

Faculty of Pharmaceutical, Biomedical and Veterinary Sciences
Department of Pharmaceutical Sciences

Computational design of
synthesizable molecules by
imitating reference
chemistry

PhD thesis submitted for the degree of Doctor of Pharmaceutical Sciences
at the University of Antwerp to be defended by Alan Kerstjens

Supervisor(s):
Hans De Winter

Antwerp, 2024

Disclaimer

The author allows to consult and copy parts of this work for personal use. Further reproduction or transmission in any

form or by any means, without the prior permission of the author is strictly forbidden.

Table of contents

—

1

Table of contents

Summary 5

Dutch Summary 6

 Introduction 7

 Molecular design 7

 Molecular representation 8

 Molecular characterization 10

 Chemical space 13

 Objective functions 14

 Multi-objective optimization 15

 Optimization algorithms 17

1.7.1 Tree searches 18

1.7.2 Evolutionary algorithms 20

 Benchmarking molecular design algorithms 22

1.8.1 Objective values 22

1.8.2 Synthetic accessibility 23

 Research aims 25

 Molecular constraints as a means to improve molecule quality
 27

 Source 27

 Problem statement 27

 Methodology 30

3.3.1 Atom/bond property perturbations 30

3.3.2 Topological perturbations 31

3.3.3 Molecule sanitization 33

3.3.4 Modes of operation 35

3.3.5 Molecule constraints 36

3.3.6 Property and perturbation sampling 38

Table of contents

—

2

3.3.7 Chemical space connectivity 39

3.3.8 Benchmark 40

 Effect of constraints on optimization power 40

 Effect of constraints on chemical appeal 44

 Results 45

3.4.1 Constraint stringency 45

3.4.2 Effect of constraints on synthesizability and drug-likeness 47

3.4.3 Effect of constraints on molecule fitness 59

3.4.4 Effect of constraints on computational performance 63

 Discussion 64

 Computationally efficient enforcement of molecular
constraints 66

 Source 66

 Problem statement 66

 Methodology 67

4.3.1 Fragment library creation 67

4.3.2 Connection compatibility rules 69

4.3.3 Chromosomal representation and initialization 71

4.3.4 Genetic operators 72

 Connection rules enforcement 74

 Operation outcome sampling 80

 Cyclicity control 80

4.3.5 Lamarckian evolution guidance 83

4.3.6 Evolutionary algorithm 85

4.3.7 Benchmark 87

 Results and discussion 90

4.4.1 Base parameter exploration 90

4.4.2 Effect of atom typing scheme 91

4.4.3 Implications of compatibility binarization 94

4.4.4 Effect of fragmentation scheme 96

4.4.5 Handling fragment numerosity 100

4.4.6 Comparison of SA improvement approaches 101

Table of contents

—

3

4.4.7 Comparison to other algorithms and virtual screening 105

 Easy enforcement of molecular constraints 115

 Source 115

 Problem statement 115

 Methodology 116

5.3.1 Molecule characterization 116

5.3.2 Reference dictionary 118

5.3.3 Tree search algorithm 118

 Selection policy 118

 Upper confidence bounds applied to trees 121

 A-star 122

 Multiple linear regression 123

 Explicit objective preservation 125

 Expansion policy 125

5.3.4 Constraints 127

5.3.5 Benchmark 127

 Results and discussion 130

5.4.1 Selection policy comparison 130

 Post-processing applications 136

 Integrated applications 139

5.4.2 Simplification and carbonization of molecules 144

5.4.3 Alternative potential applications 146

5.4.4 Future perspectives 146

 Discussion & future perspectives 147

 Imitating reference chemistry 147

 Molecular graph granularity 148

 Molecular graph modification rules 149

 Alternative ways of enforcing molecular requirements 151

 Machine learning in generative chemistry 152

 Computational resource allocation 153

 Alternative optimization algorithms 155

Table of contents

—

4

 To imitate or not to imitate? 157

 Bridging the gap between computer and wet lab 158

 Code speaks louder than words 160

List of abbreviations 161

Bibliography 162

Curriculum vitae 181

Acknowledgements 182

Summary

—

5

Summary

De novo molecular design is the practice of generating molecules with desirable properties
from scratch. When done computationally the proposed molecules tend to be difficult to
synthesize and overall chemically unappealing. In this work we present methods to extract
patterns from available data and bias molecular design towards synthetically accessible
chemistry. Given a list of known synthesizable compounds, we design molecules with the
same chemical features, under the assumption that this resemblance increases the
likelihood of them being synthesizable as well.

Molecules were designed using evolutionary algorithms that breed populations of
molecules by modifying their molecular graphs. The designed molecules were constrained
to be composed of chemical features that are prevalent in reference chemistry. Different
ways of defining chemical features were explored, and we determined that mimicking small
circular atomic environments allowed us to design reasonably fit and easy to synthesize
molecules.

We developed an evolutionary algorithm that constructs molecules with desirable chemical
features by assembling molecular fragments in a computationally efficient way, and
showed how it outperformed competing algorithms in both the quality of the generated
molecules and its ability to navigate chemical space effectively.

We also developed a molecule correction algorithm that can identify flaws in molecules
and sanitize them to make the molecules more desirable. Said tool can be used to post-
process molecules generated elsehow, or integrated into molecule generators to enforce
chemical constraints in a hands-off fashion.

Dutch Summary

—

6

Dutch Summary

De novo moleculair ontwerp betreft het genereren van moleculen met wenselijke
eigenschappen vanuit het niets. Wanneer dit computationeel wordt gedaan, zijn de
voorgestelde moleculen vaak moeilijk te synthetiseren en chemisch onaantrekkelijk. In dit
werk presenteren we methoden om patronen te extraheren uit beschikbare data en
moleculair ontwerp te sturen in de richting van synthetisch toegankelijke chemie. Gegeven
een lijst van bekende synthetiseerbare moleculen, ontwerpen we moleculen met dezelfde
chemische eigenschappen, in de veronderstelling dat deze gelijkenis de waarschijnlijkheid
vergroot dat ze ook synthetiseerbaar zijn.

Moleculen werden ontworpen met evolutionaire algoritmen die populaties van moleculen
fokken door hun moleculaire grafieken te wijzigen. We dwongen de moleculen om
samengesteld te zijn uit chemische eigenschappen die veel voorkomen in de
referentiechemie. Verschillende manieren om chemische eigenschappen te definiëren
werden onderzocht en we stelden vast dat het nabootsen van kleine cirkelvormige
atomaire omgevingen ons in staat stelde om redelijk geschikte moleculen te ontwerpen.

We ontwikkelden een evolutionair algoritme dat moleculen construeert met gewenste
chemische eigenschappen door moleculaire fragmenten op een computationeel efficiënte
manier samen te voegen, en toonden hoe het beter presteerde dan concurrerende
algoritmen in zowel de kwaliteit van de gegenereerde moleculen als het vermogen om
effectief door de chemische ruimte te navigeren.

We ontwikkelden ook een algoritme voor molecuulcorrectie dat gebreken in moleculen kan
identificeren en ze kan zuiveren om de moleculen wenselijker te maken. Dit gereedschap
kan worden gebruikt om moleculen die op een andere manier zijn gegenereerd achteraf te
bewerken of kan worden geïntegreerd in moleculengeneratoren om chemische
beperkingen op een hands-off manier af te dwingen.

Introduction

—

7

 Introduction

 Molecular design

Molecular design is the art of crafting molecules with specific properties and/or functions.
It lays at the core of the pharmaceutical industry.

When designing a molecule one formulates a hypothesis about its properties, acquires said
molecule, presumably by synthesizing it, and assays the molecule for its properties to test
the hypothesis. Unfortunately, our limited understanding of the universe makes
formulating strong hypotheses challenging. Consequently, molecular design is an iterative
process with many “design-make-test” cycles. As of today the “make” and “test” parts of
this cycle have to be performed by humans in a laboratory, making molecular design a
resource intensive process. Intelligent prioritization of molecules during the “design” stage
could dramatically reduce the cost of developing novel chemical entities.

Computers can aid in the molecular design process. A task of special interest is the virtual
prediction of molecular properties. In silico assays, generically referred to as scoring
functions or objective functions, tend to be more resource efficient than their in vitro, and
especially in vivo, counterparts. These assays can be used on a large scale to screen virtual
libraries of molecules and identify promising compounds for further testing in the lab. This
process, known as virtual screening, has proven its worth as a useful tool in molecular
discovery [1]. Commonly the molecules being screened are either commercially available
[2] or predicted to be easy to synthesize [3–5], enabling a fast transition from in silico to in
vitro studies. However, given that even the largest virtual libraries [6] dwarf in size
compared to chemical space, which is commonly cited to contain somewhere between 1023
and 1060 [7–9] drug-like molecules, it’s unlikely that the library will contain the most potent
and attractive molecules. Preferences for certain chemotypes and synthetic reactions [10,
11] often make their way to virtual libraries, leading to a small and non-uniform coverage
of chemical space [12, 13]. This, coupled to the fact that publicly available libraries may
have been screened previously or even contain patent-protected molecules, raises
concerns about a lack of chemical novelty. Virtual screening can be thought of as a blind
search through chemical space, with molecules being tested randomly. This constitutes a
rather inefficient use of computational resources.

In the early 1990s it was postulated that given a scoring function that predicts a molecule’s
properties one could directly construct molecules with desirable properties as opposed to
searching for them in pre-enumerated libraries. This process was described as “inverse
QSAR” [14, 15]. Early on the focus was on optimizing already validated hits with the

Introduction

—

8

assistance of a scoring function. It did not take long for some to become more ambitious
and aim to design molecules from scratch using solely the feedback from the scoring
function [16–21]. This gave rise to the field of computational de novo molecular design. The
field boomed up until the late 2000s, when enthusiasm started to die down. Two reasons
are commonly cited for this decay in popularity [22]. Firstly, the scoring functions available
at the time were lackluster. Most methods employed crude structure-based scoring
functions, and ligand-based scoring functions were still in their infancy. Secondly, and
perhaps most importantly, the focus was almost entirely on designing molecules with high
predicted scores, with other properties being neglected in the process. Many of the
designed molecules were difficult to synthesize and, given the inaccuracies of the scoring
functions, one can imagine many chemists undertook challenging syntheses only to be
disappointed by false positives.

Recently advances in computational power, scoring function accuracy and molecule
manipulation techniques, as well as greater access to molecular data, have reinvigorated
the field. The present work is part of this rebirth and revolves around the development of
software to construct and optimize molecules based on the feedback of some problem-
specific scoring function.

 Molecular representation

Computational chemists describe molecules and their behavior mathematically. These
descriptions may be two- or three-dimensional, and may obey different levels of chemical
theory. The most pervasive and basic molecular description is the molecular graph. While
the name may be foreign to some, virtually everyone is familiar with the concept of
molecular graphs, as they are the de facto standard for molecule depiction (Figure 1.1).
Graphs are data structures containing objects or vertices, where relationships between said
objects are expressed as edges. In a molecular graph vertices represent atoms, and edges
represent bonds. Molecular graphs represent the molecule’s topology or connectivity.
Molecular graphs are usually:

● Undirected. Edges have no directionality and can be traversed in both directions.

● Unweighted. Edges have no associated weights, or alternatively, unit weights.

● Simple. Parallel edges and self-edges or loops are disallowed. In other words, two
vertices may be connected by at most one edge, and connected vertices must be
distinct.

● Connected. A path exists between any two vertices of the graph. Occasionally
disconnected graphs are used to represent distinct molecules functioning jointly or
stabilizing each other, such as in the case of salts.

Introduction

—

9

Figure 1.1. An example molecular graph. Balls (vertices) represent atoms, while sticks (edges) represent bonds.

Two things set molecular graphs apart from other undirected, unweighted and simple
graphs. Firstly, the vertices and edges store (numeric) information about the atoms and
bonds they represent. This may include the atomic number, mass number, formal charge,
bond order etc. Hydrogens are usually not included explicitly in the topology but rather
treated implicitly as a property of the non-hydrogen atoms instead. Vertices may also
convey some information about the molecule’s 3D structure in the form of stereochemistry
annotations or plain 3D coordinates.

Secondly, molecular graphs are expected to follow a set of rules founded in chemical theory
to represent reasonable molecules. Yet it is important to recognize that these are merely
expectations, and that mathematically there are no limits to a graph’s topology and
annotations. Theoretically a molecular graph can represent chemically unstable,
unreasonable or impossible entities.

Some graph concepts of importance later in this work are defined as follows:

● The degree of a vertex is equal to the number of edges associated with it.

● A path is a sequence of connected vertices in a graph. It is a way to traverse from one
vertex to another following a sequence of adjacent edges. More than one path may exist
between two vertices, with the shortest one known as the shortest path.

● The topological distance between two vertices is equal to the number of edges in the
shortest path between both vertices. For example, two adjacent atoms are at a
topological distance of 1.

● A cycle is a closed path where the starting and ending vertex are the same. In
cheminformatics cycles are often called rings.

● The minimum cycle basis of a graph is a set of cycles that contains the fewest possible
number of cycles while still representing all the cycles in the graph. Each cycle in the
basis is unique and cannot be formed by combining other cycles in the set. In
cheminformatics the minimum cycle basis is often referred to as the Smallest Set of
Smallest Rings (SSSR) [23].

Introduction

—

10

 Molecular characterization

Given a molecular representation such as a molecular graph one can calculate certain
properties of the represented molecule. These calculated properties are called molecular
descriptors. Examples of simple descriptors include the molecular weight and octanol-
water partition coefficient (logP). Descriptor values can be predictive of higher order
molecular properties. For example, the renowned Lipinski’s rule of five predicts
bioavailability based on simple physicochemical descriptors [24].

However, not all properties can be satisfactorily predicted as a function of simple
physicochemical descriptors. For instance, binding affinity is a highly complex trait that
depends on the molecule’s topology, as specific functional groups must be in specific
positions to be able to interact with a biological target. This triggered the development of
molecular descriptors that characterize a molecule’s topology. Early efforts revolved
around the development of topological indices, which are single numbers characterizing
some aspect of a molecule’s connectivity [25–28]. While topological indices capture some
information about a molecule’s topology, they do not provide explicit details about
functional groups, substructures, or atom arrangements. Structural keys were developed
in response [29, 30]. A structural key is a boolean array where each boolean or bit encodes
the absence or presence of a chemical substructure, for example a functional group (Figure
1.2). Structural keys have two major drawbacks. Firstly, searching for substructures in a
molecule is a variant of the subgraph isomorphism problem, which is known to be
computationally expensive to solve [31]. Secondly, and perhaps most importantly,
structural keys suffer from a lack of generality, as the substructures encoded in the key may
not be relevant in every problem domain.

Figure 1.2. Example structural key. Certain functional groups map to certain bits in a bitstring. The bit is set if
the functional group is present, and unset otherwise.

Introduction

—

11

Molecular fingerprints are a generalization of structural keys that bypasses the need for
defining substructures of interest. Much like structural keys they are usually represented
as bit arrays, with the difference being that each bit maps to a large number of undefined
patterns instead of mapping to a single predefined pattern. Chemical features are
generated algorithmically. These features may include atom pairs [32], topological paths
[33] and/or circular environments [34]. Thereafter they are hashed to an integer, which
acts as the bit index, and can be understood as the feature’s identifier (Figure 1.3). Hashing
is the process of deterministically converting an input of arbitrary size to an output of fixed
size. In our case given an input chemical feature we generate a seemingly random integer
between 0 and some maximum value, typically a power of two such as 232. Two similar yet
distinct chemical features are hashed to entirely unrelated integers. Since the output space
is smaller than the input space there is also a probability of two distinct features hashing
to the same integer by chance. This is known as a hash collision. The probability of a collision
is larger the smaller the output space. A good hashing function distributes hash values
uniformly over the output space to minimize the probability of a hash collision.

Figure 1.3. Example path-based molecular fingerprint. Each bond is mapped to a bit, typically through hashing.
Two different bonds can map to the same bit by chance (hash collision). One can either count how many times
each feature occurs, or simply denote its binary presence/absence.

Molecular fingerprints are a convenient and efficient way of characterizing the topology of
a molecule as a set, that is, a collection of ordered integers. One can efficiently calculate
the similarity between two sets, and therefore molecular fingerprints, using a similarity
index such as the Tanimoto, Dice or Tversky index [35]. Since molecular similarity is one of
the cornerstones of computational chemistry [36, 37] it is no surprise that molecular
fingerprints are applied to a wide variety of tasks ranging from database searches [38, 39]
to molecular clustering [39, 40], featurization of machine learning training data [41] and
ligand-based virtual screening [42–44].

Arguably the most popular type of molecular fingerprint is the Extended Connectivity
Fingerprint (ECFP) [34]. ECFP falls under the category of circular fingerprints. In a circular

Introduction

—

12

fingerprint a bit signals the absence or presence of a circular atomic environment. A circular
atomic environment is defined as a central atom and all atoms and bonds within a given
topological distance of it, called the environment’s radius r. The ECFP algorithm starts by
assigning initial atom identifiers to a molecule’s atoms. Commonly these identifiers are the
hash of some atomic properties. These atomic properties or atomic invariants typically
include the atom’s degree, valence, atomic number, mass number, formal charge, number
of hydrogens and sometimes ring membership or stereochemistry annotations [34, 45].
Atomic identifiers are iteratively updated following the Morgan algorithm [46], which
combines the identifiers of a central atom and its adjacent atoms (Figure 1.4). In modern
implementations this is achieved with a hashing function [34]. Since the ECFP algorithm is
based on the Morgan algorithm some re-implementations of the original ECFP have been
called Morgan fingerprints [47].

Figure 1.4. Illustration of a single iteration of the Morgan algorithm. Each atom is characterized with an
integer identifier. In the first iteration this is commonly the hash of some of the atom’s properties. For each
atom the identifiers of itself and its neighbors are collected and aggregated with a hashing function, resulting
in a seemingly random number. Said random number becomes the new atom’s identifier for the next iteration,
as well as serving as a bit index into a molecular fingerprint.

Different ECFP variants, denoted as ECFP{2r}, can be distinguished depending on the
number of iterations r of the algorithm. For example, r = 2 iterations of the algorithm would
yield ECFP4. There is a direct correlation between the number of algorithm iterations and
the radius of the resulting atomic environments (Figure 1.5).

Figure 1.5. Circular atomic environments (centered on the red atom) defined by r iterations of the Morgan
algorithm. Note that bigger environments encompass smaller environments.

Introduction

—

13

 Chemical space

Chemical space is an abstract concept referring to the theoretical collection of all possible
chemical entities. It is common to narrow down general chemical space to subspaces
containing specific types of molecules. For example, one could define a drug-like chemical
space containing exclusively drug-like molecules. The size of drug-like chemical space has
been a topic of much debate. Frequently quoted figures range between 1023 and 1060 drug-
like molecules [7–9, 48]. In any case, it is clear that its magnitude is astronomical.

Chemical space can be thought of as a multidimensional similarity-based arrangement of
molecules. A molecule corresponds to a point in chemical space, and similar molecules,
according to some criterion, are close to each other in chemical space. Depending on the
application different similarity criteria may be used to define chemical space [49–51].

Of interest to us is a chemical space defined based on molecular graph similarity, where
molecules with similar topologies are proximal. Since molecular properties are generally
assumed to be linked to the structure of the molecule, it stands to reason that molecules
with similar structures will also have similar properties [36, 37]. Indeed, this has become
one of the cornerstone theorems of molecular design. The go-to molecular design strategy
is to explore regions of chemical space surrounding reference molecules with promising
properties, with the hopes of finding even more appealing molecules in their
neighborhood.

For visualization purposes it is common to represent chemical space as a two-dimensional
coordinate system using physicochemical descriptors or principal components thereof as
axes (Figure 1.6A) [49]. Alternatively one could use chemical features like the ones in
molecular fingerprints as dimensions instead [13, 51]. The aforementioned techniques
embed molecules in a continuous space by representing them as descriptor vectors. Since
molecules are discrete states, and chemical space is a discrete space, continuous
representations can be a bit misleading. It may be preferable to represent chemical space
as a graph, where each vertex is a molecule and edges represent relationships between
molecules (Figure 1.6B). When considering molecules as static entities these edges could
represent topological similarities. In this work molecules will be treated as dynamic entities
instead, in the sense that their molecular graph can be altered. In this case given a graph-
like representation of chemical space edges would represent transitions between related
molecules [52–54].

Introduction

—

14

Figure 1.6. Examples of chemical space representations. Chemical space is commonly thought of as a
continuum, with the dimensions given by molecular descriptors (left). Alternatively, one can view chemical
space as a dimensionless transition graph, where edges represent transformations between related molecules
(right).

 Objective functions

Many scientific problems can be formalized as optimization problems. Optimization
involves finding the best or sufficiently good solutions among a set of possible solutions or
states. The quality of a solution is quantified with one or more objective functions. The
value of the objective function for a specific solution is termed objective value, fitness or
score, and the process of measuring it is called evaluating the objective function.

Objective function design and selection is entirely dependent on the problem to be tackled.
Depending on whether the objective function measures desirability or undesirability the
function ought to be maximized or minimized, respectively. In drug discovery and
development one might be interested in maximizing the binding potency or biological
effect of a molecule with respect to its biological target. These properties can be measured
with constants of dissociation (Kd or Ki) and effective concentrations (EC50 or IC50),
respectively. As these metrics relate to the concentration required to achieve a certain
degree of binding or activity, the goal is to minimize them. Alternatively, one might be
interested in maximizing the viability or survival rate of some organism when exposed to
some substance.

A peculiarity of chemical and biological research is that the preferred objective functions
are commonly wet laboratory experiments. The results of these experiments are widely
trusted and often taken as ground truth. Unfortunately, their cost and throughput may

Introduction

—

15

limit the number of times the objective functions can be evaluated. Ex silico optimization
strategies minimize the number of molecules to synthesize and evaluate through human
expertise. In absence of said expertise, in silico optimization strategies rely on evaluating
objective functions orders of magnitude more times than what wet lab experiment can
ordinarily support. Hence, in computational molecular optimization the objective functions
are usually surrogate objectives that mathematically and rapidly predict the underlying
ground truth measured in the lab (Figure 1.7). For example, instead of measuring a Ki one
could measure an interaction energy according to molecular docking, or instead of
measuring an IC50 one could predict inhibitory effect using a machine learning model. While
the accuracy of any one individual prediction is a topic of hot debate [55–58], the hope is
that at a larger scale the objective function captures the statistical distribution of the
ground truth. Additionally, the higher throughput enables a broader exploration of
chemical space than what would have been possible in vitro [2, 59].

Figure 1.7. A black box objective function predicting the biological activity of a molecule.

 Multi-objective optimization

While we tend to focus on biological activity, it is important to note that drug discovery is
inherently a multi-objective problem. Other objectives include synthetic accessibility, good
Absorption, Distribution, Metabolism and Excretion (ADME) properties, limited toxicity and
off-target effects and chemical novelty.

Optimizing multiple objectives simultaneously can be challenging. In fact, if two objectives
are conflicting it may be impossible to satisfy both simultaneously, forcing us to settle on a
trade-off. By far the most popular approach to finding molecules satisfying multiple criteria
is combining multiple objectives into a single composite objective, usually through linear
combination, with each objective being assigned a priori some importance or weight. Some

Introduction

—

16

of these objectives may be implemented as filters, with the solution being unacceptable if
a certain objective is not met [60–62]. When using composite objectives the optimizer is
free to sacrifice some of them in favor of others, or return average molecules fulfilling all
objectives to some extent but at an overall weak level [63].

Some optimization strategies do not require the user to define an objective trade-off [60,
64–66, 66–71]. These techniques generate Pareto optimal solutions, that is, solutions for
which no objective can be improved without hurting another. Pareto optimal solutions
define a so called Pareto front representing different objective trade-offs from which the
user selects solutions a posteriori. Pareto optimization is not perfect either, for it is known
to scale poorly with the number of objectives [72]. As the number of dimensions increases
so does the number of Pareto optimal solutions. This, coupled to challenges in visualizing
and interpreting high-dimensional data, complicates solution selection. Moreover the cost
of evaluating Pareto optimality and the objectives themselves increases rapidly.

Given the aforementioned challenges, it is perhaps unsurprising that many researchers try
to sidestep formal multi-objective optimization. Instead of considering every objective
explicitly some objectives can be enforced implicitly by constraining the way in which
solutions are generated. By reducing the number of objectives to optimize one has access
to simpler optimization algorithms and analysis tools. Furthermore the cost of explicitly
evaluating objectives is negated.

When optimizing molecules, objectives such as drug-likeness and synthesizability can be
captured implicitly by the way in which molecules are modified or constructed. A
historically popular approach has been to construct chemicals as combinations of smaller
molecular fragments. Fragments may be systematically extracted from reference
molecules [61, 73–79] or sourced from commercial reagent libraries [80, 81]. The use of
fragments is not sufficient to guarantee that the assembled molecules will be
synthesizable, as one must ensure that the bonds formed between fragments are also
reasonable. Fragment combination can be governed by rules that range in chemical
sophistication from knowledge-based bonding [73–75] to simulated chemical reactions
[76, 77, 80, 80–85].

More recent research efforts have focused on generative models, that is, machine learning
models trained on sets of (synthesizable) molecules to learn chemical distributions, and
capable of sampling molecular representations from them [86–88]. Variational Auto-
Encoders (VAE) can translate back and forth between discrete and abstract continuous
numerical molecular representations, with molecule optimization taking place in the latter
[67, 89, 90]. Recurrent Neural Networks (RNN) can sample molecules from chemical space
by iteratively growing a molecule, conditioning the next action on the existing molecular
context [91–93].

Introduction

—

17

 Optimization algorithms

In the context of optimization, solution space refers to the set of potential solutions for an
optimization problem. An optimization algorithm - sometimes called a search algorithm -
is a procedure or method to find solutions within the solution space that minimize or
maximize the objective function. Due to optimization constraints, the optimization
algorithm may be able to explore only a subset of the solution space. This subset is called
the search space.

The objective values for all states in the solution space define a surface called objective
landscape or fitness landscape. In the case of multiple objective functions, each objective
function has an associated fitness landscape. The low and high points on these landscapes
are called minima and maxima, respectively. The term extrema can be used to generically
refer to both. Extrema can be local or global. A local extremum is a solution for which the
objective value is either lower or higher than the objective values of its neighbors. The
global extrema are those for which the objective values are at their absolute lowest or
highest. Complete knowledge of the fitness landscapes would enable perfect retrieval of
solutions residing in fitness extrema. Unfortunately, the sort of problems that are usually
tackled with optimization algorithms tend to have extremely large solution spaces. Hence,
in practice only small sections of the fitness landscape are characterized and assumptions
are made about the landscape that lay beyond.

The choice of optimization algorithm for a specific problem depends on the nature of the
solution space and fitness landscape. In molecular design the solution space is chemical
space. The sheer size of chemical space forbids substantial systematic exploration.
Chemical space is discrete. Without embedding [89, 90], this rules out gradient-based
optimization algorithms that require a continuous solution space, the likes of which are
common in other fields. Objective functions used in molecular design attempt to model
chemical and biological reality. Chemistry and biology are complex fields rife with
exceptions and partially understood phenomena. When coupled with inevitable
inaccuracies of the objective function, one should expect the occasional abrupt fitness
change or activity cliff between neighboring molecules [94, 95]. Indeed, fitness landscapes
relevant to molecular design are rugged and bountiful in peaks and troughs (Figure 1.8).
This can pose major challenges to an optimization algorithm. Firstly, assumptions made by
an algorithm about the topography of the fitness landscape may be incorrect. Secondly,
the abundance of local extrema increases the likelihood of an algorithm getting “stuck” in
one of these extrema as no better solution may be found in their immediate proximity.

Introduction

—

18

Figure 1.8. A hypothetical drug-discovery fitness landscape. In this example chemical space is a function of
two continuous dimensions (D1 and D2). The Z-axis or height represents the fitness values of molecules. The
left pane is a contour plot of the fitness landscape while the right pane is a 3D view. In this example the fittest
molecules are found in the deepest valleys, and therefore our task is to minimize the fitness function.

Summarizing, a chemical space exploration algorithm must cope with a large and discrete
solution space and rugged fitness landscapes. Algorithms meeting these requirements are
usually heuristic optimization algorithms. Heuristic algorithms are approximate problem-
solving methods. They often involve iterative steps of evaluating and improving candidate
solutions, and frequently incorporate a stochastic component. While they cannot
guarantee the discovery of global extrema, they can find reasonably good solutions in a
timely manner. A wide variety of heuristic optimization algorithms have been employed in
molecular design including simulated annealing [96, 97], Markov chain models [73], particle
swarm optimization [98, 99], Monte Carlo tree search [100] and reinforcement learning
[86, 92, 101], just to name a few.

Two search algorithms particularly relevant to this work are tree searches and evolutionary
algorithms, which will be described in more detail in the following sections.

1.7.1 Tree searches

Trees are acyclic, connected and directed graphs expressing hierarchical relationships
between vertices through directed edges. Vertices directly connected to a given vertex are
called adjacent or neighboring vertices. When the tree is directed a vertex may have
incoming and outgoing edges, and the adjacent vertices can be classified into predecessors
or parents and successors or children, respectively. Vertices without successors are called
leaf vertices. A tree has a single vertex without predecessors called the root vertex.

Introduction

—

19

A tree search is a graph traversal technique that starting from the root vertex progressively
visits connected vertices until all vertices have been visited once or an alternative
termination criterion is met. It is this traversal that defines the tree. A vertex is chosen and
one of its non-traversed edges is traversed leading to another vertex which, if it has not
been visited yet, is added to the tree. This process is referred to as expanding the vertex.
In an unweighted tree the distance between a vertex and the root vertex is the vertex’s
depth.

Tree searches are immensely flexible in that one can devise infinitely many strategies to
select which vertex to expand. These strategies are sometimes called policies. The simplest
search strategies are greedy search and Breadth-First Search (BFS), which are purely
exploitative or purely explorative, respectively. In a greedy search the fittest vertex is
always chosen for expansion. In BFS the expandable vertex with lowest depth is chosen for
expansion, causing the tree to be expanded in a breadthward motion, “level by level”.
Greedy search finds solutions rapidly, but it favors deep searches and is likely to miss the
optimal solution. BFS favors shallow searches and always find the optimal solution, but if
the size of the tree is large it becomes computationally intractable. Practical policies are
usually a hybrid of both, offering a balance between exploitation and exploration (Figure
1.9).

Figure 1.9. Different types of tree search policies applied to the same tree. The goal is to find the optimal
vertex (green) starting from the root vertex. The vertices visited by the search are highlighted in orange. The
more vertices are visited, the larger the cost of the search. Greedy search is the cheapest among the three,
but missed the goal vertex. BFS finds the goal vertex but spends the largest amount of resources doing so. An
ideal policy would find the goal vertex without exploring the whole tree.

It is common to apply tree searches to finite and fixed graphs that are fully defined and
enumerated. As mentioned previously, chemical space can also be contextualized as a
graph. However, due to its size it cannot be fully enumerated. In fact, if molecular size is
not a consideration, chemical space is an infinite graph. Search algorithms such tree
searches are still applicable, provided that vertex expansions procedurally generate the
graph on the go [52–54].

Introduction

—

20

1.7.2 Evolutionary algorithms

Evolutionary algorithms are population-based heuristic optimization algorithms inspired by
genetics and biological evolution. A population of candidate solutions or states is
considered. Each state or individual is expressed as some form of data structure, sometimes
called the chromosome. Each generation, some of the individuals reproduce to generate
offspring. The children are genetically distinct from their parents due to stochastic
mutations and recombination, typically some form of crossover. The fitness of individuals
is evaluated by a fitness function, and the fittest individuals are most likely to reproduce
and survive. The fitness function exerts selective pressure on the population, driving it
towards optimality in a process analogous to Darwinian natural selection (Figure 1.10).

Figure 1.10. Evolutionary algorithm example. A population of states, in this example shapes, is iteratively
evolved through alternating reproduction and selection events. The fitness function favors round shapes, and
shapes are color coded according to their fitness. In the first generation a mutation gives rise to a yellow
Norman window (i.e. “pac-man ghost”). Since its fitness is superior to the red square it survives into the next
generation. Selective pressure amplifies the roundness shape until the population is made up of only green
circles.

Introduction

—

21

There are two key steps to an evolutionary algorithm: reproduction, which encompasses
mutation and recombination, and selection. How individuals are reproduced is highly
dependent on their chromosomal representation and sometimes the optimization domain.
Some states can be encoded as linear data structures. Within the context of molecular
design, nucleotides [102], proteins [14, 103, 104], synthetic polymers [105, 106] and even
simple Markush structures [78] have all been encoded as arrays. The main appeals of using
arrays as chromosomes are the ease of manipulation and the direct correlation with
nucleotide sequences from which they draw inspiration, making the implementation of
mutation and recombination straightforward. However, when it comes to diverse and
arbitrary molecules like drugs this representation can be very restrictive. Arguably the most
natural representation for molecules is their molecular graph. Accordingly, efforts have
been undertaken to mutate and recombine molecular graphs.

Mutations stochastically modify molecules, adding external variability to the population.
Molecular mutation techniques can be classified into atom- and fragment-based
approaches based on the granularity of the molecular representation. It should be noted
that this classification is purely didactical in nature, and in practice many methods blur the
lines between atoms and fragments. Atom-based approaches modify the molecular graph
one atom or one bond at a time, whereas fragment-based approaches construct molecules
as a combination of multi-atomic fragments [63, 107]. Both have inherent advantages and
disadvantages. Atom-based molecule construction tends to be simpler and enables the
exploration of virtually the entirety of chemical space. Their biggest drawback is that when
applied naively the resulting molecules may be difficult to synthesize [108, 109].
Nonetheless many applications of this methodology have been reported [12, 54, 60, 64, 79,
100, 110–112]. Fragment-based approaches were pitched as a solution to the poor
synthesizability problem [60, 64, 73, 74, 78, 79, 98, 113, 114]. When fragments are
manually curated or algorithmically extracted from desirable molecules they can capture,
and therefore reproduce, recurring chemical features. Besides potentially improving the
synthesizability of designed molecules it can also bias the search towards specific areas of
chemical space of interest. Ultimately, as one biases molecular design towards known
chemistry the designed molecules become more pleasing to the eye, but at the expense of
ignoring large sections of chemical space, and therefore reduced chemical novelty.

Molecular recombination consists in exchanging chemical features between molecules,
exploiting the internal variability of the population. For simplicity’s sake this exchange
usually takes place between pairs of molecules. Historically, recombination has been
executed in two ways. The first and most popular procedure is the “digestion” approach
[12, 64, 100, 115, 116], where certain bonds of each molecule are broken yielding
fragments. Fragments are exchanged and reconnected to complete the recombination. The
second procedure could be described as the “match and swap” approach [81, 117, 118].
One starts off by finding the maximum common substructure shared by the molecules. This
common substructure acts as scaffold, and the remainder of the molecule is taken as

Introduction

—

22

substituents, which can then be exchanged between molecules and reconnected in the
same positions. It can be argued that this form of recombination is more natural. However,
it only works as intended when there is a sizable common substructure between molecules.
Much like substructure matching it is also a computationally expensive approach, as finding
the maximum common substructure is a hard problem.

Selection of which individuals to reproduce and which individuals to carry over into the
next generation is more standardized than reproduction. A very simple approach is
truncation selection, where the N fittest individuals are selected. This leads to a
phenomenon known as elitism, where the best individuals are always preserved and
reproduced. This favors exploitation and skews the population heavily towards a specific
solution. In the process the genetic diversity of the population may decline, sometimes
degenerating to the point where all individuals are identical. This can seriously hamper
exploration. As an alternative one can opt for selection schemes such as fitness-
proportionate selection, sometimes also called roulette wheel selection. As the name
suggests, following this strategy the probability of selecting an individual is proportional to
its fitness. This reduces the probability of premature convergence. Other selection schemes
such as steady state selection and tournament selection exist, but won’t be discussed here
as they were not applied within this work.

It should be remarked that it is common to find related terms such as evolutionary strategy,
genetic algorithm and evolutionary algorithm being used as synonyms. This would be
considered a misnomer by some. The consensus seems to be that evolutionary algorithm
is a broad term encompassing more specific variants such as genetic algorithms. However,
in the literature there are some disagreements about the distinctive features of the
different variants. In practice the terms are often used interchangeably, especially outside
the world of optimization theory. Nonetheless, to err on the side of caution I will refer to
them broadly as evolutionary algorithms.

