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Abstract
The retail industry encounters huge obstacles with computer vision (CV) technol-
ogy due to frequent model retraining with changing products and time-consuming, 
costly data annotation. Previous research in this field has been primarily focused on 
optimizing model performance rather than minimizing annotation effort. Therefore, 
the main idea of this paper is to evaluate active learning as a method to minimize 
annotation effort in the retail industry. The MVTEC Densely Segmented Supermar-
ket dataset is used to evaluate various active learning methods such as the Least 
Confident, Entropy and Cost-Effective Active Learning (CEAL) along with Mask 
R-CNN model. The results demonstrate that annotating only 20.83−24.34% of the 
data achieves 95% of the full dataset’s performance. When training, out-of-sample 
data share similar characteristics, the Least Confident and CEAL methods reduce 
annotation requirements by 7.7−15.7% while maintaining 95% and 97% of the full 
dataset’s performance. However, the Entropy method under-performs compared to 
the random selection baseline. Ultimately, none of the methods show a clear advan-
tage when the data characteristics differ between training and out-of-sample data. 
Finally, the proposed active learning methods on an industry-specific retail dataset 
remarkably propels the development of highly efficient and cost-effective CV solu-
tions meticulously tailored for the retail industry.

Keywords  Active learning · Annotation effort · Retail image analysis · Instance 
segmentation

Introduction

In the retail sector, CV techniques can be used for product recognition without 
requiring alterations to the product or packaging. However, frequent changes in 
products and packaging require regular retraining of models with new data, which 
is expensive to collect and annotate [1, 2]. This challenge is further compounded 
by complex CV methods such as instance segmentation, which rely on extensive 
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datasets with pixel-level annotations [3]. In the retail industry, the expensive and 
time-consuming process of creating such a dataset, may have to be repeated regu-
larly due to frequent changes in the products. In this paper, active learning is evalu-
ated as a method to reduce the annotation effort required to train a instance-seg-
mentation CV model in the retail industry. It thereby aims to fulfill the need for 
efficiency in (re-)training CV models within the retail sector by evaluating active 
learning as a mechanism to mitigate annotation burdens. The presented methodol-
ogy contributes a solution to the challenges encountered by the retail sector in the 
adoption of CV technology. Moreover, it furthers the comprehension of automated 
product segmentation using CV-based methods through the lens of an industry-spe-
cific challenge.

Product recognition within a retail context entails identifying items on shelves or 
during checkout, achieved either manually or through (semi-)automated processes 
[2]. Automated recognition offers economic advantages due to its reliability and 
time-efficiency. However, prevailing (semi-)automatic solutions often require modi-
fications to products or packaging, such as barcodes or RFID tags [1]. In contrast, 
CV based methods solely require a camera, providing a cost-effective alternative [4]. 
Consequently, the integration of CV technology holds promising implications for 
retailers. Research within this domain has predominantly concentrated on establish-
ing the feasibility of CV technology within the retail context. For example, studies 
by [5, 6] examine the application of CV methods in retail, with a focus on optimizing 
model performance. However, the exploration of annotation effort reduction remains 
unexplored within their investigations. Partial insight into this topic is offered by [7] 
wherein minimal data prerequisites are investigated, establishing that object detec-
tion requires over 100 instances per product for robust performance. Nevertheless, 
methods aimed at curtailing these minimal data requirements are unexplored in their 
study.

The scientific relevance lies in the evaluation of active learning as a method to 
address the challenge of minimum data requirements within the retail sector. Active 
learning strategically selects data points from an unlabeled dataset to optimize infor-
mation gain, facilitating the prioritization of the annotation process by human anno-
tators [3]. The retail industry’s necessity for frequent retraining, make it a fitting 
candidate for the integration of active learning. Based on the current understanding 
and available research in this field, there are no studies that examine the use of active 
learning in the retail industry. The scientific merit of addressing this research gap 
comes from the application of active learning in a domain-specific context. Through 
the evaluation of active learning within the context of a domain-specific issue, this 
paper contributes to an improved understanding of the combination of automatic seg-
mentation and active learning within the field of CV. From a societal perspective, the 
strategic selection of data-points for annotation reallocates annotator effort from tasks 
with minimal impact to those yielding more substantial outcomes. This reallocation 
serves to optimize human labor utilization, thereby resulting in cost reduction that 
enhances the feasibility of employing CV systems for product identification.

The Mask R-CNN model was chosen for its strong performance in instance 
segmentation, as evidenced in the COCO 2016 challenge, and its suitability for 
real-time applications in self-checkout systems, as highlighted by [5]. This study 
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evaluates three active learning strategies: Least Confident, Label Entropy, and Cost-
Effective Active Learning (CEAL), to determine their effectiveness in reducing 
annotation effort in a retail setting. This paper aims to assess the impact of active 
learning on minimizing manual annotation work for retail product recognition.

The paper’s contributions include: 

1.	 An evaluation of the role of active learning methods in reducing human annota-
tion effort for retail product recognition and quantifying the extent of efficiency 
improvement in the annotation process.

2.	 An analysis of Mask R-CNN’s performance when trained on a selected subset of 
informative images, focusing on its impact on mean Average Precision (mAP) in 
a retail environment.

3.	 A comparative study of active learning strategies-Least Confident, Label Entropy, 
and CEAL-against random selection (RANDOM), specifically examining their 
effectiveness in minimizing manual annotation effort in retail settings.

The rest of the paper is organized as follows: Literature review provides an overview 
of related literature in the automated product recognition and active learning domain. 
Research methodology and experimental setup describes the methodology employed 
in this research. Results presents the obtained results which are further discussed in 
Sect. Discussion. Finally, concluding remarks are given in Sect. Conclusion.

Literature review

This Section offers a review of related academic literature. In Sect. Automated prod-
uct recognition in a retail environment, automated product recognition in the retail 
context is examined, and Sect. Active learning explores active learning as a means 
to minimize effort in annotation tasks.

Automated product recognition in a retail environment

Currently, the primary technologies for retail product recognition are barcodes and 
RFID tags [1]. These technologies require alterations to the products by adding a 
RFID tag or barcode. In contrast, CV methods only require a camera to gather data, 
presenting an affordable option for product recognition [4].

