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Summary 

De novo molecular design is the practice of generating molecules with desirable properties 
from scratch. When done computationally the proposed molecules tend to be difficult to 
synthesize and overall chemically unappealing. In this work we present methods to extract 
patterns from available data and bias molecular design towards synthetically accessible 
chemistry. Given a list of known synthesizable compounds, we design molecules with the 
same chemical features, under the assumption that this resemblance increases the 
likelihood of them being synthesizable as well. 

Molecules were designed using evolutionary algorithms that breed populations of 
molecules by modifying their molecular graphs. The designed molecules were constrained 
to be composed of chemical features that are prevalent in reference chemistry. Different 
ways of defining chemical features were explored, and we determined that mimicking small 
circular atomic environments allowed us to design reasonably fit and easy to synthesize 
molecules. 

We developed an evolutionary algorithm that constructs molecules with desirable chemical 
features by assembling molecular fragments in a computationally efficient way, and 
showed how it outperformed competing algorithms in both the quality of the generated 
molecules and its ability to navigate chemical space effectively. 

We also developed a molecule correction algorithm that can identify flaws in molecules 
and sanitize them to make the molecules more desirable. Said tool can be used to post-
process molecules generated elsehow, or integrated into molecule generators to enforce 
chemical constraints in a hands-off fashion. 
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Dutch Summary 

De novo moleculair ontwerp betreft het genereren van moleculen met wenselijke 
eigenschappen vanuit het niets. Wanneer dit computationeel wordt gedaan, zijn de 
voorgestelde moleculen vaak moeilijk te synthetiseren en chemisch onaantrekkelijk. In dit 
werk presenteren we methoden om patronen te extraheren uit beschikbare data en 
moleculair ontwerp te sturen in de richting van synthetisch toegankelijke chemie. Gegeven 
een lijst van bekende synthetiseerbare moleculen, ontwerpen we moleculen met dezelfde 
chemische eigenschappen, in de veronderstelling dat deze gelijkenis de waarschijnlijkheid 
vergroot dat ze ook synthetiseerbaar zijn. 

Moleculen werden ontworpen met evolutionaire algoritmen die populaties van moleculen 
fokken door hun moleculaire grafieken te wijzigen. We dwongen de moleculen om 
samengesteld te zijn uit chemische eigenschappen die veel voorkomen in de 
referentiechemie. Verschillende manieren om chemische eigenschappen te definiëren 
werden onderzocht en we stelden vast dat het nabootsen van kleine cirkelvormige 
atomaire omgevingen ons in staat stelde om redelijk geschikte moleculen te ontwerpen. 

We ontwikkelden een evolutionair algoritme dat moleculen construeert met gewenste 
chemische eigenschappen door moleculaire fragmenten op een computationeel efficiënte 
manier samen te voegen, en toonden hoe het beter presteerde dan concurrerende 
algoritmen in zowel de kwaliteit van de gegenereerde moleculen als het vermogen om 
effectief door de chemische ruimte te navigeren. 

We ontwikkelden ook een algoritme voor molecuulcorrectie dat gebreken in moleculen kan 
identificeren en ze kan zuiveren om de moleculen wenselijker te maken. Dit gereedschap 
kan worden gebruikt om moleculen die op een andere manier zijn gegenereerd achteraf te 
bewerken of kan worden geïntegreerd in moleculengeneratoren om chemische 
beperkingen op een hands-off manier af te dwingen. 
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 Introduction  

 Molecular design 

Molecular design is the art of crafting molecules with specific properties and/or functions. 
It lays at the core of the pharmaceutical industry. 

When designing a molecule one formulates a hypothesis about its properties, acquires said 
molecule, presumably by synthesizing it, and assays the molecule for its properties to test 
the hypothesis. Unfortunately, our limited understanding of the universe makes 
formulating strong hypotheses challenging. Consequently, molecular design is an iterative 
process with many “design-make-test” cycles. As of today the “make” and “test” parts of 
this cycle have to be performed by humans in a laboratory, making molecular design a 
resource intensive process. Intelligent prioritization of molecules during the “design” stage 
could dramatically reduce the cost of developing novel chemical entities. 

Computers can aid in the molecular design process. A task of special interest is the virtual 
prediction of molecular properties. In silico assays, generically referred to as scoring 
functions or objective functions, tend to be more resource efficient than their in vitro, and 
especially in vivo, counterparts. These assays can be used on a large scale to screen virtual 
libraries of molecules and identify promising compounds for further testing in the lab. This 
process, known as virtual screening, has proven its worth as a useful tool in molecular 
discovery [1]. Commonly the molecules being screened are either commercially available 
[2] or predicted to be easy to synthesize [3–5], enabling a fast transition from in silico to in 
vitro studies. However, given that even the largest virtual libraries [6] dwarf in size 
compared to chemical space, which is commonly cited to contain somewhere between 1023 
and 1060 [7–9] drug-like molecules, it’s unlikely that the library will contain the most potent 
and attractive molecules. Preferences for certain chemotypes and synthetic reactions [10, 
11] often make their way to virtual libraries, leading to a small and non-uniform coverage 
of chemical space [12, 13]. This, coupled to the fact that publicly available libraries may 
have been screened previously or even contain patent-protected molecules, raises 
concerns about a lack of chemical novelty. Virtual screening can be thought of as a blind 
search through chemical space, with molecules being tested randomly. This constitutes a 
rather inefficient use of computational resources. 

In the early 1990s it was postulated that given a scoring function that predicts a molecule’s 
properties one could directly construct molecules with desirable properties as opposed to 
searching for them in pre-enumerated libraries. This process was described as “inverse 
QSAR” [14, 15]. Early on the focus was on optimizing already validated hits with the 
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assistance of a scoring function. It did not take long for some to become more ambitious 
and aim to design molecules from scratch using solely the feedback from the scoring 
function [16–21]. This gave rise to the field of computational de novo molecular design. The 
field boomed up until the late 2000s, when enthusiasm started to die down. Two reasons 
are commonly cited for this decay in popularity [22]. Firstly, the scoring functions available 
at the time were lackluster. Most methods employed crude structure-based scoring 
functions, and ligand-based scoring functions were still in their infancy. Secondly, and 
perhaps most importantly, the focus was almost entirely on designing molecules with high 
predicted scores, with other properties being neglected in the process. Many of the 
designed molecules were difficult to synthesize and, given the inaccuracies of the scoring 
functions, one can imagine many chemists undertook challenging syntheses only to be 
disappointed by false positives. 

Recently advances in computational power, scoring function accuracy and molecule 
manipulation techniques, as well as greater access to molecular data, have reinvigorated 
the field. The present work is part of this rebirth and revolves around the development of 
software to construct and optimize molecules based on the feedback of some problem-
specific scoring function. 

 Molecular representation 

Computational chemists describe molecules and their behavior mathematically. These 
descriptions may be two- or three-dimensional, and may obey different levels of chemical 
theory. The most pervasive and basic molecular description is the molecular graph. While 
the name may be foreign to some, virtually everyone is familiar with the concept of 
molecular graphs, as they are the de facto standard for molecule depiction (Figure 1.1). 
Graphs are data structures containing objects or vertices, where relationships between said 
objects are expressed as edges. In a molecular graph vertices represent atoms, and edges 
represent bonds. Molecular graphs represent the molecule’s topology or connectivity. 
Molecular graphs are usually: 

● Undirected. Edges have no directionality and can be traversed in both directions. 

● Unweighted. Edges have no associated weights, or alternatively, unit weights. 

● Simple. Parallel edges and self-edges or loops are disallowed. In other words, two 
vertices may be connected by at most one edge, and connected vertices must be 
distinct. 

● Connected. A path exists between any two vertices of the graph. Occasionally 
disconnected graphs are used to represent distinct molecules functioning jointly or 
stabilizing each other, such as in the case of salts. 
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Figure 1.1. An example molecular graph. Balls (vertices) represent atoms, while sticks (edges) represent bonds. 

Two things set molecular graphs apart from other undirected, unweighted and simple 
graphs. Firstly, the vertices and edges store (numeric) information about the atoms and 
bonds they represent. This may include the atomic number, mass number, formal charge, 
bond order etc. Hydrogens are usually not included explicitly in the topology but rather 
treated implicitly as a property of the non-hydrogen atoms instead. Vertices may also 
convey some information about the molecule’s 3D structure in the form of stereochemistry 
annotations or plain 3D coordinates. 

Secondly, molecular graphs are expected to follow a set of rules founded in chemical theory 
to represent reasonable molecules. Yet it is important to recognize that these are merely 
expectations, and that mathematically there are no limits to a graph’s topology and 
annotations. Theoretically a molecular graph can represent chemically unstable, 
unreasonable or impossible entities. 

Some graph concepts of importance later in this work are defined as follows: 

● The degree of a vertex is equal to the number of edges associated with it. 

● A path is a sequence of connected vertices in a graph. It is a way to traverse from one 
vertex to another following a sequence of adjacent edges. More than one path may exist 
between two vertices, with the shortest one known as the shortest path.  

● The topological distance between two vertices is equal to the number of edges in the 
shortest path between both vertices. For example, two adjacent atoms are at a 
topological distance of 1. 

● A cycle is a closed path where the starting and ending vertex are the same. In 
cheminformatics cycles are often called rings. 

● The minimum cycle basis of a graph is a set of cycles that contains the fewest possible 
number of cycles while still representing all the cycles in the graph. Each cycle in the 
basis is unique and cannot be formed by combining other cycles in the set. In 
cheminformatics the minimum cycle basis is often referred to as the Smallest Set of 
Smallest Rings (SSSR) [23]. 
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 Molecular characterization 

Given a molecular representation such as a molecular graph one can calculate certain 
properties of the represented molecule. These calculated properties are called molecular 
descriptors. Examples of simple descriptors include the molecular weight and octanol-
water partition coefficient (logP). Descriptor values can be predictive of higher order 
molecular properties. For example, the renowned Lipinski’s rule of five predicts 
bioavailability based on simple physicochemical descriptors [24].  

However, not all properties can be satisfactorily predicted as a function of simple 
physicochemical descriptors. For instance, binding affinity is a highly complex trait that 
depends on the molecule’s topology, as specific functional groups must be in specific 
positions to be able to interact with a biological target. This triggered the development of 
molecular descriptors that characterize a molecule’s topology. Early efforts revolved 
around the development of topological indices, which are single numbers characterizing 
some aspect of a molecule’s connectivity [25–28]. While topological indices capture some 
information about a molecule’s topology, they do not provide explicit details about 
functional groups, substructures, or atom arrangements. Structural keys were developed 
in response [29, 30]. A structural key is a boolean array where each boolean or bit encodes 
the absence or presence of a chemical substructure, for example a functional group (Figure 
1.2). Structural keys have two major drawbacks. Firstly, searching for substructures in a 
molecule is a variant of the subgraph isomorphism problem, which is known to be 
computationally expensive to solve [31]. Secondly, and perhaps most importantly, 
structural keys suffer from a lack of generality, as the substructures encoded in the key may 
not be relevant in every problem domain. 

 

Figure 1.2. Example structural key. Certain functional groups map to certain bits in a bitstring. The bit is set if 
the functional group is present, and unset otherwise. 
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Molecular fingerprints are a generalization of structural keys that bypasses the need for 
defining substructures of interest. Much like structural keys they are usually represented 
as bit arrays, with the difference being that each bit maps to a large number of undefined 
patterns instead of mapping to a single predefined pattern. Chemical features are 
generated algorithmically. These features may include atom pairs [32], topological paths 
[33] and/or circular environments [34]. Thereafter they are hashed to an integer, which 
acts as the bit index, and can be understood as the feature’s identifier (Figure 1.3). Hashing 
is the process of deterministically converting an input of arbitrary size to an output of fixed 
size. In our case given an input chemical feature we generate a seemingly random integer 
between 0 and some maximum value, typically a power of two such as 232. Two similar yet 
distinct chemical features are hashed to entirely unrelated integers. Since the output space 
is smaller than the input space there is also a probability of two distinct features hashing 
to the same integer by chance. This is known as a hash collision. The probability of a collision 
is larger the smaller the output space. A good hashing function distributes hash values 
uniformly over the output space to minimize the probability of a hash collision. 

 

Figure 1.3. Example path-based molecular fingerprint. Each bond is mapped to a bit, typically through hashing. 
Two different bonds can map to the same bit by chance (hash collision). One can either count how many times 
each feature occurs, or simply denote its binary presence/absence. 

Molecular fingerprints are a convenient and efficient way of characterizing the topology of 
a molecule as a set, that is, a collection of ordered integers. One can efficiently calculate 
the similarity between two sets, and therefore molecular fingerprints, using a similarity 
index such as the Tanimoto, Dice or Tversky index [35]. Since molecular similarity is one of 
the cornerstones of computational chemistry [36, 37] it is no surprise that molecular 
fingerprints are applied to a wide variety of tasks ranging from database searches [38, 39] 
to molecular clustering [39, 40], featurization of machine learning training data [41] and 
ligand-based virtual screening [42–44]. 

Arguably the most popular type of molecular fingerprint is the Extended Connectivity 
Fingerprint (ECFP) [34]. ECFP falls under the category of circular fingerprints. In a circular 
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fingerprint a bit signals the absence or presence of a circular atomic environment. A circular 
atomic environment is defined as a central atom and all atoms and bonds within a given 
topological distance of it, called the environment’s radius r. The ECFP algorithm starts by 
assigning initial atom identifiers to a molecule’s atoms. Commonly these identifiers are the 
hash of some atomic properties. These atomic properties or atomic invariants typically 
include the atom’s degree, valence, atomic number, mass number, formal charge, number 
of hydrogens and sometimes ring membership or stereochemistry annotations [34, 45]. 
Atomic identifiers are iteratively updated following the Morgan algorithm [46], which 
combines the identifiers of a central atom and its adjacent atoms (Figure 1.4). In modern 
implementations this is achieved with a hashing function [34]. Since the ECFP algorithm is 
based on the Morgan algorithm some re-implementations of the original ECFP have been 
called Morgan fingerprints [47]. 

 

Figure 1.4. Illustration of a single iteration of the Morgan algorithm. Each atom is characterized with an 
integer identifier. In the first iteration this is commonly the hash of some of the atom’s properties. For each 
atom the identifiers of itself and its neighbors are collected and aggregated with a hashing function, resulting 
in a seemingly random number. Said random number becomes the new atom’s identifier for the next iteration, 
as well as serving as a bit index into a molecular fingerprint.  

Different ECFP variants, denoted as ECFP{2r}, can be distinguished depending on the 
number of iterations r of the algorithm. For example, r = 2 iterations of the algorithm would 
yield ECFP4. There is a direct correlation between the number of algorithm iterations and 
the radius of the resulting atomic environments (Figure 1.5). 

 

Figure 1.5. Circular atomic environments (centered on the red atom) defined by r iterations of the Morgan 
algorithm. Note that bigger environments encompass smaller environments. 
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 Chemical space 

Chemical space is an abstract concept referring to the theoretical collection of all possible 
chemical entities. It is common to narrow down general chemical space to subspaces 
containing specific types of molecules. For example, one could define a drug-like chemical 
space containing exclusively drug-like molecules. The size of drug-like chemical space has 
been a topic of much debate. Frequently quoted figures range between 1023 and 1060 drug-
like molecules [7–9, 48]. In any case, it is clear that its magnitude is astronomical. 

Chemical space can be thought of as a multidimensional similarity-based arrangement of 
molecules. A molecule corresponds to a point in chemical space, and similar molecules, 
according to some criterion, are close to each other in chemical space. Depending on the 
application different similarity criteria may be used to define chemical space [49–51]. 

Of interest to us is a chemical space defined based on molecular graph similarity, where 
molecules with similar topologies are proximal. Since molecular properties are generally 
assumed to be linked to the structure of the molecule, it stands to reason that molecules 
with similar structures will also have similar properties [36, 37]. Indeed, this has become 
one of the cornerstone theorems of molecular design. The go-to molecular design strategy 
is to explore regions of chemical space surrounding reference molecules with promising 
properties, with the hopes of finding even more appealing molecules in their 
neighborhood. 

For visualization purposes it is common to represent chemical space as a two-dimensional 
coordinate system using physicochemical descriptors or principal components thereof as 
axes (Figure 1.6A) [49]. Alternatively one could use chemical features like the ones in 
molecular fingerprints as dimensions instead [13, 51]. The aforementioned techniques 
embed molecules in a continuous space by representing them as descriptor vectors. Since 
molecules are discrete states, and chemical space is a discrete space, continuous 
representations can be a bit misleading. It may be preferable to represent chemical space 
as a graph, where each vertex is a molecule and edges represent relationships between 
molecules (Figure 1.6B). When considering molecules as static entities these edges could 
represent topological similarities. In this work molecules will be treated as dynamic entities 
instead, in the sense that their molecular graph can be altered. In this case given a graph-
like representation of chemical space edges would represent transitions between related 
molecules [52–54]. 
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Figure 1.6. Examples of chemical space representations. Chemical space is commonly thought of as a 
continuum, with the dimensions given by molecular descriptors (left). Alternatively, one can view chemical 
space as a dimensionless transition graph, where edges represent transformations between related molecules 
(right). 

 Objective functions 

Many scientific problems can be formalized as optimization problems. Optimization 
involves finding the best or sufficiently good solutions among a set of possible solutions or 
states. The quality of a solution is quantified with one or more objective functions. The 
value of the objective function for a specific solution is termed objective value, fitness or 
score, and the process of measuring it is called evaluating the objective function. 

Objective function design and selection is entirely dependent on the problem to be tackled. 
Depending on whether the objective function measures desirability or undesirability the 
function ought to be maximized or minimized, respectively. In drug discovery and 
development one might be interested in maximizing the binding potency or biological 
effect of a molecule with respect to its biological target. These properties can be measured 
with constants of dissociation (Kd or Ki) and effective concentrations (EC50 or IC50), 
respectively. As these metrics relate to the concentration required to achieve a certain 
degree of binding or activity, the goal is to minimize them. Alternatively, one might be 
interested in maximizing the viability or survival rate of some organism when exposed to 
some substance. 

A peculiarity of chemical and biological research is that the preferred objective functions 
are commonly wet laboratory experiments. The results of these experiments are widely 
trusted and often taken as ground truth. Unfortunately, their cost and throughput may 
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limit the number of times the objective functions can be evaluated. Ex silico optimization 
strategies minimize the number of molecules to synthesize and evaluate through human 
expertise. In absence of said expertise, in silico optimization strategies rely on evaluating 
objective functions orders of magnitude more times than what wet lab experiment can 
ordinarily support. Hence, in computational molecular optimization the objective functions 
are usually surrogate objectives that mathematically and rapidly predict the underlying 
ground truth measured in the lab (Figure 1.7). For example, instead of measuring a Ki one 
could measure an interaction energy according to molecular docking, or instead of 
measuring an IC50 one could predict inhibitory effect using a machine learning model. While 
the accuracy of any one individual prediction is a topic of hot debate [55–58], the hope is 
that at a larger scale the objective function captures the statistical distribution of the 
ground truth. Additionally, the higher throughput enables a broader exploration of 
chemical space than what would have been possible in vitro [2, 59]. 

 

Figure 1.7. A black box objective function predicting the biological activity of a molecule. 

 Multi-objective optimization 

While we tend to focus on biological activity, it is important to note that drug discovery is 
inherently a multi-objective problem. Other objectives include synthetic accessibility, good 
Absorption, Distribution, Metabolism and Excretion (ADME) properties, limited toxicity and 
off-target effects and chemical novelty. 

Optimizing multiple objectives simultaneously can be challenging. In fact, if two objectives 
are conflicting it may be impossible to satisfy both simultaneously, forcing us to settle on a 
trade-off. By far the most popular approach to finding molecules satisfying multiple criteria 
is combining multiple objectives into a single composite objective, usually through linear 
combination, with each objective being assigned a priori some importance or weight. Some 
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of these objectives may be implemented as filters, with the solution being unacceptable if 
a certain objective is not met [60–62]. When using composite objectives the optimizer is 
free to sacrifice some of them in favor of others, or return average molecules fulfilling all 
objectives to some extent but at an overall weak level [63]. 

Some optimization strategies do not require the user to define an objective trade-off [60, 
64–66, 66–71]. These techniques generate Pareto optimal solutions, that is, solutions for 
which no objective can be improved without hurting another. Pareto optimal solutions 
define a so called Pareto front representing different objective trade-offs from which the 
user selects solutions a posteriori. Pareto optimization is not perfect either, for it is known 
to scale poorly with the number of objectives [72]. As the number of dimensions increases 
so does the number of Pareto optimal solutions. This, coupled to challenges in visualizing 
and interpreting high-dimensional data, complicates solution selection. Moreover the cost 
of evaluating Pareto optimality and the objectives themselves increases rapidly.  

Given the aforementioned challenges, it is perhaps unsurprising that many researchers try 
to sidestep formal multi-objective optimization. Instead of considering every objective 
explicitly some objectives can be enforced implicitly by constraining the way in which 
solutions are generated. By reducing the number of objectives to optimize one has access 
to simpler optimization algorithms and analysis tools. Furthermore the cost of explicitly 
evaluating objectives is negated. 

When optimizing molecules, objectives such as drug-likeness and synthesizability can be 
captured implicitly by the way in which molecules are modified or constructed. A 
historically popular approach has been to construct chemicals as combinations of smaller 
molecular fragments. Fragments may be systematically extracted from reference 
molecules [61, 73–79] or sourced from commercial reagent libraries [80, 81]. The use of 
fragments is not sufficient to guarantee that the assembled molecules will be 
synthesizable, as one must ensure that the bonds formed between fragments are also 
reasonable. Fragment combination can be governed by rules that range in chemical 
sophistication from knowledge-based bonding [73–75] to simulated chemical reactions 
[76, 77, 80, 80–85]. 

More recent research efforts have focused on generative models, that is, machine learning 
models trained on sets of (synthesizable) molecules to learn chemical distributions, and 
capable of sampling molecular representations from them [86–88]. Variational Auto-
Encoders (VAE) can translate back and forth between discrete and abstract continuous 
numerical molecular representations, with molecule optimization taking place in the latter 
[67, 89, 90]. Recurrent Neural Networks (RNN) can sample molecules from chemical space 
by iteratively growing a molecule, conditioning the next action on the existing molecular 
context [91–93]. 
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 Optimization algorithms 

In the context of optimization, solution space refers to the set of potential solutions for an 
optimization problem. An optimization algorithm - sometimes called a search algorithm - 
is a procedure or method to find solutions within the solution space that minimize or 
maximize the objective function. Due to optimization constraints, the optimization 
algorithm may be able to explore only a subset of the solution space. This subset is called 
the search space. 

The objective values for all states in the solution space define a surface called objective 
landscape or fitness landscape. In the case of multiple objective functions, each objective 
function has an associated fitness landscape. The low and high points on these landscapes 
are called minima and maxima, respectively. The term extrema can be used to generically 
refer to both. Extrema can be local or global. A local extremum is a solution for which the 
objective value is either lower or higher than the objective values of its neighbors. The 
global extrema are those for which the objective values are at their absolute lowest or 
highest. Complete knowledge of the fitness landscapes would enable perfect retrieval of 
solutions residing in fitness extrema. Unfortunately, the sort of problems that are usually 
tackled with optimization algorithms tend to have extremely large solution spaces. Hence, 
in practice only small sections of the fitness landscape are characterized and assumptions 
are made about the landscape that lay beyond. 

The choice of optimization algorithm for a specific problem depends on the nature of the 
solution space and fitness landscape. In molecular design the solution space is chemical 
space. The sheer size of chemical space forbids substantial systematic exploration. 
Chemical space is discrete. Without embedding [89, 90], this rules out gradient-based 
optimization algorithms that require a continuous solution space, the likes of which are 
common in other fields. Objective functions used in molecular design attempt to model 
chemical and biological reality. Chemistry and biology are complex fields rife with 
exceptions and partially understood phenomena. When coupled with inevitable 
inaccuracies of the objective function, one should expect the occasional abrupt fitness 
change or activity cliff between neighboring molecules [94, 95]. Indeed, fitness landscapes 
relevant to molecular design are rugged and bountiful in peaks and troughs (Figure 1.8). 
This can pose major challenges to an optimization algorithm. Firstly, assumptions made by 
an algorithm about the topography of the fitness landscape may be incorrect. Secondly, 
the abundance of local extrema increases the likelihood of an algorithm getting “stuck” in 
one of these extrema as no better solution may be found in their immediate proximity. 
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Figure 1.8. A hypothetical drug-discovery fitness landscape. In this example chemical space is a function of 
two continuous dimensions (D1 and D2). The Z-axis or height represents the fitness values of molecules. The 
left pane is a contour plot of the fitness landscape while the right pane is a 3D view. In this example the fittest 
molecules are found in the deepest valleys, and therefore our task is to minimize the fitness function. 

Summarizing, a chemical space exploration algorithm must cope with a large and discrete 
solution space and rugged fitness landscapes. Algorithms meeting these requirements are 
usually heuristic optimization algorithms. Heuristic algorithms are approximate problem-
solving methods. They often involve iterative steps of evaluating and improving candidate 
solutions, and frequently incorporate a stochastic component. While they cannot 
guarantee the discovery of global extrema, they can find reasonably good solutions in a 
timely manner. A wide variety of heuristic optimization algorithms have been employed in 
molecular design including simulated annealing [96, 97], Markov chain models [73], particle 
swarm optimization [98, 99], Monte Carlo tree search [100] and reinforcement learning 
[86, 92, 101], just to name a few. 

Two search algorithms particularly relevant to this work are tree searches and evolutionary 
algorithms, which will be described in more detail in the following sections. 

1.7.1 Tree searches 

Trees are acyclic, connected and directed graphs expressing hierarchical relationships 
between vertices through directed edges. Vertices directly connected to a given vertex are 
called adjacent or neighboring vertices. When the tree is directed a vertex may have 
incoming and outgoing edges, and the adjacent vertices can be classified into predecessors 
or parents and successors or children, respectively. Vertices without successors are called 
leaf vertices. A tree has a single vertex without predecessors called the root vertex. 
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A tree search is a graph traversal technique that starting from the root vertex progressively 
visits connected vertices until all vertices have been visited once or an alternative 
termination criterion is met. It is this traversal that defines the tree. A vertex is chosen and 
one of its non-traversed edges is traversed leading to another vertex which, if it has not 
been visited yet, is added to the tree. This process is referred to as expanding the vertex. 
In an unweighted tree the distance between a vertex and the root vertex is the vertex’s 
depth. 

Tree searches are immensely flexible in that one can devise infinitely many strategies to 
select which vertex to expand. These strategies are sometimes called policies. The simplest 
search strategies are greedy search and Breadth-First Search (BFS), which are purely 
exploitative or purely explorative, respectively. In a greedy search the fittest vertex is 
always chosen for expansion. In BFS the expandable vertex with lowest depth is chosen for 
expansion, causing the tree to be expanded in a breadthward motion, “level by level”. 
Greedy search finds solutions rapidly, but it favors deep searches and is likely to miss the 
optimal solution. BFS favors shallow searches and always find the optimal solution, but if 
the size of the tree is large it becomes computationally intractable. Practical policies are 
usually a hybrid of both, offering a balance between exploitation and exploration (Figure 
1.9). 

 

Figure 1.9. Different types of tree search policies applied to the same tree. The goal is to find the optimal 
vertex (green) starting from the root vertex. The vertices visited by the search are highlighted in orange. The 
more vertices are visited, the larger the cost of the search. Greedy search is the cheapest among the three, 
but missed the goal vertex. BFS finds the goal vertex but spends the largest amount of resources doing so. An 
ideal policy would find the goal vertex without exploring the whole tree. 

It is common to apply tree searches to finite and fixed graphs that are fully defined and 
enumerated. As mentioned previously, chemical space can also be contextualized as a 
graph. However, due to its size it cannot be fully enumerated. In fact, if molecular size is 
not a consideration, chemical space is an infinite graph. Search algorithms such tree 
searches are still applicable, provided that vertex expansions procedurally generate the 
graph on the go [52–54]. 
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1.7.2 Evolutionary algorithms 

Evolutionary algorithms are population-based heuristic optimization algorithms inspired by 
genetics and biological evolution. A population of candidate solutions or states is 
considered. Each state or individual is expressed as some form of data structure, sometimes 
called the chromosome. Each generation, some of the individuals reproduce to generate 
offspring. The children are genetically distinct from their parents due to stochastic 
mutations and recombination, typically some form of crossover. The fitness of individuals 
is evaluated by a fitness function, and the fittest individuals are most likely to reproduce 
and survive. The fitness function exerts selective pressure on the population, driving it 
towards optimality in a process analogous to Darwinian natural selection (Figure 1.10). 

 

Figure 1.10. Evolutionary algorithm example. A population of states, in this example shapes, is iteratively 
evolved through alternating reproduction and selection events. The fitness function favors round shapes, and 
shapes are color coded according to their fitness. In the first generation a mutation gives rise to a yellow 
Norman window (i.e. “pac-man ghost”). Since its fitness is superior to the red square it survives into the next 
generation. Selective pressure amplifies the roundness shape until the population is made up of only green 
circles. 
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There are two key steps to an evolutionary algorithm: reproduction, which encompasses 
mutation and recombination, and selection. How individuals are reproduced is highly 
dependent on their chromosomal representation and sometimes the optimization domain. 
Some states can be encoded as linear data structures. Within the context of molecular 
design, nucleotides [102], proteins [14, 103, 104], synthetic polymers [105, 106] and even 
simple Markush structures [78] have all been encoded as arrays. The main appeals of using 
arrays as chromosomes are the ease of manipulation and the direct correlation with 
nucleotide sequences from which they draw inspiration, making the implementation of 
mutation and recombination straightforward. However, when it comes to diverse and 
arbitrary molecules like drugs this representation can be very restrictive. Arguably the most 
natural representation for molecules is their molecular graph. Accordingly, efforts have 
been undertaken to mutate and recombine molecular graphs. 

