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The McMillan-Ginzburg-Landau (MGL) model for charge density waves (CDW) is employed
in a systematic phenomenological study of the different phases that have been probed in recent
experiments involving transition metal dichalcogenides. We implemented an efficient imaginary
time evolution method to solve the MGL equations, which enabled us to investigate the role of
different coupling parameters on the CDW patterns and to perform calculations with different energy
functionals that lead to several experimentally observed singularities in the CDW phase profiles. In
particular, by choosing the appropriate energy functionals, we were able to obtain phases that go
beyond the well-known periodic phase slips (discommensurations), exhibiting also topological defects
(i.e., vortex-antivortex pairs), domain walls where the CDW order parameter is suppressed, and even
CDW with broken rotational symmetry. Finally, we briefly discuss the effect of these different CDW

phases on the profile and critical temperature of the competing superconducting state.

I. INTRODUCTION

The competition between different collective phases
and their interplay are of pertinent interest in solid-state
physics. For example, the iron-based materials can ex-
hibit high-temperature superconductivity in competition
with other collective phenomena, such as nematic order
[1-3], anti-ferromagnetism [4], and charge/spin density
waves [5]. In recent studies, atomically thin transition-
metal dichalcogenides (TMDs) have shown emergent su-
perconductivity when doped [6, 7], exhibiting a dome of
superconducting (SC) phase in the low temperature re-
gion of the temperature versus doping phase diagram. It
has been suggested that the fluctuations of their charge
density wave (CDW) order, possibly in the form of dis-
commensurations (DC), are closely related to effectively
enhancing the superconducting critical temperature [8—
11]. Tt is therefore of fundamental importance to develop
theoretical models that allow one to capture and under-
stand the interplay between the SC and CDW order pa-
rameters and provide predictive power about the phase
diagram of these materials.

Using a technique based on scanning tunneling mi-
croscopy (STM), Pasztor et al. [12] were able to re-
trieve images with high spatial resolution of the CDW
phase in VSe; and NbSes. This technique enables one
to separately obtain amplitude and phase maps of the
different order parameters that compose the CDW pro-
file. Their analysis provides evidence that the charge
density wave of these TMDs consists of three individ-
ual charge modulation order parameters. Moreover,
phase images revealed not only discommensurations in
the nearly-commensurate state, which have been pre-
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dicted by McMillan theory [10], but also topological de-
fects and domain walls.

Recently, a McMillan-Ginzburg-Landau model (MGL)
[9] was used to describe the pathway from incommen-
surate to commensurate CDW phases in the phase di-
agram of TMDs, where the discommensurations in the
near-commensurate phase were observed. A coupling be-
tween the CDW and SC phases was then suggested in the
form of a modulation of the quadratic term on the SC or-
der parameter, within the Ginzburg-Landau energy func-
tional, that is proportional to the gradient of the CDW
order parameter. With this approach, the SC dome in
the near-commensurate region of the phase diagram of
the TMD could be phenomenologically modelled, as the
SC phase emerges in regions with high variation of the
CDW order parameters, such as in the discommensura-
tions. Similar ways of coupling the SC, CDW and spin
density wave (SDW) phases have also been proposed in
previous theoretical works [13, 14]. However, prediction
and control of the profile of the SC dome in the phase di-
agram of different TMD-based systems requires a deeper
analysis of the role of different parameters in the MGL
model, as well as on the effect of the experimentally ob-
served phase domain walls and topological defects in the
CDW spatial configuration.

In this paper, we analyze the effect of different param-
eters in the MGL functional on the phase distribution,
discommensurations, singularities, and critical tempera-
tures of CDW and SC phases in transition metal dichalco-
genides. We employ an imaginary time evolution method
[15] to obtain the lowest energy solution for the MGL
equations in an efficient manner. We demonstrate that
a proper choice of phenomenological parameters in the
MGL energy functional allows one to obtain not only the
well-known CDW discommensuration, but also topolog-
ical defects, such as vortex-antivortex pairs, phase do-
main walls where the CDW order parameter is locally
suppressed, and even the uni-directional CDW profiles



in systems where Cf, symmetry is expected otherwise.
Finally, we also use the CDW profile as an input for a
calculation of the critical temperature of a competing SC
order parameter, which emerges in regions where CDW is
suppressed. Our results help to unravel the mechanism
behind the formation of the SC dome in the tempera-
ture versus doping phase diagram of these systems, thus
allowing us to propose situations where the width and
maximum critical temperature of such a dome can be
enhanced.

The paper is organized as follows. Section II details
the theoretical formalism and our numerical approach to
solving the McMillan-Ginzburg-Landau equations. The
results are presented in Sec. III, where different subsec-
tions are devoted to the discussion of different CDW fea-
tures of interest, and finally the superconducting phase
as well. Section IV summarizes our conclusions.

