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SYMBOL LENGTH IN POSITIVE CHARACTERISTIC

FATMA KADER BİNGÖL

Abstract. We show that any central simple algebra of exponent p in prime
characteristic p that is split by a p-extension of degree pn is Brauer equiva-
lent to a tensor product of 2 · pn−1

− 1 cyclic algebras of degree p. If p = 2
and n > 3, we improve this result by showing that such an algebra is Brauer
equivalent to a tensor product of 5 · 2n−3

− 1 quaternion algebras. Fur-
thermore, we provide new proofs for some bounds on the minimum number
of cyclic algebras of degree p that is needed to represent Brauer classes of
central simple algebras of exponent p in prime characteristic p, which have
previously been obtained by different methods.

Classification (MSC 2020): 16K20, 13A35

Keywords: cyclic algebra, symbol length, positive characteristic

1. Introduction

Let F be a field. We set N+ = N r {0}. Let n ∈ N+, L/F be a cyclic field
extension of degree n and let σ be a generator of its Galois group. For a given
b ∈ F×, the rules

jn = b and xj = jσ(x) for all x ∈ L

determine on the L-vector space L ⊕ jL ⊕ . . . ⊕ jn−1L a ring multiplication
turning it into a central simple F -algebra of degree n, which is denoted by

[L/F, σ, b).

Any central simple F -algebra of degree n containing a cyclic field extension
L/F of degree n is isomorphic to [L/F, σ, b) for certain b ∈ F×; see [2, Theorem
5.9]. Such an algebra is called a cyclic algebra. We denote by Br(F ) the Brauer
group of F , and for n ∈ N+, we denote by Brn(F ) the n-torsion part of Br(F ).

Theorem 1.1 (A. A. Albert, A. S. Merkurjev, A. A. Suslin [2], [11]). Let

n ∈ N+. Assume F contains a primitive n-th root of unity or n is a power of

charF . Then Brn(F ) is generated by the classes of cyclic algebras of degree n.

Given a central simple F -algebra A, we denote by degA, indA and expA,
the degree, index and exponent of A, respectively. For n ∈ N+, we denote by
A⊗n the n-fold tensor product A⊗F . . .⊗F A.

Remark 1.2. Let p be a prime number. In [14], a generic division algebra
D(pn, pe) of degree pn and exponent pe, with n, e ∈ N, e 6 n, is constructed
as follows: let D be a division algebra over a field F (of any characteristic) of
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2 FATMA KADER BİNGÖL

degree and exponent equal to pn. Let K be the function field of the Severi-
Brauer variety corresponding toD⊗pe and setD(pn, pe) = D⊗FK. For e > 2, it
is shown that indD(pn, pe)⊗p = pn−1. This implies in particular that D(pn, pe)
is indecomposable for any n ∈ N and e > 2. In [7], N. Karpenko shows that
D(pn, p) is indecomposable for any n ∈ N except when p = n = 2.

From these results the study of the so-called symbol length arose. For a
central simple F -algebra A, the n-symbol length of A, denoted by λn(A), is
the smallest m ∈ N such that A is Brauer equivalent to a tensor product of m
cyclic algebras of degree n. We set λn(A) = ∞ if A is not Brauer equivalent to
a tensor product of cyclic algebras of degree n.

Note that, if n ∈ N+ and A is a central simple F -algebra with expA dividing
n, one always has λn(A) > logn indA. The challenge is to bound the n-symbol
length in terms of the index. We have the following results for algebras of
exponent 2 in small index.

Theorem 1.3. Let A be a central simple F -algebra with expA = 2. Let n ∈ N+

be such that indA = 2n.

(1) (Albert [1]) If n 6 2, then λ2(A) = n.
(2) (J. -P. Tignol–L. Rowen [16], [13]) If n = 3, then 3 6 λ2(A) 6 4.

In the case where n is a power of the characteristic, we know more about the
n-symbol length.

Theorem 1.4 (M. Florence [5]). Assume that charF = p and let e, n ∈ N+.

Let A be a central simple F -algebra with expA = pe and indA = pn. Then

λpe(A) 6 pn − 1.

Florence’s argument involves a generic splitting field given by the function
field of the Severi-Brauer variety attached to the algebra. Previously, P. Mam-
mone and A. Merkurjev [8] had obtained better bounds for the special case of
cyclic algebras. Their argument is based on a computation of the corestriction
of a cyclic algebra.

