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Abstract

Gut microbial communities are critical in determining the evolutive success of fruit fly phy-

tophagous pests (Diptera, Tephritidae), facilitating their adaptation to suboptimal environ-

mental conditions and to plant allelochemical defences. An important source of variation for

the microbial diversity of fruit flies is represented by the crop on which larvae are feeding.

However, a “crop effect” is not always the main driver of microbial patterns, and it is often

observed in combination with other and less obvious processes. In this work, we aim at veri-

fying if environmental stress and, by extension, changing environmental conditions, can pro-

mote microbial diversity in Zeugodacus cucurbitae (Coquillett), a cosmopolitan pest of

cucurbit crops. With this objective, 16S rRNA metabarcoding was used to test differences in

the microbial profiles of wild fly populations in a large experimental setup in Eastern Central

Tanzania. The analysis of 2,973 unique ASV, which were assigned to 22 bacterial phyla,

221 families and 590 putative genera, show that microbial α diversity (as estimated by Abun-

dance Coverage Estimator, Faith’s Phylogenetic Diversity, Shannon-Weiner and the

Inverse Simpson indexes) as well as βmicrobial diversity (as estimated by Compositional

Data analysis of ASVs and of aggregated genera) significantly change as the species gets

closer to its altitudinal limits, in farms where pesticides and agrochemicals are used. Most

importantly, the multivariate dispersion of microbial patterns is significantly higher in these

stressful environmental conditions thus indicating that Anna Karenina effects contribute to

the microbial diversity of Z. cucurbitae. The crop effect was comparably weaker and

detected as non-consistent changes across the experimental sites. We speculate that the

impressive adaptive potential of polyphagous fruit flies is, at least in part, related to the Anna

Karenina principle, which promotes stochastic changes in the microbial diversity of fly popu-

lations exposed to suboptimal environmental conditions.
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Introduction

“True” fruit flies (Diptera, Tephritidae) include agricultural pests whose larvae attack a wide

variety of crops and threaten food security at local, national and international levels [1–3]. As

widely described in phytophagous insects [4–9], also in fruit flies, gut microbial communities

play a pivotal role in determining insect feeding preferences. The olive fly Bactrocera oleae
(Rossi 1790) is a classical textbook example of insect adaptation to plant allelochemicals medi-

ated by an obligate gut symbiont [10–12]. Other than facilitating adaptation to plant allelo-

chemical defences, microbes also contribute to fruit fly fitness traits including longevity [13],

nutritional status, reproductive success [14], sexual performance [15–17], developmental rates,

reproductive maturation [18], offspring development, body mass and fecundity [19]. The gut

microbiome also directly or indirectly affects the fruit fly behaviour as it has been described for

oviposition site selection [20] and foraging patterns [21, 22]. Last but not least, and of major

importance for the containment strategies of pest species, gut microbial communities also

affect insecticide resistance in fruit flies of agricultural importance [23–25].

The microbiome of tephritid fruit flies is known to be highly heterogeneous, both across

and within species, with the microbial patterns of laboratory populations often deviating from

those of their wild conspecifics [26, 27]. Under field conditions, an important source of varia-

tion for the insect microbial communities should be represented by the crop on which the

insect larvae are feeding. However, in tephritid agricultural pests, a crop effect is not always

detectable as the dominant driver of microbial diversity. In fact, other and less obvious pro-

cesses [28] and the effects of high spatial heterogeneity [29, 30] interact as drivers of microbial

diversity and contribute to the variability of patterns observed. The recent work of Jose et al.

[28] elegantly demonstrates how crop-induced adaptation and lineage-dependent maternal

effects are two interacting drivers of microbial diversity in a cosmopolitan polyphagous fruit

fly. The Authors show how microbial diversity in Ceratitis capitata (Wiedemann) expands and

contracts cyclically through the insect life stages. Bacterial α diversity increases in larvae due to

the expansion of rare taxa, while decreases in adults, where the microbial patterns of the mater-

nal stages “reset” to a more uniform structure across generations. Also the microbial patterns

described by Jose et al. [28] are very heterogeneous and the Authors suggest that high micro-

bial diversity might facilitate adaptation to the crop (i.e. the environment in which larvae

develop), and might contribute to the insect’s polyphagous abilities.

