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Abstract
Background: Plane-parallel ionization chambers are the recommended sec-
ondary standard systems for clinical reference dosimetry of electrons. Dosime-
try in high dose rate and dose-per-pulse (DPP) is challenging as ionization
chambers are subject to ion recombination, especially when dose rate and/or
DPP is increased beyond the range of conventional radiotherapy. The lack of
universally accepted models for correction of ion recombination in UDHR is still
an issue as it is,especially in FLASH-RT research,which is crucial in order to be
able to accurately measure the dose for a wide range of dose rates and DPPs.
Purpose: The objective of this study was to show the feasibility of developing
an Artificial Intelligence model to predict the ion-recombination factor—ksat for a
plane-parallel Advanced Markus ionization chamber for conventional and ultra-
high dose rate electron beams based on machine parameters. In addition, the
predicted ksat of the AI model was compared with the current applied analytical
models for this correction factor.
Methods: A total number of 425 measurements was collected with a balanced
variety in machine parameter settings.The specific ksat values were determined
by dividing the output of the reference dosimeter (optically stimulated lumi-
nescence [OSL]) by the output of the AM chamber. Subsequently, a XGBoost
regression model was trained, which used the different machine parameters
as input features and the corresponding ksat value as output. The prediction
accuracy of this regression model was characterized by R2-coefficient of deter-
mination, mean absolute error and root mean squared error. In addition, the
model was compared with the Two-Voltage (TVA) method and empirical Peters-
son model for 19 different dose-per-pulse values ranging from conventional to
UDHR regimes. The Akiake Information criterion (AIC) was calculated for the
three different models.
Results: The XGBoost regression model reached a R2-score of 0.94 on the
independent test set with a MAE of 0.067 and RMSE of 0.106.For the additional
19 random data points, the ksat values predicted by the XGBoost model showed

Abbreviations: 2D, two dimensional; AI, artificial intelligence; DPP, dose-per-pulse; DR, dose rate; Gy, gray; MeV, mega-electron volt; MAEmean absolute error,
mean absolute error; ML, machine learning; RMSE, root mean squared error; OSLoptically stimulated luminescence, optically stimulated luminescence; PFR, pulse
frequency rate; TVA, two-voltage analysis; UHDRultra high dose rate, ultra high dose rate.
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2 ION-RECOMBINATION FACTOR PREDICTION

to be in agreement, within the uncertainties, with the ones determined by the
Petersson model and better than the TVA method for doses per pulse >3.5 Gy
with a maximum deviation from the ground truth of 14.2%, 16.7%, and −36.0%,
respectively, for DPP >4 Gy.
Conclusion: The proposed method of using AI for ksat determination displays
efficiency. For the investigated DPPs, the ksat values obtained with the XGBoost
model were in concurrence with the ones obtained with the current available
analytical models within the boundaries of uncertainty, certainly for the DPP
characterizing UDHR. But the overall performance of the AI model, taking the
number of free parameters into account, lacked efficiency. Future research
should optimize the determination of the experimental ksat, and investigate the
determination the ksat for DPPs higher than the ones investigated in this study,
while also evaluating the prediction of the proposed XGBoost model for UDHR
machines of different centers.

KEYWORDS
dosimetry, FLASH, machine learning, radiation therapy, UHDR, XGBoost model

1 BACKGROUND

The main goal of radiation therapy (RT) is to treat
cancer patients with minimal adverse effects caused
by radiation damage to the surrounding healthy tissue.
In RT, normal tissue toxicity is the limiting factor of the
therapy. In the past decades,several improvements have
been introduced to reduce the dose delivered to the
normal tissue. However, most of these improvements
are based on the ballistics of the beam and the possible
gains from further improvements on this aspect are
marginal.1 Recently, a novel technique, named FLASH-
RT, proved to significantly increase the efficiency of RT,
as it is based on the inherent radiation response of
the tissues. This modality uses ultra-high dose rates
(UHDRs), which have shown to strongly reduce normal
tissue toxicity with the preservation of the anti-tumor
response in pre-clinical experiments.2 Moreover, the
use of UHDRs comes with practical benefits, such
as minimized intra-fractional motion and increased
patient comfort.3 All this can establish FLASH-RT as a
revolutionary treatment modality.