II. THEORETICAL FRAMEWORK
A. Energy functionals

The transition between commensurate and incommen-
surate states was phenomenologically described in the
seminal work of McMillan [10] in terms of a free energy
functional with complex order parameters, much like the
GL theory for superconductivity. Within this framework,
we use an extension of the McMillan functional to ac-
count for the symmetries of transition metal dichalco-
genides, such as TaSey, VSes, and NbSey, where such
CDW phases were recently observed [12, 16-18]. We start
from the density modulation of commensurate CDW [9],

plr) =D eV + e, (1)
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where 1; is the order parameter associated with the com-
mensurate wave-vector in the j-th direction ]C’ given
as integer, or half-integer, multiples of the primitive re-
ciprocal vectors G; of the material. In the case of the
transition metal dichalcogenides investigated here, there
are three of such primitive reciprocal vectors (j = 1, 2,
or 3), rotated 120° with respect to each other.

The complex order parameters can be re-written in
terms of their amplitude ¢, (r) and phase 6;(r) as ¥;(r) =
¢;(r)exp[if;(r)], where the phase parameter quantifies
the deviations in comparison to the commensurate wave-
vector. For instance, the incommensurate CDW phase
in the j-th direction is characterized by 6;(r) = qjl - T,
where the incommensurability vector q; = ijC leads to

an effective wave-vector Qjc(lJréj) in Eq. (1) so that the
0; parameter quantifies the deviation from the otherwise
commensurate lattice in that direction.

The MGL energy functional for TMDs carries the con-
tribution of the three order parameters v; that gener-
ate the CDW, the energy of the superconducting phase,
characterized by the order parameter ®, along with a

coupling term between superconductivity and the CDW,
characterized by the coupling parameter v [1, 4, 13, 14],
ie.

F=fot+ it Fot Y [wPlef, (2)
J

where the McMillan functional fy; = fo+ f1 is composed
of [10, 19]

fo =3 [arlsl + Glusl* + BV + ) 5[], @)

J

with the effective temperature parameter 7 = T/ Teqw — 1,
and
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While the Ginzburg-Landau-like energy functional fj ac-
counts simply for a phase transition from normal to CDW
phases at T = T4y, the fi functional accounts for the
couplings between different order parameters, as well as
for the energy dependence on the total charge density,
via the lock-in energy F, [10] which is characteristic of
McMillan theory of CDW.

In such a phenomenological energy functional, differ-
ent coupling terms between order parameters and their
gradients are possible. However, the resulting CDW built
with the i, order parameters as in Eq. (1) must obey
certain material-dependent symmetry properties, which
eventually reflects on the choice of coupling terms. To the
lowest order in 1);, the C'3,, mirror, and inversion sym-
metries of the CDW in transition metal dichalcogenides
allow for the coupling terms presented in f;. For detailed
information on these coupling terms and phenomenolog-
ical coefficients in equation (4), we refer to the Supple-
mentary Material of Ref. 9.

The superconductor energy density f; is given by
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where the phenomenological coefficients are the same as
in the usual GL theory of superconductivity. The bi-
quadratic term we use for coupling CDW profiles and
SC, ie. v2; [¥4]®[* in Eq. (2), is discussed in detail
in Ref. 13.

From fy, it becomes clear that the B term favors
the incommensurate solution, by yielding lower energy
as 0;(r) approaches q§ -r. On the other hand, the
E > 0 term in f; favors the commensurate solution: since
(w? —|—z/13‘-‘2) = 2(;5? cos(26;), the energy is minimized as the
phase approaches §; = nm, for integer n.

Better physical insight is obtained by using an effective
mass term m* to re-write B = h? / 2m*. Three Euler-
Lagrange equations, one for each j-direction, are derived



from the minimization of the McMillan functional:
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where | # k # j and [ # j. We define a characteris-

tic length & = \/h?/2m*« and re-scale energies by a.
Equation (6) thus becomes
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For the superconducting order parameter, the Euler-
Lagrange equation that minimizes f, is simply the GL
equation, coupled to the CDW parameter by ~ [13]:
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B. Time evolution technique

The set of coupled Egs. (7-8) is solved by evolving
a set of arbitrary initial wavefunctions ¢;(z,y,t = 0)
and ®(z,y,t = 0) in time until convergence is reached,
a technique that has been successfully employed e.g. in
the mathematically similar case of Gross-Pitaevskii equa-
tions (GPe) in the context of Bose-Einstein condensation
[20-23].