In this paper, we try and expand this model [sensu 31] by verifying if other synergetic pro-

cesses might promote fruit fly microbial diversity, and facilitate adaptive responses not only to

crops but also, and more in general, to changing environmental conditions. In this context, the

Anna Karenina principle [32] might represent an ecological/evolutionary process contributing

to the high heterogeneity of microbial communities often observed in larval tephritids [28–

30]. The Anna Karenina principle quotes the first lines of Tolstoy’s novel: “All happy families

look alike; each unhappy family is unhappy in its own way”. This sentence refers to the sto-

chastic changes induced in the microbial community by stressors, which are represented by

diseases in humans [32] or, more in general by environmental stressors in wild animals [33,

34] and plants [35]. Despite occurring in a wide variety of biological systems, Anna Karenina

effects (AKEs) are easily missed by the most common workflows implemented in the analysis

of microbial communities and allegedly underreported in the scientific literature [32]. In fact,

the analytical framework to verify the occurrence of stochastic variation promoted by AKEs

relies on dedicated statistical pipelines to detect changes in the multivariate dispersion of

microbial patterns [34]. To maximise chances of detecting subtle AKEs promoted by environ-

mental stressors, and evaluate their synergetic relationships with the crop-effect we tried to

minimize the effects of spatial variability [30] by focusing on a relatively small study area in
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Eastern Central Tanzania. For the same reasons, we targeted a model species, Zeugodacus
cucurbitae (Coquillett) (Diptera, Tephritidae), for which exhaustive background information

on distribution and life history traits is available [36–39].

Z. cucurbitae is a worldwide distributed cucurbit pest, for which incipient speciation is sus-

pected. This species which was formerly recognised as an oligophagous fruit fly (i.e. with larvae

only feeding on Cucurbitaceae), has been recorded on a more and more extended range of

host plant families, including Anacardiaceae, Annonaceae, Caricaceae, Oxalidaceae, Passiflora-

ceae, Rutaceae and Solanaceae [reviewed in 40]. The distribution, seasonal dynamics and crop

preferences of Z. cucurbitae in the study area are well known as this species has been moni-

tored in the framework of long-standing collaborative research between the Sokoine Univer-

sity of Agriculture and the Royal Museum for Central Africa [41–44]. The available data show

a decreasing trend for crop infestations of Z. cucurbitae at higher altitudes [45], as the species

gets closer to its altitudinal and thermal tolerance limits [40, 43, 46]. In the study area, and fol-

lowing the relevant contribution of NGOs (see Acknowledgements), cost-effective agroecolog-

ical practices are being adopted by an increasing number of smallholders [47]. In the

framework of ongoing projects (see Acknowledgments), and relying on the support provided

by local farmers, we are comparing the differential impact of agroecological and conventional

agriculture on insect biodiversity (sensu lato). Concerning the more specific hypotheses tested

in this paper, we assume that, from an insect perspective, conventional crop management rep-

resents a more stressful environment compared to agroecological farming. This assumption is

supported by the fact that (a) transient or subliminal exposure to chemical pesticides nega-

tively affects the metabolic responses of insects which survive pesticide exposure [48–51] and

(b) the use of mineral fertilizers and agrochemicals in conventional agriculture changes the

soil microbial communities and, directly and indirectly, has an impact on insect microbial

symbionts [52]. Conversely, we assume that agroecological farming provides comparably

lower levels of environmental stress to insects due to the environmentally sustainable approach

to crop protection [53]. For these reasons, we predict that conventional crop management pro-

motes AKEs impacting the microbial patterns of Z. cucurbitae. Other than verifying if the

Anna Karenina principle also applies to Z. cucurbitae we speculate about the evolutionary

implications of stochastic and stress-induced changes to the symbiont microbial diversity of

Tephritidae and how these changes might affect key life history traits in insects of agricultural

importance.

