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1 Introduction 

Collective heating and cooling systems are part of the 
solution to shift towards a renewable and climate-neutral energy 
supply. The potential advantages of implementing collective 
heating systems are well documented in academic literature [1], 
[2]. More specific, the integration of collective heating systems 
offers the scale advantages and/or the required flexibility to 
increase the amount of intermittent renewable energy sources in 
the overall energy supply, resulting in the potential to lower 
CO2-emissions. These advantage not only apply to the level of 
districts but also to the level of collective residential buildings.  

In collective residential buildings, combined heat 
distribution circuits (CHDC), known as ‘Combilus’ in Belgium, 
are considered state-of-the-art. These systems distribute heat for 
both space heating (SH) and domestic hot water (DHW) using 
only one supply and one return pipe. Studies comparing the 
different residential heating systems show that the CHDC has 
lower distribution heat losses, lower operating costs, and the 
potential to lower the temperature regime [3], [4]. Moreover, the 
CHDC concept still has potential for further improvement. For 
instance, by lowering the distribution temperatures by including 
decentralized storage tanks for DHW combined with smart 
group charging [5] or by integrating decentralized booster heat 
pumps [6].  

To fully exploit these advantages, proper design of the 
collective heating system is crucial where the first step is proper 
sizing of the system. Several studies [7], [8] show that sizing 
influences the performance of different heat production systems. 
In short, the main conclusion is that oversized systems often 
tend to decrease in energy efficiency due to poor part load 
behavior, while undersized systems result in a lack of comfort 
for the consumers. Moreover, sizing affects not only the 
production unit but also the distribution system, leading to 
higher heat losses and installation costs [9]. 

1.1 The design problem 
In order to properly size the system, the heat demand at any 

point in the installation has to be determined. With respect to the 
design philosophy of the standard EN 12828 [10], the total 

required heat capacity for both SH and DHW-purposes of the 
system should be determined and calculated according to 
Equation 1. Φ𝑆𝑈 = 𝑓𝑆𝐻 ⋅ Φ𝑆𝐻 + 𝑓𝐷𝐻𝑊 ⋅ Φ𝐷𝐻𝑊 + 𝑓𝐴𝑆 + Φ𝐴𝑆  (1) 

Where, ΦSH is the maximum heat demand for SH [kW], ΦDHW 
the maximum heat demand for DHW production, and ΦAS the 
maximum heat demand of any other attached systems, e.g. the 
heating coil of the centralized air handling unit. The factors fSH, 
fDHW, and fAS take into account that on the one hand, ΦSH and 
ΦDHW are not the sum of the individual demands of the 
residential units for resp. SH and DHW, and on the other hand, 
the maximum heat demand of SH and DHW might not occur 
simultaneously.  

In practice, these factors are often referred to as simultaneity 
or diversity factors. The existence and effect of the simultaneity 
phenomenon in collective heating systems were demonstrated 
in several studies. For example, Wang et al. [11] showed that 
due to simultaneity, the maximum total heat demand is reduced 
as opposed to the sum of the individual maximum demands. 
Furthermore, considering a good simultaneity factor in the 
calculation of the design heat demand, the risk of oversizing and 
the related disadvantages can be avoided [12]. 

However, within the Belgian context, currently, no standards 
or design rules exist for the sizing of collective two-pipe heating 
systems such as the CHDC and district heating. As a 
consequence, designers use a mix of foreign design guides and 
their own rules of thumb or manufacturers’ specific design 
guides. In general, the following workflow is adopted by 
designers: 

Firstly, the maximum collective heat demands for SH and 
DHW are calculated using the appropriate standards. 
Commonly, the standards for DHW already apply a simultaneity 
factor to account for the diversity in the DHW-heat demand. 
This simultaneity factor is generally determined based on either 
the number and type of tapping points or the number of 
dwellings connected to the heating network. 

Secondly, the required total heat capacity is determined by 
combining the maximum heat demands determined in the first 
step through calculation rules. In practice, several approaches 
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exist: the summation approach, the maximum approach, and the 
weighted summation. 

 The summation approach, often used to avoid undersized 
systems, takes the sum of both heat demands for SH and DHW. 
While the summation approach is comprehensible when 
designing collective heating systems where both demands can 
occur simultaneously, this is not the case in collective heating 
systems such as the CHDC. In the CHDC and district heating 
systems, the end-users are usually connected to the primary 
network with a so-called flatstation or heat-interface unit (HIU). 
Generally, these HIUs cannot provide heat for SH and DHW-
production simultaneously and thus work either in ‘SH-mode’ 
or ‘DHW-mode’, with a priority for DHW-demand. 
Consequently, the maximum heat demand for SH and DHW 
does not occur at the same time. As a result, applying the 
summation approach can lead to oversized systems.  

Therefore, the maximum approach, which takes the 
maximum of both demands, is often used. The maximum 
approach is suitable for CHDC but depends on how the demands 
for SH and DHW are estimated. If the used standards 
overestimate these heat demand, then the maximum approach 
does not necessarily underestimate the heat demand. However, 
considering evolutions in the design standards for SH and 
DHW, the maximum approach can result in under-sizing 
problems. Especially in cases where the collective heat demand 
for SH does not differ much from the heat demand for DHW. 
To solve this issue, some engineering offices add 20% based on 
experience [13]. Nonetheless, this causes a lack of transparency.  

The weighted average method calculates the total heat 
demand as the weighted sum of both heat demands (equation 2), 
where each heat demand is multiplied by a simultaneity factor. 
The factor fDHW is often the simultaneity factor according to the 
used standard to determine the DHW heat demand. The 
simultaneity factor for SH (fSH) is calculated as (1-fDHW) to cover 
worst-case situations. The physical explanation for this 
calculation is that the simultaneity factor for DHW estimates the 
maximum number of HIUs in ‘DHW-mode’, and thus in the 
worst case the other HIUs are in ‘SH-mode’. This calculation 
rule is often used by German manufacturers of HIUs and is used 
in the German VDI 2072 standard [14]. Φ𝑆𝑈 = (1 − 𝑓𝐷𝐻𝑊) ⋅ Φ𝑆𝐻 + 𝑓𝐷𝐻𝑊 ⋅ Φ𝐷𝐻𝑊   (2) 

Although this calculation rule gives the most reasonable 
physical explanation, in practice the simultaneity factors as 
defined in the standards for DHW heat demand calculation are 
found to overestimate the heat demand. As a consequence, 
experimental simultaneity factors are mostly used, e.g. the 
simultaneity factor from TU Dresden [15], or simultaneity 
factors from other standards are combined. It is important to 
note that each simultaneity factor is defined based on different 
assumptions and constraints. As a consequence, improper 
mixed-use and comparison of standards and simultaneity factors 
cause a lack of transparency and reduce the general applicability 
of the sizing approach. 