 Benchmarking molecular design algorithms

1.8.1 Objective values

Despite many molecule generators having been reported in the literature, it is not always
clear how they compare to each other and where their strengths and weaknesses lie. For a
long time it was common to test molecular design algorithms on arbitrary in-house
problems. Skeptics might argue that the test cases had been contrived to showcase
methodologies in a positive light. Recently efforts have been undertaken to standardize the
test suits for molecule generators [108, 119, 120]. In principle this enables straightforward
comparisons between algorithms without the need of re-running any benchmarks,
although this may be partly wishful thinking.

Introduction

—

23

One such test suite we use throughout this work is the goal-directed GuacaMol benchmark
suite [108]. This benchmark suite measures how good an optimization algorithm is at
designing molecules that maximize some pre-defined objectives. The GuacaMol
benchmark suite is a collection of individual benchmarks. The most important component
of each benchmark is an objective function that scores molecules in the [0, 1] range, with
higher values being better. Molecule generator are tasked with designing a population of
molecules maximizing the specified objective. This population is then evaluated to yield a
final benchmark score, also in the [0, 1] range, typically as a weighted average of molecule
scores. Optionally some benchmarks may also provide a starting population of molecules.

Different versions of the GuacaMol benchmark suite have been developed. Two are of
interest to us. The “trivial” version includes 7 benchmarks and is comprised mostly of tasks
to design molecules with specific physicochemical properties (e.g. logP). The “V2” version
is more diverse. It consists of 20 benchmarks including tasks to find molecules that (1) are
identical to a reference molecule, (2) are similar to reference molecule(s), (3) have specific
chemical formulas, (4) have/have not certain substructures, and (5) combinations of the
aforementioned tasks, the so called Multi-Parameter Optimization (MPO) tasks.

The GuacaMol benchmark scores are suitable to assess the “optimization power” (OP) of
an algorithm, but they do not provide any information about the chemical quality of the
designed molecules. To assess the latter we have used synthesizability metrics. Note
however that a common element to many of the GuacaMol benchmarks is that they score
molecules based on topological similarity to drugs. In other words, the perfect solution is
oftentimes related or identical to a known drug. Since drugs are obviously synthesizable,
the GuacaMol scoring functions unintentionally provide some implicit guidance to design
synthesizable molecules. Throughout this work we will occasionally resort to custom
benchmarks to better elucidate the effects attributable to the scoring function.

1.8.2 Synthetic accessibility

As has already been touched upon, molecular design is a multi-objective problem. One of
the objectives that the designed molecules must fulfill is synthetic accessibility. Synthetic
accessibility, synthetic feasibility or synthesizability refers to a molecule’s ease of synthesis,
and is a rather vague and subjective concept. It could be interpreted as a binary property,
with a molecule either being synthesizable or not. However, not all synthesizable molecules
are equally easy to synthesize. Some molecules may be theoretically synthesizable, but the
effort required to synthesize them in large enough quantities may be beyond the
willingness of the medicinal chemist. We will consider synthesizability as a continuous
property, and we aim to design molecules that a chemist might agree to synthesize. This
typically demands a short synthetic route (preferably less than 5 steps), starting from
commercially available building blocks and employing well established reactions with high
yields and simple reaction conditions [10], for example amide coupling. Easy to synthesize

Introduction

—

24

molecules are typically small, have little to no stereochemistry, and should be comprised
of small and conventional ring systems the chemist is comfortable with [121].

Chemists rely on their intuition and expertise when assessing synthesizability. While the
algorithm underlying a chemist’s decision making is poorly understood and highly
subjective [121–123], generally speaking chemists prefer familiar chemistry. Computers
can exploit this preference by finding patterns in known examples of familiar chemistry and
comparing them to the patterns of subject molecules whose synthesizability ought to be
assessed.

An early attempt to do so was the SAScore [124]. The SAScore is a heuristic that estimates
the synthesizability of a molecule on a scale from 1 to 10, with lower values suggesting an
easier synthesis. The SAScore consists of two components that are summed together. The
first component is the fragment score. It measures the topological similarity of a query
molecule to reference synthesizable molecules through means of ECFP features [34]. If a
molecule contains features that are prevalent among known synthesizable molecules, it is
presumed to be syntesizable as well. The reverse is true for features that are rare or even
absent in the reference library. The fragment score implicitly captures and expresses
chemical preferences as well as reactant availability. The second component is a complexity
penalty. As the name implies, molecules exhibiting properties hindering synthesis receive
a penalty. These properties include size, the number of chiral centers and ring complexity
descriptors such as the number of macrocycles, spirocycles or bridged ring systems. The
appeal of the SAScore is that it is simple and fast to calculate. Despite its simplicity it
correlates surprisingly well with a chemist’s understanding of synthesizability [124, 125],
and is predictive of more complex synthesizability assessment techniques [109, 126, 127].

The golden standard for synthesizability assessments is retrosynthesis. If a molecule is
retrosynthesizable it is presumably also synthesizable. Retrosynthesis not only evaluates if
a molecule is synthesizable; it also proposes a synthetic route for it. In retrosynthesis an
input molecule is successively broken down by the inverse of synthetic reactions until
sufficiently simple or commercially available building blocks are generated [128, 129].
Unfortunately retrosynthesis is a computationally expensive problem. In silico reactions
must be preceded by the detection of functional groups involved in the reaction, which is
an expensive procedure [31]. Making matters worse, retrosynthesis is typically
implemented as a tree search. In combinatorial spaces like chemical space deep tree
searches are only tractable when paired with intelligent policies [130–133]. Even then
retrosynthesizing a single molecule may take several minutes (compared to the fractions
of a second it takes to compute heuristics like the SAScore), forbidding its iterative
application. Whether a molecule is retrosynthesizable or not can be rapidly predicted with
classifiers [127, 134], but in doing so one sacrifices the proposed synthetic route and with
it any validation of the prediction.

Research aims

—

25

 Research aims

The purpose of this work is two-fold. From a practical perspective we aim to develop
algorithms and software for molecular design, with a special focus on designing small
organic molecules with potential therapeutic uses. During this process we hope to gain
theoretical insights into the nature of chemical space and how to best explore it.

As a starting point for our method development we are equipped with the following:

1. The “similar structure, similar property” principle. We make the assumption that
the likelihood of two molecules having similar properties is proportional to how
structurally similar they are. Within this work molecule similarity will be expressed
as a function of shared chemical features, and measured using topological
fingerprint similarity coefficients.

2. A black-box objective function that explicitly and numerically expresses how well a
molecule fulfills some arbitrary objective. What the objective function measures,
and whether objective values ought to be minimized or maximized is task
dependent. For simplicity the reader may assume that the objective function
predicts the magnitude of a biological response under exposure to the molecule in
question.

3. A virtual library of chemically desirable molecules. Molecules comprising the library
ought to (1) be easy to synthesize and (2) have favorable ADMET properties
(presumably for oral bioavailability). Ideally the library should also be large and
diverse enough to be representative of the chemical state of the art. Throughout
this work we will use ChEMBL as reference library.

Research aims

—

26

Designed molecules ought to:

 Have extreme objective values, as measured by the aforementioned objective
function.

 Be likely to be “chemically desirable”. Leveraging the “similar structure, similar
property” principle we can quantify chemical beauty by measuring the molecule’s
similarity to the aforementioned reference chemistry library.

The developed methods must be capable of designing molecules that meet the above
criteria. Beyond this evident requirement we strive to develop methods that:

 Design molecules de novo, that is, the molecular starting point shouldn’t be an
existing chemical entity but rather vacuum. Accordingly, we expect the methods to
yield novel molecules that haven’t been described or enumerated previously.

 Competently explore complex fitness landscapes without requiring assumptions
about the nature of the fitness function.

 Explore said landscape in a computationally efficient manner, finding good solutions
expending as few computational resources as possible. Opportunities for
computational optimization include (1) the routines to construct / modify
molecules with desirable properties, and (2) minimizing the number of molecules
to be evaluated by the objective function. The latter will push us to explore heuristic
optimization algorithms.

 Are open-source and modular, so the scientific community can easily integrate
them in their workflows.

Molecular constraints as a means to improve molecule quality

—

27

 Molecular constraints as a means
to improve molecule quality

 Source

This chapter is based on the publication:

Kerstjens, A., De Winter, H. A molecule perturbation software library and its application
to study the effects of molecular design constraints. J Cheminform 15, 89 (2023).

https://doi.org/10.1186/s13321-023-00761-5

 Problem statement

Designing molecules that optimize many objectives simultaneously can be challenging.
Some authors try to evade the challenges of multi-objective optimization by considering
explicitly only the primary objective and capturing the secondary objectives implicitly by
constraining the molecular generation process to imitate known and desirable chemistry
[73–76, 80, 82–84, 91, 92, 135]. This effectively blocks access to certain areas of chemical
space (Figure 3.1). A large corpus of enumerated molecules with desirable secondary
objectives exists [2, 136, 137], and it’s reasoned that constraining the molecular design
process to only generate compounds similar to those in the corpus will yield molecules with
desirable properties.

Figure 3.1. A section of graph-like chemical space with an excluded area (center). The exclusion stems from
molecular construction constraints and corresponds to a maximum on an undesirability objective landscape
(red).

Molecular constraints as a means to improve molecule quality

—

28

Many accounts describe the effectiveness of this approach to improve the drug-likeness
and synthetic accessibility of generated molecules [73–76, 80, 82–84, 91, 92, 135], but it is
not without drawbacks. The constraints imposed on molecule construction manifest
themselves as barriers in search space, restricting the optimization algorithm’s freedom
[75, 138]. These barriers may prevent accessing undesirable molecules, but inadvertently
they may also hinder or impede discovering potentially appealing molecules, especially
those that are most novel and resemble known chemistry the least.

Consider some molecular generation scheme that can modify a reference molecule to yield
related molecular entities. In this case chemical space can be visualized as a transition
graph (previously termed a “morph graph” [54]), where vertices symbolize accessible
molecules, and edges symbolize transitions between them (Figure 3.2). The topology of this
graph is dependent on the constraints of the chosen molecule generator. Generally
speaking, atom-based approaches define a more populous graph than fragment-based
approaches since a larger number of chemical states is accessible. The density of the graph
(that is, the ratio between the existing number of edges and the theoretical maximum
number of edges) depends on the strictness of the perturbation rules. Approaches with
strict rules will define a sparse graph, while approaches with lax rules will define a dense
graph.

Suppose that a chemical space search starts at a known molecule A. The goal is to find some
unknown molecule B that exhibits good objective values. The more populous the transition
graph, the more probable it will be that desirable molecules are part of it and therefore
discoverable. The perfect optimization algorithm would define the shortest path between
A and B. Such an ideal algorithm would benefit from a very populous and dense transition
graph, as in these graphs paths between pairs of vertices tend to be shorter (Figure 3.2).

Molecular constraints as a means to improve molecule quality

—

29

Figure 3.2. Examples of transition graphs of different population and density. The shortest path between two
vertices A and B is highlighted in orange. Note that the path is shorter if the graph’s population is lower or the
density is higher. As the population and density decrease the probability of two vertices being connected
decreases.

Sadly, we do not have access to these utopian search algorithms. In absence of omniscient
oracles that reveal B and the path towards it, our algorithms must err on the side of
exploration. Thorough exploration of very populous and dense graphs is computationally
intractable. Trimming the size and density of the search graph in a chemically meaningful
way could provide guidance to algorithms that otherwise would wander around
unpromising regions of chemical space without a clear sense of direction.

In summary, when it comes to predicting the effect of molecular construction constraints
on the fitness of the designed molecules, we are faced with two opposing hypotheses. The
constraints may either hinder or facilitate chemical space exploration, and what the
outcome will actually be is poorly understood.

Pieces of the answer lay scattered throughout the literature. Unfortunately, every study
performs different experiments using different software, making it impossible to isolate
the effect of any one variable. Attempts have been made to standardize experiments with
benchmark suites [108, 119, 120], yet software is rarely standardized. Fully standardizing
software is an impossible and arguably undesirable task as scientific methodologies are

Molecular constraints as a means to improve molecule quality

—

30

ever evolving. However, when it comes to graph-based molecule edition many
commonalities can be found between different implementations.

We set out to create a software library for graph-based molecular edition providing the
common denominator of functionality of previous implementations [12, 54, 64, 112]. We
have named this library Molpert. Key considerations during the design were flexibility,
extendibility, interoperability and ease of use. Molecule perturbations are atom-based, as
fragment-based edition can be described in function of the former but not vice versa.
Molecules are treated as graphs and modified without any sort of chemical considerations.
This is by design as we did not want to impose our own biases and ways on others. Instead,
users can specify themselves the properties the designed molecules ought to fulfill through
means of arbitrary constraints. Mechanisms are foreseen to extend the functionality of the
library should the provided functionality not suffice. Molpert is built on top of the RDKit, a
highly popular and open-source cheminformatics toolkit [47], and integrates well with
RDKit molecules. It has no other dependencies. A C++ and Python Application Programming
Interface (API) are both provided and made available on GitHub
(https://github.com/AlanKerstjens/Molpert).

In this chapter we describe Molpert and showcase how it can be applied to
cheminformatics research. Specifically, we use it to build an evolutionary algorithm for
molecule design and try to answer the question: “What are the consequences of
constraining atom-based molecular construction?”.

 Methodology

3.3.1 Atom/bond property perturbations

Perturbations included in the library can be broadly classified into those changing the
molecular graph’s annotations and those changing the graph’s topology. The former are
trivial to understand and implement: each vertex (i.e. atom) and edge (i.e. bond) have a set
of mutable numeric properties that are independent from the rest of the graph and can be
freely changed. For atoms these properties are (1) the atomic number, (2) formal charge
and (3) number of explicit hydrogens. For bonds the only property of interest is the bond
type, which in most instances is equivalent to the bond order. Each property has a list of
allowed values and associated sampling weights, both being user specified. By default the
sampling weights are proportional to the property values’ frequencies in ChEMBL31 [136].
All properties have a corresponding perturbation to modify it.

Modifying the number of explicit hydrogens may seem superfluous as hydrogens are often
treated implicitly. However, explicit hydrogens can be of importance to adjust the
perception of implicit hydrogens. They are also one of the invariants used in topological

Molecular constraints as a means to improve molecule quality

—

31

fingerprint calculation [34, 45]. Hence, being able to modify the number of explicit
hydrogens is essential for good interplay with fingerprint-based scoring functions.

3.3.2 Topological perturbations

Topological perturbations refer to insertions and deletions of atoms and bonds. These
operations could be performed by simply creating or destroying a single atom or bond.
However, the resulting transformations may not match a chemist’s expectations about
what these perturbations should entail.

Consider a molecular graph 𝓖(𝓥,𝓔) with vertices or atoms 𝓥 and edges or bonds 𝓔. Naive
implementation of topological perturbations may result, among other things, in a
disconnected graph, that is, a graph in which there is a pair of atoms v and w between
which no path exists. This is commonly undesirable unless the disconnected fragments
represent salts.

To ensure that the graph remains connected an atom insertion requires bond insertions as
well. Hence, inserting a new atom a involves (1) selecting the atomic properties of a, (2)
selecting a set of k existing atoms 𝓝 to which a will bond with k new bonds 𝓑 (𝓝⊂ 𝓥, |𝓝|
= k, |𝓑| = k) and (3) selecting the bond types of 𝓑. Possible values for a and 𝓑’s properties
are sampled from a list of allowed values. k ranges between 1 and a user specified
parameter defaulting to 3 to avoid a combinatorial explosion in possible outcomes. Up to
k - 1 cycles may be formed during this process. Cycle formation may be unwanted. For
example, given an alkane one might want to extend the length of the chain without creating
a cycle. In other words, one might want to insert an atom between other atoms. To do so
we select as 𝓝 a central atom c and some atoms 𝓙 adjacent to c (𝓙 = {j | c ~ j}, 𝓝 = c ∪ 𝓙),
and define a “dropped” atom p ∈ 𝓝. During insertion a and 𝓑 are added and existing bonds
between p and 𝓝 – p are deleted. The destruction of some existing bonds allows the
insertion of atoms in acyclic regions without the creation of cycles (Figure 3.3). This only
holds true if 𝓝 is selected as described above such that all members of 𝓝 are adjacent to
p (𝓝 = {n | n ~ p}). If 𝓝 comprises arbitrary atoms and two atoms {v,w} ⊂ 𝓝 are separated
by a topological distance d(v,w) ≥ 2 a cycle necessarily forms. Nonetheless, specifying a
dropped atom can help in the design of more relaxed topologies that are not as densely
packed with cycles.

Bond insertion is simple, as it only involves the selection of two atoms v and w where the
topological distance between them d(v,w) > 1, the selection of a bond type and the creation
of the bond. Once again, this necessarily creates a cycle of d(v,w) + 1 atoms (Figure 3.3). A
minimum and maximum d(v,w) may be specified. This provides the user with some control
over the size of the resulting cycles but more importantly limits the number of possible
outcomes.

Molecular constraints as a means to improve molecule quality

—

32

Bonds are defined by a pair of atoms. Consequently, deleting one such atom a destroys the
bond. Consider a set of atoms 𝓝 adjacent to a (𝓝 = {n | a ~ n}). The degree g of a is defined
as g(a) = |𝓝|. If g(a) ≤ 1 it is peripheral, and if g(a) > 1 it is internal. Peripheral atoms and
internal atoms that are members of a cycle can always be deleted without disconnecting
the graph. Internal atoms that are not part of a cycle separate two parts of the graph
through a unique path. Hence, their deletion would result in a graph disconnection. To
prevent this the atom deletion may be followed by some bond formations. We define a
“reconnection” atom r ∈ 𝓥, and create new bonds between r and 𝓝 - (𝓝 ∩ r). This ensures
that a path passing through r exists between all pairs of atoms of 𝓝 after the deletion of a
and that the graph remains connected. Typically r ∈ 𝓝. Intuitively, this corresponds to
deleting a and one of its neighbors ni ∈ 𝓝 taking its place by bonding to the remainder of
the neighbors nj ∈ 𝓝 - ni (Figure 3.3). However, if the user allows it, one could also sample
an arbitrary r within a given distance d(a,r) of a. This will result in the formation of a cycle
of size d(a,r) when d(a,r) ≥ 3.

Similarly to atom deletions, bond deletions result in graph disconnections if the bond is not
a member of a cycle. To delete an acyclic bond without disconnecting the graph a new
replacement bond vw must be formed. Similar operations have been previously described
as “rerouting” the bond [54]. The newly bonded atoms v and w ought to be on opposite
sides of the “chokepoint” defined by the deleted bond (Figure 3.3). They must also be
separated by a distance d(v,w) ≥ 2, as otherwise the same bond would be recreated. The
user can specify a maximum distance d(v,w) to alter the topology less drastically.

Molecular constraints as a means to improve molecule quality

—

33

Figure 3.3. Examples of topological perturbations. Input and output molecules are depicted on the top and
bottom, respectively. Deleted atoms and bonds are highlighted in red while inserted atoms and bonds are
highlighted in blue. In the atom insertion example 𝓝 = {1, 2, 3} and p = {1}. In the atom deletion example 𝓝
= {2, 3, 4, 5} and r = {2}.

The described perturbations are sufficient to access the entirety of chemical space when
executed in the right order. When sampled randomly specific long sequences of
perturbations are statistically unlikely. It may be of interest to execute some of these
sequences of perturbations as a unit. For example, one might want to insert a fragment
corresponding to a specific functional group. It’s possible to combine the above elemental
perturbations to create more complex operations.

3.3.3 Molecule sanitization

Perturbations treat molecular graphs more like mathematical objects than chemical
structures. Careless edition of the molecular graph is bound to result in chemically invalid
structures. Notorious pain points include explicit hydrogen counts, stereochemistry and
aromaticity. Cheminformatics toolkits like the RDKit [47] store atom and bond properties
as integers within atoms and bonds themselves. These properties may be sensible when

Molecular constraints as a means to improve molecule quality

—

34

first calculated, but can lose their meaning after modifying the molecular graph. We employ
a post-perturbation sanitization procedure that either alters these properties to sensible
values or deletes them altogether.

A heavy atom’s hydrogen count is modified to the value resulting in the lowest valid valence
for said atom. The list of valid valences per element is provided by the RDKit. When no
hydrogen count would result in a valid valence the count is set to zero. Chiral center
stereochemistry labels are kept where possible. If a former chiral center is no longer chiral
after a perturbation its stereochemistry label is erased. Newly formed chiral centers are
not assigned any stereochemistry labels. Bond stereochemistry labels are always erased.
Aromaticity presents the most egregious problem. Bonds may have been flagged as
aromatic once upon a time, yet these flags are kept indefinitely even after modifying the
molecule. The naive solution would be to convert aromatic bonds to single bonds once
aromaticity has been broken. In the context of editing molecules, aromatic systems are
fragile as most topological perturbations will cause aromaticity to be invalidated. On the
other hand, creating an aromatic ring system is much more challenging, as it requires atoms
and bonds of the right types to be placed in the right positions simultaneously. When
modifying molecules stochastically the sequence of events leading to the creation of an
aromatic ring system is highly unlikely. In practice this means that most designed ring
systems won’t be aromatic, which is uncharacteristic of organic molecules.

Molpert handles aromaticity in two different ways, depending on the user’s preference.
The simplest option is to work with kekulized molecules only, that is, molecules where
aromatic systems are represented by alternating single and double bonds. Alternatively,
one can work with “partially aromatic” molecules where the aromaticity flags are
preserved, irrespective of whether they are valid at present time or not. For example,
acyclic regions may be transiently labelled as aromatic. The former aromatic character of
bonds is remembered and used to reestablish aromaticity in the future whenever
conditions are right. When a molecule with valid aromaticity assignments is required, a
sanitization procedure can be applied. Acyclic regions labelled as aromatic are kekulized.
Rings are defined as components of the Smallest Set of Smallest Rings (SSSR) [23]. Rings
that are correctly flagged as fully aromatic are left untouched. Kekulized rings fulfilling
aromaticity criteria are aromatized. Partially aromatic rings are sorted in descending order
according to their number of aromatic bonds and sanitized. If the number of aromatic
bonds in the ring is greater than half and the ring otherwise meets the requirements to be
aromatic it’s aromatized. Otherwise it is kekulized. Starting the sanitization process with
the most aromatic rings allows aromaticity to propagate throughout fused ring systems
(Figure 3.4).

Molecular constraints as a means to improve molecule quality

—

35

Figure 3.4. Aromaticity sanitization example. Aromatic bonds are depicted as dashed bonds. Aromatic ring
systems where all bonds are aromatic are depicted with internal circles. Partially aromatic ring systems are
either aromatized or kekulized depending on their “degree of aromaticity”. Bonds incorrectly labelled as
aromatic are kekulized.

3.3.4 Modes of operation

Perturbations are implemented as objects specifying how a molecule will be modified.
These objects are callable and can be invoked when the perturbation ought to be executed.
The user may construct these objects directly for fine-grained control over the outcome of
a perturbation. For convenience we also provide factory functions that abstract away the
details of constructing perturbations. Said factories can systematically enumerate all
possible perturbations that could be applied to a molecule. Enumeration may be restricted
to specific types of perturbations and/or atom/bond targets. When used deterministically
all generated perturbations fulfilling the constraints are stored in a queue. When used
stochastically the iteration order is randomized and the first generated perturbation
fulfilling the constraints is returned. The randomization relies on a weighted shuffle in such
a way that perturbations featuring common property values are most likely to be tried first
[139]. This reduces the number of perturbations that need to be tried before one fulfilling
the constraints is found.

Molecular constraints as a means to improve molecule quality

—

36

3.3.5 Molecule constraints

While we designed the software to be able to generate any molecular graph, there may be
instances where one wishes to use it to generate molecular graphs fulfilling specific criteria.
This is enabled through constraints. In this context constraints are callback functions
evaluating whether a molecule fulfills some arbitrary requirements. They take as input an
atom, bond or molecule and return as output a boolean. A return value of “true” signals
that the requirements are satisfied, whereas “false” signals the requirements are not met.
Constraints may apply to one specific atom or bond. It’s therefore possible to constrain
only certain parts of the molecule and to mix constraints as desired.

Constraints are enforced through trial and error. A queue of compatible perturbations is
prepared. The perturbation at the front of the queue is applied to a copy of the molecule
to simulate its outcome. The perturbed molecule is then forwarded to the constraints for
evaluation. If any constraint evaluates to “false” the perturbed molecule is discarded and
the next perturbation is simulated. This process repeats until a perturbation satisfying all
constraints is found or the queue is empty. The stricter the constraints the higher the
perturbation attrition rate and with it the computational performance degradation (Figure
3.5).

For our experiments we explored different variants of atom and bond constraints. The most
basic constraints are valence constraints. Each element is assigned a maximum allowed
valence, and any atoms of said element with a lower valence are accepted, under the
assumption that hydrogens can be added to pad the valence up to the closest valid value.
The remainder of the constraints are key-based constraints. Atoms and bonds are
characterized with atom and bond keys, respectively (Table 3.1, Figure 3.6). An atom key
is a tuple of integer properties characterizing the atom. Depending on the properties used
to define the key we distinguish between local atom keys made up of common atomic
invariants [23, 24] (degree D, valence V, atomic number Z, formal charge Q and number of
explicit hydrogens H) and ring-aware (RA) atom keys, which on top of the aforementioned
atomic invariants include the number of SSSR rings the atom is involved (R) and the sizes
of the smallest and largest SSSR rings it is involved in (NR and XR, respectively). Bond keys
are defined through combination of the bonded atoms’ keys and the bond’s type (B). Lastly,
we also define atomic environment keys as the hashes of circular atomic environments,
akin to the Extended Connectivity Fingerprint (ECFP) algorithm [34]. Environments of
topological radii 1 (r = 1) and 2 (r = 2) were studied.

We determined the set of keys found in drug-like molecules, specifically ChEMBL31 [136],
and recorded them in dictionaries, one for each key type. Given one such dictionary and a
query molecule, a key based constraint calculates the same type of keys for the query
molecule and compares said keys to the dictionary’s keys. If the query molecule exhibits
keys that are not part of the dictionary the constraint evaluates to false and the query
molecule is rejected.

Molecular constraints as a means to improve molecule quality

—

37

Figure 3.5. Illustration of different attrition rates for lax and strict constraints. When using strict constraints
few molecules fulfill the desired criteria, resulting in the molecules being discarded and new molecules being
generated.

Molecular constraints as a means to improve molecule quality

—

38

Table 3.1. Overview of the molecular keys used to characterize molecules and constrain molecular
perturbation.

Molecular key Key structure
Local atom key (D, V, Z, Q, H)

Ring-aware atom key (R, XR, NR, D, V, Z, Q, H)
Local bond key (LB) (D1, V1, Z1, Q1, H1, D2, V2, Z2, Q2, H2, B)

Ring-aware bond key (RAB)
(R1, XR1, NR1, D1, V1, Z1, Q1, H1,

R2, XR2, NR2, D2, V2, Z2, Q2, H2, B)
Local environment key hash({LB1, LB2 … LBn})

Ring-aware environment key hash({RAB1, RAB2 … RABn})

Figure 3.6. Example molecular keys. The color highlighted atoms are characterized with atom keys, and the
color highlighted bond between them characterized with a bond key. The nitrogen’s circular atomic
environment of radius 1 is shown as a dotted outline and characterized with the hash of its bonds’ keys,
resulting in seemingly random numbers. For the meaning of each integer see Table 3.1.

3.3.6 Property and perturbation sampling

Some molecular perturbations, namely property perturbations, atom insertions and bond
insertions must sample atom and/or bond properties. The properties being sampled are
atomic numbers, formal charges, explicit hydrogen counts and bond types. Property values
are sampled from pre-defined sets of allowed values. When perturbations are enumerated
deterministically each allowed value is used to construct one perturbation. When
perturbations are generated stochastically a single allowed value is randomly sampled to
construct a single perturbation, with each value having an associated sampling probability.

While the user may provide their own sampling values and probabilities, we provide some
reasonable defaults. For each property we recorded the frequency of occurring values in
ChEMBL31 [136], as well as the mode (i.e. the most frequent value). Property values

Molecular constraints as a means to improve molecule quality

—

39

occurring with a frequency larger than 0.01% are considered allowed and may be sampled
with probabilities proportional to the values’ frequencies. The mode is taken as a default
property value and, at the discretion of the user, may replace the list of allowed values to
reduce the number of perturbations resulting from deterministic enumeration.

Property values for a specific atom or bond are sampled independently from the rest of the
atom’s or bond’s properties and independently from their surrounding chemical
environment. As an exception one may opt to sample atomic numbers and bond types with
different probabilities depending on whether the atom/bond is part of a ring or not. The
main motivation behind this exception is to preferentially place aromatic and double bonds
in rings, and triple bonds in acyclic structures.

When generating perturbations stochastically the user may or may not specify the type of
the perturbation. Should they choose to not do so the library will randomly sample a
perturbation type for them. Property perturbations have sampling probabilities that are
proportional to how often the property deviates from the mode. For example, since it is
rare to encounter charged atoms the probability of sampling a “formal charge change”
perturbation is low. Conversely, since it is relatively common to encounter non-carbon
atoms the probability of sampling an “atomic number change” perturbation is
comparatively high.

Weighted property sampling is supposed to reduce the probability of stochastically
generating a constraint-infringing perturbation. To verify this assumption we took a subset
of 10,000 ChEMBL molecules of varying sizes and generated 10 perturbations of each type
for each molecule. We repeated the process twice sampling property values from either a
uniform distribution or from the aforementioned ChEMBL-derived distribution. We then
measured the perturbation rejection rate according to different molecular constraints.

3.3.7 Chemical space connectivity

Stricter constraints are associated with sparser chemical spaces (Figure 3.2). One can
quantify the stringency of a set of constraints by calculating the average degree of the
corresponding chemical transition graph. We stratified ChEMBL31 [136] according to the
molecules’ heavy atom counts (HAC), and sampled 1000 random molecules every 5 HAC
between 10 and 50 HAC. Two molecules are considered to be neighbors in chemical space
if they are separated by a single edge in the chemical transition graph, that is, a single
perturbation. Molpert was used to deterministically enumerate all perturbations
applicable to each molecule of the aforementioned ChEMBL subsets. Said perturbations
were subsequently executed to enumerate the molecule’s neighbors. Different
perturbations may result in the same neighbor, but only unique neighbors were kept. The
process was repeated using different sets of constraints, and the number of perturbations
resulting in constraint-infringing neighbors was recorded. The average number of

Molecular constraints as a means to improve molecule quality

—

40

neighboring molecules, equal to the average degree of the transition graph, was taken as
a measure of the constraints’ stringency.

3.3.8 Benchmark

 Effect of constraints on optimization power

To evaluate the effects constraints have on molecule fitness we developed an evolutionary
algorithm using Molpert to mutate and recombine molecules. We initialized a population
of 100 “empty” molecules with no atoms or bonds. Said population was evolved over the
course of at most 10,000 generations. Evolution may be halted earlier if some termination
criterion is met, such as no improvement being observed in the best individual’s score for
1000 generations, or a molecule with a sufficiently good score being found. Every
generation copies of the parent molecules are made and recombined or mutated to yield
child molecules. The child molecules must (1) fulfill any constraints that may have been
imposed by the user and (2) be topologically dissimilar from all other molecules in the
population. The topological similarity between two molecules is calculated as the Tanimoto
coefficient [35] between their ECFP4 fingerprints [34]. If the similarity of a child molecule
to any of the current members of the population surpasses 0.9, the child is discarded. The
internal similarity filter prevents the degeneration of the population to a single solution,
and serves as the algorithm’s main premature convergence guard. At the end of the
generation the parent and child molecules are ranked according to their scores, as
determined by some scoring function, and the best 100 are retained for the next
generation. A flowchart of the algorithm can be seen in Figure 3.7.

Molecular constraints as a means to improve molecule quality

—

41

Figure 3.7. Flowchart of the Molpert-based evolutionary algorithm used for benchmarking purposes.

Molecular constraints as a means to improve molecule quality

—

42

Recombination is not a core part of Molpert, but simple digestion-based recombination
operators [12, 64, 100, 115, 116] are made available as addons. Subgraphs of
approximately the same size are induced in two molecules, by randomly walking through
their graphs. The size of the subgraph is chosen as a random integer in the range [0.1 · HAC,
0.5 · HAC], where HAC is the molecule’s Heavy Atom Count (HAC). Bonds flanking said
subgraphs are broken and converted to attachment points resulting in fragments. If one
fragment has less attachment points than the other, random hydrogens are replaced with
attachment points within the former until the numbers are equalized. Fragments are
exchanged between molecules, and attachment points are reconnected randomly. We
forbid fragmentation to break ring systems, but this behaviour may be disabled upon
request. An example of how subgraph exchange can be used to crossover molecular graphs
is found in Figure 3.8.

The algorithm was tasked to design molecules maximizing the scores of GuacaMol goal-
directed benchmark (v2) scoring functions [108]. For details on the GuacaMol benchmark
suite please refer to section 1.8.1. Some benchmarks demand the generation of a
population of molecules, in which case the total benchmark score is calculated as a
population weighted average. We opted out of this last step and took as score the fitness
of the top molecule only. In our algorithm population diversity is enforced through means
of a topological similarity threshold. Due to this filter the remainder of the population is by
design subpar and present solely to facilitate the evolution of the top molecule. Since
evolutionary algorithms are stochastic one will presumably want to run multiple
independent replicas anyways, sourcing the top molecule of each run. We ran the
benchmark 50 times for each type of constraint recording the top molecule of each replica.
Jobs were given a maximum of 72h core hours. Some jobs for strict constraints failed to
complete within this time, reducing the sample size (Table 3.2). Differences in molecule
fitness between the “no constraints” control group and constraints groups were analyzed
using the non-parametric Kruskal–Wallis H-test [140] followed by pairwise Mann-Whitney
U-tests [141] with Šidák correction [142]. α = 0.05 was taken as significance level and
family-wise error rate. Statistical tests and post hoc corrections were performed using the
SciPy [143] and statsmodels [144] Python packages, respectively.

Molecular constraints as a means to improve molecule quality

—

43

Figure 3.8. Example molecular graph crossover. Broken bonds are crossed. Attachment points resulting from
digestion are shown as R-groups.

Molecular constraints as a means to improve molecule quality

—

44

Table 3.2. Number of successfully completed GuacaMol benchmark replicas. We submitted 50 replicas for
each of the 20 benchmarks within the benchmark suite. Missing replicas are due to them exceeding the
allocated computational time limit.

Constraint type Number of completed replicas
None 1000

Local atom 1000
Valence 1000

Local bond 1000
RA atom 1000

Local environment (r = 1) 1000
RA bond 1000

RA environment (r = 1) 999
Local environment (r = 2) 959

RA environment (r = 2) 942

 Effect of constraints on chemical appeal

To evaluate the chemical appeal and novelty of molecules we designed 1000 random
molecules using each set of constraints. Said molecules, hereon forward referred to as
Randomly Designed Molecules (RDM), were constructed through successive atom and
bond insertions, aiming to create a molecule of 29 heavy atoms and 32 bonds, which
corresponds to the average number of heavy atoms and bonds of molecules in ChEMBL31
[136]. Synthesizability and drug-likeness were assessed through means of the SAScore
[124] and Quantitative Estimation of Drug-likeness (QED) [145], respectively. ChEMBL31
was used as reference synthesizable chemistry for SAScore calculations. Differences
between distributions were analyzed with one-way Analysis Of Variance (ANOVA) [146]
followed by Dunnett’s test [147]. α = 0.05 was taken as significance level and family-wise
error rate. Chemical novelty was evaluated qualitatively by embedding the molecules into
a 2D continuous chemical space and studying their location. Said chemical space was
defined by characterizing molecules as binary 2048-bit ECFP4 fingerprints [34] and reducing
their dimensionality with Principal Component Analysis (PCA) [148].

Optimizing molecules according to some objective function by design biases the regions of
chemical space that are sampled. This is particularly true for the GuacaMol scoring
functions, many of which incorporate topological similarity to some reference molecule as
a component [75, 108]. We chose to study the chemical appeal and novelty of RDM as
opposed to that of the optimized molecules resulting from the benchmark because we
wanted to distinguish which effects are attributable to the constraints and which ones to
the scoring function. Nonetheless, for the sake of completeness, all analyses on the
optimized molecules of section 3.3.8.1 were repeated as well.

Molecular constraints as a means to improve molecule quality

—

45

 Results

3.4.1 Constraint stringency

To rationalize the effects constraints have on molecular design it is important to study the
extent to which they trim the chemical space transition graph. Figure 3.9A shows the
average degree of said graph for different types of constraints. A higher average degree is
indicative of a denser graph and therefore laxer constraints, whereas a lower average
degree is indicative of sparser graphs and stricter constraints. The differences in graph
density can be explained by discrepancies in the number of perturbations or moves that
are rejected by the constraints (Figure 3.9B).