However, one of the main challenges that needs to
be addressed to successfully translate FLASH stud-
ies into the clinical stage, is the development of robust
and accurate dosimetry protocols.4 For dosimetry and
the monitoring of clinical electron beams, plane parallel
ionization chambers are to date the golden standard.5

The absorbed dose to water can then be calculated
according to established international protocols like the
International Atomic Energy Agency Technical Reports
Series 398 (IAEA TRS 398) or American Association
of Physicists in Medicine TG 51 (AAPM TG 51).6,7

The reading of the ionization chamber needs correc-
tion for several effects.One of them is ion-recombination
occurring inside the chamber.5,8 This correction strongly
depends on the dose-per-pulse (DPP), therefore it is

small for electron beams used in conventional RT (i.e.,
DPP < 1.3 mGy), but becomes more relevant in intra-
operative RT (i.e., DPP < 130 mGy), and extremely
important in FLASH-RT (i.e., DPP in the range of
0.5–10 Gy), where corrections >60% are needed.3,9

Different models have already been developed
to describe the ion recombination in the ionization
chamber: 1) the three general Boag equations and
Boag-derived Two Voltage Analysis (TVA) method, for
conventional RT, 2) the Di Martino models, developed
for IOeRT, and 3) the empirical Petersson logistic model
focusing on UHDR RT.3,5,10 However, none of these
models can accurately estimate the ion-recombination
correction factor (ksat) for a wide range of DPPs.9 The
lack of universally accepted models for UDHR is still
an issue as it is, especially in FLASH-RT research, to
accurately measure the dose for a wide range of dose
rates and DPPs.9,11

To address this issue, we aimed to develop an user-
friendly artificial intelligence (AI) model to directly predict
the ksat correction factor based on different machine
parameters. A XGBoost regression model was used.
This is a more efficient version of gradient boosting that
attempts to accurately predict a target variable by com-
bining the estimates of a set of simpler, weaker models.
XGBoost minimizes a regularized (L1 and L2) objective
function that combines a convex loss function (based on
the difference between the target and the predicted out-
puts) and a penalty term for model complexity.12 In this
study, the ion-recombination correction factor ksat was
predicted for a plane parallel Advanced Markus (AM)
chamber. In addition, the predicted ksat of the AI model
was compared with the currently applied analytical
models. It should be stated that the concept of the pro-
posed methodology relies strongly on the robustness
of the reference dosimetry system. As the latter is still
a topic of research, the proposed method in this paper
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ION-RECOMBINATION FACTOR PREDICTION 3

should be considered as a proof-of -concept, using OSL
and alanine for reference dosimetry.11 Other dosimetry
systems can be applied or explored in the future.

2 METHODS

2.1 Experimental determination of the
ion-recombination correction factor (ksat)

The absorbed dose to water measured by the ionization
chamber can be calculated according to international
protocols (e.g., IAEA TRS-398)6 using to the following
equation:

D = M ⋅ N′
60Co,Dw

⋅ kQ0Q′ ⋅ kh ⋅ kT,p ⋅ kel ⋅ kp ⋅ k𝐬𝐚𝐭 (1)

where M is the measured charge, N’Co-60,Dw is the
calibration coefficient of the ionization chamber for
absorbed dose to water in a 60Co beam, kQ0Q’ is the
beam quality correction factor, kh is the humidity cor-
rection factor, kT,P is the air density correction factor,
kel is the calibration factor of the used electrometer, kp
is the factor to correct for the polarizing voltage effect,
and ksat is the ion-recombination factor which accounts
for incomplete charge collection due to recombination
effects inside the chamber. In this study, we use an
Advanced Markus plane parallel ionization chamber
(PTW, Freiburg, Germany). For the geometric and
electrical details of the used AM chamber, we refer to
Table S1.

The ion-recombination correction factor (ksat) was
experimentally determined via the following formula:

k𝐬𝐚𝐭 =
Dref

M ⋅ N′
60Co,Dw

⋅ kQ0Q′ ⋅ kh ⋅ kT,p ⋅ kel ⋅ kp
(2)

where Dref corresponds to the dose measured by the
reference dosimeter.The reference dosimeter should be
dose rate and DPP independent in the range of the
measurements.

