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Summary
Background Pick’s disease is a rare and predominantly sporadic form of frontotemporal dementia that is classified as 
a primary tauopathy. Pick’s disease is pathologically defined by the presence in the frontal and temporal lobes of Pick 
bodies, composed of hyperphosphorylated, three-repeat tau protein, encoded by the MAPT gene. MAPT has two 
distinct haplotypes, H1 and H2; the MAPT H1 haplotype is the major genetic risk factor for four-repeat tauopathies 
(eg, progressive supranuclear palsy and corticobasal degeneration), and the MAPT H2 haplotype is protective for 
these disorders. The primary aim of this study was to evaluate the association of MAPT H2 with Pick’s disease risk, 
age at onset, and disease duration.

Methods In this genetic association study, we used data from the Pick’s disease International Consortium, which we 
established to enable collection of data from individuals with pathologically confirmed Pick’s disease worldwide. For 
this analysis, we collected brain samples from individuals with pathologically confirmed Pick’s disease from 35 sites 
(brainbanks and hospitals) in North America, Europe, and Australia between Jan 1, 2020, and Jan 31, 2023. 
Neurologically healthy controls were recruited from the Mayo Clinic (FL, USA, or MN, USA between 
March 1, 1998, and Sept 1, 2019). For the primary analysis, individuals were directly genotyped for the MAPT H1-H2 
haplotype-defining variant rs8070723. In a secondary analysis, we genotyped and constructed the six-variant-defined 
(rs1467967-rs242557-rs3785883-rs2471738-rs8070723-rs7521) MAPT H1 subhaplotypes. Associations of MAPT 
variants and MAPT haplotypes with Pick’s disease risk, age at onset, and disease duration were examined using 
logistic and linear regression models; odds ratios (ORs) and β coefficients were estimated and correspond to each 
additional minor allele or each additional copy of the given haplotype.

Findings We obtained brain samples from 338 people with pathologically confirmed Pick’s disease (205 [61%] male 
and 133 [39%] female; 338 [100%] White) and 1312 neurologically healthy controls (611 [47%] male and 701 [53%] female; 
1312 [100%] White).The MAPT H2 haplotype was associated with increased risk of Pick’s disease compared with the 
H1 haplotype (OR 1·35 [95% CI 1·12 to 1·64], p=0·0021). MAPT H2 was not associated with age at onset (β –0·54 
[95% CI –1·94 to 0·87], p=0·45) or disease duration (β 0·05 [–0·06 to 0·16], p=0·35). Although not significant after 
correcting for multiple testing, associations were observed at p less than 0·05: with risk of Pick’s disease for the 
H1f subhaplotype (OR 0·11 [0·01 to 0·99], p=0·049); with age at onset for H1b (β 2·66 [0·63 to 4·70], p=0·011), 
H1i (β –3·66 [–6·83 to –0·48], p=0·025), and H1u (β –5·25 [–10·42 to –0·07], p=0·048); and with disease duration 
for H1x (β –0·57 [–1·07 to –0·07], p=0·026).

Interpretation The Pick’s disease International Consortium provides an opportunity to do large studies to enhance 
our understanding of the pathobiology of Pick’s disease. This study shows that, in contrast to the decreased risk of 
four-repeat tauopathies, the MAPT H2 haplotype is associated with an increased risk of Pick’s disease in people of 
European ancestry. This finding could inform development of isoform-related therapeutics for tauopathies.
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(Medical Research Council), US National Institutes of Health, and the Mayo Clinic Foundation.
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Introduction
Pick’s disease is a rare and predominantly sporadic 
subtype of frontotemporal lobar degeneration. Fronto­
temporal lobar degeneration accounts for approximately 
5% of cases in post-mortem analyses of people who had 
dementia;1 however, given that a definite diagnosis of 
Pick’s disease requires confirmation in post-mortem 
brain issue, owing to the heterogeneity of clinical 
presentation and the absence of a specific in-vivo 
biomarker, the incidence and prevalence of Pick’s disease 
are currently unknown. Brain bank studies suggest that 
Pick’s disease could account for up to 30% of individuals 
with frontotemporal lobar degeneration and tau 
pathology at autopsy, and 10% overall of people who have 
frontotemporal lobar degeneration.2 The prevalence of 
frontotemporal lobar degeneration syndromes has been 
estimated at 10·2 per 100 000 and the incidence at 
1·61 per 100 000 person-years,3 suggesting that the preva­
lence of Pick’s disease could be around 1 per 100 000 with 
an incidence of around 0·2 per 100 000 person years.

Although there are no clinical diagnostic criteria for 
Pick’s disease, the mean age of symptom onset is 
57·0 years (SD 12·5) and the disease presents with 
behavioural change, impaired cognition, and occasionally 
motor difficulties.4–10 Pick’s disease progresses relatively 
rapidly and patients die approximately 10 years after 
disease onset.4–9 Symptomatic treatments are available, 
but currently no treatments can delay disease onset or 
progression.