Generally speaking, constraints are stricter the more variables define the corresponding
key. Accordingly, ring-aware (RA) constraints are stricter than local constraints,
environment constraints are stricter than bond constraints, and bond constraints are
stricter than atom constraints. Counterintuively valence constraints appear to be stricter
than certain key-based constraints that encompass valence. This stems from differences in
the definitions of valid valences. For valence constraints a rather conservative list of
allowed valences hard coded within the RDKit is used. For key-based constraints allowed
values are extracted from a large library of reference molecules. Should one find within this
library a few examples of atoms with unusual valences this would suffice for said valences
to be considered valid. Moving forward, results will be color-coded according to the
constraint stringency order described in Figure 3.9.

Molecular constraints as a means to improve molecule quality

—

46

Figure 3.9. (A) Average number of neighboring molecules for molecules in ChEMBL based on their size and
molecular constraints. The lower the number of neighbors the sparser the chemical transition graph. (B)
Fraction of accepted perturbations broken down by perturbation type. The remainder of the perturbations
were rejected by the molecular constraints.

Molecular constraints as a means to improve molecule quality

—

47

3.4.2 Effect of constraints on synthesizability and drug-likeness

It is well established that constraining the way in which molecules are constructed
increases the likelihood of designing chemically appealing molecules [73–76, 80, 82–84, 91,
92, 135]. Figure 3.10 shows how the synthetic accessibility of RDM, as measured with the
SAScore [124], increases with design constraints becoming stricter. Our constraints restrict
the designed molecules to topological features present in reference molecules, with the
differences between them being in the granularity of these features. As the granularity
increases so does the algorithm’s ability to mimic the topology of reference molecules.
Despite requesting RDM of a given size, when strict constraints are enforced, namely
environment (r = 2) constraints, some sequences of random operations starting from
vacuum can lead to “dead-end” molecules, that is, small molecules for which no other atom
or bond can be added without infringing upon the constraints. Examples of such molecules
can be found in Figure 3.11.

Similar, albeit tamer, results were observed for the molecules resulting from the GuacaMol
benchmark optimization task (Figure 3.12, Figure 3.13). Note that the SAScores in Figure
3.12 are markedly better than in Figure 3.10 due to the benchmark’s scoring functions
pointing towards synthesizable molecules. This same effect also explains why the
differences in synthesizability between constraint types are smaller for molecules resulting
from the GuacaMol benchmark than for RDM.

The use of constraints also seems to improve the drug-likeness of the designed molecules
as measured with the QED [145] (Figure 3.14). Unlike for the SAScores, this improvement
was not observed for the optimized molecules as well (Figure 3.15, Figure 3.16). QED is
calculated based mostly on physicochemical descriptors, yet our constraints do not
consider physicochemical descriptors explicitly. Further analysis reveals that the main
driver for QED improvements is a reduction in the number of undesirable substructures
(i.e. structural alerts) (Table 3.7). A drop-off in QED is observed for RA environment (r = 2).
This is explained by the designed molecules having over double the number of rotatable
bonds one might expect to find in molecules designed with other constraints or drug-like
molecules (Table 3.7). RA environment (r = 2) constraints are so strict that oftentimes the
only allowed atom insertion is that of carbons in existing hydrocarbon features, resulting
in long and flexible molecules (Figure 3.17).

Molecular constraints as a means to improve molecule quality

—

48

Figure 3.10. SAScore distributions of RDM using different types of constraints. Medians are shown as black
lines. Lower SAScores are indicative of an easier synthesis. Stars on top of the distributions indicate statistically
significant differences with the “no constraints” control group. A more detailed statistical analysis can be
found in Table 3.3.

Table 3.3. Statistical analysis of RDM’s SAScore differences between the no constraints control group and
other groups. Pairwise comparisons were preceded by one-way ANOVA (statistic = 2161.557, p-value < 0.001).

Comparison Mean SAScore difference Dunnett statistic p-value
None - Local atom 0.394 -13.472 < 0.001

None - Valence 0.586 -20.052 < 0.001
None - Local bond 0.604 -20.662 < 0.001

None - RA atom 0.761 -26.055 < 0.001
None - Local environment (r = 1) 0.740 -25.327 < 0.001

None - RA bond 1.148 -39.304 < 0.001
None - RA environment (r = 1) 1.645 -56.304 < 0.001

None - Local environment (r = 2) 1.845 -63.164 < 0.001
None - RA environment (r = 2) 3.332 -114.063 < 0.001

Molecular constraints as a means to improve molecule quality

—

49

Figure 3.11. Examples of “dead-end” molecules, to which no other atom or bond can be added without
infringing upon environment (r = 2) constraints.

Molecular constraints as a means to improve molecule quality

—

50

Figure 3.12. SAScore distributions of molecules designed during the GuacaMol benchmark using different
types of constraints. Medians are shown as black lines. Lower SAScores are indicative of an easier synthesis.
Stars on top of the distributions indicate statistically significant differences with the “no constraints” control
group. A more detailed statistical analysis can be found in Table 3.4.

Table 3.4. Statistical analysis of optimized molecules’ SAScore differences between the no constraints control
group and other groups. Pairwise comparisons were preceded by one-way ANOVA (statistic = 153.643, p-value
< 0.001).

Comparison Mean SAScore difference Dunnett statistic p-value
None - Local atom -0.035 0.618 0.995

None - Valence -0.075 1.311 0.715
None - Local bond 0.145 -2.538 0.074

None - RA atom 0.203 -3.554 0.003
None - Local environment (r = 1) 0.271 -4.740 < 0.001

None - RA bond 0.612 -10.729 < 0.001
None - RA environment (r = 1) 0.839 -14.704 < 0.001

None - Local environment (r = 2) 0.970 -16.810 < 0.001
None - RA environment (r = 2) 1.438 -24.821 < 0.001

Molecular constraints as a means to improve molecule quality

—

51

Figure 3.13. SAScore distributions of molecules designed during the GuacaMol benchmark using different
types of constraints broken down by benchmark. Lower SAScores are indicative of an easier synthesis.

Molecular constraints as a means to improve molecule quality

—

52

Figure 3.14. QED distributions of RDM using different types of constraints. Medians are shown as black lines.
Higher values are indicative of more drug-like molecules. Stars on top of the distributions indicate statistically
significant differences with the “no constraints” control group. A more detailed statistical analysis can be
found in Table 3.5.

Table 3.5. Statistical analysis of RDM’s QED differences between the no constraints control group and other
groups. Pairwise comparisons were preceded by one-way ANOVA (statistic = 356.599, p-value < 0.001).

Comparison Mean QED difference Dunnett statistic p-value
None - Local atom -0.105 16.469 < 0.001

None - Valence -0.122 19.148 < 0.001
None - Local bond -0.141 22.118 < 0.001

None - RA atom -0.139 21.890 < 0.001
None - Local environment (r = 1) -0.233 36.710 < 0.001

None - RA bond -0.150 23.603 < 0.001
None - RA environment (r = 1) -0.191 30.011 < 0.001

None - Local environment (r = 2) -0.277 43.660 < 0.001
None - RA environment (r = 2) -0.024 3.825 0.001

Molecular constraints as a means to improve molecule quality

—

53

Figure 3.15. QED distributions of molecules designed during the GuacaMol benchmark using different types
of constraints. Medians are shown as black lines. Higher values are indicative of more drug-like molecules.
Stars on top of the distributions indicate statistically significant differences with the “no constraints” control
group. A more detailed statistical analysis can be found in Table 3.6.

Table 3.6. Statistical analysis of optimized molecules’ QED differences between the no constraints control
group and other groups. Pairwise comparisons were preceded by one-way ANOVA (statistic = 10.134, p-value
< 0.001).

Comparison Mean QED difference Dunnett statistic p-value
None - Local atom 0.001 -0.120 > 0.999

None - Valence -0.003 0.258 > 0.999
None - Local bond -0.019 1.834 0.341

None - RA atom -0.012 1.188 0.803
None - Local environment (r = 1) -0.047 4.606 < 0.001

None - RA bond -0.027 2.631 0.058
None - RA environment (r = 1) -0.035 3.370 0.006

None - Local environment (r = 2) -0.073 7.01 < 0.001
None - RA environment (r = 2) -0.017 1.670 0.447

Molecular constraints as a means to improve molecule quality

—

54

Figure 3.16. QED distributions of molecules designed during the GuacaMol benchmark using different types
of constraints broken down by benchmark. Higher values are indicative of more drug-like molecules.

Molecular constraints as a means to improve molecule quality

—

55

Table 3.7. Average values for QED components of RDM using different types of constraints. Note the decay in
the number of structural alerts (ALERTS) as constraint stringency increases and the sudden spike in the number
of rotatable bonds (ROTB) for RA environment (r = 2) constraints. MW = Molecular Weight, ALOGP = octanol-
water partition coefficient, HBD = number of Hydrogen Bond Donors, HBA = number of Hydrogen Bond
Acceptors, PSA = Polar Surface Area, AROM = number of aromatic rings.

Constraint MW ALOGP HBD HBA PSA ROTB AROM ALERTS
None 417.16 3.21 2.16 2.78 68.13 5.95 0.005 5.25

Local atom 408.68 3.22 2.04 3.62 70.10 6.45 0.008 3.61
Valence 409.18 3.30 2.27 4.85 68.04 7.26 0.016 3.18

Local bond 408.41 3.23 2.14 4.98 69.21 7.02 0.025 3.02
RA atom 410.06 3.35 2.26 4.95 70.84 7.24 0.018 2.97

Local
environment

(r = 1)
406.20 3.82 2.02 4.53 64.24 5.42 0.011 2.18

RA bond 408.34 3.57 2.20 4.84 69.00 7.35 0.024 2.80
RA environment

(r = 1)
405.54 3.90 2.04 4.51 67.14 7.62 0.028 2.35

Local
environment

(r = 2)
378.15 3.67 1.50 4.03 58.51 2.91 0.001 1.45

RA environment
(r = 2)

382.21 4.45 1.77 3.87 62.41 14.31 0.0 2.58

Figure 3.17 shows some examples of molecules designed using different types of
constraints. While subjective, molecules designed using stricter constraints are chemically
more appealing. It has been noted that one of the main factors explaining chemists’
willingness to pursue synthesis or further development of a compound is the molecule’s
ring complexity [121]. The use of ring-aware constraints discourages the design of complex
ring systems. One could argue that the use of strict constraints leads to the design of “plain”
molecules, rich in carbons and single bonds yet poor in functional groups. This foreshadows
that excessively restricting molecular construction may be undesirable. Regardless of the
constraints used, RDM are unlikely to contain aromatic systems (Table 3.7, Figure 3.17). As
discussed previously, the creation of aromatic rings requires very specific arrangements of
single and double bonds that are unlikely to occur by chance. This illustrates the value of
the proposed partial aromaticity treatment.

Molecular constraints as a means to improve molecule quality

—

56

Figure 3.17. Examples of RDM molecules designed by successive random atom and bond insertions using
different types of constraints.

Molecular constraints as a means to improve molecule quality

—

57

We would like to clarify that within Molpert the only dependable source of molecule
correctness are the molecular constraints. Weighted property sampling reduces the
probability of stochastically generating perturbations that would infringe upon the
constraints (Figure 3.18), but does not prevent it. Weighted sampling should thus be seen
more as an algorithmic efficiency optimization than a strategy to design reasonable
molecules.

Figure 3.18. Fraction of stochastically generated perturbations accepted by the molecular constraints, broken
down by perturbation type and property value sampling strategy. The upper panel corresponds to uniform
random sampling of property values, whereas the lower panel corresponds to weighted random sampling of
property values Note that the only perturbation types where property values are sampled are property
perturbations (i.e. atomic number, formal charge, explicit hydrogens and bond type changes) and atom/bond
insertions.

One could be concerned that imitating reference chemistry stifles chemical innovation. To
investigate this concern, we visualized the positions of designed molecules in a 2D chemical
space, using ChEMBL [136] as a reference space (Figure 3.19). There is some overlap
between ChEMBL and RDM, but the latter are skewed towards the less densely populated
areas of chemical space, regardless of the constraints used. Optimized molecules are more
similar to known chemistry due to scoring function bias (Figure 3.20). It should be noted
that a 2D projection of chemical space is overly simplistic, with distances between
molecules appearing to be smaller than they truly are. Hence the designed molecules are
more distinct from ChEMBL than what Figure 3.19 might indicate. We believe that the
designed molecules are sufficiently novel.

Molecular constraints as a means to improve molecule quality

—

58

Figure 3.19. Positions of RDM in 2D PCA space. The grayscale grid represents the density of ChEMBL molecules
in chemical space on a linear scale, with darker cells being more densely populated.

Figure 3.20. Positions of molecules designed during the GuacaMol benchmark in 2D PCA space. The grayscale
grid represents the density of ChEMBL molecules in chemical space on a linear scale, with darker cells being
more densely populated.

Molecular constraints as a means to improve molecule quality

—

59

3.4.3 Effect of constraints on molecule fitness

The effect constraints have on compound fitness during molecular optimization is poorly
understood. Figure 3.21 shows the optimization power of a Molpert-based evolutionary
algorithm in the GuacaMol benchmark suite [108] using different types of constraints. As a
reminder, constraints are enforced every time a molecule is mutated. Using mild
constraints, that is, anything between local and RA bond constraints, leads to significantly
improved molecule fitness over unconstrained molecular design. RA bond constraints
performed best, followed closely by local environment (r = 1) and RA atom constraints. RA
environment (r = 1) constraints are equivalent to unconstrained molecular design in terms
of molecule fitness. Stricter constraints, namely environment (r = 2) constraints are
markedly worse.

The results in Figure 3.21 suggest that there is a constraint stringency sweet spot that trims
the search graph in just the right way to facilitate the optimization process. Upsettingly the
exact location of this sweet spot depends on the individual benchmark (Figure 3.22). The
most common pattern is a fitness maximum at some constraint stringency middle point
such as RA bond constraints, with laxer and stricter constraints both performing worse.
Even in the cases where fitness is unaffected by constraint choice most constraints seem
to be tolerated. This is an encouraging result as the primary use of constraints in molecular
design is to increase the likelihood of designing drug-like and synthesizable molecules.

Two peculiar cases are those of Celecoxib and Troglitazone rediscovery, where very
pronounced fitness differences are observed between local and RA constraints (Figure
3.22). Visual inspection of the designed molecules reveals that when using local constraints
the algorithm correctly rediscovers many of the reference molecule’s features, but
proposes alternative ring systems. In rediscovery benchmarks the goal is to re-design a
reference molecule, with the score being given by the topological similarity to the
reference molecule. Topological similarity is assessed through means of ECFP4 fingerprints
similarity [34], with two molecules being similar if they share many chemical features.
Crucially, it is not required for the features to be in the same position for two molecules to
be deemed similar. Celecoxib and troglitazone possess multiple benzene rings, with paths
of aromatic carbons as features. The algorithm is rewarded for designing molecules with
aromatic carbons, but this reward is the same regardless of the topology and size of the
ring systems. Limiting the sizes of designed rings with RA constraints can prevent the
algorithm from being led astray and towards macrocycles by the scoring function (Figure
3.23).

Molecular constraints as a means to improve molecule quality

—

60

Figure 3.21. Distributions of top molecule scores, as assessed by the GuacaMol goal-directed scoring functions.
Medians are shown as black lines. Only the best molecule of each population is included. The benchmark suite
consists of 20 individual benchmarks, but for clarity’s sake the results of all benchmarks were aggregated. A
per-benchmark breakdown can be found in Figure 3.22. Stars on top of the distributions indicate statistically
significant differences with the “no constraints” control group. A more detailed statistical analysis can be
found in Table 3.8.

Table 3.8. Statistical analysis of molecule fitness differences between the no constraints control group and
other groups. Pairwise comparisons were preceded by a Kruskal-Wallis test (statistic = 951.677, p-value
<0.001).

Comparison
Median molecule
fitness difference

Mann-Whitney U-
statistic

p-value

None - Local atom -0.058 472579.5 0.033
None - Valence -0.020 489620.5 0.421

None - Local bond -0.073 453589.5 < 0.001
None - RA atom -0.085 434893.0 < 0.001

None - Local environment (r = 1) -0.096 436572.0 < 0.001
None - RA bond -0.128 411981.0 < 0.001

None - RA environment (r = 1) -0.015 478862.5 0.109
None - Local environment (r = 2) 0.223 613857.0 < 0.001

None - RA environment (r = 2) 0.273 687198.0 < 0.001

Molecular constraints as a means to improve molecule quality

—

61

Figure 3.22. Distributions of top molecule scores, as assessed by the GuacaMol goal-directed scoring functions.
Only the best molecule of each population is included. Black squares and colored squares represent median
and maximum scores, respectively.

Molecular constraints as a means to improve molecule quality

—

62

Figure 3.23. Celecoxib (A), troglitazone (C) and examples of molecules designed during their rediscovery
benchmark using local bond constraints. The designed molecules B and D score relatively high (0.62 and 0.69,
respectively) due to the presence of common chemical features albeit in different positions. Note that the 10-
membered cycles in B and D are deemed aromatic by Hückel’s rule [149] and the RDKit, despite not being
aromatic due to ring strain [150].

Molecular constraints as a means to improve molecule quality

—

63

3.4.4 Effect of constraints on computational performance

It’s worth noting that molecular design constraints can add considerable computational
overhead (Figure 3.24). This is especially true for Molpert since constraints are enforced in
a naive fashion. The slow down stems from a higher perturbation rejection rate for stricter
constraints, prolonging the search for a suitable perturbation. Interestingly the number of
molecules designed before the algorithm reaches convergence is moderately lower for
stricter constraints. For the vast majority of objective functions this decrease is insufficient
to offset the increased perturbation cost. Nonetheless, when working with very expensive
objective functions the cost of perturbing molecules can be negligible compared to the cost
of scoring them, making the use of constraints as convergence acceleration strategy an
appealing proposition.

Figure 3.24. Number of molecules designed to reach convergence (left) and the number of perturbations
executed per second (right) stratified per constraint type. Boxes represent interquartile ranges (IQR), the black
line within them medians and the whiskers Q ± 1.5IQR. Performance numbers are for a single-threaded
workload on an AMD Epyc 7452 CPU clocked at 2.35 GHz.

Molecular constraints as a means to improve molecule quality

—

64

 Discussion

Our results indicate that moderately constraining molecular construction has a net positive
effect as it increases both the synthesizability and fitness of designed molecules.
Nonetheless one must care to not choose excessively strict constraints as this can cause a
sharp degradation of molecule fitness. As a guideline we recommend constraining bond or
small environment properties and, if necessary, ring topologies. However, while the results
presented herein apply to atom-based evolutionary algorithms, they may not be
extrapolatable to alternative molecular optimization schemes. Evolutionary algorithms are
powerful optimizers capable of navigating complex search spaces. Other algorithms such
as tree searches may be less tolerant of barriers in search space and therefore construction
constraints. We developed a simple tree search algorithm to test this hypothesis but found
the fitness of the designed molecules too poor to extract any useful conclusions.
Evolutionary algorithms are heuristic gradient-free optimization algorithms. They wander
around chemical space until they stumble upon good solutions by chance. For an algorithm
lacking a sense of direction the very dense chemical spaces characteristic of unconstrained
molecular construction can seem like a maze with many “false paths”. Gradient-based
optimization algorithms do have a sense of direction and may benefit from unconstrained
molecular design.

Versatility was a major consideration when designing Molpert. Unfortunately, in software
development versatility often comes at the cost of computational efficiency. Molpert is
efficient at unconstrained molecular design, but this efficiency decreases with constraint
stringency. Despite the decreased efficiency molecular design remained a tractable task. If
one were to settle on an immutable set of constraints that molecules must fulfill it would
indubitably be possible to write more specialized and performant algorithms. Should one
wish to do so we would recommend using Molpert to build a prototype and confirm the
effect of the envisioned algorithm and/or constraints before committing resources to
developing a performant solution. We wanted to be able to re-use the code base in projects
with differing requirements. Anecdotally during the development of the software we went
through multiple iterations of more efficient yet less flexible constraint implementations,
but kept encountering use cases that could not be covered by those alternative systems.
This cemented our conviction to support truly arbitrary constraints.

In lieu of using constraints one could embrace unconstrained molecular design. When using
stochastic molecule generators molecule fitness follows a distribution. While
unconstrained molecular design may yield less fit molecules on average, it still may
occasionally result in high scoring molecules (Figure 3.21). Sampling more times from a
distribution with a lower median may be a superior strategy to sampling fewer times from
a distribution with a higher median, provided that the variance is large enough (Figure
3.21). The faster unconstrained molecular generation allows one to roll the dice more often
in the same amount of time. Biasing the design towards synthesizable molecules remains

Molecular constraints as a means to improve molecule quality

—

65

possible in absence of constraints by incorporating synthesizability into the objective
function [62, 109]. Ideally the objective function should be able to evaluate the fitness of
potentially invalid molecules resulting from unconstrained molecular design. Our
benchmark shows that at least some scoring functions are able to do so, and we
hypothesize that most ligand-based scoring functions will share this ability. Machine
learning models may excel at this task given their interpolation capabilities. Structure-
based scoring functions requiring conformation generation or relying on knowledge-based
parameters, such as molecular mechanics, might be less suited for this purpose. Even then
one could return null or negative fitness values when a molecule cannot be evaluated, in
which case the objective function acts as a constraint itself. Lastly, while it is usually
undesirable to design difficult to synthesize or even chemically invalid molecules some
readers may find use in expressly generating these sorts of unreasonable molecules, for
example as negative training data for machine learning models [151].

Computationally efficient enforcement of molecular constraints

—

66

 Computationally efficient
enforcement of molecular
constraints

 Source

This chapter is based on the publication:

Kerstjens, A., De Winter, H. LEADD: Lamarckian evolutionary algorithm for de novo drug
design. J Cheminform 14, 3 (2022). https://doi.org/10.1186/s13321-022-00582-y

 Problem statement

In the previous chapter we showcased the benefits of constrained molecular design. We
determined that an evolutionary algorithm, when limited to constructing molecules
composed of bonds or small circular atomic environments found in reference desirable
chemistry, enables the design of fitter (i.e. higher objective values), easier to synthesize
and more drug-like molecules.

Yet not all was sunshine and roses. Despite using constraints, some of the designed ring
systems were unwieldly. Other molecules looked sane, but were rather boring hydrocarbon
skeletons. Most concerningly, since the constraints were enforced in a computationally
naive way the the throughput of the generator was poor, making it unsuitable for many
use cases.

In this chapter we address these concerns by describing Lamarckian Evolutionary Algorithm
for de novo Drug Design (LEADD). Much like the previously described algorithm, LEADD will
mimic reference chemistry by ensuring that the bonds/environments in designed
molecules have been observed in reference molecules. However it differs in the following:

● Molecules will be constructed as combinations of multi-atomic molecular fragments
instead of single atoms. By capturing entire ring systems in fragments we rid ourselves
of the challenge of designing reasonable ring systems atom-by-atom. Moreover,
fragment mutations are associated with a bigger step size in chemical space, which may
help the algorithm in escaping local fitness minima and discovering interesting chemical
entities.

Computationally efficient enforcement of molecular constraints

—

67

● A computationally efficient algorithm will be in charge of forming sane bonds, instead
of cycling through all bonds that could be formed and determining which ones are
acceptable according to some filters.

Additionally, we will explore a Lamarckian evolutionary mechanism that adjusts the future
reproductive behavior of molecules based on the outcome of previous generations. LEADD
attempts to strike a balance between optimization power (OP), synthetic accessibility (SA)
of designed molecules and computational performance.

 Methodology

4.3.1 Fragment library creation

A virtual library, assumed to be representative of drug-like chemical space, is fragmented
to yield the fragments employed by LEADD during the design process.

Within this context, a fragment is a connectivity-encoding molecular subgraph of the
source molecule from which it was extracted. A connection is an object describing the bond
between two atoms and is directional by nature. It can be represented as a three-integer
tuple, where the integers describe the starting atom type, ending atom type and bond type,
respectively. Bonds are classified into either single, double or triple bond type (aromatic
bond types do not occur since rings are not fragmented; see below). While any atom typing
scheme may be used, we have implemented MMFF94 [152] and Morgan atom types in
LEADD. Morgan atom types are integers describing an atom’s circular chemical
environment. They are the bit indices of a RDKit sparse Morgan fingerprint [34, 47] after r
iterations of the Morgan algorithm [46] (see 1.3). For clarity, the examples and figures in
this chapter use MMFF94 atom types.

We distinguish between connections, which are generic objects describing the type of an
atom–atom bond, and connectors, which are specific instances of a connection centered
on a fragment’s atom. During molecule fragmentation, the bonds between the fragment’s
molecular subgraph and its extra-fragment adjacent atoms are recorded as connectors
(Figure 4.1).

Computationally efficient enforcement of molecular constraints

—

68

Figure 4.1. Fragmentation example of two molecules. The input molecules (A) are assigned MMFF94 atom
types (B). Ring systems and all possible subgraphs from the remaining linkers and side chains of a given size
(in this example s ϵ [0 .. 1]) are extracted as fragments (C). The bonds that were cut to extract fragments
become connectors, and are represented as three-membered tuples in parenthesis. The number in bold below
each fragment is its ID.

Computationally efficient enforcement of molecular constraints

—

69

For each molecule, fragmentation starts by isolating ring systems from the acyclic regions.
Rings pertaining to the Smallest Set of Smallest Rings (SSSR) [23] are considered to be part
of the same ring system if they share at least one atom. Given the complexities of designing
drug-like ring systems, we decided to consider whole ring systems as fragments. The
remaining acyclic structures may either be taken as fragments as a whole or subjected to
systematic fragmentation by extracting all possible molecular subgraphs of a given size
from them, with each subgraph becoming a fragment (Figure 4.1). Hydrogens are treated
implicitly. The size of the extracted subgraphs (s), given in number of bonds within the
subgraph, is provided by the user. When s = 0, single atom fragments are generated.
Fragments of different sizes can be combined by specifying a range of sizes.

Two fragments are considered equivalent only if both their molecular graph and connectors
are the same. Both attributes are encoded as canonical ChemAxon extended SMILES
(CXSMILES) [153] and molecular identity is assessed as canonical CXSMILES identity. The
generated fragments, their connectors, frequencies, sizes and other convenience
information are stored in a relational database. When a generated fragment is already
present in the database its frequency is incremented by one.

4.3.2 Connection compatibility rules

Fragment compatibility is defined at the connection level. Two fragments can be bonded
together if two of their free connectors are compatible. Whether two connections are
compatible is determined by a set of pairwise and symmetric compatibility rules.

The compatibility rules are extracted from the connections table of the fragment database
according to a user-specified compatibility definition. We employ two of those definitions,
termed the “strict” and “lax” compatibility definitions. Both definitions are illustrated in
Figure 4.2.

Computationally efficient enforcement of molecular constraints

—

70

Figure 4.2. Connection compatibilities of the connections in Figure 4.1 according to the strict (A) and lax (B)
compatibility definitions. Since in the lax definition the end atom type is irrelevant it is omitted.

According to the strict definition two connections are compatible only if (a) their bond
types are the same, and (b) their atom types are mirrored (i.e. the start atom type of one
is the end atom type of the other and vice versa). Consequently, only a single connection is
compatible with each connection. During molecule design this entails that the connectivity
of fragments to their flanking atoms in their source molecules is preserved. In other words,
a fragment must be connected to atoms of the same atom type as those that flanked the
fragment in the source molecule.

When following the lax compatibility definition two connections are compatible if (a) their
bond types are the same, and (b) if the starting atom type of one has been previously
observed paired with the starting atom type of the other in any connection. This definition
expands the connectivity scope from the fragment’s source molecule to the entire source
molecules pool. In other words, two atom types can be connected if they have been
observed paired together in any of the database’s connections, which means they were

Computationally efficient enforcement of molecular constraints

—

71

bonded in at least one of the source molecules. As such, the strict compatibility definition
is a subset of its lax counterpart.

4.3.3 Chromosomal representation and initialization

Molecules are represented internally as meta-graphs [64], where each vertex is a molecular
graph corresponding to a fragment, and the edges describe which connectors bind the
fragments (Figure 4.3). Due to the complexities of designing drug-like ring systems we treat
ring systems as whole fragments, represented as a single vertex in the meta-graph.
However, while the genetic operators do not create cycles in the meta-graph, they would
work on existing cycles if one were to add a cyclization operator in the future.

The meta-graph chromosome can be translated into a single molecular graph by connecting
the molecular graphs of all fragments (Figure 4.3). Thereafter, hydrogens are added to
satisfy all incomplete valences. For elements with more than one valid valence like sulphur
or phosphorus hydrogens are added up to the closest valid valence.

Figure 4.3. Chromosomal representation of a molecule created through combination of fragments in Figure
4.1 using the lax compatibility definition. (a) Chromosomal meta-graph. Numbered vertices correspond to
fragment IDs. Numbers between parenthesis represent connector tuples. Bonds between connectors are
represented as rectangles. (b) The chromosome with fragments shown as their molecular graphs. (c)
Translation of the chromosome to the molecule seen by the user.

Computationally efficient enforcement of molecular constraints

—

72

Upon initialization, for true de novo drug design random chromosomes are generated by
successively combining random fragments. However, in some instances the user may want
to perform molecule optimization instead, starting from a known population of molecules.
In this case, it’s possible to convert regular molecular graphs into meta-graphs by following
the previously laid out fragmentation procedure using single atom acyclic fragments (s = 0).
If any of the connections generated during the fragmentation of starting molecules do not
appear in the database, connection compatibility information won't be available for them
and the molecule will therefore be skipped.

4.3.4 Genetic operators

LEADD employs eight distinct genetic operators to modify the chromosome and generate
offspring (Figure 4.4). Some of these operators have a peripheral and internal variant,
referring to the location of fragments on which they operate. Peripheral fragments are
those connected to one or less other fragments (vertex degree d ≤ 1), while internal
fragments are those connected to two or more fragments (d ≥ 2). While peripheral
operators are theoretically sufficient to access the entirety of the search space, in practice
this relies on statistically unlikely sequences of operations, since to modify the core of the
molecule one would have to “backtrack” and remove all peripheral fragments obstructing
it. Hence, the algorithm would be very likely to get stuck in local minima on the fitness
landscape.

The function of peripheral variants is mostly self-explanatory: peripheral expansions attach
a fragment sampled from the database to a free connector, while peripheral deletions
delete a peripheral fragment.

In internal expansions a fragment is inserted between a target fragment and one or more
of its adjacent fragments. For this purpose, connectors involved in bonding the target
fragment to the adjacent fragments are considered free.

In an internal deletion an internal target fragment is deleted. This is only possible if one of
the fragments adjacent to the target fragment can “take its place” and bond to the
remainder of the adjacent fragments.

In a substitution a target fragment is replaced by a fragment in the database. Connectors
bonding the target fragment to its neighboring fragments are deemed free.

Computationally efficient enforcement of molecular constraints

—

73

Figure 4.4. Illustration of the resulting chromosomes after applying each of the eight genetic operators to
the chromosome given in Figure 4.3a.

Computationally efficient enforcement of molecular constraints

—

74

Transfections derive their name from the corresponding biochemical technique of inserting
genetic material into cells. Transfections are similar to substitutions in that they replace
one fragment with another, with the difference being that the replacement fragments are
sourced from the molecule population instead of the fragments database. Hence, they
exploit the internal variability of the population, fulfilling a similar role to crossover
operators in traditional genetic algorithms. We opted out of traditional crossover operators
as none of the traditional approaches would have served us well. Subgraph exchange [12,
64, 100, 115, 116] (as described in section 3.3.8.1) without infringing upon the connection
compatibility rules would have been challenging. Side chain exchange [81, 117, 118]
requires the presence of a large common substructure, which is unlikely if the fragments
are diverse and the number of fragments is large. While the transfection operator is less
disruptive than a crossover operator, the unidirectional flow of genetic material in
transfections is easier to implement, guarantees the success of the operation and reduces
the time complexity from O(n2) to O(n) compared to a bidirectional crossover.

Translations/rotations move a fragment from one position and orientation to another
within the same molecule. They operate similar to a deletion and expansion in tandem. By
inserting the fragment back in its starting position but with a different orientation it can
effectively be rotated in place.

Lastly, for those scoring functions operating on 3D molecular structures, a stereochemistry
flip operator is available. This operator chooses a random chiral atom or stereochemical
double bond and inverts its stereochemistry.

 Connection rules enforcement

LEADD’s genetic operators satisfy the connection compatibility rules by searching for
fragments that can bond simultaneously to a given combination of neighbor fragments.
Whether a specific query fragment fulfils the above condition can be expressed as a
Maximum Bipartite Matching problem (MBPM). A bipartite graph is a graph with two
separate vertex sets or “parts”, where edges involve one vertex of each set. Given a
bipartite graph, a matching is a selection of edges such that no vertex is involved in more
than one edge. In MBPM the goal is to find the matching of maximum cardinality, that is,
the matching with the largest possible number of edges.

We construct the bipartite graph by placing the query fragment’s free connectors in one
vertex set, and the fragments within the combination in the other vertex set (Figure 4.5).
The edges between both vertex sets are drawn according to the lax connection
compatibility rules (Figure 4.2B), with an edge representing that a connection is compatible
with a fragment. This MBPM is then solved with a modified version of the Hopcroft-Karp
algorithm [154]. The standard version of the algorithm is deterministic and always returns
the same matching, even if multiple matchings with the same cardinality exist. By
randomizing the order in which it iterates over vertices and edges it returns a random

Computationally efficient enforcement of molecular constraints

—

75

maximum cardinality matching instead. MBPM attempts to assign each of the neighboring
fragments to one of the central fragment’s connectors. If an arrangement is found where
every neighbor fragment is bound to the central fragment without reusing any connectors,
that is, the cardinality of the matching is equal to the number of neighbor fragments, the
query fragment is compatible with said combination of fragments.

Figure 4.5. MBPM constructed to query whether a hypothetical fragment with a given set of connectors (left)
is compatible with a combination of fragments (right). Black and orange edges represent compatibility
relationships. The solution to the MBPM (i.e. the matching) is shown as the orange highlighted edges. Since
the cardinality of the matching is equal to the number of flanking fragments our hypothetical fragment is
compatible.

One can draw an analogy between finding suitable fragments and solving a jigsaw puzzle.
If we equate fragments to be puzzle pieces, given a combination of flanking pieces the goal
is to determine whether a query piece can connect to all of them simultaneously (Figure
4.6).

Computationally efficient enforcement of molecular constraints

—

76

Figure 4.6. Illustration of how solving a jigsaw puzzle can be represented as a MBPM. The goal is to connect
the orange central puzzle piece to all other flanking puzzle pieces (A-D). Each tab of the central piece must
match a blank in one of the flanking pieces. Evidently not every piece arrangement allows for this (left), but
some do (right). If an optimal arrangement exists we can find it through MBPM. We can verify its optimality
by comparing the cardinality of the matching (number of highlighted edges) to the number of fragments.

Computationally efficient enforcement of molecular constraints

—

77

To find all fragments that could bond to a combination of fragments one must interrogate
all candidate fragments separately, which entails solving MBPM multiple times. This is
computationally reasonable when the number of candidates is small, namely during
internal deletions, transfections and translations/rotations. However, it becomes
unreasonable for operations that sample fragments from the large fragments database,
namely expansions and substitutions.

In those cases, we solve the problem through Multiple Set Intersection (MSI). Before LEADD
is executed we precompute which fragments are compatible with each connection
according to the strict connection compatibility rules and store their IDs in sets (Figure
4.7A). Since a connection combination may have repeats of the same connection, the
compatible fragment IDs are stored stratified according to how many instances of
compatible connections they have. If a fragment is compatible with n instances of a
connection it is also compatible with 1 to n−1 instances. To be able to control the number
of ring fragments within the designed molecules, fragments are also stratified according to
whether these are cyclic or acyclic.

Figure 4.7. Connection-fragment compatibilities of the fragments in Figure 4.1 according to (a) the strict
compatibility rules and (b) lax compatibility rules, as described in Figure 4.2. Fragment weights are omitted
for clarity purposes. Fragments are stratified according to their cyclicity, and in the case of the strict
compatibility definition (a) also according to how many instances (n) of the connection the fragment has. In
(b), “e” denotes any ending atom type. Note that in (a) higher strata are subsets of the lower strata, and that
(a) is a subset of (b).