Theorem 1.5 (Mammone–Merkurjev). Assume that charF = p. Let e, n ∈
N+. Let C be a cyclic F -algebra with expA = pe and degC = pn. Then

λpe(A) 6 pn−e.

In Theorem 1.3, for the case of n = 3, the existence of a subfield of the un-
derlying division algebra which is a Galois extension with Galois group (Z/2Z)3

due to Rowen [12], [13] plays a crucial role. More generally, Theorem 1.1 im-
plies that any central simple algebra of exponent p, over a field of characteristic
p or containing a primitive p-th root of unity, admits a splitting field which is
a Galois extension with Galois group (Z/pZ)n for some n ∈ N+. Hence it is
natural to consider the problem to determine the p-symbol length for such a
family of algebras.

Question 1.6. Let A be a central simple F -algebra with expA = p. Let n ∈ N+

and assume that there exists a Galois extension with Galois group (Z/pZ)n that
splits A. What is the p-symbol length of A?
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If p = 2 and n 6 3, then Theorem 1.3 answers Question 1.6. Let us provide
other known results in this context.

Theorem 1.7. Let A be a central simple F -algebra with expA = p. Let n ∈ N+

and assume that there exists a Galois extension with Galois group (Z/pZ)n that

splits A.

(1) (A. S. Sivatski [15]) If p = 2, n = 4, and charF 6= 2, then λ2(A) 6 18.
(2) (E. Matzri [10]) If p = 3, n = 2 and F contains a primitive 3rd root of

unity, then λ3(A) 6 31.

We call a finite field extension L/F a p-extension if there exist n ∈ N and
a tower of fields (Li)

n
i=0 with L0 = F , Ln = L, and where Li/Li−1 is a cyclic

extension of degree p for i = 1, . . . , n. Clearly, a Galois extension with Galois
group (Z/pZ)n is a p-extension.

We consider Question 1.6 over fields of characteristic p (Section 6). We inves-
tigate the behaviour of p-symbol length under finite field extension of various
kind (Proposition 4.2, Proposition 4.6, Corollary 4.7, Proposition 6.1, Corol-
lary 6.2). In prime characteristic p, we show that the p-symbol length of any
central simple algebra of exponent p that is split by a p-extension of degree pn

is bounded by 2 · pn−1 − 1 (Proposition 6.3). If p = 2 and n > 3, we improve
this bound by showing that the 2-symbol length of such an algebra is bounded
above by 5 · 2n−3 − 1 (Theorem 6.4). Furthermore, we obtain new and more
elementary proofs for Theorem 1.4 and Theorem 1.5 above in certain cases. In
Theorem 5.6, we retrieve the bounds from Theorem 1.4 for p = 2 and e = 1,
and in Theorem 4.8, we retrieve the bounds from Theorem 1.5 for e = 1. Our
arguments are based on the study of purely inseparable splitting fields and the
Frobenius morphism.

The following two sections serve as preliminaries. For the theory of central
simple algebras, we refer to [2] and [6].

2. Some classical results

Let p be always a prime number. We assume throughout the paper that
charF = p. Let L/F be a cyclic extension of degree p. Then L = F (i) with
ip−i = a ∈ F for some i ∈ LrF . We denote the cyclic algebra [L/F, σ, b) where
σ is a generator of the Galois group of L/F and b ∈ F× simply by [a, b)p,F .
Letting further b = jp, the algebra [a, b)p,F is generated by i and j, which are
subject to the rules

ip − i = a, jp = b, ji = (i− 1)j.

Furthermore, any cyclic F -algebra of degree p is of the form [a, b)p,F for some
a ∈ F and b ∈ F×.

For a finite field extension K/F , let NK/F : K → F denote the norm map.
For two central simple F -algebras A and B, we write A ∼ B to indicate that
A and B are Brauer equivalent.

Proposition 2.1. Let a ∈ Fand b, b′ ∈ F×. The following hold:

(1) [a, b)p,F ⊗F [a, b′)p,F ∼ [a, bb′)p,F .
(2) [a, b)p,F is split if and only if b ∈ NF (i)/F (F (i)×) where ip − i = a.
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Proof. See [2, Theorem 5.11 and Theorem 5.14]. �

Purely inseparable field extensions occur as splitting fields for central simple
F -algebras of p-power exponent. These extensions are useful tools in the study
of the symbol length.

