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A B S T R A C T   

Plant functional traits are consistently linked with certain ecological factors (i.e., abiotic and 
biotic), determining which components of a plant species pool are assembled into local com
munities. In this sense, non-native naturalized plants show more plasticity of morphological traits 
by adopting new habitat (an ecological niche) of the invaded habitats. This study focuses on the 
biomass allocation pattern and consistent traits-environment linkages of a naturalized Datura 
innoxia plant population along the elevation gradient in NW, Pakistan. We sampled 120 plots of 
the downy thorn apple distributed in 12 vegetation stands with 18 morphological and functional 
biomass traits during the flowering season and were analyzed along the three elevation zones 
having altitude ranges from 634.85 m to 1405.3 m from sear level designated as Group I to III 
identified by Ward’s agglomerative clustering strategy (WACS). Our results show that many 
morphological traits and biomass allocation in different parts varied significantly (p < 0.05) in 
the pair-wise comparisons along the elevation. Likewise, all plant traits decreased from lower 
(drought stress) to high elevation zones (moist zones), suggesting progressive adaptation of 
Datura innoxia with the natural vegetation in NW Pakistan. Similarly, the soil variable also cor
responds with the trait’s variation e.g., significant variations (P < 0.05) of soil organic matter, 
organic carbon, Nitrogen and Phosphorus was recorded. The trait-environment linkages were 
exposed by redundancy analysis (RDA) that was co-drive by topographic (elevation, r =
− 0.4897), edaphic (sand, r = -0.4565 and silt, r = 0.5855) and climatic factors. Nevertheless, the 
influences of climatic factors were stronger than soil variables that were strongly linked with 
elevation gradient. The study concludes that D. innoxia has adopted the prevailing environmental 
and climatic conditions, and further investigation is required to evaluate the effects of these 
factors on their phytochemical and medicinal value.  
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1. Introduction 

Human activities have caused the plants to spread and propagate, resulting in a rapid rise in the distribution and quantity of alien 
species that progressively naturalized in non-native environments [1]. It is believed that certain plant communities are more 
vulnerable to being occupied by alien species due to empty or deficient resources [2]. Similarly, studies suggested that disturbance may 
be a prerequisite for invading alien species [3], or community characteristics such as productivity, dominance, or diversity may in
fluence alien species’ vulnerability [4]. Alien species’ success is dependent not only on the invasibility of the plant community but also 
on the qualities; hence generalizations about community factors that drive invasion have failed [2]. 

Plant functional traits are attributes associated with a plant’s capacity to obtain, use, and maintain available resources [5]. Leaf 
characteristics such as specific leaf area (SLA), specific leaf mass, and plant canopy height are often included [6]. It would be beneficial 
to assess plants’ adaptability to changing environments to uncover plant conservation approaches and reactions to various environ
mental factors [7]. Furthermore, biomass is the basic quantitative characteristic that contributes to plant productivity and is the energy 
source that maintains the functioning of an ecosystem [6]. The plant biomass distribution law describes a plant’s growth and metabolic 
activity rate, which determines its organs’ functional qualities [8]. Environmental factors influence plant biomass distribution, 
affecting various plant growth processes [9]. Consequently, plant phenotypic characteristics may be potential confounders in biomass 
allocation analyses [10–12]. The plant must maintain a balanced biomass distribution between the shoot and the root to sustain basic 
physiological activities, accomplish normal development [10], and optimize resource allocation to increase its capacity with the 
changing environmental conditions [13,14]. In addition, the plant species produces higher biomass in native habitats under varying 
environmental conditions and pre-adapts species to become alien and naturalized elsewhere [15]. 

It is vital to note that altitudinal gradient significantly predicts microclimatic changes, determining plant functional traits [16,17]. 
The altitudinal gradient is linked to several factors, including reduced resource availability, shorter growing seasons, lower microbial 
activity, lower human population densities, and harsher climatic conditions [18]. As a result, altitudinal gradient predominately 
influences plants’ functional qualities [5]. Plant pre-adaptation techniques include choosing stress-tolerant genotypes, progressive 
exposure to cold hardiness, and intraspecific hybridization with cold-tolerant species, which are important drivers of alien species over 
elevational gradients [19]. In addition, adaptations in an alien species’ PFTs aid its capacity to live and reproduce in various climates 
and edaphic habitats [20–22]. The trait plasticity and adaptive divergence are common in invasive plants. However, these processes 
have yet to be well studied in subtropical species [23]. 

Datura innoxia (Mill.) Known as the downy thorn apple, one of the most ubiquitous subtropical species [24], rapidly expanding into 
high elevation zones, was chosen as the model plant in this research. Downy thorn apple belonging to the Solanaceae family is a 
naturalized species found in world dry and hot climatic regions. Datura’s spread from North America and was limited to the United 
States and Mexico but recently has propagated and invaded many other regions of the world [25]. Datura was once classified as part of 
the genus Brugmensia, but now it is considered a distinct and medicinally important plant [26]. Along with deadly henbane, mandrake, 

Fig. 1. Distribution of the sampling sites along an altitudinal gradient in the study area.  
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and nightshade, Datura is a typical "witches’ herb,” well-known for its critical ingredient in magical potions and witches’ brews [27]. 
Chemically, all Datura plants include atropine alkaloids (i.e., hyoscyamine, atropine, and scopolamine), primarily found in their seeds 
and flowers and have been used as hazardous material and narcotics in some communities [28]. There would be 5:1 poison diversity 
among the plants, and the toxic quality of a specific plant would be determined by its age, environment, and existing climatic con
ditions. Datura is exceedingly dangerous as a medication but also has various medical benefits; e.g., in many traditional civilizations, 
its usage is deemed essential due to specific alkaloids [27]. D. innoxia (atropine alkaloid) and D. ferox (scopolamine 98–100% alka
loids), which are toxic to cattle, are the most frequent species generally found in South America and Europe [29]. However, research on 
its ecological relationships, distribution patterns, and functional trait variations is scarce. 