2.2 Reference dosimetry in UHDR

As no standardized procedures and dosimeters yet exist
for UHDR dosimetry, the optically stimulated lumines-
cence (OSL) system, developed by Agfa N.V. (Mortsel,
Belgium), was used. The OSL system consists of a
BaFBr solid state OSL screen (Table S2), that is read out
using a computed radiography scanner (CR-15).13–15

The time between the start of the irradiation and read-
out was kept constant at 1 min 17 s to account for
dark decay.16 The first of this system in UHDR show
no dose rate dependence.17–19 In addition, for a sub-
set of data points, the OSL system was benchmarked

TABLE 1 An overall representation of the different machine
parameters, which were used as input data for the ML model.

Parameters Settings

Modality Conventional; UHDR

Nominal beam energy (MeV) 7; 9

Pulse repetition frequency (Hz) 100; 200

Pulse length (µs) 0.5 - 1 - 1.5 - 2 - 2.5 - 2.7 - 3 - 3.2
- 3.5 - 4

Source surface distance (cm) 78.1 - 91.9 - 103.35 - 114.85 -
126.3 - 137.85 - 149.4 - 160.8 -
172.2 - 183.8

using alanine electron paramagnetic resonance (EPR)
dosimetry (NuTec, Hasselt, Belgium). Based on this
comparison, a trend line was constructed to scale the
OSL dose response. Alanine pellets are considered
dose rate independent and are frequently used for
UHDR dosimetry.11,20 For a comparison in characteris-
tics between these detectors, we refer to Table S3.

2.3 Measurements

In Table 1, the machine parameters used in this study
are listed. All measurements were performed using the
ElectronFlash (EF, SIT Sordina, Aprilia, Italy), which is a
dedicated research accelerator for FLASH-RT. This sys-
tem is designed to generate electron beams with a broad
window of DR and DPP,both in conventional and UHDR.
The pulse length could only be altered in UHDR (from
0.5 to 4 µs),and was fixed to 1 µs in conventional modal-
ity.The ksat was determined for the various combinations
of settings reported in Table 1. These machine settings
were used as input features for the AI model.As a result,
a total number of 425 measurement was collected with
a variety in machine parameter settings.The distribution
of the ksat values in function of the different settings can
be found in Figure 1.

The experimental setup is shown in Figure 2.The grey
tapes at the side of the table correspond to the differ-
ent SSD positions, which were defined to vary the pulse
amplitude, and thus DPP. The AM chamber was placed
in a solid water phantom (RW3) with 15 mm build-up and
at least 50 mm backscatter. This way, the effective point
of measurement of the AM is centered in the plateau of
maximal dose deposition in the depth deposition dose
curve.The OSL sheet was put in front of—and in contact
with the AM chamber to allow simultaneous irradiation.

2.4 Machine learning-based regression
model

A ML-based XGBoost regression model was trained in
a supervised way to predict the ksat factor directly.21
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4 ION-RECOMBINATION FACTOR PREDICTION

F IGURE 1 Boxplots that show the distribution of the ksat values in function of (a) modality, (b) energy, (c) PRF, (d) pulse length, and (e) SSD.

XGBoost is a form of ensemble learning, which com-
bines individual models (i.e., base learners) to get a
single prediction.12 All input features that were used
to train the ML model are represented in Table 1. As
corresponding output, the experimentally obtained ksat
factor was used (Equation (2)). The original dataset of
425 measurements was divided into a training and test
set with a standard ratio of 80/20. During the train-
ing phase, various hyperparameter combinations such
as number of estimators, maximum depth, regulariza-
tion term (i.e., L1/L2 regularization on leaf weights),
learning rate, etc. were exhausted by grid search after
k-fold cross-validation (k = 5). Afterwards, the per-
formance of the overall best model was checked on
the independent test set by the mean absolute error
(MAE),root mean squared error (RMSE),and R-squared

(R2-coefficient of determination) with additionally pre-
diction error and residuals plots. Scripting was done in
Python using dedicated ML libraries (i.e., TensorFlow/
scikit-learn).