Mutations stochastically modify molecules, adding external variability to the population. 
Molecular mutation techniques can be classified into atom- and fragment-based 
approaches based on the granularity of the molecular representation. It should be noted 
that this classification is purely didactical in nature, and in practice many methods blur the 
lines between atoms and fragments. Atom-based approaches modify the molecular graph 
one atom or one bond at a time, whereas fragment-based approaches construct molecules 
as a combination of multi-atomic fragments [63, 107]. Both have inherent advantages and 
disadvantages. Atom-based molecule construction tends to be simpler and enables the 
exploration of virtually the entirety of chemical space. Their biggest drawback is that when 
applied naively the resulting molecules may be difficult to synthesize [108, 109]. 
Nonetheless many applications of this methodology have been reported [12, 54, 60, 64, 79, 
100, 110–112]. Fragment-based approaches were pitched as a solution to the poor 
synthesizability problem [60, 64, 73, 74, 78, 79, 98, 113, 114]. When fragments are 
manually curated or algorithmically extracted from desirable molecules they can capture, 
and therefore reproduce, recurring chemical features. Besides potentially improving the 
synthesizability of designed molecules it can also bias the search towards specific areas of 
chemical space of interest. Ultimately, as one biases molecular design towards known 
chemistry the designed molecules become more pleasing to the eye, but at the expense of 
ignoring large sections of chemical space, and therefore reduced chemical novelty. 

Molecular recombination consists in exchanging chemical features between molecules, 
exploiting the internal variability of the population. For simplicity’s sake this exchange 
usually takes place between pairs of molecules. Historically, recombination has been 
executed in two ways. The first and most popular procedure is the “digestion” approach 
[12, 64, 100, 115, 116], where certain bonds of each molecule are broken yielding 
fragments. Fragments are exchanged and reconnected to complete the recombination. The 
second procedure could be described as the “match and swap” approach [81, 117, 118]. 
One starts off by finding the maximum common substructure shared by the molecules. This 
common substructure acts as scaffold, and the remainder of the molecule is taken as 
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substituents, which can then be exchanged between molecules and reconnected in the 
same positions. It can be argued that this form of recombination is more natural. However, 
it only works as intended when there is a sizable common substructure between molecules. 
Much like substructure matching it is also a computationally expensive approach, as finding 
the maximum common substructure is a hard problem. 

Selection of which individuals to reproduce and which individuals to carry over into the 
next generation is more standardized than reproduction. A very simple approach is 
truncation selection, where the N fittest individuals are selected. This leads to a 
phenomenon known as elitism, where the best individuals are always preserved and 
reproduced. This favors exploitation and skews the population heavily towards a specific 
solution. In the process the genetic diversity of the population may decline, sometimes 
degenerating to the point where all individuals are identical. This can seriously hamper 
exploration. As an alternative one can opt for selection schemes such as fitness-
proportionate selection, sometimes also called roulette wheel selection. As the name 
suggests, following this strategy the probability of selecting an individual is proportional to 
its fitness. This reduces the probability of premature convergence. Other selection schemes 
such as steady state selection and tournament selection exist, but won’t be discussed here 
as they were not applied within this work. 

It should be remarked that it is common to find related terms such as evolutionary strategy, 
genetic algorithm and evolutionary algorithm being used as synonyms. This would be 
considered a misnomer by some. The consensus seems to be that evolutionary algorithm 
is a broad term encompassing more specific variants such as genetic algorithms. However, 
in the literature there are some disagreements about the distinctive features of the 
different variants. In practice the terms are often used interchangeably, especially outside 
the world of optimization theory. Nonetheless, to err on the side of caution I will refer to 
them broadly as evolutionary algorithms. 

 Benchmarking molecular design algorithms 

1.8.1 Objective values 

Despite many molecule generators having been reported in the literature, it is not always 
clear how they compare to each other and where their strengths and weaknesses lie. For a 
long time it was common to test molecular design algorithms on arbitrary in-house 
problems. Skeptics might argue that the test cases had been contrived to showcase 
methodologies in a positive light. Recently efforts have been undertaken to standardize the 
test suits for molecule generators [108, 119, 120]. In principle this enables straightforward 
comparisons between algorithms without the need of re-running any benchmarks, 
although this may be partly wishful thinking.  
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One such test suite we use throughout this work is the goal-directed GuacaMol benchmark 
suite [108]. This benchmark suite measures how good an optimization algorithm is at 
designing molecules that maximize some pre-defined objectives. The GuacaMol 
benchmark suite is a collection of individual benchmarks. The most important component 
of each benchmark is an objective function that scores molecules in the [0, 1] range, with 
higher values being better. Molecule generator are tasked with designing a population of 
molecules maximizing the specified objective. This population is then evaluated to yield a 
final benchmark score, also in the [0, 1] range, typically as a weighted average of molecule 
scores. Optionally some benchmarks may also provide a starting population of molecules. 

Different versions of the GuacaMol benchmark suite have been developed. Two are of 
interest to us. The “trivial” version includes 7 benchmarks and is comprised mostly of tasks 
to design molecules with specific physicochemical properties (e.g. logP). The “V2” version 
is more diverse. It consists of 20 benchmarks including tasks to find molecules that (1) are 
identical to a reference molecule, (2) are similar to reference molecule(s), (3) have specific 
chemical formulas, (4) have/have not certain substructures, and (5) combinations of the 
aforementioned tasks, the so called Multi-Parameter Optimization (MPO) tasks. 

The GuacaMol benchmark scores are suitable to assess the “optimization power” (OP) of 
an algorithm, but they do not provide any information about the chemical quality of the 
designed molecules. To assess the latter we have used synthesizability metrics. Note 
however that a common element to many of the GuacaMol benchmarks is that they score 
molecules based on topological similarity to drugs. In other words, the perfect solution is 
oftentimes related or identical to a known drug. Since drugs are obviously synthesizable, 
the GuacaMol scoring functions unintentionally provide some implicit guidance to design 
synthesizable molecules. Throughout this work we will occasionally resort to custom 
benchmarks to better elucidate the effects attributable to the scoring function. 

1.8.2 Synthetic accessibility 

As has already been touched upon, molecular design is a multi-objective problem. One of 
the objectives that the designed molecules must fulfill is synthetic accessibility. Synthetic 
accessibility, synthetic feasibility or synthesizability refers to a molecule’s ease of synthesis, 
and is a rather vague and subjective concept. It could be interpreted as a binary property, 
with a molecule either being synthesizable or not. However, not all synthesizable molecules 
are equally easy to synthesize. Some molecules may be theoretically synthesizable, but the 
effort required to synthesize them in large enough quantities may be beyond the 
willingness of the medicinal chemist. We will consider synthesizability as a continuous 
property, and we aim to design molecules that a chemist might agree to synthesize. This 
typically demands a short synthetic route (preferably less than 5 steps), starting from 
commercially available building blocks and employing well established reactions with high 
yields and simple reaction conditions [10], for example amide coupling. Easy to synthesize 
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molecules are typically small, have little to no stereochemistry, and should be comprised 
of small and conventional ring systems the chemist is comfortable with [121]. 

Chemists rely on their intuition and expertise when assessing synthesizability. While the 
algorithm underlying a chemist’s decision making is poorly understood and highly 
subjective [121–123], generally speaking chemists prefer familiar chemistry. Computers 
can exploit this preference by finding patterns in known examples of familiar chemistry and 
comparing them to the patterns of subject molecules whose synthesizability ought to be 
assessed. 

An early attempt to do so was the SAScore [124]. The SAScore is a heuristic that estimates 
the synthesizability of a molecule on a scale from 1 to 10, with lower values suggesting an 
easier synthesis. The SAScore consists of two components that are summed together. The 
first component is the fragment score. It measures the topological similarity of a query 
molecule to reference synthesizable molecules through means of ECFP features [34]. If a 
molecule contains features that are prevalent among known synthesizable molecules, it is 
presumed to be syntesizable as well. The reverse is true for features that are rare or even 
absent in the reference library. The fragment score implicitly captures and expresses 
chemical preferences as well as reactant availability. The second component is a complexity 
penalty. As the name implies, molecules exhibiting properties hindering synthesis receive 
a penalty. These properties include size, the number of chiral centers and ring complexity 
descriptors such as the number of macrocycles, spirocycles or bridged ring systems. The 
appeal of the SAScore is that it is simple and fast to calculate. Despite its simplicity it 
correlates surprisingly well with a chemist’s understanding of synthesizability [124, 125], 
and is predictive of more complex synthesizability assessment techniques [109, 126, 127]. 

The golden standard for synthesizability assessments is retrosynthesis. If a molecule is 
retrosynthesizable it is presumably also synthesizable. Retrosynthesis not only evaluates if 
a molecule is synthesizable; it also proposes a synthetic route for it. In retrosynthesis an 
input molecule is successively broken down by the inverse of synthetic reactions until 
sufficiently simple or commercially available building blocks are generated [128, 129]. 
Unfortunately retrosynthesis is a computationally expensive problem. In silico reactions 
must be preceded by the detection of functional groups involved in the reaction, which is 
an expensive procedure [31]. Making matters worse, retrosynthesis is typically 
implemented as a tree search. In combinatorial spaces like chemical space deep tree 
searches are only tractable when paired with intelligent policies [130–133]. Even then 
retrosynthesizing a single molecule may take several minutes (compared to the fractions 
of a second it takes to compute heuristics like the SAScore), forbidding its iterative 
application. Whether a molecule is retrosynthesizable or not can be rapidly predicted with 
classifiers [127, 134], but in doing so one sacrifices the proposed synthetic route and with 
it any validation of the prediction. 
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 Research aims 

The purpose of this work is two-fold. From a practical perspective we aim to develop 
algorithms and software for molecular design, with a special focus on designing small 
organic molecules with potential therapeutic uses. During this process we hope to gain 
theoretical insights into the nature of chemical space and how to best explore it. 

As a starting point for our method development we are equipped with the following: 

1. The “similar structure, similar property” principle. We make the assumption that 
the likelihood of two molecules having similar properties is proportional to how 
structurally similar they are. Within this work molecule similarity will be expressed 
as a function of shared chemical features, and measured using topological 
fingerprint similarity coefficients. 

2. A black-box objective function that explicitly and numerically expresses how well a 
molecule fulfills some arbitrary objective. What the objective function measures, 
and whether objective values ought to be minimized or maximized is task 
dependent. For simplicity the reader may assume that the objective function 
predicts the magnitude of a biological response under exposure to the molecule in 
question. 

3. A virtual library of chemically desirable molecules. Molecules comprising the library 
ought to (1) be easy to synthesize and (2) have favorable ADMET properties 
(presumably for oral bioavailability). Ideally the library should also be large and 
diverse enough to be representative of the chemical state of the art. Throughout 
this work we will use ChEMBL as reference library. 
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Designed molecules ought to: 

 Have extreme objective values, as measured by the aforementioned objective 
function. 

 Be likely to be “chemically desirable”. Leveraging the “similar structure, similar 
property” principle we can quantify chemical beauty by measuring the molecule’s 
similarity to the aforementioned reference chemistry library. 

The developed methods must be capable of designing molecules that meet the above 
criteria. Beyond this evident requirement we strive to develop methods that: 

 Design molecules de novo, that is, the molecular starting point shouldn’t be an 
existing chemical entity but rather vacuum. Accordingly, we expect the methods to 
yield novel molecules that haven’t been described or enumerated previously. 

 Competently explore complex fitness landscapes without requiring assumptions 
about the nature of the fitness function. 

 Explore said landscape in a computationally efficient manner, finding good solutions 
expending as few computational resources as possible. Opportunities for 
computational optimization include (1) the routines to construct / modify 
molecules with desirable properties, and (2) minimizing the number of molecules 
to be evaluated by the objective function. The latter will push us to explore heuristic 
optimization algorithms. 

 Are open-source and modular, so the scientific community can easily integrate 
them in their workflows. 
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 Molecular constraints as a means 
to improve molecule quality 

 Source 

This chapter is based on the publication: 

Kerstjens, A., De Winter, H. A molecule perturbation software library and its application 
to study the effects of molecular design constraints. J Cheminform 15, 89 (2023). 

https://doi.org/10.1186/s13321-023-00761-5 

 Problem statement 

Designing molecules that optimize many objectives simultaneously can be challenging. 
Some authors try to evade the challenges of multi-objective optimization by considering 
explicitly only the primary objective and capturing the secondary objectives implicitly by 
constraining the molecular generation process to imitate known and desirable chemistry 
[73–76, 80, 82–84, 91, 92, 135]. This effectively blocks access to certain areas of chemical 
space (Figure 3.1). A large corpus of enumerated molecules with desirable secondary 
objectives exists [2, 136, 137], and it’s reasoned that constraining the molecular design 
process to only generate compounds similar to those in the corpus will yield molecules with 
desirable properties. 

 

Figure 3.1. A section of graph-like chemical space with an excluded area (center). The exclusion stems from 
molecular construction constraints and corresponds to a maximum on an undesirability objective landscape 
(red). 
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Many accounts describe the effectiveness of this approach to improve the drug-likeness 
and synthetic accessibility of generated molecules [73–76, 80, 82–84, 91, 92, 135], but it is 
not without drawbacks. The constraints imposed on molecule construction manifest 
themselves as barriers in search space, restricting the optimization algorithm’s freedom 
[75, 138]. These barriers may prevent accessing undesirable molecules, but inadvertently 
they may also hinder or impede discovering potentially appealing molecules, especially 
those that are most novel and resemble known chemistry the least. 

Consider some molecular generation scheme that can modify a reference molecule to yield 
related molecular entities. In this case chemical space can be visualized as a transition 
graph (previously termed a “morph graph” [54]), where vertices symbolize accessible 
molecules, and edges symbolize transitions between them (Figure 3.2). The topology of this 
graph is dependent on the constraints of the chosen molecule generator. Generally 
speaking, atom-based approaches define a more populous graph than fragment-based 
approaches since a larger number of chemical states is accessible. The density of the graph 
(that is, the ratio between the existing number of edges and the theoretical maximum 
number of edges) depends on the strictness of the perturbation rules. Approaches with 
strict rules will define a sparse graph, while approaches with lax rules will define a dense 
graph. 

Suppose that a chemical space search starts at a known molecule A. The goal is to find some 
unknown molecule B that exhibits good objective values. The more populous the transition 
graph, the more probable it will be that desirable molecules are part of it and therefore 
discoverable. The perfect optimization algorithm would define the shortest path between 
A and B. Such an ideal algorithm would benefit from a very populous and dense transition 
graph, as in these graphs paths between pairs of vertices tend to be shorter (Figure 3.2). 
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Figure 3.2. Examples of transition graphs of different population and density. The shortest path between two 
vertices A and B is highlighted in orange. Note that the path is shorter if the graph’s population is lower or the 
density is higher. As the population and density decrease the probability of two vertices being connected 
decreases. 

Sadly, we do not have access to these utopian search algorithms. In absence of omniscient 
oracles that reveal B and the path towards it, our algorithms must err on the side of 
exploration. Thorough exploration of very populous and dense graphs is computationally 
intractable. Trimming the size and density of the search graph in a chemically meaningful 
way could provide guidance to algorithms that otherwise would wander around 
unpromising regions of chemical space without a clear sense of direction. 

In summary, when it comes to predicting the effect of molecular construction constraints 
on the fitness of the designed molecules, we are faced with two opposing hypotheses. The 
constraints may either hinder or facilitate chemical space exploration, and what the 
outcome will actually be is poorly understood. 

Pieces of the answer lay scattered throughout the literature. Unfortunately, every study 
performs different experiments using different software, making it impossible to isolate 
the effect of any one variable. Attempts have been made to standardize experiments with 
benchmark suites [108, 119, 120], yet software is rarely standardized. Fully standardizing 
software is an impossible and arguably undesirable task as scientific methodologies are 
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ever evolving. However, when it comes to graph-based molecule edition many 
commonalities can be found between different implementations. 

We set out to create a software library for graph-based molecular edition providing the 
common denominator of functionality of previous implementations [12, 54, 64, 112]. We 
have named this library Molpert. Key considerations during the design were flexibility, 
extendibility, interoperability and ease of use. Molecule perturbations are atom-based, as 
fragment-based edition can be described in function of the former but not vice versa. 
Molecules are treated as graphs and modified without any sort of chemical considerations. 
This is by design as we did not want to impose our own biases and ways on others. Instead, 
users can specify themselves the properties the designed molecules ought to fulfill through 
means of arbitrary constraints. Mechanisms are foreseen to extend the functionality of the 
library should the provided functionality not suffice. Molpert is built on top of the RDKit, a 
highly popular and open-source cheminformatics toolkit [47], and integrates well with 
RDKit molecules. It has no other dependencies. A C++ and Python Application Programming 
Interface (API) are both provided and made available on GitHub 
(https://github.com/AlanKerstjens/Molpert). 

In this chapter we describe Molpert and showcase how it can be applied to 
cheminformatics research. Specifically, we use it to build an evolutionary algorithm for 
molecule design and try to answer the question: “What are the consequences of 
constraining atom-based molecular construction?”. 

 Methodology 

3.3.1 Atom/bond property perturbations 

Perturbations included in the library can be broadly classified into those changing the 
molecular graph’s annotations and those changing the graph’s topology. The former are 
trivial to understand and implement: each vertex (i.e. atom) and edge (i.e. bond) have a set 
of mutable numeric properties that are independent from the rest of the graph and can be 
freely changed. For atoms these properties are (1) the atomic number, (2) formal charge 
and (3) number of explicit hydrogens. For bonds the only property of interest is the bond 
type, which in most instances is equivalent to the bond order. Each property has a list of 
allowed values and associated sampling weights, both being user specified. By default the 
sampling weights are proportional to the property values’ frequencies in ChEMBL31 [136]. 
All properties have a corresponding perturbation to modify it. 

Modifying the number of explicit hydrogens may seem superfluous as hydrogens are often 
treated implicitly. However, explicit hydrogens can be of importance to adjust the 
perception of implicit hydrogens. They are also one of the invariants used in topological 
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fingerprint calculation [34, 45]. Hence, being able to modify the number of explicit 
hydrogens is essential for good interplay with fingerprint-based scoring functions. 

3.3.2 Topological perturbations 

Topological perturbations refer to insertions and deletions of atoms and bonds. These 
operations could be performed by simply creating or destroying a single atom or bond. 
However, the resulting transformations may not match a chemist’s expectations about 
what these perturbations should entail.  

Consider a molecular graph 𝓖(𝓥,𝓔) with vertices or atoms 𝓥 and edges or bonds 𝓔. Naive 
implementation of topological perturbations may result, among other things, in a 
disconnected graph, that is, a graph in which there is a pair of atoms v and w between 
which no path exists. This is commonly undesirable unless the disconnected fragments 
represent salts. 

To ensure that the graph remains connected an atom insertion requires bond insertions as 
well. Hence, inserting a new atom a involves (1) selecting the atomic properties of a, (2) 
selecting a set of k existing atoms 𝓝 to which a will bond with k new bonds 𝓑 (𝓝⊂ 𝓥, |𝓝| 
= k, |𝓑| = k) and (3) selecting the bond types of 𝓑. Possible values for a and 𝓑’s properties 
are sampled from a list of allowed values. k ranges between 1 and a user specified 
parameter defaulting to 3 to avoid a combinatorial explosion in possible outcomes. Up to 
k - 1 cycles may be formed during this process. Cycle formation may be unwanted. For 
example, given an alkane one might want to extend the length of the chain without creating 
a cycle. In other words, one might want to insert an atom between other atoms. To do so 
we select as 𝓝 a central atom c and some atoms 𝓙 adjacent to c (𝓙 = {j | c ~ j}, 𝓝 = c ∪ 𝓙), 
and define a “dropped” atom p ∈ 𝓝. During insertion a and 𝓑 are added and existing bonds 
between p and 𝓝 – p are deleted. The destruction of some existing bonds allows the 
insertion of atoms in acyclic regions without the creation of cycles (Figure 3.3). This only 
holds true if 𝓝 is selected as described above such that all members of 𝓝 are adjacent to 
p (𝓝 = {n | n ~ p}). If 𝓝 comprises arbitrary atoms and two atoms {v,w} ⊂ 𝓝 are separated 
by a topological distance d(v,w) ≥ 2 a cycle necessarily forms. Nonetheless, specifying a 
dropped atom can help in the design of more relaxed topologies that are not as densely 
packed with cycles. 

Bond insertion is simple, as it only involves the selection of two atoms v and w where the 
topological distance between them d(v,w) > 1, the selection of a bond type and the creation 
of the bond. Once again, this necessarily creates a cycle of d(v,w) + 1 atoms (Figure 3.3). A 
minimum and maximum d(v,w) may be specified. This provides the user with some control 
over the size of the resulting cycles but more importantly limits the number of possible 
outcomes. 
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Bonds are defined by a pair of atoms. Consequently, deleting one such atom a destroys the 
bond. Consider a set of atoms 𝓝 adjacent to a (𝓝 = {n | a ~ n}). The degree g of a is defined 
as g(a) = |𝓝|. If g(a) ≤ 1 it is peripheral, and if g(a) > 1 it is internal. Peripheral atoms and 
internal atoms that are members of a cycle can always be deleted without disconnecting 
the graph. Internal atoms that are not part of a cycle separate two parts of the graph 
through a unique path. Hence, their deletion would result in a graph disconnection. To 
prevent this the atom deletion may be followed by some bond formations. We define a 
“reconnection” atom r ∈ 𝓥, and create new bonds between r and 𝓝 - (𝓝 ∩ r). This ensures 
that a path passing through r exists between all pairs of atoms of 𝓝 after the deletion of a 
and that the graph remains connected. Typically r ∈ 𝓝. Intuitively, this corresponds to 
deleting a and one of its neighbors ni ∈ 𝓝 taking its place by bonding to the remainder of 
the neighbors nj ∈ 𝓝 - ni (Figure 3.3). However, if the user allows it, one could also sample 
an arbitrary r within a given distance d(a,r) of a. This will result in the formation of a cycle 
of size d(a,r) when d(a,r) ≥ 3. 

Similarly to atom deletions, bond deletions result in graph disconnections if the bond is not 
a member of a cycle. To delete an acyclic bond without disconnecting the graph a new 
replacement bond vw must be formed. Similar operations have been previously described 
as “rerouting” the bond [54]. The newly bonded atoms v and w ought to be on opposite 
sides of the “chokepoint” defined by the deleted bond (Figure 3.3). They must also be 
separated by a distance d(v,w) ≥ 2, as otherwise the same bond would be recreated. The 
user can specify a maximum distance d(v,w) to alter the topology less drastically. 
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Figure 3.3. Examples of topological perturbations. Input and output molecules are depicted on the top and 
bottom, respectively. Deleted atoms and bonds are highlighted in red while inserted atoms and bonds are 
highlighted in blue. In the atom insertion example 𝓝 = {1, 2, 3} and p = {1}. In the atom deletion example 𝓝 
= {2, 3, 4, 5} and r = {2}. 

The described perturbations are sufficient to access the entirety of chemical space when 
executed in the right order. When sampled randomly specific long sequences of 
perturbations are statistically unlikely. It may be of interest to execute some of these 
sequences of perturbations as a unit. For example, one might want to insert a fragment 
corresponding to a specific functional group. It’s possible to combine the above elemental 
perturbations to create more complex operations. 

3.3.3 Molecule sanitization 

Perturbations treat molecular graphs more like mathematical objects than chemical 
structures. Careless edition of the molecular graph is bound to result in chemically invalid 
structures. Notorious pain points include explicit hydrogen counts, stereochemistry and 
aromaticity. Cheminformatics toolkits like the RDKit [47] store atom and bond properties 
as integers within atoms and bonds themselves. These properties may be sensible when 
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first calculated, but can lose their meaning after modifying the molecular graph. We employ 
a post-perturbation sanitization procedure that either alters these properties to sensible 
values or deletes them altogether. 

A heavy atom’s hydrogen count is modified to the value resulting in the lowest valid valence 
for said atom. The list of valid valences per element is provided by the RDKit. When no 
hydrogen count would result in a valid valence the count is set to zero. Chiral center 
stereochemistry labels are kept where possible. If a former chiral center is no longer chiral 
after a perturbation its stereochemistry label is erased. Newly formed chiral centers are 
not assigned any stereochemistry labels. Bond stereochemistry labels are always erased. 
Aromaticity presents the most egregious problem. Bonds may have been flagged as 
aromatic once upon a time, yet these flags are kept indefinitely even after modifying the 
molecule. The naive solution would be to convert aromatic bonds to single bonds once 
aromaticity has been broken. In the context of editing molecules, aromatic systems are 
fragile as most topological perturbations will cause aromaticity to be invalidated. On the 
other hand, creating an aromatic ring system is much more challenging, as it requires atoms 
and bonds of the right types to be placed in the right positions simultaneously. When 
modifying molecules stochastically the sequence of events leading to the creation of an 
aromatic ring system is highly unlikely. In practice this means that most designed ring 
systems won’t be aromatic, which is uncharacteristic of organic molecules. 

Molpert handles aromaticity in two different ways, depending on the user’s preference. 
The simplest option is to work with kekulized molecules only, that is, molecules where 
aromatic systems are represented by alternating single and double bonds. Alternatively, 
one can work with “partially aromatic” molecules where the aromaticity flags are 
preserved, irrespective of whether they are valid at present time or not. For example, 
acyclic regions may be transiently labelled as aromatic. The former aromatic character of 
bonds is remembered and used to reestablish aromaticity in the future whenever 
conditions are right. When a molecule with valid aromaticity assignments is required, a 
sanitization procedure can be applied. Acyclic regions labelled as aromatic are kekulized. 
Rings are defined as components of the Smallest Set of Smallest Rings (SSSR) [23]. Rings 
that are correctly flagged as fully aromatic are left untouched. Kekulized rings fulfilling 
aromaticity criteria are aromatized. Partially aromatic rings are sorted in descending order 
according to their number of aromatic bonds and sanitized. If the number of aromatic 
bonds in the ring is greater than half and the ring otherwise meets the requirements to be 
aromatic it’s aromatized. Otherwise it is kekulized. Starting the sanitization process with 
the most aromatic rings allows aromaticity to propagate throughout fused ring systems 
(Figure 3.4). 
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Figure 3.4. Aromaticity sanitization example. Aromatic bonds are depicted as dashed bonds. Aromatic ring 
systems where all bonds are aromatic are depicted with internal circles. Partially aromatic ring systems are 
either aromatized or kekulized depending on their “degree of aromaticity”. Bonds incorrectly labelled as 
aromatic are kekulized. 

3.3.4 Modes of operation 

Perturbations are implemented as objects specifying how a molecule will be modified. 
These objects are callable and can be invoked when the perturbation ought to be executed. 
The user may construct these objects directly for fine-grained control over the outcome of 
a perturbation. For convenience we also provide factory functions that abstract away the 
details of constructing perturbations. Said factories can systematically enumerate all 
possible perturbations that could be applied to a molecule. Enumeration may be restricted 
to specific types of perturbations and/or atom/bond targets. When used deterministically 
all generated perturbations fulfilling the constraints are stored in a queue. When used 
stochastically the iteration order is randomized and the first generated perturbation 
fulfilling the constraints is returned. The randomization relies on a weighted shuffle in such 
a way that perturbations featuring common property values are most likely to be tried first 
[139]. This reduces the number of perturbations that need to be tried before one fulfilling 
the constraints is found. 
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3.3.5 Molecule constraints 

While we designed the software to be able to generate any molecular graph, there may be 
instances where one wishes to use it to generate molecular graphs fulfilling specific criteria. 
This is enabled through constraints. In this context constraints are callback functions 
evaluating whether a molecule fulfills some arbitrary requirements. They take as input an 
atom, bond or molecule and return as output a boolean. A return value of “true” signals 
that the requirements are satisfied, whereas “false” signals the requirements are not met. 
Constraints may apply to one specific atom or bond. It’s therefore possible to constrain 
only certain parts of the molecule and to mix constraints as desired. 

Constraints are enforced through trial and error. A queue of compatible perturbations is 
prepared. The perturbation at the front of the queue is applied to a copy of the molecule 
to simulate its outcome. The perturbed molecule is then forwarded to the constraints for 
evaluation. If any constraint evaluates to “false” the perturbed molecule is discarded and 
the next perturbation is simulated. This process repeats until a perturbation satisfying all 
constraints is found or the queue is empty. The stricter the constraints the higher the 
perturbation attrition rate and with it the computational performance degradation (Figure 
3.5). 

For our experiments we explored different variants of atom and bond constraints. The most 
basic constraints are valence constraints. Each element is assigned a maximum allowed 
valence, and any atoms of said element with a lower valence are accepted, under the 
assumption that hydrogens can be added to pad the valence up to the closest valid value. 
The remainder of the constraints are key-based constraints. Atoms and bonds are 
characterized with atom and bond keys, respectively (Table 3.1, Figure 3.6). An atom key 
is a tuple of integer properties characterizing the atom. Depending on the properties used 
to define the key we distinguish between local atom keys made up of common atomic 
invariants [23, 24] (degree D, valence V, atomic number Z, formal charge Q and number of 
explicit hydrogens H) and ring-aware (RA) atom keys, which on top of the aforementioned 
atomic invariants include the number of SSSR rings the atom is involved (R) and the sizes 
of the smallest and largest SSSR rings it is involved in (NR and XR, respectively). Bond keys 
are defined through combination of the bonded atoms’ keys and the bond’s type (B). Lastly, 
we also define atomic environment keys as the hashes of circular atomic environments, 
akin to the Extended Connectivity Fingerprint (ECFP) algorithm [34]. Environments of 
topological radii 1 (r = 1) and 2 (r = 2) were studied. 