Feature extraction is an crucial step in the many CV method. [4] categorize fea-
ture extraction methods into five main groups. The first four groups encompass key 
point, gradient, pattern, and color-based methods. These methods involve extracting 
specific features and transforming them into feature vectors. However, [1] note that 
hand-crafted features often fail to capture all the necessary information for accu-
rate product classification. As a result, the fifth group, deep learning-based feature 
extraction, has gained prominence. Among these, Convolutional Neural Networks 
(CNNs) [8] are the most prevalent. For data with multiple objects per image, such 
as those found in the retail industry, efficient extraction of regions is crucial for 
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CNNs. [9] categorizes models into two main groups based on their region extrac-
tion approach. The first group are the one-stage models that regress from various 
positions in the image to determine object spatial positions. The second group are 
two-stage models that propose potential object locations in the first stage and then 
classify each region in the subsequent stage. For two-stage models, numerous tech-
niques have been suggested for selecting regions of interest. For instance, R-CNN 
introduced selective search as an unsupervised region proposal method [10]. How-
ever, selective search can be computationally intensive since it involves CNN calcu-
lations for each region. To mitigate this, faster R-CNN integrated a region proposal 
network that shares convolutional features with the detection network to reduce 
redundant computations [11].

Mask R-CNN extends the Faster R-CNN framework by adding a mask head to 
the faster R-CNN framework [12]. This enables Mask R-CNN to perform instance 
segmentation. Instance segmentation combines object detection and semantic seg-
mentation by generating separate pixel-masks for each object in an image [13]. This 
approach provides both a detailed understanding of the spatial layout and a pixel-
wise comprehension of the image’s objects [14, 15]. In comparison to semantic seg-
mentation, it retains the pixel-wise object understanding and adds the capability to 
distinctly detect multiple objects from the same class [15]. In a study by [5], various 
single-stage and two-stage architectures such as SSD, YOLO v2, Faster R-CNN, and 
Mask R-CNN were compared on a retail dataset. Mask R-CNN was evaluated as a 
suitable model for smart retail product detection systems, due to it’s combination of 
performance and average inference time [5].

[7] assessed the smallest amount of data needed for satisfactory performance in 
a practical retail setting. They studied three CNN architectures (Inception, Resnet, 
and Mobilenet). For image classification, they found that 6 to 20 instances were 
needed for 90% accuracy, and 26 to 51 instances for 95% accuracy. Object detection, 
however, demanded more data; around 42 instances per class for 90% accuracy and 
over 100 instances for 95% accuracy. Although [7] established these minimal data 
requirements, they did not explore methods to lower or alleviate these demands.

There’s a growing focus on real-time shelf commodity detection to enhance 
customer service. Study by [16] highlight the emergence of visual-based detection 
methods, notably deep learning-based target detection, for its efficiency in interpret-
ing image features and advancing shelf identification. Comparative analyses between 
standard target detection datasets and those specific to shelf goods have been con-
ducted, examining features, benefits, and applications. Innovative approaches for 
constructing robust datasets and refining them through data enhancement tech-
niques, especially for imperfect datasets, are discussed. Further, advancements in 
package identification, including large-scale, small target, and partially occluded 
object recognition, are reviewed.

Additionally, promising results The new method, proposed by [17] integrating 
class distribution-aware adaptive classification margins and cluster-based embed-
ding, has been evaluated for classifying fruits and vegetables with similar features. 
Traditional deep convolutional neural networks (DCNNs) struggle with such simi-
lar items, but this approach uses ResNet50-generated features, projecting them into 
an enhanced feature space to improve class distinction and compactness. Various 
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adaptive margins have been tested, with vector projection assessing similarity for 
better intra-class compactness. This method, also addressing imbalanced dataset dis-
tribution, has shown significant clustering and classification improvements, offering 
real-world applicability with minimal added complexity.

In a study by [18], they tackled the challenge of needing minimal data for effec-
tive object detection by introducing a novel model architecture. Their experiments 
revealed that this new architecture outperforms Faster R-CNN on smaller datasets. 
However, the best achieved detection performance on the tested dataset was an mAP 
of 91.3. This result still falls behind other methods, like the Mask R-CNN model 
which reached an mAP of 99.27 in the work of [7]. Moreover, instance segmenta-
tion is more intricate than object detection, as it demands pixel-level ground-truth 
information [3]. Gathering and annotating a dataset of sufficient size is both time-
consuming and expensive. Active learning has emerged as a potential approach to 
alleviate the data annotation burden for instance segmentation [3].

Active learning

Active learning (AL) operates by selecting unlabeled data points that offer the most 
valuable information. Typically, it follows an iterative approach where the use-
fulness of unlabeled data points is measured, and a batch of images is chosen for 
annotation. These chosen images are then labeled by human annotators, followed 
by model re-training. This ongoing process is depicted in Fig.  1. By focusing on 
informative data points, active learning decreases the workload for human annota-
tors, zeroing in on the most crucial data for annotation. The ultimate aim is to pre-
serve most of the model’s performance while greatly reducing the need for human 
annotations. A common measure of data-point informativeness is the uncertainty of 
model predictions. The assumption is that more uncertain predictions yield greater 
information gain when their true labels are included in model training [19].

In [20], three processes are described for model-human annotation interac-
tions. Membership query synthesis generates labels for newly generated, unlabeled 

Fig. 1   Iterative active learning approach
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instances, potentially posing challenges in human annotation due to arbitrary que-
ries. Stream-based selective sampling involves sampling an instance from the unla-
beled data and deciding whether to query it or discard it. However, this approach 
sends only one query at a time. Pool-based active learning, on the other hand, is 
suitable for scenarios with large unlabeled datasets, selecting multiple queries from 
a pool of unlabeled data for simultaneous annotation [20].

In the study by [21], they introduce Cost-Effective Active Learning (CEAL) 
as an approach for image classification within a pool-based active learning setup. 
Their method involves selecting images based not only on their informativeness for 
human annotation but also on the high confidence of their predictions. The model 
uses pseudo-labels from these highly confident images in the next training iteration 
to further reduce annotation needs. Another method, proposed by [22], called Batch-
BALD, calculates the mutual information gain for an entire batch of sampled data-
points. This approach addresses the limitation of ranking single data-points, where 
similar information might be grouped together, potentially missing additional infor-
mation. Calculating the information gain for a batch of data-points is expected to 
yield better performance [22].