Life-history features, herbivory sensitivity, and other similarities between native and invasive species are projected to enhance 
efficient resource utilization in naturalized species [30]. Therefore, this research explored plant functional traits of naturalized 
D. innoxia with elevation in the Malakand division of Khyber Pakhtunkhwa, Pakistan. The plant’s morphological and biomass pa
rameters were analyzed under the hypothesis that plant functional traits correlate with resource acquisition and conservation, as well 
as being influenced by environmental factors. This suggests that specific critical ecological variables may affect variations in functional 
traits along the altitudinal gradient. As a result, we predicted features like biomass allocation to various plant organs and morpho
logical traits that reflect resource efficiency. Our aims were 1) to assess the communities and related environmental variables asso
ciated with D. innoxia population and morphological traits, 2) to assesses the association between plant traits and environmental 
factors along a steep elevation gradient coupled with environmental and climatic factors, 3) to find out whether local climatic con
ditions act as barrier, making some traits non-viable and therefore preventing the establishment of certain naturalized plant species 
present in the regional pool. 

2. Materials and methods 

2.1. Study area 

The study was conducted in the Malakand division, which has seven districts and is one of the major divisions in Khyber Pak
htunkhwa (KP), Pakistan (Fig. 1). The area lies at latitude of 34◦32′26.18″Nto 36◦38′5.88″N and at longitude of 70◦1′36.36″E to 
71◦36′36.41″E. The area spans largest division of the province occupying 40% of the land and 25% of the population [31]. A semi-arid 
climate characterized the sampling sites, with an annual average temperature ranging from 4 

◦

C to 40.5 
◦

C and rarely below 1 
◦

C or 
above 44 

◦

C, and average annual precipitation of 71 mm (Fig. 2). Similarly, the relative humidity ranges from 50 to 65%, with 
maximum recorded in July and August while minimum in May and June (Fig. 2). The sampling sites selected were found to be 
dominated by D. innoxia, in association with Cannabis sativa, Parthenium hysterosporus, Mirabilis jalapa, Xanthium strumarium, and 
Medicago denticulate. In order to conduct sampling in the study area, three elevation zones were designated. These were categorized as 
follows: Group I represented lower elevation zones (634.85 ± 27 m above sea level), encompassing plain areas with sub-tropical 
conditions. Group II denoted middle elevation zones (924.4 ± 18.49 m asl), characterized by a transition from sub-tropical to 
temperate conditions. Group III comprised higher elevation zones (1405.3 ± 59 m asl), predominantly consisting of temperate areas 
(see Fig. 3).2.2 Experimental design and sampling procedure. 

The study recorded twelve morphological, biomass parameters and their variations in D. innoxia at various elevation zones of the 
Malakand division by selecting 120 permanent plots (each of 10 × 10 = 100 m2). Initially, we classified the 120 plots distributed in 12 
vegetation stands into three groups using Ward’s agglomerative cluster comprising 40 plots (4 × 10 = 40 plots) in each group (Fig. 4). 
One hundred and twenty plants were randomly marked for biomass and morphological traits measurements by selecting forty in
dividuals at each elevation zone (group). Based on the elevation gradient D. innoxia population in the sample, three (5 × 5 = 25 m2) 
quadrates were established in each stand for collecting phytosociological data by following Bürzle et al. [32], to calculate the structural 
attributes, including the importance value index (IVI). The community traits, i.e., height, cover, and aboveground biomass, were 
determined using a measuring tape and electrical balance of accuracy of 0.01g. The biomass for each parameter was measured by 

Fig. 2. Climatic diagram exhibited mean annual rainfall (mm), mean monthly temperature (C◦) and relative humidity (%) records at the sampling 
sites (data presented is taken from Swat, Dir, Timergara and Malakand meteorological stations (1965–2021). 
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selecting 10 well-growing D. innoxia plants in each stand after measuring the phytosociological traits. The aboveground parts (i.e., 
stem, branches, leaves, flowers, and fruits) were cut off and put into numbered, tagged, or labeled envelopes following [33]. Plant 
biomass in the plot was measured after sorting the parts into different categories in the oven for 72 h at 65 ◦C. 

2.2. Measurement of leaf traits profile 

The leaf area of D. innoxia was measured using a measuring tape. The specific leaf area (SLA) was computed using the following 
equation: 

SLAi=
DWi

Li*Wi 

Where SLAi is the specific leaf area of the ith leaf (g/cm2), DWi, Li, and Wi are dry weight (g), length (cm), and width (cm), 
respectively, of each rectangular leaf section. Finally, the leaves were packed into an envelope and dried in an oven for 72 h at 65 ◦C, 
and the dry weight was recorded. The SLA was expressed as the ratio of LALA to leaf dry weight [34]. 