Theorem 2.2 (Albert). Let A be a central simple F -algebra. Let n ∈ N+ and

b1, . . . , bn ∈ F× be such that the field K = F ( p
√
b1, . . . ,

p
√
bn) splits A. There

exist some a1, . . . , an ∈ F such that

A ∼ [a1, b1)p,F ⊗F . . .⊗F [an, bn)p,F .

Proof. See [2, Theorem 7.28]. �

3. The frobenius morphism

Let K/F be a purely inseparable field extension such that Kp ⊆ F . The map
FrobK/F : K → F , x 7→ xp is called the Frobenius homomorphism. It gives a
K-algebra structure to F . More precisely, the scalar multiplication of K on F
is given by x · a = xpa for x ∈ K and a ∈ F . If A is a K-algebra, then seeing
F as a K-algebra via the Frobenius map, we can form the tensor product over
K of these two K-algebras, FrobK/F A = F ⊗K A, which is then an F -algebra,
where for λ ∈ K, β ∈ F and a ∈ A we have β ⊗ λa = λpβ ⊗ a.

Proposition 3.1. Let K/F be a purely inseparable field extension with Kp ⊆ F .

The following hold:

(1) If A and B are K-algebras, then we have

FrobK/F (A⊗K B) ≃ FrobK/F A⊗F FrobK/F B.

(2) For n ∈ N+, we have that FrobK/F Mn(K) ≃ Mn(F ).
(3) If A is a central simple K-algebra, then FrobK/F A is a central simple F -

algebra.

Proof. See [6, Section 3.13, p.149]. �

Let K/F be a purely inseparable field extension with Kp ⊆ F . By Proposi-
tion 3.1, we obtain a group homomorphism

FrobK/F : Brp(K) → Brp(F ), [A] → [FrobK/F A].

Recall further the group homomorphism rK/F : Brp(F ) → Brp(K) given by
rK/F [A] = [A⊗F K] which is induced by the scalar extension.

Proposition 3.2. Let K/F be a purely inseparable field extension with Kp ⊆ F .

The following hold:

(1) For x ∈ K and y ∈ K×, we have that FrobK/F ([x, y)p,K) = [xp, yp)p,F .
(2) The composite homomorphism FrobK/F ◦rK/F : Brp(F ) → Brp(F ) is trivial.

Proof. (1) Set C = [x, y)p,K with x ∈ K, y ∈ K×. Let i, j ∈ C r K be such
that ip − i = x, jp = y and ji = (i− 1)j. Now (1⊗ 1, 1⊗ i, 1⊗ j, 1⊗ ij) is an
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F -basis for FrobK/F C, and we have that

(1⊗ i)p − 1⊗ i = 1⊗ (ip − i) = 1⊗ x = xp(1⊗ 1),

(1⊗ j)p = 1⊗ y = yp(1⊗ 1),

(1⊗ j)(1⊗ i)− 1⊗ j = 1⊗ (ji− j) = 1⊗ ij = (1⊗ i)(1⊗ j).

Therefore FrobK/F C ≃ [xp, yp)p,F .

(2) Let a ∈ F and b ∈ F×. We have that FrobK/F ([a, b)p,F ⊗F K) =
[ap, bp)p,F , which is split, by Proposition 2.1. Since, by Theorem 1.1, Brp(F ) is
generated by the classes of F -algebras [a, b)p,F with a ∈ F and b ∈ F×, this
shows the statement. �

The assertion (2) of Proposition 3.2 can be also obtained by the fact that
FrobF/F induces multiplication by p on Br(F ), see [6, Theorem 4.1.2].

4. Cyclic algebras of exponent p in characteristic p

In this section, we show that in characteristic p, the Brauer class of any cyclic
algebra of exponent p and degree pn, with n ∈ N+, is given by a tensor product
of pn−1 cyclic algebras of degree p. This bound was first obtained by Mammone
and Merkurjev (Theorem 1.5), based on a computation of the corestriction of
cyclic algebras. In our argument, we make use of the Frobenius morphism.

The following is a generalization of the result [4, Proposition 3.3].

Proposition 4.1. Let L/F be a finite field extension and let C be a cyclic L-
algebra of degree p. Then there exists a purely inseparable field extension K/F

with [K : F ] 6 p[L:F ] such that CLK is split. Moreover, K/F can be chosen

such that Kp ⊆ F when L/F is separable.

