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Abstract

Plasma medicine has attracted tremendous interests in a variety of medical conditions, ranging

from wound healing to antimicrobial applications, even in cancer treatment by the interactions of

cold atmospheric plasma (CAP) and various biological tissues directly or indirectly. The underlying

mechanisms of CAP treatment are still poorly understood although the oxidative effects of CAP

with amino acids, peptides, and proteins have been explored experimentally. In this study, the

machine learning (ML) technology is introduced to efficiently unveil the interaction mechanisms of

amino acids and ROS in seconds based on the data obtained from the reactive molecular dynamics

(MD) simulations, which are performed to probe the interaction of five types of amino acids with

various reactive oxygen species (ROS) on the timescale of hundreds of picoseconds but with the huge

computational load of several days. The oxidative reactions typically start with H−abstraction,

and the details of the breaking and formation of chemical bonds are revealed; the modification

types, such as nitrosylation, hydroxylation, and carbonylation, can be observed. The dose effects

of ROS are also investigated by varying the number of ROS in the simulation box, indicating the

agreement with the experimental observation. To overcome the limits of timescales and the size

of molecular system in reactive MD simulations, a deep neural network (DNN) with five hidden

layers is constructed according to the reaction data, and employed to predict the type of oxidative

modification and the probability of occurrence only in seconds as the does of ROS varies. The

well-trained DNN can effectively and accurately predict the oxidative processes and productions,

which greatly improve the computational efficiency by almost ten orders of magnitude compared

to the reactive MD simulation. This study shows the great potential of ML technolgy to efficiently

unvail the underpinning mechanisms in plasmas medicine based on the data from reactive MD

simulations or experimental mesurements.

∗ ytzhang@sdu.edu.cn
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I. INTRODUCTION

The utilization of CAP has gained significant attention for various applications due to

its tremendous potential advantages, including being obtained from flexible facilitation with

simplified operation and leading to the formation of abundant reactive oxygen and nitrogen

species (RONS) [1–5], such as hydroxyl radicals, oxygen atoms and nitric oxide, which have

been proved to contain extensive biological−oxidizing properties [6–10]. Plasma medicine

is a novel field of biomedical application with multiple disciplinary intersections, including

physics, biochemistry, and clinical medicine. With those attributes mentioned above, CAP

exhibits therapeutic effects in various applications, including wound and ulcer healing [11–

14], cancer therapy [15–19], dental applications [20], blood coagulation [21], disruption of

the human hepatocyte cytoskeleton [22], and dermatology [23–32]. Furthermore, plasma

medicine demonstrates excellent potential for surface modification of biomaterials, decon-

tamination of medical devices, and disinfection of wound surfaces.

To explore the underlying mechanism of the action between CAP and biological organ-

isms, insight into the interactions between RONS and biological functional biomolecules is

crucial. Investigations have been performed to investigate the oxidation of CAP in the case

of lipids, DNA, and proteins [33–42]. As the most abundant compound and the main under-

taker of living organisms, proteins also dominate biological functions from the perspective

of molecular biology. Learning about the interaction of RONS with proteins is necessary

to deeply understand plasma biological mechanisms. Proteins are composed of 20 kinds of

natural amino acids connected by peptide bonds, which are formed by dehydration con-

densation of two adjacent amino acids. The main difference between amino acids is the

side chain structures, which can substantially impact the spatial structure and physical and

chemical properties of proteins. Therefore, this paper focuses on the interaction between

reactive species and several amino acids with different characteristics.

Much experimental research has revealed that RONS in plasma can induce the oxida-

tion of amino acids and proteins. Takai et al. used lysozyme to study the chemical effects

of atmospheric pressure low−temperature plasma on proteins in aqueous solutions. They

first observed that plasma could lead to lysozyme inactivation [43] and hypothesized that

the secondary structure of lysozyme was chemically modified under low−frequency plasma

jets, which was actually the oxidative modification of amino side chains induced by reactive
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particles such as OH radicals. Sharifian et al. reported that the carbonylation content of

beef myofibrillar protein significantly increased while the free thiol content remarkably de-

creased during 10 minutes of dielectric barrier discharge plasma treatment, which indicated

that the functional properties of myofibrillar protein were changed because of its oxidation

caused by active species [44]. The research of chemical effects of CAP on the amino acids of

Takai et al. showed that 14 of the 20 amino acids had oxidative modifications on their side

chains, which were affected by chemical reactions between amino acids and plasma induced

reactive species rather than chemical degradation caused by acidic conditions [33]. The

study denoted that produced reactive particles react preferentially with sulfur- and aromatic

ring-containing amino acids among all others. The hydroxylation and nitration of tyrosine

(Tyr), phenylalanine (Phe), and tryptophan (Trp) were also observed by high−resolution

mass spectrometer, as well as the sulfonation of cysteine (Cys) and sulfoxidation of methio-

nine(Met), and ring−opening products of five−membered cyclic amino acids. In addition,

Zhou et al. found oxidative modifications on amino acids side chains in their research of the

interaction of plasma with amino acids and summarized oxidation types into hydroxylation,

nitration, dehydrogenation, and dimerization [45].

Although the chemical oxidation of CAP has been proved experimentally, the underlying

mechanisms of plasma medicine remained limited with independent experimental observa-

tions. Researchers suffer from the situation that the poor details of experimental results

caused by the restrictions of experimental detection result in the incompleteness of funda-

mental understanding. However, numerical simulation tends to be a powerful instrument for

experiment verification and supplements with the continuous progress of modern computer

science and incredibly improved calculation rate. With the advantages of low−cost equip-

ment and the ability to model molecular interactions, molecular simulation technology has

attracted increasing attention in plasma medicine. The oxidative effects of plasma on amino

acids have been studied theoretically and experimentally. However, a specific explanation

of the inactivation mechanism of amino acids at atomic or molecular levels still remains

to be proposed. The biological tissues are complex organisms with massive physiological

and biological properties, which means all mechanisms in the whole process of interaction

between plasma and biological tissues cannot be wholly explained by molecular simulations,

such as the cell signaling pathway affected by plasma. In contrast, molecular simulations

can deeply describe the first step of the interaction between plasma and biological tissues
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at the molecular level, which actually is the active radicals reacting with and inactivating

the biomolecules. Several simulation methods have been employed in the area of plasma

medicine at the atomic or molecular scale, such as quantum mechanical calculation, density

functional theory method, and molecular dynamics simulation [41, 42, 46, 47]. As one of the

most popular methods of molecular dynamics simulation, the reactive molecular dynamics

(MD) simulation can expose the processes of chemical bonds breaking and reforming. In

this study, the reactive MD simulation is applied to explore the interaction process between

active radicals and amino acids, while the drawbacks of low computational efficiency and

huge simulation time consumption of reactive MD simulation have gradually emerged.

With the updation of calculating devices and the emergence of high−performance com-

puting technology, such as GPU computing and parallel computing, the computational per-

formance of current computing methods has been highly improved [48–50]. In recent years,

the expanding applications of artificial intelligence (AI) across areas, especially in physics,

emphasize its potential to address current challenges and explore novel prospects for plasma

medicine [51–53]. The usage of AI in the field of fusion has developed for a while, achieving

some outstanding research [54, 55]. However, the development of AI technology involving

low−temperature plasmas, especially in plasma medicine, needs to be largely improved, with

a couple of challenges and limitations [56, 57]. Machine learning (ML) is an essential branch

of AI with the capability of data statistics and analysis, and it can automatically obtain the

correspondence between tremendous amounts of data. The algorithm of ML is designed to

identify patterns in data of a complex system to make predictions and decisions or discover

the intrinsic relationship. Before feeding the training data, a transformation of row of ML

algorithms is generally required to convert data into more informative representations or

features, which is called feature extraction and has a critical impact on the success of ML.