2.3. Soil analysis and climate data acquisition 

Soil samples were collected from root zone of all the twelve sites from the center of each 10 × 10 m plots at a depth of 30 cm and 
mixed thoroughly to obtain three replicates (n = 3) per site. The samples were dried and sieved through a mesh (pore size: 2 mm) to 

Fig. 3. Dendrogram of Datura innoxia dominated plots: Group-I – Datura-Parthenium community, Group-II– Datura-Xanthium community, and Group- 
III – Datura-Cynodon community. Numbers enclosed in parentheses signify the groupings used in analysis (see Materials and methods section). 

Fig. 4. Datura innoxia well grown in bloom stage (A) and stand of sampling (B).  
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remove roots and other debris and transported to the laboratory for soil textural and physiochemical (i.e., soil nutrients) properties. 
After completing the process, wilting point (cm3), field capacity (mm/m), electrical conductivity (mm/hr), available water, saturation, 
and soil bulk density (g.cm− 3) were calculated. The pH of soil samples was determined using 1:5 soil water suspensions described by 
Ref. [35]. A hydrometer was used to measure the percent of silt, sand, and clay following [36]. Acid-base neutralization was used to 
assess the lime concentration in soil [37]. The concentration of phosphorus (mg.Kg− 1) was calculated following [38], whereas the 
K2Cr2O7 technique was used to determine the amount of organic matter in the soil [39]. Total nitrogen (TN %) was assessed using the 
micro-Kjeldahl method, which comprises digestion with concentrated H2SO4 and determination of NH3 using the indophenol blue 
method on an auto-analyzer (Kjeltec TM 2100, FOSS, Sweden) [40]. The NaOH fused flame spectrum technique was used to determine 
total potassium (TK %) (Digital Flame Analyzer, Model 2655–00, Cole-Parmer Instrument, Chicago, USA). For precise spatial location 
and other important topographical variables (i.e., elevation, slope, and aspect), we used the RedHen DX-GPS system, altimeter, and 
magnetic compass, respectively. 

2.4. Statistical analysis 

One-way analysis of variance (ANOVA) followed by Tukey’s HSD means comparisons were used for testing differences in the plant 
functional traits and associated environmental variables. The significance level at P < 0.05 was settled for testing the significant 
variation. The linear regression model investigated the relationship between elevations and plant functional traits following [41]. The 
discriminant plant functional characteristics and relationships of topographic, soil physiochemical, and bioclimatic factors were 
studied using redundancy analysis (RDA). The RDA was applied to the previously selected discriminant morphological traits and the 
environmental and bioclimatic variables (Bio-1 to Bio-19) extracted in the compatible format using spatial location data of each 
vegetation stand from the Worldclim database (http://www.worldclim.org/current). With the step function in the vegan package [42], 
non-significant bioclimatic variables were sequentially removed for robust results. We used PC-ORD ver.6.0 software [43] to analyze 
the relationship between morphological traits and environmental variables. 

3. Results 

3.1. Vegetation analysis and 

Three vegetation groups were identified in the stands where Datura innoxia was abundant in NW Pakistan (Table 1). The recognized 
vegetation groups corresponded well with particular environments differing in ecological conditions and, consequently, floral di
versity (Fig. 4). Group I was formed by the Datura-Parthenium community, Group II represented the Datura-Xanthium community, and 
Group III represented the Datura-Cynodon community. According to the surveyed vegetation, 20 species belonging to 14 families and 15 
genera coexisted with D. innoxia. Among the associated species, four exotic invasive species–Cannabis sativa L., Parthenium hyster
ophorus L., Cynodon dactylon (L.) Pers. and Xanthium strumarium L. were consistently present. Other neighbor species with importance 
values (IV) less than 5% in the vegetation stands were Chenopodium album L., Persicaria maculosa S⋅F.Gray, Heliotropium indicum L., 
Silybum marianum (L.) Geartn, Verbesina encelioides (Cav.) Benth. & Hook. f. ex A. Gray, Chenopodium album L., Ajuga bracteosa Wall. ex 
Benth., Origanum vulgare (Linn), and Tagetes minuta L. vegetation stands dominated by the Datura-Parthenium community (Group I) 
were the species-poor habitats, where only 7 coexisting species were recorded. In contrast, the highest numbers of the coexisting 

Table 1 
Importance value index (IVI) of plant species distributed in three major vegetation groups of Datura innoxia.  