On one hand, the research proposed by [23] addresses the challenge of high-cost 
data annotation in specialized fields by exploring deep active learning (DeepAL). 
It offers a first comprehensive survey of DeepAL, presenting a formal classifica-
tion, systematic overview, application insights, and discusses current issues and 
future directions in this emerging field. On the other hand, the study by [24] sug-
gests the task-aware variational adversarial AL (TA-VAAL), which alters the task-
agnostic VAAL, which took into account the distribution of data for both labeled 
and unlabeled pools. This is achieved by converting task learning loss prediction to 
ranking loss prediction and by embedding normalized ranking loss information on 
VAAL using a ranking conditional generative adversarial network. The suggested 
TA-VAAL outperforms state-of-the-arts in terms of semantic segmentation and its 
task-agnostic and task-aware AL features, as well as classifications with balanced 
or imbalanced labels on a variety of benchmark datasets. Particularly, it has been 
shown by [25] that combining the notions of uncertainty and diversity, easily scales 
to batch sizes (100K-1 M) several orders of magnitude larger than used in previous 
studies and provides significant improvements in AL model training efficiency com-
pared to recent baselines.

Summarizing the existing literature, In previous studies the main focus has been 
on improving the performance of CV models. The Mask R-CNN model stands out 
for its efficient compute time during inference, strong performance, and its ability 
to understand objects at a pixel level. Despite its advantages, the challenge of anno-
tating data remains, as creating a sufficiently large annotated dataset is expensive. 
Previous research in the retail sector has attempted to overcome this challenge by 
designing new model architectures that perform well with fewer samples. How-
ever, these models still fall short of the performance achieved by the Mask R-CNN 
method. This creates a gap in the literature regarding how to minimize annota-
tion requirements for an existing retail dataset. This research aims to fill this gap 
by exploring active learning methods, which involve selecting the most informa-
tive data points for human annotation. While active learning has been successfully 
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used to reduce annotation efforts in other contexts, its effectiveness on retail-specific 
datasets has not been thoroughly investigated. Therefore, this study aims to examine 
the potential of active learning to decrease human annotation efforts in the retail 
industry.

Research methodology and experimental setup

This Section breaks down the research methodology employed. In Sect. Description 
of the data set, an introductory overview of the dataset is provided. Moving for-
ward, Sect. Methodology elaborates on the instance segmentation method and active 
learning techniques that were applied. Within Sect. Experimental design, we delve 
into a detailed explanation of the experimental framework. Finally, in Sect. Evalua-
tion method a detailed explanation of the evaluation method is provided.

Description of the data set

The MVTec D2s: Densely Segmented Supermarket Dataset (MVTec D2s) simu-
lates the industrial setting of an automated checkout system in a retail store [13]. 
Common benchmark segmentation datasets such as COCO [26] and Cityscapes 
[27] frequently do not address industrial constraints such as insufficient diversity 
and scarcity of labeled training data, thereby restraining the applicability within an 
industrial setting [13]. The MVtec D2s dataset simulates a real-world, industrial set-
ting, thereby addressing the real-world application and challenges found in the retail 
industry. The dataset contain 21,000 high-resolution color images featuring grocery 
products categorized into 60 classes. The grocery products are arranges on a turnta-
ble, and then photographed in ten rotations and three different light intensities.

The dataset is split into a train, validation and test set which is presented in 
Table  1. The train and validation set have pixel-level annotations available, how-
ever the test-set annotations are not made public. In addition, the statistics summa-
rized in Table 1 show a disparity in the distribution of objects per image and the 
occurrence of occlusion and clutter across the various datasets. These disparities are 
visually illustrated in Fig.  2. These disparities have intentionally been introduced 
into the dataset to simulate industrial demands, such as the necessity for reduced 
labeling efforts, streamlined dataset procurement and effortless incorporation of new 
product classes. In order to mitigate the absence of annotations for the test-set and 
evaluate the robustness of the active learning methods in an industrial setting, the 

Table 1   MVTec D2s: Densely 
Segmented Supermarket Dataset

Split Train Validation Test

# of images 4380 3600 13,020
# objects/image 1.58 4.35 3.83
# scenes w. occlusion 10 84 299
# scenes w. clutter 0 18 68
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experimental approach is assessed on two new subsets of the dataset, designed to 
replicate distinct scenarios.

Scenario 1: In scenario 1, the training data emulates what might be procured at 
a retail checkout, using real customer transactions as a model. Since the training 
data emulates being collected from real customer transactions, the characteristics 
of the training data should closely match the characteristics of the out-of-sample 
data that is expected from real customer transactions. To optimize hyper-param-
eters, the 3600 validation images are randomly redistributed into new training, 
validation, and test sets. Post hyper-parameter optimization on the validation set, 
the training and validation sets are merged and hyper-parameters are fixed for all 
further stages of the process.

Scenario 2: The second scenario replicates the disparities that are present in 
the original dataset. The validation and test set remain consistent with those in 
scenario 1. For the training data, the 4380 images in the original training set are 
used, and 10.000 artifically generate images created by [13]. The original train-
ing data contains an average of 1.58 products per image, and does not contain 
occlusions or clutter. The out-of-sample data contains on average 4.35 prod-
ucts per image, and incorporates occlusion or clutter in a some of it’s images. 
The artificially generated images consist of a random selection of one to fifteen 
products drawn from the original dataset, which are randomly placed within an 
image. This design attempts to emulate the industrial prerequisites as mentioned 
by [13]. It thereby replicates a scenario where data-collection practices meet 
industrial demands for minimized labeling effort and streamlined data acquisi-
tion. An instance of this scenario arises when the training data is amassed inde-
pendently from the data utilized for inference, for instance in a warehouse. This 
divergence introduces dissonance between the attributes of the training data and 
the data upon which the model is required to perform inference during the check-
out process.

Fig. 2   Samples from the MVTec D2s dataset. Row a contains samples from the original training set, row 
b contains samples from the validation and test set
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Methodology

The model selected for automated product recognition is Mask R-CNN. This 
model is selected because of it’s demonstrated performance during the COCO 
2016 challenge [12]. This decision is reinforced by [5], who, in a retail dataset 
study, compared Mask R-CNN against SSD, Faster R-CNN, and YOLO, finding 
it to be an optimal choice for real-time processing at a self-checkout system due 
to its combination of performance and efficiency. Mask R-CNN, an extension 
of Faster R-CNN object detection model, makes instance segmentation possible 
through the addition of a parallel fully convolutional network (FCN) branch [12].