Neuropathologically, Pick’s disease is classified macro­
scopically by severe frontotemporal, knife-edge like 
cortical atrophy, and microscopically by the presence of 
ballooned neurons and argyrophilic, tau-immunoreactive 
inclusion Pick bodies in frontal and temporal regions.4 

Characteristic Pick bodies consist of aggregates of 
hyperphosphorylated three-repeat tau proteins, which 
are encoded by the MAPT gene on chromosome 17,1,10 
and therefore Pick’s disease is classified as a three-repeat 
tauopathy. MAPT encodes six major tau protein isoforms 
in the adult human brain; these are generated by 
alternative splicing of exons 2, 3, and 10, which influences 
the number of repeat domains across the tau protein.11 
Alternative splicing leading to exclusion of exon 10 
results in three-repeat units in the microtubule 
binding C-terminal domain, generating three-repeat tau 
proteins.12

Rare missense and duplication mutations of MAPT 
have been identified in a small number individuals 
with Pick’s disease or with Pick’s disease-like 
pathology;13–17 however, these data require replication, 
and independent cohorts of individuals with Pick’s 
disease have not reported common missense MAPT 
mutations.18 MAPT also has two well characterised 
common haplotypes, H1 and H2, which developed 
from a 900 kb ancestral genetic inversion event.19 MAPT 
H1 has consistently been associated with an increased 
risk of four-repeat primary tauopathies, such as 
progressive supranuclear palsy and corticobasal 
degeneration, and this haplotype is the strongest 
genetic risk factor for both diseases.20,21 Correspondingly, 
the other haplotype of MAPT, H2, is associated with a 
decreased risk of these disorders. This observation has 
not been replicated in Pick’s disease, perhaps owing to 
the rarity of the disease and the consequent small 
sample sizes in previous studies,22,23 and thus a targeted 
analysis is warranted.

Owing to its low prevalence and the inability to 
diagnose it when the person is alive, Pick’s disease is an 

Research in context

Evidence before this study 
We searched PubMed between Jan 1, 1980, and April 1, 2023, 
using the terms ((Pick’s disease) or (Pick disease)) and 
((genetic*) or (genome wide association study) or (GWAS)), 
for original research articles written in English. We assessed the 
quality of evidence using the Grading of Recommendations 
Assessment, Development, and Evaluation approach. Pick’s 
disease is recognised as a rare frontotemporal dementia that 
presents with  heterogenous clinical features, and no therapies 
are available. Given the rarity of Pick’s disease, few genetic 
studies have been done and an association with MAPT H1 
(observed for other primary tauopathies) or H2 haplotypes was 
unclear. 

Added value of this study
Understanding the genetic cause of the susceptibility and 
progression of Pick’s disease is crucial to identify potential 
therapeutic intervention strategies. The current study is the first 
from the Pick’s disease International Consortium, identifying 

338 individuals with pathologically defined Pick’s disease across 
35 brain banks. With this unique cohort, we were able to 
identify a disease risk association with the MAPT H2 haplotype, 
which has been nominated as protective in primary four-repeat 
tauopathies. 

Implications of all the available evidence 
The establishment of the Pick’s disease International 
Consortium opens opportunities to gain further insight into the 
underlying causes and pathogenesis of Pick’s disease, 
potentially facilitating future genetics studies and providing 
a resource for clinicopathological, epigenetic, transcriptomic, 
and proteomics studies. The association of Pick’s disease risk 
with MAPT H2 suggests that the haplotype status might 
influence the ratio of tau three-repeat and four-repeat isoforms 
and might inform future therapeutic strategies targeting 
MAPT-tau expression (eg, antisense oligonucleotides or 
immunotherapy).
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understudied neurodegenerative disease, and its genetic 
cause is unknown. Studies of MAPT haplotype in Pick’s 
disease have been few, small, and underpowered. 
Moreover, the scarcity of samples from affected indivi­
duals has stalled advancement in understanding how 
MAPT haplotypes and isoforms influence disease risk 
and pathology, and has prevented progress in developing 
isoform-specific therapies. To address the need for larger 
studies, we established the Pick’s disease International 
Consortium to collect data from individuals with patho­
logically confirmed Pick’s disease worldwide (with 
current sites in North America, Europe, and Australia), 
to develop an in-depth consortium database of clinical, 
pathological, and demographic information. The primary 
aim of this study was to evaluate the association of the 
MAPT H2 haplotype with disease risk, age at onset, and 
duration of Pick’s disease.

Methods
Study design
Researchers at Mayo Clinic Brain Bank in Jacksonville, 
FL, USA, and the UK Dementia Research Institute at 
University College London (UCL) Queen Square 
Institute of Neurology, London, UK, established the 
Pick’s disease International Consortium. Investigators 
at the Mayo Clinic led efforts to identify individuals with 
Pick’s disease and obtain their pathological samples 
from North America, South America, and Asia, and 
investigators at UCL led efforts to identify individuals 
with Pick’s disease and obtain their pathological 
samples from Europe and Australia. The criteria for 
individuals to be included in the Pick’s disease 
International Consortium were a neuropathological 
diagnosis of Pick’s disease and availability of frozen 
brain tissue. Exclusion criteria were frontotemporal 
dementia with a cause other than a three-repeat-
predominant tauopathy or unavailability of frozen 
specimens. Institutional Review Board approval was 
obtained for the study at both collection hubs (Mayo 
Clinic and UCL), and each individual brain bank had 
Institutional Review Board approval for collection and 
sharing of specimens. All individuals with Pick’s disease 
and healthy controls gave written consent locally at their 
respective recruitment sites for their clinical data, brain 
or tissue samples, or both, to be used in research 
projects, including genetic studies.

Study participants
Between Jan 1, 2020, and Jan 31, 2023, frozen brain tissue 
from cerebellum or prefrontal cortex were obtained for 
each participant with Pick’s disease identified through 
the Pick’s disease International Consortium and sent to 
one of the two collection hubs. Inclusion criteria for the 
study were that all individuals were self-reported to be 
unrelated to other participants in the study, White, non-
Hispanic (genetically confirmed by array data in 
individuals with Pick’s disease), and also met the Pick’s 

disease International Consortium operational diagnostic 
criteria detailed in the Procedures section. Peripheral 
blood-derived DNA was provided from controls from the 
Mayo Clinic in Jacksonville, FL, or Rochester, MN. 
Controls were deemed as neurologically healthy by 
neurologists at the Mayo Clinic.