We determined the set of keys found in drug-like molecules, specifically ChEMBL31 [136], 
and recorded them in dictionaries, one for each key type. Given one such dictionary and a 
query molecule, a key based constraint calculates the same type of keys for the query 
molecule and compares said keys to the dictionary’s keys. If the query molecule exhibits 
keys that are not part of the dictionary the constraint evaluates to false and the query 
molecule is rejected. 
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Figure 3.5. Illustration of different attrition rates for lax and strict constraints. When using strict constraints 
few molecules fulfill the desired criteria, resulting in the molecules being discarded and new molecules being 
generated. 



Molecular constraints as a means to improve molecule quality 

 
— 

38 

Table 3.1. Overview of the molecular keys used to characterize molecules and constrain molecular 
perturbation. 

Molecular key Key structure 
Local atom key (D, V, Z, Q, H) 

Ring-aware atom key (R, XR, NR, D, V, Z, Q, H) 
Local bond key (LB) (D1, V1, Z1, Q1, H1, D2, V2, Z2, Q2, H2, B) 

Ring-aware bond key (RAB) 
(R1, XR1, NR1, D1, V1, Z1, Q1, H1, 

R2, XR2, NR2, D2, V2, Z2, Q2, H2, B) 
Local environment key hash({LB1, LB2 … LBn}) 

Ring-aware environment key hash({RAB1, RAB2 … RABn}) 
 

 

Figure 3.6. Example molecular keys. The color highlighted atoms are characterized with atom keys, and the 
color highlighted bond between them characterized with a bond key. The nitrogen’s circular atomic 
environment of radius 1 is shown as a dotted outline and characterized with the hash of its bonds’ keys, 
resulting in seemingly random numbers. For the meaning of each integer see Table 3.1. 

3.3.6 Property and perturbation sampling 

Some molecular perturbations, namely property perturbations, atom insertions and bond 
insertions must sample atom and/or bond properties. The properties being sampled are 
atomic numbers, formal charges, explicit hydrogen counts and bond types. Property values 
are sampled from pre-defined sets of allowed values. When perturbations are enumerated 
deterministically each allowed value is used to construct one perturbation. When 
perturbations are generated stochastically a single allowed value is randomly sampled to 
construct a single perturbation, with each value having an associated sampling probability.  

While the user may provide their own sampling values and probabilities, we provide some 
reasonable defaults. For each property we recorded the frequency of occurring values in 
ChEMBL31 [136], as well as the mode (i.e. the most frequent value). Property values 
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occurring with a frequency larger than 0.01% are considered allowed and may be sampled 
with probabilities proportional to the values’ frequencies. The mode is taken as a default 
property value and, at the discretion of the user, may replace the list of allowed values to 
reduce the number of perturbations resulting from deterministic enumeration. 

Property values for a specific atom or bond are sampled independently from the rest of the 
atom’s or bond’s properties and independently from their surrounding chemical 
environment. As an exception one may opt to sample atomic numbers and bond types with 
different probabilities depending on whether the atom/bond is part of a ring or not. The 
main motivation behind this exception is to preferentially place aromatic and double bonds 
in rings, and triple bonds in acyclic structures. 

When generating perturbations stochastically the user may or may not specify the type of 
the perturbation. Should they choose to not do so the library will randomly sample a 
perturbation type for them. Property perturbations have sampling probabilities that are 
proportional to how often the property deviates from the mode. For example, since it is 
rare to encounter charged atoms the probability of sampling a “formal charge change” 
perturbation is low. Conversely, since it is relatively common to encounter non-carbon 
atoms the probability of sampling an “atomic number change” perturbation is 
comparatively high. 

Weighted property sampling is supposed to reduce the probability of stochastically 
generating a constraint-infringing perturbation. To verify this assumption we took a subset 
of 10,000 ChEMBL molecules of varying sizes and generated 10 perturbations of each type 
for each molecule. We repeated the process twice sampling property values from either a 
uniform distribution or from the aforementioned ChEMBL-derived distribution. We then 
measured the perturbation rejection rate according to different molecular constraints. 

3.3.7 Chemical space connectivity 

Stricter constraints are associated with sparser chemical spaces (Figure 3.2). One can 
quantify the stringency of a set of constraints by calculating the average degree of the 
corresponding chemical transition graph. We stratified ChEMBL31 [136] according to the 
molecules’ heavy atom counts (HAC), and sampled 1000 random molecules every 5 HAC 
between 10 and 50 HAC. Two molecules are considered to be neighbors in chemical space 
if they are separated by a single edge in the chemical transition graph, that is, a single 
perturbation. Molpert was used to deterministically enumerate all perturbations 
applicable to each molecule of the aforementioned ChEMBL subsets. Said perturbations 
were subsequently executed to enumerate the molecule’s neighbors. Different 
perturbations may result in the same neighbor, but only unique neighbors were kept. The 
process was repeated using different sets of constraints, and the number of perturbations 
resulting in constraint-infringing neighbors was recorded. The average number of 
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neighboring molecules, equal to the average degree of the transition graph, was taken as 
a measure of the constraints’ stringency. 

3.3.8 Benchmark 

 Effect of constraints on optimization power 

To evaluate the effects constraints have on molecule fitness we developed an evolutionary 
algorithm using Molpert to mutate and recombine molecules. We initialized a population 
of 100 “empty” molecules with no atoms or bonds. Said population was evolved over the 
course of at most 10,000 generations. Evolution may be halted earlier if some termination 
criterion is met, such as no improvement being observed in the best individual’s score for 
1000 generations, or a molecule with a sufficiently good score being found. Every 
generation copies of the parent molecules are made and recombined or mutated to yield 
child molecules. The child molecules must (1) fulfill any constraints that may have been 
imposed by the user and (2) be topologically dissimilar from all other molecules in the 
population. The topological similarity between two molecules is calculated as the Tanimoto 
coefficient [35] between their ECFP4 fingerprints [34]. If the similarity of a child molecule 
to any of the current members of the population surpasses 0.9, the child is discarded. The 
internal similarity filter prevents the degeneration of the population to a single solution, 
and serves as the algorithm’s main premature convergence guard. At the end of the 
generation the parent and child molecules are ranked according to their scores, as 
determined by some scoring function, and the best 100 are retained for the next 
generation. A flowchart of the algorithm can be seen in Figure 3.7. 
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Figure 3.7. Flowchart of the Molpert-based evolutionary algorithm used for benchmarking purposes. 
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Recombination is not a core part of Molpert, but simple digestion-based recombination 
operators [12, 64, 100, 115, 116] are made available as addons. Subgraphs of 
approximately the same size are induced in two molecules, by randomly walking through 
their graphs. The size of the subgraph is chosen as a random integer in the range [0.1 · HAC, 
0.5 · HAC], where HAC is the molecule’s Heavy Atom Count (HAC). Bonds flanking said 
subgraphs are broken and converted to attachment points resulting in fragments. If one 
fragment has less attachment points than the other, random hydrogens are replaced with 
attachment points within the former until the numbers are equalized. Fragments are 
exchanged between molecules, and attachment points are reconnected randomly. We 
forbid fragmentation to break ring systems, but this behaviour may be disabled upon 
request. An example of how subgraph exchange can be used to crossover molecular graphs 
is found in Figure 3.8. 

The algorithm was tasked to design molecules maximizing the scores of GuacaMol goal-
directed benchmark (v2) scoring functions [108]. For details on the GuacaMol benchmark 
suite please refer to section 1.8.1. Some benchmarks demand the generation of a 
population of molecules, in which case the total benchmark score is calculated as a 
population weighted average. We opted out of this last step and took as score the fitness 
of the top molecule only. In our algorithm population diversity is enforced through means 
of a topological similarity threshold. Due to this filter the remainder of the population is by 
design subpar and present solely to facilitate the evolution of the top molecule. Since 
evolutionary algorithms are stochastic one will presumably want to run multiple 
independent replicas anyways, sourcing the top molecule of each run. We ran the 
benchmark 50 times for each type of constraint recording the top molecule of each replica. 
Jobs were given a maximum of 72h core hours. Some jobs for strict constraints failed to 
complete within this time, reducing the sample size (Table 3.2). Differences in molecule 
fitness between the “no constraints” control group and constraints groups were analyzed 
using the non-parametric Kruskal–Wallis H-test [140] followed by pairwise Mann-Whitney 
U-tests [141] with Šidák correction [142]. α = 0.05 was taken as significance level and 
family-wise error rate. Statistical tests and post hoc corrections were performed using the 
SciPy [143] and statsmodels [144] Python packages, respectively. 
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Figure 3.8. Example molecular graph crossover. Broken bonds are crossed. Attachment points resulting from 
digestion are shown as R-groups. 
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Table 3.2. Number of successfully completed GuacaMol benchmark replicas. We submitted 50 replicas for 
each of the 20 benchmarks within the benchmark suite. Missing replicas are due to them exceeding the 
allocated computational time limit. 

Constraint type Number of completed replicas 
None 1000 

Local atom 1000 
Valence 1000 

Local bond 1000 
RA atom 1000 

Local environment (r = 1) 1000 
RA bond 1000 

RA environment (r = 1) 999 
Local environment (r = 2) 959 

RA environment (r = 2) 942 
 

 Effect of constraints on chemical appeal 

To evaluate the chemical appeal and novelty of molecules we designed 1000 random 
molecules using each set of constraints. Said molecules, hereon forward referred to as 
Randomly Designed Molecules (RDM), were constructed through successive atom and 
bond insertions, aiming to create a molecule of 29 heavy atoms and 32 bonds, which 
corresponds to the average number of heavy atoms and bonds of molecules in ChEMBL31 
[136]. Synthesizability and drug-likeness were assessed through means of the SAScore 
[124] and Quantitative Estimation of Drug-likeness (QED) [145], respectively. ChEMBL31 
was used as reference synthesizable chemistry for SAScore calculations. Differences 
between distributions were analyzed with one-way Analysis Of Variance (ANOVA) [146] 
followed by Dunnett’s test [147]. α = 0.05 was taken as significance level and family-wise 
error rate. Chemical novelty was evaluated qualitatively by embedding the molecules into 
a 2D continuous chemical space and studying their location. Said chemical space was 
defined by characterizing molecules as binary 2048-bit ECFP4 fingerprints [34] and reducing 
their dimensionality with Principal Component Analysis (PCA) [148]. 

Optimizing molecules according to some objective function by design biases the regions of 
chemical space that are sampled. This is particularly true for the GuacaMol scoring 
functions, many of which incorporate topological similarity to some reference molecule as 
a component [75, 108]. We chose to study the chemical appeal and novelty of RDM as 
opposed to that of the optimized molecules resulting from the benchmark because we 
wanted to distinguish which effects are attributable to the constraints and which ones to 
the scoring function. Nonetheless, for the sake of completeness, all analyses on the 
optimized molecules of section 3.3.8.1 were repeated as well. 
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 Results 

3.4.1 Constraint stringency 

To rationalize the effects constraints have on molecular design it is important to study the 
extent to which they trim the chemical space transition graph. Figure 3.9A shows the 
average degree of said graph for different types of constraints. A higher average degree is 
indicative of a denser graph and therefore laxer constraints, whereas a lower average 
degree is indicative of sparser graphs and stricter constraints. The differences in graph 
density can be explained by discrepancies in the number of perturbations or moves that 
are rejected by the constraints (Figure 3.9B). 

Generally speaking, constraints are stricter the more variables define the corresponding 
key. Accordingly, ring-aware (RA) constraints are stricter than local constraints, 
environment constraints are stricter than bond constraints, and bond constraints are 
stricter than atom constraints. Counterintuively valence constraints appear to be stricter 
than certain key-based constraints that encompass valence. This stems from differences in 
the definitions of valid valences. For valence constraints a rather conservative list of 
allowed valences hard coded within the RDKit is used. For key-based constraints allowed 
values are extracted from a large library of reference molecules. Should one find within this 
library a few examples of atoms with unusual valences this would suffice for said valences 
to be considered valid. Moving forward, results will be color-coded according to the 
constraint stringency order described in Figure 3.9. 
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Figure 3.9. (A) Average number of neighboring molecules for molecules in ChEMBL based on their size and 
molecular constraints. The lower the number of neighbors the sparser the chemical transition graph. (B) 
Fraction of accepted perturbations broken down by perturbation type. The remainder of the perturbations 
were rejected by the molecular constraints. 
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3.4.2 Effect of constraints on synthesizability and drug-likeness 

It is well established that constraining the way in which molecules are constructed 
increases the likelihood of designing chemically appealing molecules [73–76, 80, 82–84, 91, 
92, 135]. Figure 3.10 shows how the synthetic accessibility of RDM, as measured with the 
SAScore [124], increases with design constraints becoming stricter. Our constraints restrict 
the designed molecules to topological features present in reference molecules, with the 
differences between them being in the granularity of these features. As the granularity 
increases so does the algorithm’s ability to mimic the topology of reference molecules. 
Despite requesting RDM of a given size, when strict constraints are enforced, namely 
environment (r = 2) constraints, some sequences of random operations starting from 
vacuum can lead to “dead-end” molecules, that is, small molecules for which no other atom 
or bond can be added without infringing upon the constraints. Examples of such molecules 
can be found in Figure 3.11. 

Similar, albeit tamer, results were observed for the molecules resulting from the GuacaMol 
benchmark optimization task (Figure 3.12, Figure 3.13). Note that the SAScores in Figure 
3.12 are markedly better than in Figure 3.10 due to the benchmark’s scoring functions 
pointing towards synthesizable molecules. This same effect also explains why the 
differences in synthesizability between constraint types are smaller for molecules resulting 
from the GuacaMol benchmark than for RDM. 

The use of constraints also seems to improve the drug-likeness of the designed molecules 
as measured with the QED [145] (Figure 3.14). Unlike for the SAScores, this improvement 
was not observed for the optimized molecules as well (Figure 3.15, Figure 3.16). QED is 
calculated based mostly on physicochemical descriptors, yet our constraints do not 
consider physicochemical descriptors explicitly. Further analysis reveals that the main 
driver for QED improvements is a reduction in the number of undesirable substructures 
(i.e. structural alerts) (Table 3.7). A drop-off in QED is observed for RA environment (r = 2). 
This is explained by the designed molecules having over double the number of rotatable 
bonds one might expect to find in molecules designed with other constraints or drug-like 
molecules (Table 3.7). RA environment (r = 2) constraints are so strict that oftentimes the 
only allowed atom insertion is that of carbons in existing hydrocarbon features, resulting 
in long and flexible molecules (Figure 3.17). 
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Figure 3.10. SAScore distributions of RDM using different types of constraints. Medians are shown as black 
lines. Lower SAScores are indicative of an easier synthesis. Stars on top of the distributions indicate statistically 
significant differences with the “no constraints” control group. A more detailed statistical analysis can be 
found in Table 3.3. 

Table 3.3. Statistical analysis of RDM’s SAScore differences between the no constraints control group and 
other groups. Pairwise comparisons were preceded by one-way ANOVA (statistic = 2161.557, p-value < 0.001). 

Comparison Mean SAScore difference Dunnett statistic p-value 
None - Local atom 0.394 -13.472 < 0.001 

None - Valence 0.586 -20.052 < 0.001 
None - Local bond 0.604 -20.662 < 0.001 

None - RA atom 0.761 -26.055 < 0.001 
None - Local environment (r = 1) 0.740 -25.327 < 0.001 

None - RA bond 1.148 -39.304 < 0.001 
None - RA environment (r = 1) 1.645 -56.304 < 0.001 

None - Local environment (r = 2) 1.845 -63.164 < 0.001 
None - RA environment (r = 2) 3.332 -114.063 < 0.001 
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Figure 3.11. Examples of “dead-end” molecules, to which no other atom or bond can be added without 
infringing upon environment (r = 2) constraints. 
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Figure 3.12. SAScore distributions of molecules designed during the GuacaMol benchmark using different 
types of constraints. Medians are shown as black lines. Lower SAScores are indicative of an easier synthesis. 
Stars on top of the distributions indicate statistically significant differences with the “no constraints” control 
group. A more detailed statistical analysis can be found in Table 3.4. 

Table 3.4. Statistical analysis of optimized molecules’ SAScore differences between the no constraints control 
group and other groups. Pairwise comparisons were preceded by one-way ANOVA (statistic = 153.643, p-value 
< 0.001). 

Comparison Mean SAScore difference Dunnett statistic p-value 
None - Local atom -0.035 0.618 0.995 

None - Valence -0.075 1.311 0.715 
None - Local bond 0.145 -2.538 0.074 

None - RA atom 0.203 -3.554 0.003 
None - Local environment (r = 1) 0.271 -4.740 < 0.001 

None - RA bond 0.612 -10.729 < 0.001 
None - RA environment (r = 1) 0.839 -14.704 < 0.001 

None - Local environment (r = 2) 0.970 -16.810 < 0.001 
None - RA environment (r = 2) 1.438 -24.821 < 0.001 
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Figure 3.13. SAScore distributions of molecules designed during the GuacaMol benchmark using different 
types of constraints broken down by benchmark. Lower SAScores are indicative of an easier synthesis. 
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Figure 3.14. QED distributions of RDM using different types of constraints. Medians are shown as black lines. 
Higher values are indicative of more drug-like molecules. Stars on top of the distributions indicate statistically 
significant differences with the “no constraints” control group. A more detailed statistical analysis can be 
found in Table 3.5. 

Table 3.5. Statistical analysis of RDM’s QED differences between the no constraints control group and other 
groups. Pairwise comparisons were preceded by one-way ANOVA (statistic = 356.599, p-value < 0.001). 

Comparison Mean QED difference Dunnett statistic p-value 
None - Local atom -0.105 16.469 < 0.001 

None - Valence -0.122 19.148 < 0.001 
None - Local bond -0.141 22.118 < 0.001 

None - RA atom -0.139 21.890 < 0.001 
None - Local environment (r = 1) -0.233 36.710 < 0.001 

None - RA bond -0.150 23.603 < 0.001 
None - RA environment (r = 1) -0.191 30.011 < 0.001 

None - Local environment (r = 2) -0.277 43.660 < 0.001 
None - RA environment (r = 2) -0.024 3.825 0.001 
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Figure 3.15. QED distributions of molecules designed during the GuacaMol benchmark using different types 
of constraints. Medians are shown as black lines. Higher values are indicative of more drug-like molecules. 
Stars on top of the distributions indicate statistically significant differences with the “no constraints” control 
group. A more detailed statistical analysis can be found in Table 3.6. 

Table 3.6. Statistical analysis of optimized molecules’ QED differences between the no constraints control 
group and other groups. Pairwise comparisons were preceded by one-way ANOVA (statistic = 10.134, p-value 
< 0.001). 

Comparison Mean QED difference Dunnett statistic p-value 
None - Local atom 0.001 -0.120 > 0.999 

None - Valence -0.003 0.258 > 0.999 
None - Local bond -0.019 1.834 0.341 

None - RA atom -0.012 1.188 0.803 
None - Local environment (r = 1) -0.047 4.606 < 0.001 

None - RA bond -0.027 2.631 0.058 
None - RA environment (r = 1) -0.035 3.370 0.006 

None - Local environment (r = 2) -0.073 7.01 < 0.001 
None - RA environment (r = 2) -0.017 1.670 0.447 
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Figure 3.16. QED distributions of molecules designed during the GuacaMol benchmark using different types 
of constraints broken down by benchmark. Higher values are indicative of more drug-like molecules. 
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Table 3.7. Average values for QED components of RDM using different types of constraints. Note the decay in 
the number of structural alerts (ALERTS) as constraint stringency increases and the sudden spike in the number 
of rotatable bonds (ROTB) for RA environment (r = 2) constraints. MW = Molecular Weight, ALOGP = octanol-
water partition coefficient, HBD = number of Hydrogen Bond Donors, HBA = number of Hydrogen Bond 
Acceptors, PSA = Polar Surface Area, AROM = number of aromatic rings. 

Constraint MW ALOGP HBD HBA PSA ROTB AROM ALERTS 
None 417.16 3.21 2.16 2.78 68.13 5.95 0.005 5.25 

Local atom 408.68 3.22 2.04 3.62 70.10 6.45 0.008 3.61 
Valence 409.18 3.30 2.27 4.85 68.04 7.26 0.016 3.18 

Local bond 408.41 3.23 2.14 4.98 69.21 7.02 0.025 3.02 
RA atom 410.06 3.35 2.26 4.95 70.84 7.24 0.018 2.97 

Local 
environment 

(r = 1) 
406.20 3.82 2.02 4.53 64.24 5.42 0.011 2.18 

RA bond 408.34 3.57 2.20 4.84 69.00 7.35 0.024 2.80 
RA environment 

(r = 1) 
405.54 3.90 2.04 4.51 67.14 7.62 0.028 2.35 

Local 
environment 

(r = 2) 
378.15 3.67 1.50 4.03 58.51 2.91 0.001 1.45 

RA environment 
(r = 2) 

382.21 4.45 1.77 3.87 62.41 14.31 0.0 2.58 

 

Figure 3.17 shows some examples of molecules designed using different types of 
constraints. While subjective, molecules designed using stricter constraints are chemically 
more appealing. It has been noted that one of the main factors explaining chemists’ 
willingness to pursue synthesis or further development of a compound is the molecule’s 
ring complexity [121]. The use of ring-aware constraints discourages the design of complex 
ring systems. One could argue that the use of strict constraints leads to the design of “plain” 
molecules, rich in carbons and single bonds yet poor in functional groups. This foreshadows 
that excessively restricting molecular construction may be undesirable. Regardless of the 
constraints used, RDM are unlikely to contain aromatic systems (Table 3.7, Figure 3.17). As 
discussed previously, the creation of aromatic rings requires very specific arrangements of 
single and double bonds that are unlikely to occur by chance. This illustrates the value of 
the proposed partial aromaticity treatment. 
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Figure 3.17. Examples of RDM molecules designed by successive random atom and bond insertions using 
different types of constraints. 
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We would like to clarify that within Molpert the only dependable source of molecule 
correctness are the molecular constraints. Weighted property sampling reduces the 
probability of stochastically generating perturbations that would infringe upon the 
constraints (Figure 3.18), but does not prevent it. Weighted sampling should thus be seen 
more as an algorithmic efficiency optimization than a strategy to design reasonable 
molecules. 

 
Figure 3.18. Fraction of stochastically generated perturbations accepted by the molecular constraints, broken 
down by perturbation type and property value sampling strategy. The upper panel corresponds to uniform 
random sampling of property values, whereas the lower panel corresponds to weighted random sampling of 
property values Note that the only perturbation types where property values are sampled are property 
perturbations (i.e. atomic number, formal charge, explicit hydrogens and bond type changes) and atom/bond 
insertions. 

One could be concerned that imitating reference chemistry stifles chemical innovation. To 
investigate this concern, we visualized the positions of designed molecules in a 2D chemical 
space, using ChEMBL [136] as a reference space (Figure 3.19). There is some overlap 
between ChEMBL and RDM, but the latter are skewed towards the less densely populated 
areas of chemical space, regardless of the constraints used. Optimized molecules are more 
similar to known chemistry due to scoring function bias (Figure 3.20). It should be noted 
that a 2D projection of chemical space is overly simplistic, with distances between 
molecules appearing to be smaller than they truly are. Hence the designed molecules are 
more distinct from ChEMBL than what Figure 3.19 might indicate. We believe that the 
designed molecules are sufficiently novel. 
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Figure 3.19. Positions of RDM in 2D PCA space. The grayscale grid represents the density of ChEMBL molecules 
in chemical space on a linear scale, with darker cells being more densely populated. 

 

Figure 3.20. Positions of molecules designed during the GuacaMol benchmark in 2D PCA space. The grayscale 
grid represents the density of ChEMBL molecules in chemical space on a linear scale, with darker cells being 
more densely populated. 
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3.4.3 Effect of constraints on molecule fitness 

The effect constraints have on compound fitness during molecular optimization is poorly 
understood. Figure 3.21 shows the optimization power of a Molpert-based evolutionary 
algorithm in the GuacaMol benchmark suite [108] using different types of constraints. As a 
reminder, constraints are enforced every time a molecule is mutated. Using mild 
constraints, that is, anything between local and RA bond constraints, leads to significantly 
improved molecule fitness over unconstrained molecular design. RA bond constraints 
performed best, followed closely by local environment (r = 1) and RA atom constraints. RA 
environment (r = 1) constraints are equivalent to unconstrained molecular design in terms 
of molecule fitness. Stricter constraints, namely environment (r = 2) constraints are 
markedly worse. 

The results in Figure 3.21 suggest that there is a constraint stringency sweet spot that trims 
the search graph in just the right way to facilitate the optimization process. Upsettingly the 
exact location of this sweet spot depends on the individual benchmark (Figure 3.22). The 
most common pattern is a fitness maximum at some constraint stringency middle point 
such as RA bond constraints, with laxer and stricter constraints both performing worse. 
Even in the cases where fitness is unaffected by constraint choice most constraints seem 
to be tolerated. This is an encouraging result as the primary use of constraints in molecular 
design is to increase the likelihood of designing drug-like and synthesizable molecules. 

Two peculiar cases are those of Celecoxib and Troglitazone rediscovery, where very 
pronounced fitness differences are observed between local and RA constraints (Figure 
3.22). Visual inspection of the designed molecules reveals that when using local constraints 
the algorithm correctly rediscovers many of the reference molecule’s features, but 
proposes alternative ring systems. In rediscovery benchmarks the goal is to re-design a 
reference molecule, with the score being given by the topological similarity to the 
reference molecule. Topological similarity is assessed through means of ECFP4 fingerprints 
similarity [34], with two molecules being similar if they share many chemical features. 
Crucially, it is not required for the features to be in the same position for two molecules to 
be deemed similar. Celecoxib and troglitazone possess multiple benzene rings, with paths 
of aromatic carbons as features. The algorithm is rewarded for designing molecules with 
aromatic carbons, but this reward is the same regardless of the topology and size of the 
ring systems. Limiting the sizes of designed rings with RA constraints can prevent the 
algorithm from being led astray and towards macrocycles by the scoring function (Figure 
3.23). 
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Figure 3.21. Distributions of top molecule scores, as assessed by the GuacaMol goal-directed scoring functions. 
Medians are shown as black lines. Only the best molecule of each population is included. The benchmark suite 
consists of 20 individual benchmarks, but for clarity’s sake the results of all benchmarks were aggregated. A 
per-benchmark breakdown can be found in Figure 3.22. Stars on top of the distributions indicate statistically 
significant differences with the “no constraints” control group. A more detailed statistical analysis can be 
found in Table 3.8. 

Table 3.8. Statistical analysis of molecule fitness differences between the no constraints control group and 
other groups. Pairwise comparisons were preceded by a Kruskal-Wallis test (statistic = 951.677, p-value 
<0.001). 

Comparison 
Median molecule 
fitness difference 

Mann-Whitney U-
statistic 

p-value 

None - Local atom -0.058 472579.5 0.033 
None - Valence -0.020 489620.5 0.421 

None - Local bond -0.073 453589.5 < 0.001 
None - RA atom -0.085 434893.0 < 0.001 

None - Local environment (r = 1) -0.096 436572.0 < 0.001 
None - RA bond -0.128 411981.0 < 0.001 

None - RA environment (r = 1) -0.015 478862.5 0.109 
None - Local environment (r = 2) 0.223 613857.0 < 0.001 

None - RA environment (r = 2) 0.273 687198.0 < 0.001 
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Figure 3.22. Distributions of top molecule scores, as assessed by the GuacaMol goal-directed scoring functions. 
Only the best molecule of each population is included. Black squares and colored squares represent median 
and maximum scores, respectively. 
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Figure 3.23. Celecoxib (A), troglitazone (C) and examples of molecules designed during their rediscovery 
benchmark using local bond constraints. The designed molecules B and D score relatively high (0.62 and 0.69, 
respectively) due to the presence of common chemical features albeit in different positions. Note that the 10-
membered cycles in B and D are deemed aromatic by Hückel’s rule [149] and the RDKit, despite not being 
aromatic due to ring strain [150]. 
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3.4.4 Effect of constraints on computational performance 

It’s worth noting that molecular design constraints can add considerable computational 
overhead (Figure 3.24). This is especially true for Molpert since constraints are enforced in 
a naive fashion. The slow down stems from a higher perturbation rejection rate for stricter 
constraints, prolonging the search for a suitable perturbation. Interestingly the number of 
molecules designed before the algorithm reaches convergence is moderately lower for 
stricter constraints. For the vast majority of objective functions this decrease is insufficient 
to offset the increased perturbation cost. Nonetheless, when working with very expensive 
objective functions the cost of perturbing molecules can be negligible compared to the cost 
of scoring them, making the use of constraints as convergence acceleration strategy an 
appealing proposition. 

 

Figure 3.24. Number of molecules designed to reach convergence (left) and the number of perturbations 
executed per second (right) stratified per constraint type. Boxes represent interquartile ranges (IQR), the black 
line within them medians and the whiskers Q ± 1.5IQR. Performance numbers are for a single-threaded 
workload on an AMD Epyc 7452 CPU clocked at 2.35 GHz. 
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 Discussion 

Our results indicate that moderately constraining molecular construction has a net positive 
effect as it increases both the synthesizability and fitness of designed molecules. 
Nonetheless one must care to not choose excessively strict constraints as this can cause a 
sharp degradation of molecule fitness. As a guideline we recommend constraining bond or 
small environment properties and, if necessary, ring topologies. However, while the results 
presented herein apply to atom-based evolutionary algorithms, they may not be 
extrapolatable to alternative molecular optimization schemes. Evolutionary algorithms are 
powerful optimizers capable of navigating complex search spaces. Other algorithms such 
as tree searches may be less tolerant of barriers in search space and therefore construction 
constraints. We developed a simple tree search algorithm to test this hypothesis but found 
the fitness of the designed molecules too poor to extract any useful conclusions. 
Evolutionary algorithms are heuristic gradient-free optimization algorithms. They wander 
around chemical space until they stumble upon good solutions by chance. For an algorithm 
lacking a sense of direction the very dense chemical spaces characteristic of unconstrained 
molecular construction can seem like a maze with many “false paths”. Gradient-based 
optimization algorithms do have a sense of direction and may benefit from unconstrained 
molecular design. 