Proof. We have C ≃ [x, y)p,L for certain x ∈ L and y ∈ L×. By [4, Lemma 2.3],

there exists a purely inseparable field extension K/F such that y ∈ K(y)×p and

[K : F ] 6 p[L:F ]. Then CLK is split by Proposition 2.1. When L/F is separable,
it follows further by [4, Lemma 2.3] that Kp ⊆ F . �

For a given central simple F -algebra A, we denote by Aop the opposite algebra
of A, which is defined by endowing the additive group A with the multiplication
·op given by a ·op b = b · a for a, b ∈ A, where · is the multiplication in A.

The following result is obtained by Mammone and Moresi [9, Théorème 4]
for p = 2. Although their argument also makes use of the Frobenius morphism,
our argument is different.

Proposition 4.2. Let A be a central simple F -algebra with expA = p and

n ∈ N+. Let K/F be a purely inseparable field extension with Kp ⊆ F and

[K : F ] = pn. Assume AK is Brauer equivalent to a cyclic K-division algebra

of degree p. Then λp(A) 6 n + p − 1. More precisely, A ∼ B ⊗F B′ for some

central simple F -algebras B and B′ such that BK is split and λp(B
′) 6 p− 1.

Proof. We have AK ∼ [x, y)p,K for some x ∈ K and y ∈ K×. Let i, j ∈ [x, y)p,K
be such that ip − i = x, jp = y and ji = (i − 1)j. Set L′ = K(i). Then, by
[2, Lemma 7.7], we have that L′ = KL with L = F (ip) and L/F is cyclic of
degree p. It follows by Proposition 3.2 that FrobK/F [x, y)p,K = [xp, yp)p,F and
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that FrobK/F (AK) is split. Since FrobK/F (AK) ∼ FrobK/F [x, y)p,K , we get that
[xp, yp)p,F is split. Clearly L can be embedded in [xp, yp)p,F . Hence, we have
by Proposition 2.1 that yp = NL/F (z

′) for some z′ ∈ L.
Assume first that z′ ∈ F . Then, we get that yp = NL/F (z

′) = z′p and
therefore y = z′ as charF = p. Then AK ∼ [x, z′)p,K ≃ [xp, z′)p,K and hence
A ⊗F [xp, z′)opp,F is split over K. Since Kp ⊆ F , it follows by Theorem 2.2,

that A⊗F [xp, z′)opp,F ∼ C where C is a tensor product of n cyclic F -algebras of

degree p. Then A ∼ C ⊗F [xp, z′)p,F and C splits over K.
Assume now that z′ /∈ F . As z′ ∈ L and [L : F ] = p, this implies that

L = F (z′). Let

g(X) = Xp + cp−1X
p−1 + . . .+ c1X + c0 ∈ F [X]

be the minimal polynomial of z′ over F . Then c0 = −NL/F (z
′) = (−y)p. Set

M = K( p
√
c1, . . . , p

√
cp−1). Then M/K is a purely inseparable field extension

with Mp ⊆ F and [M : K] 6 pp−1. We claim that z′ = zp for some z ∈ ML.
Since K/F is purely inseparable and L = F (z′), we have KL = K(z′) and g is
the minimal polynomial of z′ over K. Now the polynomial

g′(X) = Xp + p
√
cp−1X

p−1 + . . .+ p
√
c1X − y ∈ M [X]

satisfies g′( p
√
z′) = 0. Hence [M( p

√
z′) : M ] 6 p. Clearly ML = M(z′) ⊆

M( p
√
z′). Since [ML : M ] = p, we deduce that ML = M(z′) = M( p

√
z′). Hence

z′ = zp with z ∈ ML as claimed. Now M/F is purely inseparable, hence
NL/F (z

′) = NML/M (z′). Thus we get that

yp = NL/F (z
′) = NML/M (zp) = NML/M (z)p

and as charF = p, we obtain y = NML/M (z). Since AM ∼ [x, y)p,M and
y = NML/M (z) with z ∈ ML, it follows by Proposition 2.1 that AM is split.

