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RIEMANNIAN PRECONDITIONED COORDINATE DESCENT

FOR LOW MULTI-LINEAR RANK APPROXIMATION∗

MOHAMMAD HAMED‡† AND RESHAD HOSSEINI ‡

Abstract. This paper presents a memory efficient, first-order method for low multi-linear rank
approximation of high-order, high-dimensional tensors. In our method, we exploit the second-order
information of the cost function and the constraints to suggest a new Riemannian metric on the
Grassmann manifold. We use a Riemmanian coordinate descent method for solving the problem,
and also provide a global convergence analysis matching that of the coordinate descent method in
the Euclidean setting. We also show that each step of our method with the unit step-size is actually a
step of the orthogonal iteration algorithm. Experimental results show the computational advantage
of our method for high-dimensional tensors.

Key words. Tucker decomposition, Riemannian optimization, Preconditioning, Coordinate
descent, Riemannian metric

AMS subject classifications. 15A69, 49M37, 53A45, 65F08

1. Introduction. Higher-order tensors are ubiquitous in factor analysis prob-
lems across multiple disciplines, including psychometrics, econometrics, biomedical
signal processing, data mining, and social network analysis. In particular, tensor de-
composition techniques with low-rank approximations offer several benefits, such as
reducing the number of dimensions, removing noise, and uncovering latent variables.
The utility of tensor decomposition has been demonstrated in a range of applications,
from identifying underlying factors in psychometric studies to identifying sources of
signals in biomedical research. To gain a comprehensive understanding of tensors
and their decomposition methods, Kolda and Bader’s review [20] provides a broad
perspective, including mathematical foundations and algorithmic approaches, while
Sidiropoulos et al.’s work [30] provides a more recent overview with a specific emphasis
on signal and data analysis.

Tucker decomposition, first introduced by [33], is a mathematical technique that
involves factorizing a tensor X ∈ R

n1×···×nd of multi-linear rank-(r1, ..., rd) into a core
tensor and d factor matrices. This approach extends principal component analysis
from matrices to tensors, as noted in [37]. So, in Tucker decomposition, the factor
matrices can be viewed as the principal components for each mode of the tensor. The
factorization of the tensor X can be expressed as follows:

X = C ×1 U1 ×2 · · · ×d Ud ,

where X ×i Ui is the i-mode product (see Definition 2.4) between X and Ui, C ∈
R

r1×···×rd and Ui ∈ St(ni, ri) (see Definition 2.6) denote the core tensor and each of
the orthonormal factor matrices, respectively. Typically, ri ≪ ni, which enables C to
be considered as a compressed or dimensionally reduced version of the original tensor
X .
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2 M. HAMED AND R. HOSSEINI

The storage complexity of Tucker decomposition is proportional to O(
∏d

i=1 ri +
∑d

i=1 niri), as opposed to O(
∏d

i=1 ni) for the original tensor X . Once the factor
matrices are found, the core tensor can be computed as

C = X ×1 U
T
1 ×2 · · · ×d U

T
d .

The manifold St(ni, ri), which consists of all ni × ri matrices with orthonormal
columns, does not guarantee the uniqueness of the decomposition due to the symme-
try inherent in the problem. Any modified core tensor C̄ = C ×1 QT

1 ×2 · · · ×d QT
d

where Qis are orthogonal matrices, is another low-rank representation of the original
tensor, i.e., X = C̄ ×1 U1Q1 ×2 · · · ×d UdQd. However, we can achieve uniqueness by
constraining the matrices Ui to lie on the Grassmann manifold, as we will demon-
strate later in this paper. Therefore, we propose a Riemannian coordinate descent
algorithm that operates on the product space of Grassmann manifolds to solve this
problem. In addition to the Grassmann manifold, other common constraints for the Ui

matrices include statistical independence, sparsity, and non-negativity [9, 26]. These
constraints provide prior information about the underlying factors and lead to more
interpretable results.