The Mask R-CNN model can be interpreted as a sequence of distinct steps 
that collectively produces robust instance segmentation capabilities. The first 
step consists of a convolutional network that forms the backbone of the model. It 
transforms the raw input image into a feature map that contains the essential fea-
ture representations. This feature representation is further used in the subsequent 
step which is the Region Proposal Network (RPN). This step scans the feature 
map to identify potential object-containing regions. The RPN places anchor cent-
ers across the feature map, and creates a diverse range of anchor boxes charac-
terized by varying scales and aspect rations. A binary classifier then determines 
whether an anchor box contains an object and a bounding-box regressor predicts 
the offset between each anchor box and the true bounding box. Overlapping pre-
dictions are resoleved through non-maximum suppression, yielding the achor 
boxes with the highest classification scores which form the regions of interest 
(ROIs).

Following this step, the Region of Interest Alignment (RoiAlign) operation uses 
ROIs generated by the RPN and overlays them onto the feature map. Each ROI is 
divided into a number of discrete bins, and from each bin a number of feature values 
are randomly sampled and processed through a bottleneck model, to create a fixed-
size feature map for each region. Finally, each fixed-size feature map is processed 
through two separate branches. The first branch employs fully connected layers to 
map the feature maps to object class identities and precise bounding box coordi-
nates. Simultaneously, the second branch employs a fully convolutional network to 
generate segmentation masks for each region. A visual depiction of these steps is 
presented in Fig. 3.

Active learning methods are compared against a passive baseline (RANDOM), 
which uniformly selects images. This method is also called passive learning because 
it relies on the assumption that there each image has an equal information gain. 
Therefore selection of any combination of images, would not perform better than 
any other combination of images. In contrast, active learning methods rely on the 
assumption that there is a variance in information gain between images. Under 
this assumption selecting the correct combination of images would lead to a better 
performance. Three active learning metrics are chosen for comparison against the 
baseline.

The first approach, denoted as Least Confident, relies on the class probability 
of predicted objects. This method has performed well in various domains such as 
the information extraction tasks, or conditional random fields [28–30]. This metric 
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measures the uncertainty of an instance, based on the most probable predicted label 
for that instance using equation 1 and 2.

where ŷ is the most probable label for instance x, and P(ŷ|x) is the predicted prob-
ability of x being the most probable label ŷ . The information gain ILC of the entire 
image is calculated by taking the maximum uncertainty among all instances x.

The Least Confident method uses only most probable label in it’s calculation of 
uncertainty for each instance. The second approach, denoted as Entropy is an exten-
sion that measures the uncertainty of an instance based on all possible class labels 
for that instance [19]. The information for an image using the Entropy metric is done 
by equation 3 [19].

(1)ILC = argmax
x

(1 − P(ŷ|x)),

(2)ŷ = argmax
y

(P(yi|x)).

(3)IEN = argmax
x

(

−

∑

i

P(ŷi|x)log(P(ŷi|x))

)

,

Fig. 3   Flowchart of the Mask R-CNN method
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where P(ŷi|x) is the probability of instance x belonging to the ith class. The informa-
tion gain IEN of the entire image is calculated by taking the maximum uncertainty 
among all instances x.

The third approach is known as Cost-Effective Active Learning (CEAL) [21]. 
This method is chosen due to its cost-effective nature, as demonstrated in the study 
by [21], and its compatibility with various other active learning methods. The effi-
cacy of CEAL lies in its utilization of two types of sample selection. The first type 
involves using another active learning method to select samples that are then anno-
tated by human annotators. The second type selects images for which the model 
exhibits high confidence in its predictions. These images are assigned pseudo-labels 
based on their model predictions, thereby avoiding the need for human annotation. 
The assignment of pseudo-labels is governed by equation 4 [21].

where eni represents the label entropy for a given instance i, and j ∗ indicates the 
most likely category for that instance. The threshold parameter � is calculated using 
Eq. 5 [21].

where �0 represents the initial threshold, which is set as a hyper-parameter, dr is 
another hyper-parameter governing the decay rate of the threshold, and t signifies 
the iteration number.

Experimental design

The experimental framework is structured into two distinct stages. The initial stage 
consists of hyper-parameter optimization using the complete training set. The result-
ing performance is denoted as the benchmark performance. This metric represents 
the upper bound that the iterative procedure in the further stage can approach. The 
second stage is an iterative process that is separately conducted for the RANDOM 

(4)
j∗ = argmaxp(yi = j|xi; W),

yi =

{
j∗, eni lt;�,

0 otherwise,

(5)𝛿 =

{
𝛿0, t = 0,

𝛿0 − dr ∗ t, t > 0,
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baseline approach and each of the active learning methodologies as outlined in 
algorithm 1.
Algorithm 1   Iterative active learning algorithm

Require: Training samples Dtrain, Test samples Dtest, sample selection size K,
maximum iteration number T

Ensure: 1D array containing mAP performance metrics for each iteration W

1: Initialize empty 1D array W
2: Assign K random samples from Dtrain to Dl

3: Assign all other samples from Dtrain to Du, so that Dl ∩Du = ∅ and Dl ∪Du =
Dtrain

4: while not reached maximum iteration T do
5: Initialize Mask R-CNN on Dl

6: Evaluate mAP on Dtest and append result to W
7: Predict samples in Du

8: Rank instances in Du using RANDOM, Least Confident, Entropy or CEAL
method.

9: From Du move K top ranked samples to Dl with ground-truth annotations.
10: end while
11: return W

A visual representation of the algorithm is illustrated in Fig. 4. The anticipated 
behavior of the algorithm is that as the set of labeled images Dl expands, the per-
formance of the Mask R-CNN model will gradually converge towards the bench-
mark level. The active learning methods are expected to systematically select 
the most informative images from Du during each iteration, thereby approaching 
the benchmark performance with a reduced number of iterations compared to 
the baseline RANDOM method. Stated differently, with an equivalent quantity 
of annotated images in the set Dl , the performance of the Mask R-CNN model, 

Fig. 4   Diagram depicting the iterative experimental setup utilized in the study
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when employing any of the active learning approaches, is anticipated to exhibit 
closer proximity to the benchmark performance than when compared to the base-
line RANDOM method.

During the hyper-parameter optimization stage, in scenario 1 the hyper-param-
eters are initially optimized using the validation set. Because both the training 
and validation are representative of customer transaction in a checkout scenario, 
the model is retrained on the combined set to report the final performance as a 
benchmark. Contrary to scenario 1, in scenario 2 the the training and validation 
sets are not combined when reporting the final performance. This separation is 
deliberate, as this scenario aims to emulate real-world industrial requirements as 
detailed in Sect. 3.1. Specifically, the validation set in scenario 2 does not meet 
the typical standards of industrial data collection, making it a test case for the 
model’s ability to adapt to varying industrial conditions.