Computationally efficient enforcement of molecular constraints

—

78

At runtime these arrays are loaded, and the list of fragments compatible with a
combination of connections is calculated as the intersection of the fragment IDs compatible
with each of its connections separately (Figure 4.8). Note that since fragments may have
more than one free connector, if we wish to find fragments compatible with a combination
of fragments, we must define all unique combinations of their free connectors and solve
the MSI problem for each of them. The final result is the union of all resulting sets.

Figure 4.8. Venn diagram of the multiple intersection result for acyclic fragments compatible with the
connections combination [(1,1,1), (1,1,1), (7,3,2), (37,3,1)], using the precalculated compatible fragments
according to the strict compatibility definition (Figure 4.7A).

Pursuing the jigsaw puzzle analogy further, one could envision recording which puzzle
pieces have certain connectors in a table. Given a combination of flanking pieces we can
determine the connectors some central piece ought to have. This specification can then be
used to search the table for suitable pieces (Figure 4.9).

The MSI connection-fragment compatibilities must be computed using the strict
connection compatibility definition to ensure that the same connector does not contribute
to a fragment showing up in more than one set of compatible fragments. Because of this,
the MSI approach returns a subset of all fragments that would be deemed compatible
according to the MBPM approach (Figure 4.7). Nonetheless, the final orientation of
fragments retrieved with the MSI approach can still be determined through MBPM.

Computationally efficient enforcement of molecular constraints

—

79

Figure 4.9. Illustration of how a jigsaw puzzle can be solved through MSI. Given a set of flanking puzzle pieces
(A-D), the goal is to find a central piece that can connect to all of them simultaneously. Pieces B-D have a
single connector, but A has two connectors. Accounting for the possibility that pieces may be rotated, we can
define two combinations of connectors (left and right). Each of these combinations can be used as lookup key
in a pre-computed table ordering candidate pieces according to their connectors to retrieve some compatible
central pieces (left: 2, right: 3, 4). The final result is the union of pieces retrieved with each combination of
connectors (2, 3, 4).

Computationally efficient enforcement of molecular constraints

—

80

 Operation outcome sampling

In the event that an operator finds multiple suitable operation outcomes a random one is
chosen, typically through roulette wheel selection. For expansions, deletions and
substitutions the weight W of a fragment F is calculated based on its frequency q in the
database and its size N, in numbers of heavy atoms according to Equation 4.1.

Equation 4.1

𝑊ி = 𝑞ி
ఊ

∙ 𝑁ி
ఒ

In Equation 4.1 exponents γ and λ are user parameters. γ determines how much the
fragment selection should be guided by the fragment frequencies, with the default being
γ = 1. If the user wishes true random fragment selection this can be done by setting γ = 0.
λ is a size biasing term intended to be used when mixing fragments of different sizes. For
efficiency reasons weights are precalculated and stored alongside the connection-
fragment compatibilities (Figure 4.10).

Figure 4.10. Example of how the weights of the fragments in Figure 4.1 are calculated according to their
database frequency and the γ exponent (λ = 0) (Equation 4.1). Note that in practice a single γ is chosen.

For transfections the weight is calculated following the same formula but with the score S
of the fragment’s owner molecule R as an additional variable term, with a corresponding
user-specified exponent ζ signifying the transfection bias towards fragments contained in
high scoring molecules (Equation 4.2).

Equation 4.2

𝑊ி = 𝑞ி
ఊ

∙ 𝑁ி
ఒ ∙ 𝑆ி

The translation/rotation and stereo flip operators select operation outcomes through
uniform random sampling instead.

 Cyclicity control

Fragment identity comprises both the molecular graph and connectors. Generally, the
number of unique fragments increases with (1) the size of the fragments and (2) the atom
type and connector diversity (Table 4.1). Differences in fragmentation procedure between

Computationally efficient enforcement of molecular constraints

—

81

acyclic and cyclic regions of source molecules can cause imbalances in the number of
unique fragments, as well as their frequencies, which can lead to fragment sampling biases.
Since cyclic fragments tend to outnumber their acyclic counterparts (Table 4.1), if
fragments were sampled uniformly (γ = 0, Equation 4.1) it would be more likely to sample
cyclic fragments. Conversely, under weighted sampling (γ > 1), and when defining acyclic
fragments as subgraphs of s > 0, certain acyclic atoms are represented in more than one
fragment. Since ring systems are not fragmented, this causes an overrepresentation of
acyclic atoms in the fragment frequencies with respect to the cyclic ones. If these factors
are not accounted for during fragment sampling, we risk designing either very rigid or very
flexible and non-druglike molecules.

Table 4.1. Fragment database and connection compatibility statistics for the explored combinations of atom
typing scheme, fragmentation scheme and MBPM compatibility stringency. a For dummy atom types the strict
and lax compatibility definitions are equivalent since only one atom type exists. b According to the
compatibility definition stringency used for MBPM (column 3).

Atom
typing

scheme

Acyclic region
fragmentation

scheme

MBPM
compatibility

stringency

Number of unique… Average number of compatible…

atom
 types

connections

acyclic
fragm

ents

ring fragm
ents

connections
/connection

(M
BPM

b)

fragm
ents

/connection
(strict)

fragm
ents

/connection
(M

BPM
b)

Dummy
Subgraph

(s = 0)
Strict/Laxa 1 3 116 73287 1 37417 37417

Dummy
Subgraph

(s ϵ [0 .. 2]) Strict/Laxa 1 3 3834 73287 1 39286.7 39286.7

Dummy None Strict/Laxa 1 2 95430 73287 1 104218 104218

MMFF
Subgraph

(s = 0)
Strict 64 1316 4869 205637 1 436.8 436.8

MMFF
Subgraph

(s = 0) Lax 64 1316 4869 205637 708.2 436.8 180955

Morgan
(r = 1)

Subgraph
(s = 0)

Lax 14811 130494 139774 522517 1157.7 14.1 10127.3

Morgan
(r = 1)

Subgraph
(s = 0) Strict 14811 130494 139774 522517 1 14.1 14.1

Morgan
(r = 1)

Subgraph
(s ϵ [0 .. 2])

Lax 14811 130494 937087 522517 1157.7 31.7 39008

Morgan
(r = 1)

None Lax 10472 62021 243964 522517 591.5 30.7 16367.3

Morgan
(r = 2)

Subgraph
(s = 0)

Lax 381252 1334292 799676 942568 223.9 3.2 845.2

To circumvent this issue the genetic operators with the capacity to modulate the number
of ring atoms in a molecule (Nr), namely expansions, deletions, substitutions and
transfections, decide whether and how Nr ought to be changed prior to selecting a suitable
acyclic or cyclic fragment to do so, according to the current Nr.

How a genetic operator will modulate Nr is based on a pseudorandom number generator
and the probabilities returned by up to two functions operating in tandem. The first
function returns the probability of keeping the number of rings constant (P=) based on the
current Nr. It consists of a discrete function fit to the shape of a normal distribution’s
probability density function (PDF), and with its maximum scaled to an arbitrary user

Computationally efficient enforcement of molecular constraints

—

82

provided value (M). The equations of the normal distribution’s PDF and discrete function
are given in Equation 4.3 and Equation 4.4, respectively.

Equation 4.3

𝑃𝐷𝐹(𝑁) =
1

𝜎√2𝜋
∙ 𝑒

ି
ଵ
ଶ

ቀ
ேೝିఓ

ఙ
ቁ

మ

Equation 4.4

𝑃ୀ(𝑁) =
𝑃𝐷𝐹(𝑁)

∑ 𝑃𝐷𝐹(𝑁)
௫(ேೝ)
ேೝୀ

∙
𝑀

𝑃𝐷𝐹(𝜇)

Equation 4.5

𝑃ஷ(𝑁) = 1 − 𝑃ୀ(𝑁)

The mean of the normal distribution (μ) describes the ideal Nr and its standard deviation
(σ) the leniency in oscillating said number during evolution. Both parameters are user
provided and ideally based on some notion of the desired Nr in a solution. Both PDF(Nr) and
P= are maximum at μ and equal to the user’s scaling target value M.

While for expansions and deletions this function suffices to decide how to modulate the
number of rings, for substitutions and transfections, if in the preceding step it was decided
to change Nr, a second function returns the probability of increasing it (P+) (Equation 4.6).
This function is a logistic function defined based on μ and σ.

Equation 4.6

𝑃ା(𝑁) = 𝑃ஷ(𝑁) ∙
1

1 + 𝑒.ଷସଵఙ∙(ேೝିఓ)

Equation 4.7

𝑃ି(𝑁) = 𝑃ஷ(𝑁) − 𝑃ା(𝑁)

The growth rate of the logistic function was empirically derived, and is set to be
approximately the same as the normal distribution’s “steepness”, namely 0.682/2σ, since
in a normal distribution 68,2% of values are in [μ – σ, μ + σ]. Additionally, by setting the
midpoint of the logistic function to μ, P+(μ) = P-(μ). The edge case where Nr = 0 is treated
by setting P- = 0.

An example of the three aforementioned probability curves is shown in Figure 4.11.

Computationally efficient enforcement of molecular constraints

—

83

Figure 4.11. Probability distributions of keeping the number of ring atoms (Nr) constant (P=), increasing it
(P+) or decreasing it (P-) based on the current Nr, as described by Equation 4.4 - Equation 4.7. μ = 30, σ = 6,
M = 0.8.

4.3.5 Lamarckian evolution guidance

Given that the database fragment weights are static, so are the likelihoods of genetic
operation outcomes, regardless of whether the same or similar operations proved
beneficial or not in the past. In an attempt to improve the efficiency of the algorithm, as an
extension, we conferred it with a certain ability to “learn” from the outcomes of previous
genetic operations in hopes of increasing the likelihood of carrying out productive
operations in the future. To this end, each connector within a molecule is endowed with a
pair of arrays: one storing the IDs of compatible fragments F and one storing their
corresponding weights WF. The weights array is initialized to a copy of the database
fragment weights (Figure 4.10), but it’s free to change with each generation.

During evolution, a copy of a parent molecule P is subjected to a genetic operation,
targeting some fragment V, to generate a child molecule C. The score S of C is compared to
that of P (Equation 4.8). Scores are calculated by the scoring function we optimize for, with
higher values being better.

Equation 4.8

𝛥𝑆 = 𝑆 − 𝑆

Computationally efficient enforcement of molecular constraints

—

84

Molecules keep track of which fragments were placed and/or removed from each
connector during the operation. For each connector involved in the operation, based on
the nature of the operation and its outcome (Table 4.2), the weights array of both the P
and C’s connectors are modified according to Equation 4.9:

Equation 4.9

𝑊ி = 𝑊ி ∙ (1 + 𝑔 ∙ 𝑙 ∙ 𝑇𝑐ி)

In Equation 4.9 g is the reinforcement sign, l is a user-specified reinforcement rate and TcFV
is the Tanimoto topological similarity coefficient of fragments F and V according to ECFP4
fingerprints [34]. For performance reasons, all pairwise fragment similarity coefficients are
precalculated and stored as a square symmetrical matrix in a HDF5 file [155].

Table 4.2. Learning rate sign of Equation 4.9 for bond creations (i.e. attaching a fragment to a connector) and
destructions (i.e. deleting a fragment from a connector) based on the score change associated with the
operation (Equation 4.8).

Operation ΔS Learning rate sign (g)

Bond creation
> 0 + 1
≤ 0 - 1

Bond destruction
> 0 - 1
≤ 0 + 1

Whether the change in weight is positive or negative (g) depends on the nature of the
operator and the change in score (Table 4.2). LEADD maximizes strictly positive scores. The
general principle is that if a newly placed fragment at a given connector increased the
molecule’s score (i.e. improved the score), the weights of similar fragments are increased,
whereas if it stayed the same or decreased, the weights of similar fragments are decreased.
The opposite paradigm is true for fragments being removed from a given connector.

This guided evolution serves two purposes. On one hand it can accelerate convergence by
focusing the sampling on fragments that have been shown to be associated with good
scores. On the other hand, since weights of similar fragments are decreased also when the
score does not change, given enough time it could help the algorithm in escaping local
fitness minima.

One could interpret a molecule’s connectors’ weights arrays as its reproductive behavior
or its memory regarding which chemotypes at which positions are linked to better scores.
Parents adapt their reproductive behavior to increase the likelihood of generating fit
offspring based on the outcome of their previous reproductive events. Hence, the
reproductive behavior is an acquired trait. This, coupled to the fact that the connector

Computationally efficient enforcement of molecular constraints

—

85

arrays are an integral part of the chromosome, and therefore inherited by the offspring,
constitutes a Lamarckian evolutionary mechanism.

4.3.6 Evolutionary algorithm

Over the course of a number of generations (or until some convergence criterion is met)
the molecules within the population are bred to generate offspring. The user can combine
the following termination criteria: (1) top molecule score threshold, (2) maximum number
of generations, and (3) maximum number of generations without improvements to the top
molecule. Each generation a number of parent molecules is chosen to generate an equal
number of child molecules. Parents reproduce asexually, and the same parent may
reproduce more than once in the same generation. A copy of the chosen parent is
subjected to a genetic operator to yield the child molecule. Molecules are chosen to be
parents through fitness proportionate selection, with the weight of a molecule R being
given by Equation 4.10. Note that the ζ parameter takes the same value as in Equation 4.2.

Equation 4.10

𝑊ோ = 𝑆ோ

Optionally, the user may enforce population topological diversity through means of an
internal similarity filter. The topological similarity between two molecules is calculated as
the Tanimoto coefficient between their ECFP4 fingerprint [34]. If the similarity of a child
molecule to any of the current members of the population surpasses a given threshold, the
child is discarded. Otherwise, it’s added to the population.

The child molecules are scored, and a specified number of best scoring molecules within
the population, including parents, is retained. If guided evolution is enabled the connector
weights are adjusted based on the change in score caused by the operation. Lastly, the
surviving molecules are fed to the next generation of the algorithm.

While the use of fragments and connection compatibility rules is meant to reduce the
likelihood of designing synthetically unfeasible molecules, this may not be sufficient to
achieve this goal. For users wishing to consider synthetic accessibility on a higher level a
SAScore [124] filter and heuristic score modifier [109] are provided.

A flowchart of the algorithm can be found in Figure 4.12. Note it’s very similar to the
algorithm described in 3.3.8.1. The most important difference is that LEADD lacks the inner
loop that previously ensured molecule correctness (Figure 3.7). This makes LEADD more
computationally efficient.

Computationally efficient enforcement of molecular constraints

—

86

Figure 4.12. Flowchart of LEADD’s main loop. Note that some of the flowchart’s steps are optional, including
the internal similarity and SAScore filters and the guided evolution.

Computationally efficient enforcement of molecular constraints

—

87

4.3.7 Benchmark

LEADD’s performance was evaluated with the goal-directed GuacaMol benchmark suites
[108]. Specifically, we used the “trivial” and “version 2” (V2) benchmark suites (1.8.1). We
chose to include the trivial benchmarks in our analysis because the majority of the V2
objective functions point towards topologies of known and synthetically feasible drugs.
Hence, the objective functions implicitly provide some notions of drug-likeness, potentially
occluding some SA issues.

For standardization purposes we used GuacaMol’s training set, which is a subset of ChEMBL
[136], as fragmentation input. Fragment databases were created for each investigated
combination of fragmentation and atom typing scheme (Table 4.1).

The benchmark suite was used to find a set of reasonable default parameters for LEADD.
Given the large number of parameters an exhaustive parameter exploration was
unfeasible. We resorted largely to a trial-and-error approach. Some parameters, including
the population size and convergence criteria were fixed. Additionally, since LEADD requires
a guess of the number of ring atoms in the ideal solution, where possible, we used the
benchmark goals to set reasonable values for these parameters (Table 4.3). The rest of the
parameters were sorted according to their perceived importance. For parameters assumed
to be uncorrelated we tested multiple values for each one and fixed it to the value that
yielded the best results. If this was not the case, we evaluated combinations of the
correlated parameters in a multi-factorial design.

Computationally efficient enforcement of molecular constraints

—

88

Table 4.3. LEADD’s cyclicity control settings used during the GuacaMol benchmark. Nr stands for number of
ring atoms.Standard deviations are half the means, and maximums are three times the means.

GuacaMol
benchmark

suite
Benchmark name Mean Nr

Standard
deviation Nr

Maximum Nr

Trivial

logP (target: -1.0) 6 3 18
logP (target: 8.0) 12 6 36

TPSA (target: 150.0) 18 9 54
CNS MPO 6 3 18

QED 18 9 54
C7H8N2O2 6 3 18

Pioglitazone MPO 17 8.5 51

V2

Celecoxib
rediscovery

17 8.5 51

Troglitazone
rediscovery

21 10.5 63

Thiothixene
rediscovery

20 10 60

Aripiprazole
similarity

22 11 66

Albuterol similarity 6 3 18
Mestranol similarity 17 8.5 51

C11H24 6 3 18
C9H10N2O2PF2Cl 6 3 18

Median molecules 1 6 3 18
Median molecules 2 23 11.5 69

Osimertinib MPO 21 10.5 63
Fexofenadine MPO 24 12 72

Ranolazine MPO 18 9 54
Perindopril MPO 9 4.5 27
Amlodipine MPO 12 6 36
Sitagliptin MPO 15 7.5 45
Zaleplon MPO 15 7.5 45

Valsartan SMARTS 17 8.5 51
Deco Hop 20 10 60

Scaffold Hop 20 10 60

Computationally efficient enforcement of molecular constraints

—

89

Ten replicas were ran for each combination of settings. Benchmark scores and SAScores of
designed molecules were taken as OP and SA metrics, respectively. ChEMBL [136] feature
counts were used for SAScore calculations. For statistical analysis the results of all
benchmarks were pooled per setting. Since OP was found to be distributed non-normally,
differences in it were evaluated with non-parametric statistical tests: either the Wilcoxon-
Mann–Whitney U-test [141] or the Kruskal–Wallis [140] / Schreirer-Ray-Hare [156] H-test
followed by pairwise Conover-Iman tests [157] with Šidák correction [142]. SAScores were
distributed normally and analyzed with t-tests or one- or two-way analysis of variance
(ANOVA) with interaction followed by Tukey’s Honestly Significant Differences test.
α = 0.05 was taken as significance level and family-wise error rate (FWER) for all tests. Most
statistical tests and post hoc corrections were performed using the SciPy [143] and
statsmodels [144] Python packages, respectively. The Conover-Iman and Schreirer-Ray-
Hare tests were performed with the Scikit-learn Python [158] and rcompanion R packages
instead [159].

LEADD’s performance was compared to that of GB-GA [100], an atom- and graph-based
genetic algorithm for molecular design which has previously been shown to be a powerful
optimizer [62, 108], and a standard virtual screen of GuacaMol’s training set using the
benchmark’s objective function. GB-GA’s mutation rate was set to the default 0.01. Both
algorithms used a population size of 100 and were granted a maximum of 10,000
generations. Evolution terminated prematurely after a number of generations without
improvements in the population’s scores: 1,000 for LEADD and 5 for GB-GA. We explored
granting GB-GA 1,000 generations without improvement but found that its lack of
convergence guards caused the population diversity, and ultimately the benchmark scores,
to degrade during long runs.

Computationally efficient enforcement of molecular constraints

—

90

 Results and discussion

4.4.1 Base parameter exploration

LEADD was found to be quite robust to changes in most of its construction parameters, as
different values did not influence its performance greatly. As an exception, LEADD was
sensitive to the internal similarity threshold since it’s the algorithm’s main premature
convergence guard (data not shown). LEADD’s default base parameters can be found in
Table 4.4. Fragmentation parameters had larger effects on both OP and SA of designed
molecules, and will be discussed in the coming sections.

Table 4.4. Summary of LEADD’s default reconstruction settings. Some settings were condensed or omitted
from this table. For a more detailed list of settings, as well as recommended value ranges, we refer readers to
the software’s documentation.

Parameter name Value
Fragment frequency exponent (γ) 1.0

Fragment size exponent (λ) 0.0
Molecule score exponent (ζ) 2.5
Peripheral expansion weight 4.0

Internal expansion weight 4.0
Peripheral deletion weight 4.0

Internal deletion weight 4.0
Substitution weight 56.0
Transfection weight 20.0
Translation weight 4.0
Stereo-flip weight 0.0

Randomize unspecified stereo False
seed molecules 100

children per generation 100
survivors per generation 100
Maximum child similarity 0.9
Maximum # generations 10,000

Maximum # generations stuck 1,000
SAScore filter Disabled

SAScore heuristic Disabled
Lamarckian evolution guidance Disabled

Computationally efficient enforcement of molecular constraints

—

91

4.4.2 Effect of atom typing scheme

One of the main questions we wanted to answer was if the knowledge-based atom
compatibility rules aided the algorithm in designing SA molecules. To that end, we
measured the SAScores of molecules designed using the MMFF and Morgan (r = 1 and r = 2)
atom typing schemes. As a control, we included “dummy” atom types (i.e. all atoms have
the same atom type), whereby all connections with the same bond order are compatible.
All tests used single-atom acyclic fragments (s = 0). Molecules with lower SAScores are
predicted to be easier to synthesize. Figure 4.13 shows that molecules designed with
Morgan atom types, regardless of the radius, have lower SAScores than those designed
with dummy or MMFF atom types. Differences between all other pairs of atom typing
schemes were of little practical significance (Table 4.5). It’s interesting to note that the
mean SAScore values for Morgan atom types fall well below 4.5, which has been suggested
as a cut-off for easy to synthesize molecules [125]. By contrast, the mean SAScore values
for dummy and MMFF atom types are approximately 4.6.

Unfortunately, we also noted that Morgan atom types were associated with significantly
lower OP compared to dummy and MMFF atom types (Figure 4.14). The differences
between dummy and MMFF atom types and between Morgan atom types of different radii
were not statistically significant (Table 4.6). The results for the Valsartan SMARTS
benchmark are very poor, regardless of the chosen atom typing scheme. This poor
performance permeates throughout this work, and can be explained by the associated
scoring function. Said scoring function has a binary component demanding the presence of
a specific substructure. Binary scoring functions respond abruptly to molecular changes,
and do not provide fine enough feedback to the optimization algorithm.

Taken together these results suggest that the choice of atom typing scheme defines a
trade-off between OP and SA. The chemical diversity of atomic environments is vast, and
classifying them into a small number of atom types means that atom typing schemes are
degenerate, much like the genetic code. The number of distinct atom types can be taken
as an approximate measure of the scheme’s degree of degeneracy. LEADD tries to replicate
the molecular connectivity of molecules seen in a library of drug-like molecules, but if a
very degenerate atom typing scheme mischaracterizes this connectivity the algorithm’s
ability to replicate it falters. In our fragment databases we recorded 64 MMFF, 14,811
Morgan (r = 1) and 381,252 Morgan (r = 2) atom types (Table 4.1). Unique Morgan atom
types greatly outnumber their MMFF counterparts, explaining the better SA associated
with them.

Computationally efficient enforcement of molecular constraints

—

92

Figure 4.13. Comparison of designed molecules’ SAScore distributions using different atom typing schemes.
Includes molecules of all benchmarks and replicas. Molecules with lower SAScores are predicted to be easier
to synthesize.

Table 4.5. Multiple comparisons of SAScore means using different atom typing schemes with Tukey’s HSD
post-hoc test (FWER = 0.05). The test was preceded by a one-way ANOVA (F = 5675.82, p < 0.001).

Group 1 Group 2 𝑺𝑨𝑺𝒄𝒐𝒓𝒆തതതതതതതതതതതത
𝑮𝒓𝒐𝒖𝒑𝟐 − 𝑺𝑨𝑺𝒄𝒐𝒓𝒆തതതതതതതതതതതത

𝑮𝒓𝒐𝒖𝒑𝟏 Adjusted p-
value

Dummy MMFF 0.0636 < 0.001
Dummy Morgan (r = 1) -0.7070 < 0.001
Dummy Morgan (r = 2) -0.817 < 0.001
MMFF Morgan (r = 1) -0.7706 < 0.001
MMFF Morgan (r = 2) -0.8806 < 0.001

Morgan (r = 1) Morgan (r = 2) -0.1101 < 0.001

Computationally efficient enforcement of molecular constraints

—

93

Figure 4.14. LEADD optimization power comparison between atom typing schemes. Benchmark scores range
between 0 and 1, with higher scores being better. Boxes represent interquartile ranges (IQR), the black line
within them medians and the whiskers Q ± 1.5IQR. Data beyond the whiskers are considered outliers and
represented as dots. Colored dots represent maximum benchmark scores.

Table 4.6. Multiple comparisons of benchmark score distributions´ stochastic dominances using different atom
typing schemes with Conover-Iman´s post-hoc test with Šidák correction (FWER = 0.05). The test was preceded
by a Kruskal-Wallis test (H = 149.90, p < 0.001).

Group 1 Group 2 𝑺𝒄𝒐𝒓𝒆෫
𝑮𝒓𝒐𝒖𝒑𝟐 − 𝑺𝒄𝒐𝒓𝒆෫

𝑮𝒓𝒐𝒖𝒑𝟏 Adjusted p-
value

Dummy MMFF -0.066 0.189
Dummy Morgan (r = 1) -0.302 < 0.001
Dummy Morgan (r = 2) -0.384 < 0.001
MMFF Morgan (r = 1) -0.236 < 0.001
MMFF Morgan (r = 2) -0.318 < 0.001

Morgan (r = 1) Morgan (r = 2) -0.082 0.099

Computationally efficient enforcement of molecular constraints

—

94

The atom typing scheme’s degree of degeneracy also defines the observed OP-SA trade-
off. LEADD considers two atom types to be compatible, and therefore suitable for bonding,
if they have been observed bonded in reference molecules at least once. Given the same
set of reference molecules, the probability of observing any specific pair of atom types
bonded is larger when the number of distinct atom types is small. Consequently, the more
degenerate an atom typing scheme, the more promiscuous its atom types, in the sense
that atom types will be deemed compatible with a larger number of other atom types.
Ultimately, this also affects the number of fragments that are compatible with each
connection. In the case of MMFF atom types, 85.96% of all fragments are compatible with
the average connection according to the lax compatibility definition. This number drops to
1.53% and 0.05% for Morgan (r = 1) and Morgan (r = 2) atom types, respectively. Even more
dramatic differences are observed when considering the strict compatibility definition
(Table 4.1). This highlights that atom type promiscuity enables the algorithm to access a
larger number of states (i.e. molecules) from the current state. In other words,
promiscuous atom types are associated with a dense chemical transition graph (Figure 3.1).
This may aid the algorithm in escaping local fitness minima and explain the associated
greater OP.

Out of the tested atom typing schemes, we believe that for most use cases Morgan (r = 1)
atom types represent the best OP-SA compromise. Other compromises of interest may be
achievable with alternative atom typing schemes. LEADD can be readily expanded to use
other atom typing schemes. For instance, one could collapse Morgan atom types into a
smaller number of atom types with some type of hashing function. However, as this would
inevitably cause collisions, the hashing function would need to be locality sensitive to avoid
merging completely unrelated atom types. An alternative approach might be to cluster
atomic environments and use cluster assignments as atom types. This approach could allow
fine control over the OP-SA trade-off by modulating the number of clusters. We would like
to remark however that the number of unique atom types is only a good metric for atom
typing degeneracy when atomic environments are distributed uniformly across atom types.
This is likely to be the case for Morgan atom types since they are calculated using hashing
functions, which are designed to distribute inputs uniformly over an integer range, but may
not be the case for other schemes. Instead, it would be more appropriate to use metrics
that measure the information content of atom types (i.e. within atom type atomic
environment similarities).

4.4.3 Implications of compatibility binarization

LEADD’s approach to find suitable fragments for genetic operators requires that
connection compatibility be expressed as a binary property. However, it may be argued
that connection pairs are on a compatibility spectrum based on the observed frequency of
said pair: if a pairing is observed thousands of times it’s more compatible than if it’s
observed just once, yet they are deemed equally compatible. Consequently, infrequent
connections may misrepresent molecular connectivity. We regularly observed large

Computationally efficient enforcement of molecular constraints

—

95

disparities among compatible connection pairing frequencies and wanted to measure the
extent to which this is detrimental to the SA of designed molecules. By default the MBPM
approach uses the lax compatibility definition, but this may be changed to the strict
definition. Under the strict compatibility definition each connection is compatible with
exactly one other connection, eliminating compatible connection pairing frequency
imbalances. We found no practically significant differences in SAScore when using the strict
compatibility definition for MBPM as opposed to the lax one (Figure 4.15). Considering that
a fragment’s connectivity is part of its identity, infrequent connections are contained to
infrequent fragments. Since LEADD samples fragments with a probability proportional to
their frequency we hypothesize that, while the binarization of connection compatibility
does misrepresent the molecular connectivity of the reference library, this rarely manifests
itself in designed molecules.

Figure 4.15. Comparison of designed molecules’ SAScore distributions using different MBPMB connection
compatibility stringencies. Includes molecules of all benchmarks and replicas. Molecules with lower SAScores
are predicted to be easier to synthesize.

Computationally efficient enforcement of molecular constraints

—

96

4.4.4 Effect of fragmentation scheme

The atom typing scheme degeneracy, the binarization of connection compatibility, and
other factors such as connection compatibility being expressed only as pairwise
relationships, all contribute towards LEADD’s description of molecular connectivity being
imperfect. Each bond created by the algorithm has a probability of being non-drug-like.
While we have discussed approaches to decrease this probability, an alternative approach
to improve the drug-likeness of designed molecules is to reduce the number of bonds
created by the algorithm. This can be achieved using larger fragments. To prove this we ran
the benchmark using different types of acyclic fragments: single-atom fragments (s = 0),
fragments with 0 to 2 bonds (s ϵ [0 .. 2]) and whole side chains and linkers resulting from
the deletion of ring systems. In general, the SAScores of molecules designed using larger
fragments were lower than those designed using smaller fragments (Figure 4.16). While
the SAScore differences between s = 0 and s ϵ [0 .. 2] were almost negligible, using
monolithic acyclic fragments did lead to substantial improvements in SAScore (Table 4.7,
Table 4.8). It’s interesting to note that the observed improvements in SAScore were larger
for dummy atom types than for Morgan atom types, highlighting that the bonds created
when using Morgan atom types are more drug-like.

Figure 4.16. Comparison of designed molecules’ SAScore distributions using different atom typing schemes.
Includes molecules of all benchmarks and replicas. Molecules with lower SAScores are predicted to be easier
to synthesize.

Computationally efficient enforcement of molecular constraints

—

97

Table 4.7. Two-way ANOVA on the effect of atom typing scheme, fragmentation scheme and their interaction
on the SAScore of designed molecules.

Source of variation df Sum Sq F p-value
Atom typing 1 15,205.18 16,055.82 < 0.001

Fragmentation 2 1,879.06 992.09 < 0.001
Interaction 2 119.08 62.87 < 0.001

Residual 154,720 146,522.90

Table 4.8. Multiple comparisons of SAScore means using different combinations of atom typing and
fragmentation schemes with Tukey’s HSD post-hoc test (FWER = 0.05).

Group 1 Group 2
𝑺𝑨𝑺𝒄𝒐𝒓𝒆തതതതതതതതതതതത

𝑮𝒓𝒐𝒖𝒑𝟐

− 𝑺𝑨𝑺𝒄𝒐𝒓𝒆തതതതതതതതതതതത
𝑮𝒓𝒐𝒖𝒑𝟏

Adjusted
p-value

Dummy (s = 0) Dummy (s ϵ [0 .. 2]) -0.1030 < 0.001
Dummy (s = 0) Dummy (none) -0.3111 < 0.001
Dummy (s = 0) Morgan (r = 1) (s = 0) -0.7070 < 0.001
Dummy (s = 0) Morgan (r = 1) (s ϵ [0 .. 2]) -0.6913 < 0.001
Dummy (s = 0) Morgan (r = 1) (none) -0.9016 < 0.001

Dummy (s ϵ [0 .. 2]) Dummy (none) -0.2082 < 0.001
Dummy (s ϵ [0 .. 2]) Morgan (r = 1) (s = 0) -0.6040 < 0.001
Dummy (s ϵ [0 .. 2]) Morgan (r = 1) (s ϵ [0 .. 2]) -0.5884 < 0.001
Dummy (s ϵ [0 .. 2]) Morgan (r = 1) (none) -0.7987 < 0.001

Dummy (none) Morgan (r = 1) (s = 0) -0.3959 < 0.001
Dummy (none) Morgan (r = 1) (s ϵ [0 .. 2]) -0.3802 < 0.001
Dummy(none) Morgan (r = 1) (none) -0.5905 < 0.001

Morgan (r = 1) (s = 0) Morgan (r = 1) (s ϵ [0 .. 2]) 0.0157 0.4443
Morgan (r = 1) (s = 0) Morgan (r = 1) (none) -0.1946 < 0.001

Morgan (r = 1) (s ϵ [0 .. 2]) Morgan (r = 1) (none) -0.2103 < 0.001

Computationally efficient enforcement of molecular constraints

—

98

The use of larger fragments did not affect LEADD’s OP when using dummy atom types.
However, we did observe significant improvements in OP when using large fragments
coupled with Morgan (r = 1) atom types (Figure 4.17, Table 4.9, Table 4.10). Genetic
operations using larger fragments are associated with bigger step sizes in chemical space,
which allows the algorithm to escape local fitness minima. Because the number of chemical
states accessible from a given state is much smaller when using Morgan atom types as
compared to dummy atom types, the probability of getting stuck in local fitness minima is
larger in the former case. This explains why a bigger step size is beneficial for Morgan, but
not dummy atom types. It’s worth noting that the step size associated with larger
fragments is not longer solely because of the bigger number of atoms per fragment, but
also due to the greater degree of branching in larger fragments. While we implemented
internal operators that attempt to mitigate this, there still is a risk that the algorithm may
design certain highly branched topologies that are difficult to modify with genetic
operators without unwinding the entire stack of operations. Since large fragments can
capture branched motifs as a single unit, the risk of this happening is reduced. Future
algorithms could improve upon this by implementing operators that target entire sections
or branches of the meta-graph instead of a single vertex.

Figure 4.17. LEADD optimization power comparison between different combinations of atom typing and
fragmentation schemes. Boxes represent interquartile ranges (IQR), the black line within them medians and
the whiskers Q ± 1.5IQR. Data beyond the whiskers are considered outliers and represented as dots. Colored
dots represent maximum benchmark scores.

Computationally efficient enforcement of molecular constraints

—

99

Table 4.9. Scheirer-Ray-Hare test on the effect of atom typing scheme, fragmentation scheme and their
interaction on the GuacaMol benchmark scores.

Source of variation df Sum Sq H p-value
Atom typing 1 36,511,969 169.401 < 0.001

Fragmentation 2 1,854,912 8.606 0.014
Interaction 2 439,082 2.037 0.361

Residual 1,604 307,991,950

Table 4.10. Multiple comparisons of benchmark score distributions’ stochastic dominances using different
combinations of atom typing and fragmentation schemes with Conover-Iman´s post-hoc test with Šidák
correction (FWER = 0.05).

Group 1 Group 2
𝑺𝒄𝒐𝒓𝒆෫

𝑮𝒓𝒐𝒖𝒑𝟐

− 𝑺𝒄𝒐𝒓𝒆෫
𝑮𝒓𝒐𝒖𝒑𝟏

Adjusted p-
value

Dummy (s = 0) Dummy (s ϵ [0 .. 2]) 0.006 0.949
Dummy (s = 0) Dummy (none) 0.012 0.900
Dummy (s = 0) Morgan (r = 1) (s = 0) -0.302 < 0.001
Dummy (s = 0) Morgan (r = 1) (s ϵ [0 .. 2]) -0.176 < 0.001
Dummy (s = 0) Morgan (r = 1) (none) -0.122 < 0.001

Dummy (s ϵ [0 .. 2]) Dummy (none) 0.006 0.998
Dummy (s ϵ [0 .. 2]) Morgan (r = 1) (s = 0) -0.308 < 0.001
Dummy (s ϵ [0 .. 2]) Morgan (r = 1) (s ϵ [0 .. 2]) -0.182 < 0.001
Dummy (s ϵ [0 .. 2]) Morgan (r = 1) (none) -0.128 < 0.001

Dummy (none) Morgan (r = 1) (s = 0) -0.315 < 0.001
Dummy (none) Morgan (r = 1) (s ϵ [0 .. 2]) -0.188 < 0.001
Dummy (none) Morgan (r = 1) (none) -0.134 < 0.001

Morgan (r = 1) (s = 0) Morgan (r = 1) (s ϵ [0 .. 2]) 0.127 0.185
Morgan (r = 1) (s = 0) Morgan (r = 1) (none) 0.180 0.015

Morgan (r = 1) (s ϵ [0 .. 2]) Morgan (r = 1) (none) 0.053 0.932

Computationally efficient enforcement of molecular constraints

—
100

Observant readers will have noticed the abrupt drop in the Ranolazine MPO benchmark
score when using Morgan atom types coupled with monolithic fragments (i.e. Morgan (r =
1) (none)). Said benchmark provides a molecule starting point, which must be converted to
a meta-graph through fragmentation. This process is only possible when the connections
resulting from the fragmentation are also present in the database and have associated
compatibility information. This turns out to not be the case for the monolithic fragment
database. As such, the benchmark fails to run and receives a null score.