Furthermore, note that the mentioned calculation rules do not 
address the sizing of collective heating systems with central and 
decentral storage. 

1.2 Method of maximum sum of parts 
Based on the design discussion in the previous section, a new 

sizing method ‘Method of the maximum sum of parts’ was 
proposed [13]. The method aims to calculate the combined heat 
demand at any place in the collective heating system in a 

transparent way complementary to existing design standards for 
SH and DHW. This allows to easily integrate new insights in the 
determination of the SH and DHW demand. 

1.2.1 Design Philosophy 
The general philosophy of the method is to divide all 

residential units behind the investigated point of the system into 
two groups: ‘space heating’ or ‘domestic hot water’. Thus, each 
dwelling is either divided into one of the two groups. 
Subsequently, the heat demand of each group is determined 
following the relevant standards for SH and DHW demand. 
Thereafter, the sum of parts is taken, i.e. the sum of the demand 
of both groups. As there are multiple ways to group the 
dwellings, the total heat demand is calculated for all 
possibilities, and the maximum of these calculations is retained 
as the required heat capacity to size the system. 

As an illustrative example, the method is demonstrated for a 
simplified apartment building with 40 identical apartments. 
Each apartment has a SH heat demand of 3.5 kW, an average 
occupancy of 2.5 persons, and typical sanitary hot water 
equipment, comprising a bath or shower and three tapping 
points. According to the method, there are 41 possibilities to 
divide the apartments into the SH and DHW groups as they are 
all identical and not interfering. In Figure 1 the heat demand of 
each group is given as a function of the number of apartments 
in the group ‘DHW’. The red curve presents the heat demand of 
the DHW-group, the blue curve of the SH-group, and the green 
curve presents the combined heat demand depending on the 
group distribution. According to the sizing method, the 
maximum of the green curve is retained as the required heat 
demand to which the installation must be sized. For the given 
example, the maximum heat demand for SH is 140 kW, the peak 
heat demand for instantaneous DHW production is 183 kW, and 
the maximum of ‘the sum of parts’ is 194.5 kW. 

 

Figure 1 Necessary heat demand for every group (blue for 'DHW' and 

red for 'SH') including their sum (green) as a function of the number 

of apartments dedicated to the group 'DHW'. 

1.2.2 Including the effects of thermal storage 
In addition, the method is compatible with the power-storage 

method introduced by Verhaert et al. [16] making it possible to 
take the influence of the provision of thermal storage into 
account. Therefore, apart from variations in group division, also 
variations in thermal storage sizes are investigated. In this 
aspect, a third axis (Z-axis) is added to Figure 1 where the 
required power of the DHW group decreases with increasing 



thermal storage capacity. A projection of the maxima of the Y-
axis (Thermal Power) relative to this Z-axis yields a thermal 
power – thermal storage capacity characteristic, as presented in 
Figure 2. This characteristic represents the required central heat 
power as a function of the provided central heat storage 
capacity, is obtained. 

 

Figure 2 'Thermal power - thermal storage characteristic' 

representing the possible combinations to cover the heat demand in 

a CHDC system. 

 

As can be noted, the required thermal power remains 
constant once a certain storage capacity is reached. By 
integrating the power-storage method of [16] into the method of 
maximum sum of parts, only the thermal storage’s ability to 
lower the required thermal power for DHW is considered. This 
entails that from a certain thermal storage capacity the total 
required, i.e. the maximum of the green curve, will be defined 
by the maximum demand of the SH-group. Consequently, this 
allows the elimination of the gap between the maximum heat 
demand for SH and DHW production, preventing the system 
from being oversized most of the time with respect to the SH 
demand. Moreover, it is important to mention that the thermal 
storage should be regarded as ‘active’ thermal storage, which is 
the amount of heat (hot water) that is reserved as a backup when 
the thermal power of the heat production is temporarily too low 
to meet the current heat demand. Simplified, this is the water 
volume above the temperature sensor in the thermal storage tank 
that activates the heat production. Increasing the storage volume 
below the sensor does not reduce the required heating power but 
can help to reduce the cycling of the production unit or increase 
the share of renewable heat sources. 

Furthermore, Verhaert [13] also proposed an approach to 
address the effect of decentralized thermal storage capacities in 
the design. In the case of collective heating systems such as the 
CHDC, the different dwellings can be connected with an HIU 
with a storage tank for DHW. Theoretically, these decentralized 
storage tanks also foresee some active thermal storage capacity 
which allows to lower the thermal power that is required 
centrally. To take the effect of the decentralized storage into 
account the following approach is suggested, i.e. to take the sum 
of all active decentralized storage into account as if the storage 
capacity is foreseen at the point in the installation where the heat 
demand needs to be determined. Once again, only active thermal 
storage is taken into account. 

1.2.3 First assessment 
Based on the first assessments in [13], [17] the approach of 

the maximum sum of parts shows potential. Compared to the 
simulations of case studies done in [17], the simulated heat 
demands align with the maximum approach and the maximum 
sum of parts. However, considering the previously mentioned 
findings of engineering offices, the maximum sum of parts 
approach offers more certainty and the required flexibility to 
evolve with new insights into SH and DHW design standards.  

Furthermore, a comparison of the novel approach to the other 
methods was presented in [13]. Figure 3 presents an extension 
of this comparison to demonstrate how they relate to each other. 
The black line represents the maximum sum of part approach. 

 

Figure 3 Comparison of sizing methods, extending the findings of 

[13]. In parentheses the used standard to define the DHW demand 

and/or simultaneity factor. 