Versatility was a major consideration when designing Molpert. Unfortunately, in software 
development versatility often comes at the cost of computational efficiency. Molpert is 
efficient at unconstrained molecular design, but this efficiency decreases with constraint 
stringency. Despite the decreased efficiency molecular design remained a tractable task. If 
one were to settle on an immutable set of constraints that molecules must fulfill it would 
indubitably be possible to write more specialized and performant algorithms. Should one 
wish to do so we would recommend using Molpert to build a prototype and confirm the 
effect of the envisioned algorithm and/or constraints before committing resources to 
developing a performant solution. We wanted to be able to re-use the code base in projects 
with differing requirements. Anecdotally during the development of the software we went 
through multiple iterations of more efficient yet less flexible constraint implementations, 
but kept encountering use cases that could not be covered by those alternative systems. 
This cemented our conviction to support truly arbitrary constraints. 

In lieu of using constraints one could embrace unconstrained molecular design. When using 
stochastic molecule generators molecule fitness follows a distribution. While 
unconstrained molecular design may yield less fit molecules on average, it still may 
occasionally result in high scoring molecules (Figure 3.21). Sampling more times from a 
distribution with a lower median may be a superior strategy to sampling fewer times from 
a distribution with a higher median, provided that the variance is large enough (Figure 
3.21). The faster unconstrained molecular generation allows one to roll the dice more often 
in the same amount of time. Biasing the design towards synthesizable molecules remains 
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possible in absence of constraints by incorporating synthesizability into the objective 
function [62, 109]. Ideally the objective function should be able to evaluate the fitness of 
potentially invalid molecules resulting from unconstrained molecular design. Our 
benchmark shows that at least some scoring functions are able to do so, and we 
hypothesize that most ligand-based scoring functions will share this ability. Machine 
learning models may excel at this task given their interpolation capabilities. Structure-
based scoring functions requiring conformation generation or relying on knowledge-based 
parameters, such as molecular mechanics, might be less suited for this purpose. Even then 
one could return null or negative fitness values when a molecule cannot be evaluated, in 
which case the objective function acts as a constraint itself. Lastly, while it is usually 
undesirable to design difficult to synthesize or even chemically invalid molecules some 
readers may find use in expressly generating these sorts of unreasonable molecules, for 
example as negative training data for machine learning models [151]. 
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 Computationally efficient 
enforcement of molecular 
constraints 

 Source 

This chapter is based on the publication: 

Kerstjens, A., De Winter, H. LEADD: Lamarckian evolutionary algorithm for de novo drug 
design. J Cheminform 14, 3 (2022). https://doi.org/10.1186/s13321-022-00582-y 

 Problem statement 

In the previous chapter we showcased the benefits of constrained molecular design. We 
determined that an evolutionary algorithm, when limited to constructing molecules 
composed of bonds or small circular atomic environments found in reference desirable 
chemistry, enables the design of fitter (i.e. higher objective values), easier to synthesize 
and more drug-like molecules. 

Yet not all was sunshine and roses. Despite using constraints, some of the designed ring 
systems were unwieldly. Other molecules looked sane, but were rather boring hydrocarbon 
skeletons. Most concerningly, since the constraints were enforced in a computationally 
naive way the the throughput of the generator was poor, making it unsuitable for many 
use cases. 

In this chapter we address these concerns by describing Lamarckian Evolutionary Algorithm 
for de novo Drug Design (LEADD). Much like the previously described algorithm, LEADD will 
mimic reference chemistry by ensuring that the bonds/environments in designed 
molecules have been observed in reference molecules. However it differs in the following: 

● Molecules will be constructed as combinations of multi-atomic molecular fragments 
instead of single atoms. By capturing entire ring systems in fragments we rid ourselves 
of the challenge of designing reasonable ring systems atom-by-atom. Moreover, 
fragment mutations are associated with a bigger step size in chemical space, which may 
help the algorithm in escaping local fitness minima and discovering interesting chemical 
entities. 
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● A computationally efficient algorithm will be in charge of forming sane bonds, instead 
of cycling through all bonds that could be formed and determining which ones are 
acceptable according to some filters. 

Additionally, we will explore a Lamarckian evolutionary mechanism that adjusts the future 
reproductive behavior of molecules based on the outcome of previous generations. LEADD 
attempts to strike a balance between optimization power (OP), synthetic accessibility (SA) 
of designed molecules and computational performance. 

 Methodology 

4.3.1 Fragment library creation 

A virtual library, assumed to be representative of drug-like chemical space, is fragmented 
to yield the fragments employed by LEADD during the design process. 

Within this context, a fragment is a connectivity-encoding molecular subgraph of the 
source molecule from which it was extracted. A connection is an object describing the bond 
between two atoms and is directional by nature. It can be represented as a three-integer 
tuple, where the integers describe the starting atom type, ending atom type and bond type, 
respectively. Bonds are classified into either single, double or triple bond type (aromatic 
bond types do not occur since rings are not fragmented; see below). While any atom typing 
scheme may be used, we have implemented MMFF94 [152] and Morgan atom types in 
LEADD. Morgan atom types are integers describing an atom’s circular chemical 
environment. They are the bit indices of a RDKit sparse Morgan fingerprint [34, 47] after r 
iterations of the Morgan algorithm [46] (see 1.3). For clarity, the examples and figures in 
this chapter use MMFF94 atom types. 

We distinguish between connections, which are generic objects describing the type of an 
atom–atom bond, and connectors, which are specific instances of a connection centered 
on a fragment’s atom. During molecule fragmentation, the bonds between the fragment’s 
molecular subgraph and its extra-fragment adjacent atoms are recorded as connectors 
(Figure 4.1). 
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Figure 4.1. Fragmentation example of two molecules. The input molecules (A) are assigned MMFF94 atom 
types (B). Ring systems and all possible subgraphs from the remaining linkers and side chains of a given size 
(in this example s ϵ [0 .. 1]) are extracted as fragments (C). The bonds that were cut to extract fragments 
become connectors, and are represented as three-membered tuples in parenthesis. The number in bold below 
each fragment is its ID. 
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For each molecule, fragmentation starts by isolating ring systems from the acyclic regions. 
Rings pertaining to the Smallest Set of Smallest Rings (SSSR) [23] are considered to be part 
of the same ring system if they share at least one atom. Given the complexities of designing 
drug-like ring systems, we decided to consider whole ring systems as fragments. The 
remaining acyclic structures may either be taken as fragments as a whole or subjected to 
systematic fragmentation by extracting all possible molecular subgraphs of a given size 
from them, with each subgraph becoming a fragment (Figure 4.1). Hydrogens are treated 
implicitly. The size of the extracted subgraphs (s), given in number of bonds within the 
subgraph, is provided by the user. When s = 0, single atom fragments are generated. 
Fragments of different sizes can be combined by specifying a range of sizes. 

Two fragments are considered equivalent only if both their molecular graph and connectors 
are the same. Both attributes are encoded as canonical ChemAxon extended SMILES 
(CXSMILES) [153] and molecular identity is assessed as canonical CXSMILES identity. The 
generated fragments, their connectors, frequencies, sizes and other convenience 
information are stored in a relational database. When a generated fragment is already 
present in the database its frequency is incremented by one. 

4.3.2 Connection compatibility rules 

Fragment compatibility is defined at the connection level. Two fragments can be bonded 
together if two of their free connectors are compatible. Whether two connections are 
compatible is determined by a set of pairwise and symmetric compatibility rules. 

The compatibility rules are extracted from the connections table of the fragment database 
according to a user-specified compatibility definition. We employ two of those definitions, 
termed the “strict” and “lax” compatibility definitions. Both definitions are illustrated in 
Figure 4.2. 
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Figure 4.2. Connection compatibilities of the connections in Figure 4.1 according to the strict (A) and lax (B) 
compatibility definitions. Since in the lax definition the end atom type is irrelevant it is omitted. 

According to the strict definition two connections are compatible only if (a) their bond 
types are the same, and (b) their atom types are mirrored (i.e. the start atom type of one 
is the end atom type of the other and vice versa). Consequently, only a single connection is 
compatible with each connection. During molecule design this entails that the connectivity 
of fragments to their flanking atoms in their source molecules is preserved. In other words, 
a fragment must be connected to atoms of the same atom type as those that flanked the 
fragment in the source molecule. 

When following the lax compatibility definition two connections are compatible if (a) their 
bond types are the same, and (b) if the starting atom type of one has been previously 
observed paired with the starting atom type of the other in any connection. This definition 
expands the connectivity scope from the fragment’s source molecule to the entire source 
molecules pool. In other words, two atom types can be connected if they have been 
observed paired together in any of the database’s connections, which means they were 
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bonded in at least one of the source molecules. As such, the strict compatibility definition 
is a subset of its lax counterpart. 

4.3.3 Chromosomal representation and initialization 

Molecules are represented internally as meta-graphs [64], where each vertex is a molecular 
graph corresponding to a fragment, and the edges describe which connectors bind the 
fragments (Figure 4.3). Due to the complexities of designing drug-like ring systems we treat 
ring systems as whole fragments, represented as a single vertex in the meta-graph. 
However, while the genetic operators do not create cycles in the meta-graph, they would 
work on existing cycles if one were to add a cyclization operator in the future. 

The meta-graph chromosome can be translated into a single molecular graph by connecting 
the molecular graphs of all fragments (Figure 4.3). Thereafter, hydrogens are added to 
satisfy all incomplete valences. For elements with more than one valid valence like sulphur 
or phosphorus hydrogens are added up to the closest valid valence. 

 

Figure 4.3. Chromosomal representation of a molecule created through combination of fragments in Figure 
4.1 using the lax compatibility definition. (a) Chromosomal meta-graph. Numbered vertices correspond to 
fragment IDs. Numbers between parenthesis represent connector tuples. Bonds between connectors are 
represented as rectangles. (b) The chromosome with fragments shown as their molecular graphs. (c) 
Translation of the chromosome to the molecule seen by the user. 
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Upon initialization, for true de novo drug design random chromosomes are generated by 
successively combining random fragments. However, in some instances the user may want 
to perform molecule optimization instead, starting from a known population of molecules. 
In this case, it’s possible to convert regular molecular graphs into meta-graphs by following 
the previously laid out fragmentation procedure using single atom acyclic fragments (s = 0). 
If any of the connections generated during the fragmentation of starting molecules do not 
appear in the database, connection compatibility information won't be available for them 
and the molecule will therefore be skipped. 

4.3.4 Genetic operators 

LEADD employs eight distinct genetic operators to modify the chromosome and generate 
offspring (Figure 4.4). Some of these operators have a peripheral and internal variant, 
referring to the location of fragments on which they operate. Peripheral fragments are 
those connected to one or less other fragments (vertex degree d ≤ 1), while internal 
fragments are those connected to two or more fragments (d ≥ 2). While peripheral 
operators are theoretically sufficient to access the entirety of the search space, in practice 
this relies on statistically unlikely sequences of operations, since to modify the core of the 
molecule one would have to “backtrack” and remove all peripheral fragments obstructing 
it. Hence, the algorithm would be very likely to get stuck in local minima on the fitness 
landscape. 

The function of peripheral variants is mostly self-explanatory: peripheral expansions attach 
a fragment sampled from the database to a free connector, while peripheral deletions 
delete a peripheral fragment. 

In internal expansions a fragment is inserted between a target fragment and one or more 
of its adjacent fragments. For this purpose, connectors involved in bonding the target 
fragment to the adjacent fragments are considered free. 

In an internal deletion an internal target fragment is deleted. This is only possible if one of 
the fragments adjacent to the target fragment can “take its place” and bond to the 
remainder of the adjacent fragments. 

In a substitution a target fragment is replaced by a fragment in the database. Connectors 
bonding the target fragment to its neighboring fragments are deemed free. 
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Figure 4.4. Illustration of the resulting chromosomes after applying each of the eight genetic operators to 
the chromosome given in Figure 4.3a. 
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Transfections derive their name from the corresponding biochemical technique of inserting 
genetic material into cells. Transfections are similar to substitutions in that they replace 
one fragment with another, with the difference being that the replacement fragments are 
sourced from the molecule population instead of the fragments database. Hence, they 
exploit the internal variability of the population, fulfilling a similar role to crossover 
operators in traditional genetic algorithms. We opted out of traditional crossover operators 
as none of the traditional approaches would have served us well. Subgraph exchange [12, 
64, 100, 115, 116] (as described in section 3.3.8.1) without infringing upon the connection 
compatibility rules would have been challenging. Side chain exchange [81, 117, 118] 
requires the presence of a large common substructure, which is unlikely if the fragments 
are diverse and the number of fragments is large. While the transfection operator is less 
disruptive than a crossover operator, the unidirectional flow of genetic material in 
transfections is easier to implement, guarantees the success of the operation and reduces 
the time complexity from O(n2) to O(n) compared to a bidirectional crossover. 

Translations/rotations move a fragment from one position and orientation to another 
within the same molecule. They operate similar to a deletion and expansion in tandem. By 
inserting the fragment back in its starting position but with a different orientation it can 
effectively be rotated in place. 

Lastly, for those scoring functions operating on 3D molecular structures, a stereochemistry 
flip operator is available. This operator chooses a random chiral atom or stereochemical 
double bond and inverts its stereochemistry. 

 Connection rules enforcement 

LEADD’s genetic operators satisfy the connection compatibility rules by searching for 
fragments that can bond simultaneously to a given combination of neighbor fragments. 
Whether a specific query fragment fulfils the above condition can be expressed as a 
Maximum Bipartite Matching problem (MBPM). A bipartite graph is a graph with two 
separate vertex sets or “parts”, where edges involve one vertex of each set. Given a 
bipartite graph, a matching is a selection of edges such that no vertex is involved in more 
than one edge. In MBPM the goal is to find the matching of maximum cardinality, that is, 
the matching with the largest possible number of edges. 

We construct the bipartite graph by placing the query fragment’s free connectors in one 
vertex set, and the fragments within the combination in the other vertex set (Figure 4.5). 
The edges between both vertex sets are drawn according to the lax connection 
compatibility rules (Figure 4.2B), with an edge representing that a connection is compatible 
with a fragment. This MBPM is then solved with a modified version of the Hopcroft-Karp 
algorithm [154]. The standard version of the algorithm is deterministic and always returns 
the same matching, even if multiple matchings with the same cardinality exist. By 
randomizing the order in which it iterates over vertices and edges it returns a random 
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maximum cardinality matching instead. MBPM attempts to assign each of the neighboring 
fragments to one of the central fragment’s connectors. If an arrangement is found where 
every neighbor fragment is bound to the central fragment without reusing any connectors, 
that is, the cardinality of the matching is equal to the number of neighbor fragments, the 
query fragment is compatible with said combination of fragments. 

 

Figure 4.5. MBPM constructed to query whether a hypothetical fragment with a given set of connectors (left) 
is compatible with a combination of fragments (right). Black and orange edges represent compatibility 
relationships. The solution to the MBPM (i.e. the matching) is shown as the orange highlighted edges. Since 
the cardinality of the matching is equal to the number of flanking fragments our hypothetical fragment is 
compatible. 

One can draw an analogy between finding suitable fragments and solving a jigsaw puzzle. 
If we equate fragments to be puzzle pieces, given a combination of flanking pieces the goal 
is to determine whether a query piece can connect to all of them simultaneously (Figure 
4.6). 

  



Computationally efficient enforcement of molecular constraints 

 
— 

76 

 

Figure 4.6. Illustration of how solving a jigsaw puzzle can be represented as a MBPM. The goal is to connect 
the orange central puzzle piece to all other flanking puzzle pieces (A-D). Each tab of the central piece must 
match a blank in one of the flanking pieces. Evidently not every piece arrangement allows for this (left), but 
some do (right). If an optimal arrangement exists we can find it through MBPM. We can verify its optimality 
by comparing the cardinality of the matching (number of highlighted edges) to the number of fragments. 
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To find all fragments that could bond to a combination of fragments one must interrogate 
all candidate fragments separately, which entails solving MBPM multiple times. This is 
computationally reasonable when the number of candidates is small, namely during 
internal deletions, transfections and translations/rotations. However, it becomes 
unreasonable for operations that sample fragments from the large fragments database, 
namely expansions and substitutions. 

In those cases, we solve the problem through Multiple Set Intersection (MSI). Before LEADD 
is executed we precompute which fragments are compatible with each connection 
according to the strict connection compatibility rules and store their IDs in sets (Figure 
4.7A). Since a connection combination may have repeats of the same connection, the 
compatible fragment IDs are stored stratified according to how many instances of 
compatible connections they have. If a fragment is compatible with n instances of a 
connection it is also compatible with 1 to n−1 instances. To be able to control the number 
of ring fragments within the designed molecules, fragments are also stratified according to 
whether these are cyclic or acyclic. 

 

Figure 4.7. Connection-fragment compatibilities of the fragments in Figure 4.1 according to (a) the strict 
compatibility rules and (b) lax compatibility rules, as described in Figure 4.2. Fragment weights are omitted 
for clarity purposes. Fragments are stratified according to their cyclicity, and in the case of the strict 
compatibility definition (a) also according to how many instances (n) of the connection the fragment has. In 
(b), “e” denotes any ending atom type. Note that in (a) higher strata are subsets of the lower strata, and that 
(a) is a subset of (b). 
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At runtime these arrays are loaded, and the list of fragments compatible with a 
combination of connections is calculated as the intersection of the fragment IDs compatible 
with each of its connections separately (Figure 4.8). Note that since fragments may have 
more than one free connector, if we wish to find fragments compatible with a combination 
of fragments, we must define all unique combinations of their free connectors and solve 
the MSI problem for each of them. The final result is the union of all resulting sets. 

 

Figure 4.8. Venn diagram of the multiple intersection result for acyclic fragments compatible with the 
connections combination [(1,1,1), (1,1,1), (7,3,2), (37,3,1)], using the precalculated compatible fragments 
according to the strict compatibility definition (Figure 4.7A). 

Pursuing the jigsaw puzzle analogy further, one could envision recording which puzzle 
pieces have certain connectors in a table. Given a combination of flanking pieces we can 
determine the connectors some central piece ought to have. This specification can then be 
used to search the table for suitable pieces (Figure 4.9). 

The MSI connection-fragment compatibilities must be computed using the strict 
connection compatibility definition to ensure that the same connector does not contribute 
to a fragment showing up in more than one set of compatible fragments. Because of this, 
the MSI approach returns a subset of all fragments that would be deemed compatible 
according to the MBPM approach (Figure 4.7). Nonetheless, the final orientation of 
fragments retrieved with the MSI approach can still be determined through MBPM. 
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Figure 4.9. Illustration of how a jigsaw puzzle can be solved through MSI. Given a set of flanking puzzle pieces 
(A-D), the goal is to find a central piece that can connect to all of them simultaneously. Pieces B-D have a 
single connector, but A has two connectors. Accounting for the possibility that pieces may be rotated, we can 
define two combinations of connectors (left and right). Each of these combinations can be used as lookup key 
in a pre-computed table ordering candidate pieces according to their connectors to retrieve some compatible 
central pieces (left: 2, right: 3, 4). The final result is the union of pieces retrieved with each combination of 
connectors (2, 3, 4). 
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 Operation outcome sampling 

In the event that an operator finds multiple suitable operation outcomes a random one is 
chosen, typically through roulette wheel selection. For expansions, deletions and 
substitutions the weight W of a fragment F is calculated based on its frequency q in the 
database and its size N, in numbers of heavy atoms according to Equation 4.1. 

Equation 4.1 

𝑊ி = 𝑞ி
ఊ

∙ 𝑁ி
ఒ 

In Equation 4.1 exponents γ and λ are user parameters. γ determines how much the 
fragment selection should be guided by the fragment frequencies, with the default being 
γ = 1. If the user wishes true random fragment selection this can be done by setting γ = 0. 
λ is a size biasing term intended to be used when mixing fragments of different sizes. For 
efficiency reasons weights are precalculated and stored alongside the connection-
fragment compatibilities (Figure 4.10). 

 

Figure 4.10. Example of how the weights of the fragments in Figure 4.1 are calculated according to their 
database frequency and the γ exponent (λ = 0) (Equation 4.1). Note that in practice a single γ is chosen. 

For transfections the weight is calculated following the same formula but with the score S 
of the fragment’s owner molecule R as an additional variable term, with a corresponding 
user-specified exponent ζ signifying the transfection bias towards fragments contained in 
high scoring molecules (Equation 4.2). 

Equation 4.2 

𝑊ி = 𝑞ி
ఊ

∙ 𝑁ி
ఒ ∙ 𝑆ி

 

The translation/rotation and stereo flip operators select operation outcomes through 
uniform random sampling instead. 

 Cyclicity control 

Fragment identity comprises both the molecular graph and connectors. Generally, the 
number of unique fragments increases with (1) the size of the fragments and (2) the atom 
type and connector diversity (Table 4.1). Differences in fragmentation procedure between 
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acyclic and cyclic regions of source molecules can cause imbalances in the number of 
unique fragments, as well as their frequencies, which can lead to fragment sampling biases. 
Since cyclic fragments tend to outnumber their acyclic counterparts (Table 4.1), if 
fragments were sampled uniformly (γ = 0, Equation 4.1) it would be more likely to sample 
cyclic fragments. Conversely, under weighted sampling (γ > 1), and when defining acyclic 
fragments as subgraphs of s > 0, certain acyclic atoms are represented in more than one 
fragment. Since ring systems are not fragmented, this causes an overrepresentation of 
acyclic atoms in the fragment frequencies with respect to the cyclic ones. If these factors 
are not accounted for during fragment sampling, we risk designing either very rigid or very 
flexible and non-druglike molecules. 

Table 4.1. Fragment database and connection compatibility statistics for the explored combinations of atom 
typing scheme, fragmentation scheme and MBPM compatibility stringency. a For dummy atom types the strict 
and lax compatibility definitions are equivalent since only one atom type exists. b According to the 
compatibility definition stringency used for MBPM (column 3). 

Atom 
typing 

scheme 

Acyclic region 
fragmentation 

scheme 

MBPM 
compatibility 

stringency 

Number of unique… Average number of compatible… 

atom
 types 

connections 

acyclic 
fragm

ents 

ring fragm
ents 

connections 
/connection 

(M
BPM

b) 

fragm
ents 

/connection 
(strict) 

fragm
ents 

/connection 
(M

BPM
b) 

Dummy 
Subgraph 

(s = 0) 
Strict/Laxa 1 3 116 73287 1 37417 37417 

Dummy 
Subgraph 

(s ϵ [0 .. 2]) Strict/Laxa 1 3 3834 73287 1 39286.7 39286.7 

Dummy None Strict/Laxa 1 2 95430 73287 1 104218 104218 

MMFF 
Subgraph 

(s = 0) 
Strict 64 1316 4869 205637 1 436.8 436.8 

MMFF 
Subgraph 

(s = 0) Lax 64 1316 4869 205637 708.2 436.8 180955 

Morgan 
(r = 1) 

Subgraph 
(s = 0) 

Lax 14811 130494 139774 522517 1157.7 14.1 10127.3 

Morgan 
(r = 1) 

Subgraph 
(s = 0) Strict 14811 130494 139774 522517 1 14.1 14.1 

Morgan 
(r = 1) 

Subgraph 
(s ϵ [0 .. 2]) 

Lax 14811 130494 937087 522517 1157.7 31.7 39008 

Morgan 
(r = 1) 

None Lax 10472 62021 243964 522517 591.5 30.7 16367.3 

Morgan 
(r = 2) 

Subgraph 
(s = 0) 

Lax 381252 1334292 799676 942568 223.9 3.2 845.2 

 

To circumvent this issue the genetic operators with the capacity to modulate the number 
of ring atoms in a molecule (Nr), namely expansions, deletions, substitutions and 
transfections, decide whether and how Nr ought to be changed prior to selecting a suitable 
acyclic or cyclic fragment to do so, according to the current Nr. 

How a genetic operator will modulate Nr is based on a pseudorandom number generator 
and the probabilities returned by up to two functions operating in tandem. The first 
function returns the probability of keeping the number of rings constant (P=) based on the 
current Nr. It consists of a discrete function fit to the shape of a normal distribution’s 
probability density function (PDF), and with its maximum scaled to an arbitrary user 
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provided value (M). The equations of the normal distribution’s PDF and discrete function 
are given in Equation 4.3 and Equation 4.4, respectively. 

Equation 4.3 

𝑃𝐷𝐹(𝑁) =
1

𝜎√2𝜋
∙ 𝑒

ି
ଵ
ଶ

ቀ
ேೝିఓ

ఙ
ቁ

మ

 

Equation 4.4 

𝑃ୀ(𝑁) =
𝑃𝐷𝐹(𝑁)

∑ 𝑃𝐷𝐹(𝑁)
௫(ேೝ)
ேೝୀ

∙
𝑀

𝑃𝐷𝐹(𝜇)
 

Equation 4.5 

𝑃ஷ(𝑁) = 1 − 𝑃ୀ(𝑁) 

The mean of the normal distribution (μ) describes the ideal Nr and its standard deviation 
(σ) the leniency in oscillating said number during evolution. Both parameters are user 
provided and ideally based on some notion of the desired Nr in a solution. Both PDF(Nr) and 
P= are maximum at μ and equal to the user’s scaling target value M. 

While for expansions and deletions this function suffices to decide how to modulate the 
number of rings, for substitutions and transfections, if in the preceding step it was decided 
to change Nr, a second function returns the probability of increasing it (P+) (Equation 4.6). 
This function is a logistic function defined based on μ and σ. 

Equation 4.6 

𝑃ା(𝑁) = 𝑃ஷ(𝑁) ∙
1

1 + 𝑒.ଷସଵఙ∙(ேೝିఓ)
 

Equation 4.7 

𝑃ି(𝑁) = 𝑃ஷ(𝑁) − 𝑃ା(𝑁) 

The growth rate of the logistic function was empirically derived, and is set to be 
approximately the same as the normal distribution’s “steepness”, namely 0.682/2σ, since 
in a normal distribution 68,2% of values are in [μ – σ, μ + σ]. Additionally, by setting the 
midpoint of the logistic function to μ, P+(μ) = P-(μ). The edge case where Nr = 0 is treated 
by setting P- = 0. 

An example of the three aforementioned probability curves is shown in Figure 4.11. 
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Figure 4.11. Probability distributions of keeping the number of ring atoms (Nr) constant (P=), increasing it 
(P+) or decreasing it (P-) based on the current Nr, as described by Equation 4.4 - Equation 4.7. μ = 30, σ = 6, 
M = 0.8. 

4.3.5 Lamarckian evolution guidance 

Given that the database fragment weights are static, so are the likelihoods of genetic 
operation outcomes, regardless of whether the same or similar operations proved 
beneficial or not in the past. In an attempt to improve the efficiency of the algorithm, as an 
extension, we conferred it with a certain ability to “learn” from the outcomes of previous 
genetic operations in hopes of increasing the likelihood of carrying out productive 
operations in the future. To this end, each connector within a molecule is endowed with a 
pair of arrays: one storing the IDs of compatible fragments F and one storing their 
corresponding weights WF. The weights array is initialized to a copy of the database 
fragment weights (Figure 4.10), but it’s free to change with each generation. 

During evolution, a copy of a parent molecule P is subjected to a genetic operation, 
targeting some fragment V, to generate a child molecule C. The score S of C is compared to 
that of P (Equation 4.8). Scores are calculated by the scoring function we optimize for, with 
higher values being better. 

Equation 4.8 

𝛥𝑆 = 𝑆 − 𝑆 
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Molecules keep track of which fragments were placed and/or removed from each 
connector during the operation. For each connector involved in the operation, based on 
the nature of the operation and its outcome (Table 4.2), the weights array of both the P 
and C’s connectors are modified according to Equation 4.9: 

Equation 4.9 

𝑊ி = 𝑊ி ∙ (1 + 𝑔 ∙ 𝑙 ∙ 𝑇𝑐ி) 

In Equation 4.9 g is the reinforcement sign, l is a user-specified reinforcement rate and TcFV 
is the Tanimoto topological similarity coefficient of fragments F and V according to ECFP4 
fingerprints [34]. For performance reasons, all pairwise fragment similarity coefficients are 
precalculated and stored as a square symmetrical matrix in a HDF5 file [155]. 

Table 4.2. Learning rate sign of Equation 4.9 for bond creations (i.e. attaching a fragment to a connector) and 
destructions (i.e. deleting a fragment from a connector) based on the score change associated with the 
operation (Equation 4.8). 

Operation ΔS Learning rate sign (g) 

Bond creation 
> 0 + 1 
≤ 0 - 1 

Bond destruction 
> 0 - 1 
≤ 0 + 1 

Whether the change in weight is positive or negative (g) depends on the nature of the 
operator and the change in score (Table 4.2). LEADD maximizes strictly positive scores. The 
general principle is that if a newly placed fragment at a given connector increased the 
molecule’s score (i.e. improved the score), the weights of similar fragments are increased, 
whereas if it stayed the same or decreased, the weights of similar fragments are decreased. 
The opposite paradigm is true for fragments being removed from a given connector. 

This guided evolution serves two purposes. On one hand it can accelerate convergence by 
focusing the sampling on fragments that have been shown to be associated with good 
scores. On the other hand, since weights of similar fragments are decreased also when the 
score does not change, given enough time it could help the algorithm in escaping local 
fitness minima. 