Baseline demographic information was collected for all 
individuals (age at onset [where available] and age at 
death for individuals with Pick’s disease, age at blood 
collection for controls, and sex). Disease duration was 
calculated from the difference between age at death and 
age at onset for the subset of 309 individuals with Pick’s 
disease for whom age at onset was available. In addition 
to basic demographic information, the Pick’s disease 
International Consortium also collected information 
related to clinical characteristics (eg, clinical diagnosis, 
behavioural and language impairments, and presence or 

Figure 1: Pathological assessments of brains from individuals with Pick’s 
disease
(A) The superior and dorsolateral surfaces of the frontal cortex and temporal lobe 
often show severe circumscribed knife-edge edge atrophy. (B) Coronal sections of 
the brain show markedly dilated ventricles, cortical atrophy, and hippocampal 
affection. (C) Enlarged, amorphous ballooned neurons. (D) In regions with severe 
astrogliosis and neuronal loss, staining against αβ-crystallin can highlight 
ballooned neurons. (E) Phosphorylated tau antibodies highlight dense spherical 
cytoplasmic neuronal inclusions and can also show marked neuropil staining, 
especially in individuals with concomitant Alzheimer’s type pathology. (F) Gallyas 
silver stains can stain isolated glial lesions or neurofibrillary tangles; however, Pick 
bodies do not show substantial silver staining. (G) Three-repeat tau staining of the 
dentate fascia of the hippocampus shows strong immunoreactivity of spherical 
inclusions. (H) Four-repeat tau staining of the dentate fascia shows negative 
spherical inclusion; however, isolated neurofibrillary tangles might stain positive. 
Images are from individuals with Pick’s disease submitted to Mayo Clinic. 
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absence of parkinsonism) and pathological information 
(eg, Thal phase, Braak stage, and brain weight) for each 
individual with Pick’s disease, as well as noting whether 
other tissues and brain imaging data were available. 
Individuals were removed from this study if a rare MAPT 
missense mutation was identified by Sanger exon 
sequencing (primers are available on request from the 
corresponding authors).

Procedures
Currently, consensus diagnostic criteria for the 
neuropathological diagnosis of Pick’s disease do not 
exist. In many diagnostic centres, a neuropathological 
diagnosis of Pick’s disease relies on a characteristic 
pattern of atrophy and the presence of argyrophilic, 
spherical neuronal inclusions using traditional silver 
staining methods, such as Bielschowsky’s or Gallyas-
Braak silver staining (figure 1). Both methods stain 
Alzheimer’s disease neurofibrillary tangles, yet 
spherical inclusions in Pick’s disease are positive with 
Bielschowsky and negative with the Gallyas-Braak silver 
staining.24 This differentiation is helpful especially for 
centres that rely on immunohistochemistry against 
phosphorylated tau and do not have isotype-specific tau 
antibodies incorporated in diagnostic tests, because 
Alzheimer’s disease and Pick’s disease neuropathological 
changes can coexist in the same patient. Immuno­
histochemistry against epitope-specific tau antibodies 
further helps to distinguish between Alzheimer’s 
disease and Pick’s disease features. Because both 
spherical inclusions and neurofibrillary tangles stain 
positive with antibodies against phosphorylated tau, 
epitope-specific antibodies highlight selective three-
repeat tau spherical inclusions in Pick’s disease, which 

is further validated by antibodies to four-repeat tau if 
these spherical inclusions stain negative (figure 1). This 
distinction is particularly obvious in the granule cell 
neurons of the hippocampal dentate fascia, which can 
be used solely to diagnose Pick’s disease.

Because a harmonised neuropathological diagnostic 
scheme does not exist, it was pivotal to the aims of the 
Pick’s disease International Consortium to define 
operational diagnostic criteria for three-repeat-
predominant tauopathy. All individuals considered for 
inclusion in the Pick’s disease International Consortium 
had an archival neuropathological diagnosis of Pick’s 
disease (ie, the presence of argyrophilic or phosphorylated 
tau positive spherical inclusions) and underwent 
neuropathological assessments at their respective brain 
banks. Owing to the multisite nature of the Consortium, 
each participating centre was requested to report three-
repeat and four-repeat tau staining results for each 
individual. To fulfil our criteria, Pick bodies had to be 
confirmed to be present in each individual and in 
addition each individual had to have three-repeat tau-
positive and four-repeat tau-negative inclusions. The 
additional presence of ballooned neurons and negative 
Gallyas staining of inclusions was preferred (but not 
necessary) to confirm diagnosis. If three-repeat and four-
repeat tau immunohistochemistry had not been done, 
routinely cut sections (up to 7 µm) of unstained, formalin-
fixed paraffin-embedded tissue from hippocampal, 
frontal, or temporal lobe regions were submitted to 
either the Mayo Clinic Brain Bank for Neurodegenerative 
Diseases or UCL for three-repeat and four-repeat tau 
immunohistochemistry assessments, as per the opera­
tional diagnostic criteria (figure 2). Brain samples from 
individuals with Pick’s disease were examined by Pick’s 
disease International Consortium investigators: by two 
neuropathologists (DWD and SFR) at Mayo Clinic 
Brain Bank for Neurodegenerative Diseases or by 
a neuropathologist (TL) and a neurologist (WJS, under 
the supervision of TL) at UCL Queen Square Brain Bank, 
all using the Pick’s disease International Consortium 
operational diagnostic criteria. All sections were 
stained using standard immunohistochemical methods 
(figure 2).25