The time evolution of McMillan-Ginzburg-Landau
equations reads
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where I'yf(qr) are damping parameters. The 1; and ®
functions that solve Eqs. (7-8) are the stationary solu-
tions of Egs. (9). The case of GPe differs only by the
fact that the time derivative is multiplied by i = v/—1,
so that the evolution that leads to stationary functions
in GPe must be performed in imaginary time it, while in
the case of MGL equations, this is done in real time.

We rewrite Eqs. (9) as
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by defining the operators
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where model parameters £, G, K, D,~, and M are all re-
written in units of «, while lengths are in units of &.

In order to perform the time evolution, we employ a
solution of the form

VGL(|‘I’|2) =

Gyt 4+ At) = e T I Pty (p 4

B(r,t + At) = e Tor [T FarWdigr 1) (12)
and use the numerical time evolution method known as
split-operator technique [15], which consists in splitting
the time evolution operator as [24, 25]
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error accounts for the non-

where the O(A#?)
commutativity between the Virqry and Thrqry oper-

ators. Notice that the VM(GL) terms in Eq. (11)
depend on ;(®) itself, thus being intrinsically time-
dependent, which would require a time integral in the
Vi (ar)-dependent terms in Eq. (13). We circumvent

this problem by approximating VM(G ) to be effectively
constant within the time interval [t,t + At], assuming
At /T yr(ar) small enough to produce a converged energy
result with <1% error. As the initial set of order parame-
ters ¥, (x,y,t = 0) and ®(z,y,t = 0) evolve in time, they
eventually converge to the order parameter profiles that
minimize the McMillan-Ginzburg-Landay energy func-
tional.

Some of the cases we will discuss further require a vec-
tor field q§ (z,y) as the incommensurability wave-vector,
rather than a constant wave-vector. This may create
problems for the practical application of the exponen-
tial of the T" term in Eq. (13), which now includes both
derivative operators and functions in the argument of the
exponential. This problem is overcome by the use of the
gauge-invariant finite difference method proposed in Ref.
[26].
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FIG. 1. (color online) (a) Phase of the j = 1 order parame-
ter along the x1 direction, assuming different values of lock-in
energy E/a = 0, 15, 30, 45, and 60. (b) Length of the dis-
commensuration steps (black line, left axis), along with the
discommensuration steepness (red line-symbols, right axis),
as a function of the lock-in energy E. The lock-in energy axis
is reversed in order to help the visualization, since the actual
experimentally controllable parameter is the overall charge
density, which is inversely proportional to FE.

III. RESULTS AND DISCUSSION

For the results discussed in this Section, we take the
choice of parameters G = K = 2a, M = a, and D = —q,
the same as in Ref. 9, unless otherwise stated. This
allows us to compare our results to previous literature
while enabling us to subsequently change the parameters
independently and observe how they affect the results.
As we will discuss in what follows, the choice M = —D
calibrate the relative phases between order parameters
such that they produce a CDW with a network of dis-
commensurations that is similar to that experimentally
observed for CDW in transition metal dichalcogenides.
[27] The choice G = K is also reasonable, as both pa-
rameters are linked to energy terms that are quadratic
on ;. Nevertheless, we verify that numerical results
do not qualitatively depend on this choice. Moreover,
while we will investigate the effect of the CDW profile
on the SC phase, we will neglect the influence of the SC
order parameter back on the CDW profile. This is a rea-
sonable approximation, since the CDW is already well
settled in place when the critical temperature for the su-
perconducting phase is reached. This fact is supported
by the phase diagram of several materials, e.g. cuprates
and iron-pnictides [18, 28-31].

A. Physical insights from a phase-only
approximation

In terms of the amplitude and phase of each order pa-
rameter, the McMillan energy functional is re-written as

> {707+ Go + El(a) — V0;)*¢F + (V)]
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where © = 91 + 02 + 03 and @j = Hj - 9j+1 - 9j+2'

From this functional, it becomes immediately clear
that, in a phase-only model, i.e. for constant ¢;, in the
absence of any coupling term and for £ = 0, the solution
that minimizes the energy has V§; = q§. This suggests
that as £ — 0, the solution must approach the incom-
mensurate case, for which 0; = qjl -r and, consequently,
the phase simply adds a q§ correction to the CDW wave
vector QY. Moreover, this form of the functional also
clarifies the role of the M and D in locking relative phases
6; such that the combination of cosine terms on © and
©; minimize the energy. Choosing M = —D, for in-
stance, leads to a network of discommensurations in the
form of a Kagome lattice, such as the one observed for
1T-TaS,,[27] but other networks can be obtained with
different choices of M and D.

The Euler-Lagrange equation for ¢; that minimize
F.qw reads

E
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FIG. 2. (color online) The same as Fig. 1, but for fixed E
= 50c, and varied values of the third-order coupling energy
M/a = 0, 20, 40, 60, 80 and 100.
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FIG. 3. (color online) Same as Fig. 1, but for ¢; = 0.15.