One could interpret a molecule’s connectors’ weights arrays as its reproductive behavior 
or its memory regarding which chemotypes at which positions are linked to better scores. 
Parents adapt their reproductive behavior to increase the likelihood of generating fit 
offspring based on the outcome of their previous reproductive events. Hence, the 
reproductive behavior is an acquired trait. This, coupled to the fact that the connector 
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arrays are an integral part of the chromosome, and therefore inherited by the offspring, 
constitutes a Lamarckian evolutionary mechanism. 

4.3.6 Evolutionary algorithm 

Over the course of a number of generations (or until some convergence criterion is met) 
the molecules within the population are bred to generate offspring. The user can combine 
the following termination criteria: (1) top molecule score threshold, (2) maximum number 
of generations, and (3) maximum number of generations without improvements to the top 
molecule. Each generation a number of parent molecules is chosen to generate an equal 
number of child molecules. Parents reproduce asexually, and the same parent may 
reproduce more than once in the same generation. A copy of the chosen parent is 
subjected to a genetic operator to yield the child molecule. Molecules are chosen to be 
parents through fitness proportionate selection, with the weight of a molecule R being 
given by Equation 4.10. Note that the ζ parameter takes the same value as in Equation 4.2. 

Equation 4.10 

𝑊ோ = 𝑆ோ
  

Optionally, the user may enforce population topological diversity through means of an 
internal similarity filter. The topological similarity between two molecules is calculated as 
the Tanimoto coefficient between their ECFP4 fingerprint [34]. If the similarity of a child 
molecule to any of the current members of the population surpasses a given threshold, the 
child is discarded. Otherwise, it’s added to the population. 

The child molecules are scored, and a specified number of best scoring molecules within 
the population, including parents, is retained. If guided evolution is enabled the connector 
weights are adjusted based on the change in score caused by the operation. Lastly, the 
surviving molecules are fed to the next generation of the algorithm. 

While the use of fragments and connection compatibility rules is meant to reduce the 
likelihood of designing synthetically unfeasible molecules, this may not be sufficient to 
achieve this goal. For users wishing to consider synthetic accessibility on a higher level a 
SAScore [124] filter and heuristic score modifier [109] are provided. 

A flowchart of the algorithm can be found in Figure 4.12. Note it’s very similar to the 
algorithm described in 3.3.8.1. The most important difference is that LEADD lacks the inner 
loop that previously ensured molecule correctness (Figure 3.7). This makes LEADD more 
computationally efficient. 
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Figure 4.12. Flowchart of LEADD’s main loop. Note that some of the flowchart’s steps are optional, including 
the internal similarity and SAScore filters and the guided evolution. 
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4.3.7 Benchmark 

LEADD’s performance was evaluated with the goal-directed GuacaMol benchmark suites 
[108]. Specifically, we used the “trivial” and “version 2” (V2) benchmark suites (1.8.1). We 
chose to include the trivial benchmarks in our analysis because the majority of the V2 
objective functions point towards topologies of known and synthetically feasible drugs. 
Hence, the objective functions implicitly provide some notions of drug-likeness, potentially 
occluding some SA issues. 

For standardization purposes we used GuacaMol’s training set, which is a subset of ChEMBL 
[136], as fragmentation input. Fragment databases were created for each investigated 
combination of fragmentation and atom typing scheme (Table 4.1). 

The benchmark suite was used to find a set of reasonable default parameters for LEADD. 
Given the large number of parameters an exhaustive parameter exploration was 
unfeasible. We resorted largely to a trial-and-error approach. Some parameters, including 
the population size and convergence criteria were fixed. Additionally, since LEADD requires 
a guess of the number of ring atoms in the ideal solution, where possible, we used the 
benchmark goals to set reasonable values for these parameters (Table 4.3). The rest of the 
parameters were sorted according to their perceived importance. For parameters assumed 
to be uncorrelated we tested multiple values for each one and fixed it to the value that 
yielded the best results. If this was not the case, we evaluated combinations of the 
correlated parameters in a multi-factorial design. 
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Table 4.3. LEADD’s cyclicity control settings used during the GuacaMol benchmark. Nr stands for number of 
ring atoms.Standard deviations are half the means, and maximums are three times the means. 

GuacaMol 
benchmark 

suite 
Benchmark name Mean Nr 

Standard 
deviation Nr 

Maximum Nr 

Trivial 

logP (target: -1.0) 6 3 18 
logP (target: 8.0) 12 6 36 

TPSA (target: 150.0) 18 9 54 
CNS MPO 6 3 18 

QED 18 9 54 
C7H8N2O2 6 3 18 

Pioglitazone MPO 17 8.5 51 

V2 

Celecoxib 
rediscovery 

17 8.5 51 

Troglitazone 
rediscovery 

21 10.5 63 

Thiothixene 
rediscovery 

20 10 60 

Aripiprazole 
similarity 

22 11 66 

Albuterol similarity 6 3 18 
Mestranol similarity 17 8.5 51 

C11H24 6 3 18 
C9H10N2O2PF2Cl 6 3 18 

Median molecules 1 6 3 18 
Median molecules 2 23 11.5 69 

Osimertinib MPO 21 10.5 63 
Fexofenadine MPO 24 12 72 

Ranolazine MPO 18 9 54 
Perindopril MPO 9 4.5 27 
Amlodipine MPO 12 6 36 
Sitagliptin MPO 15 7.5 45 
Zaleplon MPO 15 7.5 45 

Valsartan SMARTS 17 8.5 51 
Deco Hop 20 10 60 

Scaffold Hop 20 10 60 
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Ten replicas were ran for each combination of settings. Benchmark scores and SAScores of 
designed molecules were taken as OP and SA metrics, respectively. ChEMBL [136] feature 
counts were used for SAScore calculations. For statistical analysis the results of all 
benchmarks were pooled per setting. Since OP was found to be distributed non-normally, 
differences in it were evaluated with non-parametric statistical tests: either the Wilcoxon-
Mann–Whitney U-test [141] or the Kruskal–Wallis [140] / Schreirer-Ray-Hare [156] H-test 
followed by pairwise Conover-Iman tests [157] with Šidák correction [142]. SAScores were 
distributed normally and analyzed with t-tests or one- or two-way analysis of variance 
(ANOVA) with interaction followed by Tukey’s Honestly Significant Differences test. 
α = 0.05 was taken as significance level and family-wise error rate (FWER) for all tests. Most 
statistical tests and post hoc corrections were performed using the SciPy [143] and 
statsmodels [144] Python packages, respectively. The Conover-Iman and Schreirer-Ray-
Hare tests were performed with the Scikit-learn Python [158] and rcompanion R packages 
instead [159]. 

LEADD’s performance was compared to that of GB-GA [100], an atom- and graph-based 
genetic algorithm for molecular design which has previously been shown to be a powerful 
optimizer [62, 108], and a standard virtual screen of GuacaMol’s training set using the 
benchmark’s objective function. GB-GA’s mutation rate was set to the default 0.01. Both 
algorithms used a population size of 100 and were granted a maximum of 10,000 
generations. Evolution terminated prematurely after a number of generations without 
improvements in the population’s scores: 1,000 for LEADD and 5 for GB-GA. We explored 
granting GB-GA 1,000 generations without improvement but found that its lack of 
convergence guards caused the population diversity, and ultimately the benchmark scores, 
to degrade during long runs. 
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 Results and discussion 

4.4.1 Base parameter exploration 

LEADD was found to be quite robust to changes in most of its construction parameters, as 
different values did not influence its performance greatly. As an exception, LEADD was 
sensitive to the internal similarity threshold since it’s the algorithm’s main premature 
convergence guard (data not shown). LEADD’s default base parameters can be found in 
Table 4.4. Fragmentation parameters had larger effects on both OP and SA of designed 
molecules, and will be discussed in the coming sections. 

Table 4.4. Summary of LEADD’s default reconstruction settings. Some settings were condensed or omitted 
from this table. For a more detailed list of settings, as well as recommended value ranges, we refer readers to 
the software’s documentation. 

Parameter name Value 
Fragment frequency exponent (γ) 1.0 

Fragment size exponent (λ) 0.0 
Molecule score exponent (ζ) 2.5 
Peripheral expansion weight 4.0 

Internal expansion weight 4.0 
Peripheral deletion weight 4.0 

Internal deletion weight 4.0 
Substitution weight 56.0 
Transfection weight 20.0 
Translation weight 4.0 
Stereo-flip weight 0.0 

Randomize unspecified stereo False 
# seed molecules 100 

# children per generation 100 
# survivors per generation 100 
Maximum child similarity 0.9 
Maximum # generations 10,000 

Maximum # generations stuck 1,000 
SAScore filter Disabled 

SAScore heuristic Disabled 
Lamarckian evolution guidance Disabled 
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4.4.2 Effect of atom typing scheme 

One of the main questions we wanted to answer was if the knowledge-based atom 
compatibility rules aided the algorithm in designing SA molecules. To that end, we 
measured the SAScores of molecules designed using the MMFF and Morgan (r = 1 and r = 2) 
atom typing schemes. As a control, we included “dummy” atom types (i.e. all atoms have 
the same atom type), whereby all connections with the same bond order are compatible. 
All tests used single-atom acyclic fragments (s = 0). Molecules with lower SAScores are 
predicted to be easier to synthesize. Figure 4.13 shows that molecules designed with 
Morgan atom types, regardless of the radius, have lower SAScores than those designed 
with dummy or MMFF atom types. Differences between all other pairs of atom typing 
schemes were of little practical significance (Table 4.5). It’s interesting to note that the 
mean SAScore values for Morgan atom types fall well below 4.5, which has been suggested 
as a cut-off for easy to synthesize molecules [125]. By contrast, the mean SAScore values 
for dummy and MMFF atom types are approximately 4.6. 

Unfortunately, we also noted that Morgan atom types were associated with significantly 
lower OP compared to dummy and MMFF atom types (Figure 4.14). The differences 
between dummy and MMFF atom types and between Morgan atom types of different radii 
were not statistically significant (Table 4.6). The results for the Valsartan SMARTS 
benchmark are very poor, regardless of the chosen atom typing scheme. This poor 
performance permeates throughout this work, and can be explained by the associated 
scoring function. Said scoring function has a binary component demanding the presence of 
a specific substructure. Binary scoring functions respond abruptly to molecular changes, 
and do not provide fine enough feedback to the optimization algorithm. 

Taken together these results suggest that the choice of atom typing scheme defines a 
trade-off between OP and SA. The chemical diversity of atomic environments is vast, and 
classifying them into a small number of atom types means that atom typing schemes are 
degenerate, much like the genetic code. The number of distinct atom types can be taken 
as an approximate measure of the scheme’s degree of degeneracy. LEADD tries to replicate 
the molecular connectivity of molecules seen in a library of drug-like molecules, but if a 
very degenerate atom typing scheme mischaracterizes this connectivity the algorithm’s 
ability to replicate it falters. In our fragment databases we recorded 64 MMFF, 14,811 
Morgan (r = 1) and 381,252 Morgan (r = 2) atom types (Table 4.1). Unique Morgan atom 
types greatly outnumber their MMFF counterparts, explaining the better SA associated 
with them. 
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Figure 4.13. Comparison of designed molecules’ SAScore distributions using different atom typing schemes. 
Includes molecules of all benchmarks and replicas. Molecules with lower SAScores are predicted to be easier 
to synthesize. 

Table 4.5. Multiple comparisons of SAScore means using different atom typing schemes with Tukey’s HSD 
post-hoc test (FWER = 0.05). The test was preceded by a one-way ANOVA (F = 5675.82, p < 0.001). 

Group 1 Group 2 𝑺𝑨𝑺𝒄𝒐𝒓𝒆തതതതതതതതതതതത
𝑮𝒓𝒐𝒖𝒑𝟐 − 𝑺𝑨𝑺𝒄𝒐𝒓𝒆തതതതതതതതതതതത

𝑮𝒓𝒐𝒖𝒑𝟏 Adjusted p-
value 

Dummy MMFF 0.0636 < 0.001 
Dummy Morgan (r = 1) -0.7070 < 0.001 
Dummy Morgan (r = 2) -0.817 < 0.001 
MMFF Morgan (r = 1) -0.7706 < 0.001 
MMFF Morgan (r = 2) -0.8806 < 0.001 

Morgan (r = 1) Morgan (r = 2) -0.1101 < 0.001 
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Figure 4.14. LEADD optimization power comparison between atom typing schemes. Benchmark scores range 
between 0 and 1, with higher scores being better. Boxes represent interquartile ranges (IQR), the black line 
within them medians and the whiskers Q ± 1.5IQR. Data beyond the whiskers are considered outliers and 
represented as dots. Colored dots represent maximum benchmark scores. 

Table 4.6. Multiple comparisons of benchmark score distributions´ stochastic dominances using different atom 
typing schemes with Conover-Iman´s post-hoc test with Šidák correction (FWER = 0.05). The test was preceded 
by a Kruskal-Wallis test (H = 149.90, p < 0.001). 

Group 1 Group 2 𝑺𝒄𝒐𝒓𝒆෫
𝑮𝒓𝒐𝒖𝒑𝟐 − 𝑺𝒄𝒐𝒓𝒆෫

𝑮𝒓𝒐𝒖𝒑𝟏 Adjusted p-
value 

Dummy MMFF -0.066 0.189 
Dummy Morgan (r = 1) -0.302 < 0.001 
Dummy Morgan (r = 2) -0.384 < 0.001 
MMFF Morgan (r = 1) -0.236 < 0.001 
MMFF Morgan (r = 2) -0.318 < 0.001 

Morgan (r = 1) Morgan (r = 2) -0.082 0.099 
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The atom typing scheme’s degree of degeneracy also defines the observed OP-SA trade-
off. LEADD considers two atom types to be compatible, and therefore suitable for bonding, 
if they have been observed bonded in reference molecules at least once. Given the same 
set of reference molecules, the probability of observing any specific pair of atom types 
bonded is larger when the number of distinct atom types is small. Consequently, the more 
degenerate an atom typing scheme, the more promiscuous its atom types, in the sense 
that atom types will be deemed compatible with a larger number of other atom types. 
Ultimately, this also affects the number of fragments that are compatible with each 
connection. In the case of MMFF atom types, 85.96% of all fragments are compatible with 
the average connection according to the lax compatibility definition. This number drops to 
1.53% and 0.05% for Morgan (r = 1) and Morgan (r = 2) atom types, respectively. Even more 
dramatic differences are observed when considering the strict compatibility definition 
(Table 4.1). This highlights that atom type promiscuity enables the algorithm to access a 
larger number of states (i.e. molecules) from the current state. In other words, 
promiscuous atom types are associated with a dense chemical transition graph (Figure 3.1). 
This may aid the algorithm in escaping local fitness minima and explain the associated 
greater OP. 

Out of the tested atom typing schemes, we believe that for most use cases Morgan (r = 1) 
atom types represent the best OP-SA compromise. Other compromises of interest may be 
achievable with alternative atom typing schemes. LEADD can be readily expanded to use 
other atom typing schemes. For instance, one could collapse Morgan atom types into a 
smaller number of atom types with some type of hashing function. However, as this would 
inevitably cause collisions, the hashing function would need to be locality sensitive to avoid 
merging completely unrelated atom types. An alternative approach might be to cluster 
atomic environments and use cluster assignments as atom types. This approach could allow 
fine control over the OP-SA trade-off by modulating the number of clusters. We would like 
to remark however that the number of unique atom types is only a good metric for atom 
typing degeneracy when atomic environments are distributed uniformly across atom types. 
This is likely to be the case for Morgan atom types since they are calculated using hashing 
functions, which are designed to distribute inputs uniformly over an integer range, but may 
not be the case for other schemes. Instead, it would be more appropriate to use metrics 
that measure the information content of atom types (i.e. within atom type atomic 
environment similarities). 

4.4.3 Implications of compatibility binarization 

LEADD’s approach to find suitable fragments for genetic operators requires that 
connection compatibility be expressed as a binary property. However, it may be argued 
that connection pairs are on a compatibility spectrum based on the observed frequency of 
said pair: if a pairing is observed thousands of times it’s more compatible than if it’s 
observed just once, yet they are deemed equally compatible. Consequently, infrequent 
connections may misrepresent molecular connectivity. We regularly observed large 
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disparities among compatible connection pairing frequencies and wanted to measure the 
extent to which this is detrimental to the SA of designed molecules. By default the MBPM 
approach uses the lax compatibility definition, but this may be changed to the strict 
definition. Under the strict compatibility definition each connection is compatible with 
exactly one other connection, eliminating compatible connection pairing frequency 
imbalances. We found no practically significant differences in SAScore when using the strict 
compatibility definition for MBPM as opposed to the lax one (Figure 4.15). Considering that 
a fragment’s connectivity is part of its identity, infrequent connections are contained to 
infrequent fragments. Since LEADD samples fragments with a probability proportional to 
their frequency we hypothesize that, while the binarization of connection compatibility 
does misrepresent the molecular connectivity of the reference library, this rarely manifests 
itself in designed molecules. 

 

Figure 4.15. Comparison of designed molecules’ SAScore distributions using different MBPMB connection 
compatibility stringencies. Includes molecules of all benchmarks and replicas. Molecules with lower SAScores 
are predicted to be easier to synthesize. 
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4.4.4 Effect of fragmentation scheme 

The atom typing scheme degeneracy, the binarization of connection compatibility, and 
other factors such as connection compatibility being expressed only as pairwise 
relationships, all contribute towards LEADD’s description of molecular connectivity being 
imperfect. Each bond created by the algorithm has a probability of being non-drug-like. 
While we have discussed approaches to decrease this probability, an alternative approach 
to improve the drug-likeness of designed molecules is to reduce the number of bonds 
created by the algorithm. This can be achieved using larger fragments. To prove this we ran 
the benchmark using different types of acyclic fragments: single-atom fragments (s = 0), 
fragments with 0 to 2 bonds (s ϵ [0 .. 2]) and whole side chains and linkers resulting from 
the deletion of ring systems. In general, the SAScores of molecules designed using larger 
fragments were lower than those designed using smaller fragments (Figure 4.16). While 
the SAScore differences between s = 0 and s ϵ [0 .. 2] were almost negligible, using 
monolithic acyclic fragments did lead to substantial improvements in SAScore (Table 4.7, 
Table 4.8). It’s interesting to note that the observed improvements in SAScore were larger 
for dummy atom types than for Morgan atom types, highlighting that the bonds created 
when using Morgan atom types are more drug-like. 

 

Figure 4.16. Comparison of designed molecules’ SAScore distributions using different atom typing schemes. 
Includes molecules of all benchmarks and replicas. Molecules with lower SAScores are predicted to be easier 
to synthesize. 
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Table 4.7. Two-way ANOVA on the effect of atom typing scheme, fragmentation scheme and their interaction 
on the SAScore of designed molecules. 

Source of variation df Sum Sq F p-value 
Atom typing 1 15,205.18 16,055.82 < 0.001 

Fragmentation 2 1,879.06 992.09 < 0.001 
Interaction 2 119.08 62.87 < 0.001 

Residual 154,720 146,522.90 

Table 4.8. Multiple comparisons of SAScore means using different combinations of atom typing and 
fragmentation schemes with Tukey’s HSD post-hoc test (FWER = 0.05). 

Group 1 Group 2 
𝑺𝑨𝑺𝒄𝒐𝒓𝒆തതതതതതതതതതതത

𝑮𝒓𝒐𝒖𝒑𝟐

− 𝑺𝑨𝑺𝒄𝒐𝒓𝒆തതതതതതതതതതതത
𝑮𝒓𝒐𝒖𝒑𝟏 

Adjusted 
p-value 

Dummy (s = 0) Dummy (s ϵ [0 .. 2]) -0.1030 < 0.001 
Dummy (s = 0) Dummy (none) -0.3111 < 0.001 
Dummy (s = 0) Morgan (r = 1) (s = 0) -0.7070 < 0.001 
Dummy (s = 0) Morgan (r = 1) (s ϵ [0 .. 2]) -0.6913 < 0.001 
Dummy (s = 0) Morgan (r = 1) (none) -0.9016 < 0.001 

Dummy (s ϵ [0 .. 2]) Dummy (none) -0.2082 < 0.001 
Dummy (s ϵ [0 .. 2]) Morgan (r = 1) (s = 0) -0.6040 < 0.001 
Dummy (s ϵ [0 .. 2]) Morgan (r = 1) (s ϵ [0 .. 2]) -0.5884 < 0.001 
Dummy (s ϵ [0 .. 2]) Morgan (r = 1) (none) -0.7987 < 0.001 

Dummy (none) Morgan (r = 1) (s = 0) -0.3959 < 0.001 
Dummy (none) Morgan (r = 1) (s ϵ [0 .. 2]) -0.3802 < 0.001 
Dummy(none) Morgan (r = 1) (none) -0.5905 < 0.001 

Morgan (r = 1) (s = 0) Morgan (r = 1) (s ϵ [0 .. 2]) 0.0157 0.4443 
Morgan (r = 1) (s = 0) Morgan (r = 1) (none) -0.1946 < 0.001 

Morgan (r = 1) (s ϵ [0 .. 2]) Morgan (r = 1) (none) -0.2103 < 0.001 
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The use of larger fragments did not affect LEADD’s OP when using dummy atom types. 
However, we did observe significant improvements in OP when using large fragments 
coupled with Morgan (r = 1) atom types (Figure 4.17, Table 4.9, Table 4.10). Genetic 
operations using larger fragments are associated with bigger step sizes in chemical space, 
which allows the algorithm to escape local fitness minima. Because the number of chemical 
states accessible from a given state is much smaller when using Morgan atom types as 
compared to dummy atom types, the probability of getting stuck in local fitness minima is 
larger in the former case. This explains why a bigger step size is beneficial for Morgan, but 
not dummy atom types. It’s worth noting that the step size associated with larger 
fragments is not longer solely because of the bigger number of atoms per fragment, but 
also due to the greater degree of branching in larger fragments. While we implemented 
internal operators that attempt to mitigate this, there still is a risk that the algorithm may 
design certain highly branched topologies that are difficult to modify with genetic 
operators without unwinding the entire stack of operations. Since large fragments can 
capture branched motifs as a single unit, the risk of this happening is reduced. Future 
algorithms could improve upon this by implementing operators that target entire sections 
or branches of the meta-graph instead of a single vertex. 

 

Figure 4.17. LEADD optimization power comparison between different combinations of atom typing and 
fragmentation schemes. Boxes represent interquartile ranges (IQR), the black line within them medians and 
the whiskers Q ± 1.5IQR. Data beyond the whiskers are considered outliers and represented as dots. Colored 
dots represent maximum benchmark scores. 
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Table 4.9. Scheirer-Ray-Hare test on the effect of atom typing scheme, fragmentation scheme and their 
interaction on the GuacaMol benchmark scores. 

Source of variation df Sum Sq H p-value 
Atom typing 1 36,511,969 169.401 < 0.001 

Fragmentation 2 1,854,912 8.606 0.014 
Interaction 2 439,082 2.037 0.361 

Residual 1,604 307,991,950 

Table 4.10. Multiple comparisons of benchmark score distributions’ stochastic dominances using different 
combinations of atom typing and fragmentation schemes with Conover-Iman´s post-hoc test with Šidák 
correction (FWER = 0.05). 

Group 1 Group 2 
𝑺𝒄𝒐𝒓𝒆෫

𝑮𝒓𝒐𝒖𝒑𝟐

− 𝑺𝒄𝒐𝒓𝒆෫
𝑮𝒓𝒐𝒖𝒑𝟏 

Adjusted p-
value 

Dummy (s = 0) Dummy (s ϵ [0 .. 2]) 0.006 0.949 
Dummy (s = 0) Dummy (none) 0.012 0.900 
Dummy (s = 0) Morgan (r = 1) (s = 0) -0.302 < 0.001 
Dummy (s = 0) Morgan (r = 1) (s ϵ [0 .. 2]) -0.176 < 0.001 
Dummy (s = 0) Morgan (r = 1) (none) -0.122 < 0.001 

Dummy (s ϵ [0 .. 2]) Dummy (none) 0.006 0.998 
Dummy (s ϵ [0 .. 2]) Morgan (r = 1) (s = 0) -0.308 < 0.001 
Dummy (s ϵ [0 .. 2]) Morgan (r = 1) (s ϵ [0 .. 2]) -0.182 < 0.001 
Dummy (s ϵ [0 .. 2]) Morgan (r = 1) (none) -0.128 < 0.001 

Dummy (none) Morgan (r = 1) (s = 0) -0.315 < 0.001 
Dummy (none) Morgan (r = 1) (s ϵ [0 .. 2]) -0.188 < 0.001 
Dummy (none) Morgan (r = 1) (none) -0.134 < 0.001 

Morgan (r = 1) (s = 0) Morgan (r = 1) (s ϵ [0 .. 2]) 0.127 0.185 
Morgan (r = 1) (s = 0) Morgan (r = 1) (none) 0.180 0.015 

Morgan (r = 1) (s ϵ [0 .. 2]) Morgan (r = 1) (none) 0.053 0.932 
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Observant readers will have noticed the abrupt drop in the Ranolazine MPO benchmark 
score when using Morgan atom types coupled with monolithic fragments (i.e. Morgan (r = 
1) (none)). Said benchmark provides a molecule starting point, which must be converted to 
a meta-graph through fragmentation. This process is only possible when the connections 
resulting from the fragmentation are also present in the database and have associated 
compatibility information. This turns out to not be the case for the monolithic fragment 
database. As such, the benchmark fails to run and receives a null score. 

Given that larger fragments improve SA and either increase OP or do not affect it, it is 
tempting to conclude that the use of large fragments is always preferable. However, it 
should be noted that the larger step sizes associated with big fragments also carry the risk 
of “jumping” over good solutions. This can be partially overcome by mixing fragments of 
different sizes (e.g. s ϵ [0.. 2]). A more pressing issue is that the use of large fragments 
requires a very extensive and diverse library of fragments to adequately represent chemical 
space. Besides dictating greater amounts of memory to store the pre-calculated compatible 
fragments, as the number of fragments grows so does the size of the search space, and 
with it the number of operations and generations necessary to adequately explore it. For 
Morgan atom types, we believe that the improved SA and OP tied to monolithic fragments 
justify their use. However, for dummy atom types we think that the minor SA 
improvements are not sufficient justification. 

4.4.5 Handling fragment numerosity 

A large number of fragments also poses the question of how to prioritize fragments to 
explore chemical space efficiently. We opted to use the fragments’ frequencies in drug-like 
matter as biasing weights to determine the outcomes of genetic operations. In an attempt 
to improve upon this, we also implemented a Lamarckian evolutionary mechanism that 
biases the exploration towards certain areas of the search space based on the outcomes of 
previous operations. A similar concept was explored in the particle swarm optimizer 
Colibree [98], where each molecule has preferences towards certain fragments, encoded 
as a floating point number array. In Colibree these preferences apply to the entire 
molecule, which is computationally more efficient and enables straightforward 
communication of preferences among molecules within the swarm, but lacks the spatial 
resolution that one would desire when working with structure-based scoring functions. Our 
Lamarckian evolutionary mechanism attempts to improve on this by assigning fragment 
preferences to connectors instead. Unfortunately, with the explored settings, the 
Lamarckian guided evolution mechanism failed to significantly improve the optimization 
power of the algorithm (data not shown). One possible explanation for the shortcomings 
of the approach is that, given the large number of fragments (105–106 compared to the 
7,196 of Colibree), the number of generations for which LEADD runs (i.e. 1,000–10,000) is 
insufficient to resolve connector-fragment preferences. The impermanence of connectors 
may exacerbate the problem. When a fragment is deleted or substituted the knowledge 
accumulated in its connector arrays is erased, effectively resetting the progress of the 
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Lamarckian evolution. A potential solution could be mapping fragment preferences to 
points in space instead, which also would allow molecules to share their preferences among 
each other. However, the observed slower runtimes and larger memory footprints 
discourage us from exploring this approach further. 

4.4.6 Comparison of SA improvement approaches 

LEADD also ships with more traditional means of improving the SA of designed molecules, 
namely a simple filter that deletes molecules with SAScores above a given threshold and a 
SAScore-based heuristic score modifier that biases the objective function towards 
molecules with lower SAScores, as described by Gao and Coley [109]. As a reminder, the 
SAScore is a composite metric based on (a) how much the molecular connectivity of a 
molecule resembles that of reference drug-like molecules (i.e. FeatureScore) and (b) the 
number of synthetic nuisances within that molecule, for example stereo centers, spiro-, 
bridged- and macro-cycles (i.e. ComplexityPenalty). Because the atom type approach to 
increase SA only tries to improve the FeatureScore it can be of interest to combine it with 
the SAScore filter or heuristic. We were interested in comparing how these different 
approaches to increase SA fare on their own. The parameters for the SAScore filter 
(SAScore ≤ 4.5) and heuristic (µ = 2.23, σ = 0.65) were taken from the literature, where they 
have been described as effective means to design SA molecules [109, 125]. Our results 
confirm that all approaches can be used to design more SA molecules (Figure 4.18, Table 
4.11) and that, with the exception of the SAScore filter, this was accompanied by a 
significant loss of optimization power (Figure 4.19, Table 4.12). There appears to be an 
inverse correlation between SA and OP, and the observed OP-SA compromises seem to 
define a FeatureScore Pareto front (Figure 4.20). However, it should be noted that each 
approach has a different SA target. We did not manage to find SAScore filter and heuristic 
parameters that replicate the SAScore distribution of Morgan (r = 1) atom types. Hence, 
which approach provides the best OP-SA trade-off, if any, is inconclusive. 
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Figure 4.18. Comparison of designed molecules’ SAScore distributions using different SA optimization 
strategies. Includes molecules of all benchmarks and replicas. 

Table 4.11. Multiple comparisons of SAScore means using different approaches to improve SA with Tukey’s 
HSD post-hoc test (FWER = 0.05). The test was preceded by a one-way ANOVA (F = 45720.82, p < 0.001). 