DNA was extracted from samples from each 
participant at either the Mayo Clinic (North American 
Pick’s disease cohort and all controls) or the UCL Queen 
Square Brain Bank for Neurological Disorders 
(European or Australian Pick’s disease cohort). At the 
Mayo Clinic, genomic DNA was extracted from frozen 
brain tissue from individuals with Pick’s disease and 
from peripheral blood lymphocytes from controls using 
an automated or manual method. Automated 
DNA extractions were carried out using Autogen Tissue 
Kit reagents (Autogen, Holliston, MA, USA) according 
to manufacturer protocols and were processed on the 
Autogen FlexSTAR+ instrument (Autogen, Holliston, 
MA, USA). At the UCL Queen Square Brain Bank for 
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Figure 2: Differentiation of Pick’s disease from non-Pick’s disease tauopathy using the Pick’s disease 
International Consortium operational diagnostic criteria
The top row shows a brain sample from an individual with Pick’s disease that met the diagnostic criteria because it 
was positive for AT8 and three-repeat-tau immunoreactive Pick bodies. The bottom row shows a brain sample 
from an individual with a four-repeat tauopathy who had an archival diagnosis of Pick’s disease; the sample was 
positive for AT8 and four-repeat-tau but negative for three-repeat tau immunoreactive Pick bodies. Images are 
from individuals with an archival neuropathological diagnosis of Pick’s disease submitted to University College 
London Queen Square Brain Bank. 
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Neurological Disorders, total genomic DNA was 
extracted from frozen brain tissue using the 
Kleargene XL Nucleic Acid Purification kit (LGC, 
Hoddesdon, UK). DNA quality was assessed with a 
NanoDrop 8000 spectrophotometer (ThermoFisher 
Scientific, Waltham, Massachusetts, USA) and absor­
bance ratios for 260/280 nm were between 1·7 and 2·2, 
and for 260/230 nm were between 2·0 and 2·2.

The MAPT H2 haplotype-tagging variant rs8070723 
was genotyped in all individuals with Pick’s disease and 
controls; the minor allele of rs8070723 corresponds to 
the MAPT H2 haplotype, and the major allele 
corresponds to the MAPT H1 haplotype. Additionally, 
the five common MAPT variants (rs1467967, rs242557 

[the H1c haplotype-tagging variant], rs3785883, 
rs2471738, and rs7521), which along with rs8070723 
define H1 subhaplotypes, were genotyped to assess 
MAPT subhaplotype structure.26,27 North American 
individuals with Pick’s disease and all controls were 
genotyped using TaqMan single-nucleotide poly­
morphism (SNP) genotyping assays on an ABI 7900HT 
Fast Real-Time PCR system (Applied Bio-systems, Foster 
City, CA, USA).28 MAPT variants were genotyped 
according to manufacturer instructions (primer 
sequences available upon request from the 
corresponding authors). Genotypes were called using 
TaqMan Genotyper Software v1.3 (Applied Bio-systems, 
Foster City, CA, USA). European and Australian 
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Neurologico Carlo Besta, 
Milan, Italy (G Giaccone MD); 
Molecular Neuropathology of 
Neurodegenerative Diseases, 
German Center for 
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Institute, School of Medicine, 
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Portugal (A Carvalho PhD); 
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Guimarães, Portugal 
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A

B
UCL Queen Square Institute of Neurology cohort (Europe or Australia; n=138) 
Netherlands Brainbank, Amsterdam, Netherlands (n=29)
UCL Queen Square Brain Bank, London, UK (n=16)
Neurological Tissue Bank, Biobanc-Hospital Clínic-IDIBAPS, Barcelona, Spain (n=12)
Cambridge Brain Bank, Cambridge, UK (n=10)
Manchester Brain Bank, Manchester, UK (n=9)
London Neurodegenerative Diseases Brain Bank, London, UK (n=8)
South West Dementia Brain Bank, University of Bristol, Bristol, UK (n=8)
Sydney Brain Bank, Sydney, NSW, Australia (n=7)
Neurobiobank München, Munich, Germany (n=7)
Oxford Brain Bank, Oxford, UK (n=7)
Newcastle Brain Tissue Resource, Newcastle-upon-Tyne, UK (n=7)
Neuro-CEB Biobank France, Paris, France (n=5)
Victorian Brain Bank, Florey Institute, Parkville, VIC, Australia (n=5)
Douglas-Bell Canada Brain Bank, Montreal, QC, Canada* (n=3)
The Brain Bank at Karolinska Institutet, Stockholm, Sweeden (n=2)
Fondazione IRCCS Instituto Neurologico Carlo, Milan, Italy (n=2)
DZNE Standort Tübingen, Germany (n=1)

Mayo Clinic, Jacksonville cohort (North America; n=200) 
Mayo Clinic, Jacksonville, FL, or Rochester, MN, USA (n=55)
University of Pennsylvania, Philadelphia, PA, USA (n=18)
University of California, San Francisco, CA, USA (n=16)
Massachusetts General Hospital, Boston, MA, USA (n=15) 
Northwestern University, Chicago, IL, USA (n=14) 
John Hopkins University, Baltimore, MD, USA (n=13) 
Indiana University, Bloomington, IN, USA (n=12)
Banner Sun Health Research, Sun City, AZ, USA (n=9) 
Sunnybrook Health Research, Toronto, ON, Canada (n=9)
Columbia University, New York City, NY, USA (n=9) 
Emory University, Atlanta, GA, USA (n=7) 
University of Texas Southwestern Medical Center, Dallas, TX, USA (n=7) 
University of British Columbia Hospital, Vancouver, BC, Canada (n=5) 
Houston Methodist Hospital, Houston, TX, USA (n=4) 
Duke University, Durham, NC, USA (n=3) 
Krembil Research Institute, University of Toronto, Toronto, ON, Canada (n=2) 
University of California, Los Angeles, CA, USA (n=1)
Parkwood Institute, University of Toronto, Toronto, ON, Canada (n=1)