In the manifold optimization literature [1, 5], it is a common practice to trans-
form a constrained optimization problem in Euclidean space into an unconstrained
problem on a manifold that represents the constraints. This approach offers several
advantages over traditional constrained optimization methods. One significant ad-
vantage of Riemannian optimization methods is that they ensures exact satisfaction
of constraints at every iteration, whereas classical constrained optimization methods
only approximately satisfy constraints. Additionally, manifold optimization respects
the geometry of the problem, meaning that the definition of the inner product can
provide more meaningful Riemannian gradient directions.

The approach of coordinate descent methods [35], involves making partial updates
to the decision variables. This method offers an advantage in terms of the ease of
generating search directions and updating variables. This feature is particularly useful
when working with large-scale problems. Additionally, coordinate descent methods
tend to exhibit fast empirical convergence, particularly during the initial optimization
steps. As such, they are a suitable option for approximations.

Gutman and Ho-Nguyen [16] proposed an extension of the coordinate descent
method that operates in the manifold domain. Instead of minimizing over coordi-
nates, the authors performed inexact minimization over subspaces of the tangent
space at every point. They noted that the convergence rate in the case of product
manifolds is comparable to that in the Euclidean setting. Drawing on this insight,
we employed a coordinate descent approach to compute the factor matrices in Tucker
decomposition. Specifically, we solved an optimization problem for each factor matrix
using a reformulated cost function subject to the Grassmann manifold constraint.

Gradient-based algorithms are widely used in solving large-scale problems, but
sometimes they encounter convergence issues. To achieve better convergence rates,
it is beneficial to find a suitable metric. Although the construction of a Riemannian
metric typically focuses on the geometry of the constraints, considering the role of
the cost function can also be helpful when possible. This approach was introduced
in [24], where the second-order information of the Lagrangian was encoded into the
metric. We adopt this method to develop a new metric that demonstrates excellent
performance. In addition, incorporating preconditioning into the coordinate descent
algorithm in Euclidean space has also been explored in the literature (see [32] for an
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example).
By combining all these factors, we introduce a new method, termed Riemannian

Preconditioned Coordinate Descent (RPCD). The contributions of our paper are as
follows:

• RPCD is a first-order optimization-based algorithm which has advantages
over SVD-based methods and second-order methods in large scale cases. It
is also very efficient with respect to the memory complexity.

• We construct a Riemannian metric by using the second-order information of
the cost function and constraint to solve the Tucker decomposition as a series
of unconstrained problems on the Grassmann manifold.

• We provide a convergence analysis for the Riemannian coordinate descent
algorithm in a relatively general setting. This is done by modification of the
convergence analysis in [16] to the case of product manifolds when exponential
map and parallel transport are replaced by retraction and vector transport.
Our proposed RPCD algorithm for Tucker decomposition is a special case of
Riemannian coordinate descent, and therefore the proofs hold for its global
convergence.

The results of our experiments, conducted on both synthetic and real data, demon-
strate the superior performance of the proposed algorithm.

1.1. Related work. There are two algorithmic approaches to solving the Tucker
decomposition problem. The first approach is based on Singular Value Decomposition
(SVD) and aims to extend truncated SVD from matrices to tensors. This approach
originated with the development of Higher-Order SVD (HOSVD) [10]. The basic idea
behind HOSVD is to identify a low-dimensional subspace within the column span of
each unfolding of the tensor X , denoted as X(i) for i = 1, ..., d. Although HOSVD
provides a sub-optimal solution, it is often used as an initialization for other methods
when the computational cost is reasonable.

