

uses the binary class label yi, whereas csLambdaMART uses task payoffs ri

as relevance. All models are implemented in Python using the xgboost pack-

age [47]. Gradient boosting is a popular methodology for both classification
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and ranking that has great predictive performance, as illustrated by recent

benchmarking studies [9, 48].

5.1. Data

The data sets are enlisted in Table 2 and stem from different applica-

tion areas: customer churn prediction, credit scoring and direct marketing.

They all concern binary classification where tasks are either successful or

unsuccessful. Resources are limited and stochastic: we assume a lognormal

capacity distribution W ∼ LN (µ = log(100), σ = 1).
The cost matrices are taken from earlier work on cost-sensitive classifica-

tion (see Table 3). In churn prediction, we have c
FP
i and c

FN
i as, respectively,

2 and 12 times the monthly amount Ai for KTCC following Petrides and

Verbeke [34]; whereas we follow the cost matrix given with the data set for

TSC [49]. For credit scoring, we calculate the instance-dependent costs c
FP
i

and c
FN
i as a function of the loan amount Ai following Bahnsen et al. [29].

In direct marketing, a positive classification incurs a fixed cost cf = 1, while

missing a potential success incurs an instance-dependent cost equal to the

expected interest given Ai, following Bahnsen et al. [50]. Similarly, in fraud

detection, a positive prediction leads to an investigation that entails a fixed

cost cf , and missing a fraudulent transaction leads to a cost equal to its

amount Ai. We use cf = 10, following Höppner et al. [32].

5.2. Results

We present the results using various performance metrics to compare

the different models. The main metric of interest is either the expected

precision or the expected profit given the stochastic capacity distribution
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Application Abbr. N % Pos Ref.

Churn prediction
KTCC 7,032 26.58 IBM Sample Data Sets [51]

TSC 9,379 4.79 Bahnsen et al. [49]

Credit scoring

HMEQ 1,986 19.95 Baesens et al. [52]

BN1 3,123 33.33 Lessmann et al. [9]

BN2 7,190 30.00 Lessmann et al. [9]

VCS 18,917 16.95 Petrides et al. [53]

UK 30,000 4.00 Lessmann et al. [9]

DCCC 30,000 22.12 Yeh and Lien [54]

GMSC 112,915 6.74 /

Direct marketing
UBM 45,211 11.70 Moro et al. [55]

KDD 191,779 5.07 /

Fraud detection

KCCF 282,982 0.16 Dal Pozzolo et al. [56]

KIFD 590,540 3.50 /

ACCF 3,639,323 0.65 Van Vlasselaer et al. [57]

Table 2: Data sets overview. For each data set, we present the application area,

abbreviation, number of instances (N), class imbalance in terms of proportion of positive

instances (% Pos), and corresponding reference.
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ŷi
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(a) Churn prediction

yi

0 1

ŷi
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i
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i 0

(b) Credit scoring

yi

0 1

ŷi
0 0 Ai/Inti

1 cf cf

(c) Direct marketing

yi

0 1

ŷi
0 0 Ai

1 cf cf

(d) Fraud detection

Table 3: Cost matrices for the different application areas. For each application,

we present the costs for all outcomes in terms of predicted (ŷ) and actual (y) labels. Ai,

c
FN

i , c
FP

i and Inti represent instance-dependent costs and cf is a fixed cost.

W , depending on whether accuracy or profit is the objective. Furthermore,

we present several additional classification and ranking metrics to gain more

insight into the differences between the methodologies. For each metric, we

present the average over all data sets and test whether the best performance

is significantly different from the others using a Friedman test on the rankings

with Bonferroni–Dunn post hoc correction [58, 59, 60] (see Table 4).

5.2.1. Expected precision and expected profit

In terms of expected precision, LambdaMART is the best performing

model. Two models optimize for accuracy: LambdaMART and xgboost.