1.3 Scope of paper 
The first assessments prove the potential of the sizing 

approach [13], [17]. However, it does not prove its validity. 
Therefore, this research aims to validate the approach by 
ascertaining its robustness and applicability. In this context, the 
utilization of authentic, real-world data becomes imperative. 
The use of real-world data rather than a simulation-based 
approach allows us to assess the design method for a diverse set 
of buildings with diverse types of occupants. This is at a 
relatively low cost compared to a simulation-based approach 
which can be information and time-intensive to obtain detailed 
physical models of the buildings and the occupant behavior. 
Therefore, the aim is to use heat consumption data obtained 
from residential (smart) heat meters to validate the new sizing 
method. The introduction of residential (smart) heat meters in 
collective heating systems, mainly used for billing purposes and 
monitoring, provides large datasets regarding heat consumption. 
However, some problems arise when using this type of data for 
the validation of sizing rules. More specifically, the poor data 
quality and the relatively large measurement interval pose some 
challenges. To reach the research objective, a validation 
methodology is presented to tackle these challenges, along with 
the results of the application of the procedure to six case studies. 

  



2 The validation methodology 

 

Figure 4 General workflow of the validation methodology. 

2.1 Aim and Insights 
The objective of the validation procedure is to compare the 

outcome of the ‘method of maximum sum of parts’ against the 
peak heat demand of the investigated case study. As previously 
mentioned, the outcome of the sizing method is a thermal power 
– thermal storage capacity characteristic (further called power-
storage-characteristic) which presents all possible combinations 
of thermal power and storage capacity to satisfy the heat 
demand. To validate the sizing method, each combination needs 
to be able to cover the peak heat demand. Therefore, the 
validation methodology determines the ‘real’ power-storage 
characteristic needed to meet the peak heat demand using 
residential heat meter data.  

The validation procedure is based on insights from the design 
methodology for DHW production systems of Verhaert et al. 
[16]. Based on tap patterns, they determined a worst-case 
consumption profile expressing the peak demand, i.e. volumes 
of hot water in liters, as a function of the duration of the 
measurement interval. Subsequently, by assessing the possible 
hot water production at a certain production capacity with 
respect to this profile, a production capacity – hot water storage 
characteristic is obtained. 

However, there are challenges in using this method for the 
validation of the sizing rule. First, the data resolution and 
measurement frequency of residential heat meters, which often 
record cumulative heat consumption hourly in kilowatt-hours 
(kWh), must be considered. This can result in a lack of 
information on the peak heat consumption in smaller intervals 
and can significantly affect the determination of the ‘real’ 
power-storage characteristic. Second, the study examines the 

heat consumption of both DHW and SH, rather than DHW tap 
patterns. Because outdoor conditions influence SH 
consumption, they must be taken into account. Additionally, 
addressing the poor quality of residential heat meter data is 
crucial. To overcome these challenges, a validation 
methodology, presented in Figure 4, has been developed. 

2.2 Resulted workflow 

2.2.1 Data pre-processing 
First of all, to cope with the poor data quality, the data is pre-

processed. This step includes the standardization of the 
consumption according to fixed measurement times, the filling 
of missing values, and the removal of outliers. For the 
standardization and filling of missing data, linear interpolation 
is used. Other higher-order interpolation methods (e.g. cubic 
spline interpolation) were evaluated. However, these methods 
sometimes introduced oscillations and overshooting in the data, 
resulting in the introduction of significant erroneous values. 
Using linear interpolation may produce less accurate results, but 
may not affect the result of the validation. Whereas the use of 
higher-order methods does. Nevertheless, when data is missing 
for a long period (e.g. half a day), these periods are removed 
from the dataset. To simplify the identification and removal of 
outliers the variable ‘the heat consumption per interval size’ 
ΔQ(t) is determined. ΔQ(t), which is also used in further steps 
of the validation methodology, is derived from the cumulative 
heat consumption as follows: Δ𝑄(𝑡) = 𝑄(𝑡) − 𝑄(𝑡 − 𝑥)   (3) 

Where Q(t) [kWh] is the registered cumulative heat 
consumption at time t and Q(t-x) [kWh] is the cumulative 
consumption at the previous measurement time point. 

To remove outliers from the data different statistical methods 
were investigated: standard deviation around the (moving) mean 
and median, generalized extreme studentized deviation, and 
based on percentiles. The removal of outliers using an upper 
boundary defined by the 98-percentile of the daily maximum 
values of Q(t) has been found to give the most satisfying results. 
The large measurement interval, being fifteen minutes up to one 
hour, caused the removal of too much valuable data when using 
the other mentioned methods. 

Furthermore, for validation purposes, only data from 
representative residential units must be included. It is often 
possible that some apartments are vacant or become vacant, or 
faults may be present. This can affect the result of the validation 
in favor of the design method. In this aspect, the data from each 
heat meter was analyzed, and general characteristics such as the 
average and maximum daily peak heat load, the number of days 
with consumption above a certain threshold, and the total heat 
consumption over the measurement period. Based on the 
manual inspection of these characteristics threshold criteria are 
defined to determine which heat meters can be included in the 
analysis. 

2.2.2 Determination of the Peak Consumption 

Profile 
As mentioned before, similar to the approach of Verhaert et 

al. [16] to obtain power-storage characteristics from DHW-tap 
profiles, a worst-case or peak consumption profile is determined 
from the heat consumption data. This profile represents the 
maximum cumulative heat demand that can occur during a 
specific time or measurement interval x and is defined using 
Equation 4: 

Heat meter data 

Data Preprocessing  

Determination of peak consumption 

profiles  

Determination of ‘real’ Power-Storage 

characteristics  

Validation by comparison  



C(𝑥) = max(Δ𝑄(𝑡), ∀𝑡)   (4) 

However, the measurement interval size of the heat meters 
prevents the determination of the complete profile as the data 
for small intervals are lacking. To deal with this problem, at 
first, the average heat capacity or power Φ(x) required to cover 
the maximum heat consumption that can occur within a specific 
time or measurement interval size x is determined. This average 
power Φ(x) is determined as follows: Φ(𝑥) = max (Δ𝑄(𝑡)𝑥 , ∀𝑡)   (5) 

This graph allows to identify a so-called ‘critical interval’. 
During this critical interval, as the measurement interval size 
increases, the average power remains more or less constant. 
Also, the largest interval size for which this average power is 
barely affected can be an indication of the duration of the peak 
heat demand. Since the demand is collective, the peak heat 
demand may occur for a longer time. The existence of such an 
interval for DHW consumption was addressed by Verhaert et al. 
[16]. Also, the study of Wang et al. [11] showed that when 
examining collective heat consumption data from a district 
heating network, data with a half-hourly to hourly measurement 
frequency is sufficient enough to identify the peak heat demand. 
This indicates that it may be possible to identify a critical 
measurement interval for collective heating systems that 
provide both heat for SH and DHW purposes. 