Deep learning (DL) is an essential branch of ML that can automatically learn features from

massive data without being explicitly programmed. Thanks to the significant progress in

large datasets and computing resources in recent years, the idea of complex system modeling

through DL methods has achieved spectacular success across a wide range of applications,

which also lays an objective foundation for studying plasma characteristics based on big

data. Recent studies have shown that DL with multiple hidden layers has excellent results

in the simulation and modeling of CAP [58–60]. In particular, several recently published re-

view papers demonstrate advances in the application of AI technology in the field of plasma
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medicine [51, 52, 61, 62]. In our previous studies, a deep neural network (DNN) was con-

structed as a surrogate model to investigate the discharge characteristics of atmospheric

helium dielectric barrier discharges, showing excellent performance and incredible accuracy

of discharge characteristics of DBDs [60]; the DNN was also applied to describe the discharge

characteristics and plasma chemistry of CO2 discharges, achieving accurate predictions with

high computational efficiency [63]. However, there is a need for further investigation to apply

DNN to the numerical simulation of plasma medicine to reveal the underlying mechanisms

of interactions between amino acids and reactive radicals [64, 65].

In this paper, the computational efficiency of DNN is examined to study the oxidative

modification of amino acids upon the impact of ROS produced in CAP with the data ob-

tained by reactive MD simulation, exploring the further utilization of DL algorithms in the

fields of plasma medicine. DL holds the capability to transform the numerical simulation of

plasma medicine field and improve the effectiveness of reactive MD simulations.

Section II describes the numerical methods of reactive MD and the construction of DNN;

the interactions of amino acids and ROS are profoundly explored in Section III, and the

reaction pathways of the oxidative modifications of amino acids and the effects of different

types and dosages of active species are presented in detail, respectively; the prediction data

from DNN on the oxidative modifications of amino acids are discussed. The predictions

show the potential of DNNs involving numerical simulation of plasma medicine with higher

computational efficiency, and the training data can be collected by other methods except

reactive MD simulation, such as experimental acquisition. In the final section, we summa-

rize the oxidation of amino acids and discuss the tremendous potential of DNN in plasma

medicine.

II. DESCRIPTION OF NUMERICAL METHODS

A. Reactive Molecular Dynamics simulation

Molecular dynamics simulation is a powerful tool to model natural molecular systems

through statistical principles. There are several MD simulation studies devoted to the

interaction of plasma with the material in plasma medicine at atomic/molecular scale

[46, 47, 66, 67]. MD simulations regard specific species (atoms, ions, molecules) as the
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object and consider the whole system as a particular characterized collection of particles.

The underlying algorithm of MD simulations is the integration of motion equations of all

involved particles in the system. In MD simulations, the movements of atoms are caused

by the forces acting on them, which are obtained from quantum mechanical calculations

and classical interatomic potential. Based on the capability of dissociation and formation

of chemical bonds, MD simulations can be divided into nonreactive and reactive MD sim-

ulations, and both can achieve the specific characteristics of the system mentioned above

at the atomic/molecular level. In nonreactive MD simulation, the molecules remain fixed

in the system, which means that the breakage and formation of bonds are not involved in

the simulation. The computational afford of the simulation is considerably decreased with-

out the recalculation of bond order in each time step. In addition, with a less complicated

functional form of force field, the nonreactive MD simulation is superior for an extensive

system with 106 − 108 atoms at a timescale of 0.1ns–10µs [68]. In contrast, the reactive

MD simulations can explore the formation and breakage process of chemical bonds. Thus,

the molecule connectivity needs to be recalculated at each time step of the equation inte-

gration. Due to the expensive computational burdens, the suitable space and time scale

of reactive MD simulations are consequently reduced. Considering the complexity of the

interatomic potential, the number of atoms shrinks to 104−106, and the timescale decreases

to 1ps–100ns, which is remarkably smaller than that of nonreactive MD simulations [68].

To explore the oxidative modification of amino acids upon the impact of reactive oxygen

species (ROS), the reactive MD simulation is employed in this study, and the Reax force field

(ReaxFF) [69] is applied as the interatomic anteraction potential with high accuracy and low

computational expanse [66]. The applicability of ReaxFF has evolved from hydrocarbons

to handling almost half of the elements of the periodic table. The ReaxFF can describe

various multielement compounds and has been adopted to reveal the interaction of ROS

with peptidoglycan , lipids [67], and DNA [70, 71] with outstanding achievement. The order

and distance of chemical bonds are the basements of the force field because the connection of

atoms is obtained from those two indispensable information. Upon the impact of the force

field, the distance of atoms evolves at each time step of the reactive MD simulation, and

the cleavage and formation of chemical bonds also occur during computation. The ReaxFF

holds the capability to model non−bonded interactions like van der Waals and Coulomb

forces and strong interactions such as covalent and ionic bonds. Eq. 1 shows the total
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energy of the system upon the effect of ReaxFF as follows:

Esystem = Ebond + Eover + Eunder + Eval + ECoulomb + Evdw + Econj + Etors + Epen (1)

where Esystem is the total potential energy of the system, consisting of several energy terms.

Ebond on the right−hand side represents the chemical bond energy, determined by the bond

order. Eover and Eunder refer to the over- and under-coordination, respectively. The fourth

term on the right−hand side denotes valence angles. ECoulomb and Evdw indicate the inter-

action energy of Coulomb and van der Waals, respectively. Econj means conjugated systems,

Etors is torsion terms, and Epen represents the occurrence of unfavorable configurations. A

more detailed description of the formulation can be found in [69].

B. Structure of amino acids and simulation setup

As the most widely distributed biological macromolecule in living organisms, proteins are

composed of amino acids connected by peptide bonds. Proteins are the most vital substances

of life phenomena and the essential material to express biological genetic traits. Due to the

complicated molecular structure, proteins need to be modified and processed to various

degrees to perform desired biological functions. Post−translational modifications (PTMs)

are mainly used to regulate protein function by adding small chemical molecule groups to

amino acid side chains of proteins or modifying existing groups [44]. PTMs bear an essential

role in the regulation of protein structure and function, which can adjust to the physiological

state of cells and the external environment, thus regulating the signaling pathways of cells

[39, 72, 73]. Proteins are especially susceptible to oxidative modifications considering the

structure of proteins and the presence of containing amino acid residues like methionine,

cysteine, lysine, proline, tyrosine, histidine and tryptophan [44]. Various research has shown

that conformational variation occurs in proteins upon the impact of plasma, demonstrating

the oxidative modification effect of plasma treatment [74–76]. The oxidative modifications

of proteins upon plasma treatment seem qualitatively in line with the post−translational

modifications of proteins in living organisms, both of which can significantly influence the

function and lifetime of proteins.

The oxidative modification of proteins mainly occurs at the side chain of the amino acids,
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which have a significant impact on the spatial structure and physical and chemical properties

of proteins. Thus, this study focuses on the oxidation of amino acids, the elementary units of

proteins. The connection of amino acids are peptide bonds constructed by the dehydration

condensation between the amino and carboxyl groups of two adjacent amino acids, resulting

in the formation of peptides and proteins. According to the different side chain structures, 20

kinds of amino acids can be divided into sulfur-containing amino acids, aromatic amino acids,

polar amino acids, carbon chain amino acids, and five−membered cyclic amino acids. This

article takes methionine (Met), phenylalanine (Phe), cysteine (Cys), glutamic acid (Glu),

and proline (Pro) as representatives, and the schematic representation of the structures of

these amino acids is illustrated in Fig. 1. Five amino acids are randomly placed in the

simulation box, a cube with an edge length of 30 Å, to observe all the possible oxidative

modifications upon the impact of ROS, and the breakage and formation of chemical bonds

are carefully investigated. The number of adopted ROS (OH, O, O3 and H2O2) gradually

increases from 10 to 50 while the simulation box keeps at the same. Fig. 2 shows an example

of five amino acids under the interaction with 30 oxygen atoms in the simulation box. For