Given that larger fragments improve SA and either increase OP or do not affect it, it is
tempting to conclude that the use of large fragments is always preferable. However, it
should be noted that the larger step sizes associated with big fragments also carry the risk
of “jumping” over good solutions. This can be partially overcome by mixing fragments of
different sizes (e.g. s ϵ [0.. 2]). A more pressing issue is that the use of large fragments
requires a very extensive and diverse library of fragments to adequately represent chemical
space. Besides dictating greater amounts of memory to store the pre-calculated compatible
fragments, as the number of fragments grows so does the size of the search space, and
with it the number of operations and generations necessary to adequately explore it. For
Morgan atom types, we believe that the improved SA and OP tied to monolithic fragments
justify their use. However, for dummy atom types we think that the minor SA
improvements are not sufficient justification.

4.4.5 Handling fragment numerosity

A large number of fragments also poses the question of how to prioritize fragments to
explore chemical space efficiently. We opted to use the fragments’ frequencies in drug-like
matter as biasing weights to determine the outcomes of genetic operations. In an attempt
to improve upon this, we also implemented a Lamarckian evolutionary mechanism that
biases the exploration towards certain areas of the search space based on the outcomes of
previous operations. A similar concept was explored in the particle swarm optimizer
Colibree [98], where each molecule has preferences towards certain fragments, encoded
as a floating point number array. In Colibree these preferences apply to the entire
molecule, which is computationally more efficient and enables straightforward
communication of preferences among molecules within the swarm, but lacks the spatial
resolution that one would desire when working with structure-based scoring functions. Our
Lamarckian evolutionary mechanism attempts to improve on this by assigning fragment
preferences to connectors instead. Unfortunately, with the explored settings, the
Lamarckian guided evolution mechanism failed to significantly improve the optimization
power of the algorithm (data not shown). One possible explanation for the shortcomings
of the approach is that, given the large number of fragments (105–106 compared to the
7,196 of Colibree), the number of generations for which LEADD runs (i.e. 1,000–10,000) is
insufficient to resolve connector-fragment preferences. The impermanence of connectors
may exacerbate the problem. When a fragment is deleted or substituted the knowledge
accumulated in its connector arrays is erased, effectively resetting the progress of the

Computationally efficient enforcement of molecular constraints

—
101

Lamarckian evolution. A potential solution could be mapping fragment preferences to
points in space instead, which also would allow molecules to share their preferences among
each other. However, the observed slower runtimes and larger memory footprints
discourage us from exploring this approach further.

4.4.6 Comparison of SA improvement approaches

LEADD also ships with more traditional means of improving the SA of designed molecules,
namely a simple filter that deletes molecules with SAScores above a given threshold and a
SAScore-based heuristic score modifier that biases the objective function towards
molecules with lower SAScores, as described by Gao and Coley [109]. As a reminder, the
SAScore is a composite metric based on (a) how much the molecular connectivity of a
molecule resembles that of reference drug-like molecules (i.e. FeatureScore) and (b) the
number of synthetic nuisances within that molecule, for example stereo centers, spiro-,
bridged- and macro-cycles (i.e. ComplexityPenalty). Because the atom type approach to
increase SA only tries to improve the FeatureScore it can be of interest to combine it with
the SAScore filter or heuristic. We were interested in comparing how these different
approaches to increase SA fare on their own. The parameters for the SAScore filter
(SAScore ≤ 4.5) and heuristic (µ = 2.23, σ = 0.65) were taken from the literature, where they
have been described as effective means to design SA molecules [109, 125]. Our results
confirm that all approaches can be used to design more SA molecules (Figure 4.18, Table
4.11) and that, with the exception of the SAScore filter, this was accompanied by a
significant loss of optimization power (Figure 4.19, Table 4.12). There appears to be an
inverse correlation between SA and OP, and the observed OP-SA compromises seem to
define a FeatureScore Pareto front (Figure 4.20). However, it should be noted that each
approach has a different SA target. We did not manage to find SAScore filter and heuristic
parameters that replicate the SAScore distribution of Morgan (r = 1) atom types. Hence,
which approach provides the best OP-SA trade-off, if any, is inconclusive.

Computationally efficient enforcement of molecular constraints

—
102

Figure 4.18. Comparison of designed molecules’ SAScore distributions using different SA optimization
strategies. Includes molecules of all benchmarks and replicas.

Table 4.11. Multiple comparisons of SAScore means using different approaches to improve SA with Tukey’s
HSD post-hoc test (FWER = 0.05). The test was preceded by a one-way ANOVA (F = 45720.82, p < 0.001).

Group 1 Group 2 𝑺𝑨𝑺𝒄𝒐𝒓𝒆തതതതതതതതതതതത
𝑮𝒓𝒐𝒖𝒑𝟐 − 𝑺𝑨𝑺𝒄𝒐𝒓𝒆തതതതതതതതതതതത

𝑮𝒓𝒐𝒖𝒑𝟏 Adjusted p-
value

Dummy Morgan (r = 1) -0.9016 < 0.001

Dummy
Dummy

(SAScore filter)
-0.5988 < 0.001

Dummy
Dummy
(SAScore
heuristic)

-2.3578 < 0.001

Morgan (r = 1)
Dummy

(SAScore filter)
0.3028 < 0.001

Morgan (r = 1)
Dummy
(SAScore
heuristic)

-1.4561 < 0.001

Dummy
(SAScore filter)

Dummy
(SAScore
heuristic)

-1.7590 < 0.001

Computationally efficient enforcement of molecular constraints

—
103

Figure 4.19. LEADD optimization power comparison using different SA optimization strategies. Colored dots
represent maximum benchmark scores.

Table 4.12. Multiple comparisons of benchmark score distributions’ stochastic dominances using different
approaches to improve SA with Conover-Iman´s post-hoc test with Šidák correction (FWER = 0.05). The test
was preceded by a Kruskal-Wallis test (H = 94.69, p < 0.001).

Group 1 Group 2
𝑺𝒄𝒐𝒓𝒆෫

𝑮𝒓𝒐𝒖𝒑𝟐

− 𝑺𝒄𝒐𝒓𝒆෫
𝑮𝒓𝒐𝒖𝒑𝟏

Adjusted p-
value

Dummy Morgan (r = 1) -0.122 < 0.001

Dummy
Dummy

(SAScore filter)
-0.027 0.724

Dummy
Dummy

(SAScore heuristic)
-0.253 < 0.001

Morgan (r = 1)
Dummy

(SAScore filter)
0.096 < 0.001

Morgan (r = 1)
Dummy

(SAScore heuristic)
-0.161 0.006

Dummy
(SAScore filter)

Dummy
(SAScore heuristic)

-0.226 < 0.001

Computationally efficient enforcement of molecular constraints

—
104

Figure 4.20. Correlation between FeatureScore and benchmark score using different approaches to increase
SA. Large feature scores are associated with better SA.

Computationally efficient enforcement of molecular constraints

—
105

4.4.7 Comparison to other algorithms and virtual screening

Lastly, we wanted to compare LEADD’s performance to that of GB-GA [100] and a VS of the
GuacaMol virtual library. In terms of OP, LEADD with dummy atom types outperformed the
VS in 26/27 benchmarks, with the only exception being the Valsartan SMARTS benchmark
which uses a binary scoring function ill-suited for goal-directed optimization approaches
(Figure 4.25). LEADD with the use of dummy atom types is comparable to GB-GA, in the
sense that both are graph-based EAs with very few restrictions on how atoms can be
connected. Correspondingly, the SA (Figure 4.21, Table 4.13) and OP (Figure 4.25, Table
4.14) of these two systems are comparable. The key difference between both algorithms is
that LEADD modifies molecules on a fragment level as opposed to the atom level of GB-GA.
Although we paired dummy atom types with single-atom acyclic fragments, ring systems
are always treated as monolithic fragments. We expected this to yield improved SA and
smaller OP, yet found the opposite. LEADD has better OP than GB-GA, outperforming it in
18/27 benchmarks and performing equally well or better in 23/27 benchmarks. We
attribute this to the bigger step size associated with fragments and the internal topological
similarity threshold to enforce population diversity, giving it an edge at escaping local
fitness minima. It’s also possible that the same factors explain the better SA of molecules
designed by GB-GA. Most GuacaMol benchmarks incorporate topological similarity to a
reference drug-like molecule in their objective functions, implicitly capturing some SA
notions. Because of LEADD’s internal similarity threshold only the best individual within the
population can assume the identity of the reference molecule, whereas the rest are forced
to diverge from it. In GB-GA all individuals are allowed to approach the target molecule as
much as possible, benefitting to a greater extent from the implicit SA target of the objective
function. Moreover, GB-GA does not allow the creation of SSSR cycles bigger than six-
membered rings whereas some of the fragments used by LEADD do include bigger cycles.
Since the SAScore incorporates a macrocycle penalty this could account for some of the
observed differences. Ultimately, the magnitude of the SA changes associated with the use
of fragments, be it cyclic or acyclic, are small (Table 4.10, Table 4.13). This calls into the
question the widespread practice of fragment-based molecular construction as a means to
improve SA, and we hypothesize that its effectiveness depends on how well in silico
fragments and their assembly rules correlate with ex silico reactants and chemical
reactions.

Computationally efficient enforcement of molecular constraints

—
106

Figure 4.21. Comparison of SAScore distributions between molecules designed by LEADD and GB-GA and those
found through a VS. Includes molecules of all benchmarks and replicas. Molecules with lower SAScores are
predicted to be easier to synthesize

Table 4.13. Multiple comparisons of SAScore means between LEADD, GB-GA and a VS with Tukey’s HSD post-
hoc test (FWER = 0.05). The test was preceded by a one-way ANOVA (F = 5715.55, p < 0.001).

Group 1 Group 2 𝑺𝑨𝑺𝒄𝒐𝒓𝒆തതതതതതതതതതതത
𝑮𝒓𝒐𝒖𝒑𝟐 − 𝑺𝑨𝑺𝒄𝒐𝒓𝒆തതതതതതതതതതതത

𝑮𝒓𝒐𝒖𝒑𝟏 Adjusted p-
value

Dummy Morgan (r = 1) -0.902 < 0.001
Dummy GB-GA -0.222 < 0.001
Dummy VS -1.170 < 0.001

Morgan (r = 1) GB-GA 0.680 < 0.001
Morgan (r = 1) VS -0.268 < 0.001

GB-GA VS -0.948 < 0.001

Computationally efficient enforcement of molecular constraints

—
107

When using Morgan (r = 1) atom types and monolithic acyclic fragments LEADD designs
molecules with much better SA than GB-GA (Figure 4.21, Table 4.13). This is to be expected
since GB-GA does not take SA into account intrinsically. However, it’s possible to design SA
molecules with GB-GA by using the previously discussed extrinsic SAScore-based heuristic
score modifier [62, 109]. Doing so yields a similar OP-SA trade-off to the one observed for
LEADD and the same heuristic (Figure 4.18, Figure 4.19), strongly favoring SA over OP
(Figure 4.22, Figure 4.23). The SA of molecules designed by LEADD using Morgan (r = 1)
atom types is almost on par with those found by a VS (Figure 4.21, Table 4.13). We would
like to remark that the feature set we used to calculate SAScores was extracted from
ChEMBL [136], and that the screened GuacaMol library is a subset of ChEMBL [108]. It’s
therefore to be expected that molecules found through VS have better SAScores. Since
SAScores are a rather crude way of assessing SA, to confirm our findings we ran
retrosynthetic analyses on the top 10 scoring molecules of each benchmark replica using
AiZynthFinder [132] with the ZINC [2] reactant stock and USPTO-derived reaction template
policy provided by the authors. Both LEADD and GB-GA designed less synthesizable
molecules than those found by the VS, but when using Morgan atom types LEADD designed
considerably more synthesizable molecules than GB-GA (Figure 4.24). It’s worth noting that
only 60% of the molecules selected by the VS from the ChEMBL subset were deemed
synthesizable by the retrosynthetic analyses. If we assume that all molecules in ChEMBL
are synthesizable this would suggest that we might be underestimating the SA of
molecules, including those designed by the EAs.

Computationally efficient enforcement of molecular constraints

—
108

Figure 4.22. Comparison of SAScore distributions between molecules designed by LEADD and GB-GA with or
without using the SAScore-based score modifier. Includes molecules of all benchmarks and replicas. Molecules
with lower SAScores are predicted to be easier to synthesize.

Figure 4.23. Optimization power comparison between LEADD and GB-GA with or without using the SAScore-
based score modifier. Colored dots represent maximum benchmark scores.

Computationally efficient enforcement of molecular constraints

—
109

Figure 4.24. Fraction of top-10 scored molecules per replica synthesizable by LEADD (with different settings),
GB-GA and VS in N or less steps using ZINC reactants and USPTO reaction templates, as assessed by
AiZynthFinder. Molecules requiring more than 8 synthetic steps are considered not synthesizable.

Computationally efficient enforcement of molecular constraints

—
110

Interestingly, we did not observe a statistically significant difference in OP stochastic
dominance between LEADD with Morgan atom types and GB-GA (Table 4.14). Given that
EAs are stochastic in nature, one would typically run multiple replicas and keep the best
results. This justifies comparing maximum instead of average benchmark scores. In terms
of maximum score, LEADD with Morgan atom types performed comparably or better than
GB-GA in 16/27 benchmarks and comparably or better than the VS in 23/27 benchmarks
(Figure 4.25). Crucially, LEADD performed better than GB-GA in the Deco Hop and Scaffold
Hop benchmarks, which are arguably the most representative of real drug discovery
problems.

We would like to note that goal-directed design employing structure-based scoring
functions is associated with an additional set of challenges that is not posed by the ligand-
based GuacaMol benchmark suite, including the handling of stereochemistry, pose
inversion and the typical bias of these scoring functions towards large, hydrophobic and
flexible molecules. Indeed, preliminary results using OpenEye ROCS [160] as LEADD’s
scoring function show a tendency towards designing large and very cyclic molecules. This
also makes it challenging to compare 2D molecular design algorithms like LEADD and GB-
GA to their 3D counterparts [16, 18, 19, 61, 111, 113].

Computationally efficient enforcement of molecular constraints

—
111

Figure 4.25. Optimization power comparison between LEADD, GB-GA and a VS. Colored dots represent
maximum benchmark scores. Note that VS results are deterministic and have null variability.

Table 4.14. Multiple comparisons of benchmark score distributions’ stochastic dominances using different
approaches to improve SA with Conover-Iman´s post-hoc test with Šidák correction (FWER = 0.05). The test
was preceded by a Kruskal-Wallis test (H = 94.69, p < 0.001).

Group 1 Group 2
𝑺𝒄𝒐𝒓𝒆෫

𝑮𝒓𝒐𝒖𝒑𝟐

− 𝑺𝒄𝒐𝒓𝒆෫
𝑮𝒓𝒐𝒖𝒑𝟏

Adjusted p-
value

Dummy Morgan (r = 1) -0.122 < 0.001

Dummy
Dummy

(SAScore filter)
-0.027 0.724

Dummy
Dummy

(SAScore heuristic)
-0.253 < 0.001

Morgan (r = 1)
Dummy

(SAScore filter)
0.096 < 0.001

Morgan (r = 1)
Dummy

(SAScore heuristic)
-0.161 0.006

Dummy
(SAScore filter)

Dummy
(SAScore heuristic)

-0.226 < 0.001

Computationally efficient enforcement of molecular constraints

—
112

It is also important to consider the amount of computational resources spent by each
approach to achieve its results. Figure 4.26 shows how an average EA replica finds higher
scoring molecules than a VS with a smaller number of scoring function calls. While one
should keep in mind that it’s generally desirable to run multiple EA replicas, EAs make
better use of computational resources than a VS, especially if evaluating the scoring
function is expensive. It’s also worth noting that LEADD, despite its use of fragments, did
not find solutions much slower than GB-GA (Figure 4.26). Naturally, there is an overhead
associated with the design algorithm. On a single core of a Xeon E5-2680v2 CPU (2.8 GHz),
LEADD designed on average 272 mol/s. Assuming that about 104–105 molecules must be
designed to find good solutions (Figure 4.26) this corresponds to an overhead of just a
couple CPU minutes. For comparison GB-GA designed 98 mol/s. This difference in
performance is mostly due to implementation optimizations rather than due to algorithmic
differences since LEADD is considerably more complex algorithmically. When using fast
scoring functions molecule generation can become the rate limiting step. During the
GuacaMol benchmark suite LEADD generated molecules slower than they were scored in
25/27 benchmarks. On average, molecules were designed eightfold slower than they were
scored, with differences exceeding 20-fold in some benchmarks. This showcases the need
for fast molecular design algorithms. Note that the reported values are averages, and that
execution times depend heavily on the number of possibilities the algorithm has to
consider. For instance, when using a smaller database of fragments or smaller population
the algorithm is faster. Similarly, the computational resources spent per operation increase
with molecular complexity, specifically degree of branching.

If one wishes to achieve even greater OP it’s possible to use the results of a VS as the
starting population for EAs. While we do not believe this qualifies as de novo molecular
design, this type of molecular optimization may be interesting when computational
resources are abundant. Unsurprisingly, we found that using VS results as starting
populations decreased the variability between replicas and increased the mean replica
score (Figure 4.28). However, when using Morgan atom types this did not always translate
into higher maximum scores, as the starting population may already be close to local fitness
minima in which the algorithm might get stuck. It’s interesting to note that, while the
molecules designed this way have better SA than those in a true de novo design setting, it’s
worse than that of the starting population (Figure 4.27). The SA loss is small for LEADD with
Morgan atom types, but substantial for GB-GA and LEADD with dummy atom types, in the
latter case almost reverting to the de novo design values. This showcases a tendency to
design synthetically complex molecules when algorithms form bonds carelessly.

Computationally efficient enforcement of molecular constraints

—
113

Figure 4.26. Score of best found molecule as a function of the number of scored molecules. For LEADD and
GB-GA each line represents a replica. VS results were shuffled 100 times and averaged to account for the
effects of molecule screening order. Note that these are individual molecule scores and not
population/benchmark scores and therefore do nott correspond to the values in Figure 4.25.

Computationally efficient enforcement of molecular constraints

—
114

Figure 4.27. Comparison of SAScore distributions between molecules designed by LEADD and GB-GA using VS
results as a starting population and said VS results. Includes molecules of all benchmarks and replicas.

Figure 4.28. Optimization power comparison between LEADD, GB-GA and a VS using the VS results as starting
populations for the EAs.Note that VS results are deterministic and have null variability.

Easy enforcement of molecular constraints

—
115

 Easy enforcement of molecular
constraints

 Source

A manuscript based on this chapter has been accepted for publication and is in press:

Kerstjens, A., De Winter, H. Molecule auto-correction to facilitate molecular design. J.
Comput. Aided Mol. Des. (2024)

 Problem statement

There are numerous schemes to increase the likelihood of designing chemically appealing
molecules, some of which have been previously explored in this work (Chapter 3, Chapter
4). While in principle one could reuse these frameworks in other molecule generators,
doing so is not always straightforward. For example, the strategies we presented demand
molecule generators that iteratively build up or modify molecules. In the case of LEADD
(Chapter 4), an additional requirement is that these modifications must be on a fragment
basis. Not all molecule generators fulfill these criteria. Some algorithms use different
molecular representations. Among the methods using molecular (meta-) graphs some
might redefine the units of a molecule that are perturbed [12, 64, 116–118]. Other
algorithms forgo graph-like representations altogether, modifying text-based line
notations [86, 91, 92] or abstract continuous representations of molecules [67, 89, 90].
Even among the algorithms that do meet the criteria for integrating the presented
frameworks, integration might be non-trivial and require significant adjustments to the
code.

In this chapter we will describe a more flexible technique to designing chemically desirable
molecules, which we hope can be integrated into a wide range of molecule generators and
workflows with minimal effort. In layman’s terms it could be described as “molecule auto-
correction”. The algorithm describes a query molecule with local structural features, and
compares said features to those found in reference desirable molecules. If the query
molecule possesses features that are absent or rare in the reference molecules, the
features are deemed “foreign” or incorrect. Otherwise they are deemed “familiar” or
correct. Through a tree search algorithm we locally modify foreign features until they are
familiar enough. Certain heuristics are used to prioritize modifications that are most likely
to yield familiar features. One can draw an analogy between our algorithm and a primitive
spell checker, where chemical features are the equivalent of words. Each word is checked

Easy enforcement of molecular constraints

—
116

against a dictionary of known words. If a word is not present it’s deemed incorrect and a
heuristic suggests similar correct words.

Our intention is twofold. Firstly, we envision the tool being used to address molecule
quality issues that were not caught or covered by a third-party molecule generator (Figure
5.1). Secondly, and perhaps most importantly, we hope that it will enable researchers to
divest some of their attention from avoiding non-sense molecule generation to other
aspects of molecular design.

Figure 5.1. Examples of objectionable molecules generated by diverse molecule generators during a JAK2
inhibitor design exercise, as reported by [161]. (A) was generated by a graph-based genetic algorithm [100],
(B) was generated by a particle swarm optimizer in an auto-encoder latent space [67] and (C) was generated
by a SMILES-based recurrent neural network [91].

 Methodology

5.3.1 Molecule characterization

To identify if a molecule is foreign, and if so, what parts are foreign, we defined some simple
localized molecular descriptors. Atoms are characterized with atom keys. Atom keys are
integer tuples comprising an atom’s degree (D) (i.e. its number of adjacent atoms), valence

Easy enforcement of molecular constraints

—
117

(V), atomic number (Z), formal charge (Q) and number of hydrogens (H). These properties
were chosen because they are largely independent from the atom’s surrounding chemical
environment. To avoid cyclic dependencies between properties, in this work valence is
defined as the sum of an atom’s bonds’ orders, without considering the atom’s formal
charge. The order of the atom key’s properties is relevant. We ordered the properties by
perceived decreasing significance or importance. For example, we assume that a change in
degree, and therefore topology, is more disruptive to a molecule’s structure and properties
than a change in atomic number. Bonds were characterized as a tuple of the bonded atoms’
keys (AK) and an integer representing the bond’s type (B), which can be thought of as the
bond’s order (Figure 5.2).

We also define partial keys of the atom and bond keys. Partial atom keys are constructed
by taking the first j most significant properties of the atom key, with j ∈ [1, k-1], where k is
the number of properties in an atom key. Consequently, partial key j contains all partial
keys with a lower j. The same procedure is applied to bond keys but with the range j ∈ [2,
k-1]. This yields a total of four partial atom keys and one partial bond key (Figure 5.2).
Partial keys can be sorted lexicographically, enabling fast key-value store searches.

Figure 5.2. Partial atom and bond key pyramid. Higher order keys encompass lower order keys. The (D, V, Z,
Q, H) key constitutes the atom key AK, and (AK1, AK2, B) constitutes the bond key.

Lastly, circular atomic environments are defined for all atoms in the molecules. A circular
atomic environment comprises a central atom and all surrounding atoms within a given
topological distance termed the environment’s radius r. The resulting atomic environment
is hashed to an integer using the Morgan algorithm, like one would when calculating ECFP
fingerprints [34, 46].

Easy enforcement of molecular constraints

—
118

5.3.2 Reference dictionary

In this work a subset of ChEMBL31 [136] was chosen as the reference library of drug-like
molecules. Only small organic molecules were retained. Large biomolecules, natural
products and polymers were excluded. For the remaining molecules the unsalted and non-
ionized “parent form” was chosen. Molecules in the reference library were characterized
using the aforementioned descriptor keys, and the frequency of each key recorded in a
“chemical dictionary”. We generated two dictionaries using environment radii of 1 and 2,
respectively. If a key’s frequency surpasses a user-specified threshold (by default 0) it’s
deemed familiar, and otherwise it is deemed foreign. Owing to the way in which keys are
defined, simpler keys are contained by more complex keys. For example, environment keys
contain bond keys and bond keys contain atom keys (Figure 5.2). This defines unidirectional
dependency relationships between them, meaning that if a key is foreign all dependent
keys containing it must also be foreign. The reverse is not necessarily true.

5.3.3 Tree search algorithm

The molecule correction algorithm was implemented as a tree search. An incorrect input
molecule serves as the root of the tree. With each iteration a molecule or vertex within the
tree is selected and partially expanded. Expansion in this context means enumeration of
topologically similar neighboring molecules, and establishment of a parental relationship
between the selected predecessor and its neighboring successors. Expansions were
performed using the graph-based molecule perturbation library Molpert (Chapter 3).
Perturbations performed by the library include atom- and bond invariant changes and
atom/bond insertions/deletions. To expedite the correction process molecules are
sanitized (as described in 3.3.3) after each perturbation by default, but this behavior can
be disabled. Molpert enables the systematic enumeration of a molecule’s neighbors.
Neighbors are enumerated lazily. The enumeration order is optimized to maximize the
likelihood of finding a correct molecule with the smallest number of expansions.

As with any tree search algorithm, the search is guided by a search strategy or policy that
dictates how the tree is expanded with each iteration. For our tree search we distinguish
two different types of policies. One policy, which we call the selection policy, selects which
vertex to expand next. The second policy, termed the expansion policy, determines how
the selected vertex is expanded.

 Selection policy

To guide the search towards familiar molecules we define the concept of familiarity. Every
time a vertex is added to the tree it’s featurized into atom, bond and environment keys.
Said keys are classified into foreign and familiar by looking them up in the chemical
dictionary. Familiarity is calculated as a function of the total number of keys n (Equation
5.1) and the number of familiar keys nf (Equation 5.2).

Easy enforcement of molecular constraints

—
119

Equation 5.1

𝑛 = 𝑛 + 𝑛 + 𝑛

Equation 5.2

𝑛 = 𝑛

+ 𝑛

+ 𝑛

In Equation 5.1 na, nb and ne denote the total number of atom, bond, and environment keys
of a given molecule respectively, whereas in Equation 5.2 nf

a, nf
b and nf

e denote their
familiar counterparts.

We employ two alternative definitions of familiarity: f1 (Equation 5.3) and f2 (Equation 5.4).
Both range between 0 and 1, with 1 indicating a familiar or correct molecule, and can
mostly be used interchangeably. f1 can be interpreted as a similarity coefficient between a
query molecule and some unknown correct molecule. Conversely, 1 - f1 can be interpreted
as the distance to a correct molecule. f1 is therefore well suited for estimating how close to
a solution a given molecule is. f2 provides weaker theoretical guarantees as a similarity
coefficient, for its lower boundary is dependent on the molecule’s size. f1’s drawback is that
it can be maximized trivially by incrementing the numerator and denominator by the same
amount, as occurs when adding new familiar environments (e.g. alkane carbons). f2 cannot
be exploited in the same way, and is better suited as an optimization target.

Equation 5.3

𝑓ଵ =
𝑛

𝑛

Equation 5.4

𝑓ଶ =
1

𝑛 − 𝑛 + 1

Different selection policies were explored. In all cases the selection is limited to foreign
molecules (f < 1) that have not been fully expanded yet. As baselines we evaluated Breadth-
First Search (BFS), where the shallowest vertices are expanded first, and greedy familiarity
selection, where the vertices with the highest f2 familiarity are expanded first. These
correspond to exploration-only and exploitation-only approaches, respectively (Figure 5.3).
Note that a deep BFS is computationally intractable since the branching factor of chemical
space is very large (Figure 5.4).

Easy enforcement of molecular constraints

—
120

Figure 5.3. Different types of selection policies. Orange vertices represent visited vertices. The goal is to find
the optimal green vertex while minimizing the number of visited vertices. Greedy search visits very few vertices
but may miss the goal vertex. Breadth-first search is guaranteed to find the goal vertex but visits many other
vertices in the process. An ideal selection policy balances exploration and exploitation.

Figure 5.4. Left panel: Branching factor (bf) of a Breadth-First Search (BFS) as a function of the root molecule’s
number of heavy atoms (h). The branching factor was calculated by enumerating all neighboring molecules
using Molpert’s “balanced” settings. Right panel: Projection of tree size (s) for a given BFS depth (d) assuming
constant molecule size throughout the search. This assumption is reasonable since the average heavy atom
count of molecules only increases about 0.25 per BFS search level.

Easy enforcement of molecular constraints

—
121

There are many correct molecules and many paths leading to them from the input
molecule. We would prefer finding the correct molecule w that is most closely related to
the input or root molecule u, as according to the similar property principle it is the most
likely to preserve the properties of the input molecule. The distance between the input
molecule u and another molecule v of the tree is measured as the ECFP4 Tanimoto distance
d(u,v) between both. We chose this fingerprint and distance metric combination because
they have been shown to be good predictors of activity preservation [35, 43, 44].

Some policies to favor shallow tree searches and better balance exploration and
exploitation were devised (Figure 5.3). The most naive one is to greedily select vertices with
the highest f1/d(u,v) ratio. More sophisticated policies are described below.

 Upper confidence bounds applied to trees

One can estimate how close a vertex is to a yet to be discovered correct molecule using the
familiarity metric. However, it is not always true that the vertex with the highest familiarity
is involved in the path to the closest correct molecule. The values (i.e. familiarities) of a
parent vertex’s children follow an a priori unknown distribution. We can get better
estimates of the expected child value by sampling or generating more children. As more
samples become available the estimate trends towards the true value. Given limited
computational resources one must choose between exploring vertices with uncertain
distributions or exploiting vertices with the most promising distributions. This is known as
a bandit problem, and the Upper Confidence Bound (UCB) strategy can be applied to tackle
it [162]. UCB applied to Tree searches (UCT) dictates that at each iteration one should
expand the vertex with the highest upper confidence interval bound [163]. In other words,
one should expand the vertex for which the potential upside is maximized. Mathematically,
this means expanding the vertex v maximizing Equation 5.5.

Equation 5.5

𝑈𝐶𝐵1 = 𝑓ଵ௩
തതതത + 𝑐ඨ

𝑙𝑛(𝑁௩)

𝑛௩

In Equation 5.5 𝑓ଵ௩
തതതത is the average f1 familiarity of v’s children, nv is the number of times v

was expanded, Nv is the number of times v’s parent was expanded. The first term of
Equation 5.5 is exploitative and the second term is explorative. c is a coefficient balancing
between exploitation and exploration. In this work we explored c values of ½, 1, √2 and 2.

UCT was first applied to Monte Carlo Tree Search (MCTS) [163], and is oftentimes discussed
in relation to it. The difference between a plain tree search and MCTS is that in the former
the value of a vertex is given by a heuristic function (in our case the familiarity) whereas in
the latter the value of a vertex is estimated through means of random simulations or

Easy enforcement of molecular constraints

—
122

“rollouts”. We want to clarify that our tree search is not a MCTS despite using the UCT
policy, as random simulations did not produce better value estimates than the familiarity
heuristic within reasonable time and resource constraints.

 A-star

The A* (pronounced A-star) search algorithm is a path finding algorithm suitable for finding
close to optimal shortest paths in a graph within reasonable amounts of time [164]. It
selects for exploration/expansion the vertex v for which Equation 5.6 is minimized.

Equation 5.6

𝑔(𝑣) = 𝑚(𝑣) + ℎ(𝑣)

In Equation 5.6 m(v) is the distance traversed to reach v. In our case m(v) is the topological
distance between vertex v and the root vertex u, that is, m(v) = d(u,v). h(v) is a heuristic
estimate of the distance between v and an end point w, in our case a correct molecule. In
other words, h(v) ~ d(v,w). An obvious heuristic candidate is h(v) = 1 – f1(v) (Equation 5.7).

Equation 5.7

𝑔(𝑣) = 𝑑(𝑢, 𝑣) + 1 − 𝑓ଵ(𝑣)

d(v,w) is a Tanimoto distance, which is the complement of the Tanimoto similarity or
Jaccard index. If V and W denote the feature set of molecules v and w, their Jaccard index
is calculated according to Equation 5.8.

Equation 5.8

𝐽(𝑣, 𝑤) =
|𝑉 ∩ 𝑊|

|𝑉 ∪ 𝑊|
=

|𝑉 ∩ 𝑊|

|𝑉| + |𝑊| − |𝑉 ∩ 𝑊|

f1(v) is a similarity index measuring the similarity to some unknown correct molecule w.
While not equivalent to the Jaccard index, it’s related to it. If W denotes the feature set of
this hypothetical correct molecule, f1(v) can be rewritten as shown in Equation 5.9.

Equation 5.9

𝑓ଵ(𝑣) =
|𝑉 ∩ 𝑊|

|𝑉|

If f1(v) were calculated using as keys solely ECFP features Equation 5.8 and Equation 5.9
would differ only in their denominator. It’s clear that |𝑉| + |𝑊| − |𝑉 ∩ 𝑊| ≥ |𝑉|.
Therefore, 1 – d(v,w) ≤ f1(v), or equivalently 1 – f1(v) ≤ d(v,w), which would make 1 – f1(v)

Easy enforcement of molecular constraints

—
123

an admissible heuristic. Moreover, since Jaccard distances are known to satisfy the triangle
inequality [165], that is, d(u,w) ≤ d(u,v) + d(v,w), the heuristic would also be consistent.
Using a consistent heuristic guarantees that the algorithm will find the optimal solution
given enough time. We included additional terms in f1(v) besides the environment keys as
we believe this additional granularity can provide finer guidance to the tree search.
Consequently 1 – f1(v) as described in Equation 5.3 is theoretically not an admissible
heuristic. Nonetheless in practice it very rarely overestimates the d(v,w) distance (Figure
5.5).

Figure 5.5. Relationships between d(u,v), d(v,w), d(u,w) and 1 – f1(v). The two leftmost panels show that in
practice 1 – f1(v) is an almost admissible and consistent heuristic, respectively. The rightmost panel is visual
proof of Jaccard distances obeying the triangle inequality. Note that the correlation between d(u,v) + d(v,w)
and d(u,w) is very high, which is typical of hyper dimensional spaces such as chemical space.

 Multiple linear regression

The A* algorithm was devised for path finding and searches for the shortest path between
two vertices. We are interested in finding the closest goal vertex, that is, minimizing the
distance to a goal vertex “as the crow flies”. Both of these distances are not equivalent
(Figure 5.6).

Figure 5.6. Difference between path distance (d(u,v) + d(v,w)) and straight distance (d(u,w)).

Easy enforcement of molecular constraints

—
124

To minimize d(u,w) we developed a policy that selects the vertex for which the predicted
d(u,w) is minimal. We wanted to predict d(u,w) as a function of d(u,v) and f1(v), which are
both known for any vertex. To study the relationships between these metrics we randomly
perturbed a sample of 103 molecules from ChEMBL [136] by applying between 1 and 10
perturbations to each of them using Molpert [166] for a total of 104 perturbed and likely
incorrect molecules. We then attempted to correct these molecules with BFS as selection
policy, which, given sufficient resources, guarantees to find the closest correct molecule. A
dictionary containing chemical environments of radius 2 was used. Once a correct molecule
had been found the search was allowed to continue until the whole tree level was visited.
The maximum tree size was limited to 105. Of the 10,000 structures, 1,573 molecules were
successfully corrected within these resource constraints, with an average search depth of
2.4 edges. For each vertex along the shortest path between the corrected molecule and
the root vertex we measured d(u,v), f1(v) and d(u,w) for a total of 3,773 data points which
we took as training data. A Multiple Linear Regression (MLR) model was fit on this data
(Equation 5.10), resulting in a model with a Root Mean Squared Error (RMSE) of 0.135
(Figure 5.7). As a control we also built the null model 𝑔(𝑣) = 𝑑(𝑢, 𝑤)തതതതതതതതതത = 0.383, with an
RMSE of 0.159. Constants can be quite predictive when the response variable has a narrow
range. Since our training data is comprised of shallow searches the null model appears
unusually predictive. However, constants cannot extrapolate by nature, and therefore the
null model won’t be predictive for deeper searches. The practical shortcomings of the null
model will be showcased later.

Equation 5.10

𝑔(𝑣) = 0.42 ∙ 𝑑(𝑢, 𝑣) − 0.91 ∙ 𝑓ଵ(𝑣) + 1.18

Figure 5.7. MLR model fit to training data. The two leftmost panels show the correlation between each of
the model’s parameters and the training data/predictions separately, while the rightmost panel aggregates
the effects of both parameters.