2.5 Model validation against analytical
models

In order to test whether the AI model can overcome
certain limitations of the current applied analytical
formulas, the ksat predictions from different models were
compared with the experimentally measured for 19
randomly selected data points. Note that these points
were neither in the training nor test set of the AI
model.
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ION-RECOMBINATION FACTOR PREDICTION 5

F IGURE 2 An overall representation of the experimental setup. In this scenario, the phantom is positioned on a SSD of 183.8 cm.

For comparison with the model’s output, the ksat
value was first calculated by the Boag-derived TVA
method (3):

k𝐬𝐚𝐭 = a0 + a1 ⋅
(

M1
M2

)
+ a2 ⋅

(
M1
M2

)2

(3)

where a0, a1, and a2 are constants defined by the volt-
age ratios (in our case, a0 = 1.198, a1 = −0.875, and
a2 = 0.677) and M1 and M2 are the measured col-
lected charges at polarizing voltages of 300 and 100 V,
respectively.

Second, the ksat value was calculated according to
Petersson empirical model formula3 (5):

k𝐬𝐚𝐭 =

(
1 +

(
DPP [mGy]

U [V ]

)𝛼
)𝛽

(4)

where DPP is the dose-per-pulse,U is the polarizing volt-
age across the ionization chamber,and α and β are fitting
constants with no physical meaning (with values of 2.5
and 0.144 respectively).

Our model was compared with the two above using
the Akaike Information Criterion (AIC) calculated on the
independent test set of 20 additional data points. AIC
determines the relative information value of the model
using the maximum likelihood estimate (i.e., how well
the model reproduces the data) and the number of
parameters (independent variables) in the model.As the
considered sample size was beneath the number of 40,
a corrected AIC (AICc) was calculated. The model with
the lowest AIC offers the best fit.Moreover, the ΔAIC was
determined, that is the relative difference between the
best model (which has a ΔAIC of zero) and each other
model in the set.

3 RESULTS

3.1 Determination of Dref using
OSL/alanine

For a subset of data points, the relationship between
the measured dose by the OSL system and the ala-
nine dosimeter is shown in Figure 3a. These data points
have a linear component that can be described by a
best-fit line with equation: y = 1.0571 (± 0.075) x –
0.3858 (± 0.674).This means that the OSL dose is 5.7%
lower than the alanine dose, with an error in one of
both systems represented by x, where the latter can be
determined by the standard error of the y-estimate. In
Figure 3b, the residual plot is given to show no bias is
present.

3.2 In-house prediction accuracy

The performance of the overall best model after 5-fold
cross validation was validated on an independent test
set. The values of the statistical measurements are
listed in Table 2. The R2 value for the model is 0.94,
which means that 94% of the variability observed in
the ksat values is explained by the model. The MAE
has a value of 0.061, which characterizes the alteration
among the original and predictable values. The RMSE
has a value of 0.108, which in addition to MAE, imple-
ments a quadratic scoring rule that also measures the
average magnitude of the error. In Figure 4a, the predic-
tion error plot is shown, where most of the data points
are on a straight line (i.e., black dotted). In Figure 4b,
the residuals plot is presented, where distributions
on the right side indicate that the residuals (actual
values-predicted values) are approximately normally
distributed.
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6 ION-RECOMBINATION FACTOR PREDICTION

(a)

(b)

F IGURE 3 (a) Linear regression scatter plot with dashed trend line (y = 1.0571 (± 0.075) ⋅ x – 0.3858 (± 0.674); R2 = 0.8942) relating
alanine dose read-out to OSL dose read-out. (b) Residual plot with individual data points as fitted value.

TABLE 2 Results of the statistical measures of the overall ML
model on the independent test set.

Statistical metric Specific value

R2 value 0.940

MAE 0.067

RMSE 0.108

3.3 Analytical model validation

For 19 unseen data points evenly spread over the set
of machine parameters, which cover the entire range of
DPPs typical for conventional and UDHR regimes, the
DPP measured with the AM is plotted against the simul-
taneously measured reference DPP in Figure 5. The

AM DPP was corrected for ion recombination by using
1) the TVA method, 2) the empirical Petersson model,
and 3) the XGBoost model. The dashed line repre-
sents the perfect correction of AM DPP to the reference
dosimeter.