each simulation, different numbers of the ROS are randomly placed in the box with a number

much larger than that of the amino acids. The statistical nature of molecular encounters is

addressed by random sampling. It is worthy to be noted that the ROS density applied in the

simulation is far more than that generated by plasma in the experiments [28, 77–79]. Periodic

boundary conditions are employed in all three dimensions to emulate a larger system in our

simulations. Essentially, the simulation box is replicated infinitely in all directions, creating

an infinite periodic arrangement. This approach allows us to study the global properties of

the entire system by simulating a single box. Once the periodic boundary conditions are

established, if any particles exit the box, identical particles can return to the box from the

opposite interface in the simulation of particle movement. Furthermore, the atoms located at

the boundaries of the simulation box can interact with the atoms on the opposite side of the

box. The ReaxFF is applied as the force field to simulate the oxidation of amino acids at the

atomic scale. The entire system is equilibrated at room temperature for 50 ps in the canonical

ensemble using a Berendsen thermostat. The thermostat coupling parameter is set to 0.1

ps. In order to ensure accurate integration of the equation of motion and facilitate smooth

progression of the reactions, the time step is limited to 0.1 fs [71]. The total calculation time

for each simulation is set to 300 ps, resulting in 3 million iterations. During this time, all
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expected types of reactions should take place, leading to the final simulated results. After

conducting numerous tests, it has been determined that this duration is sufficiently long to

observe the majority of reactions. Each interaction is simulated using 10 independent runs

to gather comprehensive statistical data on the processes that occur. It should be noted

that the simulation statistics are influenced by the number of calculations performed and by

the fact that this type of simulation primarily aims to provide molecular-level insights due

to the limited time and length scale.

C. Data Preprocessing and structuring for DNN

Thanks to the improvement in computation performance and the availability of large

datasets, AI based on data−driven science has attracted growing attention. Data−driven

science is recognized as the fourth paradigm of discovery, and the previous three paradigms

are empirical or experimental (Galileo Galilei), theoretical (Isaac Newton), and computa-

tional (not a single person), respectively [80]. Data−driven science is a transformational

technical with fundamental differences from the previous three paradigms. Most notably, it

aims to create a “learning machine” in which AI makes fully automated scientific discovery,

taking human intelligence out of the discovery process or performing tasks without explicit

programming. Computationally expensive operators in the reactive MD simulation being

used to investigate the interaction of amino acids with plasma−generated ROS can signifi-

cantly impact the ability to simulate the oxidative reactions sufficiently. By replacing these

expensive operators with less computational consumption surrogate models, the overall per-

formance of the simulation can be greatly enhanced. By applying machine learning (ML)

algorithms that employ a plenty of data to train a DNN, the surrogate model is used as a

replacement for the expensive operator in reactive MD simulation.

Data-driven surrogate models have been developed to integrate ML algorithms with

plasma fluid models [59, 60, 63, 81, 82] and kinetic models [83]. The amount of available

data, training methods, and network architecture can significantly impact the quality of the

resulting ML surrogate models. The availability of a massive corpus of data can ensure the

development and application of ML surrogate models. Deep learning (DL) is a subset of ML

that employs deep neural networks to explore complicated correlations in data. ML methods

with multiple parameters and complex mathematical structures need vast data to reveal the
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most informative features or representations. The characteristics of data from simualtion or

experiments should be carefully considered to incorporate the physics knowledge into the

DL surrogate models [52].

An open reaction database (ORD) to support machine learning has been suggested to

provide a structured data format for chemical reaction data, and the related studies such as

reaction prediction, chemical synthesis planning have been discussed [84]. As the represen-

tation of the data is crucial and the premise for ML [85], a reaction description with a width

equal to the number of starting materials in the simulation box and bits representing the

dosages present in a given reaction mixture with a number, similar to the one−hot coding, is

adopted in this work. Example vector representations for the oxidative reactions consisting

of five amino acids and four types of ROS are shown in Fig. 3 (a). This representation

of the vector space eliminates the inclusion of chemical structure, and the DNN is able to

directly recognize the generated vectors without prior knowledge of reactivity and chemical

structure.

To further explore the vector representation of this work, a recently described Suzuki−Miyaura

reaction space [86] (see Fig. 3 (b)) is also investigated and incorporated to predict the yield

of products. The vector is divided into two parts: reactants, including the amino acids and

ROS, and products of corresponding oxidative modifications. In addition, specific categories

are differentiated by region; the reactant part is further divided into five amino acids and

four ROS, and the product part is also classified into five zones corresponding to the type of

oxidative modification for each amino acid, respectively. The numbers in different regions

of the vector have different meanings: for the amino acid part of the reactant, 1 and 0

indicate the presence or absence of the corresponding amino acid. Considering that the dose

of ROS is far beyond the scope of DNNs and the data need to be normalized, the number

corresponding to ROS is 0.1 ∼ 0.5 after normalization, referring to the actual value of active

radicals with 10 ∼ 50. The amount of oxidative modification types is much more than

the reactions, and each position illustrates the probability of the corresponding product

according to statistics, which can be approximately considered as its yield. More details of

product information are described in detail in Fig. 3 (b).
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D. Construction of DNN

With the ability to learn complex chemical reactivity patterns from oxidative modifica-

tion data becomes increasingly apparent, data−driven ML surrogate models are constructed

and employed for synthetic route planning, reaction condition recommendations, and even

prediction of significant products for untested reactions. With the templating mechanism

for chemical data set enumeration suitable for machine learning described in detail in the

previous subsection, the oxidation data obtained from the chemical reactions simulated by

Reactive MD is recorded in a sample database. To leverage the full potential of the collected

simulation data, a DNN is employed to explore the hypothesis of a surrogate ML model to

predict the type of oxidative modification and the corresponding probability of occurrence.

After data structuring, all the details of the chemical oxidative modification reaction, such

as the structures of reactants and products and the dosage of reactive radicals, expressed

in unstructured text format in the original database, can be alternated into vector repre-

sentation and recognized by the DNN. The simplified architecture of the DNN, shown in

Fig. 4, is adopted in this work with full connection mode and back-propagation algorithm.

The framework of DNN consists of three parts: the input layer, the hidden layer, and the

output layer. The input layer located on the leftmost layer of Fig. 4 is used to import

the structured data or conditions with input neurons, as in this case, nine input neurons

are involved, representing five amino acids and four active species. The rightmost or output

layer contains the output neurons, which are divided into five parts referring to the oxidative

modification types illustrated in Fig. 3 for achieving the prediction of products or classifi-

cation corresponding to the input data. The intermediate part is called the processing or

hidden layer, which contains single or multiple layers and adjustable numbers of neurons

according to the specific application. Each neuron in hidden layers is connected to neurons

in the former and latter layers, but neurons in the same layer do not communicate with each

other. The repetition of this process is referred to as the free-forward transmission algorithm

for data, and the specific formulation of the equation is expressed as:
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x′ = σ(ωx+ β) (2)
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(3)

Note that all parameters shown in Eq. 2 are stored as lists of matrices, where x indicates

data tensors transmitted from the former layer. ω represents a matrix whose element wjk is

the weight for the j−th neuron of the current layer connecting the k−th neuron in the former

layer. β suggests a vector with bj denoting the biases of the j−th neuron in the current

layer. The matrix representation is described in Eq.3, where it is assumed that the previous

layer contains n neurons and the number of neurons in the current layer is m. x′ denotes

the output vector of the present layer, which is also the input data for the next hidden

layer. On the basis of adjusting transformation of data by weight and bias, the activation

function σ(a) is able to determine the trend of data conversion. Various forms of activation

functions have been developed and explored with the development of artificial intelligence.