Easy enforcement of molecular constraints

—
125

 Explicit objective preservation

The above-described selection policies try to find correct molecules that are structurally
closely related to the input molecule. The primary reason for doing so is that structurally
similar molecules are believed to have similar properties [36, 37]. Yet this is not always the
case [94, 95]. Two molecules may share a large common substructure and differ in a single
atom. While the overall structural similarity between them may be large, if this distinctive
atom is key to the molecule’s activity their properties may differ significantly.

Given an objective function o(v) that evaluates a vertex v’s property of interest we can
explicitly guide the tree search into preserving this objective as opposed to relying implicitly
on the similar property principle [36]. This helps tackle the cases where said principle
breaks down. A simple way to do so is selecting for expansion the vertex v for which
Equation 5.11 is maximal. Note that the objectives are multiplied as opposed to being
summed to prevent the search algorithm from sacrificing one objective in favor of the
other.

Equation 5.11

𝑔(𝑣) = 𝑓(𝑣) ∙ 𝑜(𝑣)

 Expansion policy

A molecule is expanded by applying a perturbation to a copy of itself. Perturbations that
are most likely to make the molecule familiar are applied first. Foreign molecular keys are
identified and ordered according to their significance. Identifying the most significant
foreign key serves as a way of identifying the most pressing problem a molecule has. The
location of the problem is given by the location of the key, which is either an atom or a
bond. It is this atom or bond that will be targeted by a perturbation.

When it comes to foreign atom and bond keys it’s possible to identify not only the location
but also the nature of the problem. Partial keys build up on each other by progressively
adding properties. Since more significant keys are contained by the less significant ones the
latter cannot be familiar if the former are not either. The property differentiating the most
significant foreign partial key from its familiar predecessor partial key is responsible for the
latter being foreign. For example, the most significant foreign partial atom key may be DVZ
= (4, 6, 6), corresponding to a hexavalent carbon. Its predecessor key DV = (4, 6) is
necessarily the least significant familiar key. We can then conclude that the atomic number
(Z) is not compatible with the atom’s degree and valence. Since we deem the atomic
number to be less significant than the degree or valence we identify the atomic number as
the culprit for the atom key being foreign, meaning perturbations modifying the atomic
number will be prioritized.

Easy enforcement of molecular constraints

—
126

The predecessor key can also be used to access the chemical dictionary and retrieve
acceptable property values for the successor key. These values are sorted according to their
frequency in reference molecules in descending order, meaning that the most frequent
values are tried first. In the example above we can use the DV key to retrieve elements
compatible with an atom of degree 4 and valence 6, which might be sulfur (Z = 16) and
selenium (Z = 34). Sulfur is more frequent than selenium, so a perturbation replacing the
carbon with sulfur would be prioritized.

Choosing which perturbations to apply to correct Z, Q, H or B is obvious as each of these
properties has a corresponding perturbation to change its value. Correcting other
properties and keys is less trivial. D is corrected by deleting bonds associated with the atom
or deleting adjacent atoms. Depending on the dictionary it may also be possible to correct
it by inserting more bonds or atoms, but this is disabled by default, as for organic molecules
degrees higher than 6 are exceedingly rare. V is preferably corrected by changing the bond
types (i.e. bond orders) of bonds associated with the atom. If this does not succeed it may
also be corrected by modifying the topology of the molecule, in the same way one would
correct D.

Two atom keys AK may be familiar separately, but their combination in a bond key AK1AK2
may be foreign. If the AK1AK2 partial key is foreign one or both atom keys must be changed.
Perturbation types can be ordered by significance similarly to how molecular keys are
ordered by significance. The lower the significance of a perturbation the less it will disrupt
the molecule when applied. The perturbation significance order matches the atom
property significance order (Figure 5.2), being from least to most significant as follows:
number of hydrogen changes, formal charge changes, atomic number changes, bond type
changes, bond deletions, atom deletions, bond insertions and atom insertions. Less
significant perturbations are applied first to disrupt the molecule as little as possible. While
deletions do not necessarily disrupt the molecule less than insertions, they typically
simplify the molecule. Simple molecules are more likely to be familiar, which is why
deletions are prioritized over insertions.

Once all atom and bond keys have been corrected the molecule may still possess foreign
atomic environments. Recall that atomic environments are characterized solely by their
hash, meaning little information about what makes them foreign is available. Atomic
environments overlap, in the sense that the same atom or bond may be a part of multiple
environments simultaneously. Knowing the exact boundaries of atomic environments, it is
possible to calculate in how many environments a given atom or bond participates (Figure
5.8). We calculate the “foreign environment membership” of atoms and bonds, that is the
number of foreign environments they are involved in. Atoms and bonds for which this
number is highest are prioritized by perturbations, under the assumption that since they
participate in many foreign environments they are likely to be a culprit for the
environments being foreign. Ties are broken with the atom- and bond keys’ frequencies,

Easy enforcement of molecular constraints

—
127

prioritizing least frequent keys. Once a target has been acquired perturbations are
executed in order of increasing significance, just like for bond keys.

Figure 5.8. Foreign atomic environments and their overlap. The central unobtainium atom (Uo) is foreign. All
atomic environments it is a part of are necessarily foreign too. Foreign circular atomic environments of radius
1 are highlighted in pink. The bottom molecule labels each atom and bond based on how many foreign
environments they are involved in. The Uo atom is involved in all foreign environments, making it a likely
culprit for the environments being foreign.

5.3.4 Constraints

Our molecule auto-correction implementation was developed using the graph-based
molecule perturbation library Molpert (Chapter 3). One of Molpert’s features is the
support of user-specified arbitrary constraints perturbed molecules ought to fulfill. This
functionality is inherited by the auto-correct implementation, providing the user with fine
grained control over the output molecules. Among other things, this allows the user to
define properties and/or parts of the molecule that should not be modified by the
correction algorithm.

5.3.5 Benchmark

A random sample of 103 molecules from ChEMBL31 [136] was taken. Molpert (Chapter 3)
was used to “break” these molecules by sequentially applying 10 random perturbations to
each molecule, resulting in a series of 10 perturbed and likely incorrect molecules. In total
104 perturbed molecules were generated. These molecules were sorted by the number of
perturbations that gave rise to them. On average, as more random perturbations are
applied to a molecule, more foreign keys are generated, decreasing its familiarity. We then
attempted to correct these perturbed molecules with our algorithm using the different
selection policies described above. A maximum tree depth of 25 and tree size of 25,000
molecules were imposed. A chemical dictionary of circular environments of radius 2 was

Easy enforcement of molecular constraints

—
128

used for this purpose. The output molecule as well as its familiarity and similarity to the
input molecule were recorded. The familiarity provides some measure of how “correct”
molecules are. Nonetheless, to better contextualize the quality of the generated molecules
we also measured their SAScore [124] and ran retrosynthetic analysis on them with
AiZynthFinder [132] using the ZINC [2] reactants stock and USPTO-derived reaction
template policy provided by the authors. SAScores were calculated using ChEMBL31 [136]
as reference chemistry. Molecules were sanitized prior to calculating their properties.

We investigated two scenarios of how molecule correction may be applied in molecular
design (Figure 5.9). In both cases we took the Molpert based evolutionary algorithm (as
described in Chapter 3), capable of (1) designing molecules without any regard for chemical
validity and (2) designing molecules fulfilling specific structural requirements. The
algorithm was tasked with designing high-scoring molecules in the goal-directed GuacaMol
benchmark suite [108]. As a first scenario (Figure 5.9A) molecules designed without
constraints by the algorithm were subjected to auto-correction as a post-processing step
using different selection policies, a maximum tree depth of 25 and a maximum tree size of
25,000. For our second scenario (Figure 5.9B), we injected the correction procedure as part
of the mutation and recombination operators using the greedy familiarity policy, a
maximum tree depth of 10 and a maximum tree size of 100. In both cases we used a
chemical dictionary comprised of circular atomic environments of radius 1. 50 replicas were
ran for each approach, retaining the best-scoring molecule per replica and benchmark. The
different approaches were compared by their designed molecules’ benchmark scores and
SAScores [124]. Molecules of all 20 benchmarks and 50 replicas were aggregated, for a total
of 1000 optimized molecules per approach. Benchmark scores were compared through
pairwise Mann-Whitney U-tests [141] with Šidák correction [142]. SAScores were
compared with Tukey’s Honestly Significant Differences test [167]. α = 0.05 was taken as
family-wise error rate and significance level for all tests. Statistical tests and post hoc
corrections were performed using the SciPy [143] and statsmodels [144] Python packages,
respectively.

Easy enforcement of molecular constraints

—
129

Figure 5.9. Different ways of applying molecule auto-correction in molecular design. It may be used as a final
post-processing step of a molecule generator (A) or as an integral part of a molecule generator by injecting it
into the molecule construction process (B).

Easy enforcement of molecular constraints

—
130

 Results and discussion

5.4.1 Selection policy comparison

Figure 5.10 compares the correction output using different selection policies. We can
identify three distinct groups of policies: greedy familiarity, BFS-like policies and MLR. The
greedy familiarity policy is very effective at correcting molecules, as virtually all output
molecules achieve the maximum f1 familiarity of 1 and could be considered correct.
Moreover, it achieves this with a minimal amount of computational resources. Its biggest
drawback, and the reason the other policies were developed, is that it favors deep
searches, meaning the corrected molecules may be quite different from the input
molecules.

BFS is the benchmark for how close an output molecule can possibly be to an input
molecule. Indeed, unless an input molecule is familiar to begin with the output molecule
must be different. Greedy distance normalized familiarity, A* and UCT approach this ceiling
quite well. Unfortunately, this group of policies also spends more resources on the search,
oftentimes to no avail as the output molecule is frequently not entirely familiar.

MLR stands in between the very exploitative greedy familiarity and very explorative BFS-
like policies. In our opinion it achieves a good compromise between correcting molecules
within reasonable amounts of time while not straying excessively far away from the input
molecule.

Easy enforcement of molecular constraints

—
131

Figure 5.10. Molecule correction benchmark results. The number of perturbations applied to the input
molecule is shown on the x axis. The violin plots display the density of output molecules’ properties and the
cost to generate them. A chemical dictionary with environment radii of 2 was used. For the UCT policy we only
display the results of using the optimal coefficient c=0.5. Note that the tree size was limited to a maximum of
25,000. Timings are given for a single-threaded workload on an AMD Epyc 7452 CPU @ 2.35 GHz.

Easy enforcement of molecular constraints

—
132

As a control we evaluated replacing the MLR model with a constant null model. Despite the
null model fitting the training data well, it cannot extrapolate, leading to poor real world
performance (Figure 5.11).

Figure 5.11. Comparison between the MLR model and its null equivalent during the molecule correction
benchmark. The number of perturbations applied to the input molecule is shown on the x axis. The violin plots
display the density of output molecules’ properties and the cost to generate them. A chemical dictionary with
environment radii of 2 was used. Note that the tree size was limited to a maximum of 25000.

To further understand the anatomy of the generated trees Figure 5.12 depicts diagrams of
the search trees resulting from correcting the same input molecule while using different
selection policies. As can be seen the greedy f2 and MLR policies define narrower and
deeper trees than BFS.

Easy enforcement of molecular constraints

—
133

Figure 5.12. Diagrams of search trees resulting from trying to correct the same input molecule
(OOC1[C]2#S1C2) using different selection policies and a chemical dictionary with environment radii of 2.
Nodes are color coded according to their discovery order, with red and blue being the first and last nodes to
be discovered, respectively. The root node is shown as a large red node, and the solution node is shown as a
large blue node. The diagrams were created using GraphViz [168].

Easy enforcement of molecular constraints

—
134

The chemical quality of the input molecules and the output corrected molecules was
assessed using the SAScore [124]. As can be seen in Figure 5.13, applying random
perturbations to reasonable molecules makes them progressively harder to synthesize.
Encouragingly applying the correction algorithm to these broken molecules largely recovers
their synthesizability. As SAScores are rather crudes measures of synthesizability [126] we
sought to confirm these findings with retrosynthetic analyses [132]. Figure 5.13 confirms
that corrected molecules are indeed easier to synthesize, but for highly perturbed
molecules the fraction of synthesizable molecules remains small after correction. The
correction algorithm is tasked with finding a molecule that is simultaneously similar to
reference chemistry and similar to the input perturbed molecule, which is by design
dissimilar to reference chemistry. This is intrinsically a challenging task as both objectives
are opposed. Moreover, since the retrosynthesis engine is imperfect, the reported fraction
of synthesizable molecules is underestimated, as exemplified by less than 60% of the
ChEMBL sample being deemed synthesizable.

Figure 5.13. Shift in SAScore distributions associated with molecule auto-correction using the MLR selection
policy and a chemical dictionary with environment radii of 2. Lower SAScores are indicative of an easier
synthesis. The “0 perturbations” distribution corresponds to the non-perturbed ChEMBL subset on which the
perturbed molecules were based.

Easy enforcement of molecular constraints

—
135

Figure 5.14. Fraction of molecules synthesizable within a certain number of synthetic steps based on the
number of random perturbations they were subjected to and whether they were corrected or not. The MLR
selection policy and a chemical dictionary with environment radii of 2 were used for the correction process.
Retrosynthetic analyses were performed using AiZynthFinder using the ZINC reactant stock and USPTO-
derived reaction template policy provided by the authors. “0 perturbations” corresponds to the control
ChEMBL sample. Molecules requiring 8 or more synthetic steps are considered unsynthesizable.

Easy enforcement of molecular constraints

—
136

 Post-processing applications

If the user would like to apply the algorithm in a low throughput setting, perhaps as a final
sanitization step for the output of a molecule generator (Figure 5.9A), we recommend
choosing an explorative policy that yields molecules closely related to the input. If no
fitness function is given and resources are infinite, BFS is guaranteed to yield the optimal
result, but its cost scales rapidly due to the combinatorial explosion of visited chemical
states as the depth of the search increases (Figure 5.4, Figure 5.12). UCT and A* are
computationally more reasonable. While both explore approximately the same number of
molecules during the tree search, UCT is computationally more efficient as vertices are
selected by a fast tree traversal, whereas A* requires a priority queue to be maintained.
The MLR policy is a viable alternative on tight budgets. The greedy f2 policy can be used as
fallback should all aforementioned policies fail to find solutions within reasonable amounts
of time. We advise raising the ceiling on the maximum tree size as the one we chose for
our benchmark is conservative. Since all molecules in the tree are stored in memory in
practice the user will likely be limited by the available system memory. Note that memory
consumption will be higher when the input molecules are large.

As an example we took molecules designed by a naive evolutionary algorithm during
optimization tasks and attempted to correct them using different selection policies. A
sample of incorrect molecules designed by the evolutionary algorithm as well as their
corrected counterparts are shown in Figure 5.15. Unfortunately the molecules’ fitness, as
assessed by the optimization task’s objective function, was degraded by the correction
procedure (Figure 5.16). While all policies performed reasonably well, fitness was
preserved best using the explicit objective preservation selection policy. Note however that
the objective preservation policy is only applicable when one has access to an objective
that ought to be preserved, and when said objective is not excessively expensive to
evaluate. Further analysis revealed that fitness degradation was most pronounced in
benchmarks whose scores depend on the presence of specific and fragile chemical features
(Figure 5.17). As one might expect the correction process can disturb these features which
negatively affects the score. For a more hands-on approach to objective preservation one
could define molecular constraints to preserve key chemical features. If fitness cannot be
preserved during the correction procedure through any means we recommend enforcing
molecule validity throughout the construction process instead (Chapter 3, Chapter 4) [74,
75, 166].

Easy enforcement of molecular constraints

—
137

Figure 5.15. Examples of molecules designed by a naïve evolutionary algorithm (left) and their corrected
counterparts (right). The MLR selection policy and a chemical dictionary with environment radii of 2 were used
for correction. (A) was designed during the Perindopril MPO benchmark, (B) was designed during the
Amlodipine MPO benchmark, and (C) was designed during the Sitagliptin MPO benchmark.

Figure 5.16. Correction algorithm’s effect on the GuacaMol benchmark scores using different selection policies
and a chemical dictionary with environment radii of 2. Points below the diagonal correspond to molecules
becoming less fit. Molecules that were already correct are not included as their score would not change.

Easy enforcement of molecular constraints

—
138

Figure 5.17. GuacaMol benchmark suite score degradation broken down per benchmark. Explicit objective
preservation was used as selection policy alongside a chemical dictionary with environment radii of 2.
Molecules that were already correct are not included. Benchmarks showing the sharpest score degradation
are dependent on specific chemical features and sensitive to molecular modifications. For example,
C9H10N2O2PF2Cl, Ranolazine MPO and Sitagliptin MPO require the presence of infrequent elements such as
halogens or phosphorus, which may be removed or substituted by the algorithm. Perindopril MPO and
Amlodipine MPO require the presence of specific numbers of (aromatic) rings, which are easily broken.

Easy enforcement of molecular constraints

—
139

 Integrated applications

If the user intends to apply molecule correction iteratively to very large quantities of
molecules, it is advisable to use a cheap and exploitative policy such as the greedy
familiarity policy. While output molecules may not closely resemble input molecules,
sometimes this is not of great importance, and sometimes it may even be beneficial.
Consider a molecular design algorithm that iteratively perturbs molecules to optimize some
objective function. One could attempt to correct every intermediate molecule as part of
the main loop (Figure 5.9B). In this case the correction would act as an integral part of the
perturbation itself, essentially increasing the step size of the perturbation. This may help
the algorithm in escaping local fitness minima. Even if the correction process decreases the
input molecule’s fitness, the optimization algorithm would presumably correct for this by
discarding the molecule, reverting to an earlier stage or focusing its attention elsewhere. It
should also be noted that if one were to correct iteratively the distances traversed by
correction would match those of input molecules with a single perturbation, which are not
as dramatic as those observed for highly perturbed input molecules (Figure 5.10).
Occasionally the correction process may effectively undo the effect of the perturbation that
preceded it. While we do not anticipate this to be a large concern for most applications one
could prevent it from happening using constraints.

To demonstrate the latter approach we injected the correction algorithm into the
aforementioned evolutionary algorithm (Figure 5.9B). The greedy familiarity policy with a
maximum tree size of merely 100 was chosen to limit computational expenses. Figure 5.18
shows that injecting molecule correction into existing molecule generators is a viable
strategy to design molecules that are both fit and easier to synthesize compared to
unconstrained molecular design. It should be noted that correction-associated
synthesizability improvements are meager due to the GuacaMol benchmarking suites’
scoring functions being biased towards synthesizable molecules [108, 166]. Interestingly,
iterative correction yielded better results than attempting to enforce environment
correctness through molecular construction constraints (Figure 5.18), and it did so
consuming less computational resources (Figure 5.19). We hypothesize that the correction
procedure, being unlinked from the objective function, may drag molecules out of local
fitness minima aiding the optimization algorithm in the search towards the global
minimum.

For completeness’ sake the above experiments and analyses were repeated for atomic
environments of radius 2. Under these conditions the correction injection approach failed
to improve the synthesizability of the designed molecules, likely because the maximum
tree size of 100 is insufficient to find molecules that satisfy the more stringent requirements
(Figure 5.20).

Easy enforcement of molecular constraints

—
140

Figure 5.18. GuacaMol benchmark scores and SAScores of molecules designed by an evolutionary algorithm.
Higher benchmark scores and lower SAScores are better. The objective preservation policy was used for post-
processing. Unconstrained design refers to liberal modification of the molecular graph and the design of
(likely) invalid molecules. All other approaches strive to design molecules with familiar circular atomic
environments of topological radius 1, but achieve this goal in different ways. Constrained design refers to the
use of molecular construction techniques that prevent the creation of undesirable chemical features. **: p <
0.01, ***: p < 0.001.

Easy enforcement of molecular constraints

—
141

Figure 5.19. Computational cost of designing molecules using different variants of the same evolutionary
algorithm. Unconstrained design is the fastest but may result in chemically invalid molecules. The two other
approaches both result in molecules with familiar atomic environments of radius 1. Despite achieving this goal
in different ways their cost is comparable. Timings are given for a single-threaded workload on an AMD Epyc
7452 CPU @ 2.35 GHz.

Easy enforcement of molecular constraints

—
142

Figure 5.20. Benchmark scores and SAScores of molecules designed by an evolutionary algorithm. This figure
is analogous to Figure 5.18. In both cases the designed molecules were forced to exhibit familiar circular
atomic environments, with the key difference being the radii of said environments: 1 for Figure 5.18 and 2 for
the present figure. The objective preservation policy was used for post-processing. Unconstrained design
refers to liberal modification of the molecular graph and the design of (likely) invalid molecules. Constrained
design refers to the use molecular construction techniques that prevent the creation of undesirable chemical
features. **: p < 0.01, ***: p < 0.001.

It should be stressed that given the same input molecule not all policies will generate the
same output molecule (Figure 5.21). It might be of interest to apply the algorithm with
different policies and a posteriori select the most desirable output.

Easy enforcement of molecular constraints

—
143

Figure 5.21. Example input molecules and their corrected counterparts using the greedy f2 and MLR selection
policies. Note that molecule correctness is dependent on the reference chemistry library. Some molecules such
as dimethylphosphinic acid may be deemed correct or incorrect depending on this context.

Easy enforcement of molecular constraints

—
144

5.4.2 Simplification and carbonization of molecules

An unintended consequence of our expansion policy is the “carbonization” of input
molecules. Perturbations most likely to increase the familiarity of a molecule are
prioritized. As carbon is the backbone of organic chemistry, including our reference library
of ChEMBL [136], substituting other elements with carbon is preferred by the algorithm.
We also encountered cases where certain selection policies would trigger the growth of
long alkane chains, particularly exploitative policies such as the greedy f1 policy (Figure
5.22, Figure 5.23). We would like the correction process to modify existing chemical
features. However, a trivial way of maximizing the f1 familiarity is by adding new familiar
chemical features like alkanes (Equation 5.3). This is a classic case of a search algorithm
finding unintended ways to exploit the objective function. Frivolously adding carbons has
been described previously as a strategy employed by algorithms to cheat their way to good
benchmark results, be it by artificially inflating molecular diversity [161] or reaping low-
hanging scoring function rewards [92, 169]. The easiest solution to the issue is to maximize
the f2 familiarity instead (Equation 5.4). While this prevents alkane growth, the search
algorithm may occasionally still find it advantageous to introduce extraneous carbons as
buffers between heteroatoms (Figure 5.23). Correct heteroatom arrangements are tied to
specific functional groups. Given a foreign functional group the path of least resistance may
be to break apart said group as opposed to rearranging its atoms. The best carbonization
remedy is to choose an explorative selection policy. Should this not be an option the user
may choose to disable atom insertions as a perturbation or specify constraints on which
parts and/or attributes of the input molecule should be preserved by the correction
algorithm.

Easy enforcement of molecular constraints

—
145

Figure 5.22. Fraction of a molecule’s atoms that are carbons, before and after molecule correction using
different selection policies. The most exploitative selection policies increase the carbon fraction the most.

Figure 5.23. Molecule carbonization examples. The greedy f1 selection policy exploits the scoring function by
growing long alkane chains. The other selection policies cannot exploit the scoring function in the same way,
but the expansion policy still may opt to substitute heteroatoms with carbons or to separate heteroatoms by
inserting carbons between them.

Easy enforcement of molecular constraints

—
146

5.4.3 Alternative potential applications

While it is possible to post-process molecules from arbitrary sources, it might not be
possible to integrate the correction process into all molecule generators. We have shown
how to inject it into a graph-based evolutionary algorithm, and we anticipate equivalent
implementations and benefits being achievable for any molecule generators that iteratively
modify molecular graphs. Integration opportunities with alternative generators are more
nuanced. The algorithm’s input is a molecular graph. Our implementation is based on the
RDKit [47], which means that molecules must be parsable by the RDKit to be correctable.
This precludes the use of ill-formed SMILES [170]. Ill-formed SMILES can be the product of
malfunctioning generative models. They may also be an intermediate state of generative
recurrent neural networks [92]. In the latter case correction would have to be deferred
until the SMILES string has been fully formed, potentially playing a role in sanitizing
molecules prior to their objectives being evaluated. Substituting SMILES for a more robust
line notation such as SELFIES [171] whose intermediate strings are also valid would enable
the “auto-correct” process to behave more as a molecule “auto-complete”. In any case the
correction process would play a role in steering the chemical space search. Whether this
would antagonize or synergize with the model’s inherent guidance remains to be explored.

5.4.4 Future perspectives

Caution should be applied when employing molecule generators that rely on the similarity
principle, for they amplify existing chemical biases in data due to prior art data conditioning
future data collection [75, 172]. This can have detrimental effects on chemical novelty. The
problem is compounded by building pipelines of tools relying on the same principle, as we
do in this work. We are aware this is suboptimal, but in absence of competing methods
grounded on physical first-principles chemical bias amplification postures itself as a
necessary evil.

One area worth revisiting in the future is the way in which correctness is assessed. Currently
molecular keys are considered either foreign or familiar, depending on their frequency in
the chemical dictionary. While the frequency threshold separating both categories can be
tweaked, it would be preferable to treat familiarity as a frequency-dependent continuous
variable. We also believe there is potential in further development of selection policies.
The policies explored herein rely on crude heuristics. We can draw inspiration for policy
design from other fields where tree searches are used. Synthesis planning in particular has
recently witnessed major breakthroughs thanks to machine learning augmented policies
[130, 131]. We believe that similar methods could be applied here to better direct the
search, reducing the risk of missing good solutions as well as the cost to find said solutions.

Discussion & future perspectives

—
147

 Discussion & future perspectives

 Imitating reference chemistry

Designing reasonable molecules in silico is a non-trivial task. Just attempting to define what
constitutes a reasonable molecule is sufficient to trigger heated debates. A chemist will
know an undesirable molecule when they see one, yet their perception may differ from
that of other chemists [121–123]. Even if some form of consensus could be found,
formalizing chemical intuition into logical and mathematical constructs that computers can
understand is challenging. This stems from the fact that humans and computers process
information in fundamentally different ways.

Human chemical intuition is mostly exclusion based. Throughout their careers chemists will
see and make countless molecules, taking mental notes about which functional groups and
ring systems have undesirable properties or are difficult to work with. Some have tediously
enumerated (incomplete) lists of bothersome chemical motifs which can be used to filter
out molecules exhibiting said motifs [173, 174]. Such a workflow may be suitable when
working with compound libraries, be they virtual or not, but is of limited use when
designing new molecules. How does one generate molecules without objectionable
chemical motifs? One could generate large amounts of molecules and discard the unsavory
ones. But how many savory molecules would be left? Filtering is a wasteful process
resource-wise. Making matters worse features that humans can easily identify visually are
expensive to identify for computers [31]. We should strive to bias molecule generation
towards desirable molecules, but this requires defining that which is desired, not that which
is not.

Humans may struggle formalizing what constitutes desirable chemistry, but computers can
systematically identify patterns in molecules that have historically been deemed desirable.
The vast majority of approaches towards computational molecular design mimic reference
chemistry in some form, and the methods described herein are no exception. Distinctions
are found in which patterns are identified and how they are reproduced in generated
molecules.

In this work we explored different ways of describing and replicating reference chemistry.
In all cases the molecular representation was a graph whose vertices and edges were
iteratively modified by heuristic optimization algorithms. The differences reside in the
granularity of the vertices as well as the rules governing how these vertices may be
connected. A natural question that arises is which molecular description and assembly rules
are best suited for molecular design.

Discussion & future perspectives

—
148

 Molecular graph granularity

Let us begin by discussing the granularity of graph-like molecular descriptions. A vertex
represents a molecular substructure. These substructures can vary in size, from single
atoms (section 3.3.2), to multi atomic fragments (section 4.3.1) such as entire Bemis-
Murcko ring systems, linkers and side chains [175]. The larger the granularity of molecular
descriptions, the greater the resemblance between designed molecules and reference
chemistry. It is widely believed that this helps in the design of synthesizable and drug-like
molecules. Indeed, fragment-based design is the go-to strategy for cheminformaticians
aiming to design synthesizable molecules [22, 176]. While there is certainly some truth to
the underlying belief it paints an incomplete picture. Fragment-based design is almost
always coupled to rules governing how said fragments can be assembled. With our
experiments we tried to separate the effects of using fragments from the effects of the
assembly rules. We found that using fragments on its own has little effect on the
synthesizability of designed molecules, and that the bulk of the synthesizability
improvements can instead be attributed to molecular assembly rules (section 4.4.4).
Constructing molecules as combinations of large fragments reduces the number of bonds
that must be formed, as the majority of bonds are pre-formed in the fragments being
combined. Hence the use of fragments can occlude some issues underlying bond
formation, but it does not solve them. It only takes a few poor bonds for the designed
molecule to be non-sensical.

Fragment-based design restricts access to some states in chemical space (section 3.2). This
is a double-edged sword, as it offers both benefits and drawbacks. On the bright side,
fragment-based design can be a powerful way of steering molecule generators towards
relevant regions of chemical space. Theoretical chemical space is vast, with large parts of it
being irrelevant for drug design. Using drug-like fragments can help in narrowing down the
search space (section 4.4.4). Moreover modifying molecules on a fragment level is
associated with bigger steps in chemical space. This larger step size can be beneficial to
some optimization algorithms, as it may enable leaping over or escaping local fitness
minima.

As for the drawbacks, not being able to access the entirety of chemical space means that
some of the best solutions to a problem may not be discoverable. The problem is
accentuated when using small fragment libraries. Using very large and diverse fragment
libraries could help in this regard, but even if a molecule is theoretically discoverable as a
combination of fragments, accessing it might require convoluted sequences of fragment
operations that are statistically improbable. One ought to ponder how to prioritize
fragments such that the additional data does not pose an obstacle (sections 4.3.4.2 and
4.3.5). Ultimately fragment-based design is likely to be more resource intensive than atom-
based design, both during development and run time.

Discussion & future perspectives

—
149

So should one employ fragment-based design? As frustrating of an answer it may be: it
depends. Fragment-based design has merit as a part of directed search and/or
synthesizability improvement strategies. The price to pay is restricted access to chemical
space, inferior chemical novelty and increased computational complexity and development
efforts. Personally I deem this price excessive for the purported returns. I believe the ceiling
on atom-based design to be higher, but fulfilling its potential will require the development
of better molecule characterization and assembly rules. Fragment-based design shines the
brightest when the fragments being used in silico represent real reactants, and the rules
for their combination mimic real reactions. In this case there is a direct correlation between
designed molecules and synthetic routes, which enables tight integration with the
medicinal chemistry laboratory.

 Molecular graph modification rules

Designed molecules must fulfill certain criteria such as synthesizability. One strategy to
enforce these criteria is constraining the way in which molecules are assembled or
modified. The way in which molecule generation is constrained has far reaching
implications for the output molecules’ objective values. This is especially true for molecule
generators relying on iterative modification of molecules, as in our case.

In this work we tried to modify molecules in such a way that the resulting molecules
resembled reference chemistry. By choosing as reference chemistry a library of
synthesizable and drug-like molecules [136] we biased our designed molecules towards
being synthesizable and drug-like as well. Despite being distinct objectives there is
significant overlap between them as the molecules that are recorded in chemical databases
tend to be both.

The success of the mimicry strategy hinges on several factors, with the most important one
being the way in which molecules are characterized. The basis for our characterizations
were atomic invariants, which were used to describe individual atoms. Characterized atoms
were in turn grouped to describe bonds, and the latter were grouped to describe atomic
environments (sections 3.3.5, 4.3.1, and 5.3.1). As the coarseness of the molecular
characterization increases the corresponding chemical features become more unique. For
instance, bonds are bound to be more unique than atoms, since bonds comprise two
atoms. With features becoming more distinctive the requirements imposed on designed
molecules become stricter, as designed molecules ought to resemble reference chemistry
in more concrete ways. Overall this translates into an increased similarity between
designed and reference molecules, and with it an increased chemical appeal of the
designed molecules (sections 3.4.2 and 4.4.2).

As requirements become stricter, less molecules fulfill them. If all intermediate molecules
ought to satisfy these criteria, as is often the case, molecule generators may start to

Discussion & future perspectives

—
150

struggle morphing one molecule into another. Restricted chemical space traversal can
manifest itself in the deterioration of the designed molecules’ objective values. We found
this to be the case when enforcing excessively strict requirements. On the other hand, mild
requirements did not affect chemical space exploration negatively. On the contrary, they
could provide some much needed guidance to search algorithms (section 3.3.8.1).

Another important element to consider is the reference virtual library. It should be
representative of the types of molecules one would like to design. The reference library
should be chosen in conjunction with a method to assess query molecules’ conformity with
reference chemistry.

In some instances we treated conformity as a binary property (sections 3.3.5, 4.3.2, and
5.3.2). For example, we deemed chemical features and connections valid if they occurred
at least a minimum number of times in the reference library. We chose zero as our default
validity frequency threshold. In this case one should ensure that the reference library does
not contain a single example of bad chemistry, which may require careful inspection.
Raising the frequency threshold is a tempting proposition, but some crucial chemical
features and/or connections may be infrequent by nature. Consider methane as an
example, whose atomic environment is a carbon of null degree. This atomic environment
is exclusive to methane, and will have a maximum frequency of one if methane is included
in the reference library. Despite being infrequent, this environment is an essential stepping
stone to bootstrap the growth of molecules from vacuum. Failure to include methane in
the reference library, or neglecting its environment due to its low frequency, would make
the purest form of de novo design impossible, and impose the necessity of seeding
molecules for optimization.

In other instances we treated chemical conformity as a continuum, with molecules being
better conforming when their chemical features are common in reference chemistry
(sections 3.3.6, 4.3.4.2, and 5.3.3.2). We used this approach to bias molecule generation
towards the most common (and presumably most desirable and/or easiest) types of
organic chemistry by sampling molecular structures and properties with probabilities
proportional to their frequencies in reference chemistry. Such an approach is arguably
more natural as well as more tolerant of small amounts of bad chemistry making their way
into the reference library. Unfortunately it is also less straightforward to implement
algorithmically. As an additional consideration one should ensure that chemical feature
frequency imbalances represent real medicinal chemistry preferences, instead of
stemming from systematic synthesis efforts. A database could be flooded with
combinatorial chemistry products, which could artificially make other types of chemistry
seem undesirable.

Discussion & future perspectives

—
151

 Alternative ways of enforcing molecular requirements

Given a molecule generator that optimizes molecules by iteratively modifying them, one
strategy to generate valid optimized molecules is ensuring that all intermediate molecules
are valid as well. This approach has been discussed extensively in this work (Chapter 3,
Chapter 4). However, it’s not the only viable strategy to achieve this goal.

One could explicitly incorporate molecular validity into the objective function(s) the
molecule generator optimizes for (section 4.4.6). Ideally, if the generator supports multi-
objective optimization, one would do so in form of a separate objective. Unfortunately, real
multi-objective optimization is challenging, requiring sophisticated search algorithms. A
simpler, and sometimes surprisingly effective approach, is to use single-objective
optimization algorithms with composite objective functions. The latter approach is very
flexible as one can tweak the objectives being combined, as well as the way in which they
are combined, to fine-tune the requirements designed molecules must fulfill. Regardless of
the chosen search algorithm it is up to the user to define the relative importance of the
different objectives, be it by picking solutions from a Pareto front or by defining coefficients
of a composite scoring function. A major drawback of explicit multi-objective optimization
is that one must evaluate all objectives for every (intermediate) molecule the generator
proposes. This is only computationally tractable for cheap objectives, which may not be
significantly more sophisticated than the requirements enforced through construction
techniques. We explored the use of composite scoring functions as a control experiment
and found both approaches to be competitive (section 4.4.6).

An alternative approach explored herein is the adaptation of molecules to make them
conform better with imposed requirements (Chapter 5). A key advantage of this solution is
that, once developed, it can integrate into most molecule generation workflows with
almost no user effort. The approach was observed to be viable in a post-processing
scenario, and to excel when injected into a molecule generator. Encouragingly, despite
being one of the lowest effort methods we tested, it performed among the best. To the
best of our knowledge this sort of approach had not been explored previously, making this
the first proof-of-concept study. We applied the technique to “correct” molecules, but with
some tweaks one could potentially apply it to improve other objectives.

Lastly, we would go amiss if we did not mention machine learning-based generative
models. Machine learning models can extract and reproduce patterns from reference
chemistry. The use of generative models for molecular design is still in its infancy, with the
first arguably notable applications dating back to 2017 [92]. Despite being rather immature,
it has taken the world by storm and has renewed interest in molecular design.