Plant Botanical names Group I Group II Group III 

Datura innoxia (Mill.) 47.39 ± 6.0 44.75 ± 1.61 43 ± 4.77 
Cannabis sativa L. 9.78 ± 1.34 6.8 ± 2.5 5.20 ± 2.3 
Parthenium hysterosporus L. 16 ± 5.35 5.9 ± 4.3 10.3 ± 7.8 
Chenopodium album L. 2.1 ± 2.1 5.93 ± 3.4 3.94 ± 3.9 
Amaranthus viridis L. *- 1.34 ± 1.3 *- 
Heliotropium indicum L. *- 2.28 ± 2.1 1.95 ± 0.77 
Cynodon dactylon (L.) Pers. 14.8 ± 1.95 9.81 ± 1.5 13.47 ± 5.0 
Persicaria maculosa S⋅F.Gray 2.53 ± 2.5 1.57 ± 1.5 *- 
Silybum marianum (L.) Geartn *- 2.44 ± 0.81 *- 
Xanthium strumarium L. 7.25 ± 4.62 11.93 ± 4.6 *- 
Ajuga bracteosa Wall. ex Benth. *- *- 3.89 ± 3.8 
Origanum vulgare (Linn) *- *- 2.26 ± 2.2 
Artemisia capillaris Thunb. *- *- 1.54 ± 1.5 
Chenopodium album L. *- 1.14 ± 1.1 *- 
Verbesina encelioides (Cav.) Benth.& Hook.f. ex A. Gray *- 3.68 ± 2.7 *- 
Sonchus asper (L.) Hill *- 1.31 ± 0.7 *- 
Rumex hastatus D. Don *- *- 1.97 ± 1.9 
Tagetes minuta L. *- *- 4.98 ± 2.5 
Plantago lanceolata *- *- 1.44 ± 0.9 
Heliotropium indicum L. *- *- 5.92 ± 2.5 

Note: values are presented as Mean ± Standard Error; *- (Absence of a species). 
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species (13 species each) were observed in Groups II and III, respectively. 

3.2. Environmental and soil variables 

The elevation of the habitats sampled ranges from 634.85 ± 27 m to 924.4 ± 18.49 m in the three contrasting habitats (Group I to 
III) and varied significantly across the elevation gradient (F = 141, P < 0.05). However, the spatial variable, i.e., Latitude and 
Longitude, did not vary significantly, showing less variation while the aspect degree ranges from 105.75 ± 41◦ to 144.5 ± 52.9◦. In the 
soil variables, silt particles vary significantly compared to sand and clay (ANOVA; F = 3.35, P ≤ 0.08). The soil nutrients organic matter 
(ANOVA; F = 5.19, P≤0.03), organic carbon (ANOVA; F = 5.18, P ≤ 0.03), nitrogen (ANOVA; F = 4.98, P ≤ 0.03) and phosphorus 
(ANOVA; F = 4.01, P ≤ 0.06) varies significantly coupling with elevation gradient to sustained D. innoxia communities in the region 
(Table 2). Similarly, the quantities of organic matter, organic carbon, Nitrogen and Phosphorus were higher in Group I, followed by 
Group II and III (Table 2). 

3.3. Morphological and biomass traits 

The average height, volume, and cover of the D. innoxia population showed a decreasing trend across the elevation. It decreased by 
4.42%, 10.35%, and 8.96%, respectively, with changes in elevation from Group I-III, while density gradually increased by 38.48% 
(Table 3). Similarly, the leaf area, aboveground dry biomass, and dry root biomass decreased by 13.05%, 40.32%, and 26.30%, 
respectively. The number of leaves increased by 39.60%, while stem length, the number of flowers, leaf length, leaf width, and leaf area 
increased firstly and then decreased by 16.17%, 18.99%, 27.70%, 6.65%, and 30.05 %, respectively. The biomass allocation of organs 
in D. innoxia was significantly different (P ≤ 0.05), having higher shoot biomass than root (Table 3). The traits displayed relationship 
with the elevation gradient, some of which shows significant relation i.e. number of leaves/plant (Adj R2 = 0.15, P < 0.05), stem 
length/plant (Adj R2 = − 0.08, P < 0.05), leaf area/plant (Adj R2 = − 0.08, P < 0.05), plant height/plant (Adj R2 = 0.06, P < 0.05), leaf 
width/leaf (Adj R2 = 0.28, P < 0.05), root dry weight (Adj R2 = 0.06, P < 0.05), stem dry weight/plant (Adj R2 = 0.06, P < 0.05), below 
ground dry weight/plant (Adj R2 = 0.32, P < 0.05), leaves dry weight/plant (Adj R2 = 0.04, P < 0.05), above-ground dry weight/plant 
(Adj R2 = 0.11, P < 0.05) and total dry weight/plant (Adj R2 = 0.15, P < 0.05) as depicted in Fig. 5. All the vegetative traits showed the 
maximum mean value at 500 m and minimum at 1500 m altitude. 

3.4. Morphological-biomass traits linkages with the abiotic environment 

The traits of D. innoxia were influenced by environmental and soil variables showing 82.5 percent of the total variance (Table 4 & 
Fig. 6). The major contributing axis is axis explaining 60.1%, followed by axis 2, which has 15.5% and 9.9% of the ecological variation, 
respectively. The eigenvalues for axis 1, 2, and 3 were 14.41, 3.73, and 2.37, respectively. Therefore, the information explained by axes 
1, 2, and 3 was used to analyze the relationship between plant functional traits and environmental factors. The elevation had the 
highest negative correlation on the first axis in the RDA ordination, followed by the sand percentage, with correlation coefficients of 

Table 2 
Characteristics of abiotic factors of the sampling sites (i.e., topographic, edaphic, and soil) of the three groups based on elevation gradient. Given are 
arithmetic means and the standard errors (SESE). The different alphabet superscript letters indicate significant differences in the means (one-way 
ANOVA test, P < 0.05).  