If such a ‘critical interval’ can be observed, it can be 
concluded that the maximum average power Φ(x) of the 
smallest measurable interval size is representative for interval 
sizes below the actual measurement interval size. Consequently, 
this solves the problem of the relatively large measurement 
interval size. Nevertheless, the critical interval might be shorter 
than the measurement interval of the heat meters. When this is 
the case, the peak consumption profile is filled using an 
approximation equation. Given that the peak consumption 
profile is an ever-increasing curve, and taking into account the 
observations of Verhaert et al. [16], a second-order degree 
polynomial equation is assumed to be a proper approximation. 𝐴(𝑥) = 𝑎 ⋅ 𝑥2 + 𝑏 ⋅ 𝑥 + 𝑐   (6) 

The coefficients can be determined based on the following: 
As no consumption exists during a time interval of zero, c is 
zero. Furthermore, coefficients a and b can be determined given 
that, on one hand, the value of C(x) and A(x) should be the same 
for the smallest known value of x, and on the other hand, the 
slope of the tangents at this point must also be equal. 

Using this approximation the problem of the measurement 
frequency is solved. Nonetheless, another challenge to account 
for is the fact that systems for space heating are sized based on 
certain outdoor design conditions. According to the standard EN 
12831-1 [18], the design heat load is calculated at a location-
specific external design temperature. Since the outcome of the 
design tool depends on this calculated design heat load, the peak 
consumption profile has to be determined at design outdoor 
conditions for proper validation. However, it is possible that 
these design conditions may not occur during the measurement 
period. Therefore, a method is defined to estimate the peak load 
profile at design outdoor conditions. 

Various methods exist to estimate the heat consumption, with 
linear regression models being common. In the simplest form, 
this involves energy signature models, using outdoor 
temperature as the sole independent variable and daily or 
monthly heat consumption as the dependent variable [19]. More 
complex multivariate regression models incorporate additional 

independent variables, including building parameters [20], other 
outdoor climate factors [21], time-related variables, and 
historical data from previous time steps [22]–[25]. More recent 
approaches include autoregressive models [26], support vector 
machines (SVM), and artificial neural networks (ANN) [24], 
[25], mainly for predicting near-future heat loads, often for the 
next 24 to 42 hours. These models use predicted climate 
variables, time-related factors, and historical climate and heat 
load data over various time horizons, typically ranging from 24 
hours to one week.  Based on the results of [24] and [25], ANN-
models gave the most accurate predictions in the case of 
building heat load estimation. 

Given the research objective of estimating the peak 
consumption profile at design conditions, using the 
aforementioned methods presents challenges. Often the 
standards to calculate the design heat load for SH only provide 
a certain design outdoor temperature. Thus, climate conditions 
of the preceding time horizon, which are used as inputs in the 
models, are undefined. Defining these inputs is complex and 
will require additional research, which is out of the scope of this 
research. Nonetheless, it is possible to investigate the 
application of ANNs, SVMs, and other machine-learning 
models without historical inputs. However, the limited 
availability of heat consumption data and expertise in this study 
constrains the development and comprehensive evaluation of 
such models. Therefore, the use of a multivariate linear 
regression model was opted. The linear regression model is 
derived from the energy balance equation. This approach 
provides transparency in analyzing the models output against 
the actual data, allowing to incorporate a conservative safety 
margin to account for the inaccuracies in the determination of 
the peak consumption profile due to the model under-
specification. 

The energy balance of the heat demand in a CHDC system is 
the result of two sub-demands, i.e. the heat demand for SH and 
the heat demand for DHW preparation. The heat demand for SH 
during a certain time interval can be defined using Equation 7. 
The parameter L is a linear loss factor including factors such as 
the thermal insulation rate, building materials, ventilation losses 
(depending on the used ventilation system), and air leakage. 
Parameter C is a lumped capacitance taking into account the 
thermal inertia of the building and heated space. The term S·I 
represents the solar heat gains with S the solar heat gains 
coefficient, which can be perceived as the solar aperture, and I 
the solar radiation in Wh/m². 𝑄𝑆𝐻 = ∫ 𝐿 ⋅ (𝑇𝑖 − 𝑇𝑜) 𝑑𝑡  + ∫ 𝐶 ⋅ 𝑑𝑇𝑖𝑑𝑡  𝑑𝑡  − 𝑆 ⋅ 𝐼 − 𝑄𝑖𝑛𝑡,𝑔𝑎𝑖𝑛 

(7) 

In this way, the balance of the total heat demand is given as 
follows: 𝑄𝑡𝑜𝑡 = ∫ 𝐿 ⋅ (𝑇𝑖 − 𝑇𝑜) 𝑑𝑡  + ∫ 𝐶 ⋅ 𝑑𝑇𝑖𝑑𝑡  𝑑𝑡  − 𝑆 ⋅ 𝐼 − 𝑄𝑖𝑛𝑡,𝑔𝑎𝑖𝑛 +𝑄𝐷𝐻𝑊      (8) 

While incorporating windspeed effects may enhance the fit, 
it is not considered in this research, as it focuses exclusively on 
recently constructed buildings compliant with Belgian building 
regulations. If older buildings were included, we could 
introduce a windspeed factor into Equation 8. 