If b1, . . . , bn ∈ F× are such that K = F ( p
√
b1, . . . ,

p
√
bn), then we have M =

F ( p
√
b1, . . . ,

p
√
bn, p

√
c1, . . . , p

√
cp−1). As AM is split, it follows by Theorem 2.2

that A ∼ B⊗F B′ where B =
⊗n

i=1[ai, bi)p,F and B′ =
⊗p−1

i=1 [ei, ci)p,F for some
a1, . . . , an, e1, . . . , ep−1 ∈ F . Clearly B splits over K and this concludes the
proof. �

Corollary 4.3. Let C be a cyclic F -algebra with expC = p and degC = p2.
Then λp(C) 6 p.

Proof. As C is cyclic, we can find a purely inseparable field extension K/F of
degree p such that CK is Brauer equivalent to a cyclic K-algebra of degree p.
Now the statement follows directly by Proposition 4.2. �

Remark 4.4. The bounds in Corollary 4.3 are optimal for p = 2 and p = 3.
The case p = 2 follows by Theorem 1.3. Karpenko’s construction in Remark 1.2
yields optimality for the case p = 3. Indeed, if we start with a cyclic algebra
D over a field of characteristic 3 (e.g. a global field of characteristic 3) with
degD = expD = 9, then D(9, 3) is a cyclic algebra of degree 9 and exponent 3
and it does not decompose into a tensor product of two cyclic algebras of degree
3. This shows the optimality for the case p = 3.
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Question 4.5. Are the bounds in Corollary 4.3 optimal for p > 5?

Mammone and Merkurjev, using the corestriction argument of Tignol from
[17], showed that any cyclic F -algebra of degree pn and exponent pe, with
n, e ∈ N, is Brauer equivalent to a tensor product of pn−e cyclic F -algebras of
degree pe. Hence, we retrieve their bounds for n = 2 and e = 1. To generalize
our result to cyclic algebras of exponent p and p-power degree, we will first
make the following two observations.

Proposition 4.6. Let A be a central simple F -algebra with expA = p. Let

K/F be an inseparable field extension with [K : F ] = p. Let n ∈ N+ and

assume that λp(AK) 6 n. Then λp(A) 6 n · p.
Proof. Note that, since [K : F ] = p, we have that Kp ⊆ F . By our assumption,
we have that AK ∼

⊗n
i=1[xi, yi)p,K for some x1, . . . , xn ∈ K, y1, . . . , yn ∈ K×.

If yi ∈ F× for all i = 1, . . . , n, then as [xi, yi)p,K ≃ [xpi , yi)p,K , it follows that
A⊗F

⊗n
i=1[x

p
i , yi)

op

p,F splits over K, and we obtain that λp(A) 6 n+ 1 < n · p.
Assume now, without loss of generality, that y1 /∈ F . Set y = y1. As

[K : F ] = p, we get that K = F (y). For i = 2, . . . , n, we write yi =
∑p−1

j=0 ci,jy
j

with ci,0, . . . , ci,p−1 ∈ F . We let

M = K( p
√
c2,0, . . . , p

√
c2,p−1, . . . , p

√
cn,0, . . . , p

√
cn,p−1).

Note thatM/F is a purely inseparable field extension withMp ⊆ F and we have

[M : F ] 6 p(n−1)·p+1. Then A splits over M( p
√
y) and therefore λp(AM ) 6 1.

Now it follows by Proposition 4.2 that λp(A) 6 (n−1) ·p+1+p−1 = n ·p. �

Corollary 4.7. Let A be a central simple F -algebra with expA = p. Let K/F
be a purely inseparable field extension and assume that AK is not split. Then

λp(A) 6 [K : F ] · λp(AK).

Proof. We prove the statement by induction on [K : F ], the case [K : F ] = 1
being trivially true. Assume now that [K : F ] > 1. Note that, as K/F is a
purely inseparable field extension, we have that [K : F ] is a p-power. Now, we
can find a subfield K ′/F of K/F with [K ′ : F ] = p. It follows by induction
hypothesis that λp(AK′) 6 [K : K ′] · λp(AK). Then, using Proposition 4.6, we
obtain that λp(A) 6 p · λp(AK′) 6 p · [K : K ′] · λp(AK) = [K : F ] · λp(AK). �

As a consequence, we obtain bounds for the symbol length of cyclic algebras
of exponent p. These bounds coincide with those in Theorem 1.5.

Theorem 4.8. Let C be a cyclic F -algebra with expC = p and degC = pn

with n ∈ N+. Then λp(C) 6 pn−1.