Notice that, in this case, a higher value of the lock-in energy
is needed to achieve the soliton solution.

In this equation, one can verify that the incommensu-
rate phase 0; = q§ -1 is still a solution of this equation
for £ = 0 even at a non-constant ¢; and non-zero cou-
pling D, since the term involving the latter is zero, as
O = (q + g + q) - r = 0 in this case. On the other
hand, a non-zero coupling constant M does not guarantee
the incommensurate solution as the lowest energy state in
the system. Therefore, increasing the coupling constant
M may harness the ability to control the transitions be-
tween commensurate, discommensurate and incommen-
surate phases of the CDW only through the parameter
E. This strong coupling case will be discussed in more
detail in the next Section.

Furthermore, in the phase-only model in the absence
of couplings and for non-zero E, Eq. (15) reduces to

E
V30, — e sin(26;) = 0, (16)

which is easily identified as the sine-Gordon equation,
whose solution takes the form of a soliton. This sug-
gests that increasing F leads to soliton-like solutions for
the phase, which would perfectly mimic the experimen-
tally observed discommensurations in CDW. Since the
stationary soliton solution has the general form 6;(x;)
tan™{exp[VE(z; — 20)/€]}, where z; is the coordinate
along the j-th direction and x ¢ is an offset for the soliton
position, the sharpness of the soliton steps is controllable
by either E or &, which are related to the total charge
density and the deviation parameter d;, respectively.

The analysis of these limits in our model suggests that
in the absence of couplings: (i) £ — 0 leads to the in-
commensurate solution, (ii) moderate values of E lead
to a combination between an incommensurate phase and
soliton-like phase-slips, which can be seen as discommen-
surations, and (iii) £ — oo leads to an infinitely long
soliton-like step, which is eventually interpreted as the
commensurate phase. It is now important to check how
the presence of couplings between the different CDW or-
der parameters changes this scenario, which will be done
further on in this paper.

The prediction that V6; must converge to qf in order
to minimize the energy can be used as a convenient way to
modify the MGL model as to produce different defects in

CDW, beyond the aforementioned discommensurations.
For instance, consider a domain wall perpendicular to a
given direction Gj, at x; = 0, separating regions where
the phase is constant [12, 32]. The associated phase
; can be mathematically described as a kink function
0; = h;tanh(z;/a;), where a; and h; control the width
of the interface region and the phase difference across
the interface, respectively. Such a phase distribution is
readily obtained from the imaginary time evolution by
defining an effective incommensurability vector field

h; x;
I T 2 J Lo
() = —sech” | — | z,, 17
alay) = secn () (")
such that V§; = JI (z) yields the expected kink profile
for §;. As another example of the application of this
concept, a vortex-antivortex pair in the CDW along the
z-axis in 6; is obtained by an incommensurability vector

field [33, 34]
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where 7, = \/(x —dyav/2)? + Y%,  Taw =
\/(ac + dyan/2)? + 2, and dyq, is the vortex-antivortex
separation. The profiles of the order parameters ob-
tained from the MGL theory with constant qJI» , as well
as with vector fields defined by Eqs. (17) and (18), are
discussed in what follows.

B. Discommensurations revisited

Let us first discuss the case of constant q§ = jQ]C,
which leads to discommensurations. For the sake of sim-
plicity, in this Section, we consider the same value J;

T (TCDW)

.0 4
100 80 60 £ 40 20 0

FIG. 4. (color online) Effective critical temperature as a func-
tion of the lock-in energy E for different values of the dis-
commensuration parameter J;, taken the same for all three
reciprocal vector directions j =1 — 3.



in all three directions (j = 1 — 3). Figure 1(a) shows
the phase distribution along the reciprocal lattice vector
direction 7 = 1, for several values of the energy param-
eter E, considering J; = 0.1. In order to facilitate the
comparison to experiments, lengths are given in units
of the lattice parameter a;, = 27/Gy, which can also
be retrieved from the characteristic length ¢ in previous
Sec. ITA by ap = 2m6:1£. Results and conclusions for
the other directions j = 2 and 3 are the same as for 1
and, therefore, are omitted. For F = 0, the phase is sim-
ply 01(x1) = ¢lz1, namely, the system is in a perfectly
incommensurate phase, i.e. the effective wave-vector of
the CDW in this direction is Q' (1 + 61) = 1.1Q¢. As
FE increases, the soliton-like steps predicted in the pre-
vious section are observed, thus creating regions where
the system is locally commensurate, separated by phase
slips, i.e. discommensurations. FEventually, for higher
E, the soliton steps are so long that the phase is virtu-
ally constant and, therefore, the effective wave-vector of
the CDW is simply QY, thus yielding the commensurate
phase. By taking the derivative of 8; and computing the
height and distance between the resulting peaks, one can
estimate the discommensuration steepness and the length
of the steps produced by them, respectively. The former
(latter) is shown as a red line-squares (black line) in Fig.
1(b) as a function of the lock-in energy E. Since the
discommensuration length of the steps can be effectively
measured by current experimental techniques, see e.g.
Ref. 12, the results provided here allow one to estimate
some of the parameters needed for a proper theoretical
description of an actual CDW phase in a given TMD.
Increasing the lock-in energy (i.e. decreasing the over-
all charge density), the discommensuration step length
rapidly increases, eventually leading to the commensu-
rate phase.