Group 1 Group 2 𝑺𝑨𝑺𝒄𝒐𝒓𝒆തതതതതതതതതതതത
𝑮𝒓𝒐𝒖𝒑𝟐 − 𝑺𝑨𝑺𝒄𝒐𝒓𝒆തതതതതതതതതതതത

𝑮𝒓𝒐𝒖𝒑𝟏 Adjusted p-
value 

Dummy Morgan (r = 1) -0.9016 < 0.001 

Dummy 
Dummy 

(SAScore filter) 
-0.5988 < 0.001 

Dummy 
Dummy 
(SAScore 
heuristic) 

-2.3578 < 0.001 

Morgan (r = 1) 
Dummy 

(SAScore filter) 
0.3028 < 0.001 

Morgan (r = 1) 
Dummy 
(SAScore 
heuristic) 

-1.4561 < 0.001 

Dummy 
(SAScore filter) 

Dummy 
(SAScore 
heuristic) 

-1.7590 < 0.001 
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Figure 4.19. LEADD optimization power comparison using different SA optimization strategies. Colored dots 
represent maximum benchmark scores. 

Table 4.12. Multiple comparisons of benchmark score distributions’ stochastic dominances using different 
approaches to improve SA with Conover-Iman´s post-hoc test with Šidák correction (FWER = 0.05). The test 
was preceded by a Kruskal-Wallis test (H = 94.69, p < 0.001). 

Group 1 Group 2 
𝑺𝒄𝒐𝒓𝒆෫

𝑮𝒓𝒐𝒖𝒑𝟐

− 𝑺𝒄𝒐𝒓𝒆෫
𝑮𝒓𝒐𝒖𝒑𝟏 

Adjusted p-
value 

Dummy Morgan (r = 1) -0.122 < 0.001 

Dummy 
Dummy 

(SAScore filter) 
-0.027 0.724 

Dummy 
Dummy 

(SAScore heuristic) 
-0.253 < 0.001 

Morgan (r = 1) 
Dummy 

(SAScore filter) 
0.096 < 0.001 

Morgan (r = 1) 
Dummy 

(SAScore heuristic) 
-0.161 0.006 

Dummy 
(SAScore filter) 

Dummy 
(SAScore heuristic) 

-0.226 < 0.001 
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Figure 4.20. Correlation between FeatureScore and benchmark score using different approaches to increase 
SA. Large feature scores are associated with better SA. 
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4.4.7 Comparison to other algorithms and virtual screening 

Lastly, we wanted to compare LEADD’s performance to that of GB-GA [100] and a VS of the 
GuacaMol virtual library. In terms of OP, LEADD with dummy atom types outperformed the 
VS in 26/27 benchmarks, with the only exception being the Valsartan SMARTS benchmark 
which uses a binary scoring function ill-suited for goal-directed optimization approaches 
(Figure 4.25). LEADD with the use of dummy atom types is comparable to GB-GA, in the 
sense that both are graph-based EAs with very few restrictions on how atoms can be 
connected. Correspondingly, the SA (Figure 4.21, Table 4.13) and OP (Figure 4.25, Table 
4.14) of these two systems are comparable. The key difference between both algorithms is 
that LEADD modifies molecules on a fragment level as opposed to the atom level of GB-GA. 
Although we paired dummy atom types with single-atom acyclic fragments, ring systems 
are always treated as monolithic fragments. We expected this to yield improved SA and 
smaller OP, yet found the opposite. LEADD has better OP than GB-GA, outperforming it in 
18/27 benchmarks and performing equally well or better in 23/27 benchmarks. We 
attribute this to the bigger step size associated with fragments and the internal topological 
similarity threshold to enforce population diversity, giving it an edge at escaping local 
fitness minima. It’s also possible that the same factors explain the better SA of molecules 
designed by GB-GA. Most GuacaMol benchmarks incorporate topological similarity to a 
reference drug-like molecule in their objective functions, implicitly capturing some SA 
notions. Because of LEADD’s internal similarity threshold only the best individual within the 
population can assume the identity of the reference molecule, whereas the rest are forced 
to diverge from it. In GB-GA all individuals are allowed to approach the target molecule as 
much as possible, benefitting to a greater extent from the implicit SA target of the objective 
function. Moreover, GB-GA does not allow the creation of SSSR cycles bigger than six-
membered rings whereas some of the fragments used by LEADD do include bigger cycles. 
Since the SAScore incorporates a macrocycle penalty this could account for some of the 
observed differences. Ultimately, the magnitude of the SA changes associated with the use 
of fragments, be it cyclic or acyclic, are small (Table 4.10, Table 4.13). This calls into the 
question the widespread practice of fragment-based molecular construction as a means to 
improve SA, and we hypothesize that its effectiveness depends on how well in silico 
fragments and their assembly rules correlate with ex silico reactants and chemical 
reactions. 
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Figure 4.21. Comparison of SAScore distributions between molecules designed by LEADD and GB-GA and those 
found through a VS. Includes molecules of all benchmarks and replicas. Molecules with lower SAScores are 
predicted to be easier to synthesize 

Table 4.13. Multiple comparisons of SAScore means between LEADD, GB-GA and a VS with Tukey’s HSD post-
hoc test (FWER = 0.05). The test was preceded by a one-way ANOVA (F = 5715.55, p < 0.001). 

Group 1 Group 2 𝑺𝑨𝑺𝒄𝒐𝒓𝒆തതതതതതതതതതതത
𝑮𝒓𝒐𝒖𝒑𝟐 − 𝑺𝑨𝑺𝒄𝒐𝒓𝒆തതതതതതതതതതതത

𝑮𝒓𝒐𝒖𝒑𝟏 Adjusted p-
value 

Dummy Morgan (r = 1) -0.902 < 0.001 
Dummy GB-GA -0.222 < 0.001 
Dummy VS -1.170 < 0.001 

Morgan (r = 1) GB-GA 0.680 < 0.001 
Morgan (r = 1) VS -0.268 < 0.001 

GB-GA VS -0.948 < 0.001 
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When using Morgan (r = 1) atom types and monolithic acyclic fragments LEADD designs 
molecules with much better SA than GB-GA (Figure 4.21, Table 4.13). This is to be expected 
since GB-GA does not take SA into account intrinsically. However, it’s possible to design SA 
molecules with GB-GA by using the previously discussed extrinsic SAScore-based heuristic 
score modifier [62, 109]. Doing so yields a similar OP-SA trade-off to the one observed for 
LEADD and the same heuristic (Figure 4.18, Figure 4.19), strongly favoring SA over OP 
(Figure 4.22, Figure 4.23). The SA of molecules designed by LEADD using Morgan (r = 1) 
atom types is almost on par with those found by a VS (Figure 4.21, Table 4.13). We would 
like to remark that the feature set we used to calculate SAScores was extracted from 
ChEMBL [136], and that the screened GuacaMol library is a subset of ChEMBL [108]. It’s 
therefore to be expected that molecules found through VS have better SAScores. Since 
SAScores are a rather crude way of assessing SA, to confirm our findings we ran 
retrosynthetic analyses on the top 10 scoring molecules of each benchmark replica using 
AiZynthFinder [132] with the ZINC [2] reactant stock and USPTO-derived reaction template 
policy provided by the authors. Both LEADD and GB-GA designed less synthesizable 
molecules than those found by the VS, but when using Morgan atom types LEADD designed 
considerably more synthesizable molecules than GB-GA (Figure 4.24). It’s worth noting that 
only 60% of the molecules selected by the VS from the ChEMBL subset were deemed 
synthesizable by the retrosynthetic analyses. If we assume that all molecules in ChEMBL 
are synthesizable this would suggest that we might be underestimating the SA of 
molecules, including those designed by the EAs. 
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Figure 4.22. Comparison of SAScore distributions between molecules designed by LEADD and GB-GA with or 
without using the SAScore-based score modifier. Includes molecules of all benchmarks and replicas. Molecules 
with lower SAScores are predicted to be easier to synthesize. 

 

Figure 4.23. Optimization power comparison between LEADD and GB-GA with or without using the SAScore-
based score modifier. Colored dots represent maximum benchmark scores. 
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Figure 4.24. Fraction of top-10 scored molecules per replica synthesizable by LEADD (with different settings), 
GB-GA and VS in N or less steps using ZINC reactants and USPTO reaction templates, as assessed by 
AiZynthFinder. Molecules requiring more than 8 synthetic steps are considered not synthesizable. 
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Interestingly, we did not observe a statistically significant difference in OP stochastic 
dominance between LEADD with Morgan atom types and GB-GA (Table 4.14). Given that 
EAs are stochastic in nature, one would typically run multiple replicas and keep the best 
results. This justifies comparing maximum instead of average benchmark scores. In terms 
of maximum score, LEADD with Morgan atom types performed comparably or better than 
GB-GA in 16/27 benchmarks and comparably or better than the VS in 23/27 benchmarks 
(Figure 4.25). Crucially, LEADD performed better than GB-GA in the Deco Hop and Scaffold 
Hop benchmarks, which are arguably the most representative of real drug discovery 
problems. 

We would like to note that goal-directed design employing structure-based scoring 
functions is associated with an additional set of challenges that is not posed by the ligand-
based GuacaMol benchmark suite, including the handling of stereochemistry, pose 
inversion and the typical bias of these scoring functions towards large, hydrophobic and 
flexible molecules. Indeed, preliminary results using OpenEye ROCS [160] as LEADD’s 
scoring function show a tendency towards designing large and very cyclic molecules. This 
also makes it challenging to compare 2D molecular design algorithms like LEADD and GB-
GA to their 3D counterparts [16, 18, 19, 61, 111, 113]. 
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Figure 4.25. Optimization power comparison between LEADD, GB-GA and a VS. Colored dots represent 
maximum benchmark scores. Note that VS results are deterministic and have null variability. 

Table 4.14. Multiple comparisons of benchmark score distributions’ stochastic dominances using different 
approaches to improve SA with Conover-Iman´s post-hoc test with Šidák correction (FWER = 0.05). The test 
was preceded by a Kruskal-Wallis test (H = 94.69, p < 0.001). 

Group 1 Group 2 
𝑺𝒄𝒐𝒓𝒆෫

𝑮𝒓𝒐𝒖𝒑𝟐

− 𝑺𝒄𝒐𝒓𝒆෫
𝑮𝒓𝒐𝒖𝒑𝟏 

Adjusted p-
value 

Dummy Morgan (r = 1) -0.122 < 0.001 

Dummy 
Dummy 

(SAScore filter) 
-0.027 0.724 

Dummy 
Dummy 

(SAScore heuristic) 
-0.253 < 0.001 

Morgan (r = 1) 
Dummy 

(SAScore filter) 
0.096 < 0.001 

Morgan (r = 1) 
Dummy 

(SAScore heuristic) 
-0.161 0.006 

Dummy 
(SAScore filter) 

Dummy 
(SAScore heuristic) 

-0.226 < 0.001 
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It is also important to consider the amount of computational resources spent by each 
approach to achieve its results. Figure 4.26 shows how an average EA replica finds higher 
scoring molecules than a VS with a smaller number of scoring function calls. While one 
should keep in mind that it’s generally desirable to run multiple EA replicas, EAs make 
better use of computational resources than a VS, especially if evaluating the scoring 
function is expensive. It’s also worth noting that LEADD, despite its use of fragments, did 
not find solutions much slower than GB-GA (Figure 4.26). Naturally, there is an overhead 
associated with the design algorithm. On a single core of a Xeon E5-2680v2 CPU (2.8 GHz), 
LEADD designed on average 272 mol/s. Assuming that about 104–105 molecules must be 
designed to find good solutions (Figure 4.26) this corresponds to an overhead of just a 
couple CPU minutes. For comparison GB-GA designed 98 mol/s. This difference in 
performance is mostly due to implementation optimizations rather than due to algorithmic 
differences since LEADD is considerably more complex algorithmically. When using fast 
scoring functions molecule generation can become the rate limiting step. During the 
GuacaMol benchmark suite LEADD generated molecules slower than they were scored in 
25/27 benchmarks. On average, molecules were designed eightfold slower than they were 
scored, with differences exceeding 20-fold in some benchmarks. This showcases the need 
for fast molecular design algorithms. Note that the reported values are averages, and that 
execution times depend heavily on the number of possibilities the algorithm has to 
consider. For instance, when using a smaller database of fragments or smaller population 
the algorithm is faster. Similarly, the computational resources spent per operation increase 
with molecular complexity, specifically degree of branching. 

If one wishes to achieve even greater OP it’s possible to use the results of a VS as the 
starting population for EAs. While we do not believe this qualifies as de novo molecular 
design, this type of molecular optimization may be interesting when computational 
resources are abundant. Unsurprisingly, we found that using VS results as starting 
populations decreased the variability between replicas and increased the mean replica 
score (Figure 4.28). However, when using Morgan atom types this did not always translate 
into higher maximum scores, as the starting population may already be close to local fitness 
minima in which the algorithm might get stuck. It’s interesting to note that, while the 
molecules designed this way have better SA than those in a true de novo design setting, it’s 
worse than that of the starting population (Figure 4.27). The SA loss is small for LEADD with 
Morgan atom types, but substantial for GB-GA and LEADD with dummy atom types, in the 
latter case almost reverting to the de novo design values. This showcases a tendency to 
design synthetically complex molecules when algorithms form bonds carelessly. 
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Figure 4.26. Score of best found molecule as a function of the number of scored molecules. For LEADD and 
GB-GA each line represents a replica. VS results were shuffled 100 times and averaged to account for the 
effects of molecule screening order. Note that these are individual molecule scores and not 
population/benchmark scores and therefore do nott correspond to the values in Figure 4.25. 
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Figure 4.27. Comparison of SAScore distributions between molecules designed by LEADD and GB-GA using VS 
results as a starting population and said VS results. Includes molecules of all benchmarks and replicas. 

 

Figure 4.28. Optimization power comparison between LEADD, GB-GA and a VS using the VS results as starting 
populations for the EAs.Note that VS results are deterministic and have null variability. 
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 Easy enforcement of molecular 
constraints 

 Source 

A manuscript based on this chapter has been accepted for publication and is in press: 

Kerstjens, A., De Winter, H. Molecule auto-correction to facilitate molecular design. J. 
Comput. Aided Mol. Des. (2024) 

 Problem statement 

There are numerous schemes to increase the likelihood of designing chemically appealing 
molecules, some of which have been previously explored in this work (Chapter 3, Chapter 
4). While in principle one could reuse these frameworks in other molecule generators, 
doing so is not always straightforward. For example, the strategies we presented demand 
molecule generators that iteratively build up or modify molecules. In the case of LEADD 
(Chapter 4), an additional requirement is that these modifications must be on a fragment 
basis. Not all molecule generators fulfill these criteria. Some algorithms use different 
molecular representations. Among the methods using molecular (meta-) graphs some 
might redefine the units of a molecule that are perturbed [12, 64, 116–118]. Other 
algorithms forgo graph-like representations altogether, modifying text-based line 
notations [86, 91, 92] or abstract continuous representations of molecules [67, 89, 90]. 
Even among the algorithms that do meet the criteria for integrating the presented 
frameworks, integration might be non-trivial and require significant adjustments to the 
code. 

In this chapter we will describe a more flexible technique to designing chemically desirable 
molecules, which we hope can be integrated into a wide range of molecule generators and 
workflows with minimal effort. In layman’s terms it could be described as “molecule auto-
correction”. The algorithm describes a query molecule with local structural features, and 
compares said features to those found in reference desirable molecules. If the query 
molecule possesses features that are absent or rare in the reference molecules, the 
features are deemed “foreign” or incorrect. Otherwise they are deemed “familiar” or 
correct. Through a tree search algorithm we locally modify foreign features until they are 
familiar enough. Certain heuristics are used to prioritize modifications that are most likely 
to yield familiar features. One can draw an analogy between our algorithm and a primitive 
spell checker, where chemical features are the equivalent of words. Each word is checked 
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against a dictionary of known words. If a word is not present it’s deemed incorrect and a 
heuristic suggests similar correct words. 

Our intention is twofold. Firstly, we envision the tool being used to address molecule 
quality issues that were not caught or covered by a third-party molecule generator (Figure 
5.1). Secondly, and perhaps most importantly, we hope that it will enable researchers to 
divest some of their attention from avoiding non-sense molecule generation to other 
aspects of molecular design. 

 

Figure 5.1. Examples of objectionable molecules generated by diverse molecule generators during a JAK2 
inhibitor design exercise, as reported by [161]. (A) was generated by a graph-based genetic algorithm [100], 
(B) was generated by a particle swarm optimizer in an auto-encoder latent space [67] and (C) was generated 
by a SMILES-based recurrent neural network [91]. 

 Methodology 

5.3.1 Molecule characterization 

To identify if a molecule is foreign, and if so, what parts are foreign, we defined some simple 
localized molecular descriptors. Atoms are characterized with atom keys. Atom keys are 
integer tuples comprising an atom’s degree (D) (i.e. its number of adjacent atoms), valence 
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(V), atomic number (Z), formal charge (Q) and number of hydrogens (H). These properties 
were chosen because they are largely independent from the atom’s surrounding chemical 
environment. To avoid cyclic dependencies between properties, in this work valence is 
defined as the sum of an atom’s bonds’ orders, without considering the atom’s formal 
charge. The order of the atom key’s properties is relevant. We ordered the properties by 
perceived decreasing significance or importance. For example, we assume that a change in 
degree, and therefore topology, is more disruptive to a molecule’s structure and properties 
than a change in atomic number. Bonds were characterized as a tuple of the bonded atoms’ 
keys (AK) and an integer representing the bond’s type (B), which can be thought of as the 
bond’s order (Figure 5.2). 

We also define partial keys of the atom and bond keys. Partial atom keys are constructed 
by taking the first j most significant properties of the atom key, with j ∈ [1, k-1], where k is 
the number of properties in an atom key. Consequently, partial key j contains all partial 
keys with a lower j. The same procedure is applied to bond keys but with the range j ∈ [2, 
k-1]. This yields a total of four partial atom keys and one partial bond key (Figure 5.2). 
Partial keys can be sorted lexicographically, enabling fast key-value store searches. 

 

Figure 5.2. Partial atom and bond key pyramid. Higher order keys encompass lower order keys. The (D, V, Z, 
Q, H) key constitutes the atom key AK, and (AK1, AK2, B) constitutes the bond key. 

Lastly, circular atomic environments are defined for all atoms in the molecules. A circular 
atomic environment comprises a central atom and all surrounding atoms within a given 
topological distance termed the environment’s radius r. The resulting atomic environment 
is hashed to an integer using the Morgan algorithm, like one would when calculating ECFP 
fingerprints [34, 46].  
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5.3.2 Reference dictionary 

In this work a subset of ChEMBL31 [136] was chosen as the reference library of drug-like 
molecules. Only small organic molecules were retained. Large biomolecules, natural 
products and polymers were excluded. For the remaining molecules the unsalted and non-
ionized “parent form” was chosen. Molecules in the reference library were characterized 
using the aforementioned descriptor keys, and the frequency of each key recorded in a 
“chemical dictionary”. We generated two dictionaries using environment radii of 1 and 2, 
respectively. If a key’s frequency surpasses a user-specified threshold (by default 0) it’s 
deemed familiar, and otherwise it is deemed foreign. Owing to the way in which keys are 
defined, simpler keys are contained by more complex keys. For example, environment keys 
contain bond keys and bond keys contain atom keys (Figure 5.2). This defines unidirectional 
dependency relationships between them, meaning that if a key is foreign all dependent 
keys containing it must also be foreign. The reverse is not necessarily true. 

5.3.3 Tree search algorithm 

The molecule correction algorithm was implemented as a tree search. An incorrect input 
molecule serves as the root of the tree. With each iteration a molecule or vertex within the 
tree is selected and partially expanded. Expansion in this context means enumeration of 
topologically similar neighboring molecules, and establishment of a parental relationship 
between the selected predecessor and its neighboring successors. Expansions were 
performed using the graph-based molecule perturbation library Molpert (Chapter 3). 
Perturbations performed by the library include atom- and bond invariant changes and 
atom/bond insertions/deletions. To expedite the correction process molecules are 
sanitized (as described in 3.3.3) after each perturbation by default, but this behavior can 
be disabled. Molpert enables the systematic enumeration of a molecule’s neighbors. 
Neighbors are enumerated lazily. The enumeration order is optimized to maximize the 
likelihood of finding a correct molecule with the smallest number of expansions.  

As with any tree search algorithm, the search is guided by a search strategy or policy that 
dictates how the tree is expanded with each iteration. For our tree search we distinguish 
two different types of policies. One policy, which we call the selection policy, selects which 
vertex to expand next. The second policy, termed the expansion policy, determines how 
the selected vertex is expanded. 

 Selection policy 

To guide the search towards familiar molecules we define the concept of familiarity. Every 
time a vertex is added to the tree it’s featurized into atom, bond and environment keys. 
Said keys are classified into foreign and familiar by looking them up in the chemical 
dictionary. Familiarity is calculated as a function of the total number of keys n (Equation 
5.1) and the number of familiar keys nf (Equation 5.2). 
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Equation 5.1 

𝑛 = 𝑛 + 𝑛 + 𝑛 

Equation 5.2 

𝑛 = 𝑛


+ 𝑛


+ 𝑛
 

In Equation 5.1 na, nb and ne denote the total number of atom, bond, and environment keys 
of a given molecule respectively, whereas in Equation 5.2 nf

a, nf
b and nf

e denote their 
familiar counterparts. 

We employ two alternative definitions of familiarity: f1 (Equation 5.3) and f2 (Equation 5.4). 
Both range between 0 and 1, with 1 indicating a familiar or correct molecule, and can 
mostly be used interchangeably. f1 can be interpreted as a similarity coefficient between a 
query molecule and some unknown correct molecule. Conversely, 1 - f1 can be interpreted 
as the distance to a correct molecule. f1 is therefore well suited for estimating how close to 
a solution a given molecule is. f2 provides weaker theoretical guarantees as a similarity 
coefficient, for its lower boundary is dependent on the molecule’s size. f1’s drawback is that 
it can be maximized trivially by incrementing the numerator and denominator by the same 
amount, as occurs when adding new familiar environments (e.g. alkane carbons). f2 cannot 
be exploited in the same way, and is better suited as an optimization target. 

Equation 5.3 

𝑓ଵ =
𝑛

𝑛
 

Equation 5.4 

𝑓ଶ =
1

𝑛 − 𝑛 + 1
 

Different selection policies were explored. In all cases the selection is limited to foreign 
molecules (f < 1) that have not been fully expanded yet. As baselines we evaluated Breadth-
First Search (BFS), where the shallowest vertices are expanded first, and greedy familiarity 
selection, where the vertices with the highest f2 familiarity are expanded first. These 
correspond to exploration-only and exploitation-only approaches, respectively (Figure 5.3). 
Note that a deep BFS is computationally intractable since the branching factor of chemical 
space is very large (Figure 5.4). 
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Figure 5.3. Different types of selection policies. Orange vertices represent visited vertices. The goal is to find 
the optimal green vertex while minimizing the number of visited vertices. Greedy search visits very few vertices 
but may miss the goal vertex. Breadth-first search is guaranteed to find the goal vertex but visits many other 
vertices in the process. An ideal selection policy balances exploration and exploitation. 

 

Figure 5.4. Left panel: Branching factor (bf) of a Breadth-First Search (BFS) as a function of the root molecule’s 
number of heavy atoms (h). The branching factor was calculated by enumerating all neighboring molecules 
using Molpert’s “balanced” settings. Right panel: Projection of tree size (s) for a given BFS depth (d) assuming 
constant molecule size throughout the search. This assumption is reasonable since the average heavy atom 
count of molecules only increases about 0.25 per BFS search level. 
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There are many correct molecules and many paths leading to them from the input 
molecule. We would prefer finding the correct molecule w that is most closely related to 
the input or root molecule u, as according to the similar property principle it is the most 
likely to preserve the properties of the input molecule. The distance between the input 
molecule u and another molecule v of the tree is measured as the ECFP4 Tanimoto distance 
d(u,v) between both. We chose this fingerprint and distance metric combination because 
they have been shown to be good predictors of activity preservation [35, 43, 44]. 

Some policies to favor shallow tree searches and better balance exploration and 
exploitation were devised (Figure 5.3). The most naive one is to greedily select vertices with 
the highest f1/d(u,v) ratio. More sophisticated policies are described below. 

 Upper confidence bounds applied to trees 

One can estimate how close a vertex is to a yet to be discovered correct molecule using the 
familiarity metric. However, it is not always true that the vertex with the highest familiarity 
is involved in the path to the closest correct molecule. The values (i.e. familiarities) of a 
parent vertex’s children follow an a priori unknown distribution. We can get better 
estimates of the expected child value by sampling or generating more children. As more 
samples become available the estimate trends towards the true value. Given limited 
computational resources one must choose between exploring vertices with uncertain 
distributions or exploiting vertices with the most promising distributions. This is known as 
a bandit problem, and the Upper Confidence Bound (UCB) strategy can be applied to tackle 
it [162]. UCB applied to Tree searches (UCT) dictates that at each iteration one should 
expand the vertex with the highest upper confidence interval bound [163]. In other words, 
one should expand the vertex for which the potential upside is maximized. Mathematically, 
this means expanding the vertex v maximizing Equation 5.5. 

Equation 5.5 

𝑈𝐶𝐵1 = 𝑓ଵ௩
തതതത + 𝑐ඨ

𝑙𝑛(𝑁௩)

𝑛௩
 

In Equation 5.5 𝑓ଵ௩
തതതത is the average f1 familiarity of v’s children, nv is the number of times v 

was expanded, Nv is the number of times v’s parent was expanded. The first term of 
Equation 5.5 is exploitative and the second term is explorative. c is a coefficient balancing 
between exploitation and exploration. In this work we explored c values of ½, 1, √2 and 2. 

UCT was first applied to Monte Carlo Tree Search (MCTS) [163], and is oftentimes discussed 
in relation to it. The difference between a plain tree search and MCTS is that in the former 
the value of a vertex is given by a heuristic function (in our case the familiarity) whereas in 
the latter the value of a vertex is estimated through means of random simulations or 
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“rollouts”. We want to clarify that our tree search is not a MCTS despite using the UCT 
policy, as random simulations did not produce better value estimates than the familiarity 
heuristic within reasonable time and resource constraints. 

 A-star 

The A* (pronounced A-star) search algorithm is a path finding algorithm suitable for finding 
close to optimal shortest paths in a graph within reasonable amounts of time [164]. It 
selects for exploration/expansion the vertex v for which Equation 5.6 is minimized. 

Equation 5.6 

𝑔(𝑣) = 𝑚(𝑣) + ℎ(𝑣) 

In Equation 5.6 m(v) is the distance traversed to reach v. In our case m(v) is the topological 
distance between vertex v and the root vertex u, that is, m(v) = d(u,v). h(v) is a heuristic 
estimate of the distance between v and an end point w, in our case a correct molecule. In 
other words, h(v) ~ d(v,w). An obvious heuristic candidate is h(v) = 1 – f1(v) (Equation 5.7). 

Equation 5.7 

𝑔(𝑣) = 𝑑(𝑢, 𝑣) + 1 − 𝑓ଵ(𝑣) 

d(v,w) is a Tanimoto distance, which is the complement of the Tanimoto similarity or 
Jaccard index. If V and W denote the feature set of molecules v and w, their Jaccard index 
is calculated according to Equation 5.8. 

Equation 5.8 

𝐽(𝑣, 𝑤) =
|𝑉 ∩ 𝑊|

|𝑉 ∪ 𝑊|
=

|𝑉 ∩ 𝑊|

|𝑉| + |𝑊| − |𝑉 ∩ 𝑊|
 

f1(v) is a similarity index measuring the similarity to some unknown correct molecule w. 
While not equivalent to the Jaccard index, it’s related to it. If W denotes the feature set of 
this hypothetical correct molecule, f1(v) can be rewritten as shown in Equation 5.9. 

Equation 5.9 

𝑓ଵ(𝑣) =
|𝑉 ∩ 𝑊|

|𝑉|
 

If f1(v) were calculated using as keys solely ECFP features Equation 5.8 and Equation 5.9 
would differ only in their denominator. It’s clear that |𝑉| + |𝑊| − |𝑉 ∩ 𝑊| ≥ |𝑉|. 
Therefore, 1 – d(v,w) ≤ f1(v), or equivalently 1 – f1(v) ≤ d(v,w), which would make 1 – f1(v) 
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an admissible heuristic. Moreover, since Jaccard distances are known to satisfy the triangle 
inequality [165], that is, d(u,w) ≤ d(u,v) + d(v,w), the heuristic would also be consistent. 
Using a consistent heuristic guarantees that the algorithm will find the optimal solution 
given enough time. We included additional terms in f1(v) besides the environment keys as 
we believe this additional granularity can provide finer guidance to the tree search. 
Consequently 1 – f1(v) as described in Equation 5.3 is theoretically not an admissible 
heuristic. Nonetheless in practice it very rarely overestimates the d(v,w) distance (Figure 
5.5). 

 

Figure 5.5. Relationships between d(u,v), d(v,w), d(u,w) and 1 – f1(v). The two leftmost panels show that in 
practice 1 – f1(v) is an almost admissible and consistent heuristic, respectively. The rightmost panel is visual 
proof of Jaccard distances obeying the triangle inequality. Note that the correlation between d(u,v) + d(v,w) 
and d(u,w) is very high, which is typical of hyper dimensional spaces such as chemical space. 

 Multiple linear regression 

The A* algorithm was devised for path finding and searches for the shortest path between 
two vertices. We are interested in finding the closest goal vertex, that is, minimizing the 
distance to a goal vertex “as the crow flies”. Both of these distances are not equivalent 
(Figure 5.6). 