Variable Unit Codes Group-I II III F-value p-value 

Mean ± SE Mean ± SE Mean ± SE 

Latitude (◦) Lat 34.68 ± 0.41 34.68 ± 0.01 34.78 ± 0.04 2.40 0.15 
Longitude (◦) Long 72.02 ± 0.06 71.92 ± 0.15 71.79 ± 0.24 0.42 0.67 
Elevation M Elev. 634.85 ± 27a 924.4 ± 18.49b 1405.3 ± 59c 141.51 0.00 
Aspect angle (◦) AA 144.5 ± 52.9 119.25 ± 14.61 105.75 ± 41 0.24 0.79 
Clay % Cl 7.9 ± 1.37 9.3 ± 3.71 3.9 ± 1.68 1.27 0.33 
Silt % Si 63.8 ± 4.99a 41.3 ± 11.67 ab 31.6 ± 12.18b 3.35 0.08 
Sand % Sa 28.05 ± 6.2 49.4 ± 13.76 54.5 ± 10.87 2.65 0.12 
pH – pH 7.75 ± 0.11 8.1 ± 0.12 7.97 ± 0.14 1.70 0.24 
Organic Matter % OM 0.52 ± 0.1a 0.50 ± 0.13a 0.095 ± 0.06b 5.19 0.03 
Organic Carbon % OC 0.3 ± 0.07a 0.29 ± 0.075a 0.05 ± 0.03b 5.18 0.03 
Lime % Lim 6.62 ± 3.03a 5 ± 3.36a 3.7 ± 1.16 0.29 0.76 
Nitrogen mg.Kg− 1 Ni 0.025875a 0.025 ± 0.006a 0.005 ± 0.003b 4.98 0.03 
Phosphorus mg.Kg− 1 P 12.49 ± 1.2a 9.286 ± 2.07a 6.37 ± 1.06b 4.01 0.06 
Potassium mg.Kg− 1 K 114 ± 25.59 110.5 ± 19.9 106 ± 33.1 0.02 0.98 
Electrical Conductivity mm/hr EC 359.31 ± 30 354.9 ± 85.32 566.15 ± 138 1.59 0.26 
Total Dissolve Solid ppm TDS 229.95 ± 19 226.98 ± 54.51 362.33 ± 88 1.59 0.26 
Wilting Point cm3 WP 0.069 ± 0.01 0.089 ± 0.011 0.071 ± 0.01 0.54 0.60 
Field Capacity mm/m FC 0.27 ± 0.009 0.23 ± 0.03 0.21 ± 0.03 1.58 0.26 
Bulk Density g.cm− 3 BD 1.52 ± 0.03 1.57 ± 0.07 1.7 ± 0.09 1.72 0.23 
Saturation Point g.cm− 3 SP 0.42 ± 0.014 0.41 ± 0.03 0.36 ± 0.03 1.72 0.23 
Available Water g.cm− 3 AW 2.16 ± 0.079 1.68 ± 0.25 1.66 ± 0.23 1.92 0.20  
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− 0.48 and − 0.45, respectively (Table 5). The first axis was positively correlated with silt percentage and phosphorus, with correlation 
coefficients of 0.58 and 0.59. In the ordination biplot, plant morphological traits and bioclimatic variables are separated. Higher 
elevation sites were mostly on the right of the ordination plot. They were present under the influence of bioclimatic layers. D. innoxia 
had the most leaves near the origin of the sorting axis, indicating that NL was less affected by environmental factors. Environmental 
factors significantly impacted the traits LA, LAW, SAW, RFW, SDW, NF, and SL. 

In bioclimatic variables, Annual Mean Temperature (Bio-1), Temperature Annual Range (Bio-7), Precipitation Seasonality (Co
efficient of Variation) (Bio-15), Precipitation of Wettest Quarter (Bio-16), and Precipitation of Warmest Quarter (Bio 18) were the 
significant contributors that affect the morphological and biomass traits negatively. Similarly, the climatic variable displays negative 
correlation along altitude i.e. MYT (R = - 0.92, P = 0.01), AYH (R = − 0.83, P = 0.01) and DLH (R = − 0.81, P = 0.01). In contrast soil 
variables show non-significant correlation across the elevation gradient except OM % (R = − 0.61, P = 0.01). Likewise, LL/L shows a 
non-significant correlation across the elevation gradient in plant vegetative traits. Pearson’s correlation revealed that the environ
mental and bioclimatic factors show significant relationships, as depicted in the heat map (Fig. 7). The elevation showed a significant 
negative correlation with Bio-1, 5, 10, 11, organic matter, and organic carbon (P < 0.05). In addition, the Bio-15 shows a significant 
negative correlation with Bio-8, 14, 17, 12, 18, 19 and longitude (P < 0.01). Similarly, soil electrical conductivity (EC) significantly 
correlates with clay percentage, saturation point (SP), field capacity (FC), and available water (AW). In contrast, Bio-4 showed a 
significant positive correlation with Bio-5, 10, and 11, respectively. 