For the lower DPP range (0–2 Gy), the ksat corrected
DPP was determined with an accuracy better than
36% for all models. For DPPs higher than 2 Gy, the
TVA method systematically over- or underestimates the
recombination factor, reaching a difference of 18.8%
and −13.8% at dose 2.30 and 2.60 Gy, respectively.
This difference increases with higher DPPs, with a dose
difference of −5.8% at 4.08 Gy, −36.0% at 4.31 Gy,
and −25.2% at 4.43 Gy). In contrast, the Peters-
son and XGBoost models show high agreement for
most data points with a DPP lower than 4 Gy, with a
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ION-RECOMBINATION FACTOR PREDICTION 7

F IGURE 4 (a) The prediction error plot for the XGBOOST model on the independent test set with y the actual value and ŷ the predicted
value. (b) The residual plots for training and test set.

difference of 15.91% and 3.1% for the Petersson model
and 15.1% and 19.1% for the XGBoost model for a
DPP of 2.30 and 2.60 Gy, respectively. For data points
with DPPs above 4 Gy, the XGBoost model shows
differences of 14.2%, −0.85%, and 8.26% from the

experimental ksat in comparison to 16.7%, −7.4%,
and −1.0% for the Petersson model at 4.08, 4.31,
and 4.43 Gy respectively. However, the data points of
both models are within the boundaries of prediction
uncertainty.
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8 ION-RECOMBINATION FACTOR PREDICTION

F IGURE 5 Comparison between the DPP measured by the OSL and the AM, where the value of the latter was corrected for ion
recombination by means of the ksat factor. This correction was determined by the TVA method (blue), the Petersson empirical model (orange),
and the XGBoost regression model (green). The dotted line represents the golden truth, meaning the perfect correction of the ion recombination.

In addition, the AICc is calculated for the three
different models.

4 DISCUSSION

The dosimetric characterization of UHDR electron
beams should ideally be performed by DPP and dose
rate-independent dosimeters, such as a Fricke-type
dosimeter, alanine EPR, and radiochromic film.11 The
clinical utility of such devices is rather limited due to
low sensitivity, cumbersome calibration, or long post-
irradiation reading time. The absorbed dose can be
directly measured with a parallel-plate ionization cham-
ber,which is considered the golden standard for electron
dosimetry. One major limitation is that its response
should be corrected for the lack of complete charge
collection due to ion recombination by means of ksat.
Current theoretical models are not capable to predict
this correction factor for DPPs typical for FLASH-RT,
where high recombination losses (>60%) can occur.9

In this paper, the feasibility of using an automated
method for ksat determination for a parallel-plate ioniza-
tion chamber is checked, as well as its applicability in
high DPP electron beams.

The OSL system was used as a reference dosimeter
to determine the experimental ksat value of the ion-
ization chamber for a certain setup. However, as the
dose rate response in UHDR beams is still not fully
explored, the OSL dose was compared to alanine EPR
and scaled when and if needed. Alanine has been
proven to be effective for instantaneous dose rates up
to about 1010 Gy/s and mean dose rates greater than
1 kGy/s, making them a reliable reference dosimeter for

UHDR FLASH studies. The benchmark set-up showed
a 5.7% lower dose read-out for OSL in comparison
to alanine.11 This study was conducted as a proof-of -
concept with OSL as it was available. In future work, it is
advised to use better optimized dosimetry systems with
better uncertainty for reference in combination with the
reported methodology in this paper.

Based on the results of statistical measurements (i.e.,
Table 2) and prediction error plot on the independent
test set, the model has shown to predict ksat values
accurately for unseen combinations of machine and
setup parameters. To validate the model in compari-
son to the current available models for ksat calculation,
ksat was determined for 19 random data points, evenly
spread over the DPP range covered in this study using
the different models. These were used to correct the
DPP measurement of the AM, which was compared
with the experimental DPP in Figure 5. For DPPs
typical for UHDR, the approximations used to derive
the TVA method are no longer valid and result in an
underestimation of the ksat value. This has already
been demonstrated before in different studies3,22 and
was validated here, showing the need for alternative
methods. The logistic model, proposed by Petersson
et al.,3 provided an accurate prediction across the study-
specific full DPP range. The XGBoost model showed
high overlap with this model,with all data points falling in
each other’s uncertainties. For a DPP of 4.08, 4.31, and
4.43 Gy respectively, the XGBoost showed a difference
of 14.2%, −0.85%, and 8.26% from the experimental
DPP in comparison to 16.7%,−7.4%,and −1.0% for the
Petersson model. Based on these results, the ksat val-
ues determined by the AI- and Petersson models can
be considered equivalent.
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ION-RECOMBINATION FACTOR PREDICTION 9