As mentioned in the previous Section, the coupling pa-
rameter M is expected to be the most detrimental one
for the emergence of discommensurations in the CDW
phase profile. The effect of this coupling on the discom-
mensurations, i.e. the dependence of the discommensu-
ration step length and height on M, is shown in Fig. 2.
As M increases, the step lengths become shorter, which
results in shorter distances between the discommensura-
tions, see Fig. 2(a). An approximate 30% decrease in
the step length is observed as M increases from zero to
100c. The steepness, on the other hand, is not signifi-
cantly affected by this parameter, since the oscillations
in Fig. 2(b), with amplitude less than 3% of the average
value, are in the same order of magnitude as the numer-
ical error in our calculations.

The long and steep steps in the phase profiles observed
in Fig. 1 become significantly smaller as one increases the
incommensurability factor d;. This is illustrated in Fig. 3,
where we consider §; = 0.15. In this case, increasing £
within the same range as in Fig. 1, the step length is still
two orders of magnitude shorter than that observed in
the §; = 0.1 case, while the steepness is ~ 30% smaller.

Increasing the lock-in energy FE effectively increases

the critical temperature of the CDW, as inferred by
Eq. (15), where one sees that the temperature param-
eter 7 = T/T.qw — 1, which multiplies ¢3, is effectively
changed to T'/Tcqw — 1 — E cos(260;). As E increases and
the phase converges to 6; = 0 as the lowest energy (com-
mensurate) solution, higher temperatures are required to
induce the normal-to-CDW phase transition. However,
how fast 6; converges to zero depends on the different
system parameters: higher discommensuration factors d;,
for example, lead to a delayed convergence of ; to zero
at significantly higher E. Therefore, the control of the
CDW critical temperature is expected to depend e.g. on
d;, which is confirmed by our numerical results in Fig. 4,
which shows the effective critical temperature as a func-
tion of the lock-in energy E for different values of ;. The
delayed convergence of cos(26;) to 1 for higher d; eventu-
ally hinders the contribution of F to the effective critical
temperature, thus making the control of the CDW criti-
cal temperature via F less efficient.

C. Phase domain walls and topological defects

Figures 5(a,b) show color maps of CDW profiles, cal-
culated with Eq. (1), in the presence of a phase domain
wall. Such domain walls are obtained by defining the
incommensurability vector fields qf (x,%) and qi(x,y) as
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FIG. 5. (color online) (a,b) Color maps of the CDW profile
in the presence of a phase domain wall in the order parame-
ters 91 and 12, obtained by defining their incommensurability
vector fields as in Eq. (17). The amplitude of the order pa-
rameter ¢1 along the z-direction (solid curve) is superposed
on the color map, for comparison. The amplitude of the or-
der parameter 12 is the same in this case. Two types of do-
main walls are obtained from the calculations: (a) one with
a 2m-phase slip and (b) the other with a w-phase slip. The
corresponding phase distributions of the CDW order param-
eter ¥ in each of these cases are shown in panels (c) and (d),
respectively.
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FIG. 6. (color online) (a) Amplitude and (b) phase of the
CDW order parameter 11, obtained by defining the incom-
mensurability vector field as in Eq. (18).

in Eq. (17), which leads to the formation of identical
domain walls in the order parameters i1 and 9, as ob-
served in Ref. 12. Indeed, the phase slips observed due
to these domain walls in Figs. 5(c,d) lead to a CDW
profile that qualitatively resembles those experimentally
observed e.g. in Refs. 12 and 32. The amplitude (squared
modulus) of the 1)1 order parameter is shown as a solid
line in Figs. 5(a,b) and exhibits a strong suppression at
the interface. The |¢)2]? profile is the same, and is there-
fore not shown.

Results in Figs. 5 and 6 were obtained considering
E = 40«, but we have verified that changing the value of
E from 0 to 100 « does not affect these profiles. Either
in the presence of a domain wall or the vortex-antivortex
pair topological defect, it is clear that along the line
where the phase of the CDW order parameter changes
abruptly, its amplitude locally drops to low values, thus
enabling the emergence of a SC phase, as we will discuss
later.