The authors who presented HOSVD proposed a method called Higher Order
Orthogonal Iteration (HOOI) [11]. HOOI seeks orthonormal basis for the dominant
subspace of each Y(i), which is the matricization of the tensor Y = X ×−i {U

T }
(see Definition 3.4). It is performed using a least-square approach while fixing other
factor matrices. By finding a low dimension subspace of Y(i) instead of X(i), HOOI
provides a better low multi-linear rank−(r1, ..., rd) approximation of X compared to
HOSVD. The Sequentially Truncated HOSVD (ST-HOSVD) is a variation of HOSVD
that improves its efficiency. After finding each factor matrix, the tensor is projected
using the obtained factor matrix, and the remaining operations are performed on the
projected tensor. This method was introduced by Vannieuwenhoven et al. in 2012 [34].
The HOOI method required careful initialization for efficient convergence, while the
ST-HOSVD method performs better by choosing a suitable mode sequence - the order
in which modes are processed. Multi-linear Principal Component Analysis (MPCA)
[23] is another method in this category that is similar to HOSVD but focuses on
maximizing the variation in the projected tensor C. In the literature, various versions
of HOSVD have been discussed, including hierarchical [15], streaming [31], parallel
[2], randomized [8], and scalable [28]. Recently, a fast and memory-efficient method
called D-Tucker was introduced in [18].

The second approach to solving the Tucker decomposition problem involves using
common second-order optimization algorithms. Eldén and Savas [12], Savas and Lim
[29], and Ishteva et al. [17] have reformulated the original problem and apply Newton,
quasi-Newton, and trust region methods, respectively, on the product of Grassmann
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manifolds. Although, utilizing the second-order information leads to algorithms with
faster local convergence, these methods suffer from high computational complexity.

Tensor completion is a distinct problem from tensor decomposition, but note-
worthy works include those of Kressner et al. [22] and Kasai et al. [19]. These
studies are notable for using a first-order Riemannian method on a variant of tensor
completion that employs Tucker decomposition. In [22], the Riemannian conjugate
gradient method is applied to the manifold of tensors with fixed low multi-linear rank
to solve the tensor completion problem. In [19], the authors address the same problem
by applying the same method as in [22] but on a product of Grassmann manifolds.
The difference between our method and the latter is in the cost function and the
optimization approach.

The structure of this paper is as follows: Section 2 presents some preliminary and
background information. Section 3 discusses the problem description and reformula-
tion, metric construction, and the proposed algorithms. In Section 4, the convergence
analysis of the Riemannian coordinate descent algorithm is presented. Sections 5 and
6 contain the experimental results and conclusion, respectively.

2. Preliminaries and background. In this paper, calligraphic letters are used
for representing tensors (A,B, ...) and capital letters for representing matrices
(A,B, ...). In the following subsections, we provide some definitions and after that
some background on the Riemannian preconditioning.

2.1. Definitions. In this subsection, we give some definitions.

Definition 2.1 (Tensor). A tensor is a d-mode multi-dimensional array X ∈
R

n1×···×nd with ni as the dimension of the ith mode. Each element in a tensor is
denoted by X (k1, ..., kd), for ki ∈ [ni] = {1, ..., ni}. Scalars, vectors and matrices are
0-, 1- and 2-mode tensors, respectively.

Definition 2.2 (Matricization (unfolding)). The matricization along the ith

mode, denoted by X(i) ∈ R
ni×

∏
j ̸=i

nj , is constructed by putting tensor fibers of the
ith mode alongside each other. Tensor mode-i fibers are determined by fixing indices
in all modes except the ith mode, i.e. X (k1, ..., ki−1, :, ki+1, ..., kd).

Definition 2.3 (Multi-linear rank). A tensor is called a rank-(r1, ..., rd) tensor,
if we have rank(X(i)) = ri, for i = 1, ..., d, which indicates the dimension of the vector
space spanned by mode-i fibers. It is a generalization of the matrix rank.

Definition 2.4 (i-mode product). For tensor X ∈ R
n1×···×nd and matrix A ∈

R
m×ni , the i-mode product X ×i A ∈ R

n1×···×ni−1×m×ni+1...×nd can be computed by
the following formula:

(X ×i A)(k1, ..., ki−1, l, ki+1, ..., kd) =

nk
∑

ki=1

X (k1, ..., ki, ..., kd)A(l, ki) .