Discussion & future perspectives

—
152

 Machine learning in generative chemistry

Traditional methods such as evolutionary algorithms have largely been displaced by
generative chemistry models. It is easy to understand why: generative models are new and
exciting, and they solve the poor synthesizability problem in a relatively simple and elegant
way. Why bother with codifying complicated chemistry when a model can autonomously
learn what molecules are supposed to look like and reproduce it? Few studies have pitted
molecule generators of different classes against each other, but those that did have shown
that traditional methods can be competitive with generative models [108].

I must confess I remain a bit skeptical about generative models. For starters, it’s well known
that machine learning models have an applicability domain beyond which their predictions
or inventions are unreliable. If said models are trained on existing chemistry, can we trust
them to be able to generate novel chemistry? Many authors report methods capable of
designing novel molecules, but the way in which novelty is assessed is often based on
chemical identity, which has been shown to be a flawed novelty metric [161]. Some, at first
glance promising, molecules produced by generative models [177] have been shown to be
concerningly similar to commercialized drugs.

More worryingly, despite progress being made in so-called explainable artificial intelligence
[178], as of today the vast majority of deployed models are black boxes. A model might
function excellently and propose fabulous molecules, but to an academic the “how” should
be equally important as the “what”. On the flip side, if a model malfunctions and our
understanding of its inner workings is poor, will we be capable of improving it further?

I’m under the impression that, when faced with underperforming models, a significant part
of the generative chemistry community sees “more data” as the primary avenue for
improvements [179]. I perceive this akin to “kicking the can down the road”, and I’m
skeptical that the envisioned scenario where “more data” solves our problems will ever
materialize. Collecting large quantities of high quality chemical and biological data that can
be reliably aggregated and compared is challenging [180–182]. Enabling this type of data
collection would require massive changes to existing workflows and standardization efforts
that are too disruptive to be adopted. Naturally the present work also relies on data to
define the rules of chemistry, and is subject to many of the same caveats generative models
are. Yet there are some key differences: (1) we know what sort of patterns are being
extracted and reproduced and can therefore guarantee certain degrees of chemical
correctness and novelty, (2) the patterns are less abstract and structurally confined, and
(3) the number of patterns to collect is finite, placing an upper boundary on the amount of
data required for our methods to perform optimally. These differences constitute
arguments in favor of not replacing traditional molecular design with generative models
entirely.

Discussion & future perspectives

—
153

Another point of concern is the field’s insistence on representing molecules as text strings.
In the early days representing molecules as sequences of characters allowed researchers
to borrow techniques from natural language processing and make rapid progress [91, 92].
The first, and probably still most commonly used line notation in molecular design, are
SMILES [170]. However, SMILES were invented for storage and web transmission purposes,
not for molecular design. Accordingly, their manipulation is fragile. Where plain SMILES
failed to deliver, alternative more rubust line notations were developed [171, 183]. Despite
graph neural networks becoming mature [184–186], line notations continue enjoying
widespread use. One can only hope attention will shift towards more natural molecular
representations in the near future.

Something most researchers are guilty of is trying to solve problems with tools they are
familiar with. For me that may be cheminformatics-powered heuristic optimization
algorithms, and for others statistical models and machine learning. As the saying goes, “if
all you have is a hammer, everything looks like a nail”. I believe that the greatest future
innovations within this space will come from integrating different approaches and
harnessing the best of their respective worlds. In fact, the shift towards a hybrid
methodology paradigm is underway [90, 187–190]. Basic cheminformatics techniques are
easy to understand and tweak. If a flaw is observed one can reason about what went wrong
and how to fix it. They may be a suitable solution for critical steps where certain guarantees
are necessary, such as constructing molecular graphs. Machine learning models may be
harder to understand and modulate, but they are great at finding patterns and predicting
properties as a function of said patterns. They may be most suitable for non-critical
processes that are not exposed to the user/developer and do not require transparency. For
example, they could be used as policies to guide chemical space searches or to augment
objective functions.

 Computational resource allocation

The properties of molecules proposed by a molecule generator follow some distribution.
We have discussed a variety of techniques to bias these distributions towards desirable
values. Regardless of the chosen technique, it is associated with a computational overhead
(sections 3.4.4, 4.4.7, and 5.4.1.2). It may be possible to allocate these same computational
resources differently for greater payoffs.

An obvious candidate for resource allocation is running more replicas, that is, designing
more molecules. Even for unsophisticated molecule generators the output molecules’
property distributions can be wide enough to cover the desired values with significant
density (section 3.4). In other words, naive molecule generators may have a small
probability of designing a molecule with desired properties. If the cost disparity between
the unbiased and biased molecular design is big, or the difference between distributions is
small, sampling more times from the worse distribution can be a superior strategy to

Discussion & future perspectives

—
154

sampling less times from the better distribution. Some of the biased molecular design
strategies we evaluated designed molecules 1,000-fold slower than unbiased design. Even
if every molecule proposed by the biased generator were desirable, which is an overtly
optimistic scenario, it would suffice for the unbiased generator to have a 1/1,000 chance
of proposing a desirable molecule to be competitive with its biased counterpart.

For a fair and resource-aware comparison between approaches one should compare their
overall returns on investment. The number of times the objective functions are evaluated
as well as the cost of evaluating them ought to be included in the equation.

An accurate scoring function is important to goal-directed de novo molecular design, for
inaccurate scoring functions may mislead the design process. Generally speaking, the more
accurate an objective function is, the higher the cost of evaluating it. For computational
inhibitory effect predictions the arguable state of the art methods are physics-based
methods involving (quantum) molecular mechanics, such as free energy perturbation
calculations. The more affordable end of the objective function spectrum is comprised of
QSAR models taking as input simple molecular descriptors such as topological fingerprints.

One should choose the most accurate objective function (or ensemble of objective
functions [191]) that the computational budget allows for. Making this decision requires
knowing in advance how many times we anticipate to evaluate the objective function. This
number is oftentimes obtained empirically, but the relationships between search
algorithm, scoring function accuracy and number of scoring function evaluations are poorly
understood and should be studied further. We can hypothesize that the more accurate the
scoring function the fewer times we must evaluate it to gather the same amount of
information, but considering that costs tend to increase with accuracy, is there a point of
diminishing returns? If so, what’s the optimal accuracy/cost ratio? It is also known that
some search strategies are more efficient than others. But what sort of search algorithm is
the most efficient for chemical space exploration? How do we best balance exploration and
exploitation? Is there a theoretical minimum number of times the objective function ought
to be evaluated to achieve a certain degree of exploration?

Our research provides some preliminary insights into these questions. It appears that
evolutionary algorithms converge to solutions after scoring 104 - 105 molecules on average
(sections 3.4.4 and 4.4.7). The number of molecules scored to reach convergence appears
to be lower when steering the search to specific areas of chemical space through molecule
construction constraints (including fragment-based design). As general guidance, if one
uses computationally affordable objective functions the cost of scoring molecules is on par
or lower than generating them. In such a scenario the aforementioned strategy of “rolling
the dice more” may be viable. Conversely, if one uses an expensive objective function it
becomes crucial to make the most of each function evaluation. Accordingly it may be

Discussion & future perspectives

—
155

worthwhile to invest more computational resources in the molecule generation phase to
increase the odds of molecules that make it to the scoring stage receiving favorable scores.

Should reducing the number of objective function evaluations prove too challenging, it is
possible to augment the throughput of expensive objective functions with surrogate
objective functions, that is, cheap functions predicting the outcome of the more expensive
function. The surrogate function is used for fast and broad exploration, with the ground
truth objective function being used to confirm or disprove crucial predictions. When the
surrogate function is a machine learning model it may be updated as more data points
become available, be it through re-training or incremental learning. This has led to a
workflow known as “active learning”, where the beliefs and accuracy of the surrogate
function are iteratively updated through feedback from the ground truth objective
function. This workflow has successfully been applied to virtual screening [192–194], and
is beginning to be explored in de novo molecular design [195].

 Alternative optimization algorithms

This work relies primarily on evolutionary algorithms for optimization purposes.
Evolutionary algorithms are capable of efficiently exploring large and complex fitness
landscapes, and do not require a continuous search space. Accordingly, they have a rich
history of being applied to molecular design (section 1.7.2). Surprisingly, many other
heuristic optimization algorithms that theoretically share these same capabilities have
received but a tiny fraction of the attention.

I suspect this favouritism is mostly grounded on historical reasons. Evolutionary algorithms
were among the first optimization algorithms to be applied to de novo molecular design,
specifically to the design of linear macromolecules such as polynucleotides and proteins.
The direct parallels between protein design and evolution may have inspired the field’s
pioneers. Following their success it must have felt natural to extend evolutionary
algorithms to small molecule design. This scientific inertia has led to de novo molecular
design becoming quasi-synonymous with evolutionary algorithms.

As has been touched upon previously, we should strive to minimize the number of times
the objective function is evaluated during the optimization process. There may be limits to
how low we can take this number by extending and improving upon evolutionary
algorithms, which warrants exploring alternative optimization algorithms more extensively.

Nature can be a good source of inspiration for optimization algorithms [196]. Swarm
intelligence optimization algorithms share many characteristics with evolutionary
algorithms. Particle swarm optimization has been successfully applied to molecular design,
albeit seemingly only twice [98, 99]. Various other swarm intelligence algorithms named

Discussion & future perspectives

—
156

after animal behaviour (including ants, fireflies and spider monkeys) remain unexplored
within this field. However, beware that most nature-inspired algorithms are population-
based. While this contributes to their exploration prowess, it also involves repeatedly
evaluating the fitness of every member of the population.

Situations where the fitness function is to be used sparingly call for more directed
optimization algorithms. Tree searches and their variants are obvious candidates, but
seemingly fail to explore chemical space adequately [100, 108]. This is unsurprising given
their exploitative nature. Hybrid algorithms, combining explorative elements for global
searches and exploitative elements for local searches, may be able to harness the best of
both worlds. We found some circumstantial evidence of this being the case when
combining evolutionary algorithms with tree searches (section 5.4.1.2).

One of the primary conclusions of this work is that constraining the way in which molecules
are assembled can steer an evolutionary algorithm away from unpromising areas of
chemical space. It’s reasonable to infer that designing “unconstrained” molecules that do
not obey the laws of chemistry serves no practical purpose, and should be avoided beyond
academic exercises. However, one should exercise caution when extrapolating our results
to unrelated optimization algorithms. Impossible molecular graphs should never be a final
result presented to the user, but they may be useful stepping stones in chemical space
traversal. One could liken them to reaction intermediates, in that they facilitate or explain
the transition between two perfectly sensible molecules. As such, molecular graphs defying
the rules of chemistry may be to cheminformatics what complex numbers are to
mathematics. They may lack meaning in the physical world, yet have use cases in imaginary
worlds. I hypothesize that some optimization algorithms will be capable of realizing their
potential. If one could devise a chemical space navigation system [49], alongside a search
algorithm to capitalize on it, the denser transition graphs associated with unconstrained
design should become a net positive (section 3.2).

It is common and valuable to borrow ideas from unrelated fields, seeing as many scientific
problems are somehow related. Nevertheless, we must recall that some methods may be
better suited for some purposes than others, and that successes in one field cannot always
be translated to another. Even purportedly generic methods are rarely optimal for a specific
application, given that they do not harness domain-specific knowledge. The computational
molecular design field has embraced the idea of supporting swappable black-box objective
functions through the use of generic optimization algorithms, but in the process we often
neglect to incorporate domain knowledge. Human chemists are capable of finding
desirable molecules by creating relatively small chemical series of 102 – 103 molecules. It’s
important to note that humans tend to perform local optimizations on promising chemical
entities [197, 198], whereas computational molecule generators typically aim to perform
global optimizations. Nonetheless, humans are orders of magnitude more efficient with
their objective functions (i.e. lab experiments) than typical optimization algorithms, and

Discussion & future perspectives

—
157

these differences cannot be explained merely by differences in objective function accuracy.
If we want computers to reach such degree of efficiency we must expose the objective
function’s internals to domain-aware optimization algorithms that have been customized
to exploit a specific objective. For example, if we fixed our objective function to be ligand-
target interaction energies as measured by molecular docking, we could design
optimization algorithms that are privy to the target’s shape, and harness our knowledge
about molecular interactions to achieve shape and electrostatic complementarity between
molecules.

 To imitate or not to imitate?

One of the main appeals of de novo molecular design is that it can propose novel chemical
entities that are dissimilar to previously described molecules. Yet almost all existing
molecule generators imitate known chemistry in some shape or form. Molecule quality,
including drug-likeness and synthesizability, is almost always assessed based on similarity
to known chemistry. How novel can a molecule truly be if its designed to be similar to
existing molecules, and its fitness is evaluated based on similarity to existing molecules? A
molecule cannot be similar and dissimilar to known chemistry simultaneously. Hence, there
is a trade-off between chemical quality and chemical novelty.

We should ask ourselves the question: how novel is novel enough? From an industry
perspective, a molecule might be considered novel enough if it can be patented. From an
academic perspective, a molecule may be novel enough when it provides new solutions to
problems of competing molecules. For example, a molecule might be novel if its mechanism
of action or ADMET profile are distinct from other existing compounds with the same
indication. On a structural level this usually entails presenting a different scaffold. An
avenue to molecular scaffold diversity is the exploration of novel ring systems, but
unconventional ring systems can entail complicated syntheses. The flip side to the above
question is then: how easy to synthesize is easy enough? Many molecules might be
theoretically synthesizable, but the likelihood of success and efforts required to synthesize
them might be disproportionate to the potential upside.

Given the large uncertainty surrounding computational molecular property predictions
focusing research efforts on familiar chemistry is a pragmatic approach to increase a
project’s chances of success. Yet we should be aware that at a larger scale we risk creating
a self-perpetuating cycle that could lead to academic stagnation. If we are confident
enough in the accuracy of our scoring functions perhaps we should not hold historic data
in such high regard and occasionally venture into unknown territory.

As of today, the quality-novelty trade-off is unavoidable, but solely due to the way in which
quality is assessed. If one were to employ data-independent methods for said assessment
the trade-off would cease to exist. It is likely possible to evaluate chemical quality invoking

Discussion & future perspectives

—
158

theoretical chemistry principles. I anticipate the practical challenges to be finding ways of
performing such an evaluation in an automated way, for a wide enough variety of
(potentially non-sensical) molecules, and fast enough to apply it in high-throughput
settings.

 Bridging the gap between computer and wet lab

In the late 2000s de novo molecular design fell out of favor. Two of the reasons cited for
this shift in paradigm were poor designed molecule synthesizability and unreliable scoring
functions. Today we have access to algorithms and computing resources that largely solve
both problems. So where are the de novo designed drugs?

There are many accounts of de novo molecular design being employed successfully to
design small molecules with experimentally confirmed desirable properties [22, 87, 107,
199]. However, to the best of my knowledge none of these molecules have been approved
as drugs. Multiple factors can explain this phenomenon. For starters, de novo molecular
design, especially the generative chemistry models branch, is a relatively young field, and
future drugs that may have been conceived through de novo molecular design are yet to
see the light of day. Moreover, the origin of a hit that ultimately leads to a drug may be
unclear or not disclosed publicly. Lastly, the pharmaceutical industry historically hasn’t
invested heavily into computational drug discovery as a whole, favoring alternative
workflows [197, 198].

Computational workflows rarely integrate well with wet lab workflows, leading to
departments working in parallel with insufficient communication between them. In order
to achieve tighter integration between both disciplines, software and protocols must be
designed around a dialog between user and computer. Experimental data collection in
machine-readable format ought to be standardized, and should go beyond electronic lab
notebooks. Collected data should be fed continuously to the computer, and the computer
should continuously reply with up-to-date insights. Ideally a wet lab scientists should be
capable of operating the relevant parts of the software on their own, without the assistance
of computational chemists. Software developers ought to make an effort to enhance the
user experience. Data should be presented in a graphical and understable way such that it
can be acted upon, and the user should be able to interact with the software through
graphical user interfaces. Any provided predictions ought to be accompanied by reasoning,
enabling the user to scrutinize them. Should the predictions be undesirable there ought to
be a mechanism for the user to provide feedback to the software so the latter may it
finetune its insights according to the user’s expertise [79, 200, 201].

Beyond the general reluctance of using computational techniques, de novo molecular
design in particular faces additional challenges to adoption. Arguably the most important
one is the difficulty of sourcing molecules designed de novo. A de novo designed molecule

Discussion & future perspectives

—
159

is likely to be novel, and even if it is synthesizable its synthesis has not been optimized.
Reagents and equipment may have to be acquired, reaction conditions for optimal yield
need to be elucidated, and chemists may have to be trained. Similar problems might arise
during testing. Other molecular design workflows offer easier ways of sourcing molecules.
Traditional human-driven design revolves around creating related chemical entities, which
presumably share parts of their synthetic routes. As such, much of the synthetic efforts are
amortized. As another example, hits found through virtual screening may be commercially
available and purchased, requiring only a small financial commitment.

Future de novo molecular design should strive towards easing molecule synthesis. One
avenue to do so is designing molecules through virtual chemistry, restricting the algorithm
to use building blocks that are available in-house and reactions the chemists are confident
with. An even better solution would be designing whole chemical series rather than
individual molecules. The chemical series should share a synthetic route, or at the very least
a scaffold, and should be diverse enough to obtain SAR data.

Objective function accuracy still leaves some things to be desired. Even the best
computational objective functions are noisy, which poses a challenge for goal-directed
molecular design. The most accurate objective function, which provides the ground truth,
is a wet lab experiment. Lab experiments cannot replace computational objective functions
entirely since their throughput is not sufficient to explore the vast chemical space. Funnel
strategies, where one uses less accurate but cheap computational objective functions for
broad exploration, and more expensive in vitro assays for local exploitation, are common
place. Automation is likely to increase the throughput of lab experiments, and in the future
said experiments will be used for explorative purposes more extensively. In fact, automated
“design-make-test” cycles are the poster-child application for de novo molecular design,
and thanks to advances in robotics and automated synthesis they have been achieved to
some extent [202–204].

Not every chemist or biologist will be excited about such a prospect. Some may find
computational techniques encroaching upon their domain, or even automating away some
of their responsibilities, uncomfortable. New technologies and automation can be
perceived as a threat to the scientist’s employment and creativity. I wish to ease the mind
of those concerned, for human ingenuity and problem solving are not easily substituted by
algorithms. For those developing the technologies of the future, I urge you to design them
in a manner that empowers scientists and harnesses their expertise.

Discussion & future perspectives

—
160

 Code speaks louder than words

I hope to have provided a comprehensive overview of the algorithms behind this research
in prose. Yet inevitably readers will find that some technical details require further
clarification. All of the software used to perform this research is free and open source. For
implementation details I invite the readers to inspect the code for themselves:

 Molpert: https://github.com/AlanKerstjens/Molpert
 LEADD: https://github.com/UAMCAntwerpen/LEADD
 Molecule auto-correct: https://github.com/AlanKerstjens/MoleculeAutoCorrect

List of abbreviations

—
161

List of abbreviations

 ADME(T): Absorption, Distribution, Metabolism, Excretion, (Toxicity)
 ANOVA: ANalysis Of VAriance
 BFS: Breadth-First Search
 DF: Degrees of Freedom
 EA: Evolutionary Algorithm
 ECFP: Extended Connectivity FingerPrint
 FWER: Family-Wise Error Rate
 GA: Genetic Algorithm
 HAC: Heavy Atom Count
 MBPM: Maximum BiPartite Matching
 MCTS: Monte Carlo Tree Search
 MLR: Multiple Linear Regression
 MMFF: Merck Molecular Force Field
 MSI: Multiple Set Intersection
 MPO: Multiple Parameter Optimization
 OP: Optimization Power
 PCA: Principal Component Analysis
 PDF: Probability Density Function
 QED: Quantitative Estimation of Drug-likeness
 (Q)SAR: (Quantitative) Structure-Activity Relationship
 RA: Ring-Aware
 RDM: Randomly Designed Molecules
 RMSE: Root Mean Squared Error
 RNN: Recurrent Neural Network
 SA: Synthetic Accessibility
 UCB: Upper Confidence Bounds
 UCT: Upper Confidence bounds applied to Trees
 VAE: Variational Auto-Encoder

Bibliography

—
162

Bibliography

1. Ripphausen P, Nisius B, Peltason L, Bajorath J (2010) Quo Vadis, Virtual Screening? A
Comprehensive Survey of Prospective Applications. J Med Chem 53:8461–8467.
https://doi.org/10.1021/jm101020z

2. Irwin JJ, Tang KG, Young J, et al (2020) ZINC20-A Free Ultralarge-Scale Chemical
Database for Ligand Discovery. J Chem Inf Model 60:6065–6073.
https://doi.org/10.1021/acs.jcim.0c00675

3. Hu Q, Peng Z, Sutton SC, et al (2012) Pfizer global virtual library (PGVL): A chemistry
design tool powered by experimentally validated parallel synthesis information. ACS
Comb Sci 14:579–589. https://doi.org/10.1021/co300096q

4. Chevillard F, Kolb P (2015) SCUBIDOO: A Large yet Screenable and Easily Searchable
Database of Computationally Created Chemical Compounds Optimized toward High
Likelihood of Synthetic Tractability. J Chem Inf Model 55:1824–1835.
https://doi.org/10.1021/acs.jcim.5b00203

5. Nicolaou CA, Watson IA, Hu H, Wang J (2016) The Proximal Lilly Collection: Mapping,
Exploring and Exploiting Feasible Chemical Space. J Chem Inf Model 56:1253–1266.
https://doi.org/10.1021/acs.jcim.6b00173

6. Ruddigkeit L, Deursen RV, Blum LC, Reymond JL (2012) Enumeration of 166 billion
organic small molecules in the chemical universe database GDB-17. J Chem Inf Model
52:2864–2875. https://doi.org/10.1021/ci300415d

7. Bohacek RS, McMartin C, Guida WC (1996) The art and practice of structure-based drug
design: A molecular modeling perspective. Med Res Rev 16:3–50.
https://doi.org/10.1002/(SICI)1098-1128(199601)16:1<3::AID-MED1>3.0.CO;2-6

8. Ertl P (2003) Cheminformatics Analysis of Organic Substituents: Identification of the
Most Common Substituents, Calculation of Substituent Properties, and Automatic
Identification of Drug-Like Bioisosteric Groups. J Chem Inf Comput Sci 34:374–380.
https://doi.org/10.1002/chin.200321198

9. Polishchuk PG, Madzhidov TI, Varnek A (2013) Estimation of the size of drug-like
chemical space based on GDB-17 data. J Comput Aided Mol Des 27:675–679.
https://doi.org/10.1007/s10822-013-9672-4

Bibliography

—
163

10. Brown DG, Boström J (2016) Analysis of Past and Present Synthetic Methodologies on
Medicinal Chemistry: Where Have All the New Reactions Gone? J Med Chem 59:4443–
4458. https://doi.org/10.1021/acs.jmedchem.5b01409

11. Schneider N, Lowe DM, Sayle RA, et al (2016) Big Data from Pharmaceutical Patents: A
Computational Analysis of Medicinal Chemists Bread and Butter. J Med Chem 59:4385–
4402. https://doi.org/10.1021/acs.jmedchem.6b00153

12. Virshup AM, Contreras-García J, Wipf P, et al (2013) Stochastic voyages into uncharted
chemical space produce a representative library of all possible drug-like compounds. J Am
Chem Soc 135:7296–7303. https://doi.org/10.1021/ja401184g

13. Lin A, Horvath D, Afonina V, et al (2018) Mapping of the Available Chemical Space
versus the Chemical Universe of Lead-Like Compounds. ChemMedChem 13:540–554.
https://doi.org/10.1002/cmdc.201700561

14. Cho SJ, Zheng W, Tropsha A (1998) Rational combinatorial library design. 2. Rational
design of targeted combinatorial peptide libraries using chemical similarity probe and the
inverse QSAR approaches. J Chem Inf Comput Sci 38:259–268.
https://doi.org/10.1021/ci9700945

15. Brown N, McKay B, Gasteiger J (2006) A novel workflow for the inverse QSPR problem
using multiobjective optimization. J Comput Aided Mol Des 20:333–341.
https://doi.org/10.1007/s10822-006-9063-1

16. Bohm HJ (1992) The computer program LUDI: a new method for the de novo design of
enzyme inhibitors. J Comput Aided Mol Des 6:61–78.
https://doi.org/10.1007/BF00124387

17. Gillet V, Johnson AP, Mata P, et al (1993) SPROUT: A program for structure
generation. J Comput Aided Mol Des 7:127–153. https://doi.org/10.1007/BF00126441

18. Rotstein SH, Murcko MA (1993) GenStar: A method for de novo drug design. J Comput
Aided Mol Des 7:23–43. https://doi.org/10.1007/BF00141573

19. Rotstein SH, Murcko MA (1993) GroupBuild : A Fragment-Based Method for De Novo
Drug Design. J Med Chem 36:1700–1710. https://doi.org/10.1021/jm00064a003

20. Pearlman DA, Murcko MA (1993) CONCEPTS: New dynamic algorithm for de novo
drug suggestion. J Comput Chem 14:1184–1193. https://doi.org/10.1002/jcc.540141008

Bibliography

—
164

21. Clark DE, Frenkel D, Levy SA, et al (1995) PRO_LIGAND: An approach to de novo
molecular design. 1. Application to the design of organic molecules. J Comput Aided Mol
Des 9:13–32. https://doi.org/10.1007/BF00117275

22. Schneider G (2013) De novo molecular design. John Wiley & Sons

23. Downs GM, Gillet VJ, Holliday JD, Lynch MF (1989) Review of ring perception
algorithms for chemical graphs. J Chem Inf Comput Sci 29:172–187.
https://doi.org/10.1021/ci00063a007

24. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Experimental and
computational approaches to estimate solubility and permeability in drug discovery and
development settings. Adv Drug Deliv Rev 23:3–25. https://doi.org/10.1016/S0169-
409X(96)00423-1

25. Wiener H (1947) Structural Determination of Paraffin Boiling Points. J Am Chem Soc
69:17–20. https://doi.org/10.1021/ja01193a005

26. Randic M (1975) Characterization of molecular branching. J Am Chem Soc 97:6609–
6615. https://doi.org/10.1021/ja00856a001

27. Balaban AT (1982) Highly discriminating distance-based topological index. Chem Phys
Lett 89:399–404. https://doi.org/10.1016/0009-2614(82)80009-2

28. Ivanciuc O. BAT (1999) Historical Development of Topological Indices. In: Topological
Indices and Related Descriptors in QSAR and QSPR, 1st ed. CRC Press

29. Durant JL, Leland BA, Henry DR, Nourse JG (2002) Reoptimization of MDL Keys for Use
in Drug Discovery. J Chem Inf Comput Sci 42:1273–1280.
https://doi.org/10.1021/ci010132r

30. Bolton EE, Wang Y, Thiessen PA, Bryant SH (2008) Chapter 12 - PubChem: Integrated
Platform of Small Molecules and Biological Activities. In: Annual Reports in Computational
Chemistry. Elsevier, pp 217–241

31. Cook SA (1971) The complexity of theorem-proving procedures. In: Proceedings of the
third annual ACM symposium on Theory of computing. Association for Computing
Machinery, pp 151–158

Bibliography

—
165

32. Carhart RE, Smith DH, Venkataraghavan R (1985) Atom pairs as molecular features in
structure-activity studies: definition and applications. J Chem Inf Comput Sci 25:64–73.
https://doi.org/10.1021/ci00046a002

33. Daylight Theory Manual. In: Daylight Theory Man.
https://www.daylight.com/dayhtml/doc/theory/. Accessed 3 Nov 2023

34. Rogers D, Hahn M (2010) Extended-Connectivity Fingerprints. J Chem Inf Model
50:742–754. https://doi.org/10.1021/ci100050t

35. Bajusz D, Rácz A, Héberger K (2015) Why is Tanimoto index an appropriate choice for
fingerprint-based similarity calculations? J Cheminformatics 7:1–13.
https://doi.org/10.1186/s13321-015-0069-3

36. Johnson MA, Maggiora GM (1991) Concepts and applications of molecular similarity,
1st ed. Wiley

37. Maggiora G, Vogt M, Stumpfe D, Bajorath J (2014) Molecular Similarity in Medicinal
Chemistry. J Med Chem 57:3186–3204. https://doi.org/10.1021/jm401411z

38. Willett P, Barnard JM, Downs GM (1998) Chemical Similarity Searching. J Chem Inf
Comput Sci 38:983–996. https://doi.org/10.1021/ci9800211

39. Cao Y, Jiang T, Girke T (2010) Accelerated similarity searching and clustering of large
compound sets by geometric embedding and locality sensitive hashing. Bioinformatics
26:953–959. https://doi.org/10.1093/bioinformatics/btq067

40. Butina D (1999) Unsupervised data base clustering based on daylight’s fingerprint and
Tanimoto similarity: A fast and automated way to cluster small and large data sets. J
Chem Inf Comput Sci 39:747–750. https://doi.org/10.1021/ci9803381

41. Wigh DS, Goodman JM, Lapkin AA (2022) A review of molecular representation in the
age of machine learning. WIREs Comput Mol Sci 12:e1603.
https://doi.org/10.1002/wcms.1603

42. Bender A, Jenkins JL, Scheiber J, et al (2009) How Similar Are Similarity Searching
Methods? A Principal Component Analysis of Molecular Descriptor Space. J Chem Inf
Model 49:108–119. https://doi.org/10.1021/ci800249s

Bibliography

—
166

43. Riniker S, Landrum GA (2013) Open-source platform to benchmark fingerprints for
ligand-based virtual screening. J Cheminformatics 5:26. https://doi.org/10.1186/1758-
2946-5-26

44. O’Boyle NM, Sayle RA (2016) Comparing structural fingerprints using a literature-
based similarity benchmark. J Cheminformatics 8:36. https://doi.org/10.1186/s13321-
016-0148-0

45. Weininger D, Weininger A, Weininger JL (1989) SMILES. 2. Algorithm for generation of
unique SMILES notation. J Chem Inf Comput Sci 29:97–101.
https://doi.org/10.1021/ci00062a008

46. Morgan HL (1965) The Generation of a Unique Machine Description for Chemical
Structures—A Technique Developed at Chemical Abstracts Service. J Chem Doc 5:107–
113. https://doi.org/10.1021/c160017a018

47. Landrum GA RDKit: Open-source cheminformatics. https://www.rdkit.org

48. Drew KLM, Baiman H, Khwaounjoo P, et al (2012) Size estimation of chemical space:
How big is it? J Pharm Pharmacol 64:490–495. https://doi.org/10.1111/j.2042-
7158.2011.01424.x

49. Oprea TI, Gottfries J (2001) Chemography:  The Art of Navigating in Chemical Space. J
Comb Chem 3:157–166. https://doi.org/10.1021/cc0000388

50. Renner S, van Otterlo WAL, Dominguez Seoane M, et al (2009) Bioactivity-guided
mapping and navigation of chemical space. Nat Chem Biol 5:585–592.
https://doi.org/10.1038/nchembio.188

51. Osolodkin DI, Radchenko EV, Orlov AA, et al (2015) Progress in visual representations
of chemical space. Expert Opin Drug Discov 10:959–973.
https://doi.org/10.1517/17460441.2015.1060216

52. van Deursen R, Reymond J-L (2007) Chemical Space Travel. ChemMedChem 2:636–
640. https://doi.org/10.1002/cmdc.200700021

53. Sayle RA, Batista J, Grant JA (2013) Efficient maximum common subgraph (MCS)
searching of large chemical databases. J Cheminformatics 5:O15.
https://doi.org/10.1186/1758-2946-5-S1-O15

Bibliography

—
167

54. Hoksza D, Škoda P, Voršilák M, Svozil D (2014) Molpher: A software framework for
systematic chemical space exploration. J Cheminformatics 6:1–13.
https://doi.org/10.1186/1758-2946-6-7

55. Kim R, Skolnick J (2008) Assessment of programs for ligand binding affinity prediction.
J Comput Chem 29:1316–1331. https://doi.org/10.1002/jcc.20893

56. Ballester PJ, Schreyer A, Blundell TL (2014) Does a More Precise Chemical Description
of Protein–Ligand Complexes Lead to More Accurate Prediction of Binding Affinity? J
Chem Inf Model 54:944–955. https://doi.org/10.1021/ci500091r

57. Scannell JW, Bosley J (2016) When quality beats quantity: Decision theory, drug
discovery, and the reproducibility crisis. PLoS ONE 11:1–21.
https://doi.org/10.1371/journal.pone.0147215

58. Pantsar T, Poso A (2018) Binding Affinity via Docking: Fact and Fiction. Molecules
23:1899. https://doi.org/10.3390/molecules23081899

59. Lyu J, Wang S, Balius TE, et al (2019) Ultra-large library docking for discovering new
chemotypes. Nature 566:224–229. https://doi.org/10.1038/s41586-019-0917-9

60. Nicolaou CA, Apostolakis J, Pattichis CS (2009) De novo drug design using
multiobjective evolutionary graphs. J Chem Inf Model 49:295–307.
https://doi.org/10.1021/ci800308h

61. Yuan Y, Pei J, Lai L (2011) LigBuilder 2: A Practical de Novo Drug Design Approach. J
Chem Inf Model 51:1083–1091. https://doi.org/dx.doi.org/10.1021/ci100350u

62. Steinmann C, Jensen JH (2021) Using a genetic algorithm to find molecules with good
docking scores. PeerJ Phys Chem 3:e18. https://doi.org/10.7717/peerj-pchem.18

63. Hartenfeller M, Schneider G (2011) Enabling future drug discovery by de novo design.
WIREs Comput Mol Sci 1:742–759. https://doi.org/10.1002/wcms.49

64. Brown N, McKay B, Gilardoni F, Gasteiger J (2004) A Graph-Based Genetic Algorithm
and Its Application to the Multiobjective Evolution of Median Molecules. ChemInform
35:1079–1087. https://doi.org/10.1002/chin.200431198

65. Ekins S, Honeycutt JD, Metz JT (2010) Evolving molecules using multi-objective
optimization: Applying to ADME/Tox. Drug Discov Today 15:451–460.
https://doi.org/10.1016/j.drudis.2010.04.003

Bibliography

—
168

66. Daeyaert F, Deem MW (2017) A Pareto Algorithm for Efficient De Novo Design of
Multi-functional Molecules. Mol Inform 36:. https://doi.org/10.1002/minf.201600044

67. Winter R, Montanari F, Steffen A, et al (2019) Efficient multi-objective molecular
optimization in a continuous latent space. Chem Sci 10:8016–8024.
https://doi.org/10.1039/C9SC01928F

68. Verhellen J (2022) Graph-based molecular Pareto optimisation. Chem Sci 13:7526–
7535. https://doi.org/10.1039/D2SC00821A

69. Fromer JC, Coley CW (2023) Computer-aided multi-objective optimization in small
molecule discovery. Patterns 4:100678. https://doi.org/10.1016/j.patter.2023.100678

70. Fang G, Xue M, Su M, et al (2012) CCLab - A multi-objective genetic algorithm based
combinatorial library design software and an application for histone deacetylase inhibitor
design. Bioorg Med Chem Lett 22:4540–4545.
https://doi.org/10.1016/j.bmcl.2012.05.123

71. Herring RH, Eden MR (2015) Evolutionary algorithm for de novo molecular design with
multi-dimensional constraints. Comput Chem Eng 83:267–277.
https://doi.org/10.1016/j.compchemeng.2015.06.012

72. Maltese J, Ombuki-Berman BM, Engelbrecht AP (2018) A Scalability Study of Many-
Objective Optimization Algorithms. IEEE Trans Evol Comput 22:79–96.
https://doi.org/10.1109/TEVC.2016.2639360

73. Kutchukian PS, Lou D, Shakhnovich EI (2009) FOG: Fragment optimized growth
algorithm for the de novo generation of molecules occupying druglike chemical space. J
Chem Inf Model 49:1630–1642. https://doi.org/10.1021/ci9000458

74. Polishchuk P (2020) CReM: chemically reasonable mutations framework for structure
generation. J Cheminformatics 12:28. https://doi.org/10.1186/s13321-020-00431-w

75. Kerstjens A, De Winter H (2022) LEADD: Lamarckian evolutionary algorithm for de
novo drug design. J Cheminformatics 14:3. https://doi.org/10.1186/s13321-022-00582-y

76. Lewell XQ, Judd DB, Watson SP, Hann MM (1998) RECAP - Retrosynthetic
Combinatorial Analysis Procedure: A powerful new technique for identifying privileged
molecular fragments with useful applications in combinatorial chemistry. J Chem Inf
Comput Sci 38:511–522. https://doi.org/10.1021/ci970429i

Bibliography

—
169

77. Degen J, Wegscheid-Gerlach C, Zaliani A, Rarey M (2008) On the Art of Compiling and
Using “Drug-Like” Chemical Fragment Spaces. ChemMedChem 3:1503–1507.
https://doi.org/10.1002/cmdc.200800178