 

Figure 5.6. Difference between path distance (d(u,v) + d(v,w)) and straight distance (d(u,w)). 
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To minimize d(u,w) we developed a policy that selects the vertex for which the predicted 
d(u,w) is minimal. We wanted to predict d(u,w) as a function of d(u,v) and f1(v), which are 
both known for any vertex. To study the relationships between these metrics we randomly 
perturbed a sample of 103 molecules from ChEMBL [136] by applying between 1 and 10 
perturbations to each of them using Molpert [166] for a total of 104 perturbed and likely 
incorrect molecules. We then attempted to correct these molecules with BFS as selection 
policy, which, given sufficient resources, guarantees to find the closest correct molecule. A 
dictionary containing chemical environments of radius 2 was used. Once a correct molecule 
had been found the search was allowed to continue until the whole tree level was visited. 
The maximum tree size was limited to 105. Of the 10,000 structures, 1,573 molecules were 
successfully corrected within these resource constraints, with an average search depth of 
2.4 edges. For each vertex along the shortest path between the corrected molecule and 
the root vertex we measured d(u,v), f1(v) and d(u,w) for a total of 3,773 data points which 
we took as training data. A Multiple Linear Regression (MLR) model was fit on this data 
(Equation 5.10), resulting in a model with a Root Mean Squared Error (RMSE) of 0.135 
(Figure 5.7). As a control we also built the null model 𝑔(𝑣) = 𝑑(𝑢, 𝑤)തതതതതതതതതത = 0.383, with an 
RMSE of 0.159. Constants can be quite predictive when the response variable has a narrow 
range. Since our training data is comprised of shallow searches the null model appears 
unusually predictive. However, constants cannot extrapolate by nature, and therefore the 
null model won’t be predictive for deeper searches. The practical shortcomings of the null 
model will be showcased later. 

Equation 5.10 

𝑔(𝑣) = 0.42 ∙ 𝑑(𝑢, 𝑣) − 0.91 ∙ 𝑓ଵ(𝑣) + 1.18 

 

Figure 5.7. MLR model fit to training data. The two leftmost panels show the correlation between each of 
the model’s parameters and the training data/predictions separately, while the rightmost panel aggregates 
the effects of both parameters. 
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 Explicit objective preservation 

The above-described selection policies try to find correct molecules that are structurally 
closely related to the input molecule. The primary reason for doing so is that structurally 
similar molecules are believed to have similar properties [36, 37]. Yet this is not always the 
case [94, 95]. Two molecules may share a large common substructure and differ in a single 
atom. While the overall structural similarity between them may be large, if this distinctive 
atom is key to the molecule’s activity their properties may differ significantly.  

Given an objective function o(v) that evaluates a vertex v’s property of interest we can 
explicitly guide the tree search into preserving this objective as opposed to relying implicitly 
on the similar property principle [36]. This helps tackle the cases where said principle 
breaks down. A simple way to do so is selecting for expansion the vertex v for which 
Equation 5.11 is maximal. Note that the objectives are multiplied as opposed to being 
summed to prevent the search algorithm from sacrificing one objective in favor of the 
other. 

Equation 5.11 

𝑔(𝑣) = 𝑓(𝑣) ∙ 𝑜(𝑣) 

 Expansion policy 

A molecule is expanded by applying a perturbation to a copy of itself. Perturbations that 
are most likely to make the molecule familiar are applied first. Foreign molecular keys are 
identified and ordered according to their significance. Identifying the most significant 
foreign key serves as a way of identifying the most pressing problem a molecule has. The 
location of the problem is given by the location of the key, which is either an atom or a 
bond. It is this atom or bond that will be targeted by a perturbation. 

When it comes to foreign atom and bond keys it’s possible to identify not only the location 
but also the nature of the problem. Partial keys build up on each other by progressively 
adding properties. Since more significant keys are contained by the less significant ones the 
latter cannot be familiar if the former are not either. The property differentiating the most 
significant foreign partial key from its familiar predecessor partial key is responsible for the 
latter being foreign. For example, the most significant foreign partial atom key may be DVZ 
= (4, 6, 6), corresponding to a hexavalent carbon. Its predecessor key DV = (4, 6) is 
necessarily the least significant familiar key. We can then conclude that the atomic number 
(Z) is not compatible with the atom’s degree and valence. Since we deem the atomic 
number to be less significant than the degree or valence we identify the atomic number as 
the culprit for the atom key being foreign, meaning perturbations modifying the atomic 
number will be prioritized. 
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The predecessor key can also be used to access the chemical dictionary and retrieve 
acceptable property values for the successor key. These values are sorted according to their 
frequency in reference molecules in descending order, meaning that the most frequent 
values are tried first. In the example above we can use the DV key to retrieve elements 
compatible with an atom of degree 4 and valence 6, which might be sulfur (Z = 16) and 
selenium (Z = 34). Sulfur is more frequent than selenium, so a perturbation replacing the 
carbon with sulfur would be prioritized. 

Choosing which perturbations to apply to correct Z, Q, H or B is obvious as each of these 
properties has a corresponding perturbation to change its value. Correcting other 
properties and keys is less trivial. D is corrected by deleting bonds associated with the atom 
or deleting adjacent atoms. Depending on the dictionary it may also be possible to correct 
it by inserting more bonds or atoms, but this is disabled by default, as for organic molecules 
degrees higher than 6 are exceedingly rare. V is preferably corrected by changing the bond 
types (i.e. bond orders) of bonds associated with the atom. If this does not succeed it may 
also be corrected by modifying the topology of the molecule, in the same way one would 
correct D. 

Two atom keys AK may be familiar separately, but their combination in a bond key AK1AK2 
may be foreign. If the AK1AK2 partial key is foreign one or both atom keys must be changed. 
Perturbation types can be ordered by significance similarly to how molecular keys are 
ordered by significance. The lower the significance of a perturbation the less it will disrupt 
the molecule when applied. The perturbation significance order matches the atom 
property significance order (Figure 5.2), being from least to most significant as follows: 
number of hydrogen changes, formal charge changes, atomic number changes, bond type 
changes, bond deletions, atom deletions, bond insertions and atom insertions. Less 
significant perturbations are applied first to disrupt the molecule as little as possible. While 
deletions do not necessarily disrupt the molecule less than insertions, they typically 
simplify the molecule. Simple molecules are more likely to be familiar, which is why 
deletions are prioritized over insertions. 

Once all atom and bond keys have been corrected the molecule may still possess foreign 
atomic environments. Recall that atomic environments are characterized solely by their 
hash, meaning little information about what makes them foreign is available. Atomic 
environments overlap, in the sense that the same atom or bond may be a part of multiple 
environments simultaneously. Knowing the exact boundaries of atomic environments, it is 
possible to calculate in how many environments a given atom or bond participates (Figure 
5.8). We calculate the “foreign environment membership” of atoms and bonds, that is the 
number of foreign environments they are involved in. Atoms and bonds for which this 
number is highest are prioritized by perturbations, under the assumption that since they 
participate in many foreign environments they are likely to be a culprit for the 
environments being foreign. Ties are broken with the atom- and bond keys’ frequencies, 
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prioritizing least frequent keys. Once a target has been acquired perturbations are 
executed in order of increasing significance, just like for bond keys. 

 

Figure 5.8. Foreign atomic environments and their overlap. The central unobtainium atom (Uo) is foreign. All 
atomic environments it is a part of are necessarily foreign too. Foreign circular atomic environments of radius 
1 are highlighted in pink. The bottom molecule labels each atom and bond based on how many foreign 
environments they are involved in. The Uo atom is involved in all foreign environments, making it a likely 
culprit for the environments being foreign. 

5.3.4 Constraints 

Our molecule auto-correction implementation was developed using the graph-based 
molecule perturbation library Molpert (Chapter 3). One of Molpert’s features is the 
support of user-specified arbitrary constraints perturbed molecules ought to fulfill. This 
functionality is inherited by the auto-correct implementation, providing the user with fine 
grained control over the output molecules. Among other things, this allows the user to 
define properties and/or parts of the molecule that should not be modified by the 
correction algorithm. 

5.3.5 Benchmark 

A random sample of 103 molecules from ChEMBL31 [136] was taken. Molpert (Chapter 3) 
was used to “break” these molecules by sequentially applying 10 random perturbations to 
each molecule, resulting in a series of 10 perturbed and likely incorrect molecules. In total 
104 perturbed molecules were generated. These molecules were sorted by the number of 
perturbations that gave rise to them. On average, as more random perturbations are 
applied to a molecule, more foreign keys are generated, decreasing its familiarity. We then 
attempted to correct these perturbed molecules with our algorithm using the different 
selection policies described above. A maximum tree depth of 25 and tree size of 25,000 
molecules were imposed. A chemical dictionary of circular environments of radius 2 was 



Easy enforcement of molecular constraints 

 
— 
128 

used for this purpose. The output molecule as well as its familiarity and similarity to the 
input molecule were recorded. The familiarity provides some measure of how “correct” 
molecules are. Nonetheless, to better contextualize the quality of the generated molecules 
we also measured their SAScore [124] and ran retrosynthetic analysis on them with 
AiZynthFinder [132] using the ZINC [2] reactants stock and USPTO-derived reaction 
template policy provided by the authors. SAScores were calculated using ChEMBL31 [136] 
as reference chemistry. Molecules were sanitized prior to calculating their properties. 

We investigated two scenarios of how molecule correction may be applied in molecular 
design (Figure 5.9). In both cases we took the Molpert based evolutionary algorithm (as 
described in Chapter 3), capable of (1) designing molecules without any regard for chemical 
validity and (2) designing molecules fulfilling specific structural requirements. The 
algorithm was tasked with designing high-scoring molecules in the goal-directed GuacaMol 
benchmark suite [108]. As a first scenario (Figure 5.9A) molecules designed without 
constraints by the algorithm were subjected to auto-correction as a post-processing step 
using different selection policies, a maximum tree depth of 25 and a maximum tree size of 
25,000. For our second scenario (Figure 5.9B), we injected the correction procedure as part 
of the mutation and recombination operators using the greedy familiarity policy, a 
maximum tree depth of 10 and a maximum tree size of 100. In both cases we used a 
chemical dictionary comprised of circular atomic environments of radius 1. 50 replicas were 
ran for each approach, retaining the best-scoring molecule per replica and benchmark. The 
different approaches were compared by their designed molecules’ benchmark scores and 
SAScores [124]. Molecules of all 20 benchmarks and 50 replicas were aggregated, for a total 
of 1000 optimized molecules per approach. Benchmark scores were compared through 
pairwise Mann-Whitney U-tests [141] with Šidák correction [142]. SAScores were 
compared with Tukey’s Honestly Significant Differences test [167]. α = 0.05 was taken as 
family-wise error rate and significance level for all tests. Statistical tests and post hoc 
corrections were performed using the SciPy [143] and statsmodels [144] Python packages, 
respectively. 
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Figure 5.9. Different ways of applying molecule auto-correction in molecular design. It may be used as a final 
post-processing step of a molecule generator (A) or as an integral part of a molecule generator by injecting it 
into the molecule construction process (B). 
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 Results and discussion 

5.4.1 Selection policy comparison 

Figure 5.10 compares the correction output using different selection policies. We can 
identify three distinct groups of policies: greedy familiarity, BFS-like policies and MLR. The 
greedy familiarity policy is very effective at correcting molecules, as virtually all output 
molecules achieve the maximum f1 familiarity of 1 and could be considered correct. 
Moreover, it achieves this with a minimal amount of computational resources. Its biggest 
drawback, and the reason the other policies were developed, is that it favors deep 
searches, meaning the corrected molecules may be quite different from the input 
molecules. 

BFS is the benchmark for how close an output molecule can possibly be to an input 
molecule. Indeed, unless an input molecule is familiar to begin with the output molecule 
must be different. Greedy distance normalized familiarity, A* and UCT approach this ceiling 
quite well. Unfortunately, this group of policies also spends more resources on the search, 
oftentimes to no avail as the output molecule is frequently not entirely familiar. 

MLR stands in between the very exploitative greedy familiarity and very explorative BFS-
like policies. In our opinion it achieves a good compromise between correcting molecules 
within reasonable amounts of time while not straying excessively far away from the input 
molecule. 
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Figure 5.10. Molecule correction benchmark results. The number of perturbations applied to the input 
molecule is shown on the x axis. The violin plots display the density of output molecules’ properties and the 
cost to generate them. A chemical dictionary with environment radii of 2 was used. For the UCT policy we only 
display the results of using the optimal coefficient c=0.5. Note that the tree size was limited to a maximum of 
25,000. Timings are given for a single-threaded workload on an AMD Epyc 7452 CPU @ 2.35 GHz. 
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As a control we evaluated replacing the MLR model with a constant null model. Despite the 
null model fitting the training data well, it cannot extrapolate, leading to poor real world 
performance (Figure 5.11). 

 

Figure 5.11. Comparison between the MLR model and its null equivalent during the molecule correction 
benchmark. The number of perturbations applied to the input molecule is shown on the x axis. The violin plots 
display the density of output molecules’ properties and the cost to generate them. A chemical dictionary with 
environment radii of 2 was used. Note that the tree size was limited to a maximum of 25000. 

To further understand the anatomy of the generated trees Figure 5.12 depicts diagrams of 
the search trees resulting from correcting the same input molecule while using different 
selection policies. As can be seen the greedy f2 and MLR policies define narrower and 
deeper trees than BFS. 
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Figure 5.12. Diagrams of search trees resulting from trying to correct the same input molecule 
(OOC1[C]2#S1C2) using different selection policies and a chemical dictionary with environment radii of 2. 
Nodes are color coded according to their discovery order, with red and blue being the first and last nodes to 
be discovered, respectively. The root node is shown as a large red node, and the solution node is shown as a 
large blue node. The diagrams were created using GraphViz [168]. 
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The chemical quality of the input molecules and the output corrected molecules was 
assessed using the SAScore [124]. As can be seen in Figure 5.13, applying random 
perturbations to reasonable molecules makes them progressively harder to synthesize. 
Encouragingly applying the correction algorithm to these broken molecules largely recovers 
their synthesizability. As SAScores are rather crudes measures of synthesizability [126] we 
sought to confirm these findings with retrosynthetic analyses [132]. Figure 5.13 confirms 
that corrected molecules are indeed easier to synthesize, but for highly perturbed 
molecules the fraction of synthesizable molecules remains small after correction. The 
correction algorithm is tasked with finding a molecule that is simultaneously similar to 
reference chemistry and similar to the input perturbed molecule, which is by design 
dissimilar to reference chemistry. This is intrinsically a challenging task as both objectives 
are opposed. Moreover, since the retrosynthesis engine is imperfect, the reported fraction 
of synthesizable molecules is underestimated, as exemplified by less than 60% of the 
ChEMBL sample being deemed synthesizable. 

 

Figure 5.13. Shift in SAScore distributions associated with molecule auto-correction using the MLR selection 
policy and a chemical dictionary with environment radii of 2. Lower SAScores are indicative of an easier 
synthesis. The “0 perturbations” distribution corresponds to the non-perturbed ChEMBL subset on which the 
perturbed molecules were based. 
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Figure 5.14. Fraction of molecules synthesizable within a certain number of synthetic steps based on the 
number of random perturbations they were subjected to and whether they were corrected or not. The MLR 
selection policy and a chemical dictionary with environment radii of 2 were used for the correction process. 
Retrosynthetic analyses were performed using AiZynthFinder using the ZINC reactant stock and USPTO-
derived reaction template policy provided by the authors. “0 perturbations” corresponds to the control 
ChEMBL sample. Molecules requiring 8 or more synthetic steps are considered unsynthesizable. 
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 Post-processing applications 

If the user would like to apply the algorithm in a low throughput setting, perhaps as a final 
sanitization step for the output of a molecule generator (Figure 5.9A), we recommend 
choosing an explorative policy that yields molecules closely related to the input. If no 
fitness function is given and resources are infinite, BFS is guaranteed to yield the optimal 
result, but its cost scales rapidly due to the combinatorial explosion of visited chemical 
states as the depth of the search increases (Figure 5.4, Figure 5.12). UCT and A* are 
computationally more reasonable. While both explore approximately the same number of 
molecules during the tree search, UCT is computationally more efficient as vertices are 
selected by a fast tree traversal, whereas A* requires a priority queue to be maintained. 
The MLR policy is a viable alternative on tight budgets. The greedy f2 policy can be used as 
fallback should all aforementioned policies fail to find solutions within reasonable amounts 
of time. We advise raising the ceiling on the maximum tree size as the one we chose for 
our benchmark is conservative. Since all molecules in the tree are stored in memory in 
practice the user will likely be limited by the available system memory. Note that memory 
consumption will be higher when the input molecules are large. 

As an example we took molecules designed by a naive evolutionary algorithm during 
optimization tasks and attempted to correct them using different selection policies. A 
sample of incorrect molecules designed by the evolutionary algorithm as well as their 
corrected counterparts are shown in Figure 5.15. Unfortunately the molecules’ fitness, as 
assessed by the optimization task’s objective function, was degraded by the correction 
procedure (Figure 5.16). While all policies performed reasonably well, fitness was 
preserved best using the explicit objective preservation selection policy. Note however that 
the objective preservation policy is only applicable when one has access to an objective 
that ought to be preserved, and when said objective is not excessively expensive to 
evaluate. Further analysis revealed that fitness degradation was most pronounced in 
benchmarks whose scores depend on the presence of specific and fragile chemical features 
(Figure 5.17). As one might expect the correction process can disturb these features which 
negatively affects the score. For a more hands-on approach to objective preservation one 
could define molecular constraints to preserve key chemical features. If fitness cannot be 
preserved during the correction procedure through any means we recommend enforcing 
molecule validity throughout the construction process instead (Chapter 3, Chapter 4) [74, 
75, 166]. 
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Figure 5.15. Examples of molecules designed by a naïve evolutionary algorithm (left) and their corrected 
counterparts (right). The MLR selection policy and a chemical dictionary with environment radii of 2 were used 
for correction. (A) was designed during the Perindopril MPO benchmark, (B) was designed during the 
Amlodipine MPO benchmark, and (C) was designed during the Sitagliptin MPO benchmark. 

 
Figure 5.16. Correction algorithm’s effect on the GuacaMol benchmark scores using different selection policies 
and a chemical dictionary with environment radii of 2. Points below the diagonal correspond to molecules 
becoming less fit. Molecules that were already correct are not included as their score would not change. 
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Figure 5.17. GuacaMol benchmark suite score degradation broken down per benchmark. Explicit objective 
preservation was used as selection policy alongside a chemical dictionary with environment radii of 2. 
Molecules that were already correct are not included. Benchmarks showing the sharpest score degradation 
are dependent on specific chemical features and sensitive to molecular modifications. For example, 
C9H10N2O2PF2Cl, Ranolazine MPO and Sitagliptin MPO require the presence of infrequent elements such as 
halogens or phosphorus, which may be removed or substituted by the algorithm. Perindopril MPO and 
Amlodipine MPO require the presence of specific numbers of (aromatic) rings, which are easily broken. 
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 Integrated applications 

If the user intends to apply molecule correction iteratively to very large quantities of 
molecules, it is advisable to use a cheap and exploitative policy such as the greedy 
familiarity policy. While output molecules may not closely resemble input molecules, 
sometimes this is not of great importance, and sometimes it may even be beneficial. 
Consider a molecular design algorithm that iteratively perturbs molecules to optimize some 
objective function. One could attempt to correct every intermediate molecule as part of 
the main loop (Figure 5.9B). In this case the correction would act as an integral part of the 
perturbation itself, essentially increasing the step size of the perturbation. This may help 
the algorithm in escaping local fitness minima. Even if the correction process decreases the 
input molecule’s fitness, the optimization algorithm would presumably correct for this by 
discarding the molecule, reverting to an earlier stage or focusing its attention elsewhere. It 
should also be noted that if one were to correct iteratively the distances traversed by 
correction would match those of input molecules with a single perturbation, which are not 
as dramatic as those observed for highly perturbed input molecules (Figure 5.10). 
Occasionally the correction process may effectively undo the effect of the perturbation that 
preceded it. While we do not anticipate this to be a large concern for most applications one 
could prevent it from happening using constraints. 

To demonstrate the latter approach we injected the correction algorithm into the 
aforementioned evolutionary algorithm (Figure 5.9B). The greedy familiarity policy with a 
maximum tree size of merely 100 was chosen to limit computational expenses. Figure 5.18 
shows that injecting molecule correction into existing molecule generators is a viable 
strategy to design molecules that are both fit and easier to synthesize compared to 
unconstrained molecular design. It should be noted that correction-associated 
synthesizability improvements are meager due to the GuacaMol benchmarking suites’ 
scoring functions being biased towards synthesizable molecules [108, 166]. Interestingly, 
iterative correction yielded better results than attempting to enforce environment 
correctness through molecular construction constraints (Figure 5.18), and it did so 
consuming less computational resources (Figure 5.19). We hypothesize that the correction 
procedure, being unlinked from the objective function, may drag molecules out of local 
fitness minima aiding the optimization algorithm in the search towards the global 
minimum. 

For completeness’ sake the above experiments and analyses were repeated for atomic 
environments of radius 2. Under these conditions the correction injection approach failed 
to improve the synthesizability of the designed molecules, likely because the maximum 
tree size of 100 is insufficient to find molecules that satisfy the more stringent requirements 
(Figure 5.20). 
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Figure 5.18. GuacaMol benchmark scores and SAScores of molecules designed by an evolutionary algorithm. 
Higher benchmark scores and lower SAScores are better. The objective preservation policy was used for post-
processing. Unconstrained design refers to liberal modification of the molecular graph and the design of 
(likely) invalid molecules. All other approaches strive to design molecules with familiar circular atomic 
environments of topological radius 1, but achieve this goal in different ways. Constrained design refers to the 
use of molecular construction techniques that prevent the creation of undesirable chemical features. **: p < 
0.01, ***: p < 0.001. 
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Figure 5.19. Computational cost of designing molecules using different variants of the same evolutionary 
algorithm. Unconstrained design is the fastest but may result in chemically invalid molecules. The two other 
approaches both result in molecules with familiar atomic environments of radius 1. Despite achieving this goal 
in different ways their cost is comparable. Timings are given for a single-threaded workload on an AMD Epyc 
7452 CPU @ 2.35 GHz. 
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Figure 5.20. Benchmark scores and SAScores of molecules designed by an evolutionary algorithm. This figure 
is analogous to Figure 5.18. In both cases the designed molecules were forced to exhibit familiar circular 
atomic environments, with the key difference being the radii of said environments: 1 for Figure 5.18 and 2 for 
the present figure. The objective preservation policy was used for post-processing. Unconstrained design 
refers to liberal modification of the molecular graph and the design of (likely) invalid molecules. Constrained 
design refers to the use molecular construction techniques that prevent the creation of undesirable chemical 
features. **: p < 0.01, ***: p < 0.001. 

It should be stressed that given the same input molecule not all policies will generate the 
same output molecule (Figure 5.21). It might be of interest to apply the algorithm with 
different policies and a posteriori select the most desirable output. 
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Figure 5.21. Example input molecules and their corrected counterparts using the greedy f2 and MLR selection 
policies. Note that molecule correctness is dependent on the reference chemistry library. Some molecules such 
as dimethylphosphinic acid may be deemed correct or incorrect depending on this context. 
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5.4.2 Simplification and carbonization of molecules 

An unintended consequence of our expansion policy is the “carbonization” of input 
molecules. Perturbations most likely to increase the familiarity of a molecule are 
prioritized. As carbon is the backbone of organic chemistry, including our reference library 
of ChEMBL [136], substituting other elements with carbon is preferred by the algorithm. 
We also encountered cases where certain selection policies would trigger the growth of 
long alkane chains, particularly exploitative policies such as the greedy f1 policy (Figure 
5.22, Figure 5.23). We would like the correction process to modify existing chemical 
features. However, a trivial way of maximizing the f1 familiarity is by adding new familiar 
chemical features like alkanes (Equation 5.3). This is a classic case of a search algorithm 
finding unintended ways to exploit the objective function. Frivolously adding carbons has 
been described previously as a strategy employed by algorithms to cheat their way to good 
benchmark results, be it by artificially inflating molecular diversity [161] or reaping low-
hanging scoring function rewards [92, 169]. The easiest solution to the issue is to maximize 
the f2 familiarity instead (Equation 5.4). While this prevents alkane growth, the search 
algorithm may occasionally still find it advantageous to introduce extraneous carbons as 
buffers between heteroatoms (Figure 5.23). Correct heteroatom arrangements are tied to 
specific functional groups. Given a foreign functional group the path of least resistance may 
be to break apart said group as opposed to rearranging its atoms. The best carbonization 
remedy is to choose an explorative selection policy. Should this not be an option the user 
may choose to disable atom insertions as a perturbation or specify constraints on which 
parts and/or attributes of the input molecule should be preserved by the correction 
algorithm. 
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Figure 5.22. Fraction of a molecule’s atoms that are carbons, before and after molecule correction using 
different selection policies. The most exploitative selection policies increase the carbon fraction the most. 
 

 

Figure 5.23. Molecule carbonization examples. The greedy f1 selection policy exploits the scoring function by 
growing long alkane chains. The other selection policies cannot exploit the scoring function in the same way, 
but the expansion policy still may opt to substitute heteroatoms with carbons or to separate heteroatoms by 
inserting carbons between them. 
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5.4.3 Alternative potential applications 

While it is possible to post-process molecules from arbitrary sources, it might not be 
possible to integrate the correction process into all molecule generators. We have shown 
how to inject it into a graph-based evolutionary algorithm, and we anticipate equivalent 
implementations and benefits being achievable for any molecule generators that iteratively 
modify molecular graphs. Integration opportunities with alternative generators are more 
nuanced. The algorithm’s input is a molecular graph. Our implementation is based on the 
RDKit [47], which means that molecules must be parsable by the RDKit to be correctable. 
This precludes the use of ill-formed SMILES [170]. Ill-formed SMILES can be the product of 
malfunctioning generative models. They may also be an intermediate state of generative 
recurrent neural networks [92]. In the latter case correction would have to be deferred 
until the SMILES string has been fully formed, potentially playing a role in sanitizing 
molecules prior to their objectives being evaluated. Substituting SMILES for a more robust 
line notation such as SELFIES [171] whose intermediate strings are also valid would enable 
the “auto-correct” process to behave more as a molecule “auto-complete”. In any case the 
correction process would play a role in steering the chemical space search. Whether this 
would antagonize or synergize with the model’s inherent guidance remains to be explored. 

5.4.4 Future perspectives 

Caution should be applied when employing molecule generators that rely on the similarity 
principle, for they amplify existing chemical biases in data due to prior art data conditioning 
future data collection [75, 172]. This can have detrimental effects on chemical novelty. The 
problem is compounded by building pipelines of tools relying on the same principle, as we 
do in this work. We are aware this is suboptimal, but in absence of competing methods 
grounded on physical first-principles chemical bias amplification postures itself as a 
necessary evil. 

One area worth revisiting in the future is the way in which correctness is assessed. Currently 
molecular keys are considered either foreign or familiar, depending on their frequency in 
the chemical dictionary. While the frequency threshold separating both categories can be 
tweaked, it would be preferable to treat familiarity as a frequency-dependent continuous 
variable. We also believe there is potential in further development of selection policies. 
The policies explored herein rely on crude heuristics. We can draw inspiration for policy 
design from other fields where tree searches are used. Synthesis planning in particular has 
recently witnessed major breakthroughs thanks to machine learning augmented policies 
[130, 131]. We believe that similar methods could be applied here to better direct the 
search, reducing the risk of missing good solutions as well as the cost to find said solutions. 
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 Discussion & future perspectives 

 Imitating reference chemistry 

Designing reasonable molecules in silico is a non-trivial task. Just attempting to define what 
constitutes a reasonable molecule is sufficient to trigger heated debates. A chemist will 
know an undesirable molecule when they see one, yet their perception may differ from 
that of other chemists [121–123]. Even if some form of consensus could be found, 
formalizing chemical intuition into logical and mathematical constructs that computers can 
understand is challenging. This stems from the fact that humans and computers process 
information in fundamentally different ways. 

Human chemical intuition is mostly exclusion based. Throughout their careers chemists will 
see and make countless molecules, taking mental notes about which functional groups and 
ring systems have undesirable properties or are difficult to work with. Some have tediously 
enumerated (incomplete) lists of bothersome chemical motifs which can be used to filter 
out molecules exhibiting said motifs [173, 174]. Such a workflow may be suitable when 
working with compound libraries, be they virtual or not, but is of limited use when 
designing new molecules. How does one generate molecules without objectionable 
chemical motifs? One could generate large amounts of molecules and discard the unsavory 
ones. But how many savory molecules would be left? Filtering is a wasteful process 
resource-wise. Making matters worse features that humans can easily identify visually are 
expensive to identify for computers [31]. We should strive to bias molecule generation 
towards desirable molecules, but this requires defining that which is desired, not that which 
is not. 

Humans may struggle formalizing what constitutes desirable chemistry, but computers can 
systematically identify patterns in molecules that have historically been deemed desirable. 
The vast majority of approaches towards computational molecular design mimic reference 
chemistry in some form, and the methods described herein are no exception. Distinctions 
are found in which patterns are identified and how they are reproduced in generated 
molecules. 