Figure 3: Countries that have contributed samples to the Pick’s disease International Consortium and sites that contributed to this study
(A) Countries (red) that have contributed Pick’s disease tissues to the Pick’s disease International Consortium to date. Samples from Belgium were included in the 
Pick’s disease International Consortium but not in the present study (B) Recruitment sites that contributed samples to this study. The number of samples from each 
site are listed. Map created from https://www.mapchart.net/. CEB=Collection d’Echantillons Biologiques. DZNE=Deutsches Zentrum für Neurodegenerative 
Erkrankungen. IDIBAPS=Institut d’Investigacions Biomèdiques August Pi i Sunyer. IRCCS=Istituto di Ricovero e Cura a Carattere Scientifico. UCL=University College 
London. *These samples were processed and genotyped at UCL and therefore were included in the UCL cohort.
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individuals with Pick’s disease were genotyped using 
KASP SNP genotyping assays on the Hydrocyler2 system 
(LGC Genomics, Hoddesdon, UK) according to manu­
facturer instructions and were read on a PHERAStar 
FSX plate reader (BMG Labtech, Cary, NC, USA). 
Genotypes were called using Kraken KlusterKaller 
software (LGC Genomics, Hoddesdon, UK). Genotype 
call rates for all individuals were 100% for each variant. 
There was no evidence of a departure from 
Hardy-Weinberg equilibrium in controls for any of the 

six variants (all p>0·01 after Bonferroni correction). All 
individuals with Pick’s disease, but not controls, were 
assessed for European ancestry using genome wide SNP 
genotyping data. Specifically, after standard genotyping 
data quality control steps, we did a principal components 
analysis, merged all individuals with Pick’s disease with 
the European (CEU population code, which refers to 
Utah residents with northern and western European 
ancestry from the Centre d’Etude du Polymorphism 
Humain collection) HapMap reference dataset,29 and 
identified any individuals with non-White European 
ancestry (individuals with Pick’s disease who deviated 
more than six standard deviations from the mean of the 
first 10 principal components of the HapMap3 CEU 
population); individuals with known Hispanic or non-
European ancestry were excluded from our analysis as 
the frequencies of genetic variants can vary substantially 
based on ethnic background,30 and there were too few 
non-European individuals in our study to analyse such 
individuals separately or adjust for this factor in 
regression models. For controls for whom genome-wide 
SNP genotyping data were not available to confirm the 
self-reported White, non-Hispanic ethnicity, we also 
compared the control allele frequencies with the 
population-level allele frequencies on GnomAD, and the 
allele frequencies of controls (n=980) from the Global 
Parkinson’s Genetics Program.31

Statistical analysis
Statistical analyses were done using R Statistical 
Software (version 4.1.2). Associations between individual 
MAPT variants and risk of Pick’s disease were evaluated 
using logistic regression models that were adjusted for 
age (age at death in Pick’s disease and age at blood draw 
in controls) and sex; each variant was assessed as 
number of minor alleles (ie, under an additive model) in 
all regression analysis. Odds ratios (ORs) and 95% CIs 
were estimated and correspond to each additional minor 
allele. In individuals with Pick’s disease, associations of 
individual variants with age at onset were examined 
using linear regression models that were adjusted for 
sex and cohort (Europe or Australia, or North America), 
and associations between individual variants with 
disease duration were assessed using linear regression 
models that were adjusted for sex, age at onset, and 
cohort. Disease duration was considered on the square 
root scale in all regression analyses owing to its skewed 
distribution. Regression coefficients (referred to as β) 
and 95% CIs were estimated and are interpreted as the 
increase in the mean age at onset or disease duration 
(on the square root scale for disease duration) 
corresponding to each additional copy of the minor 
allele. For all associations between individual MAPT 
variants and outcomes, analysis involving rs8070723 
(the H2-tagging variant) was considered as the primary 
analysis, with results for the five remaining variants 
considered as secondary and presented for 

Participants 

Pick’s disease (N=338)

Age at death, years 69 (65–74); 338

Age of disease onset, years 58 (54–65); 309 

Disease duration, years 10 (8–13); 309 

Sex (N=338)

Male 205 (61%)

Female 133 (39%)

Clinical diagnosis (N=328)

Frontotemporal dementia 262 (80%)

Alzheimer’s disease 40 (12%)

Corticobasal syndrome 15 (5%)

Progressive supranuclear palsy 2 (<1%)

Dementia not otherwise specified 8 (2%)

Vascular dementia 1 (<1%)

Behavioural impairment during illness (N=232) 188 (81%)

Language impairment during illness (N=221) 153 (69%)

Parkinsonism during illness (N=206) 56 (27%)

Braak neurofibrillary tangle stage (N=176)

Stage 0 87 (49%)

Stage I 29 (16%)

Stage II 28 (16%)

Stage III 11 (6%)

Stage IV 10 (6%)

Stage V 4 (2%)

Stage VI 7 (4%)

Thal amyloid phase (N=177)

Phase 0 100 (56%)

Phase 1 32 (18%)

Phase 2 18 (10%)

Phase 3 15 (8%)

Phase 4 7 (4%)

Phase 5 5 (3%)

Brain weight, g 980 (880–1083); 296

Healthy controls (N=1312)

Age at blood draw, years 69 (61–75); 1312

Sex

Male 611 (47%); 1312

Female 701 (53%); 1312

Data are median (IQR); N or n (%). All participants with Pick’s disease and healthy 
controls were White and non-Hispanic. Sex was determined by self-report. 

Table 1: Summary of characteristics of the individuals with Pick’s disease 
and controls

https://www.picksdisease.net/
http://gnomad.broadinstitute.org/
http://gnomad.broadinstitute.org/
http://gnomad.broadinstitute.org/
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completeness. In exploratory analysis, associations of 
rs8070723 with other clinical and neuropathological 
factors were also assessed; these analyses are described 
in the appendix (p 1).