The ranking model, LambdaMART, outperforms the classification model,

xgboost. In terms of expected profit, the cost-sensitive ranking model,

csLambdaMart, performs best. Of the two models optimizing for accuracy,

xgboost and LambdaMART, the ranking model again achieves better results,

although this difference is not statistically significant. This increase in perfor-

mance of the rankings models compared to classification models illustrates
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Expected
precision

Expected
profit

Average
precision

Spearman
correlation AUCPC

xgboost 0.4956 ± 0.08 0.2115 ± 0.05 0.9423 ± 0.01 −0.0382 ± 0.03 0.5548 ± 0.07

csboost 0.5865 ± 0.06 0.2940 ± 0.05 0.9075 ± 0.02 +0.2258 ± 0.07 0.5657 ± 0.07

LambdaMART 0.6555 ± 0.07 0.2471 ± 0.05 0.9366 ± 0.01 −0.0302 ± 0.04 0.5363 ± 0.06

csLambdaMART 0.6089 ± 0.07 0.3587 ± 0.05 0.9336 ± 0.01 +0.3829 ± 0.08 0.5999 ± 0.06

Table 4: Evaluation metrics overview. We present an overview of the evaluation

metrics. The average and standard deviation over all data sets are shown, with the best

result denoted in bold. Results that are not significantly different from the best result are

underlined (α = 0.05). This is based on a Friedman test on the rankings with Bonferroni–

Dunn post hoc correction. For both expected precision and profit, the ranking models

perform best in their respective category. For the classification metric, average precision,

the cost-insensitive classifier, xgboost, performs best. Conversely, for the ranking metrics,

namely, Spearman correlation and the area under the cumulative profit curve, the ranking

models outperform their classifying counterparts.

the potential benefit of our integrated ranking approach when capacity is

constrained. We further compare the trade-off between profit and precision

in Figure 2 by plotting the rankings for each data set. To get an idea of the

densities for the different models, we estimate it using a Gaussian kernel and

show it for probabilities greater than 0.5. Although the densities overlap, the

ranking models outperform their classifying counterparts in their respective

category. Again, this demonstrates the benefit of integrating the capacity

constraint in the optimization.

5.2.2. Average precision, Spearman’s ρ and AUCPC

These metrics weight all instances in the ranking equally, as opposed to

the previous metrics that weighted instances depending on their probability
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of being processed given the capacity distribution [36]. On the one hand,

we consider a classification metric: given the high degree of class imbalance

for some data sets, we use the average precision. On the other hand, we

consider two ranking metrics: the area under the cumulative profit curve

and Spearman’s rank correlation coefficient ρ.

First, we assess the quality of the model’s predictions with a standard

classification metric: average precision (AP). This metric summarizes the

precision-recall curve and looks at the trade-off between precision and recall

at different thresholds. As expected, the cost-insensitive classification model,

xgboost, performs best. This result is no surprise, given that xgboost is a

classification model that optimizes for accuracy. However, this conventional

classification metric has only weak correlation with the expected precision,

suggesting that it is not a good indicator of performance. Therefore, this

results gives rise to an important insight: when there is limited capacity to

act on predictions, traditional classification metrics are not a good indicator

of performance.

We also adopt two ranking metrics. First, we use Spearman’s rank cor-

relation coefficient to quantify the correlation between the ranking of the

predictions and the ranking of the task payoffs. csLambdaMart is the best

performing model, outperforming csboost. Moreover, both cost-insensitive

models have a correlation of approximately 0. This is as expected, as these

models do not take payoff into account in their optimization. Second, the

cumulative profit curve plots the profit that is realized as a function of the

number k of first ranked instances, with k ∈ [1, N]. We compare the area

under this curve with the area of a random ranking and one of the optimal
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ranking to obtain a value between 0 and 1. csLambdaMART performs best,

though neither the difference with xgboost nor csboost is statistically signif-

icant. Compared to the classification metric, these results are more aligned

with the expected precision and profit.

These findings indicate that metrics for evaluating the ranking quality,

such as Spearman’s ρ or the AUCPC, are more suitable than classification

metrics, such as the average precision, for evaluating a model’s performance

under limited capacity. Moreover, our results suggest that ranking as a solu-

tion more closely aligns with the problem of allocating limited resources to

uncertain tasks than classification, which is also confirmed by the superior

performance of ranking models compared to classification models in terms of

expected precision and expected profit. This represents an important insight,

given the abundance of existing work using classification models for these ap-

plication areas where capacity constraints are commonly encountered.