Currently, only one activation function is considered for each hidden layer, and the primary

common forms of activation functions are Sigmoid, Tanh, Relu, Elu, Mish, Softmax. Taking

the sigmoid function as an example, the equation is defined by:

σsigmoid (z) =
1

1 + e−z
(4)

Where z is expressed as z = w · x + b, as z is monotonically transformed from a large

negative number to a large positive number, the value of σsigmoid (z) is also monotonically

changed from zero to one. The linearity guarantees choosing the small changes of ∆w and

∆b in weights and biases to achieve the desired change in the output. Thus, the algorithm

of sigmoid neurons has much of the same qualitative behavior as perceptrons.

The DNN can recognize the vector of chemical interaction data generated by the one−hot

encoding. It is necessary to construct an appropriate DNN architecture to describe the effi-

ciency and effectiveness of the DNN surrogate model in predicting the products and yields
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of amino acids interacting with different doses of ROS with currently available data. The

DNN employed here to analyze this information, leveraging its prior utilization in our ear-

lier research to investigate discharge characteristics [60, 63]. The outcomes of the current

study reaffirm the effectiveness of this neural network. DNN construction requires detailed

consideration of various parameters, such as the selection of the number of hidden layers

and neurons in each layer, the sequence of activation functions, and the setting of the loss

function and learning rate. Since the ML algorithms have only recently been introduced

to the study of low-temperature plasmas, to our knowledge, there are currently no uni-

fied principles to determine and optimize the structure of neural networks by adjusting the

activation functions, hidden layers, neurons, and other parameters, which often requires a

case-by-case analysis based on the characteristics of data from the simulation or experi-

ments. After conducting thorough adjustments to the number of hidden layers, neurons

per layer, and activation functions in the DNN, the finalized structure consists of five hid-

den layers, each with 128 neurons. The arrangement order of the activation functions is

also essential in determining the optimal DNN structure. The results suggest that the

tanh−relu−relu−relu−sigmoid structure (shown in Fig. 4) has the lowest simulation error

and is considered the final sequence of activation function in the hidden layers. At last, with

the number of iterations increasing to 10, 000, the simulation errors are further reduced, and

a desirable yield prediction of oxidative products is obtained from trained DNNs. In addi-

tion, MSE is employed as the loss function, and the learning rate is locked at 0.0001 during

the above experimentations, for the effect of these two parameters is out of consideration in

this study.

To test the effectiveness of the constructed DNN, the test set containing data outside the

training set is necessary. With a sufficient amount of data, the data is generally randomly

partitioned into the training set, validation set, and test set in the ratio of 6 : 3 : 1. The

training set is used to tune the weights and biases in the DNN framework to achieve the

desired prediction. The role of the validation set is to verify the prediction effectiveness of

the trained DNN by inputting data outside the training set, and the validation set is merged

within the training set when the amount of data is lacking, or no validation is required.

The test set is capable of testing and evaluating the effectiveness and applicability of DNNs

where its data are outside the training and validation sets. The demonstration of DNN

performance also requires the utilization of the test data.
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In this work, approximately 50 days were required to obtain the chemical reaction data

of five amino acids interacting with several dosages of four ROS by reactive MD simulation.

A total of 100 sets of data were collected as the trainning data for the DNN. To facilitate the

analysis and discussion of the results, one set of data given the five dosage effects ranging

from 10 to 50 is taken as the test set, and the training and testing datasets are partitioned in

a ratio of 4 : 1. Therefore, a total of five groups of DNNs are trained, and the discussion of

each group is given in detail below. It is worth noting that after several hours of training, the

DNN takes only one second to predict the oxidative product with relatively accuracy (over

80%) , significantly reducing the computational consumption compared to the traditional

reactive MD methods. In addition, the experimental data can also be performed as the

training dataset to train DNN, and with the continuous acquisition of data and gradually

supplemented into the training dataset, the prediction performance of the DNNs will be

further enhanced [56]. Naturally, we plan to further optmize the present DNN and explore

alternative types of neural networks in the next work.

III. RESULTS AND DISCUSSION

A. Effect of interaction of OH radical with amino acids

The main difference between amino acids is the structure of the side chains. According to

the different side chains, five kinds of amino acids considered in this work can be classified

into sulfur-containing amino acids (Met, Cys), aromatic amino acids (Phe), polar amino

acids (Glu), and five−membered cyclic amino acids (Pro), respectively. The carbon chain

amino acids are not involved in this study for poor oxidative modifications under the effect

of ROS. In this part, the interaction of five amino acids with OH radical is described in detail

to unravel the reaction pathway. The cleveage and formation of chemical bonds are carefully

analized and the oxidative products under the impact of OH radical are summerized.

The sulfur atoms in sulfur-containing amino acids make them most susceptible to oxida-

tion, which means that the thioether group (R–S–R) of Met is an excellent oxidative target.

With the addition of one or two oxygen atoms under the interaction with OH radicals, the

thioether group of Met is oxidized to form the structure of −S=O or −S(= O)2. In ad-

dition, the oxidative modifications of the methyl group at the end of the thioether group
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start with H−abstraction and the formation of an alkyl radical, which is unstable and can

further convert to an alcohol group (−CH2OH) under the effect of OH radicals. Cys is an-

other sulfur-containing amino acid, the sulfhydryl (or thiol) group (−SH) of which is also a

centralized site of oxidative modification. The bond dissociation energy of the S−H bond in

amino acids is 363 kJ/mol, which is the lowest compared with the O−H bond (459 kJ/mol),

N−H bond (386 kJ/mol), and C−H bond (411 kJ/mol) [45]. The bond dissociation energy is

released from bond formation or absorbed by bond breakage. With higher bond dissociation

energy, the chemical bond will be more stable. Thus, the oxidative modifications of Cys

begin with the H−abstraction of the sulfhydryl group. The reaction mechanism involved

can be explained by the fact that OH facilitates the dissociation of the S−H bond, leading

to the generation of an unsaturated site that becomes susceptible to OH−addition. Addi-

tionally, the free hydroxyl group continues to oxidize both the newly formed alcohol group

and the remaining S−H bond. As a result, the generated unsaturated sites undergo further

reactions, eventually leading to the formation of the −S=O bond. With the further addition

of two or three oxygen atoms on the sulfhydryl group, the structure of −SO2−3 is composed,

which is called sulfonation. The simulation results show that the sulfonated Cys is the main

oxidative product, which is qulitatively in line with the conclusion of experimental studies of

amino acids or proteins [33, 45, 87]. Under the interaction with OH radicals, the oxidative

modifications of Phe start with the H−abstraction in the carboxyl group. With further oxi-

dation, the H−abstraction occurs in the phenol group on the side chain of Phe, which plays

an essential role in signal transduction. The oxidation of the phenol structure will change

the enzymatic activities of target proteins in response to cytokines, growth factors, and hor-

mones, thus affecting the cell signaling process [45]. The side chain of Glu in polar amino

acids contains two methylene groups and one carboxyl group, which is relatively stable with

low reactivity. The oxidative reaction between Glu and the OH radical usually starts with

the abstraction of H atoms in the carboxyl group. The H−abstraction then occurs in the

amino group in Glu. The processes of oxidative modifications of Pro in five−membered

cyclic amino acids are basically similar to Glu. The H−abstraction reaction mainly focuses

on the carboxyl and amino group of Pro under the impact of OH radicals. In addition, the

biological function of Pro may be influenced by the destruction of the five−membered ring.
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B. Effect of interaction of other ROS with amino acids

In addition to OH radicals, the oxidative effect of other ROS, such as O atoms, O3

molecules, and H2O2 molecules is also investigated in this study. Compared with OH rad-

icals, the types of oxidative modifications of amino acids are different under the action of

O atoms, O3 molecules and H2O2 molecules, which indicates that the species of ROS is an

important factor affecting the oxidative modification of amino acids.