Materials and methods

Field experimental setup

Third instar larvae of Z. cucurbitae were collected at eight experimental sites of approximately

one hectare in the Morogoro area, Eastern Central Tanzania (Fig 1, geographical coordinates

provided in S1 File). Four sites were located at higher altitudes in the Uluguru mountains

(~1000m elevation), other four at lower altitudes (~500m elevation) on the plains at the base of

the mountains. In each site, watermelon (Citrullus lanatus) and cucumber (Cucumis sativus)
were cultivated in two separated but contiguous 33x100m plots (0.33 hectares). At each alti-

tude, agroecological management of cucurbit crops was implemented in two sites, while in the

other two, conventional methods for pest control were used. Agroecological management

included manual weeding, mulching, composting, no chemical control, and intercropping,

while pesticides and fungicides were used for conventional crop management. The detailed

protocols used in the experimental treatments are provided as Supplementary Information (S2

File). The experimental setup resulted in a balanced multifactorial design (Fig 1) including two

crops (cucumber, watermelon), two altitudes (low, high), 8 sites (S1 File) and 4 replicated
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larval microbiomes for each combination of these factors (see below). The Sokoine University

of Agriculture (SUA) approved and regulated the field site access in collaboration with the

local authorities. As the Nagoya Protocol on Access and Benefit-sharing (ABS) is de facto not

implemented in Tanzania, the intellectual and physical property of samples collected in this

study is regulated by Mutually Agreed Terms (MATs) on the use of genetic resources estab-

lished between SUA and RMCA. This document, which is inspired and fully adheres to the

principles of the Nagoya protocol, is provided as supplementary S3 File.

Identification and microbial profiling of wild larvae

Before the beginning of the short rainy season [44], between 2–9 November 2021, 5 infested

cucumbers and 5 infested watermelons were collected in each experimental site. Third instar

larvae (0 to 20 per fruit) were collected after dissecting the fruits at the Horticultural Unit of

SUA, rinsed in phosphate-buffered saline solution (PBS) and preserved in individual tubes at

-20˚C in 98% ethanol (EtOH). Since the morphological identification (ID) of larvae is highly

problematic [54], DNA barcoding following the methods detailed in Virgilio et al. [55] was

used for larval ID. Full body DNA extraction [see 56] was implemented on all collected larvae

using the DNeasy Blood and Tissue kit (Qiagen Inc., Hilden, Germany). Of all larvae identi-

fied, 4 larvae of Z. cucurbitae were subsampled in each site, for each crop by randomly selecting

four specimens from each of the available batches of Z. cucurbitae). Their microbial patterns

were characterised via DNA metabarcoding of the V3 and V4 regions of 16S rRNA as

described in Hendrycks et al. [29]. After quality checking of the raw data using Fastqc [57], the

DADA2 pipeline [58] was used for read filtering, trimming, demultiplexing and recovering

Amplicon Sequence Variants (ASVs). Following Bell et al. [59], a negative control was

included in the analysis and used to correct for contamination bias via microDecon [60]. We

used the Silva v132 reference database [61] for the taxonomic assignment of the ASVs to phy-

lum, family and genus level and to discard non-bacterial sequences such as mitochondria and

chloroplast from the dataset.