Starting the imaginary time evolution with random ini-
tial functions v;, the 27-phase slip domain wall shown in
Figs. 5(a,c) is readily obtained. However, experiments in
Ref. 12 actually reveal a w-phase slip, such as the one
shown in Figs. 5(b,d), which is obtained by our model
as a solution with slightly larger energy as compared to
the 27-phase slip case. It is thus regarded as a meta-
stable state of the McMillan energy functional presented
here, obtained with an appropriate choice of initial func-
tion that already exhibits such a phase-slip and is then
properly converged through the imaginary time evolu-
tion procedure. From Fig. 5(b), one also observes that
the amplitude of the order parameter with a w-phase slip

is different on two sides of the domain wall, which leads
to different amplitudes of the CDW on each side as well.
A full sweep of the parametric space within the McMillan
model presented here, in order to produce a phase dia-
gram and eventually search for a situation where m-phase
slips are energetically favored is outside the scope of the
present work and is left as a future perspective of this
study.

Figure 6 illustrates the phase and amplitude obtained
from our calculations defining the incommensurability
vector field gf (z,y) as in Eq. (18), which yields the for-
mation of a vortex-antivortex pair, assuming a separation
dyay = 60 £. As expected, the CDW amplitude strongly
drops in the cores of the vortex and the anti-vortex, with
a line of suppressed CDW amplitude connecting them,
in qualitative agreement with the experimental observa-
tions in Ref. 12.

D. CDW with broken rotational symmetry

Recent experiments on NbSe; have also observed a
CDW phase consisting of a wave with a single direction,
for example Q§ > 0, while the effective wave vector
is zero for the remaining directions, which constitutes
the so called uni-directional charge density wave phase
(1g-CDW) [12]. In the model proposed here, a qual-

itatively similar phase can be achieved by considering

FIG. 7. (color online) CDW distribution p(r) assuming an
anisotropic set of incommensurability vectors, such that qf =
0.1Q5, @t = QS and qf = QY, for D = M = 0, thus leading
to an uni-directional charge density oscillation. Three values
of lock-in energy are considered: (a) F = 0, (b) E = 40, and
(c) E = 100a. (d) Cross section of the CDW profiles for E =
Oc (black solid line) and E = 100« (red dashed line) along the
y-direction at x = 0, emphasizing the 10% smaller wavelength
in the former, as a result of the d3 = 0.1 discommensuration
parameter.
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FIG. 8. (color online) Color map of the superconducting (Cooper-pair) density below the SC critical temperature Tsc, in the
system where the CDW order parameter 11 exhibits discommensurations along the z-direction, for lock-in energies E equal (a)
40a;, (b) 50c, (c) 60c, and (d) 70«, assuming a coupling parameter v = 4. The profile of the CDW is superposed in each panel

as a solid curve and referred to the right axis of panel (d).

The maximum value in each color map is different, to facilitate

visualization: 0.2]¢o|? (a), 0.8¢o|? (b), 1|¢o|? (c), and 0.5|¢o|? (d), where |¢po|? is the SC density in absence of any CDW.

an anisotropic form for the incommensurability vectors
q]I» = jQ]C, such that two of the discommensuration pa-
rameters are equal to 1, e.g. 61 = do = 1, while 3 may
assume a small value, which we will set to d3 = 0.1 here
as an example. We have verified that a numerical solu-
tion of Eq. (7) with this set of values for J; is unstable if
the terms that couple different order parameters in the
first order, namely those proportional to D and M, are
non-zero. However, such one-directional phase is in fact
experimentally observed, suggesting a way to possibly
rule out some coupling terms that, although allowed by
symmetry [9], may be negligible in some physical situ-
ations. Therefore, results in this section are discussed
assuming D = M = 0.

Figure 7 shows the CDW profile with this set of param-
eters, which indeed leads to uni-directional CDW along
the QY direction. In the case of zero lock-in energy
E = 0, no defect is observed in the CDW periodicity,
see Fig. T(a). A perfectly periodic, although incommen-
surate, CDW profile is obtained in this case. However,
as the lock-in energy is increased to E = 40c«, our model
predicts the occurrence of phase slips in the CDW profile,
due to discommensurations, see Fig. 7(b). Such discom-
mensurations in the 1g-CDW predicted here for interme-
diate values of E are yet to be experimentally verified.
For the E = 100« case in Fig. 7(c), we obtain a commen-
surate uni-directional CDW with no defects. Figure 7(d)
shows the profile of a cross section of the CDW along the
direction perpendicular to the wave fronts, for the £ =0
(black solid line) and F = 100« (red dashed line) cases,
in order to emphasize the difference between the results
shown in Figs. 7(a) and 7(c). One verifies that the for-
mer, which is incommensurate, has a wavelength 10%
smaller than the latter, due to our choice of the discom-
mensuration parameter d3 = 0.1. It is easy to infer that
uni-directional CDW in the j = 1, 2 directions can be
similarly obtained simply by making d; # 0 and d,, =

for n # j.