For the iterative process detailed in algorithm 1, training samples consists of 
the combined training and validation set in scenario 1, whereas in scenario 2 
it consists only of the original training set. For both scenarios, once the hyper-
parameters are optimized in the hyper-parameter stage, they remain fixed. There 
are no further adjustments to these parameters in the subsequent iterative stage of 
the methodology.

Evaluation method

The evaluation of models employs the mean average precision (mAP) metric, a 
widely used measure in instance segmentation and major competitions like the 2007 
PASCAL VOC challenge and COCO segmentation challenge [26, 31]. To compute 
mAP, the Intersection over Union (IoU) metric is calculated pixel by pixel, as shown 
in equation 6.

where target ∩ prediction counts pixels at the intersection of the prediction mask 
and ground truth, while target ∪ prediction counts pixels in their union [32].

Predictions are categorized using an IoU threshold. A prediction with an IoU 
score above the threshold is categorized as True Positive (TP), while those below 
are categorized as False Positive (FP). False Negatives (FN) indicate ground truths 
not predicted by the model. The average precision (AP) is determined by the area 
under the precision-recall curve for each class at a specific IoU threshold. Recall and 
precision are computed using equation 7.

(6)IoU =

target ∩ prediction

target ∪ prediction
,

(7)
Recall =

TP

TP + FN
,

Precision =

TP

TP + FP
.
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Finally, the AP is averaged across classes and thresholds within the [0.5,0.95] range 
with 0.05 increments to compute the mAP.

Results

In this section, we present the results obtained in this research. Section Benchmark 
Performance shows the benchmark performance. Sections Least Confident, Entropy, 
and Cost effective active learning show the performance achieved by the Least Con-
fident, Entropy, and CEAL active learning methods.

Benchmark performance

This Section shows the performance of the Mask R-CNN model across both scenar-
ios, utilizing the complete dataset. This analysis sets the benchmark performance, 
representing the highest level that the iterative process will approach as more images 
are annotated and moved from Du to Dl.

For the benchmark, optimization of hyper-parameters occurred on the validation 
set. The ResNet architecture was chosen for its performance, for instance during 
the COCO 2015 detection and segmentation challenges [33]. Among the ResNet50 
and ResNet101 variants, the latter demonstrated superior performance. The optimal 
epochs were 50 for scenario 1 and 20 for scenario 2. Among learning rates, 0.001 
outperformed 0.00025. Performance was further improved by introducing a learn-
ing rate decay step for the final 25% of iterations, using the decay rate of 0.1 (which 
reduces the learning rate by a factor of 10). For the number of ROI heads,the values 
were 128, 256, and 512, with the latter achieving higher performance. A summary 
of the top 5 combinations for scenario 1 and scenario 2 can be referenced in Appen-
dix A, Tables 3 and 4.

The performance on the out-of-sample data are presented in Table  2. The first 
row showcases the mAP across an intersection over IOU threshold range of [0.5, 
0.95] with increments of 0.05. In scenario 1, an mAP of 96.72 was attained, while 
only 78.69 mAP was achieved in scenario 2. These values will form the benchmark 
performance against which the iterative process of the active learning methods is 
compared. The disparity between the two scenarios indicates that the Mask R-CNN 
model performs better when training data closely mirrors out-of-sample data in 
terms of inherent characteristics. The augmented data in scenario 2 inadequately 

Table 2   Out-of-sample 
performance of the Mask 
R-CNN model for scenario 1 
and 2

Metric Scenario 1 Scenario 2

mAP [0.5,0.95] 96.72 78.30
mAP [0.5] 99.81 86.14
mAP [0.75] 99.64 83.33
mAP medium objects 81.26 10.00
mAP large objects 96.87 78.64
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addressed disparities in object count per image and the presence of occlusion or 
clutter.

Additional commonly used metrics in object detection and classification, such as 
Precision, Recall, and F1-score for both scenarios, are available in Tables 5 and 6 in 
Appendix B. These supplementary metrics provide further evidence of the perfor-
mance discrepancy between the two scenarios. For a detailed breakdown, the con-
fusion matrices for scenario 1 and 2 are provided in Figs. 12 and 13 in Appendix 
C. These matrices affirm the observation that the model in scenario 1 accurately 
predicts the majority of instances, while the model in scenario 2 exhibits incorrect 
predictions for several product classes. Notably, in scenario 2, a significant number 
of "adelholzener alpenquelle classic" instances are inaccurately predicted as "adel-
holzener alpenquelle naturell". The most common prediction errors are failing to 
predict a product when present (false negative), erroneously predicting a product 
that is absent (false positive), and imprecise pixel masks. A selection of these typical 
prediction errors is illustrated in Fig. 5.

To assess the disparities in performance between the two scenarios, a quantita-
tive examination is conducted. An imprecise mask predictions may be a plausible 
contributing factor to the divergence observed between the scenarios. This evalu-
ation involves assessing the model at reduced IOU thresholds, wherein the assess-
ment method considers less accurate mask predictions as valid true positive predic-
tions. The evaluation is conducted individually at IOU thresholds of 0.5 and 0.75. 
The corresponding results are shown in rows 2 and 3 of Table 2. In scenario 1, the 
difference between the thresholds is marginal. Conversely, a larger difference exists 
between the thresholds in scenario 2. This dissimilarity implies that masks in sce-
nario 2 exhibit comparatively lower accuracy compared to those in scenario 1. This 
observation lends support to the conjecture that the discernible performance varia-
tion between the two scenarios can be attributed, at least in part, to the imprecision 
in mask predictions within scenario 2.

Another contributing factor may be the different product sizes. As per the COCO 
evaluation method, object sizes are classified into small (area < 322 px), medium 

(a) False Negative

(b) False Positive

(c) Inaccurate Mask

Fig. 5   Samples of the common prediction errors. Sub-figure a contains false negatives, sub-figure b con-
tains false positives for the caffee wunderbar class and sub-figure c contains an inaccurate mask for pasta 
reggia fusilli
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( 322 px < area < 962 px), and large (area > 962 px) categories [26]. The the same 
product class can fit in different categories based on it’s orientation. The MVTEC 
D2S dataset encompasses medium and large object sizes. Seperate performance 
metrics corresponding to these categories are reflected in rows 4 and 5 of Table 2. 
In scenario 2, the discrepancy between medium and large object sizes is more pro-
nounced than that observed in scenario 1. Within scenario 2, the model achieves 
an mAP of 10 for medium-sized objects, in contrast to 78.64 mAP for large-sized 
objects. This disparity implies that a sizable portion of the larger error rate in sce-
nario 2 can be ascribed to relatively poorer performance on medium-sized objects. 
Conversely, this phenomenon is comparatively less pronounced in scenario 1.