Fig 1. Experimental setup and map of sites (see Acknowledgments for map copyright notice).

https://doi.org/10.1371/journal.pone.0300875.g001
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Data analysis and hypothesis testing

We relied on a common hypothesis testing framework for both a and β microbial diversity. To

help ensure robust biological interpretations we adopted a consensus approach based on mul-

tiple methods to infer differential bacterial abundances [62]. Microbial α diversity was calcu-

lated after standardising ASVs counts into relative frequencies per sample and estimated via

the Abundance Coverage Estimator (ACE), the Faith’s Phylogenetic Diversity index (PD) the

Shannon-Weiner index (H) and the Inverse Simpson index (IS). The phylogenetic tree on

which PD was based, was aligned using DECIPHER [63] and constructed with RAxML Black-

Box [64], implementing RAxML-HPC v.8 with 400 bootstraps on the CIPRES Science Gate-

way v.3.3 portal (https://www.phylo.org) [65]. Microbial β diversity was estimated considering

the differential abundances of (a) 4,548 filtered ASVs and (b) 430 aggregated bacterial genera

(S1 Table) identified via DADA2. All reads which could not be assigned to genus level after

cross-matching with the Silva reference database were aggregated into distinct groups, each

including all NAs belonging to the same family. Each of these groups was considered as a

proxy for an unidentified genus. Inference on β diversity mainly relied on compositional data

analysis (CoDa) based on centered log-ratio (CLR) transformed data [62]. The robustness of

patterns observed through CoDa was also verified by repeating the analyses on ASVs frequen-

cies [62, 66, 67]. In this context, different transformations of ASVs frequencies were imple-

mented during Permutational Multivariate Analysis of Variance (PERMANOVA, see below)

to modulate the weight of dominant taxa and to better detect possible changes in the abun-

dance of rare taxa [68]. Here we report results for untransformed data, fourth-root, log(X+1)

and presence/absence transformed data (in order of increasing weight given to the less abun-

dant taxa). Differences in α diversity between management practice (Ma: conventional vs

agroecological), altitude (Al: high vs low), crop (Cr: watermelon vs cucumber), and site (Si, see

S1 File) were tested by Analysis of Variance (ANOVA) as implemented by GAD [69], with Al,

Cr and Ma as fixed, orthogonal factors and Si as a random factor nested in (Al x Ma). Homo-

scedasticy was preliminarily verified via Cochran’s C test, the data transformed when required

(Underwood 1997) the Student- Newman-Keuls (SNK) test was used for a posteriori compari-

sons of means (Sokal & Rohlf, 1995). Location and dispersion effects on β diversity [see 34]

were tested via PERMANOVA and Permutational Multivariate Analysis of Dispersion [70] as

implemented in Primer-e 7.0.21 [71]. PERMANOVA and PERMDISP on CLR transformed

data were based on Euclidean Distances (as allowing negative values), while PERMANOVA

on ASVs frequencies on Bray-Curtis distances [68]. PERMANOVA was based on 999,999 per-

mutations of residuals under a reduced model and on the same 4-factor experimental design

(Cr, Al, Ma, Si) considered for α diversity. A posteriori pairwise comparisons of significant

interactions of factors were implemented via permutational t-statistics [70].

As the analyses of both α and β diversity indicated a significant interaction of Al and Ma

(see Results), and as PERMDISP only allows for single-factor tests, we separately verified dif-

ferences in patterns of multivariate dispersions at high and low altitudes. The probability val-

ues of repeated tests were corrected using the False Discovery Rate (FDR) procedure [72].

Patterns of β diversity were visualised using unconstrained ordination [Principal Coordinates

Analysis, PCO, 73, 74]. ALDEx2 [75] was used to test differential abundances of bacterial gen-

era between management practices at high altitude and allowed the detection of bacterial gen-

era which significantly contributed to the above-mentioned differences in β diversity (see

Results). The ALDEx2 analyses, relied on CRL transformed data, so to maintain the CoDA

approach already implemented in PERMANOVA and PERMDISP. As recommended by

Gloor [76], taxa which showed an effect size difference between 1 and −1 were filtered out to

reduce biases due to false positives. Differential abundances of bacterial genera were tested by
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the Welch t-test (as more restrictive than the Wilcoxon rank-sum test also available in

ALDEx2) followed by FDR correction [72]. A graphical overview of the analytical pipeline can

be found in S1 Graphical abstract. The raw sequencing data have been deposited in the Euro-

pean Nucleotide Archive (ENA) with accession number PRJEB70707. The complete bioinfor-

matic pipeline (also including the scripts used in DADA2, microDecon and ALDEx2) can be

downloaded from https://zenodo.org/doi/10.5281/zenodo.10520034.