78. Ecemis MI, Wikel J, Bingham C, Bonabeau E (2008) A Drug Candidate Design
Environment Using Evolutionary Computation. IEEE Trans Evol Comput 12:591–603.
https://doi.org/10.1109/TEVC.2007.913131

79. Lameijer EW, Kok JN, Bäck T, Ijzerman AP (2006) The molecule evoluator. An
interactive evolutionary algorithm for the design of drug-like molecules. J Chem Inf Model
46:545–552. https://doi.org/10.1021/ci050369d

80. Hartenfeller M, Zettl H, Walter M, et al (2012) Dogs: Reaction-driven de novo design
of bioactive compounds. PLoS Comput Biol 8:e1002380.
https://doi.org/10.1371/journal.pcbi.1002380

81. Spiegel JO, Durrant JD (2020) AutoGrow4: An open-source genetic algorithm for de
novo drug design and lead optimization. J Cheminformatics 12:1–16.
https://doi.org/10.1186/s13321-020-00429-4

82. Schneider G, Lee ML, Stahl M, Schneider P (2000) De novo design of molecular
architectures by evolutionary assembly of drug-derived building blocks. J Comput Aided
Mol Des 14:487–494. https://doi.org/10.1023/A:1008184403558

83. Fechner U, Schneider G (2006) Flux (1): A virtual synthesis scheme for fragment-based
de novo design. J Chem Inf Model 46:699–707. https://doi.org/10.1021/ci0503560

84. Ghiandoni GM, Bodkin MJ, Chen B, et al (2021) RENATE: A Pseudo-retrosynthetic Tool
for Synthetically Accessible de Novo Design. Mol Inform 2100207:1–8.
https://doi.org/10.1002/minf.202100207

85. Masek BB, Baker DS, Dorfman RJ, et al (2016) Multistep Reaction Based de Novo Drug
Design: Generating Synthetically Feasible Design Ideas. J Chem Inf Model 56:605–620.
https://doi.org/10.1021/acs.jcim.5b00697

86. Zhou Z, Kearnes S, Li L, et al (2019) Optimization of Molecules via Deep Reinforcement
Learning. Sci Rep 9:10752. https://doi.org/10.1038/s41598-019-47148-x

87. Mouchlis VD, Afantitis A, Serra A, et al (2021) Advances in De Novo Drug Design: From
Conventional to Machine Learning Methods. Int J Mol Sci 22:1676.
https://doi.org/10.3390/ijms22041676

Bibliography

—
170

88. Bilodeau C, Jin W, Jaakkola T, et al (2022) Generative models for molecular discovery:
Recent advances and challenges. WIREs Comput Mol Sci 12:e1608.
https://doi.org/10.1002/wcms.1608

89. Gómez-Bombarelli R, Wei JN, Duvenaud D, et al (2018) Automatic Chemical Design
Using a Data-Driven Continuous Representation of Molecules. ACS Cent Sci 4:268–276.
https://doi.org/10.1021/acscentsci.7b00572

90. Sattarov B, Baskin II, Horvath D, et al (2019) De Novo Molecular Design by Combining
Deep Autoencoder Recurrent Neural Networks with Generative Topographic Mapping. J
Chem Inf Model 59:1182–1196. https://doi.org/10.1021/acs.jcim.8b00751

91. Segler MHS, Kogej T, Tyrchan C, Waller MP (2018) Generating Focused Molecule
Libraries for Drug Discovery with Recurrent Neural Networks. ACS Cent Sci 4:120–131.
https://doi.org/10.1021/acscentsci.7b00512

92. Olivecrona M, Blaschke T, Engkvist O, Chen H (2017) Molecular de-novo design
through deep reinforcement learning. J Cheminformatics 9:48.
https://doi.org/10.1186/s13321-017-0235-x

93. Grisoni F, Moret M, Lingwood R, Schneider G (2020) Bidirectional Molecule
Generation with Recurrent Neural Networks. J Chem Inf Model 60:1175–1183.
https://doi.org/10.1021/acs.jcim.9b00943

94. Maggiora GM (2006) On Outliers and Activity CliffsWhy QSAR Often Disappoints. J
Chem Inf Model 46:1535–1535. https://doi.org/10.1021/ci060117s

95. Bajorath J (2017) Representation and identification of activity cliffs. Expert Opin Drug
Discov 12:879–883. https://doi.org/10.1080/17460441.2017.1353494

96. Kvasnička V, Pospíchal J (1996) Simulated Annealing Construction of Molecular Graphs
with Required Properties. J Chem Inf Comput Sci 36:516–526.
https://doi.org/10.1021/ci9500703

97. Ourique JE, Silva Telles A (1998) Computer-aided molecular design with simulated
annealing and molecular graphs. Comput Chem Eng 22:S615–S618.
https://doi.org/10.1016/S0098-1354(98)00108-2

98. Hartenfeller M, Proschak E, Schüller A, Schneider G (2008) Concept of combinatorial
de novo design of drug-like molecules by particle swarm optimization. Chem Biol Drug
Des 72:16–26. https://doi.org/10.1111/j.1747-0285.2008.00672.x

Bibliography

—
171

99. Fu Y, Chen Z, Sun J (2018) Random drift particle swarm optimisation algorithm for
highly flexible protein-ligand docking. J Theor Biol 457:180–189.
https://doi.org/10.1016/j.jtbi.2018.08.034

100. Jensen JH (2019) A graph-based genetic algorithm and generative model/Monte
Carlo tree search for the exploration of chemical space. Chem Sci 10:3567–3572.
https://doi.org/10.1039/c8sc05372c

101. Popova M, Isayev O, Tropsha A (2018) Deep reinforcement learning for de novo drug
design. Sci Adv 4:eaap7885. https://doi.org/10.1126/sciadv.aap7885

102. Kamphausen S, Höltge N, Wirsching F, et al (2002) Genetic algorithm for the design
of molecules with desired properties. J Comput Aided Mol Des 16:551–567.
https://doi.org/10.1023/A:1021928016359

103. Jones DT (1994) De novo protein design using pairwise potentials and a genetic
algorithm. Protein Sci 3:567–574. https://doi.org/10.1002/pro.5560030405

104. Sheridan RP, Kearsley SK (1995) Using a Genetic Algorithm To Suggest Combinatorial
Libraries. J Chem Inf Comput Sci 35:310–320. https://doi.org/10.1021/ci00024a021

105. Venkatasubramanian V, Chan K, Caruthers JM (1994) Computer-aided molecular
design using genetic algorithms. Comput Chem Eng 18:833–844.
https://doi.org/10.1016/0098-1354(93)E0023-3

106. Venkatasubramanian V, Chan K, Caruthers JM (1995) Evolutionary Design of
Molecules with Desired Properties Using the Genetic Algorithm. J Chem Inf Comput Sci
35:188–195. https://doi.org/10.1021/ci00024a003

107. Meyers J, Fabian B, Brown N (2021) De novo molecular design and generative
models. Drug Discov Today 26:2707–2715. https://doi.org/10.1016/j.drudis.2021.05.019

108. Brown N, Fiscato M, Segler MHS, Vaucher AC (2019) GuacaMol: Benchmarking
Models for de Novo Molecular Design. J Chem Inf Model 59:1096–1108.
https://doi.org/10.1021/acs.jcim.8b00839

109. Gao W, Coley CW (2020) The Synthesizability of Molecules Proposed by Generative
Models. J Chem Inf Model 60:5714–5723. https://doi.org/10.1021/acs.jcim.0c00174

Bibliography

—
172

110. Douguet D, Thoreau E, Grassy G (2000) A genetic algorithm for the automated
generation of small organic molecules: drug design using an evolutionary algorithm. J
Comput Aided Mol Des 14:449–66. https://doi.org/10.1023/a:1008108423895

111. Douguet D, Munier-Lehmann H, Labesse G, Pochet S (2005) LEA3D: A computer-
aided ligand design for structure-based drug design. J Med Chem 48:2457–2468.
https://doi.org/10.1021/jm0492296

112. Leguy J, Cauchy T, Glavatskikh M, et al (2020) EvoMol: a flexible and interpretable
evolutionary algorithm for unbiased de novo molecular generation. J Cheminformatics
12:55. https://doi.org/10.1186/s13321-020-00458-z

113. Dey F, Caflisch A (2008) Fragment-based de novo ligand design by multi-objective
evolutionary optimization. Supporting Information. J Chem Inf Model 48:679–690.
https://doi.org/10.1021/ci700424b

114. Kawai K, Nagata N, Takahashi Y (2014) De novo design of drug-like molecules by a
fragment-based molecular evolutionary approach. J Chem Inf Model 54:49–56.
https://doi.org/10.1021/ci400418c

115. Pegg SC, Haresco JJ, Kuntz ID (2001) A genetic algorithm for structure-based de novo
design. J Comput Aided Mol Des 15:911–33. https://doi.org/10.1023/a:1014389729000

116. Globus AI, Lawton J, Wipke T (1999) Automatic molecular design using evolutionary
techniques. Nanotechnology 10:290–299. https://doi.org/10.1088/0957-4484/10/3/312

117. Pierce AC, Rao G, Bemis GW (2004) BREED: Generating novel inhibitors through
hybridization of known ligands. Application to CDK2, P38, and HIV protease. J Med Chem
47:2768–2775. https://doi.org/10.1021/jm030543u

118. Lindert S, Durrant JD, Mccammon JA (2012) LigMerge: A Fast Algorithm to Generate
Models of Novel Potential Ligands from Sets of Known Binders. Chem Biol Drug Des
80:358–365. https://doi.org/10.1111/j.1747-0285.2012.01414.x

119. Polykovskiy D, Zhebrak A, Sanchez-Lengeling B, et al (2020) Molecular Sets (MOSES):
A Benchmarking Platform for Molecular Generation Models. Front Pharmacol 11:.
https://doi.org/10.3389/fphar.2020.565644

120. García-Ortegón M, Simm GNC, Tripp AJ, et al (2022) DOCKSTRING: Easy Molecular
Docking Yields Better Benchmarks for Ligand Design. J Chem Inf Model 62:3486–3502.
https://doi.org/10.1021/acs.jcim.1c01334

Bibliography

—
173

121. Kutchukian PS, Vasilyeva NY, Xu J, et al (2012) Inside the Mind of a Medicinal
Chemist: The Role of Human Bias in Compound Prioritization during Drug Discovery. PLOS
ONE 7:e48476. https://doi.org/10.1371/journal.pone.0048476

122. Gibb BC (2012) Chemical intuition or chemical institution? Nat Chem 4:237–238.
https://doi.org/10.1038/nchem.1307

123. Gomez L (2018) Decision Making in Medicinal Chemistry: The Power of Our Intuition.
ACS Med Chem Lett 9:956–958. https://doi.org/10.1021/acsmedchemlett.8b00359

124. Ertl P, Schuffenhauer A (2009) Estimation of synthetic accessibility score of drug-like
molecules based on molecular complexity and fragment contributions. J Cheminformatics
1:1–11. https://doi.org/10.1186/1758-2946-1-8

125. Voršilák M, Kolář M, Čmelo I, Svozil D (2020) SYBA: Bayesian estimation of synthetic
accessibility of organic compounds. J Cheminformatics 12:35.
https://doi.org/10.1186/s13321-020-00439-2

126. Skoraczyński G, Kitlas M, Miasojedow B, Gambin A (2023) Critical assessment of
synthetic accessibility scores in computer-assisted synthesis planning. J Cheminformatics
15:6. https://doi.org/10.1186/s13321-023-00678-z

127. Thakkar A, Chadimová V, Bjerrum EJ, et al (2021) Retrosynthetic accessibility score
(RAscore)-rapid machine learned synthesizability classification from AI driven
retrosynthetic planning. Chem Sci 12:3339–3349. https://doi.org/10.1039/d0sc05401a

128. Gillet VJ, Myatt G, Zsoldos Z, Johnson AP (1995) SPROUT, HIPPO and CAESA: Tools for
de novo structure generation and estimation of synthetic accessibility. Perspect Drug
Discov Des 3:34–50. https://doi.org/10.1007/BF02174466

129. Law J, Zsoldos Z, Simon A, et al (2009) Route designer: A retrosynthetic analysis tool
utilizing automated retrosynthetic rule generation. J Chem Inf Model 49:593–602.
https://doi.org/10.1021/ci800228y

130. Segler MHS, Waller MP (2017) Neural-Symbolic Machine Learning for Retrosynthesis
and Reaction Prediction. Chem - Eur J 23:5966–5971.
https://doi.org/10.1002/chem.201605499

131. Segler MHS, Preuss M, Waller MP (2018) Planning chemical syntheses with deep
neural networks and symbolic AI. Nature 555:604–610.
https://doi.org/10.1038/nature25978

Bibliography

—
174

132. Genheden S, Thakkar A, Chadimová V, et al (2020) AiZynthFinder: a fast, robust and
flexible open-source software for retrosynthetic planning. J Cheminformatics 12:1–9.
https://doi.org/10.1186/s13321-020-00472-1

133. Schreck JS, Coley CW, Bishop KJM (2019) Learning Retrosynthetic Planning through
Simulated Experience. ACS Cent Sci 5:970–981.
https://doi.org/10.1021/acscentsci.9b00055

134. Liu C-H, Korablyov M, Jastrzębski S, et al (2022) RetroGNN: Fast Estimation of
Synthesizability for Virtual Screening and De Novo Design by Learning from Slow
Retrosynthesis Software. J Chem Inf Model 62:2293–2300.
https://doi.org/10.1021/acs.jcim.1c01476

135. Degen J, Wegscheid-Gerlach C, Zaliani A, Rarey M (2008) On the art of compiling and
using “drug-like” chemical fragment spaces. ChemMedChem 3:1503–1507.
https://doi.org/10.1002/cmdc.200800178

136. Gaulton A, Bellis LJ, Bento AP, et al (2012) ChEMBL: A large-scale bioactivity database
for drug discovery. Nucleic Acids Res 40:1100–1107. https://doi.org/10.1093/nar/gkr777

137. Kim S, Chen J, Cheng T, et al (2023) PubChem 2023 update. Nucleic Acids Res
51:D1373–D1380. https://doi.org/10.1093/nar/gkac956

138. Reeves S, DiFrancesco B, Shahani V, et al (2020) Assessing methods and obstacles in
chemical space exploration. Appl AI Lett 1:e17. https://doi.org/10.1002/ail2.17

139. Efraimidis PS, Spirakis PG (2006) Weighted random sampling with a reservoir. Inf
Process Lett 97:181–185. https://doi.org/10.1016/j.ipl.2005.11.003

140. Kruskal WH, Wallis WA (1952) Use of Ranks in One-Criterion Variance Analysis. J Am
Stat Assoc 47:583–621. https://doi.org/10.1080/01621459.1952.10483441

141. Mann HB, Whitney DR (1947) On a Test of Whether one of Two Random Variables is
Stochastically Larger than the Other. Ann Math Stat 18:50–60.
https://doi.org/10.1214/aoms/1177730491

142. Šidák Z (1967) Rectangular Confidence Regions for the Means of Multivariate Normal
Distributions. J Am Stat Assoc 62:626–633.
https://doi.org/10.1080/01621459.1967.10482935

Bibliography

—
175

143. Virtanen P, Gommers R, Oliphant TE, et al (2020) SciPy 1.0: Fundamental Algorithms
for Scientific Computing in Python. Nat Methods 17:261–272.
https://doi.org/10.1038/s41592-019-0686-2

144. Seabold S, Perktold J (2010) statsmodels: Econometric and statistical modeling with
Python. In: 9th Python in Science Conference

145. Bickerton GR, Paolini GV, Besnard J, et al (2012) Quantifying the chemical beauty of
drugs. Nat Chem 4:90–98. https://doi.org/10.1038/nchem.1243

146. Fisher RA (1992) Statistical Methods for Research Workers. In: Breakthroughs in
Statistics: Methodology and Distribution. Springer, pp 66–70

147. Dunnett CW (1955) A Multiple Comparison Procedure for Comparing Several
Treatments with a Control. J Am Stat Assoc 50:1096–1121.
https://doi.org/10.1080/01621459.1955.10501294

148. Pearson K (1901) LIII. On lines and planes of closest fit to systems of points in space.
Lond Edinb Dublin Philos Mag J Sci 2:559–572.
https://doi.org/10.1080/14786440109462720

149. Hückel E (1937) Grundzüge der Theorie ungesättigter und aromatischer
Verbindungen. Z Für Elektrochem Angew Phys Chem 43:752–788.
https://doi.org/10.1002/bbpc.19370430907

150. Lepetit C, Chermette H, Gicquel M, et al (2007) Description of Carbo-oxocarbons and
Assessment of Exchange-Correlation Functionals for the DFT Description of Carbo-mers. J
Phys Chem A 111:136–149. https://doi.org/10.1021/jp064066d

151. Voršilák M, Svozil D (2017) Nonpher: computational method for design of hard-to-
synthesize structures. J Cheminformatics 9:1–7. https://doi.org/10.1186/s13321-017-
0206-2

152. Halgren TA (1996) Merck Molecular Force Field. J Comput Chem 17:490–519.
https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6<520::AID-JCC2>3.0.CO;2-W

153. ChemAxon Extended SMILES and SMARTS - CXSMILES and CXSMARTS.
https://docs.chemaxon.com/display/docs/chemaxon-extended-smiles-and-smarts-
cxsmiles-and-cxsmarts.md. Accessed 1 Oct 2023

Bibliography

—
176

154. Hopcroft JE, Karp RM (1971) N5/2 Algorithm for Maximum Matchings in Bipartite
Graphs. IEEE, pp 122–125

155. The HDF Group (1997) Hierarchical Data Format, version 5.
https://www.hdfgroup.org/HDF5/

156. Scheirer CJ, Ray WS, Hare N (1976) The Analysis of Ranked Data Derived from
Completely Randomized Factorial Designs. Biometrics 32:429–434.
https://doi.org/10.2307/2529511

157. Conover WJ, Iman RL (1981) Rank Transformations as a Bridge Between Parametric
and Nonparametric Statistics. Am Stat 35:124–129. https://doi.org/10.2307/2683975

158. Pedregosa F, Varoquaux G, Gramfort A, et al (2011) Scikit-learn: Machine Learning in
Python. J Mach Learn Res 12:2825–2830

159. Mangiafico SS (2023) rcompanion: Functions to Support Extension Education
Program Evaluation. Rutgers Cooperative Extension, New Brunswick, New Jersey

160. Hawkins PCD, Skillman AG, Nicholls A (2007) Comparison of Shape-Matching and
Docking as Virtual Screening Tools. J Med Chem 50:74–82.
https://doi.org/10.1021/jm0603365

161. Renz P, Van Rompaey D, Wegner JK, et al (2019) On failure modes in molecule
generation and optimization. Drug Discov Today Technol 32–33:55–63.
https://doi.org/10.1016/j.ddtec.2020.09.003

162. Auer P, Cesa-Bianchi N, Fischer P (2002) Finite-time Analysis of the Multiarmed
Bandit Problem. Mach Learn 47:235–256. https://doi.org/10.1023/A:1013689704352

163. Kocsis L, Szepesvári C (2006) Bandit Based Monte-Carlo Planning. In: Machine
Learning: ECML 2006. Springer, pp 282–293

164. Hart P, Nilsson N, Raphael B (1968) A Formal Basis for the Heuristic Determination of
Minimum Cost Paths. IEEE Trans Syst Sci Cybern 4:100–107.
https://doi.org/10.1109/TSSC.1968.300136

165. Grygorian A, Iacob IE (2018) A Concise Proof of the Triangle Inequality for the Jaccard
Distance. Coll Math J 49:363–365

Bibliography

—
177

166. Kerstjens A, De Winter H (2023) A molecule perturbation software library and its
application to study the effects of molecular design constraints. J Cheminformatics 15:89.
https://doi.org/10.1186/s13321-023-00761-5

167. Tukey JW (1949) Comparing individual means in the analysis of variance. Biometrics
5:99–114. https://doi.org/10.2307/3001913

168. Gansner ER, North SC (2000) An open graph visualization system and its applications
to software engineering. Softw Pract Exp 30:1203–1233. https://doi.org/10.1002/1097-
024X(200009)30:11<1203::AID-SPE338>3.0.CO;2-N

169. Guimaraes GL, Sanchez-Lengeling B, Outeiral C, et al (2017) Objective-Reinforced
Generative Adversarial Networks (ORGAN) for Sequence Generation Models.
arXiv:1705.10843. https://doi.org/10.48550/arXiv.1705.10843

170. Weininger D (1988) SMILES, a Chemical Language and Information System: 1:
Introduction to Methodology and Encoding Rules. J Chem Inf Comput Sci 28:31–36.
https://doi.org/10.1021/ci00057a005

171. Krenn M, Häse F, Nigam A, et al (2020) Self-referencing embedded strings (SELFIES):
A 100% robust molecular string representation. Mach Learn Sci Technol 1:045024.
https://doi.org/10.1088/2632-2153/aba947

172. Dost K, Pullar-Strecker Z, Brydon L, et al (2023) Combatting over-specialization bias in
growing chemical databases. J Cheminformatics 15:53. https://doi.org/10.1186/s13321-
023-00716-w

173. Métivier J-P, Lepailleur A, Buzmakov A, et al (2015) Discovering Structural Alerts for
Mutagenicity Using Stable Emerging Molecular Patterns. J Chem Inf Model 55:925–940.
https://doi.org/10.1021/ci500611v

174. Limban C, Nuţă DC, Chiriţă C, et al (2018) The use of structural alerts to avoid the
toxicity of pharmaceuticals. Toxicol Rep 5:943–953.
https://doi.org/10.1016/j.toxrep.2018.08.017

175. Bemis GW, Murcko MA (1996) The properties of known drugs. 1. Molecular
frameworks. J Med Chem 39:2887–2893. https://doi.org/10.1021/jm9602928

176. Schneider G, Fechner U (2005) Computer-based de novo design of drug-like
molecules. Nat Rev Drug Discov 4:649–663. https://doi.org/10.1038/nrd1799

Bibliography

—
178

177. Zhavoronkov A, Ivanenkov YA, Aliper A, et al (2019) Deep learning enables rapid
identification of potent DDR1 kinase inhibitors. Nat Biotechnol 37:1038–1040.
https://doi.org/10.1038/s41587-019-0224-x

178. Jiménez-Luna J, Grisoni F, Schneider G (2020) Drug discovery with explainable
artificial intelligence. Nat Mach Intell 2:573–584. https://doi.org/10.1038/s42256-020-
00236-4

179. (2023) For chemists, the AI revolution has yet to happen. Nature 617:438–438.
https://doi.org/10.1038/d41586-023-01612-x

180. Waldman M, Fraczkiewicz R, Clark RD (2015) Tales from the war on error: the art and
science of curating QSAR data. J Comput Aided Mol Des 29:897–910.
https://doi.org/10.1007/s10822-015-9865-0

181. Rodrigues T (2019) The good, the bad, and the ugly in chemical and biological data
for machine learning. Drug Discov Today Technol 32:3–8.
https://doi.org/10.1016/j.ddtec.2020.07.001

182. Kolmar SS, Grulke CM (2021) The effect of noise on the predictive limit of QSAR
models. J Cheminformatics 13:92. https://doi.org/10.1186/s13321-021-00571-7

183. O’Boyle N, Dalke A (2018) DeepSMILES: An Adaptation of SMILES for Use in Machine-
Learning of Chemical Structures. ChemRxiv.
https://doi.org/10.26434/chemrxiv.7097960.v1

184. Mercado R, Rastemo T, Lindelöf E, et al (2021) Graph networks for molecular design.
Mach Learn Sci Technol 2:025023. https://doi.org/10.1088/2632-2153/abcf91

185. Xiong J, Xiong Z, Chen K, et al (2021) Graph neural networks for automated de novo
drug design. Drug Discov Today 26:1382–1393.
https://doi.org/10.1016/j.drudis.2021.02.011

186. Wang Y, Wang J, Cao Z, Barati Farimani A (2022) Molecular contrastive learning of
representations via graph neural networks. Nat Mach Intell 4:279–287.
https://doi.org/10.1038/s42256-022-00447-x

187. Wang J, Wang X, Sun H, et al (2022) ChemistGA: A Chemical Synthesizable Accessible
Molecular Generation Algorithm for Real-World Drug Discovery. J Med Chem 65:12482–
12496. https://doi.org/10.1021/acs.jmedchem.2c01179

Bibliography

—
179

188. Nigam A, Pollice R, Aspuru-Guzik A (2022) Parallel tempered genetic algorithm
guided by deep neural networks for inverse molecular design. Digit Discov 1:390–404.
https://doi.org/10.1039/D2DD00003B

189. Nigam A, Friederich P, Krenn M, Aspuru-Guzik A (2020) Augmenting Genetic
Algorithms with Deep Neural Networks for Exploring the Chemical Space.
arXiv:1909.11655. http://arxiv.org/abs/1909.11655

190. Grantham K, Mukaidaisi M, Ooi HK, et al (2022) Deep Evolutionary Learning for
Molecular Design. IEEE Comput Intell Mag 17:14–28.
https://doi.org/10.1109/MCI.2022.3155308

191. Kwon S, Bae H, Jo J, Yoon S (2019) Comprehensive ensemble in QSAR prediction for
drug discovery. BMC Bioinformatics 20:521. https://doi.org/10.1186/s12859-019-3135-4

192. Graff DE, Shakhnovich EI, Coley CW (2021) Accelerating high-throughput virtual
screening through molecular pool-based active learning. Chem Sci 12:7866–7881.
https://doi.org/10.1039/D0SC06805E

193. Khalak Y, Tresadern G, Hahn DF, et al (2022) Chemical Space Exploration with Active
Learning and Alchemical Free Energies. J Chem Theory Comput 18:6259–6270.
https://doi.org/10.1021/acs.jctc.2c00752

194. Zaverkin V, Holzmüller D, Steinwart I, Kästner J (2022) Exploring chemical and
conformational spaces by batch mode deep active learning. Digit Discov 1:605–620.
https://doi.org/10.1039/D2DD00034B

195. Dodds M, Guo J, Löhr T, et al (2023) Sample Efficient Reinforcement Learning with
Active Learning for Molecular Design. ChemRxiv. https://doi.org/10.26434/chemrxiv-
2023-j88dg

196. Yang X-S (2014) Nature-Inspired Optimization Algorithms. Elsevier

197. Brown DG, Boström J (2018) Where Do Recent Small Molecule Clinical Development
Candidates Come From? J Med Chem 61:9442–9468.
https://doi.org/10.1021/acs.jmedchem.8b00675

198. Dragovich PS, Haap W, Mulvihill MM, et al (2022) Small-Molecule Lead-Finding
Trends across the Roche and Genentech Research Organizations. J Med Chem 65:3606–
3615. https://doi.org/10.1021/acs.jmedchem.1c02106

Bibliography

—
180

199. Rodrigues T, Schneider G (2014) Flashback Forward: Reaction-Driven De Novo Design
of Bioactive Compounds. Synlett 25:170–178. https://doi.org/10.1055/s-0033-1340216

200. Sundin I, Voronov A, Xiao H, et al (2022) Human‑in‑the‑loop assisted de novo
molecular design. J Cheminformatics 14:1–16. https://doi.org/10.1186/s13321-022-
00667-8

201. Choung O-H, Vianello R, Segler M, et al (2023) Learning chemical intuition from
humans in the loop. ChemRxiv. https://doi.org/10.26434/chemrxiv-2023-knwnv

202. Steiner S, Wolf J, Glatzel S, et al (2019) Organic synthesis in a modular robotic system
driven by a chemical programming language. Science 363:eaav2211.
https://doi.org/10.1126/science.aav2211

203. Coley CW, Thomas DA, Lummiss JAM, et al (2019) A robotic platform for flow
synthesis of organic compounds informed by AI planning. Science 365:.
https://doi.org/10.1126/science.aax1566

204. Rohrbach S, Šiaučiulis M, Chisholm G, et al (2022) Digitization and validation of a
chemical synthesis literature database in the ChemPU. Science 377:172–180.
https://doi.org/10.1126/science.abo0058

Curriculum Vitae

—
181

Curriculum vitae

Education

Ph. D. Pharmaceutical Sciences
2019 – 2024, University of Antwerp

Fields of study: De novo drug design,
Cheminformatics, Molecular Modelling
Thesis: Computational design of synthesizable
molecules by imitating reference chemistry

M. Sc. Pharmaceutical Modelling
2017 – 2019, Uppsala University

Fields of study: Molecular Modelling,
Bioinformatics, Machine Learning,
Pharmacometrics
Thesis: Optimization of molecular docking
protocols using tailor-made datasets

B. Sc. Biochemistry & Molecular Biology
2013 – 2017, University of the Basque Country

Fields of study: Biochemistry, Biology,
Physiology, Genetics, Pharmacology
Thesis: Interaction between the eCB and S1P
systems in rat brain

Baccalaureate Life Sciences
2011 – 2013, I.E.S. Ricardo Bernardo

Fields of study: Biology, Chemistry, Physics,
Mathematics

Publications

Kerstjens, A., De Winter, H. Molecule auto-correction to facilitate molecular design. J. Comput. Aided
Mol. Des. (in press) (2024)

Kerstjens, A., De Winter, H. A molecule perturbation software library and its application to study the
effects of molecular design constraints. J Cheminform 15, 89 (2023). https://doi.org/10.1186/s13321-
023-00761-5

Kerstjens, A., De Winter, H. LEADD: Lamarckian evolutionary algorithm for de novo drug design. J
Cheminform 14, 3 (2022). https://doi.org/10.1186/s13321-022-00582-y

Conference presentations

Kerstjens, A. De novo design of synthetically accessible molecules using an evolutionary algorithm.
12th International Conference on Chemical Structures (2022).

Acknowledgements

—
182

Acknowledgements

At some point I’ll drop off this book in the department, probably in the library buried among a pile of
theses. And there it will lay, dormant for possibly decades. Yet at some point a curious last year PhD
student will open it looking for inspiration. And they will uncover horrors that should’ve remained
hidden. Stories of a guy who spend 4 years designing molecules straight out of a chemist’s worst
nightmare, and somehow got paid to do so.

In my defense, such feat wouldn’t have been possible without the support of my supervisor, Hans De
Winter. The only thing I knew about Hans when I applied for this position was that he was somewhat
of a local TV celebrity. During our first online interview my potato notebook overheated and the camera
died. But while he couldn’t see me, I could hear him laugh. My camera dying probably didn’t make a
good first impression (I made sure to buy a new one the next day), but his attitude towards problems
sure made a good impression on me. I came to find out that Hans has a friendly and relaxed personality.

One of the things I appreciate most about his attitude towards supervision is that he isn’t controlling.
My research project was originally meant to revolve around the development of antibiotics. Much to
the dismay of the poor microbiologist in my jury, that didn’t end up happening. I quickly realized that I
was more passionate about method development than applying existing methods, and I was allowed
to steer the research into the directions that excited me the most. Of course with great power comes
great responsibility, and we encountered more than one setback. But I would like to think that I made
the most out of bad situations. Another of his virtues is openness. Naturally a professor is more
experienced than a student, and when faced with a student’s proposal they could very easily dismiss it.
But Hans didn’t dismiss my ideas. He was open to them, and encouraged me to “Just try it” or “Just do
it” (Nike please don’t sue). Naturally not everything winds up working as intended, but self-driven
failure is an important component of personal growth. I don’t take the opportunities I was given for
granted. Thank you Hans.

My studies wouldn’t have been nearly as enjoyable without the company of all my colleagues. When I
first joined the lab in 2019 it was rather empty. We even fit around the table in the kitchen. Then around
2020-2021 the population exploded. The influx of medicinal chemists led to the banishment of
computational chemists to office A2.16. To add insult to injury they even misspelled my surname on
the door. I would hold a grudge against them, if it weren’t for the fact that I got the big table next to
the window. I can’t possibly thank all of you individually since you are way too many. So thank you to
all chemists that roam (and have roamed) the hallways of the lab, from seniors to insolent students.

I would like to acknowledge some notorious characters individually. Let me tell you about my office
mates.

Olivier used to quietly slouch in his chair, but later on he became more talkative. He would occasionally
stand up, draw something on the whiteboard with a dried out marker that you could barely see, and

Acknowledgements

—
183

rope you into hour long conversations. During these totally scientific conversations I found out that his
true passions were luxury hand bags and lobbying for the oil industry. He would tell you with a straight
face that energy providers weren’t greedy. Then when you turned around he would pull up the Exxon
Mobil stock chart with the 1 minute candles. I’d like to think that he wound up seeing the error in his
ways, as he’d eventually relocate to Antwerpen to save on gas.

Joep (a.k.a. DJ Wals) joined the lab recently, but quickly became the soul of the group. He is a teaching
assistant on a 6-year PhD trajectory, so he has lots of time to be a nuisance. To keep him busy we put
him in charge of absolutely everything in the lab. He organizes the group meetings, orders/buys
sandwiches and drinks, and harasses you via e-mail to upload the slides to Teams. Somehow he still
found time for two walks around the pond per day. The rest of us joined under duress, for if you didn’t
he would play high-energy electronic music in the office. Now with deadlines coming up he must make
up for lost time, and he is under strict orders to work during the weekends.

Roy is one of the latest additions to the computational roster. I was super excited when he first joined
because he was allegedly going to do de novo molecular design, but alas I was deceived. What he lacks
in research taste he makes up for in attitude (in a good way). He is always keen on participating in
various activities, and legend says he doesn’t know how to say no. This, coupled with his politeness,
makes him the perfect victim for distracting conversations when your calculations are running or you
don’t feel like working.

To my office mates, Kenneth, Olivier, Joep, Roy and Stijn, thank you for all the discussions (scientific or
not), brainstorming and fun moments we had together. You made the atmosphere in the office not only
sweaty and full of carbon dioxide, but also fun and vibrant. At least you now know how to open the
crusty windows. Unfortunately I didn’t get to know all of you equally well, but such is the nature of
ephemeral academic stays, working from home, and the virus that shall not be named.

I also wish to thank all the VrijMiBo attendees, which was always one of the highlights of the week and
good motivation to come to the university. Special shout-out to the VrijMiBo “big four” Joep, Philipp
and Nicolò. I thoroughly enjoyed the silly conversations, jokes and games. Feasting on bears and snakes
was a plus.

I extend my gratitude to all the members of my doctoral jury. To the members of the Individual Doctoral
Committee: Paul Cos, Yann Sterckx and Wouter Herrebout. The subject matter of this research may
have drifted away from what was originally foreseen. I greatly appreciate the effort of critically
evaluating research outside one’s domain of expertise. To the external jury members: Greg Landrum
and Mazen Ahmad. Having you as opponents is a privilege, despite being a bit daunting. Thank you for
finding time in your schedules to not only read the thesis and examine me, but also to travel to Antwerp
for the occasion. Hopefully the food and drinks are worthwhile compensation.

Many thanks to the the Fonds Wetenschappelijk Onderzoek (FWO) for generously funding this research,
and to the Vlaams Supercomputing Centrum (VSC) for providing many of the computational resources
that powered this research. Special thanks to the CalcUA support staff for their trainings and
personalized help in setting up and troubleshooting my software on the computer cluster.

Acknowledgements

—
184

This thesis may be the conclusion of an academic trajectory that spans far beyond the last 4 years. I feel
it adequate to also acknowledge the entities that made the journey up to this point possible. Thank you
to the Dr. Jost Henkel Stiftung for supporting me with a scholarship during my bachelors and masters
studies. Thank you to the Svensk-Spanska Stiftelsen for contributing to my master expenses. And of
course, thank you to my parents for being the most generous funding agency in the world. Lastly, I wish
to acknowledge all European taxpayers, for you are the real unsung heroes that enable academic
research like this. Hopefully it will make an impact in your lives sometime in the future.

A good support network extends beyond the academic environment. I would like to thank all my friends
for keeping me entertained outside working hours, be it offline or online. Thank you to my girlfriend
for providing emotional support and listening to all my nagging and crazy ideas. She has kept my morale
up throughout these years with excursions, cultural activities, nights out, boiled eggs and chamomile.

And of course, I owe arguably the most to my parents. When I finished high school I wanted to study
law to become a notary. All the forms had been filled, but before I had the chance to hand them in my
mother found out, and unilaterally decided that science was the way to go. Now I have more fun but
less job security and money. So thanks mom? In all seriousness my parents have been nothing but
supportive. Beyond feeding me and putting up with me for many years, they have helped me financially,
helped me look for accommodation, helped me move, driven me around to do paperwork (or even
done it themselves), and of course provided lots of encouragement. So from the bottom of my heart,
thank you very much to both of you.