Lastly, we consider performance disparities accross product classes as a potential 
contributing factor for the difference in performance. An overview of the AP for 
each product class can be found in Appendix D. In scenario 1, the least performing 
product classes have respective AP values of 87.37 and 89.27, while the most suc-
cessful class has a rounded AP score of 100. The divergence in scenario 2 is larger, 
with the lowest AP recorded at 40.87 and the highest at 99. This contrast implies 
that a portion of the performance distinction between the two scenarios comes from 
variations in predictive prowess among distinct product classes.

Least confident

In scenario 1, the initial division splits the dataset into 50 images for Dl and 2830 
images for Du . This division is based on [21]’s investigation, achieving a 97% per-
formance with around 35% of the data. We set the sample selection size K at 50 and 
the maximum iteration count T at 20. This configuration aims to leverage approxi-
mately 35% of the complete training set by the conclusion of the 20th iteration.

Fig. 6   Mask R-CNN model performance in active learning cycle: scenario 1 with Least Confident and 
RANDOM baseline
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Figure  6 displays the evolving mean Average Precision (mAP) across itera-
tions for scenario 1. The red line signifies the model’s 97.72 mAP performance 
with the complete dataset, discussed in Sect. Benchmark performance. Initially, 
the baseline RANDOM approach outperforms the Least Confident active learning 
method in the initial iterations. However, after the fourth iteration, the Least Con-
fident method consistently achieves superior performance. The concave trajec-
tory of the lines in the Figure signifies diminishing returns as additional images 
are annotated. At the 20th iteration, the Least Confident approach records a 95.25 
mAP, whereas RANDOM achieves a 93.97 mAP. Relative to the benchmark, the 
Least Confident method attains 95% of the benchmark’s performance by the 12th 
iteration, utilizing only 20.83% of the data. In contrast, the RANDOM method 
requires 13 iterations to reach the same milestone, signifying a 50-image (7.69%) 
reduction in annotation needs at this stage. As the process advances, the diver-
gence in annotation efforts becomes more pronounced. For instance, to achieve 
a 97% performance akin to the benchmark’s full dataset achievement, the Least 
Confident method accomplishes this by the 16th iteration, while RANDOM 
requires 19 iterations. Consequently, the Least Confident approach reduces anno-
tation necessity by 150 images (15.79%).

In scenario 2, the training dataset’s substantial size necessitates setting the 
selection size at 250 to correspond to the same 35% data utilization as in scenario 
1. Owing to the increased computational complexity of the larger training set, the 
maximum iteration count T in this context is constrained by the server’s compu-
tational capacity. The server can run for up to 36 h concurrently, allowing for 17 
iterations within this time frame. Figure 7 illustrates the mAP progression across 
each iteration. Scenario 2 showcases no performance difference between the 
Least Confident method and the RANDOM baseline. While the Least Confident 
active learning method outperforms RANDOM at 1750, 2000, and 4250 images, 

Fig. 7   Mask R-CNN model performance in active learning cycle: scenario 2 with Least Confident and 
RANDOM baseline
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it underperforms the latter in all other iterations. Consequently, in this setting, 
the Least Confident method struggles to pinpoint the most informative unlabeled 
samples. The line’s concave shape also suggests a diminishing trend in the returns 
from annotation efforts within scenario 2. The red line represents the benchmark 
performance of 78.30 mAP derived from the complete dataset. To attain 95% of 
the benchmark’s performance, both methods employ 24.34% of the data.

Entropy

Commencing this section, Fig. 8 showcases the performance observed in scenario 1. 
For most iterations, the Entropy method falls short of the RANDOM method, imply-
ing that the ranking approach through Entropy fares worse than random selection. 
By the 20th iteration, RANDOM attains a mAP of 93.96, while Entropy achieves 
92.35. The outcomes for scenario 2 are depicted in Fig. 9, with a comparable pat-
tern where Entropy lags behind the RANDOM baseline in most iterations. Both the 
RANDOM baseline and Entropy active learning method reach 95% of the bench-
mark performance by the 11th iteration, utilizing 19.12% of the data.

Cost effective active learning

The CEAL active learning method introduces three new hyper-parameters: the thresh-
old value, threshold decay, and the selection methods for identifying the most inform-
ative images. In previous work, sensitivity analysis by [21] evaluated the threshold 
and threshold decay values, revealing minimal influence on model performance in 
their datasets. Nonetheless, their study utilized a CNN model rather than the Mask 
R-CNN model. For the Mask R-CNN model, we evaluated numerous combinations 

Fig. 8   Mask R-CNN model performance in active learning cycle: scenario 1 with entropy and RAN-
DOM baseline
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of these new hyper-parameters on subset 1, keeping other hyper-parameters constant. 
Tables 9 and 10 in Appendix E detail the outcomes of these assessments. Both sce-
narios exhibited optimal performance with the Least Confident uncertainty selection 
method, employing a threshold value of 0.05 and a threshold decay value of 0.0033.

Figure 10 depicts the mAP for scenario 1 across each iteration, while scenario 
2 results are presented in Fig.  11. In scenario 1, the CEAL method, utilizing the 
optimal hyper-parameter combination, demonstrated better performance compared 
to the RANDOM method starting from the 13th iteration onward. However, prior to 

Fig. 9   Mask R-CNN model performance in active learning cycle: scenario 2 with entropy and RAN-
DOM baseline

Fig. 10   Mask R-CNN model performance in active learning cycle: scenario 1 with CEAL and RAN-
DOM baseline
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this point, no decisive performance difference between the two methods emerged. 
To achieve 97% of the benchmark performance, the CEAL method required 16 
iterations, while the RANDOM method needed 19 iterations. Therefore, the CEAL 
method reduced annotation needs by 150 images (15.79%) while achieving equiva-
lent performance. In scenario 2, the CEAL method surpassed the RANDOM method 
only from the 15th iteration onward, with the RANDOM method generally exhibit-
ing better performance before this threshold.