Due to the lack of information on the buildings, data 
regarding the occupant behavior and the actual indoor air 
temperature, parameter C, the internal heat gains, and the 
domestic hot water demand cannot be derived or estimated from 
the consumption data. Therefore, Equation 8 is compared with 



the general equation of a linear regression model with the 
outdoor temperature and the solar radiation as independent 
variables, which is given as: 𝑄 = β0 + β1 ⋅ 𝑇𝑜 + β2 ⋅ 𝐼 + 𝜀   (9) 

Based on this comparison, it is possible to relate the 
coefficients of Equation 9 to the parameters of Equation 8. This, 
in turn, allows to infer that the intercept and the deviations 
between the regression model and the real consumption data can 
be related to the dynamic effects arising from the thermal inertia, 
variations in the indoor air temperature, the internal heat gains, 
and the DHW demand. ∫ L ⋅ 𝑇𝑖  𝑑𝑡 + ∫ C ⋅ 𝑑𝑇𝑖𝑑𝑡  dt − 𝑄𝑖𝑛𝑡,𝑔𝑎𝑖𝑛𝑠 + 𝑄𝐷𝐻𝑊 = β0 + 𝜀 (10) 

The intercept β0 will represent the mean value of the sum of 
these terms, and the error term ε the deviations from this mean. 
Given that these terms are dependent on the occupant behavior 
and have a high stochastic nature, especially the internal heat 
gains and the DHW demand, the model is not able to accurately 
predict the peak consumption profile and is likely to 
underestimate the profile. To cope with this, the maximum 
positive error between the model prediction and the actual 
measured heat consumption is calculated and added to the model 
predictions at worst case or design outdoor conditions. 
Furthermore, based on previous analysis of heat consumption 
data, the maximum positive error will not be determined over 
the entire temperature range but only for a specific range (i.e. 
for outdoor temperatures lower than four degrees Celsius) since 
it is assumed that the terms related to the error will have some 
seasonal dependence. 

Nonetheless, as mentioned by Hammarsten S. [21] and 
Himpe E. et al. [26], the use of data with a measurement 
frequency lower than 24 hours for the fitting of the regression 
model is not recommended as it may lead to inaccurate models. 
The main reason is the fact that the data is autocorrelated due to 
intra-daily effects in both the outdoor climate, the physics of the 
building and the installation, and the user behavior. For 
example, if the heating system follows a time-based control and 
the users behavior follows a certain pattern, the heat demand can 
differ from hour to hour and affect the heat demand of 
consecutive hours. This is often seen in the analysis of heat load 
patterns of buildings [19], [27]. Therefore, the time of the day 
(ToD) is included in the regression model to take these effects 
into account. As a result, the coefficients and the intercept of the 
regression model are dependent on the time of the day. 𝑄 = β0(𝑇𝑜𝐷) + β1(𝑇𝑜𝐷) ⋅ 𝑇𝑜 + β2(𝑇𝑜𝐷) ⋅ 𝐼 + 𝜀  (11) 

Furthermore, based on the results of Himpe E. et al. [26] 
replacing the average outdoor temperature with the daily heating 
degrees days (HDD) provides a better fit since it helps to 
account for the effect of heat gains and the thermal inertia of the 
building [28]. Therefore, an alternative regression model 
including the daily heating degree days is foreseen, where the 
daily number of degree days is determined in accordance with 
the method according to the Belgian Gas Federation [29]. 𝑄 = β0(𝑇𝑜𝐷) + β1(𝑇𝑜𝐷) ⋅ 𝐻𝐷𝐷 + β2(𝑇𝑜𝐷) ⋅ 𝐼 + 𝜀  (12) 

Depending on the outcome of the fitting analysis, either the 
model based on the outdoor temperature or the daily number of 
degree days will be used to determine the peak load profile at 
design conditions. In the event that the model based on the 
outdoor temperature yields the best results, the peak load profile 
is estimated at the design outdoor temperature, defined 
following the  EN 12831-1 standard [18]. Conversely, in the 
other scenario, the problem that there is no such concept as 

“design number of heating degree days” arises. Consequently, a 
pragmatic approach is adopted, where the maximum daily 
heating degree days of the last 10 years is used to define the 
worst-case conditions. 

To conclude, the peak load profile is determined in two ways: 
once based on the effectively measured heat consumption, and 
once at design or worst-case conditions using the 
aforementioned method based on linear regression models. 

2.2.3 Determination of the ‘real’ power-storage 

characteristic 
Once the peak consumption profile is determined, both based 

on the measured heat consumption data and estimated at design 
conditions, the ‘real’ power-storage characteristics can be 
determined. By comparing the possible heat production P(x) 
that a certain production capacity can provide within a certain 
time interval with respect to every point on the peak 
consumption profile, the required thermal storage Qstor can be 
derived as follows: 𝑄𝑠𝑡𝑜𝑟 = 𝑚𝑎𝑥(𝐶(𝑥) − 𝑃(𝑥))   (13) 

The process is graphically shown in Figure 5. As long as the 
possible heat production is greater than the peak demand C(x), 
no thermal storage is required to cover the peak heat demand. 

 

Figure 5 Evaluation of the possible heat production of a certain 

thermal capacity P(x) (yellow line) against the peak consumption 

profile C(x) (orange line). The maximum positive difference between 

C(x) and P(x) gives the required thermal storage. 

 

By evaluating a range of production capacities, the required 
thermal storage can be plotted as a function of the foreseen 
production capacity. As a result, this graph represents the ‘real’ 
power-storage characteristic which shows the possible 
combinations of production capacity and thermal storage 
required to meet the peak heat demand. The ‘real’ power-storage 
characteristic is determined based on the peak consumption 
profile measured as well as the one estimated at design or worst-
case outdoor conditions. 

  



2.2.4 Comparison of characteristics 
As presented in Figure 6, in the final step of the validation 

methodology,  the resulting power-storage characteristics are 
compared with the outcome of the sizing method. The 
characteristics derived from the measurement data show the 
minimum required combinations to meet the peak heat demand 
within the time interval ranging from 0 to 1440 minutes. All 
possible combinations above these characteristics will provide 
comfort. Conversely, combinations below these characteristics 
result in discomfort. Thus, to prove the validity of the sizing 
approach, the resulting characteristic should deliver higher or 
equal combinations to the characteristics derived from the 
measurement data. 

 

Figure 6 Comparison of power-storage characteristics, red the output 

of the sizing method, blue the estimated characteristic, and green the 

actual measured characteristics. 