The oxidative modifications of Met in the sulfur-containing amino acids are demonstrated

in Fig. 5. Fig. 5 (b) and Fig. 5 (c) describe the oxidation of the thioether group with

the addition of one or two O atoms and the formation of −S=O or −S(= O)2. Upon

the impact of O atoms, another oxidation of the thioether group is shown in Fig. 5 (d)

with the absorption of three O atoms to form the structure of −SO(= O)2. Some other

modifications occur under the interaction with O atoms, such as the dissociation of C−S

bonds. The methyl group on the terminal of the side chain converts to CO2 or COH, and the

sulfur-containing group detaches from Met and forms SO2 or SO3. The oxidative reactions

between Met and O3 molecules bring out some new products like the H−abstraction of the

amino group and even the addition of an O atom. The sulfur-containing groups are oxidized

with the absorption of −OH upon the impact of H2O2 molecules, while the other oxidative

modifications are similar to the products of OH radicals. Another sulfur-containing amino

acid mentioned in this study, i.e., Cys has similar oxidative modification types to Met. Upon

the interaction with O atoms, O3 molecules and H2O2 molecules, the oxidative products of

Cys can be summarized as the detachment of the sulfhydryl group to form SO2 or SO3,

the H−abstraction and O−addition of amino group, and the dehydrogenation of sulfhydryl

group with addition of −OH. The main differences between the oxidative modification of

Phe under the impact of O atoms and OH radicals are the H−abstraction of methylene

and the formation of CO2 from the detachment of the carboxyl group. Under the impact

of O3 molecules, H−abstraction may occur at other sites on the benzene ring of Phe. The

oxidation effect of H2O2 molecules on Phe is weaker than other ROS, and H−abstraction

only occurs on the carboxyl group. The simulation results show that the carboxyl group on

the side chain of Glu is the main reaction site. The H atom of the carboxyl group is easily

detached in the oxidative modification of Glu with each kind of ROS because the polarity

of the O atom on the carboxyl group is relatively large, which is conducive to the departure

17



of hydrogen atom as the proton, leading to the rupture of O−H bond quickly. Upon the

impact of O atoms and O3 molecules, the H atom in the amino group is also abstracted.

Particular reactivity of Glu to O atoms is also observed in the simulation. The unsaturated

C=C bond is formed due to the abstraction of H atoms from the methylene group at the

distal carboxyl end of the Glu side chain, which leads to the dissociation of the C−C bond

connecting the carboxyl group and methylene group. Finally, the carboxyl group detaches

from the Glu side chain to form CO2. The reaction of the carboxyl group detaching to CO2

is called the decarboxylation reaction, and the decarboxylation reaction on polar amino acid

side chains containing the carboxyl group was also observed in the study of protein oxidative

modification by Xu et al. [40]. The oxidative modification of Pro under the interaction with

other ROS has little change with OH radicals. Only the decarboxylation reaction occurs at

the carboxyl group of Pro under the action of O3 molecules.

C. Oxidation products

The previous two sections introduced the oxidative modifications of amino acids under

the impact of OH radicals and compare with the effects of different kinds of ROS (O atoms,

O3 molecules and H2O2 molecules) on five amino acids. Under the impact of plasma, the

oxidative modifications of amino acids cause variations in polypeptide and protein confor-

mation, which will affect the biological function of the protein to a certain extent. In this

part, all oxidative modification types of five kinds of amino acid molecules interacting with

ROS are summarized, which is helpful in revealing the mechanism of action of the oxidative

modification of proteins at the molecular level.

In the interaction process with ROS, dehydrogenation occurs first on the side chain of

amino acids, including H−abstraction on the site of the S atom, C atom, N atom, and O

atom. The dehydrogenation reaction on (or near) the S atom indicates that the thioether

group of Met and the sulfhydryl group of the Cys are significant targets of H−abstraction.

The abstraction of the H atom on the C atom commonly occurs in all the five amino acids

considered in this work. The dehydrogenation on the N atom refers to the cleavage of amino

groups of five amino acids and N−H bond on the five−membered heterocyclic ring of Pro.

The reaction site of H−abstraction on O atoms includes the carboxyl and hydroxyl groups

of almost all five amino acids.
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The free radicals formed after H−abstraction reaction continue to participate in oxidation

under the impact of ROS, and the addition of O atom occurs on S atom, N atom and C

atom. The addition reaction of O atoms to the S atom is called sulfonation. The sulfonic

acid group is generated after sulfonation of the sulfhydryl of Cys, and the sulfonyl group is

obtained from the oxidation of the thioether of Met. The sulfur-containing groups can be

further oxidized upon the effect of ROS to form SO2 or SO3. Two main addition reactions

on the N atom are observed in the simulation. One is the addition of −OH to the N atom,

called hydroxylation, and sometimes double hydroxylation occurs with two hydroxyl groups

absorbed by the N atom. Another additional reaction refers to the formation of N=O

structure, called nitrosylation, which occurs less frequently. The addition reactions on the C

atom are hydroxylation and carbonylation. Hydroxylation refers to the absorption of −OH

on the methyl radical or methylene radical after the dehydrogenation reaction, forming an

alcohol group. However, the carbonylation modifications are subdivided into the formation

of ketone and aldehyde groups on the side chains of amino acids.

In addition to the H−abstraction and O−addition reactions discussed above, several

oxidative modifications are illustrated as follows: In five−membered cyclic amino acids,

ring−opening products occur upon the impact of ROS. The detachment of carboxyl groups

of five kinds of amino acids can be observed under the effect of ROS, which is called the

decarboxylation reaction. The oxidative modification types of these amino acids obtained

from the simulations are summarized in Table I. It can be found that the leading oxidative

site of ROS is the side chain of the five kinds of amino acid molecules. Sebastian et al. [88]

analyzed the chemical modification of two peptides with plasma treatment by nanoflow liq-

uid chromatography−mass spectrometry in their experiments, and 17 different modifications

were detected in the product spectrum. The experimental results show that the addition of

O atoms is the most common modification, which is consistent with the absorption reaction

of O atoms observed in the calculation. In addition, dehydrogenation, sulfonation, hydrox-

ylation, carbonylation, nitrosylation, ring cleavage, and other oxidative modification types

summarized in Table I, except decarboxylation, can be found in the product spectrum. The

high consistency between the calculation and experimental results confirms the reliability

of the reactive MD simulations. The method of reactive MD simulation also provides new

insight into the molecular mechanism of oxidative modification of amino acids from another

perspective.
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D. Dose effects

The dose effect of ROS is considered in studying the oxidative reaction between ROS and

amino acid molecules. The dosage of ROS is investigated by adjusting the number of ROS in

the simulation box. According to the simulation results, it can be concluded that the dose of

ROS is the crucial factor affecting the oxidative modification. The biological effect of plasma

also depends on the therapeutic dose in cells or biological tissues in clinical applications.

Thus, to better explore the application of plasma in biomedicine, the plasma dose should

be carefully investigated [89]. However, the plasma dosage is difficult to define because of

its complex characteristics and diverse plasma−generated sources. The biological effects

of plasma are the synergistic effects of ROS, reactive nitrogen particles (RNS), electrons,

ions, charged and neutral particles, electromagnetic radiation, and heat effect. Some groups

regard plasma processing time as dose. However, the processing duration is not the only

effect on plasma dose, which is also affected by background gas, plasma generating source,

discharge frequency, electrode interval, and other factors. In addition to the processing

duration, Gidon et al. [90] proposed to express it by the energy deposited into the plasma

in each region, but different background gases have different effects under the same power

and processing time. Recently, Lu et al. [91] proposed the concept of Equivalent Total

Oxidation Potential (ETOP) to evaluate the biological effects of RONS in plasma, which

refers to the definition of plasma dose. Although there is no official definition of plasma dose,

the dose−effect is crucial for applying plasma in clinical medicine, therefore the dose effect

of ROS is studied in this part. Different concentrations of ROS are simulated by gradually

increasing the number of active radicals in the simulation chamber to explore the dose effect

on the amino acids. Here, taking Met upon the impact of O atoms as an example, the

specific oxidative modification of Met is deeply investigated, with the number of O atoms

increasing from 10 to 50.