In this work we explored different ways of describing and replicating reference chemistry. 
In all cases the molecular representation was a graph whose vertices and edges were 
iteratively modified by heuristic optimization algorithms. The differences reside in the 
granularity of the vertices as well as the rules governing how these vertices may be 
connected. A natural question that arises is which molecular description and assembly rules 
are best suited for molecular design. 
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 Molecular graph granularity 

Let us begin by discussing the granularity of graph-like molecular descriptions. A vertex 
represents a molecular substructure. These substructures can vary in size, from single 
atoms (section 3.3.2), to multi atomic fragments (section 4.3.1) such as entire Bemis-
Murcko ring systems, linkers and side chains [175]. The larger the granularity of molecular 
descriptions, the greater the resemblance between designed molecules and reference 
chemistry. It is widely believed that this helps in the design of synthesizable and drug-like 
molecules. Indeed, fragment-based design is the go-to strategy for cheminformaticians 
aiming to design synthesizable molecules [22, 176]. While there is certainly some truth to 
the underlying belief it paints an incomplete picture. Fragment-based design is almost 
always coupled to rules governing how said fragments can be assembled. With our 
experiments we tried to separate the effects of using fragments from the effects of the 
assembly rules. We found that using fragments on its own has little effect on the 
synthesizability of designed molecules, and that the bulk of the synthesizability 
improvements can instead be attributed to molecular assembly rules (section 4.4.4). 
Constructing molecules as combinations of large fragments reduces the number of bonds 
that must be formed, as the majority of bonds are pre-formed in the fragments being 
combined. Hence the use of fragments can occlude some issues underlying bond 
formation, but it does not solve them. It only takes a few poor bonds for the designed 
molecule to be non-sensical. 

Fragment-based design restricts access to some states in chemical space (section 3.2). This 
is a double-edged sword, as it offers both benefits and drawbacks. On the bright side, 
fragment-based design can be a powerful way of steering molecule generators towards 
relevant regions of chemical space. Theoretical chemical space is vast, with large parts of it 
being irrelevant for drug design. Using drug-like fragments can help in narrowing down the 
search space (section 4.4.4). Moreover modifying molecules on a fragment level is 
associated with bigger steps in chemical space. This larger step size can be beneficial to 
some optimization algorithms, as it may enable leaping over or escaping local fitness 
minima. 

As for the drawbacks, not being able to access the entirety of chemical space means that 
some of the best solutions to a problem may not be discoverable. The problem is 
accentuated when using small fragment libraries. Using very large and diverse fragment 
libraries could help in this regard, but even if a molecule is theoretically discoverable as a 
combination of fragments, accessing it might require convoluted sequences of fragment 
operations that are statistically improbable. One ought to ponder how to prioritize 
fragments such that the additional data does not pose an obstacle (sections 4.3.4.2 and 
4.3.5). Ultimately fragment-based design is likely to be more resource intensive than atom-
based design, both during development and run time. 
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So should one employ fragment-based design? As frustrating of an answer it may be: it 
depends. Fragment-based design has merit as a part of directed search and/or 
synthesizability improvement strategies. The price to pay is restricted access to chemical 
space, inferior chemical novelty and increased computational complexity and development 
efforts. Personally I deem this price excessive for the purported returns. I believe the ceiling 
on atom-based design to be higher, but fulfilling its potential will require the development 
of better molecule characterization and assembly rules. Fragment-based design shines the 
brightest when the fragments being used in silico represent real reactants, and the rules 
for their combination mimic real reactions. In this case there is a direct correlation between 
designed molecules and synthetic routes, which enables tight integration with the 
medicinal chemistry laboratory. 

 Molecular graph modification rules 

Designed molecules must fulfill certain criteria such as synthesizability. One strategy to 
enforce these criteria is constraining the way in which molecules are assembled or 
modified. The way in which molecule generation is constrained has far reaching 
implications for the output molecules’ objective values. This is especially true for molecule 
generators relying on iterative modification of molecules, as in our case. 

In this work we tried to modify molecules in such a way that the resulting molecules 
resembled reference chemistry. By choosing as reference chemistry a library of 
synthesizable and drug-like molecules [136] we biased our designed molecules towards 
being synthesizable and drug-like as well. Despite being distinct objectives there is 
significant overlap between them as the molecules that are recorded in chemical databases 
tend to be both. 

The success of the mimicry strategy hinges on several factors, with the most important one 
being the way in which molecules are characterized. The basis for our characterizations 
were atomic invariants, which were used to describe individual atoms. Characterized atoms 
were in turn grouped to describe bonds, and the latter were grouped to describe atomic 
environments (sections 3.3.5, 4.3.1, and 5.3.1). As the coarseness of the molecular 
characterization increases the corresponding chemical features become more unique. For 
instance, bonds are bound to be more unique than atoms, since bonds comprise two 
atoms. With features becoming more distinctive the requirements imposed on designed 
molecules become stricter, as designed molecules ought to resemble reference chemistry 
in more concrete ways. Overall this translates into an increased similarity between 
designed and reference molecules, and with it an increased chemical appeal of the 
designed molecules (sections 3.4.2 and 4.4.2). 

As requirements become stricter, less molecules fulfill them. If all intermediate molecules 
ought to satisfy these criteria, as is often the case, molecule generators may start to 
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struggle morphing one molecule into another. Restricted chemical space traversal can 
manifest itself in the deterioration of the designed molecules’ objective values. We found 
this to be the case when enforcing excessively strict requirements. On the other hand, mild 
requirements did not affect chemical space exploration negatively. On the contrary, they 
could provide some much needed guidance to search algorithms (section 3.3.8.1). 

Another important element to consider is the reference virtual library. It should be 
representative of the types of molecules one would like to design. The reference library 
should be chosen in conjunction with a method to assess query molecules’ conformity with 
reference chemistry. 

In some instances we treated conformity as a binary property (sections 3.3.5, 4.3.2, and 
5.3.2). For example, we deemed chemical features and connections valid if they occurred 
at least a minimum number of times in the reference library. We chose zero as our default 
validity frequency threshold. In this case one should ensure that the reference library does 
not contain a single example of bad chemistry, which may require careful inspection. 
Raising the frequency threshold is a tempting proposition, but some crucial chemical 
features and/or connections may be infrequent by nature. Consider methane as an 
example, whose atomic environment is a carbon of null degree. This atomic environment 
is exclusive to methane, and will have a maximum frequency of one if methane is included 
in the reference library. Despite being infrequent, this environment is an essential stepping 
stone to bootstrap the growth of molecules from vacuum. Failure to include methane in 
the reference library, or neglecting its environment due to its low frequency, would make 
the purest form of de novo design impossible, and impose the necessity of seeding 
molecules for optimization. 

In other instances we treated chemical conformity as a continuum, with molecules being 
better conforming when their chemical features are common in reference chemistry 
(sections 3.3.6, 4.3.4.2, and 5.3.3.2). We used this approach to bias molecule generation 
towards the most common (and presumably most desirable and/or easiest) types of 
organic chemistry by sampling molecular structures and properties with probabilities 
proportional to their frequencies in reference chemistry. Such an approach is arguably 
more natural as well as more tolerant of small amounts of bad chemistry making their way 
into the reference library. Unfortunately it is also less straightforward to implement 
algorithmically. As an additional consideration one should ensure that chemical feature 
frequency imbalances represent real medicinal chemistry preferences, instead of 
stemming from systematic synthesis efforts. A database could be flooded with 
combinatorial chemistry products, which could artificially make other types of chemistry 
seem undesirable. 
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 Alternative ways of enforcing molecular requirements 

Given a molecule generator that optimizes molecules by iteratively modifying them, one 
strategy to generate valid optimized molecules is ensuring that all intermediate molecules 
are valid as well. This approach has been discussed extensively in this work (Chapter 3, 
Chapter 4). However, it’s not the only viable strategy to achieve this goal. 

One could explicitly incorporate molecular validity into the objective function(s) the 
molecule generator optimizes for (section 4.4.6). Ideally, if the generator supports multi-
objective optimization, one would do so in form of a separate objective. Unfortunately, real 
multi-objective optimization is challenging, requiring sophisticated search algorithms. A 
simpler, and sometimes surprisingly effective approach, is to use single-objective 
optimization algorithms with composite objective functions. The latter approach is very 
flexible as one can tweak the objectives being combined, as well as the way in which they 
are combined, to fine-tune the requirements designed molecules must fulfill. Regardless of 
the chosen search algorithm it is up to the user to define the relative importance of the 
different objectives, be it by picking solutions from a Pareto front or by defining coefficients 
of a composite scoring function. A major drawback of explicit multi-objective optimization 
is that one must evaluate all objectives for every (intermediate) molecule the generator 
proposes. This is only computationally tractable for cheap objectives, which may not be 
significantly more sophisticated than the requirements enforced through construction 
techniques. We explored the use of composite scoring functions as a control experiment 
and found both approaches to be competitive (section 4.4.6). 

An alternative approach explored herein is the adaptation of molecules to make them 
conform better with imposed requirements (Chapter 5). A key advantage of this solution is 
that, once developed, it can integrate into most molecule generation workflows with 
almost no user effort. The approach was observed to be viable in a post-processing 
scenario, and to excel when injected into a molecule generator. Encouragingly, despite 
being one of the lowest effort methods we tested, it performed among the best. To the 
best of our knowledge this sort of approach had not been explored previously, making this 
the first proof-of-concept study. We applied the technique to “correct” molecules, but with 
some tweaks one could potentially apply it to improve other objectives. 

Lastly, we would go amiss if we did not mention machine learning-based generative 
models. Machine learning models can extract and reproduce patterns from reference 
chemistry. The use of generative models for molecular design is still in its infancy, with the 
first arguably notable applications dating back to 2017 [92]. Despite being rather immature, 
it has taken the world by storm and has renewed interest in molecular design. 
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 Machine learning in generative chemistry  

Traditional methods such as evolutionary algorithms have largely been displaced by 
generative chemistry models. It is easy to understand why: generative models are new and 
exciting, and they solve the poor synthesizability problem in a relatively simple and elegant 
way. Why bother with codifying complicated chemistry when a model can autonomously 
learn what molecules are supposed to look like and reproduce it? Few studies have pitted 
molecule generators of different classes against each other, but those that did have shown 
that traditional methods can be competitive with generative models [108]. 

I must confess I remain a bit skeptical about generative models. For starters, it’s well known 
that machine learning models have an applicability domain beyond which their predictions 
or inventions are unreliable. If said models are trained on existing chemistry, can we trust 
them to be able to generate novel chemistry? Many authors report methods capable of 
designing novel molecules, but the way in which novelty is assessed is often based on 
chemical identity, which has been shown to be a flawed novelty metric [161]. Some, at first 
glance promising, molecules produced by generative models [177] have been shown to be 
concerningly similar to commercialized drugs. 

More worryingly, despite progress being made in so-called explainable artificial intelligence 
[178], as of today the vast majority of deployed models are black boxes. A model might 
function excellently and propose fabulous molecules, but to an academic the “how” should 
be equally important as the “what”. On the flip side, if a model malfunctions and our 
understanding of its inner workings is poor, will we be capable of improving it further? 

I’m under the impression that, when faced with underperforming models, a significant part 
of the generative chemistry community sees “more data” as the primary avenue for 
improvements [179]. I perceive this akin to “kicking the can down the road”, and I’m 
skeptical that the envisioned scenario where “more data” solves our problems will ever 
materialize. Collecting large quantities of high quality chemical and biological data that can 
be reliably aggregated and compared is challenging [180–182]. Enabling this type of data 
collection would require massive changes to existing workflows and standardization efforts 
that are too disruptive to be adopted. Naturally the present work also relies on data to 
define the rules of chemistry, and is subject to many of the same caveats generative models 
are. Yet there are some key differences: (1) we know what sort of patterns are being 
extracted and reproduced and can therefore guarantee certain degrees of chemical 
correctness and novelty, (2) the patterns are less abstract and structurally confined, and 
(3) the number of patterns to collect is finite, placing an upper boundary on the amount of 
data required for our methods to perform optimally. These differences constitute 
arguments in favor of not replacing traditional molecular design with generative models 
entirely. 
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Another point of concern is the field’s insistence on representing molecules as text strings. 
In the early days representing molecules as sequences of characters allowed researchers 
to borrow techniques from natural language processing and make rapid progress [91, 92]. 
The first, and probably still most commonly used line notation in molecular design, are 
SMILES [170]. However, SMILES were invented for storage and web transmission purposes, 
not for molecular design. Accordingly, their manipulation is fragile. Where plain SMILES 
failed to deliver, alternative more rubust line notations were developed [171, 183]. Despite 
graph neural networks becoming mature [184–186], line notations continue enjoying 
widespread use. One can only hope attention will shift towards more natural molecular 
representations in the near future. 

Something most researchers are guilty of is trying to solve problems with tools they are 
familiar with. For me that may be cheminformatics-powered heuristic optimization 
algorithms, and for others statistical models and machine learning. As the saying goes, “if 
all you have is a hammer, everything looks like a nail”. I believe that the greatest future 
innovations within this space will come from integrating different approaches and 
harnessing the best of their respective worlds. In fact, the shift towards a hybrid 
methodology paradigm is underway [90, 187–190]. Basic cheminformatics techniques are 
easy to understand and tweak. If a flaw is observed one can reason about what went wrong 
and how to fix it. They may be a suitable solution for critical steps where certain guarantees 
are necessary, such as constructing molecular graphs. Machine learning models may be 
harder to understand and modulate, but they are great at finding patterns and predicting 
properties as a function of said patterns. They may be most suitable for non-critical 
processes that are not exposed to the user/developer and do not require transparency. For 
example, they could be used as policies to guide chemical space searches or to augment 
objective functions. 

 Computational resource allocation 

The properties of molecules proposed by a molecule generator follow some distribution. 
We have discussed a variety of techniques to bias these distributions towards desirable 
values. Regardless of the chosen technique, it is associated with a computational overhead 
(sections 3.4.4, 4.4.7, and 5.4.1.2). It may be possible to allocate these same computational 
resources differently for greater payoffs. 

An obvious candidate for resource allocation is running more replicas, that is, designing 
more molecules. Even for unsophisticated molecule generators the output molecules’ 
property distributions can be wide enough to cover the desired values with significant 
density (section 3.4). In other words, naive molecule generators may have a small 
probability of designing a molecule with desired properties. If the cost disparity between 
the unbiased and biased molecular design is big, or the difference between distributions is 
small, sampling more times from the worse distribution can be a superior strategy to 
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sampling less times from the better distribution. Some of the biased molecular design 
strategies we evaluated designed molecules 1,000-fold slower than unbiased design. Even 
if every molecule proposed by the biased generator were desirable, which is an overtly 
optimistic scenario, it would suffice for the unbiased generator to have a 1/1,000 chance 
of proposing a desirable molecule to be competitive with its biased counterpart. 

For a fair and resource-aware comparison between approaches one should compare their 
overall returns on investment. The number of times the objective functions are evaluated 
as well as the cost of evaluating them ought to be included in the equation. 

An accurate scoring function is important to goal-directed de novo molecular design, for 
inaccurate scoring functions may mislead the design process. Generally speaking, the more 
accurate an objective function is, the higher the cost of evaluating it. For computational 
inhibitory effect predictions the arguable state of the art methods are physics-based 
methods involving (quantum) molecular mechanics, such as free energy perturbation 
calculations. The more affordable end of the objective function spectrum is comprised of 
QSAR models taking as input simple molecular descriptors such as topological fingerprints.  

One should choose the most accurate objective function (or ensemble of objective 
functions [191]) that the computational budget allows for. Making this decision requires 
knowing in advance how many times we anticipate to evaluate the objective function. This 
number is oftentimes obtained empirically, but the relationships between search 
algorithm, scoring function accuracy and number of scoring function evaluations are poorly 
understood and should be studied further. We can hypothesize that the more accurate the 
scoring function the fewer times we must evaluate it to gather the same amount of 
information, but considering that costs tend to increase with accuracy, is there a point of 
diminishing returns? If so, what’s the optimal accuracy/cost ratio? It is also known that 
some search strategies are more efficient than others. But what sort of search algorithm is 
the most efficient for chemical space exploration? How do we best balance exploration and 
exploitation? Is there a theoretical minimum number of times the objective function ought 
to be evaluated to achieve a certain degree of exploration? 

Our research provides some preliminary insights into these questions. It appears that 
evolutionary algorithms converge to solutions after scoring 104 - 105 molecules on average 
(sections 3.4.4 and 4.4.7). The number of molecules scored to reach convergence appears 
to be lower when steering the search to specific areas of chemical space through molecule 
construction constraints (including fragment-based design). As general guidance, if one 
uses computationally affordable objective functions the cost of scoring molecules is on par 
or lower than generating them. In such a scenario the aforementioned strategy of “rolling 
the dice more” may be viable. Conversely, if one uses an expensive objective function it 
becomes crucial to make the most of each function evaluation. Accordingly it may be 
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worthwhile to invest more computational resources in the molecule generation phase to 
increase the odds of molecules that make it to the scoring stage receiving favorable scores. 

Should reducing the number of objective function evaluations prove too challenging, it is 
possible to augment the throughput of expensive objective functions with surrogate 
objective functions, that is, cheap functions predicting the outcome of the more expensive 
function. The surrogate function is used for fast and broad exploration, with the ground 
truth objective function being used to confirm or disprove crucial predictions. When the 
surrogate function is a machine learning model it may be updated as more data points 
become available, be it through re-training or incremental learning. This has led to a 
workflow known as “active learning”, where the beliefs and accuracy of the surrogate 
function are iteratively updated through feedback from the ground truth objective 
function. This workflow has successfully been applied to virtual screening [192–194], and 
is beginning to be explored in de novo molecular design [195]. 

 Alternative optimization algorithms 

This work relies primarily on evolutionary algorithms for optimization purposes. 
Evolutionary algorithms are capable of efficiently exploring large and complex fitness 
landscapes, and do not require a continuous search space. Accordingly, they have a rich 
history of being applied to molecular design (section 1.7.2). Surprisingly, many other 
heuristic optimization algorithms that theoretically share these same capabilities have 
received but a tiny fraction of the attention. 

I suspect this favouritism is mostly grounded on historical reasons. Evolutionary algorithms 
were among the first optimization algorithms to be applied to de novo molecular design, 
specifically to the design of linear macromolecules such as polynucleotides and proteins. 
The direct parallels between protein design and evolution may have inspired the field’s 
pioneers. Following their success it must have felt natural to extend evolutionary 
algorithms to small molecule design. This scientific inertia has led to de novo molecular 
design becoming quasi-synonymous with evolutionary algorithms. 

As has been touched upon previously, we should strive to minimize the number of times 
the objective function is evaluated during the optimization process. There may be limits to 
how low we can take this number by extending and improving upon evolutionary 
algorithms, which warrants exploring alternative optimization algorithms more extensively. 

Nature can be a good source of inspiration for optimization algorithms [196]. Swarm 
intelligence optimization algorithms share many characteristics with evolutionary 
algorithms. Particle swarm optimization has been successfully applied to molecular design, 
albeit seemingly only twice [98, 99]. Various other swarm intelligence algorithms named 
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after animal behaviour (including ants, fireflies and spider monkeys) remain unexplored 
within this field. However, beware that most nature-inspired algorithms are population-
based. While this contributes to their exploration prowess, it also involves repeatedly 
evaluating the fitness of every member of the population. 

Situations where the fitness function is to be used sparingly call for more directed 
optimization algorithms. Tree searches and their variants are obvious candidates, but 
seemingly fail to explore chemical space adequately [100, 108]. This is unsurprising given 
their exploitative nature. Hybrid algorithms, combining explorative elements for global 
searches and exploitative elements for local searches, may be able to harness the best of 
both worlds. We found some circumstantial evidence of this being the case when 
combining evolutionary algorithms with tree searches (section 5.4.1.2). 

One of the primary conclusions of this work is that constraining the way in which molecules 
are assembled can steer an evolutionary algorithm away from unpromising areas of 
chemical space. It’s reasonable to infer that designing “unconstrained” molecules that do 
not obey the laws of chemistry serves no practical purpose, and should be avoided beyond 
academic exercises. However, one should exercise caution when extrapolating our results 
to unrelated optimization algorithms. Impossible molecular graphs should never be a final 
result presented to the user, but they may be useful stepping stones in chemical space 
traversal. One could liken them to reaction intermediates, in that they facilitate or explain 
the transition between two perfectly sensible molecules. As such, molecular graphs defying 
the rules of chemistry may be to cheminformatics what complex numbers are to 
mathematics. They may lack meaning in the physical world, yet have use cases in imaginary 
worlds. I hypothesize that some optimization algorithms will be capable of realizing their 
potential. If one could devise a chemical space navigation system [49], alongside a search 
algorithm to capitalize on it, the denser transition graphs associated with unconstrained 
design should become a net positive (section 3.2). 

It is common and valuable to borrow ideas from unrelated fields, seeing as many scientific 
problems are somehow related. Nevertheless, we must recall that some methods may be 
better suited for some purposes than others, and that successes in one field cannot always 
be translated to another. Even purportedly generic methods are rarely optimal for a specific 
application, given that they do not harness domain-specific knowledge. The computational 
molecular design field has embraced the idea of supporting swappable black-box objective 
functions through the use of generic optimization algorithms, but in the process we often 
neglect to incorporate domain knowledge. Human chemists are capable of finding 
desirable molecules by creating relatively small chemical series of 102 – 103 molecules. It’s 
important to note that humans tend to perform local optimizations on promising chemical 
entities [197, 198], whereas computational molecule generators typically aim to perform 
global optimizations. Nonetheless, humans are orders of magnitude more efficient with 
their objective functions (i.e. lab experiments) than typical optimization algorithms, and 
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these differences cannot be explained merely by differences in objective function accuracy. 
If we want computers to reach such degree of efficiency we must expose the objective 
function’s internals to domain-aware optimization algorithms that have been customized 
to exploit a specific objective. For example, if we fixed our objective function to be ligand-
target interaction energies as measured by molecular docking, we could design 
optimization algorithms that are privy to the target’s shape, and harness our knowledge 
about molecular interactions to achieve shape and electrostatic complementarity between 
molecules. 

 To imitate or not to imitate? 

One of the main appeals of de novo molecular design is that it can propose novel chemical 
entities that are dissimilar to previously described molecules. Yet almost all existing 
molecule generators imitate known chemistry in some shape or form. Molecule quality, 
including drug-likeness and synthesizability, is almost always assessed based on similarity 
to known chemistry. How novel can a molecule truly be if its designed to be similar to 
existing molecules, and its fitness is evaluated based on similarity to existing molecules? A 
molecule cannot be similar and dissimilar to known chemistry simultaneously. Hence, there 
is a trade-off between chemical quality and chemical novelty. 

We should ask ourselves the question: how novel is novel enough? From an industry 
perspective, a molecule might be considered novel enough if it can be patented. From an 
academic perspective, a molecule may be novel enough when it provides new solutions to 
problems of competing molecules. For example, a molecule might be novel if its mechanism 
of action or ADMET profile are distinct from other existing compounds with the same 
indication. On a structural level this usually entails presenting a different scaffold. An 
avenue to molecular scaffold diversity is the exploration of novel ring systems, but 
unconventional ring systems can entail complicated syntheses. The flip side to the above 
question is then: how easy to synthesize is easy enough? Many molecules might be 
theoretically synthesizable, but the likelihood of success and efforts required to synthesize 
them might be disproportionate to the potential upside. 

Given the large uncertainty surrounding computational molecular property predictions 
focusing research efforts on familiar chemistry is a pragmatic approach to increase a 
project’s chances of success. Yet we should be aware that at a larger scale we risk creating 
a self-perpetuating cycle that could lead to academic stagnation. If we are confident 
enough in the accuracy of our scoring functions perhaps we should not hold historic data 
in such high regard and occasionally venture into unknown territory. 

As of today, the quality-novelty trade-off is unavoidable, but solely due to the way in which 
quality is assessed. If one were to employ data-independent methods for said assessment 
the trade-off would cease to exist. It is likely possible to evaluate chemical quality invoking 
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theoretical chemistry principles. I anticipate the practical challenges to be finding ways of 
performing such an evaluation in an automated way, for a wide enough variety of 
(potentially non-sensical) molecules, and fast enough to apply it in high-throughput 
settings. 

 Bridging the gap between computer and wet lab 

In the late 2000s de novo molecular design fell out of favor. Two of the reasons cited for 
this shift in paradigm were poor designed molecule synthesizability and unreliable scoring 
functions. Today we have access to algorithms and computing resources that largely solve 
both problems. So where are the de novo designed drugs? 

There are many accounts of de novo molecular design being employed successfully to 
design small molecules with experimentally confirmed desirable properties [22, 87, 107, 
199]. However, to the best of my knowledge none of these molecules have been approved 
as drugs. Multiple factors can explain this phenomenon. For starters, de novo molecular 
design, especially the generative chemistry models branch, is a relatively young field, and 
future drugs that may have been conceived through de novo molecular design are yet to 
see the light of day. Moreover, the origin of a hit that ultimately leads to a drug may be 
unclear or not disclosed publicly. Lastly, the pharmaceutical industry historically hasn’t 
invested heavily into computational drug discovery as a whole, favoring alternative 
workflows [197, 198]. 

Computational workflows rarely integrate well with wet lab workflows, leading to 
departments working in parallel with insufficient communication between them. In order 
to achieve tighter integration between both disciplines, software and protocols must be 
designed around a dialog between user and computer. Experimental data collection in 
machine-readable format ought to be standardized, and should go beyond electronic lab 
notebooks. Collected data should be fed continuously to the computer, and the computer 
should continuously reply with up-to-date insights. Ideally a wet lab scientists should be 
capable of operating the relevant parts of the software on their own, without the assistance 
of computational chemists. Software developers ought to make an effort to enhance the 
user experience. Data should be presented in a graphical and understable way such that it 
can be acted upon, and the user should be able to interact with the software through 
graphical user interfaces. Any provided predictions ought to be accompanied by reasoning, 
enabling the user to scrutinize them. Should the predictions be undesirable there ought to 
be a mechanism for the user to provide feedback to the software so the latter may it 
finetune its insights according to the user’s expertise [79, 200, 201]. 

Beyond the general reluctance of using computational techniques, de novo molecular 
design in particular faces additional challenges to adoption. Arguably the most important 
one is the difficulty of sourcing molecules designed de novo. A de novo designed molecule 
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is likely to be novel, and even if it is synthesizable its synthesis has not been optimized. 
Reagents and equipment may have to be acquired, reaction conditions for optimal yield 
need to be elucidated, and chemists may have to be trained. Similar problems might arise 
during testing. Other molecular design workflows offer easier ways of sourcing molecules. 
Traditional human-driven design revolves around creating related chemical entities, which 
presumably share parts of their synthetic routes. As such, much of the synthetic efforts are 
amortized. As another example, hits found through virtual screening may be commercially 
available and purchased, requiring only a small financial commitment. 

Future de novo molecular design should strive towards easing molecule synthesis. One 
avenue to do so is designing molecules through virtual chemistry, restricting the algorithm 
to use building blocks that are available in-house and reactions the chemists are confident 
with. An even better solution would be designing whole chemical series rather than 
individual molecules. The chemical series should share a synthetic route, or at the very least 
a scaffold, and should be diverse enough to obtain SAR data. 

Objective function accuracy still leaves some things to be desired. Even the best 
computational objective functions are noisy, which poses a challenge for goal-directed 
molecular design. The most accurate objective function, which provides the ground truth, 
is a wet lab experiment. Lab experiments cannot replace computational objective functions 
entirely since their throughput is not sufficient to explore the vast chemical space. Funnel 
strategies, where one uses less accurate but cheap computational objective functions for 
broad exploration, and more expensive in vitro assays for local exploitation, are common 
place. Automation is likely to increase the throughput of lab experiments, and in the future 
said experiments will be used for explorative purposes more extensively. In fact, automated 
“design-make-test” cycles are the poster-child application for de novo molecular design, 
and thanks to advances in robotics and automated synthesis they have been achieved to 
some extent [202–204]. 

Not every chemist or biologist will be excited about such a prospect. Some may find 
computational techniques encroaching upon their domain, or even automating away some 
of their responsibilities, uncomfortable. New technologies and automation can be 
perceived as a threat to the scientist’s employment and creativity. I wish to ease the mind 
of those concerned, for human ingenuity and problem solving are not easily substituted by 
algorithms. For those developing the technologies of the future, I urge you to design them 
in a manner that empowers scientists and harnesses their expertise. 
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 Code speaks louder than words 

I hope to have provided a comprehensive overview of the algorithms behind this research 
in prose. Yet inevitably readers will find that some technical details require further 
clarification. All of the software used to perform this research is free and open source. For 
implementation details I invite the readers to inspect the code for themselves: 

 Molpert: https://github.com/AlanKerstjens/Molpert 
 LEADD: https://github.com/UAMCAntwerpen/LEADD 
 Molecule auto-correct: https://github.com/AlanKerstjens/MoleculeAutoCorrect
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List of abbreviations 

 ADME(T): Absorption, Distribution, Metabolism, Excretion, (Toxicity) 
 ANOVA: ANalysis Of VAriance 
 BFS: Breadth-First Search 
 DF: Degrees of Freedom 
 EA: Evolutionary Algorithm 
 ECFP: Extended Connectivity FingerPrint 
 FWER: Family-Wise Error Rate 
 GA: Genetic Algorithm 
 HAC: Heavy Atom Count 
 MBPM: Maximum BiPartite Matching 
 MCTS: Monte Carlo Tree Search 
 MLR: Multiple Linear Regression 
 MMFF: Merck Molecular Force Field 
 MSI: Multiple Set Intersection 
 MPO: Multiple Parameter Optimization 
 OP: Optimization Power 
 PCA: Principal Component Analysis 
 PDF: Probability Density Function 
 QED: Quantitative Estimation of Drug-likeness 
 (Q)SAR: (Quantitative) Structure-Activity Relationship 
 RA: Ring-Aware 
 RDM: Randomly Designed Molecules 
 RMSE: Root Mean Squared Error 
 RNN: Recurrent Neural Network 
 SA: Synthetic Accessibility 
 UCB: Upper Confidence Bounds 
 UCT: Upper Confidence bounds applied to Trees 
 VAE: Variational Auto-Encoder 
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