Associations between the six-variant-defined 
(rs1467967-rs242557-rs3785883-rs2471738-rs8070723-
rs7521) MAPT haplotypes and risk of Pick’s disease 
were assessed using the R haplo.stats package 
(version 1.9.5.1).32 Specifically, based on estimated 
haplotype probabilities, the expected number of copies 
of the given haplotype was first estimated for each 
individual, and subsequently logistic regression models 
that were adjusted for age (age at death in Pick’s disease 
and age at blood draw in controls) and sex were used to 
assess the association between the expected number of 
copies of the given haplotype and risk of Pick’s disease.32 
ORs and 95% CIs were estimated and correspond to 
each additional copy of the given haplotype. In analysis 
of individuals with Pick’s disease, associations of six-
variant-defined MAPT haplotypes with age at onset 
were assessed in the same way, based on the expected 
number of copies of the given haplotype,32 except that 
linear regression models were adjusted for sex and 
cohort. Finally, associations of six-variant-defined 
MAPT haplotypes with disease duration were evaluated 
in this same manner32 using linear regression models 

that were adjusted for sex, age at onset, and cohort. 
β-coefficients and 95% CIs were estimated and are 
interpreted as the increase in the mean age at onset or 
disease duration (on the square root scale for disease 
duration) corresponding to each additional copy of the 
given haplotype. Haplotypes occurring in less than 
1% of individuals in a specific analysis were excluded 
from that analysis.

We adjusted for multiple testing separately for each 
outcome measure that was examined (presence of Pick’s 
disease, age at onset, or disease duration). p values less 
than 0·05 were considered as statistically significant in 
the primary analysis involving the MAPT rs8070723 
variant. In secondary analysis assessing associations 
between MAPT haplotypes and outcomes, p values less 
than 0·0028 (18 tests, corresponding to 18 different 
haplotypes with 1% or more frequency in this specific 
analysis) were considered as statistically significant after 
Bonferroni correction in the disease-association analysis, 
and p values less than 0·0031 (16 tests, corresponding to 
16 different haplotypes with ≥1% frequency in this 
specific analysis) were considered as statistically 
significant in the age at onset and disease duration 
analyses. p values less than or equal to 0·05 were 
considered as significant in all remaining analysis. All 
statistical tests were two-sided. Examples of R code for 

MAPT variant Haplotype frequency Association with Pick’s disease

rs1467967 rs242557 rs3785883 rs2471738 rs8070723 rs7521 Individuals with 
Pick’s disease 
(N=338)

Healthy 
controls 
(N=1312)

OR (95% CI) p value

H1b G G G C A A 13·1% 16·0% 0·76 (0·58–1·00) 0·051

H1c A A G T A G 10·2% 11·3% 0·93 (0·70–1·25) 0·65

H1d A A G C A A 7·4% 7·1% 0·99 (0·68–1·42) 0·94

H1e A G G C A A 9·8% 9·0% 1·03 (0·74–1·42) 0·87

H1f G G A C A A 0·0% 1·2% 0·11 (0·01–0·99) 0·049

H1g G A A C A A 0·7% 1·1% 0·43 (0·11–1·65) 0·22

H1h A G A C A A 4·0% 4·1% 0·95 (0·57–1·57) 0·85

H1i G A G C A A 3·9% 4·4% 0·98 (0·60–1·61) 0·95

H1l A G A C A G 3·6% 3·0% 1·11 (0·67–1·84) 0·69

H1m G A G C A G 2·9% 2·9% 1·00 (0·56–1·78) 0·99

H1o A A A C A A 1·1% 2·3% 0·53 (0·23–1·26) 0·15

H1p G G G T A G 1·1% 1·5% 0·82 (0·33–2·04) 0·66

H1r A G G T A G 0·7% 1·1% 0·63 (0·20–2·01) 0·44

H1u A A G C A G 2·4% 2·4% 1·11 (0·58–2·11) 0·75

H1v G G A T A G 2·2% 1·2% 1·50 (0·70–3·21) 0·30

H1x G A A T A G 1·3% 1·3% 1·06 (0·44–2·56) 0·91

H1y A A A T A G 1·4% 1·6% 0·85 (0·34–2·07) 0·71

H2 A G G C G G 28·5% 22·7% 1·34 (1·11–1·63) 0·0028

ORs, 95% CIs, and p values were calculated using the R haplo.stats package; based on estimated haplotype probabilities, the expected number of copies of the given 
haplotype was first estimated for each individual. Subsequently, logistic regression models that were adjusted for age (age at death in individuals with Pick’s disease and age 
at blood draw in healthy controls) and sex were used to assess the association between the expected number of copies of the given haplotype and risk of Pick’s disease. 
ORs and 95% CIs correspond to each additional copy of the given haplotype. p values of less than 0·0028 are considered as statistically significant after applying a Bonferroni 
correction for multiple testing for the 18 different haplotypes that were assessed for association with risk of Pick’s disease. Haplotypes occurring in less than 1% of individuals 
were excluded from the analysis. OR=odds ratio.

Table 2: Associations between MAPT haplotypes and risk of Pick’s disease
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the association analysis involving individual variants 
as well as six-variant-defined haplotypes are in the 
appendix (pp 1–2).

Role of the funding source
The funders of the study had no role in study design, 
data collection, data analysis, data interpretation, writing 
of the report or decision to publish.