Discussion

This paper aims to address the challenge of resource-intensive annotations in the retail 
industry. To assess this objective, active learning methods are evaluated as a means 
to streamline the human annotation effort for CV-based retail product recognition. 
Firstly, the results highlight a diminishing trend in returns as more images are anno-
tated, underscoring the importance of finding a balance between annotated data and 
model performance. Secondly, the study reveals differing performance outcomes for 
active learning methods based on method-scenario combinations, indicating that their 
effectiveness could be influenced by specific data or model characteristics.

The study’s findings reveal the Mask R-CNN model’s effective performance 
with smaller subsets containing only the most informative images. The model 
achieved 95% of the benchmark performance using 20.83% to 24.34% of the data. 
Additionally, the study highlights the diminishing returns associated with annotat-
ing additional batches of images. While the Least Confident method outperformed 
the random baseline in the first scenario, it failed to do so in the second scenario. 
The Entropy-based active learning approach did not surpass the random baseline. 
In scenario 1, the CEAL method excelled over the RANDOM baseline from the 

Fig. 11   Mask R-CNN model performance in active learning cycle: scenario 2 with CEAL and RAN-
DOM baseline
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13th iteration onwards. However, in scenario 2, the CEAL method outperformed the 
RANDOM baseline only from the 15th iteration onwards, with the RANDOM base-
line generally displaying better performance prior to that.

When comparing our findings to existing research, the benchmark performance 
in scenario 1 aligns with the outcomes observed by [5]. In their study, they achieved 
top-1 classification performance above 90% for 21 out of 23 classes, suggesting that 
the Mask R-CNN model is well-suited for smart retail product detection. Our results 
in scenario 1 follow a similar pattern, with only 2 out of 60 product classes having 
an mAP below 90. However, scenario 2 introduces a significant distinction to [5]’s 
conclusion. The benchmark results for scenario 2 indicate that 40 out of 60 product 
classes achieve an mAP below 90. This disparity underscores that [5]’s conclusion 
might hold true primarily when the Mask R-CNN model is trained on data closely 
resembling the inference conditions. Accounting for the industrial demand for sim-
plified data collection and annotation, it becomes evident that the Mask R-CNN 
model might fall short of meeting the required performance levels.

In a previous study by [21], the combination of a CNN architecture with the 
CEAL method achieved 95% of the full dataset’s performance using 34% to 36% of 
the data. In our study, employing the Mask R-CNN model, we achieved 95% of the 
benchmark performance using 20.83% to 24.34% of the data. This suggests that the 
Mask R-CNN model performs relatively well even with a smaller data subset. How-
ever, the reduction in annotation effort observed in our study is more modest com-
pared to [21]. They reported reductions ranging from 15% to 36%, while our results 
indicate reductions in the range of 7.69% to 15.79% for scenario 1, and no definitive 
reductions for scenario 2.

The insights gained from this study contribute to a better understanding of active 
learning methods’ applicability in the retail sector. While active learning offers the 
potential to reduce annotation needs, the results are influenced by the attributes 
of the data and model. The study reinforces the effectiveness of the Mask R-CNN 
model for automated product recognition, yet underscores the importance of data 
alignment between training and inference. This suggests that the model may not 
fully meet industrial needs for streamlined data collection and annotation. For retail 
businesses, the practical takeaway is a need to reassess data-collection and anno-
tation strategies, prioritizing data that closely resembles real-world inference sce-
narios. The observed diminishing returns emphasize the need to strike a balance 
between annotation effort and model performance to optimize resource allocation.

Future direction

The findings presented within this study have several notable limitations. Firstly, the cho-
sen active learning methods encompass only a subset of the available strategies, suggest-
ing a potential avenue for further exploration to achieve a more comprehensive grasp of 
active learning within a retail context. Secondly, while the methods employed draw on 
information derived from the object detection branch, they overlook the potential insights 
offered by the mask branch. Incorporating mask branch information into the active learn-
ing process bears potential to amplify the efficacy of these methods. Thirdly, while the 
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dataset utilized herein endeavors to emulate a self-checkout scenario, the observed per-
formance might diverge in application to real-world data. Lastly, this study assumes equal 
annotation effort across all annotated images, neglecting potential variations in annotation 
complexity that may arise across distinct images.

Further studies can address the limitations and strengthen the validity of these 
results by extending the scope to a broader spectrum of active learning methodolo-
gies, thereby encompassing a more diverse array of potential approaches to determine 
information gain. Moreover, a promising research direction involves investigating the 
inclusion of mask-derived uncertainty measures within the active learning frame-
work to fully exploit the capabilities inherent to the Mask R-CNN model architec-
ture. Additionally, to substantiate the outcomes’ robustness and applicability within 
real-world contexts, validation using real-world data would bolster the robustness of 
the findings. Furthermore, recognizing the potential variance in annotation complex-
ity among images, future endeavors should devise mechanisms to incorporate such 
intricacies into the active learning process such as resource requirements, annotation 
cost, ambiguity, image complexity and computational costs. Such research collectively 
contributes to increasing the comprehension of active learning’s efficacy within the 
retail industry. The resulting insights will hold practical value for retail stores, offering 
guidance for the integration of active learning methodologies to streamline the image 
annotation process effectively.

Conclusion

This research addresses a challenge within the retail sector stemming from the 
dynamic nature of products and packaging. This challenge necessitates frequent re-
training of CV models with new data. The acquisition and annotation of such data 
is time-intensive and therefore costly. Existing research within the retail domain 
has predominantly centered on establishing the viability of CV technology within 
retail environments, often not considering strategies aimed at mitigating the annota-
tion overhead for established models. Within the academic framework, this research 
attempts to bridge this gap by evaluating the performance of the Mask R-CNN 
model in combination with active learning techniques such as Least Confident, 
Entropy, and CEAL in mitigating annotation requirements. Thus, the study makes a 
contribution to the refinement of more streamlined and cost-efficient CV solutions, 
tailored to the requisites of the retail industry.

The implications drawn from this paper provide insights into the dynamic 
between automatic product segmentation and active learning within the realm of 
CV, particularly as applied to the retail industry. From a societal perspective, the 
implications in this study show the capacity to strategically redistribute annotation 
efforts, redirecting resources from relatively inconsequential annotation tasks to 
those of more import. This shift enhances the overall efficiency of CV model train-
ing. For retail enterprises, the implications underscore the need for a reevaluation of 
prevailing data collection and annotation practices. The diminishing return in per-
formance from each successive batch of images emphasizes the need to strike a bal-
ance between annotated data volume and model efficacy. The incorporation of active 
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learning methodologies introduces an avenue for substantial reduction in annotation 
prerequisites. However, the efficacy of active learning methods is contingent upon 
the characteristics of the training data or the active learning method used.