4. Discussion 

In the current study, morphological traits plasticity and biomass allocation were assessed along the elevation gradient in changing 
environmental and soil conditions. These information’s provide suitable habitats for the propagation, growth, and collection of such 
plants for phytochemical and medicinal uses. Our results show that in naturalized habitats where D. innoxia is abundant; having 
variable environmental conditions indicates wide gradients of these factors. However, the communities and associated species were 
more specific floristically, i.e., having only twenty associated species. We recognized three groups Datura-Parthenium community 
(Group I), Datura-Xanthium community (Group II), and Datura-Cynodon community (Group III), which could be distinguished 
ecologically as well as floristically. The most common co-occurring species in all groups of D. innoxia were Cannabis sativa, Parthenium 
hysterosporus, Cynodon dactylon, and Xanthium strumarium. The study found that most co-dominant associated species in D. innoxia 
communities were invasive, such as C. sativa, P. hysterosporus, and X. strumarium; the only non-invasive co-dominant species was 
Cynodon dactylon. There have been reports of Xanthium-Cannabis communities from neighbouring districts like Mardan Khyber Pak
htunkhwa [44] and the Pothwar region [45]. Moreover, these invasive species have co-dominated other communities, e.g. Refs. [45, 
46], reported P. hysterosporus and X. strumarium growing together in the Boren zone of Ethiopia. Researchers like [47,48], and [49] 
suggested that invasive plants have led to a decline in species richness and biodiversity in general which provides strength and verify 
our findings as we have only recorded twenty-two species with the naturalized downy thorn apple in this region. 

The morphological features of root, stem, leaves, number of leaves, and biomass components exhibited considerable variations 

Table 3 
Variation in morphological traits of Datura innoxia along the environmental gradient. For the same morphological traits, means followed by different 
letters (i.e., superscript a and b) are significantly different (P-value <0.05), Tukey’s contrasts test for multiple comparisons of means, SE =Standard 
error).  

Code Group-I II III F-value p-value  

Mean ± SE Mean ± SE Mean ± SE 

XNL/P 25.0 ± 2.1a 29.6 ± 2.1a 34.9 ± 2.5b 4.81 0.03 
XSL/P 37.4 ± 11.2 46.6 ± 12.6 31.3 ± 9.6 0.47 0.64 
XNF/P 12.9 ± 3.7 8.97 ± 1.4 10.4 ± 1.6 0.63 0.56 
XLL/L 25.0 ± 3.5 18.1 ± 0.9 18.1 ± 0.9 3.71 0.06 
XLW/L 18.1 ± 1.8 16 ± 0.96 16.1 ± 1.1 0.76 0.49 
XLA/L 203.8 ± 19 208 ± 24 177.2 ± 12 0.73 0.51 
XPHg/P 63.7 ± 7.6 64.9 ± 0.8 60.9 ± 2.05 0.23 0.80 
XPCov/P 82.5 ± 8.6 62.3 ± 13 75.1 ± 5.3 1.11 0.37 
XPVol/P 74.7 ± 9.7 56.4 ± 12 67.0 ± 5.16 0.93 0.43 
X Pden/S 1346.6 ± 27 1414 ± 41 1864.9 ± 63 0.37 0.69 
XRDW/P 16.9 ± 0.8a 13.4 ± 0.5b 12.4 ± 0.29c 16.21 0.001 
XRL/P 20.1 ± 1.1 14.5 ± 0.73 13.87 ± 0.4 17.38 2.46E-07 
XSDW/P 26.2 ± 0.8a 21.4 ± 2.1a 17.5±2 b 6.02 0.02 
XBDW/P 32.4 ± 0.8a 26.7 ± 1.1b 20.3 ± 0.69c 45.69 0 
XLDW/P 55.2 ± 1.9a 36.3 ± 1.2b 30.0 ± 1.1c 75.69 0 
XRSr/P 0.62 ± 0.01 0.59 ± 0.01 0.77 ± 0.01 29.23 5.05E-11 
XAGDW/P 113.9 ± 2.4a 84.5 ± 2.9b 67.9 ± 2.7c 74.87 0 
XTDW/P 91.9 ± 0.84a 73.7 ± 1.7b 56.5 ± 1.55c 38.80751 3.76E-05 

Note: XNL/P (number of leaves/Plant); XSL/P (stem length/Plant); XNF/P (number of flowers/Plant); XLL/L (leaf length/Leaf); XLw/L (leaf width/Leaf); 
XLA/L (leaf area/Leaf); XPHg/P (plant height/Plant); XCov/P (plant cover/Plant); XPVol/P (plant volume/Plant); Xpden/S (plants density/Site); XRDW/P 
(root dry weight/P); XRL/P (root length/P); XSDW/P (stems dry weight/Plant); XBFW/P (branches dry weight/Plant); XLDW/P (leaves dry weight/Plant); 
XRSr (roots hoot ratio); XAGDW/P (aboveground dry weight/Plant); XTDW/P (total dry weight/Plant). 
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(Table 3). However, the variation degree was substantial for biomass components. We may infer that climate and environmental 
variables play an essential role in D. innoxia’s phenotypic plasticity, which confers a considerable capacity to adjust to ecological 
challenges [50–52]. The detected hierarchical inconsistency of trait variations may reflect intraspecific genetic variation, as has been 
shown by Ref. [53]. Since the observed variability has a heritable component, quantitative genetic studies can also investigate the 
variation in morphological and biomass traits. Total dry and aboveground and stem dry biomass was shown to have the most overall 
intraspecific variability (Table 3). The species’ wide range of morphological features and biomass allocation might be advantageous in 

Fig. 5. Linear regression model of Datura innoxia functional traits across the elevation gradient. Note: A-O represent the figure Panels  

N. Khan et al.                                                                                                                                                                                                          



Heliyon 10 (2024) e27811

9

the selection and domestication processes since distinct ‘ideotypes,’ or subtypes can be identified to satisfy various utilization demands 
[54–57]. 