Notice that the minima in the 1q-CDW profile p(r)
shown in Fig. 7 for E = 0 and £ = 100« do not result
from a modulation of the amplitude of the order parame-
ter, but rather from the oscillations originating from the
exponential terms in Eq. (1). Therefore, the minima in
these 1q-CDW cases are not expected to affect the SC
phase, which couples to the order parameters v;, rather
than to the total CDW density profile p in the MGL
model. Conversely, the amplitude modulation resulting
from the discommensurations in Fig. 7(b) for £ = 40« is
expected to lead to significant effects on SC.

E. Effects on the emergent superconducting phase

Finally, we discuss qualitatively the effect on supercon-
ductivity of the CDW defects discussed in the previous
sections. As previously mentioned, our model simulates a
superconducting order parameter ® competing with the
CDW order parameters 1;, which are coupled via the
parameter 7 in Eq. (2). The superconducting phase is
expected to emerge in the regions of space where the
CDW order parameters are suppressed, due to competi-
tion that is closely related to the hidden order parameter
model discussed in Refs. 13 and 14. In fact, the equiv-
alence between the bi-quadratic coupling considered in
Eq. (2) and the coupling proposed in Ref. 9 can be seen
by collecting all terms that multiply [¢;|? in the former
into an effective af = a, + Zjﬂwj\Q. Assuming the
usual temperature dependence in GL theory [35], namely,
as(T) = ap(T/Tsc —1), where Tsc is the reference value
of the superconducting critical temperature and «g de-
fines the SC coherence length at T = 0K, the v coupling
effectively reduces the critical temperature of the super-
conducting phase locally wherever the amplitude of the
CDW order parameter |t;|? is high. From here onward,
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FIG. 9. (color online) Superconducting dome, delimited by
the effective SC critical temperature as a function of the lock-
in energy, assuming v = 2.0 (red) and 2.5 (black) for a 1 = 0.1
discommensuration parameter, and v = 2.5 for 6; = 0.12
(blue).

temperatures are re-scaled to Tsc for clarity, i.e., in the
absence of CDW, the SC phase transition would occur at
T/Tsc = 1, and distributed |¢;]* will accordingly sup-
press superconductivity and consequently reduce the ef-
fective SC critical temperature.

In what follows, for the sake of simplicity, we will dis-
cuss the rise of the superconducting order parameter in
the interstitial spaces of a 1D-CDW found in the previous
section. This approximation allows us to conveniently
qualitatively predict the behavior of the superconduct-
ing critical temperature dome in terms of the parameters
of the CDW. A generalization of this discussion to the
case of a combination of three CDW order parameters is
then straightforward. The GL equation for the SC order
parameter resulting from this approximation reads [13]

1 20 T 0

where we assume a ratio of coherence lengths of CDW
and SC order parameters as & = £/{sc = 0.7, as an
illustrative example.

The amplitude of the CDW order parameter exhibits
dips at the discommensurations, whose depth is given
by the steepness of the discommensuration. Within the
model employed here, the effective superconducting crit-
ical temperature increases as the dips in the CDW are
deeper and closer to each other [13]. Therefore, Fig. 1
allows us to predict that, for low values of F, the dis-
commensurations become steeper as FE increases, thus
increasing the superconducting critical temperature. On
the other hand, for intermediate F, the discommensu-
rations separate further from each other, decreasing the
critical temperature again, until the commensurate phase
is reached, where discommensurations are no longer seen.

This qualitatively explains the emergence of a supercon-
ducting dome in the temperature versus charge density
phase diagram. Indeed, this behavior is verified in the
color maps of the calculated SC order parameter along
the z-axis as a function of temperature in Fig. 8. The
profile of the CDW order parameter for E equal 40c,
50«, 60c, and 70« are shown as a white solid curve in
Figs. 8 (a)-(d), respectively, for comparison. For E =
60c, the dips in this order parameter are deep and close,
leading to a non-zero SC order parameter almost up to
T = Tsc for v = 4, cf. Fig. 8(c). However, supercon-
ductivity in the center of the sample vanishes at lower
effective critical temperatures as E is made either higher
or lower than F = 60«. For either £ < 40a or £ > 90«
these dips are no longer able to sustain superconductivity
and the effective SC critical temperature drops to zero.