5.2.3. Top k metrics

Finally, we also consider metrics focusing solely on the top of the rank-

ing. Given limited capacity, these are the instances that will be prioritized.

We can evaluate this critical part of the ranking by looking at the precision

and profit of the ranking for the first k instances for different values of k

(see Figure 3). The ranking model optimizing for accuracy, LambdaMART,

performs best in terms of precicision@k, while the ranking model optimizing

for profit, csLambdaMART, has the best performance in terms of profit@k.

Again, these findings suggest that ranking models perform better given lim-

ited worker capacity, due to their ability to better prioritize the most impor-

tant tasks at the top of the ranking. Indeed, given limited capacity, these
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Figure 2: Comparing the methodologies in terms of expected precision and

profit. We plot each methodologies’ ranking in terms of expected profit and expected

precision on each data set. For each method, the average ranking is shown with a star

(⭐). Moreover, the ranking density is fitted with a Gaussian kernel; for visual clarity,

only probabilities greater than 0.5 are shown. On average, csLambdaMART performs

best in terms of expected profit, while LambdaMART performs best in terms of expected

precision.

are the tasks that will be executed.

6. Conclusion

In this work, we formally introduced and defined a commonly encountered

problem: how to optimally allocate limited, stochastic resource capacity to

tasks with uncertain payoff to maximize the expected profit. Moreover, we

contribute by proposing a novel integrated solution using learning to rank

and empirically comparing it with a more conventional predict-then-optimize

approach using a classification model.

Our findings illustrate the benefit of approaching this problem as a rank-
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Figure 3: Evaluating the top k ranked instances. Precision (a) and profit (b) for

obtained by the top k instances in the ranking for the different models averaged over all

data sets. The ranking models outperform the classifiers in the metric they optimize for:

LambdaMART is the best in terms of precision; csLambdaMART has the best profit.

ing problem, which allows us to consider the availability of limited and

stochastic resources. Theoretically, we show how the expected profit for a

given capacity distribution can be optimized directly using learning to rank

with a specific formulation of the net discounted cumulative gain as the objec-

tive. Empirical results for a variety of applications show that ranking models

achieve better performance in terms of expected profit or expected preci-

sion, depending on the objective. Moreover, good results in terms of ranking

metrics are more indicative of good performance in terms of expected profit

compared to conventional classification metrics. This illustrates how ranking

is more closely aligned with the problem at hand compared to classifying.

In summary, in the common scenario where decision-makers are constrained
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by limited resources, deciding upon resource allocation using classification

models is inferior to using learning to rank. These findings have important

implications for practitioners in a variety of application areas.

Managerial implications. Our findings have significant implications for prac-

titioners that use predictive models for decision support in applications where

resource capacity to act upon predictions is limited. This situation is com-

monly encountered in applications such as fraud detection, credit scoring,

churn prediction, and direct marketing. Our work shows that, when decision-

makers are faced with the challenge of optimally allocating limited, stochas-

tic resource capacity to tasks with uncertain payoffs, they should consider

adopting a ranking-based approach. We demonstrated that optimizing the

expected precision or profit with a ranking model leads to improved decision-

making compared to a commonly used approach using classification models.

Similarly, we showed that ranking metrics provide a more accurate assess-

ment of performance than classification metrics in settings where resources

are constrained. Our results underscore the importance of embracing learn-

ing to rank over traditional classification methods in resource allocation deci-

sions, which has important implications for practitioners seeking to maximize

profitability and efficiency in applications with resource constraints.

Our work opens several promising directions for future research. For

example, it would be interesting to consider a temporal variant of the as-

signment problem with tasks arriving sequentially in time. Although this

problem has been studied extensively for stochastic or random arrival rates

[61, 62, 63], future work could consider the addition of a predictive ranking

model to address uncertainty regarding task outcomes. Another possible ex-
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tension would be to consider tasks that require varying degrees of resources.

For example, in credit scoring, loans with a large principal require more

resources.
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