The elevation is an essential factor in determining the community’s composition and brings variations in morphological features 
[58]. For example, Pauchard & Alaback [59] revealed that naturalized plants are restricted to lowland environments because of the 

Fig. 5. (continued). 
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Table 4 
Correlation between sample scores for an axis derived from the response variables (main matrix) and the sample scores that are 
linear combinations of the predictors (second matrix).  

Variables Axis I Axis II Axis III 

Eigenvalue 0.738 0.165 0.040 
% of variance explained 60.1 15.5 9.9 
Cumulative % explained 60.1 75.6 82.5 
Pearson Corr., Response-Pred.* 1 1 0.999 
Kendall Corr., Response-Pred. 1 1 1  

Fig. 6. RDA-biplot of an environmental variable showing important factors affecting different biomass.  

Table 5 
Redundancy analysis of different environmental and bioclimatic variables influencing biomass allocation pattern and plant functional traits of Datura 
innoxia.  

Variables Correlation 

Axis I Axis II Axis III Axis IV 

Elevation ¡0.4897 0.2397 − 0.0955 − 0.0146 
Sand % ¡0.4565 − 0.2546 0.3488 0.0929 
Clay % 0.2311 0.6512 − 0.3871 − 0.1236 
Silt % 0.5855 0.1403 − 0.2092 0.1542 
Lime % 0.2729 ¡0.4479 − 0.1292 0.1032 
Phosphorus (mg/kg) 0.5887 0.086 − 0.2665 0.2787 
Electrical conductivity (μs/cm) ¡0.3673 ¡0.5587 0.1806 0.1194 
Total dissolved solids (ppm) ¡0.3672 ¡0.5591 0.1806 0.119 
Wilting Point % − 0.0532 0.2208 0.1774 − 0.5512 
Field Capacity % 0.4603 0.248 − 0.283 − 0.122 
Bulk Density (g/cm) ¡0.4144 ¡0.6269 0.3122 0.0438 
Available Water % 0.4686 0.0933 − 0.2576 − 0.0938 
Bio-1 (Annual Mean Temperature) 0.503 0.1018 0.2688 0.0795 
Bio-7 (Temperature Annual Range) 0.3784 0.324 0.0134 − 0.1815 
Bio-8 (Mean Temperature of Wettest Quarter) 0.164 ¡0.8212 0.0309 − 0.1807 
Bio-13 (Precipitation of Wettest Month) ¡0.4396 ¡0.6298 − 0.0168 0.1408 
Bio-14 (Precipitation of Driest Month) 0.1927 ¡0.5615 − 0.0255 − 0.5315 
Bio-15 (Precipitation Seasonality) ¡0.5407 0.0619 − 0.0159 0.615 
Bio-16 (Precipitation of Wettest Quarter) ¡0.5553 − 0.3942 0.038 0.323  
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harsh temperature and resource limitations at higher altitudes. Except for the number of leaves and plant density, D. innoxia plant 
functional parameters (morphological and biomass) exhibited significant declines along the increasing elevation gradient. 
Plant-available resources are typically restricted due to physical or geometric crowding (plant density) influences, which may disrupt 
the balance in the distribution and composition of plant-available resources [60,61]. In this sense, many researchers have observed 
similar trends in trait variation, such as [62]studied seed biomass in Saussurea species of the Asteraceae [63]; analyzed flower 
morphology in Impatiens textori, [64], investigated growth dynamics in Ferula jaeschkeana [65]. studied the life history of Ageratina 
adenophora and revealed that altitudes play a vital role in invasive species biomass distribution. The decrease in plant height is one 
characteristic that allows the plant to maintain its population at higher altitudes under extreme conditions. The plant is protected from 
wind and cold stress by decreasing aboveground plant height [66]. As the plant comes closer to the ground, heat buildup in the leaf 
canopy rises, which may aid seed germination [66]. 

On the other hand, pollinators are more attracted to plants at lower altitudes, which assure reproductive fitness [5]. The reduction 
in RDW with elevation was in contrast to Ref. [64]. They reported an increase in root biomass with elevation, which may be attributed 
to species’ internal genetics and physiological capabilities coupled with changes in environmental conditions. Furthermore, since 
distinct mountain ranges may have different connections between height and environmental elements, area-specific patterns may 
result in varied elevation impacts on plant traits [67]. Elevation changes affect soil qualities that may contribute to variations in plants’ 
morphological and biomass characteristics [68–70]. Electrical conductivity and pH increased with an increase in elevation. In contrast, 
TK, OM, TP, TN, and Lime decreased, which may play an important role in variations of the plant morphological and biomass 
characteristics [71–73]. Our research found that increased biomass allocation to aboveground components, including total and 
vegetative parts, and decreased leaf number in D. innoxia may be due to improved nutrient availability at altitudes below 600 m. In 
addition [74], reported that soil nutrient availability and chemical composition are either directly or indirectly governed by a plant 
species’ potential to invade. Moreover, Vasquez et al. [75] reported that invasive species can use available soil nutrients that determine 
their growth progression or decline. 