Figure 9 shows the SC dome delimited by the effec-
tive critical temperatures found as the temperature at
which |®]? drops to zero for each value of E. In the case
where the discommensuration parameter is §; = 0.10 and
the coupling between SC and CDW order parameters is
strong, the SC dome reaches values as high as 85% of the
nominal SC critical temperature at £ = 40«, for v = 2.5.
Considering a lower coupling parameter, v = 2.0, the SC
dome becomes smaller. It is challenging to relate the
strength of the SC-CDW coupling in the phenomenolog-
ical model proposed here to an actual material sample,
but the behavior of the SC dome for systems with differ-
ent discommensuration lengths can be compared. In this
case, our model predicts that for §; = 0.12, where dis-
commensurations are shorter in space and more weakly
affected by the lock-in E (cf. Fig. 3), the SC dome be-
comes considerably higher and wider, as shown by the
blue symbols in Fig. 9. Since superconductivity is ex-
pected to emerge only at discommensurations, supercon-
ducting regions would be further apart also in systems
with high coupling M, as suggested by Fig. 2. Conse-
quently, the superconducting dome is expected to exhibit
lower critical temperatures in systems with high M as
well.

Superconductivity is also expected to emerge within
the dips in the CDW order parameter 1; due to domain
walls [36] illustrated in Fig. 5, or to the defects illus-
trated in Fig. 6. Fig. 10 shows a color map of the SC
order parameter profile in (a-d) domain wall and (e,f)
vortex-antivortex defects, as a function of temperature
T. As in the case where SC rises within discommensu-
rations, a higher v coupling [panels (b,d,f) of Fig. 10]
also enhances the effective SC critical temperature here,
as compared to the cases where v is lower [panels (a,c,e)
of Fig. 10]. However, for both domain wall and vortex-
antivortex defects, changing the lock-in energy F does
not significantly affect either the depth or the width of
the minimum in 1, as previously discussed in Sec. IIT C.
Therefore, although these defects are expected to enable
the emergence of superconductivity in the sample, they
are not expected to affect the profile of the SC dome in
the temperature versus charge density (or, equivalently,
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FIG. 10. (color online) Color map of the SC Cooper-pair den-
sity in the region of suppressed CDW order as the temperature
T decreases below the SC critical temperature Tsc. We con-
sider CDW order parameter 1; that is suppressed either due
to (a,b) a 2m-phase domain wall, (c,d) a m-phase domain wall,
or (e,f) a vortex-antivortex defect along the z-direction. Two
values of the coupling parameter v between SC and CDW are
considered in each case, as shown by the labels in each panel.
The profile of the amplitude of the CDW order parameter 1,
along the z-direction is shown in each panel as a white line,
for comparison. The maximum value in each color map is
different, to facilitate visualization: 0.1|¢o|* (a), 0.9]¢o|* (b),
1|éo|? (c,d), and 0.9|¢o|* (e,f), where |¢o|* is the SC density
in absence of any CDW.

lock-in energy E) phase diagram. Nevertheless, a sig-
nificant difference is observed in the dip of the CDW
order parameter in each case investigated here: when
plotted in the same scale, the dip in |¢);|? observed for
the 27-phase domain wall is shallower than the one for
the m-phase domain wall, and they both are one order
of magnitude shallower than the one observed for the

10

vortex-antivortex pair, as one verifies by comparing the
white lines in Fig. 10. As a consequence, the effective
SC critical temperature for v = 4 in the 27-phase do-
main wall case, i.e. Fig. 10(a), is much lower than the
one in the m-phase domain wall case for the same 7, as
seen in Fig. 10(c). Also, in the vortex-antivortex case,
Figs. 10(e,f) show that one order of magnitude lower v
values lead to similar enhancement of the effective SC
critical temperature as in the domain wall defect cases,
owing to significantly deeper CDW suppression in that
case.
IV. CONCLUSIONS

We have demonstrated how parameters and functional
forms of the McMillan-Ginzburg-Landau energy func-
tional for transition metal dichalcogenides are linked to
the formation of discommensurations in the CDW phase
profiles, the emergence of topological defects (vortex-
antivortex pairs) and domain walls in the phase, as well
as the appearance of an uni-directional CDW state. We
also investigated how modifications of the phase features
associated with each of those states affect the resulting
profile of the CDW order parameters. With such an
analysis, albeit within the phenomenological model, we
revealed the mechanism behind the formation of these
states, which have been observed in recent experiments.
Since CDW order parameter is known to typically com-
pete with an emergent SC order parameter in these sys-
tems, we have also used our model to elucidate the emer-
gence of the SC dome in the phase diagram of such ma-
terials, and we demonstrated how the SC critical tem-
perature depends on the distance and depth of the mod-
ulations in the CDW order parameter. Our model and
presented results will therefore help further design of ma-
terial systems where the interaction of competing collec-
tive phenomena is practically tailored at will.
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