2.3 Case studies 
The validation methodology is applied to six case studies. All 

of the buildings are located in Antwerp, Belgium. Four of the 
buildings (buildings B to E) are part of a new city district in the 
city of Antwerp and are connected to a district heating network. 
The two other buildings, A and F, are located in rural areas to 
the north and the west of the city of Antwerp respectively, and 
have their own centralized heat production. The general 
characteristics of the buildings are presented in Table 1. The 
insulation rate of the buildings is presented through the ‘K-peil’, 
which is an indication of the overall thermal insulation of the 
building as defined by the Flemish energy performance 
regulations for buildings (EPB) [30]. All of the case studies are 
equipped with a CHDC system for the distribution of heat to 
each apartment unit. In buildings A to E, the apartments are 
equipped with an HIU with a plate heat exchanger for the 
instantaneous production of DWH. In building F the apartments 
are equipped with an HIU with a decentral storage tank of 60 
liters with an internal heating coil. Buildings C to F use radiators 
as their heat-emitting system, whereas buildings A and B are 
equipped with floor heating. 

Furthermore, all of the apartments are equipped with a smart 
heat meter which records the cumulative heat consumption. 
Normally, the heat consumption is registered on an hourly or 
daily basis. However, for this research, the registration 
frequency was adjusted to a quarterly basis, except for building 

B where the frequency was kept on hourly basis by the building 
operator. Due to the adjustment of the registration interval, and 
agreements with the building owners, data is only available from 
November 2020 to May 2021, except for Building F where data 
is available for the period from November 2020 to November 
2021. Since the outdoor conditions are not measured at each 
building, climate data is used from the weather station of the 
Royal Meteorological Institute of Belgium located in the city of 
Antwerp [31] or data from a weather station located in the north 
of the province of Antwerp [32]. Depending on the location of 
the case, data from the nearest weather station is used. 

As mentioned in the introduction of the sizing method, the 
first step in sizing is to determine the separate heat demand for 
SH and DHW. Table 2 shows the inputs for the sizing method, 
along with the registration interval of the heat consumption data 
for each case study. Preliminary results showed the best results 
when combining the sizing approach with the German DIN 4708 
standard [17]. 

3 Results and Discussion 

3.1 Results of the data pre-processing 
As mentioned in Section 2.2.1, we initially assess the 

eligibility of individual apartment units for inclusion in the 
validation study. This evaluation is primarily based on a visual 
inspection of their total and average daily heat consumption and 
the number of days with heat consumption. For building A, 33 
out of 59 apartments were deemed eligible. Building B had 33 
eligible apartments, while building C had 14, Building D and E 
had 19 and 7, respectively. 

3.2 Identification of the critical interval 
Figure 7 shows the average power needed to meet peak heat 

demand based on measurement interval size for the analyzed 
case studies. The average power remains fairly constant from 
720 to 1440 minutes but rises sharply for intervals less than 120 
minutes. However, the absence of a flattening trend suggests 
that the critical interval is below fifteen minutes. Consequently, 
following the validation methodology, an approximation 
equation was applied to fill the peak consumption profiles. 

 

Figure 7 Average power required to cover the peak consumption with 

respect to the measurement interval size x. 

 



Table 1 Building characteristics of the case studies. 

Building

  

# apartments Type Insulation rate  

(K-peil) 

Floor area Space Heating and sanitary 

equipment 

A 59 Normal  
service flats 

31 – 33 56 – 119 m² Floor heating 
Bad or shower, 1-3 taps 

B 47 Normal  
4 maisonettes 

40 49 – 140 m² Floor heating  
Bad and/or shower, 1-3 taps 

C 16 Normal 40 ± 60 m² Radiators 
Bad or shower, 1-3 taps 

D 25 Social housing 40 60 – 120 m² Radiators 
Bad or shower, 1-3 taps 

E 30 Social housing 40 60 – 120 m² Radiators 
Bad or shower, 1-3 taps 

F 8 Social housing 30 75 – 90 m² Radiators 
Shower, 1-3 taps 

 

Table 2 Building and occupant characteristics used as input for the sizing approach along with the available measurement interval. 

Building

  

 Occupancy  

(DIN 4708) [persons] 

DHW-demand  

(DIN 4708) [Wh] 

SH-demand  

[kW]  

Measurement interval  

[minutes] 

A  2 – 3.5 5820 4.5 – 9.6  15 

B  2 – 3.5 5820 – 7450  2.5 – 7.0 60 

C  2 – 2.7 5820 2.5 15 

D  2 – 4.3 5820 2.9 – 4.3 15 

E  2 – 4.3 5820 2 – 3.5 15 

F  2 – 2.7 5820 3.1 – 3.5 10 

3.3 Linear regression model fitting results 
The fitting results of the linear regression model are 

presented in Figure 8. The graphs show for each case study the 
R²-values (adjusted) of the model fit for each measurement 
interval size. First of all, it can be noted that for all of the cases, 
the models based on HDD provide the best fit, as they have 
higher R²-values. This is in accordance with [27] due to the 
better identification of the effect of heat gains, thermal inertia, 
and seasonality. 

Besides, it can be observed that the regression model exhibits 
the weakest performance for the smallest interval sizes. The R²-
values for the shortest measurement intervals between 15 and 60 
minutes range between 0.27 and 0.44. Except for Case A, where 
the R²-value for the smallest interval size is 0.88. The low 
accuracy of the regression model for small interval sizes is due 
to two effects. First, the heat demand of DHW influences the 
accuracy at low intervals, as this heat demand is of relatively 
short duration and a stochastic nature. Second, the accuracy is 
influenced by the control and the type of space heating system, 
given that all the HIUs are controlled by an ON/OFF signal from 
the thermostat. This control lacks modulation based on the 
outdoor temperature, and combined with the prolonged time 
constants of the space heating system, causes the space heating 
system to operate at maximum load, regardless of the outdoor 
temperature. Both effects affect the heat consumption during 
small interval sizes which results in a nonlinear correlation 

between the heat consumption and outdoor temperature or 
HDD. 

This phenomenon is also visible in the graphs showing the 
maximum average peak power as a function of the measurement 
interval size and the outdoor temperature. Examples are given 
in Figure 9 for Cases C and E. As can be seen, the average power 
to meet the peak heat demand at low intervals increases when 
the outdoor temperature decreases. However,  the increase in 
average power is not linear with the outdoor temperature, and 
the maximum average power is not requested at the lowest 
outside temperature. 