Results
338 individuals with pathologically defined Pick’s disease 
were identified from the Pick’s disease International 
Consortium across 35 independent recruitment sites 
and included in this study (205 [61%] male and 
133 [39%] female; 338 [100%] White; figure 3; table 1). 
1312 neurologically healthy controls were identified from 
the Mayo Clinic in Jacksonville, FL (N=881) or Rochester, 
MN (N=431; 611 [47%] male and 701 [53%] female; 
1312 [100%] White; table 1), from March 1, 1998, to 
Sept 1, 2019. Allele and genotype frequencies for each 
variant are in the appendix (p 3). The MAPT rs8070723 
H2 allele was significantly associated with an increased 
risk (in comparison with the H1 allele) of Pick’s disease 
in the overall cohort (OR 1·35 [95% CI 1·12 to 1·64], 

p=0·0021), with minor allele frequencies of 29·0% in the 
338 individuals with Pick’s disease and 23·0% in the 
1312 controls. MAPT rs8070723 was not associated with 
age at onset (β –0·54 [95% CI –1·94 to 0·87], p=0·45) or 
disease duration (β 0·05 [–0·06 to 0·16], p=0·35). Single-
variant associations with risk of Pick’s disease, age at 
onset, and disease duration are shown for all six MAPT 
variants used to define MAPT haplotypes in the 
appendix (pp 4–5). rs242557 was not associated with risk 
of Pick’s disease (OR 0·94 [0·79 to 1·12], p=0·51; 
appendix p 4). We found no significant associations of 
MAPT H2 with the available clinical and neuro­
pathological data (appendix p 6).

Results of the secondary analysis, an evaluation 
of associations between the six-variant-defined 
MAPT haplotypes and risk of Pick’s disease, are in 
table 2. As with the single-variant analysis, the 
H2 haplotype was associated with an increased risk of 
Pick’s disease (OR 1·34 [95% CI 1·11 to 1·63], p=0·0028); 
the slight difference between the two numerical estimates 
is due to the two different analysis approaches. Addi­
tionally, although not significant after correcting for 
multiple testing, weak evidence of an association was 
observed at the p less than 0·05 significance level for the 
rare H1f haplotype (OR 0·11 [0·01 to 0·99], p=0·049), 
with a slightly weaker finding noted for H1b (OR 0·76 
[0·58 to 1·00], p=0·051). We found no other associations 
between MAPT haplotypes and risk of Pick’s disease 
(all p≥0·15; table 2).

Associations of MAPT haplotypes with age at onset 
and disease duration in individuals with Pick’s disease 
are shown in table 3. None of the six-variant-defined 
MAPT haplotypes was significantly associated with age at 
onset or disease duration after correcting for multiple 
testing (p<0·0031 considered significant). However, asso­
ciations at the p less than 0·05 significance level were 
observed with age at onset for H1b (β 2·66 [95% CI 
0·63 to 4·70], p=0·011), H1i (β –3·66 [–6·83 to –0·48], 
p=0·025), and H1u (β –5·25 [–10·42 to –0·07], p=0·048), 
and with a shorter disease duration for H1x (β –0·57 
[–1·07 to –0·07], p=0·026).

Discussion
Pick’s disease is a rare, predominantly sporadic three-
repeat tauopathy that presents primarily as a behavioural 
or language variant of frontotemporal dementia.4–9 Little 
is known regarding its causes or underlying pathobiology. 
To date, no genetic variation has been shown to associate 
with disease risk, although in a small number of indivi­
duals with Pick’s disease, or Pick’s disease-like pathology, 
rare MAPT mutations or duplications have been 
suggested to be causative.13–17 Thus, given the rare nature 
of Pick’s disease, a comprehensive screening of rare 
variants across tau-related genes including copy number 
changes is warranted, and the creation of the Pick’s 
disease International Consortium will facilitate such 
studies. In the present study, we have shown that the 

Association with age of disease onset Association with disease duration

Haplotype frequency 
(N=309)

β (95% CI) p value β (95% CI) p value

H1b 13·3% 2·66 (0·63 to 4·70) 0·011 –0·01 (–0·17 to 0·15) 0·91

H1c 10·0% 1·63 (–0·61 to 3·86) 0·15 0·01 (–0·16 to 0·19) 0·89

H1d 7·2% 0·79 (–1·79 to 3·38) 0·55 –0·15 (–0·35 to 0·05) 0·15

H1e 9·3% 0·52 (–1·94 to 2·98) 0·68 0·05 (–0·14 to 0·24) 0·60

H1h 4·0% 2·03 (–1·57 to 5·64) 0·27 –0·10 (–0·38 to 0·18) 0·50

H1i 4·1% –3·66 (–6·83 to –0·48) 0·025 –0·12 (–0·37 to 0·13) 0·36

H1l 3·5% –1·75 (–5·42 to 1·92) 0·35 0·07 (–0·22 to 0·35) 0·65

H1m 3·1% –1·25 (–5·33 to 2·84) 0·55 0·14 (–0·18 to 0·46) 0·38

H1o 1·2% 0·05 (–6·91 to 7·00) 0·99 0·01 (–0·52 to 0·55) 0·96

H1p 1·0% –5·65 (–12·60 to 1·30) 0·11 0·01 (–0·53 to 0·55) 0·96

H1u 2·2% –5·25 (–10·42 to –0·07) 0·048 –0·38 (–0·78 to 0·02) 0·066

H1v 2·1% –1·74 (–6·61 to 3·13) 0·48 0·30 (–0·07 to 0·68) 0·11

H1x 1·4% –5·39 (–11·84 to 1·07) 0·10 –0·57 (–1·07 to –0·07) 0·026

H1y 1·5% –0·70 (–6·93 to 5·54) 0·83 0·31 (–0·17 to 0·79) 0·21

H1z 1·6% –1·81 (–8·02 to 4·40) 0·57 –0·01 (–0·49 to 0·47) 0·98

H2 29·4% –0·62 (–2·03 to 0·79) 0·39 0·05 (–0·06 to 0·16) 0·39

β values, 95% CIs, and p values were calculated using the R haplo.stats package; based on estimated haplotype 
probabilities, the expected number of copies of the given haplotype was first estimated for each individual. 
Subsequently, linear regression models that were adjusted for sex and cohort (Europe or Australia, or North America) 
were used to assess the association between the expected number of copies of the given haplotype and age of disease 
onset, and linear regression models that were adjusted for sex, age of disease onset, and cohort were used to examine 
the association between the expected number of copies of the given haplotype and disease duration. β values are 
interpreted as the change in the mean value of the given outcome (age of disease onset or disease duration) 
corresponding to each additional copy of the given haplotype. p values of less than 0·0031 are considered as 
statistically significant after applying a Bonferroni correction for multiple testing for the 16 different haplotypes that 
were assessed for association with age of disease onset and disease duration. Haplotypes occurring in less than 1% of 
individuals were excluded from the analysis. 