Because of the relation (X ×i A)(i) = AX(i), i-mode product can be thought of a
transformation from a ni-dimensional space to a m-dimensional space.

Definition 2.5 (Tensor norm). The norm of a tensor X is given by

∥X∥F = ∥X(i)∥F = ∥vec(X )∥,

where F is the Frobenious norm and vec(.) is the vectorization operator.
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Definition 2.6 (Stiefel manifold St(n, r)). The set of all orthonormal ri frames
in R

ni is called the Stiefel manifold:

St(n, r) = {X ∈ R
n×r : XTX = Ir}.

In this manifold, tangent vectors at a point X can be written as ξX = XΩ+X⊥B,
where Ω ∈ Skew(r) = {A ∈ R

r×r : AT = −A} and X⊥ completes the orthonormal
basis formed by X, so XTX⊥ = 0. If vectors in the normal space are identified by
νX = XA, we can specify A by implying the orthogonality between tangent vectors
and normal vectors.

ξX ⊥ νX : ⟨ξX , νX⟩ = ⟨XΩ+X⊥B,XA⟩ = 0 =⇒ A ∈ Sym(r),

where Sym(r) is the set of all r × r symmetric matrices.
The projection of an arbitrary vector Z ∈ R

n×r onto the tangent space is given
by ProjXZ = Z −XA, wherein A is chosen such that the projection complies to the
tangent vectors constraint, i.e. ξTX +XT ξ = 0:

(Z −XA)TX +XT (Z −XA) = 0 =⇒ A = sym(XTZ),

where sym(·) returns the symmetirc part of the input matrix.
In a Stiefel manifold, like any embedded submanifold, the Riemannian gradient

∇f can be obtained by projecting the Euclidean gradient G onto the tangent space
of the current point.

∇f(X) = ProjXG(X) = G(X)−Xsym(XTG(X)).

A retraction Rx : TxM → M at the point x on the manifold M is a way
of moving along a direction in the tangent space TxM while staying on the man-
ifold. More on that can be found in [5, chapter 3.6]. For the Stiefel manifold we
use QR-decomposition for retraction, that is RX(ξX) = qr(X + ξX), where qr is the
orthonormal part in the QR-decomposition.

Definition 2.7 (Grassmann manifold Gr(n, r)). We define two matrices X and
Y to be equal under equivalence relation ∼ over St(n, r), if their column spaces span
the same subspace. We can define one of these matrices as a transformed version
of the other, i.e., X = Y Q, for some Q ∈ O(r), where O(r) is the set of all r × r
orthogonal matrices.

We identify elements in the Grassmann manifold with this equivalence class, that
is:

[X] = {Y ∈ St(n, r) : X ∼ Y } = {XQ : Q ∈ O(r)}.

The Grassmann manifold Gr(n, r) is a quotient manifold, St(n, r)/O(r) = {[X] :
X ∈ St(n, p)}, which represents the set of all linear r-dimensional subspaces in a
n-dimensional vector space.

Consider a quotient manifold that is embedded in a total spaceM given by the
set of equivalence relation ∼. A Riemannian metric ⟨·, ·⟩x at x ∈M in the total space
can induce a Riemannian metric ⟨·, ·⟩[x] on the quotient manifoldM/ ∼

⟨ξ[x], η[x]⟩[x] = ⟨ξx, ηx⟩x,
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where vectors ξx and ηx belong to Hx, the horizontal space of TxM. This subspace
provides a valid matrix representation of the abstract tangent space T[x]M/ ∼ as
ξx and ηx are unique representations of the abstract tangent vectors ξ[x] and η[x],
respectively. The horizontal space is the orthogonal complement to the vertical space
in this Riemannian metric. The vertical space is defined as Vx = kerDπ(x), where
π : x 7→ π(x) = [x] is the natural projection that links the total space to its quotient.