Results

The MiSeq run produced more than 1.0×107 raw reads (average number reads / sam-

ple = 166,311, SD = 23,694) which after filtering were reduced to 3.0×106. The resulting 2,973

unique ASV were assigned to 22 phyla, 221 families and 590 putative genera. These latter

included 113 unidentified genera represented by 1–94 ASVs from the same family and includ-

ing 15.45% of filtered reads (see methods). The five most abundant (here defined as

representing > 5% of reads) phyla were Proteobacteria (35,39% of reads, including 63 fami-

lies), Bacteroidota (32,16% of reads, 28 families), Firmicutes (22.43% of reads, 37 families) and

Actinobacteriota (5,50% of reads, 38 families). The most abundant families included Peptos-

treptococcaceae (phylum Firmicutes, 2 genera, 16,17% of reads), Spirosomaceae (Bacteroidota,

10 genera, 13,15% of reads), Comamonadaceae (Proteobacteria, 28 genera, 7,50% of reads)

and Weeksellaceae (Bacteroidota, 12 genera, 6,32% of reads). The most abundant genera

included Romboutsia (family Peptostreptococcaceae, 16,17% of reads), Leadbetterella (Spiroso-

maceae, 12,96% of reads), Dysgonomonas (Dysgonomonadaceae, 6,07% of reads) and an

unidentified genus representing 5,87% of reads from taxon SC-I-84 (NCBI:txid102458). An

extended list of abundant phyla, families, and genera (> 1% of reads) is represented in Fig 2. A

complete overview of the abundances of the aggregated genera is provided in S1 Table.

ANOVA (Table 1) showed a significant interaction between Management Practice and

Altitude for both ACE (F1, 4 = 12.212, P = 0,025) and PD (F1, 4 = 22.237, P = 0.009). The post-
hoc comparisons (Table 1) revealed that, at high altitude, species and phylogenetic richness

were higher in microbial communities from conventional compared to agroecological man-

agement practices, while no significant differences were observed at low altitude (Fig 3B and

3D). Additionally, a significant interaction between Crop and Site was observed for both ACE

(F4, 48 = 5.312, P = 0.001) and PD (F4, 48 = 5.817, P = 0.001). Neither H nor IS showed signifi-

cant differences across all the factors tested (Fig 3A and 3C).

PERMANOVA (Table 1, S1 Table) showed a significant interaction between Management

Practice and Altitude in the compositional data analysis of both ASVs (pseudo-F1, 4 = 1.787,

P = 0.026) and of bacterial genera (pseudo-F1, 4 = 1.984, P = 0.044). This interaction repre-

sented 10,46% of the estimated components of variation for ASVs and 12,85% for bacterial

genera. For both ASVs and bacterial genera, the posthoc comparisons detected significant dif-

ferences only between conventional and agroecological management at high altitude, while no

significant differences were observed at low altitude (Fig 4). Also Site and the interaction

between Crop and Site were detected as highly significant effects, contributing to 13,45% and

18,74% to the estimated components of variation in the analysis of ASVs and to 15,17% and

22,56% in the analysis of bacterial genera. We could observe highly consistent patterns (with

the interaction between Management Practice and Altitude, Site and the interaction between

Crop and Site detected as highly significant effects) when considering ASVs frequencies and

frequencies of bacterial genera across all transformations of data implemented (untrans-

formed, fourth-root, log(X+1), presence/absence) (S2 Table).

At high altitude, PERMDISP showed significantly higher multivariate dispersion for con-

ventional (average Euclidean distance from centroid = 81.12, SE = 3.304) compared to
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agroecological management (average Euclidean distance = 60.49, SE = 2.632). Conversely, at

low altitude, the microbial communities from conventional (average Euclidean dis-

tance = 76.03, SE = 5.68) or agroecological management (average Euclidean distance = 71.32,

SE = 5.90) did not show significant variation (Fig 4).