Table 3: Associations of MAPT haplotype with age of disease onset and disease duration in individuals 
with Pick’s disease
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common MAPT H2 haplotype, which reduces the risk of 
four-repeat-tauopathy, is associated with an increased risk 
of the three-repeat tauopathy Pick’s disease. This finding 
was possible only by establishing a global consortium to 
increase the number of available pathologically defined 
individuals. Previous genetic studies were underpowered 
with only 34 and 33 individuals with Pick’s disease;22,23 
a ten times increase in sample size was needed to 
establish MAPT H2 as a risk factor.

Previous research in frontotemporal dementia linked 
to chromosome 17 with tau pathology has clearly shown 
that mutations in the 5ʹ splice site of MAPT exon 10 can 
increase the expression of the four-repeat tau isoform, 
emphasising how important exon 10 splicing regulation 
is in tangle formation and neurodegeneration.19,33 
Given the association of MAPT H2 with a three-repeat-
tauopathy, and its protection in four-repeat-tauopathy, 
the MAPT H1 haplotype might increase the expression of 
four-repeat tau and the H2 might increase the expression 
of three-repeat tau. Previous studies have attempted 
to investigate the haplotype risk in related neuro­
degenerative disorders (eg, progressive supranuclear 
palsy and corticobasal degeneration; appendix p 7) and 
the subsequent influence on MAPT-tau expression, 
although results have been inconclusive; given the 
presence of six different isoforms in human 
brain, defining specific isoform expression remains 
complex.34–36 The genetic predisposition we describe 
supports the hypothesis that the pathological effects of 
the H1-H2 haplotypes occur via isoform-specific 
expression differences, which might have implications in 
the determination of therapeutic strategies that have 
focused either on overall lowering of tau expression or on 
lowering specifically of four-repeat-tau or increasing 
three-repeat-tau isoforms. The overall balance of tau 
isoforms seems to be important for the primary 
tauopathies but does not in itself explain the mixed 
pathology observed in individuals with Alzheimer’s 
disease; however, an overall increased expression of total 
tau might underly the mixed pathology. Studies on 
haplotype-specific or isoform-specific MAPT expression 
are urgently needed. In addition to providing evidence 
that the MAPT H2 haplotype is associated with 
an increased risk of Pick’s disease, we observed 
associations at the p less than 0·05 significance level of 
H1 subhaplotypes with risk of Pick’s disease, age at 
onset, and disease duration; however, these associations 
will require validation.

This study has strengths, in the large cohort of patients 
with Pick’s disease and the direct genotyping of the 
MAPT H1-H2 haplotype, but there also several 
limitations. Our study did not include a replication 
cohort, as such a cohort does not currently exist, given 
the rare nature of Pick’s disease; future replication of our 
reported risk association between MAPT H2 and Pick’s 
disease will be important. A type 2 error (ie, false-negative 
finding) is possible, and we cannot conclude that there is 

no true association between a given haplotype and risk of 
Pick’s disease simply owing to a non-significant p value 
in this study. Therefore, our OR of 1·35 and p value 
of 0·002 for the association of MAPT H2 with risk of 
Pick’s disease are noteworthy when considering the 
importance and previous knowledge of MAPT in 
tauopathies, even though this p value does not approach 
the threshold of 5×10–⁸ that would be considered 
statistically significant in a genome-wide association 
study. Additionally, without available genome-wide 
SNP data for controls, we were unable to regress out 
genetic principal components or genetically confirm the 
self-reported White or non-Hispanic ethnicity, and 
population stratification could have affected our results. 
However, we used the case genetic principal components 
to exclude any individuals with non-European ancestry, 
and our control MAPT H1-H2 frequencies 
(rs8070723 minor allele frequency 23%) were in keeping 
with published data37,38 and the general population 
frequency (19·7% in non-Finnish Europeans on 
GnomAD). The highest population frequency for 
rs8070723 in gnomAD is 23·8%, which is very similar to 
the control frequency of 23% in this study. Additionally, 
we checked the allele frequency for rs8070723 in a subset 
of 980 neurologically healthy European controls from the 
Global Parkinson’s Genetics Program cohort, which gave 
a frequency of 23%, giving further confidence that 
population stratification was not confounding our 
results. Because our study included only individuals of 
European descent, we cannot extrapolate our findings to 
individuals of other racial and ethnic backgrounds; 
indeed, we hope that we can establish further collab­
oration to create a truly worldwide Pick’s disease 
International Consortium to address this limitation. 
Finally, unfortunately the inclusion of age-matched and 
sex-matched controls from each site, to allow for site-
specific adjustment in our analysis, was not possible.

In summary, Pick’s disease is a rare and understudied 
disease with a devastating effect on both patients and 
their families. Through collaboration and building of the 
Pick’s disease International Consortium, we have a rare 
opportunity to engage in studies that might tease out the 
underlying pathobiology in Pick’s disease. As a primary 
tauopathy, the identification of genetic variants, such as 
MAPT H2, involved in Pick’s disease, might inform the 
study of more common tau-related disorders, such as 
progressive supranuclear palsy, corticobasal degen­
eration, and potentially Alzheimer’s disease. Larger 
unbiased studies to explore genome-wide or structural 
genetic variation in Pick’s disease are now warranted. 
Furthermore, resolving the genetic determinants of 
Pick’s disease might help in establishing diagnostic 
criteria and elucidating dysfunctional pathways to direct 
future therapeutic strategies.
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