Under the effect of 10 O atoms, the H−abstraction usually occurs on the methyl and

carboxyl group of the Met, while the methyl group subsequently absorbs a hydroxyl in some

cases. The thioether group on the side chain of Met is oxidized with the addition of one

or two O atoms and the formation of −S=O or −S(= O)2. At low doses of O atoms, the

predominant reaction involves the dehydrogenation of the thioether group and the addition of

O atoms. Notably, the probability of one O atom addition is highest, reaching 80%. Upon the
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interaction with 20 O atoms, it is found that the reactions are initiated by the H−abstraction

of the methyl group, which subsequently leads to the detachment of the methyl group in the

side chain of Met. The dissociation of the S−H bond as well as the formation of structure of

−SO(= O)2 occurs in the the thioether group of Met. The interactions primarily located at

the H-abstraction of the thioether group and the carboxyl group, as well as the O-addition of

the thioether group. The addition of two O atoms on the thioether group exists the highest

probabiliyu, reaching a value of 80%. It is worth noting that O atoms can break structurally

important C−C and C−S bonds under the effect of 30 O atoms. This subsequently triggers

a cascade of bond dissociation events, leading to the formation of CO2 or COH, SO2 or

SO3, respectively. Indeed, through sequential interactions, high-dose exposure can generate

modification types that are not observable at low doses of ROS. As depicted in Fig. 6, the

oxidation modification products depend on the number of oxygen atoms. When 40 O atoms

are placed in the simulation box, the oxidative reactions of impinging O atoms become more

intense with a higher probability of oxidative outputs, like the H−abstraction and further

fragment of the methyl and the thioether groups. In addition to the H-abstraction reaction,

the presence of a substantial quantity of O atoms induces oxidation and bond breakage

of C and S atoms, with both the probability and proportion increasing. These oxidation

modification products are not observed at low doses of O atoms. Similar to dosage 40,

the oxidative modifications of Met lead to more violent reactions upon the impact of 50 O

atoms. The concentration O atoms are highly reactive and can easily abstract H in carboxyl

groups, which can also lead to the dissociation of the whole methyl groups to CO2, as well

as the fragment of the thioether groups to SO3. Thus, with the increase of the number

of oxygen atoms, the oxidative reactions of Met upon the impact of the O atom become

increasingly intense, indicating that the dose of ROS is a crucial factor for the oxidative

modification of amino acids. Additionally, the trend of oxidative modifications of Met under

the action of increasing O atoms from 10 to 50 is also investigated and illustrated in Fig. 6.

It is clear that the proportion of oxygen on the thioether group of Met continuously rises

with the increase of O atoms from 10 to 50, which leads to the detachment of the thioether

group at a high concentration of O atoms. The proportion of dissociation of C−H bonds on

the carboxyl group rising to 100 % as the increasing of O atoms (see reaction mechanisms

M1-3 and M10,11 in Fig. 6). The H−abstraction reaction of the methyl group occurs in

the simulation of 10 O atoms participating. Then, the addition of O atoms to the methyl
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group is observed as the concentration of O atoms increases, which subsequently triggers

the formation of COH, the dissociation of the C−S bond, and the formation of CO2. The

simulation results indicate that the oxidation products of Met become more abundant with

the increase of the dosage of O atoms within a specific range.

From the statistical analysis of the calculated results, it can be concluded that with the

continuous increase of ROS dose, the changes in amino acid structure will significantly alter

protein conformation, which will seriously affect the function of the protein and even inacti-

vate the protein upon the impact of high concentration of ROS. The simulation conclusions

are also in line with experimental data of the CAP effect on the protein molecule. The cor-

responding relationship between plasma dose and effect was also concluded by Graves [5].

The author reported that low−dose plasma can stimulate cell REDOX signals and promote

cell proliferation and differentiation. A moderate dose leads to apoptosis, and high doses can

directly cause cell necrosis. The ROS generated by plasma, called exogenous ROS, are the

same as the ROS existing in living organisms. Intracellular ROS plays an essential role in cell

signaling and balance maintenance and is a critical factor in inducing oxidative stress. Thus,

under the plasma treatment, the ROS concentration around cells may exceed the limit of

REDOX equilibrium, which leads to programmed cell death (apoptosis), and excessive ROS

even cause more serious cell necrosis. Considering simulation and experimental results, the

dose effect of plasma must be treated with caution before plasma medicine formally enters

clinical applications.

In this section, the oxidative modifications of amino acids upon the impact of plasma−generated

ROS are investigated by reaction MD simulation, and the oxidation reaction process be-

tween amino acids and ROS, the final oxidation products, as well as the kinds and dose

effect of ROS are also provided at the molecular level. The modifications in the molecular

structure of amino acid side chains will lead to the alternates in protein function, thus inter-

fering with cell signaling processes. This work is of great significance for understanding the

mechanisms of oxidative modification of amino acids and, consequently, protein inactivation

under the influence of plasma treatment. However, some limitations of reactive MD simu-

lation methods with ReaxFF potential are exposed during the calculation process. Due to

the low computational efficiency of reactive MD simulations performed at microscopic time

scales, the simulation results remain at the nanosecond level with a considerable amount

of computational resources consumed. This limitation indicates that the reactive MD sim-
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ulation takes immense computation costs and can not afford the simulation of long−lived

active radicals even by performance computers. At the spatial scale, the simulation box

volume restricts the molecular size and relative molecular mass of biological functional

macromolecules. Therefore, exploring the effects of plasma on biological tissues based on

reactive MD simulations still requires continuous development.

E. Prediction data from DNN

The discussion of predicted data by DNN is divided into five parts based on the given

dose, and each group shows ten prediction results (two corresponding to each amino acid),

seen Figs. 7−11. In these figures, the the horizontal coordinate of each subplot corresponds

to the type of oxidative modification shown in Fig. 3, and the vertical coordinate is the

predicted probability (percentage of data statistics corresponding type of modifications,

while the DNN prediction may exceed 100% due to prediction error). The red straight

lines represent the actual results, and the blue dashed lines are the predicted values. The

heading of the subfigure indicates the name of the amino acid, as well as the type and dose

of ROS that interact with this amino acid (e.g., Met−H2O2−10), and several significant

data values are also recorded in the graphs. Although the current dataset of around 100

instances is still not very large, it takes two to three months to complete the calculation

and collect the final data, which further demonstrates that the computational burden of

reactive MD simulations is very heavy. This also highlights the necessity to introduce the

new computational strategies in the study of plasma medicine. Furthermore, a single DNN

using the entire collected data as the training set is also trained, which can rapidly provide

almost any prediction of in-between-sample values. However, it should be noted that the

predictions generated by this full-data trained DNN have not undergone rigorous validation

and are therefore not discussed in detail here. For those interested in exploring this aspect

further, detailed information and access to the open-source code are available.