These bacterial patterns at high altitude were further investigated with ALDEx2 (S3 Table)

which showed that five genera have significant differential abundances between conventional

and agroecological management. Among these, is Romboutsia, the most abundant bacterial

genus detected in our study system (Fig 5).

Significantly different distributions were also detected for other four genera with

abundances < 1%. These included Lysinibacillus (ASVs frequency = 0.056%), Empedobacter
(0.077%), Propionispira (0.16%) and Erysipelothrix (0.46%) (Fig 6).

Discussion

The data presented in this study further suggest how the concept of “core microbiome” only

loosely applies to tephritids [30]. As observed for other fruit fly species, the microbial commu-

nity patterns of Z. cucurbitae reported in the literature are quantitatively and qualitatively het-

erogeneous [27, 29, 30, 77–84]. Asimakis et al. [85] reported how Enterobacteriaceae,

Dysgomonadaceae and Orbaceae were dominant families in field populations of Z. cucurbitae
from Bangladesh, with genera Dysgonomonas, Orbus and Citrobacter occurring in relatively

high abundances across populations. De Cock et al. [30] suggested that the genus

Fig 2. Most abundant (i.e.> 1% of reads) bacterial (A) phyla, (B) families and (C) genera across the experimental treatments. Colours in B and C refer to

phylum classification.

https://doi.org/10.1371/journal.pone.0300875.g002
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Ochrobactrummight be a core representative of the microbiome of Z. cucurbitae. Hendrycks

et al. [29], used a more rigorous statistical framework [86] on larvae collected from the Moro-

goro area, from crops including those targeted by this study (watermelon and cucumber); they

identified Enterobacter, Klebsiella, and Citrobacter as core genera for Z. cucurbitae. Five of

these genera were also observed in this study, yet only Dysgonomonas and Enterobacter in rela-

tively high frequencies, while Citrobacter, Ochrobactrum and Klebsiella occurred in low fre-

quencies (see S1 Table). Conversely, two very abundant bacterial genera in our experimental

setup, Romboutsia and Leadbetterella, which contributed to about 29% of all ASVs, were not

mentioned as abundant taxa by previous research on larval Z. cucurbitae. Similarly, Enterobac-

teriaceae, which are described as a very abundant family in other studies and contributing up

to 90% of reads [30, 78, 87, 88] occurred in much lower proportions (3.67% of reads).

Multiple factors contribute to the variability commonly observed in laboratory strains as

well as in wild fruit fly populations [27, 89, 90]. Some of them are obvious and include biases

related to heterogeneous sampling, manipulation and preservation procedures [56]. However,

Table 1. Hypothesis testing framework and consensus approach (see methods) to verify differences in α and β microbial diversity (detailed results in S2 Table).

Location effects α diversity–ANOVA (ASVs

frequencies)

β diversity–PERMANOVA

(CLR-CoDa)

β diversity–PERMANOVA (ASVs frequencies)

ACE PD H IS CLR ASVs CLR aggregated

genera

untransformed 4rt

root

– log(X

+1)

presence/

absence

Management Practice: Ma * **
Altitude: Al

Crop: Cr *
Ma x Al * ** * * * * * *
Al x Cr

Ma x Cr

Site: Si (Ma x Al) *** *** *** *** *** ***
Al x Ma x Cr

Cr x Si (Ma x Al) ** *** *** *** *** *** *** ***
posthoc test Ma x Al

high altitude conv. >

agroec.

Conv. >

agroec.

Conv. 6¼

agroec.

Conv. 6¼ agroec.

Low altitude conv. =

agroec.

Conv. =

agroec.

Conv. =

agroec.

Conv. = agroec.