Proof. As C is cyclic, we can find a purely inseparable field extension K/F ,
with [K : F ] = pn−1, contained in C. Then CC(K) is a cyclic K-algebra of
degree p, which is Brauer equivalent to CK . It follows by Corollary 4.7 that
λp(C) 6 pn−1 · λp(CK) = pn−1. �

5. Algebras of exponent p in characteristic p

In this section, we show that in characteristic 2, the Brauer class of a central
simple algebra of exponent 2 and index 2n, with n ∈ N+, is given by a tensor
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product of 2n−1 quaternion algebras. This bound was first obtained by Florence
using a generic splitting field given by the function field of the Severi-Brauer
variety attached to the algebra (Theorem 1.4). We study purely inseparable
splitting fields and make use of the Frobenius morphism.

To capture an essential hypothesis for the method that we are going to
present, we introduce a condition on the field F , which might be trivially sat-
isfied, depending on the prime p given by the characteristic of F . We call the
field F p-reducible (respectively p-cyclic reducible) if, for every central simple
F -algebra A of exponent p and every purely inseparable field extension K/F
with Kp ⊆ F , either AK is split or there exists a separable field extension L/F
of degree 1

p indAK such that indALK = p (respectively ALK is Brauer equiva-

lent to a cyclic LK-algebra of degree p). Note that these two notions coincide
for prime numbers p where central division algebras of degree p are cyclic, in
particular for p = 2 and p = 3 [2, Theorem 11.5].

Example 5.1. If p = 2, then F is 2-cyclic reducible. Indeed, F is 2-reducible
by [3, Lemma 4] and any central division algebra of degree 2 is cyclic.

We don’t know whether fields of characteristic p > 2 are generally p-cyclic
reducible, or even p-reducible.

Lemma 5.2. Assume that F is p-cyclic reducible. Let A be a central simple F -

algebra with expA = p. Let K/F be a finite purely inseparable field extension

with Kp ⊆ F such that indAK = pn with n ∈ N+. There exists a purely

inseparable field extension K ′/K with K ′p ⊆ F and [K ′ : K] 6 p(p−1)·pn−1

such

that indAK′ 6 pn−1.

Proof. By our assumption, there exists a separable field extension L/F with
[L : F ] = pn−1 such that ALK is Brauer equivalent to a cyclic LK-algebra of
degree p. It follows by Proposition 4.2 that AL ∼ B ⊗L B′ for some central
simple L-algebras B and B′ such that B splits over LK and B′ is a tensor
product of (p− 1) cyclic L-algebras of degree p. By Proposition 4.1, there exist
b1, . . . , bm ∈ F×

rF×p with m 6 (p−1) ·pn−1 such that L( p
√
b1, . . . ,

p
√
bm) splits

B′. Consider K ′ = K( p
√
b1, . . . ,

p
√
bm). Then K ′/F is a purely inseparable field

extension with K ′p ⊆ F and [K ′ : K] 6 p(p−1)·pn−1

. Now LK ′ splits B′ and B,
and hence B⊗LB′. Therefore ALK′ is split. Since [LK ′ : K ′] = [L : F ] = pn−1,
we obtain that indAK′ 6 pn−1. �

Proposition 5.3. Assume that F is p-cyclic reducible. Let A be a central

simple F -algebra with expA = p and indA = pn with n ∈ N+. Then, for

1 6 i 6 n, there exist purely inseparable field extensions Ki/F with Kp
i ⊆ F

and Ki−1 ⊆ Ki such that indAKi
6 pn−i and that [Ki : F ] 6 p2·p

n−1−pn−i

.

Proof. By our assumption, there exists a separable field extension L/F such
that [L : F ] = pn−1 and that AL is Brauer equivalent to a cyclic L-algebra of
degree p. By Proposition 4.1, we can find a purely inseparable field extension

K1/F with Kp
1 ⊆ F and [K1 : F ] 6 pp

n−1

such that ALK1
is split. In particular,

indAK1
6 pn−1. Then, a repeated use of Lemma 5.2, starting by applying to

AK1
, yields purely inseparable field extensions Ki/F with Ki−1 ⊆ Ki, K

p
i ⊆ F
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and [Ki : Ki−1] 6 p(p−1)·pn−i

such that indAKi
6 pn−i for 2 6 i 6 n. We have

[Ki : F ] 6 pp
n−1 · p(p−1)·pn−2 · · · p(p−1)·pn−i

= p2·p
n−1−pn−i

for 2 6 i 6 n. �

Proposition 5.4. Assume that F is p-cyclic reducible. Let A be a central simple

F -algebra with expA = p and indA = pn with n ∈ N+. Then λp(A) 6 2·pn−1−1.