Appendix A (see Tables 3, 4)

Appendix B (see Tables 5, 6; Figs. 12, 13)

Table 3   The 5 best performing 
combinations of hyper-
parameters tested on the 
validation set for scenario 1

Backbone Epochs Learning rate Decay step ROI heads mAP

Resnet101 50 0.001 0.75 512 96.6
Resnet101 50 0.001 0.75 128 96.07
Resnet101 35 0.001 0.75 128 95.96
Resnet101 10 0.001 0.75 512 95.61
Resnet101 25 0.001 0.75 128 95.61

Table 4   The 5 best performing 
combinations of hyper-
parameters tested on the 
validation set for scenario 2

Backbone Epochs Learning rate Decay step ROI heads mAP

Resnet101 20 0.001 0.75 512 81.24
Resnet101 35 0.001 0.75 512 80.53
Resnet101 20 0.001 0.75 128 80.42
Resnet101 50 0.001 0.75 512 80.25
Resnet101 15 0.001 0.75 512 80.16

Table 5   Precision, Recall, 
F1-score and Support for subset 
1

Metric Precision Recall f1-score Support

Micro avg 0.99 1 1 3169
Macro avg 0.99 1 1 3169
Weighted avg 0.99 1 1 3169

Table 6   Precision, recall, 
F1-score and support for subset 
2

Metric Precision Recall f1-score Support

Micro avg 0.75 0.89 0.81 3169
Macro avg 0.8 0.9 0.82 3169
Weighted avg 0.83 0.89 0.84 3169
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Fig. 12   Confusion matrix for each product class in subset 1
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Appendix C

Fig. 13   Confusion matrix for each product Class in subset 2
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Appendix D (see Tables 7, 8)

Table 7   Per class AP for scenario 1

Product class AP Product class AP

Adelholzener alpenquelle classic 075 99.41 Banana single 89.27
Adelholzener alpenquelle naturell 075 99.37 Clementine 98.75
Adelholzener classic bio apfelschorle 02 99.61 Clementine single 96.05
Adelholzener classic naturell 02 96.42 Grapes green sugraone seedless 98.97
Adelholzener gourmet mineralwasser 02 97.33 Grapes sweet celebration seedless 98.63
Augustiner lagerbraeu hell 05 97.69 Kiwi 99.19
Augustiner weissbier 05 99.57 Orange single 99.30
Coca cola 05 100.00 Oranges 100.00
Coca cola light 05 100.00 Pear 96.59
Suntory gokuri lemonade 99.46 Pasta reggia elicoidali 99.11
Tegernseer hell 03 98.93 Pasta reggia fusilli 97.51
Corny nussvoll 99.45 Pasta reggia spaghetti 95.34
Corny nussvoll single 92.47 Franken tafelreiniger 95.00
Corny schoko banane 96.42 Pelikan tintenpatrone canon 98.53
Corny schoko banane single 90.96 Ethiquable gruener tee ceylon 92.18
Dr oetker vitalis knuspermuesli klassisch 95.17 Gepa bio und fair fencheltee 98.68
Koelln muesli fruechte 99.54 Gepa bio und fair kamillentee 97.51
Koelln muesli schoko 97.77 Gepa bio und fair kraeuterteemischung 96.18
Caona cocoa 93.47 Gepa bio und fair pfefferminztee 98.93
Cocoba cocoa 90.84 Gepa bio und fair rooibostee 99.50
Cafe wunderbar espresso 98.38 Kilimanjaro tea earl grey 91.13
Douwe egberts professional ground coffee 98.59 Cucumber 91.82
Gepa bio caffe crema 100.00 Carrot 87.37
Gepa italienischer bio espresso 96.31 Corn salad 94.94
Apple braeburn bundle 100.00 Lettuce 95.22
Apple golden delicious 98.55 Vine tomatoes 90.06
Apple granny smith 97.59 Roma vine tomatoes 91.01
Apple red boskoop 100.00 Rocket 98.78
Avocado 99.70 Salad iceberg 99.75
Banana bundle 93.97 Zucchini 90.67
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Appendix E (see Tables 9, 10)

Table 8   Per class AP for scenario 2

Product class AP Product class AP

Adelholzener alpenquelle classic 075 52.62 Banana single 67.42
Adelholzener alpenquelle naturell 075 45.07 Clementine 94.60
Adelholzener classic bio apfelschorle 02 95.16 Clementine single 69.83
Adelholzener classic naturell 02 86.31 Grapes green sugraone seedless 91.34
Adelholzener gourmet mineralwasser 02 85.62 Grapes sweet celebration seedless 86.51
Augustiner lagerbraeu hell 05 53.49 Kiwi 87.67
Augustiner weissbier 05 52.27 Orange single 40.87
Coca cola 05 51.72 Oranges 96.24
Coca cola light 05 71.39 Pear 91.49
Suntory gokuri lemonade 91.07 Pasta reggia elicoidali 97.28
Tegernseer hell 03 67.79 Pasta reggia fusilli 87.30
Corny nussvoll 97.39 Pasta reggia spaghetti 78.60
Corny nussvoll single 86.97 Franken tafelreiniger 82.86
Corny schoko banane 79.01 Pelikan tintenpatrone canon 91.10
Corny schoko banane single 77.70 Ethiquable gruener tee ceylon 50.34
Dr oetker vitalis knuspermuesli klassisch 85.59 Gepa bio und fair fencheltee 55.57
Koelln muesli fruechte 92.75 Gepa bio und fair kamillentee 73.08
Koelln muesli schoko 92.76 Gepa bio und fair kraeuterteemischung 56.96
Caona cocoa 85.85 Gepa bio und fair pfefferminztee 78.53
Cocoba cocoa 65.57 Gepa bio und fair rooibostee 92.30
Cafe wunderbar espresso 93.79 Kilimanjaro tea earl grey 54.51
Douwe egberts professional ground coffee 93.89 Cucumber 53.10
Gepa bio caffe crema 98.33 Carrot 60.67
Gepa italienischer bio espresso 77.06 Corn salad 69.67
Apple braeburn bundle 95.97 Lettuce 94.71
Apple golden delicious 98.62 Vine tomatoes 65.79
Apple granny smith 88.18 Roma vine tomatoes 70.85
Apple red boskoop 91.69 Rocket 75.80
Avocado 99.00 Salad iceberg 89.78
Banana bundle 73.58 Zucchini 66.74
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