Dispersion effects (Anna

Karenina)

β diversity–PERMDISP

(CLR-CoDa)

CLR ASVs CLR aggregated

genera

Management Practice, High conv. >

agroec.

Conv. > agroec.

Management Practice, Low conv. =

agroec.

Conv. = agroec.

ANOVAs (on ASVs frequencies) and PERMANOVAs (on either ASVs frequencies or centered log-ratio transformed, compositional data, CLR-CoDa) were used to test

univariate and multivariate location effects of management practice (Ma: conventional vs agroecological), altitude (Al: high altitude vs low altitude), crop (Cr:

watermelon vs cucumber), and site (list and coordinates in S1 File). PERMDISP, based on CLR-CoDa, was used to test dispersion effects on β diversity (Anna Karenina

principle) promoted by different management practices either at high or low altitudes. FDR: p value corrected via False Discovery Rate. Tests on α microbial diversity

considered Abundance Coverage Estimator (ACE), Faith’s Phylogenetic Diversity (PD), Shannon-Weiner (H) and the Inverse Simpson indexes (IS). The results of the

post hoc tests implemented for Ma x Al are indicated.

*: P = <0.05

**: P = <0.001

***: P = <0.0001.

https://doi.org/10.1371/journal.pone.0300875.t001
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the high variability observed across studies describing insect microbial communities also origi-

nates from heterogeneous and non-standardised approaches to data analysis. These include

combinations of (a) varying assumptions on data distributions [62], (b) differential abundance

testing methods [62, 91, 92], and (c) data filtering strategies [93, 94], including the much-

debated data rarefying [95]. A widely used approach in the analysis of microbial communities

is to consider data from microbial analyses as compositional [67, 75, 96–98] and providing

Fig 3. Differences in microbial α diversity between agroecological and conventional farming at low and high altitude. (A) Inverse Simpson index (IS),

(B) Abundance Coverage Estimator (ACE), (C) Shannon-Weiner index (H) and(D) Faith’s Phylogenetic Diversity (PD). Significant differences as detected

by ANOVA are indicated.

https://doi.org/10.1371/journal.pone.0300875.g003
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information on the abundance of bacterial taxa in relation to the other taxa occurring in the

very same dataset [62, 99]. Accordingly, and to detect subtle changes in the microbial patterns

of Z. cucurbitae, we focused our hypothesis testing framework on both a self-contained study

system (a large experimental setup in Central Eastern Tanzania) and on an analytical frame-

work largely based on centered log-ratio transformed, compositional data. The robustness of

the patterns observed was also supported by more conventional statistical procedures includ-

ing the analysis of bacterial frequencies [as previously done in 29, 30]. For the reasons stressed

in [62, 91, 92], we also limited to the minimum inference based on cross-comparisons with

studies dealing with fruit fly microbial abundances.

Fig 4. Principal Coordinates Analysis (PCoA) of the microbial communities observed in agroecological and conventional farming at low and high

altitude. Results are based on either ASVs frequencies or centered log-ratio transformed, compositional data (CLR-CoDa). For the different groups, 95%

confidence ellipses are indicated.

https://doi.org/10.1371/journal.pone.0300875.g004
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The data collected through the consensus approach [sensu 62] adopted in this study all

show that the microbial communities of Z. cucurbitae are affected by the combined effects of

management practices and altitude. These two drivers of microbial diversity have a stronger,

synergetic effect in conventional farming at high altitude. The effects promoted by manage-

ment practices across altitudes, crops, experimental sites (i.e. as a stand-alone factor), are very

clear on β diversity but comparably subtler on α diversity. In fact, higher diversity in conven-

tional management practices could only be detected by two of the α diversity estimators (ACE,

PD). Regardless of that, and as observed for β diversity, these metrics confirmed the occur-

rence of higher diversity in conventional farming at high altitude. The crop effect on the

microbial communities of Z. cucurbitae (as measured in terms of both α and β diversity) was

also relatively weak and only detectable as not consistent changes across the experimental sites

(as showed by the significant interaction of Crop and Site). These results further confirm the

patterns already observed in other studies targeting wild populations of Z. cucurbitae, which

showed strong random variability at regional [30] or local spatial scales [29].