Nonetheless, case A seems to be the exception. A possible 
explanation is the presence of a central night setback, as the 
central heat production system is switched off from 00:00 to 
04:00. This night setback creates a very pronounced and long 
morning peak where the effect is intensified by the use of floor 
heating as SH system. In combination with a low relative share 
of DHW in the total heat consumption, this makes the heat 
consumption strongly correlated with the outdoor temperature, 
thus providing better fit results. In addition, it is worth 
mentioning that this type of control is not advisable in CHDC 
systems, as the temperature reduction inhibits the decentralized 
production of DHW at the individual HIUs and results in 
prolonged periods of discomfort owing to the extensive waiting 
times for the reheating of the spaces when floor heating is used. 



             

Figure 8 Fitting results of the linear regression models for each measurement interval size, indicated by R² (adjusted) values. Orange: the results 

of the models based on HDD. Blue: the results of models based on the daily average outdoor temperature. 

Furthermore, starting from the smallest time interval,  it is 
notable that, as the measurement interval increases, the R²-
values improve until a point where they start to decrease. This 
contrasts with the expectation that the fit improves and stabilizes 
as the measurement interval size increases. Especially when 
looking at Cases A, C, D, and E, it can be observed that the R² 
values improve up to a measurement interval size of 245 to 390 
minutes and then decrease again until the values finally more or 
less stabilize towards the larger measurement interval sizes 

(>800 minutes). The variability in the fit results is thought to be 
attributed to a combination of factors related to the occupant 
behavior and the space heating system operations. This is 
mainly derived from the findings of Case C, where this pattern 
is most pronounced. In the instance of Case C, there is a 
significant share of DHW in the total heat demand. The 
occupants are comprised of working families which most likely 
follow a conventional daily routine consistent with that of 
working individuals. Consequently, the space heating system is 



often controlled through a time-based control, i.e. a reduction in 
the room temperature during periods of absence and throughout 
the night. As a result, a typical daily heat load pattern emerges 
with morning and evening peaks attributed to the start-up of the 
space heating system and the more grouped DHW demand 
following the daily usage patterns typical of a working 
individual. 

 

Figure 9 Average peak power as a function of the measurement 

interval size with respect to the outdoor temperature. 

 

It is hypothesized that, on one hand, this contributed to the 
lower fit results for smaller interval sizes as discussed earlier. 
On the other hand, the time-based control of the SH system leads 
to high startup peaks and further categorizes the heat 
consumption into periods of increased demand when the SH 
system is active, and periods of reduced demand when the 

system is in setback mode. Typically, these periods when the 
system is active span around 3 to 5 hours. As a result, the heat 
consumption over these periods becomes more strongly 
correlated with the outdoor temperature or the number of degree 
days, resulting in a better fit. As the measurement interval 
increases, the ‘active and setback’ periods start to overlap, and 
the heat consumption is more averaged out. Additionally, the 
proportion of DHW in heat consumption increases over the 
measurement period due to diversity in the demand. These 
combined factors lead to a decrease in R²-values as the 
measurement interval increases and gradually appears to 
stabilize. 

For Cases A, D, and E, the previously discussed pattern in 
the R²-values is also visible but less pronounced. In these cases 
the share of DHW in the total heat demand is relatively lower, 
partly owing to the nature of the buildings, which falls under the 
category of social housing. Furthermore, the occupants of these 
cases predominantly consist of elderly and persons whose daily 
routines diverge from the daily routines of the typical working 
individuals. Consequently, this leads to a heat load pattern 
corresponding to their habits. These factors likely contributed to 
milder fluctuations in the observed R²-values compared to Case 
C. 

Nevertheless, it is important to note that these findings are 
only based on a limited number of case studies. To draw 
definitive conclusions, further research including more case 
studies, is necessary. 

3.4 Results of the validation methodology: 

comparing characteristics 
Following the validation procedure, once the peak 

consumption profile is determined both based on the actual 
measured heat consumption and estimated using the 
extrapolation methodology based on a multivariate linear 
regression, the ‘real’ power-storage characteristics are derived. 
Since the evaluation of the regression models showed that the 
ones based on HDD performed better than the ones based on the 
daily average temperature, HDD-based models were used to 
determine the peak consumption profile. For the analyzed case 
studies the worst-case scenario corresponds with 25 degree days 
[29].  

The results of the application of the validation methodology 
to six case studies are presented in Figure 10. In the figure, the 
green curves represent the power-storage characteristics based 
purely on the measured heat consumption, and the blue curves 
represent the ones based on the estimated heat consumption at 
worst-case conditions. The dark red and orange curves represent 
the output from the sizing method. Due to privacy reasons, it 
was not possible to find out which apartments were excluded 
from the validation study. Therefore, two different outputs were 
calculated according to the sizing method. Once for the ‘n’ 
number of apartments with the highest design heat demand for 
SH and DHW, presented by the dark red curve, and once for the 
‘n’ apartments with the lowest heat demand, presented by the 
orange curve. Where ‘n’ equals the number of apartments 
included in the validation study. 

Looking at the results of cases A to E, it can be observed that 
the output of the sizing method lies above the power-storage 
characteristics based on the heat consumption data. 
Subsequently, this shows that the output of the sizing method is 
capable of covering the peak heat demand. Furthermore, as can 
be seen, an uncertainty boundary is included, presented by the 
grey line. This uncertainty boundary is the result of using the 



approximation equation to fill the peak consumption profile for 
intervals below the minimum measurement interval available in 
the data. All points of the real power-storage characteristics at 
the left of this uncertainty boundary result from this 
approximation, and therefore, cannot be fully validated to cover 
the peak heat demand. Nonetheless, these points of the 
characteristics are mainly defined by instantaneous peak heat 
demands which are strongly influenced by DHW heat demand 
with a base heat demand for SH. However, as seen in the heat 
consumption data, the peaks resulting from the DHW demand 
are highly dependent on the chance of the simultaneous demand 
for DHW by all of the apartments, and the occurrence of these 
peaks is limited. As a result, from an economic perspective, it is 
more interesting to size the central heat production system based 
on the point where the design power-storage characteristic 
‘flattens’. As can be seen in the results, for the case studies with 
data measured at intervals of 15 minutes or less, this point lies 
to the right of the uncertainty boundary, thereby confirming its 
validity. For cases A, B, D, and E, the point where the design 
characteristic flattens lies above the real power-storage 
characteristics. However, case C reveals a minor discrepancy of 
0.4 kW between the sizing method’s output and the measured 
power-storage characteristic. In reality, however, this small 
discrepancy is likely to be compensated for by the effective 
selection of the heat production and storage equipment, along 
with any supplementary power allocated to cover distribution 
losses. 