In the first group of simulations, data with the ROS dose of 10 serves as the test set and

20−50 doses are used to train the DNN. The prediction results of oxidative products and

corresponding probabilities of amino acids under the interaction with 10−dosage of ROS

are shown in Fig. 7. The simulation results show that the mean square error between the

predicted and actual values is 0.0037, with a high accuracy of over 80%, even though the test
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set is outside the range of training data. Since abundant zeros in the structured vector are

misleading as to the actual errors, which contain only the products corresponding to each

reactants, the actual errors are recalculated manually, ignoring those of other oxidation mod-

ifications out of consideration. The error for each amino acid-ROS interaction is calculated

only for the mean square error of the corresponding oxidation modification products. The

recalculated mean squared error is more authentic and reasonable, closely aligning with the

subplots presented in the results. With the most abundant type of oxidative modification

products, the prediction errors of Met upon the impact of H2O2 and O are 0.0122 and 0.0248,

respectively. Under the effect of H2O2, the predicted possibility of the H−abstraction of the

carboxyl group (C6) and the absorption of one O atom on the thioether group (R−S−R)

of Met (C1) have a significant deviation from the actual value. The major deviations occur

in the addition of one or two O atoms on the thioether group of Met (C1, C2) upon the

impact of O atoms, both of which are caused by the corresponding probability of training set

different from 10−dose. The predicted results of Phe are basically consistent with the actual

values under the interaction with O3, with an error of 0.0062, and only the H−abstraction

on the methylene group (D11) is significantly different. Upon the interaction with OH atoms,

only two types of oxidative modifications of Phe are produced (D1, D2), and the predictions

have several deviations with an error of 0.0297. As another sulfur-containing amino acid,

the prediction of oxidative modifications of Cys agrees with the actual products, but some

deviations exist in the probability values. The main differences located at the H−abstraction

and O−addition on the sulfhydryl group (E3) and the H−abstraction on the carboxyl group

(E9) upon the impact of O3, while the latter is also the most significant aberration upon the

impact of O. The prediction errors of Cys are 0.0111 and 0.0082, respectively. Compared

with the previous results, the DNN has an excellent prediction effect for Glu and Pro with

fewer oxidatively modified products. Significantly, under the impact of OH and H2O2, the

error between the predicted value and the actual value of Glu are 0.0018 and 0.0009, respec-

tively. In the product prediction of Pro, the H−abstraction of amino and carboxyl group

(G1, G2) show prediction errors upon the impact of O3 and O, with a value of 0.0218 and

0.0045.

Then, 20−dosage is selected as the test set and the other doses of ROS as the training set,

and the prediction results are shown in Fig. 8. Compared with the 10−dosage group, the

error between the predicted and actual values is 0.0028, with a higher accuracy. Under the
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interaction with H2O2, four modified products of Met are generated, and the prediction errors

mainly occur in the absorption of an O atom on the thioether group (C1) and H−abstraction

of the carboxyl group (C6) with a value of 0.0037. The prediction results of most of the

oxidative products of Met under the impact of O3 are accurate with an error of 0.0082, but

the deviation is significant in the addition of two O atoms on the thioether group (C2) and

the dissociation of C−S bond to form SO3 (C19). The former deviation is caused by the fact

that only at a specific 20 doses with high product probability, the dose below 20 can not form

sulfoxide groups due to poor oxidative effect, while the dose over 20 with strong oxidation

will lead to the other modifications such as sulfonyl groups and even the detachment of S

atom. Thus, the prediction of C2 is much lower compared with actual value. The fluctuation

of the corresponding product causes the latter deviation. The oxidation predictions of Phe

are different upon the impact of O3 and OH with errors of 0.0104 and 0.0072. The prediction

results of the H−abstraction of the methylene group of Phe (D11) under the effect of O3 has

a remarkable deviation, while the H−abstraction of the amino group (D9) under the effect

of OH radicals has a glaring miscalculation. The predicted value of amino dehydrogenation

is zero due to such oxidative modification only exists in 20 doses of OH in the data set, and

the training set lacks corresponding data. Therefore, the DNN is incapable of predicting

oxidation types with data lacking. The predicted errors of Cys under the effect of OH and

O are 0.0123 and 0.0158, respectively. For the prediction of Cys upon the interaction with

OH, there are some errors on several major products (E1, E2, E3, E4, and E9). Under

the interaction with O, the prediction deviation mainly focuses on the addition of two O

atoms with H−abstraction on the sulfhydryl group (E3) and the fragment of S atom (E13).

The results of Glu and Pro are relatively accurate. Under the impact of O and H2O2,

the prediction errors between the predicted value and the actual value of Glu are 0.0094

and 0.0019, while the errors of Pro are 0.0055 and 0.0201 under the effect of O3 and O,

respectively. The main error in the prediction focuses on the H−abstraction of the carboxyl

group of Pro (G2).

The testing group of 30−dosage ROS is located at the middle value of the training data

range (10−50), which obtains the most accurate prediction with an overall error of 0.0019.

As shown in Fig. 9, the oxidative modifications of Met upon the impact of OH are basically

in line with H2O2, and both have relatively precise predictions with errors of 0.0011 and

0.0026, respectively. Under the impact of H2O2, the prediction errors mainly focus on the
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O−addition of the thioether group (C1, C2), the H−abstraction of the carboxyl group (C6)

and these modifications on the amino acids (C21) of Met. Upon the interaction with 30 OH

radicals, the main oxidative modifications of Met can be accurately predicted (C1, C2, and

C6), and part of the errors exist in the types of oxidative modification that did not actually

occur (C8, C10, and C12). The oxidative products of Phe change particularly under the effect

of O3 and OH. Under the impact of O3, Phe has various oxidation modifications, while the

prediction errors of three main modifications are relatively acceptable, and the prediction of

the detachment of the carboxyl group to CO2 (D13) has a significant deviation. The total

error of interaction between Phe and 30 O3 molecules is 0.0099. In contrast, only three

oxidation modifications occur in the interaction with OH radicals. The differences between

the predicted and actual values are negligible, and the main deviation is concentrated on the

prediction of oxidative modifications that did not occur (D8,D9) and has an error of 0.0038.

The oxidative prediction errors of Cys under the action of O3 and OH are 0.0143 and 0.0043.

The predicted deviations mainly reflect in the detachment of the sulfhydryl group to form

SO2 (E14) under the impact of O3 and in the H−abstraction and O−absorption (E3) of the

sulfhydryl group to form the sulfinic acids group, respectively. The prediction of Glu is in

excellent agreement with the actual value, primarily upon the impact of O atoms, and the

prediction error is only 0.0002. Under the effect of H2O2, the error is slightly higher with

a value of 0.0005. The prediction deviation mainly occurs in the fragment of the amino

group (F3). Under the impact of H2O2 and O, the prediction deviations of Pro are 0.0036

and 0.0051, respectively. The predicted error mainly focuses on the H−abstraction of the

carboxyl group (G2).

As the dose of ROS increases, the oxidative reaction approaches the critical value, and the

oxidation modifications tend to be stable. Fig. 10 demonstrates the prediction of 40−dosage

ROS with an overall predicted error of 0.0027, and the predicted accuracy is only inferior

to the 30−dosage group. The figure indicates that the prediction of oxidative modifications

of Met under the impact of O3 and O has a high degree of accuracy with errors of 0.0221

and 0.0082. Upon the impact of O3, the considerable errors focus on the detachment of the

methyl and the thioether groups of Met (C12, C13, C18, and C19). Under the effect of O, the

main oxidative modifications are roughly predicted, but the predictions of absorption of two

or three O atoms on the thioether group and the fragment of the thioether group (C18 and

C19) have a specific deviation. The types of oxidative modifications of Phe under the effect
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of 40 O3 molecules and OH radicals are consistent with the 30−dosage group and have errors

of 0.0272 and 0.0011, respectively. It is worth noting that the influences of 30−dosage and

40−dosage to each other, such as the H−abstraction of the carboxyl, benzene, and amino

groups (D2, D5, and D9) of Phe under the interaction with 40 O3 molecules. Only four

types of oxidative modifications of Phe occur under the impact of OH, and the prediction

is precise except for the OH-addition (D8). The predicted probabilities of Cys under the

interaction with OH radicals have little deviation from the actual value, with a prediction

error of 0.0009. However, the predicted deviations in the absorption of three O atoms on

the sulfhydryl group of Cys (E4), even detachment of the sulfhydryl group (E15) upon the

interaction with 40 O atoms, show a significant error of 0.0159. The predicted modifications

of Glu upon the effect of O atoms show little deviation from the actual value, and the error

is only 0.0002. However, few deviations occur in the prediction under the impact of H2O2,

especially in predicting the H−abstraction of the carboxyl groups (F1) and the detachment

of the amino group (F3). The primary reason is that this modification only exists in 50 doses,

affecting the current training set. In addition, the 50−dosage group is also influenced during

testing, and the prediction of the corresponding product is also biased. The predictions of

Pro upon the impact of OH and H2O2 are also presented here, with errors of 0.0006 and

0.0087, and the main deviation focuses on the H−abstraction from carboxyl group (G8).