Interestingly, the most abundant bacterial genus in our study system, Romboutsia, occurs

in higher abundance in larvae from conventional farming. In vertebrates, Romboutsia (among

other bacteria) has been described as a key genus mediating physiological responses to

Fig 5. Abundance of Romboutsia in conventional and agroecological farming at high altitude.

https://doi.org/10.1371/journal.pone.0300875.g005
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agrochemicals. Liu et al. [100] observed changes in the abundance of Romboutsia in mice

exposed to fungicides and highlighted how this genus is involved in metabolic pathways such

as the production of amino acids, free fatty acids and their methyl esters, phospholipids, nucle-

otides, carbohydrates and hormones. Similarly, Yang et al. [101] described relationships

between the abundance of Romboutsia and exposure to Deltamethrin, a commonly used pesti-

cide in the Morogoro area. These results suggest that Romboutsia, and possibly also other gen-

era occurring with differential frequencies in conventional and agroecological farming at high

altitude (Lysinibacillus, Empedobacter, Propionispira, Erysipelothrix) might be implicated in

the responses of Z. cucurbitae to stressors. But of course, our descriptive analysis does not

allow further speculation, and the possible role of these microbial groups in affecting the meta-

bolic pathways of Z. cucurbitae will require targeted experimental support.

This study also highlights how the patterns of microbial β diversity of Z. cucurbitae are sub-

jected to changes in multivariate dispersion. Also in this case, these changes are only detectable

at high altitude where comparably higher dispersion is observed in conventional rather than in

agroecological farming. The biological interpretation of these patterns indicates that the

microbial communities of Z. cucurbitae follow the Anna Karenina principle [34]. In this con-

text, AKEs would promote the microbial diversity of populations of Z. cucurbitae which are

exposed to more stressful environmental conditions. In this specific case, closer to the altitudi-

nal limits of Z. cucurbitae in the Morogoro area [40, 43, 45, 46] and in farms where pesticides

and agrochemicals are used [48–51]. As reported for laboratory populations of the closely

related genus Bactrocera, insecticide toxicity is significantly affected by temperature [102–

104]. Accordingly, pesticides applied at higher altitudes in the Morogoro area might be more

effective as acting on larvae exposed to the suboptimal environmental conditions promoted by

Fig 6. Abundance of Lysinibacillus, Empedobacter, Propionispira and Erysipelothrix in conventional and agroecological farming at high altitude.

https://doi.org/10.1371/journal.pone.0300875.g006
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lower temperatures. We suggest that the significantly higher α diversity observed in larvae

from these farms also reflects the stochastic changes promoted by AKEs in stressed larvae.

These results might also be in line with those of Jose et al. [28] who reported higher α diversity

in medfly larvae feeding on different fruits and lower diversity in adult mothers (in which they

observed a strong bias towards high abundance of few bacterial species). We speculate that the

effects related to fruit host in Jose et al. [28] might also have been affected by AKEs, as larvae

feeding on heterogeneous crops are allegedly subjected to heterogeneous levels of environmen-

tal stress.

Conclusions

We speculate that AKEs might promote adaptation in Tephritidae at micro- and macro-evolu-

tionary scales. In this context, the stochastic “boost” of microbial diversity promoted by the

Anna Karenina principle would be beneficial under changing environmental conditions as it

would maximise chances that suitable bacteria, occurring within the microbial pool, could

contribute to the insect responses to stress. If the generality of patterns observed in Z. cucurbi-
tae would also be confirmed in other fruit flies, then, AKEs might explain at least part of the

impressive adaptive potential observed in Tephritidae, a family of notorious agricultural pests

for which rapid adaptation to unsuitable host plants [29, 40], sudden range expansions [105,

106], and host race formation and speciation [107–109] have been described.
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