As shown in Figure 10, the graph of case F shows some 
differences from the graphs of the other cases. More 
specifically, the real power-storage characteristics have 
undergone a rightward shift. This owes to the fact that in the 
instance of Case F HIU’s with decentralized storage tanks are 
used. As mentioned in the explanation of the sizing method in 
the Introduction, due to the presence of the decentralized storage 
tanks, there is already some active thermal storage. This 
decentral storage reduces the peak power required from the 
central heat production and thus needs to be taken into account. 
Therefore, the total decentralized active storage capacity is 
calculated and added to the real power-storage characteristics. 
As a result, these characteristics shift rightward, and 
subsequently, allow to compare the characteristics to the design 
characteristic. 

As can be noticed, in the instance of case F, the design output 
falls under the real power-storage characteristics, indicating that 
the design according to the sizing method will not be able to 
cover the peak heat demand. An explanation was found in the 
use of the DIN 4708 standard for the calculation of the heat 
demand for DHW. To determine the heat demand for DHW that 
occurs within a specific period, the German standard derives a 
Gaussian normal distribution of the heat demand based on the 
number of dwellings and the sanitary equipment. However, the 
parameters used to establish this normal distribution assume an 
instantaneous consumption of DHW. The presence of the 
decentralized storage affects the shape of this normal 
distribution, due to inter alia the accumulation of the domestic 
hot water demand. Moreover, the charging flow rates set to 
charge the decentral storage tanks influence the peak heat 

demand, as has been demonstrated by Jacobs et al. [5]. As these 
influences are not accounted for by the DIN 4708 standard, the 
intended physical significance is lost, and subsequently, the 
output of the sizing method may result in inaccurate sizing. 

Finally, the accuracy of the approaches used to deal with the 
limited accuracy and resolution inherent in the data from 
residential heat meters was also investigated. On the one hand, 
the accuracy of the most recent heat meters is acceptable for the 
objective of this study. On the other hand, the resolution at 
which the heat consumption is calculated and recorded by the 
heat meters can cause concern. In most cases, the heat 
consumption is recorded on a kWh basis. This rather low 
resolution can lead to an underestimation, especially when the 
data from multiple heat meters are accumulated. On the 
contrary, also an overestimation is possible. To verify whether 
the peak thermal power determined by the approximation 
equation specified in Section 2.2.2, differs significantly from the 
real measured peaks, the instant power was determined from the 
heat meter data. The instantaneous power was calculated from 
the heat meter data by using the temperature and flow 
measurement data, according to the calculation methods 
specified by the NBN EN 1434-1:2015 [33], concerning the 
general requirements of thermal energy meters. Subsequently, 
the calculated thermal powers of all heat meters are summed and 
the maximum is calculated. The total thermal power is then 
compared with the results of the approximation method. 

Table 3 presents the actual measured and approximated 
instantaneous thermal power for all the cases. Apart from case 
E, there is generally no significant over or underestimation. 
However, since the actual measured instantaneous thermal 
power is calculated from measurements with quarter-hourly to 
hourly measurement frequency, the possibility exists that the 
actual peak power is not captured. Nevertheless, the comparison 
offers insights into the alignment and relative magnitudes of the 
measured and approximated peak power values. 

 

Table 3 Comparison between the measured instantaneous peak 

power and instantaneous peak power according to the peak 

consumption profile. 

  Peak Power –  
instant measured 

[kW] 

Peak Power – 
approximation 

[kW] 

Case A 194.2 203.2 

Case B 125.7 132.6 

Case C 75.6 75.2 

Case D 73.0 82.7 

Case E 89.0 121.3 

Case F 56.1 52.8 

 

 



          

Figure 10 Comparison of power-storage characteristics. Red and orange: the characteristics according to the maximum sum of parts. Blue: the 

characteristic estimated at worst-case outdoor conditions. Green: the characteristic based on the actual measured heat consumption

 

  



4 Conclusion 

In this paper, a validation methodology is presented to 
validate a novel sizing approach for collective systems that 
produce and/or distribute heat for space heating and domestic 
hot water. The validation methodology was developed to 
overcome the limitations associated with residential heat meter 
data, such as the limited measurement frequency and resolution. 
It involved the derivation of a peak consumption profile from 
heat consumption data and an estimation of this profile under 
worst-case outdoor conditions, which might not be present in 
the data. A multivariate regression model, coupled with an 
analysis of the maximum deviations, was employed to 
determine the peak consumption profile under worst-case 
outdoor conditions. Subsequently, the peak consumption profile 
enables the determination of the power-storage characteristics, 
which represents all possible combinations of thermal power 
and storage capacity required to meet the measured or estimated 
peak heat demand. In turn, this power-storage characteristic is 
compared to the output of the sizing approach. 

Analysis of the peak consumption profile and evaluation of 
the fitting results demonstrated that the peak consumption over 
shorter intervals (15 to 60 minutes) is predominantly influenced 
by the DHW consumption and whether the SH system is active 
or not. The actual outdoor temperature plays a lesser role, 
although this depends on factors such as location, occupant type, 
and control strategy. The peak consumption over longer 
intervals showed an increasing correlation with decreasing 
outdoor temperatures. 

The validation methodology was applied to six case studies, 
focusing on apartment buildings with a collective heating 
system of the CHDC type. The results demonstrated that for 
apartment buildings equipped with HIUs for instantaneous 
DHW production, the sizing approach is capable of covering the 
peak heat demand both measured as predicted at worst-case 
outdoor conditions. Nevertheless, the results show that in the 
case where decentralized DHW storage tanks are present, the 
sizing approach may result in under-sizing. This discrepancy 
primarily arises from the incompatibility of the prescribed 
approach for including decentralized storage into account in the 
sizing and the German DIN 4708 standard, which is used to 
determine the DHW demand. Consequently, further research is 
necessary to adapt the sizing approach to ensure its applicability 
and accuracy for the sizing of collective heating systems with 
decentralized DHW storage 
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