Proof. Proposition 5.3 yields a purely inseparable field extension K/F with

Kp ⊆ F and [K : F ] 6 p2·p
n−1−1 such that AK is split. Now the statement

follows by Theorem 2.2. �

Corollary 5.5. Let p = 3 and assume that F is 3-reducible. Let A be a central

simple F -algebra with expA = 3 and indA = 3n with n ∈ N+. Then λ3(A) 6
2 · 3n−1 − 1.

Proof. Since any division algebra of degree 3 is cyclic, the statement follows by
Proposition 5.4. �

Let us close this section with our result on the 2-symbol length in character-
istic 2. The bounds coincide with the ones in Theorem 1.4

Theorem 5.6. Let p = 2. Let A be a central simple F -algebra with expA = 2
and indA = 2n with n ∈ N+. Then λ2(A) 6 2n − 1.

Proof. Since F is 2-cyclic reducible, the statement follows by Proposition 5.4.
�

6. Splitting by p-extensions

In this section, we address Question 1.6. We provide bounds on the p-symbol
length under the extra assumption that the considered algebra has a splitting
field which is a p-extension. Let us start with the following observation.

Proposition 6.1. Let A be a central simple F -algebra with expA = p. Let

L/F be a cyclic field extension with [L : F ] = p. Let n ∈ N and assume that

λp(AL) 6 n. Then λp(A) 6 (n+ 1) · p− 1.

Proof. Since L/F is a separable field extension and λp(AL) 6 n, by Proposi-
tion 4.1, there exists a purely inseparable field extension K/F with Kp ⊆ F and
[K : F ] 6 pn·p such that ALK is split. As LK/K is a cyclic field extension of
degree p, AK is Brauer equivalent to a cyclic K-algebra of degree p. It follows
by Proposition 4.2 that λp(A) 6 n · p+ p− 1 = (n+ 1) · p− 1. �

Corollary 6.2. Let A be a central simple F -algebra with expA = p. Let L/F
be a p-extension. Then λp(A) 6 (λp(AL) + 1) · [L : F ]− 1.

Proof. We prove the statement by induction on [L : F ], the case [L : F ] = 1
being trivially true. Assume now [L : F ] > 1. Let L′/F be a cyclic field
extension of degree p contained in L/F . Note that L/L′ is a p-extension with
[L : L′] < [L : F ]. Then, it follows by induction hypothesis that λp(AL′) 6

(λp(AL) + 1) · [L : L′] − 1. We use Proposition 6.1 and obtain that λp(A) 6

(λp(AL′)+1) ·p−1 6 (λp(AL)+1) · [L : L′] ·p−1 = (λp(AL)+1) · [L : F ]−1. �
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Proposition 6.3. Let A be a central simple F -algebra with expA = p. Let

n ∈ N+ and assume that A splits over a p-extension of degree pn. Then λp(A) 6
2 · pn−1 − 1.

Proof. By our assumption, there exists a p-extension L/F with [L : F ] = pn−1

and λp(AL) 6 1. It follows by Corollary 6.2 that λp(A) 6 (1+ 1) · [L : F ]− 1 =
2 · pn−1 − 1. �

Theorem 1.3 gives a better bound for p = 2 and n = 3, we combine this with
Corollary 6.2 to obtain an improvement compared to Proposition 6.3 for p = 2.

Theorem 6.4. Let p = 2. Let A be a central simple F -algebra with expA = 2.
Let n ∈ N with n > 3 and assume that A splits over a 2-extension of degree 2n.
Then λ2(A) 6 5 · 2n−3 − 1.

Proof. By our assumption, there exists a 2-extension L/F with [L : F ] = 2n−3

such that indAL 6 8. Hence by Theorem 1.3, we have that λ2(AL) 6 4. It
follows by Corollary 6.2 that λ2(A) 6 (4 + 1) · [L : F ]− 1 = 5 · 2n−3 − 1. �
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