TABLE 3 An overview of the AIcc and Delta AICc for every used
model to predict the ksat value for the 20 independent data points.

K AICc ΔAICc

XGBoost model 5 21.14 11.42

TVA method 1 9.72 0

Petersson model 2 11.40 1.68

Note: K is defined as the number of free parameters.

The AICc comparison between the models (i.e.,
Table 3), suggests the TVA method is the best perform-
ing model, taking the model’s complexity into account.
However, this model underestimates the required
correction for high DPP (>2.5 Gy), as previously dis-
cussed. We attribute the superiority of this model to the
limited number of validation points, especially at high
DPP. Taking both the goodness of fit and the AICc into
account, the Petersson model is the superior model,
because less parameters are needed to determine
the ksat value with similar accuracy as the XGBoost
model.

In practice, however, the Petersson model requires
prior knowledge of the DPP for every beam parame-
ter setting. Therefore, a high number of measurements
are needed to map the entire beam parameter space,
especially for highly flexible UHDR beams. We showed
the feasibility of the proposed strategy to use an AI
model for the determination of ksat as an alternative.
This method strongly reduces the number of these time-
consuming measurements, since the model is trained
on a subsection of the beam parameter space and is
yet able to predict the ksat value for every arbitrary
beam parameter setup. An additional benefit is that this
method is not limited by approximations, as is the case
for most analytical models, making it relevant for a wide
range of dose rates and DPP. In this regard, the pro-
posed approach could ease the validation of future
analytical models by reducing the number ksat values
to be experimentally determined.

It should be stated that this study has some limita-
tions. The main limitation is the reference dosimetry,
performed with experimental OSL dosimetry sheets.
This resulted in large uncertainties and a discrepancy
of 5.7% with the more trustworthy alanine dosimetry.
Therefore, experimental ksat values smaller than 1
were observed for a subset of data points obtained in
the 7 MeV conventional modality. Further investigation
is needed to determine the impact on the model. The
effect of the sub-optimal reference dosimetry does how-
ever not only affect the AI based method, but also the
Petersson model,as this relies on the experimental DPP.
Therefore, the observed equivalence of the XGBoost
model for the ksat value determination is expected to
remain valid when the reference dosimetry is optimized.
Also, in order to cover the entire sensitive volume of
the AM, a 50 mm applicator was needed for this study,

limiting the output DPP to 4.5 Gy. Another limitation is
the absence of validation for a different UHDR elec-
tron machine and configuration. Future studies should
investigate the subset of the beam parameters to min-
imize the required measurements while maximizing the
model’s performance over a wide range of parameter
settings. Also, it should be investigated which beam
parameters are relevant, in order to prevent overfitting.
In addition, future studies should focus on creating a
generic framework for different beam structures and
particles.

5 CONCLUSIONS

It was demonstrated that an AI approach can be used
to determine the ion recombination in electron beams.
The ksat values determined by the presented AI model
were comparable with the ones obtained with the gener-
ally accepted alternative methods for ksat determination,
including at high dose per pulse. The overall perfor-
mance of this AI model, taking into account the number
of parameters, was inferior compared to these alter-
natives. It has however the benefit of not requiring
measurements for every possible beam parameter set-
ting, which is especially important when moving to
UHDR treatments where relevant parameters are fre-
quently varied. Despite proving the feasibility of this
approach,more accurate reference dosimetry is needed
to improve the model’s performance and use it to its
full potential, resulting in a fair comparison with the
more thoroughly studied alternatives and potentially
leading to stronger conclusions. Future research, based
on cross-referencing various UHDR electron beam sys-
tems, aims at validating the model with different beam
outputs.
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