Redundancy analysis (RDA) indicated statistically significant relationships between discriminant morphological descriptors of 
D. innoxia with bioclimatic and environmental parameters, which explained a substantial portion of the variance observed between 
individuals (82.5%). Bioclimatic and environmental conditions considerably influence the variability of discriminating morphological 
and biomass descriptors across and within elevation zone. The impact of topography and soil characteristics (such as soil type, 
moisture content, and nutrient content) on D. innoxia may also be significant because they vary across the elevation and comply with 
[76]. [77,78] have believed that such variations may be possible sources of phenotypic diversity and influence plant communities. 
However, additional studies are needed to distinguish the effects of climate and soil on the morphological diversity of these species. 
This study did not investigate anthropogenic variables and other factors that might have a role in the morphological differentiation of 
the species and was advocated by Ref. [79]. For example, human disturbances (like fire and pruning), chronic grazing by herbivores 
(livestock animals), and insect defoliation may contribute to species trait diversity, especially given that the studied populations do not 
exist inside protected areas. Plant morphology and functional features have been demonstrated to be affected by grazing and fire in 
several studies e.g. Refs. [80–82], in addition to environmental factors. Our findings indicate that rainfall (rainfall seasonality (Bio
clim-, rainfall of the wettest quarter (Bioclim-) is the most critical climatic driver of phenotypic diversity in the species under 
consideration. The wettest quarter’s precipitation and the wettest month’s precipitation had an essential role in determining 
phenotypic variety. High values in the low elevation zone were associated with excellent or high leaf biomass weight/total dry biomass 
performance. Other species such as Vitex doniana Sweet [78] and Adansonia digitata L. [83], as well as [84] in Mali and Burkina Faso, 

Fig. 7. Heat diagram of the discriminant climatic, topographic and soil variables governing Datura innoxia functional traits. For bioclimatic factors 
(BIO-1 to BIO-19, see Table 1) and for topographic and soil variables see Table 3. 
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have revealed favorable associations between rainfall and morphological features. However, some studies, such as those conducted by 
Ref. [55] in Niger, indicated a negative association between rainfall and fruit size for the Balanites aegytiaca Delile. in these studies, and 
more significant fruit sizes were seen in drier circumstances. These incongruent findings show that rainfall has a species-specific in
fluence on morphological features. This impact may be attributed to species-specific adaptations to environmental circumstances in 
response to rainfall. Temperature-related bioclimatic indicators (mean annual temperature (Bio-19), annual temperature range 
(Bio-12), mean temperature (Bio-21), and temperature seasonality (Coefficient of variation) were also significant predictors of plant 
morphological and biomass descriptors. As previously reported for V. doniana in Benin [78], a similar link between excessive tem
perature and precipitation and morphological variability has been observed. Likewise, previous research has found significant effects 
of climatic conditions on the morphological traits of several other species, including Afzelia africana Sm. [85], Afzelia digitata [86], 
Detarium microcarpum Guill. & Perr. [87], and Viola paradoxa [88]. 

This research offers evidence in favor of a high degree of variability in the physical features of the species and the significant role of 
climatic and environmental factors in determining this variability, despite the limited geographic coverage of our data. However, it is 
necessary to collect data from a broader geographic range to understand better the function of climatic and environmental factors and 
other variation sources in determining the species’ morphology. Indeed, given the species’ wide geographic range, data collected only 
in Khyber Pakhtunkhwa (a small portion of the species’ total longitudinal expansion) may not provide sufficient information on the 
role of climate and environmental factors in determining the morphological characteristics of the species population. Furthermore, 
future research of this kind should include as many ecological aspects as feasible, such as anthropogenic disturbance, plant invasion, 
and other associated issues. 

5. Conclusions 

Morphological traits and biomass distribution patterns in D. innoxia significantly varied across the elevation gradient. A small and 
thin leaf pattern at a higher altitude may lead to decreased root length due to less availability of nutrients. The biomass allocation 
strategy with an average root-to-shoot ratio was favored in the Datura-Parthenium community (Group I). D. innoxia tends to have the 
intermediate leaf pattern with the highest stem, the slender root morphology pattern with the longer root length, and the biomass 
allocation strategy with the lowest root-to-shoot ratio in the Datura-Xanthium community (Group II). The low stem length, high 
thickness, thick root pattern with minimum root length, and biomass allocation strategy with the highest root-to-shoot ratio tended to 
prevail in the Datura-Cynodon community (Group III). The current research found that the morphological characteristics and biomass 
distribution patterns of non-native plants vary greatly across elevations, which may be influenced by environmental conditions like 
soil characteristics and bioclimatic layers. The results suggested that lower elevation plants produce more biomass and may be helpful 
for the collection and utilization of phytochemicals and medicinal purposes. In addition, quantitative genetic research will help 
determine how much of the observed variability is a heritable characteristic and its improvement. 
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