Finally, the oxidative modification predictions of 50−dosage of ROS are illustrated in

Fig. 11. Although this group is also outside the scope of the corresponding training set, the

oxidative modifications tend to be saturated, and the predicted results are more accurate

than the 10−dosage group. First, the modified predictions of Met upon the impact of OH

and O are displayed with errors of 0.0057 and 0.0169. Under the effect of OH, the prediction

errors of Met mainly lie in the dehydrogenation of the carboxyl group and the absorption of

two O atoms on the thioether group (C2 and C6). The DNN also misjudges the probabilities

of H−abstraction and O−addition of the methyl group and the H−abstraction of the amino

group (C10 and C20). Upon the interaction with 50 O atoms, the prediction errors mainly

focus on the addition of three oxygen atoms in the thioether group, the fragmentation of the

methyl group, and the thioether group (C3, C13, C18, and C19). The figure also presents the

oxidative modifications of Phe upon the impact of OH and H2O2, and the prediction errors

are 0.0034 and 0.0068, respectively. The former slightly differs from the actual value for the

H−abstraction of the carboxyl group (D2). In contrast, the latter has only two oxidative
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modified products (D1 and D2), with significant deviation predictions. The deviation be-

tween the predicted and actual value of Cys under the impact of OH is acceptable with an

error of 0.0017, and the deviation mainly focuses on the H−abstraction and the absorption

of three O atoms in the sulfhydryl group (E4). However, under the interaction with 50 O3

molecules, there are significant errors in the detachment of the sulfhydryl group of Cys and

the oxidative modifications of the amino group (E14−18), with a total error of 0.0295. For the

oxidative modifications of Glu, the predicted results upon the impact of O3 and H2O2 are

discussed. Under the effect of O3, all three oxidative modifications (i.e., F1, F2 and F4) have

predicted deviations and the prediction error is 0.0313. The reasons for the deviation are

consistent with the results discussed in the previous paragraph. Under the action of H2O2,

there is an inevitable error in the prediction of the H−abstraction of the carboxyl group of

Glu (F1), and the error value is 0.0109. Under the impact of OH radicals, the prediction of

the oxidative modifications of Pro is relatively accurate, while under the effect of O atoms,

the prediction has a specific deviation on the H−abstraction of the carboxyl group of Pro

(G2). The errors in the interaction of Pro with OH and O are 0.0041 and 0.0031. Thus,

the DNN surrogate model holds the capability of rapidly predicting oxidative modifications

of amino acids in only seconds, and an accuracy of over 80%, which indicates that DNN

has tremendous potential value to effectively predict the processes of chemical breaking and

formation based on the data from reactive MD simulations.

IV. CONCLUSION

In this paper, the reactive MD simulation with the ReaxFF potential is employed to

provide dataset on the oxidative mechanisms of four kinds of ROS (O atoms, OH radicals,

O3 and H2O2 molecules) interacting with five types of amino acids (Met, Phe, Cys, Pro,

Glu). A DNN is constructed by introducing the new data strucuture to represent the

reacitons and trained by the reaction data from reactive MD simulations, then performed to

investigate the prediction of oxidative modifications of five amino acids with various ROS

and corresponding dosages. The simulation results and prediction data indicated that the

oxidative reactions are usually initiated by H-abstraction, and the oxidative modifications,

such as the detachment of amino and carboxyl groups, the insertion of functional groups

(aldehyde and alcohol groups), and the fragmentation of S atoms in sulfur-containing amino

28



acids, can be observed from the simulation data with the increase of ROS dose and variation

of active radicals, which agree well with the experimental observation qualitatively. By

analyzing plenty of reaction data, the chemical structures can be alternated into vector

representations through proper data processing. Based on the collocated data, the structure

tensors are imported into a DNN model to efficiently predict the oxidative modifications

and corresponding probabilities under the impact of ROS. The results revealed that the

well-trained DNN model is capable of rapidly predicting oxidative modifications of amino

acids in seconds of computational time and with an accuracy of over 80%, indicating the

tremendous potential in chemical prediction. The present simulation results provide a deep

insight into the interactions of CAP with amino acids, which could promote the integration

and development of plasma pharmacy and plasma medicine combined with DNN. This study

demonstrates that DNNs can play a complementary and enhancing role, optimizing reactive

MD simulations to significantly improve the computational efficiency, and suggesting the

great potential of ML technology in the exploration of plasma medicine.
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C.-S. Chang, L. Chen, R. Churchill, et al., arXiv preprint arXiv:2205.15832 (2022).

[53] G. Carleo, I. Cirac, K. Cranmer, L. Daudet, M. Schuld, N. Tishby, L. Vogt-Maranto, and
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FIG. 1. Schematic representation (3D and 2D) of the structures of five model amino acids. Atoms

of H, C, N, O and S are represented by white, gray, blue, red and yellow spheres, respectively.
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FIG. 2. Example of simulation box consisting of five amino acids (i.e., Met, Cys, Phe, Glu and

Phe) and 30 O atoms with periodic boundary conditions applied in all three directions.
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FIG. 3. (a) The example of reaction space representation of five amino acids and four ROS using

vectors and (b) exploring the Suzuki−Miyaura reaction space using our surrogate machine learning

models. Shown are the identity of reactants and products, and the vector representation of the

oxidative reaction. The template of the product consists of three parts: the first part indicates

the type of reactant, the second part represents the site or group of oxidative modification, and

the third part denotes the type of oxidative modification, such as H−abstraction, O−addition, or

abscission of the group.
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FIG. 4. Framework of deep neural network constructed based on the characteristics of amino acids

oxidation reaction with five hidden layer and the operational logic of each neuron of hidden layer.
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FIG. 5. The O-addition in the thioether group of Met upon the impact of O atoms. The structure

of Met is shown (a), and the addition of one, two, and three O atoms in the thioether group of

Met to form the structure of −S = O, −S(= O)2, and −SO(= O)2 are illustrated in (b), (c), and

(d).
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FIG. 6. Variation in interaction of Met with O atoms while the dosage ranging from 10 to 50. The

x−axis indicates the types of oxidative modifications of Met, the y−axis denotes the dosage of O

atoms, and the z−axis refers to the probability (yield).
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FIG. 7. Diagram of partial prediction results of 10 doses of ROS interacting with various amino

acids. The x−axis indicates the types of oxidative modification corresponding to the products

displayed in Fig. 3, respectively, and the y−axis denotes the probability (yield). (a) depicts the

interaction of Met with H2O2, labeled at the top of the subfigure. The rest of (b-j) are consistent

with (a). The same applies to the figures below.
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FIG. 8. Diagram of partial prediction results of 20 doses of ROS interacting with various amino

acids.
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FIG. 9. Diagram of partial prediction results of 30 doses of ROS interacting with various amino

acids.
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FIG. 10. Diagram of partial prediction results of 40 doses of ROS interacting with various amino

acids.
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FIG. 11. Diagram of partial prediction results of 50 doses of ROS interacting with various amino

acids.

46



TABLE I. Types of plasma−induced oxidative modifications in amino acids

Oxidative modifications Elemental composition Figure examples Involved amino acids

Dehydrogenation

C−H Met Phe Cys

N−H Met Phe Cys Glu Pro

O−H Met Phe Cys Glu Pro

S−H Cys

Sulfonation

S+O Met

S+2O Met Cys

S+3O Met Cys

Hydroxylation
C+OH Met Phe Cys

S+OH Met Cys

Carbonylation C+O Met Phe Cys

Nitrosylation N+O Met Phe Cys Glu

Ring cleavage − Pro

Decarboxylation −COO− Met Phe Cys Glu Pro
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