If the cost function in the total space does not change in the directions of vectors
in the vertical space, then the Riemannian gradient in the quotient manifold is given
by,

∇[x]f = ∇xf.

A retraction operator Rx : Hx →M can be given by,

R[x](ξ[x]) = [Rx(ξx)],

where Rx(.) is a retraction in the total manifold. For further information on the
aforementioned concepts in Riemannian manifold optimization, refer to [1, 5].

2.2. Riemannian preconditioning. Mishra and Sepulchre [24] brought atten-
tion to relation between sequential quadratic programming which embeds constraints
into the Lagrangian and the Riemannian Newton method which encodes constraints
into the search space. Then, they exploited this relation and introduced a way of
building Riemannian metrics. Here we bring the gist of their work.

Consider the optimization problem,

min
x∈Rn

f(x),

s.t. h(x) = 0,
(2.1)

where f : Rn → R and h : Rn → R
p, n ≥ p are smooth functions. Sequential quadratic

programming deals with the the unconstrained Lagrangian which is defined as

L(x, λ) = f(x)− ⟨λ, h(x)⟩,

in which λ ∈ R
p represents the Lagrange multiplier. From the optimality condition

we know that at a local minimum x, Lagrange multiplier λx, can be obtained by

hx(x)λx = fx(x),

where fx is the first-order derivative of the cost function f(x) and hx(x) ∈ R
n×p is

the Jacobian of the constraints h(x). Applying the pseudo inverse of hx(x) to fx(x),
we arrive at

λx = (hx(x)
Thx(x))

−1hx(x)
T fx(x),

where hx(x) is assumed to have a full column rank. Therefore the set M := {x ∈
R

n | h(x) = 0} has an embedded differentiable submanifold structure, and we can re-
cast the equality constrained problem (2.1) as an unconstrained optimization problem
on a nonlinear search space. The authors stated that in the neighborhood of a local
minimum, the second-order derivative of the Lagrangian in the total space efficiently
gives us the second-order information of the problem. The theorem below is brought
for more clarification.
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Theorem 2.8 (Theorem 3.1 in [24]). Consider an equivalence relation ∼ inM.
Assume that both M and M/∼ have the structure of a Riemannian manifold and
a function f : M → R is a smooth function with isolated minima on the quotient
manifold. Assume also that M has the structure of an embedded submanifold in R

n.
If x∗ ∈M is a local minimum of f onM, then the following hold:

• ⟨ηx∗ , D2L(x∗, λx∗)[ηx∗ ]⟩ = 0, ∀ηx∗ ∈ Vx∗ ,
• the quantity ⟨ξx∗ , D2L(x∗, λx∗)[ξx∗ ]⟩ captures all second-order information of
the cost function f onM/ ∼ for all ξx∗ ∈ Hx∗ ,

where Vx∗ is the vertical space, and Hx∗ is the horizontal space (that subspace of
Tx∗M which is orthogonal to the vertical space) and D2L(x∗, λx∗)[ξx∗ ] is the second-
order derivative of L(x, λx) with respect to x at x∗ ∈ M applied in the direction of
ξx∗ ∈ Hx∗ and keeping λx∗ fixed to its least-squares estimate.

The proper search direction in sequential quadratic programming is computed by
solving the following optimization problem in the neighborhood of a minimum:

arg min
ξx∈Hx

f(x)− ⟨fx(x), ξx⟩+
1

2
⟨ξx, D

2L(x, λx)[ξx]⟩.

If ⟨ξx, D
2L(xk, λx)[ξx]⟩ is strictly positive for all tangent vectors ξx in the hori-

zontal space Hx at the point x, then this optimization problem has a unique solution.
After updating the variables by moving along the obtained direction, to maintain
strict feasibility, it needs a projection onto the constraint, thus they name this method
feasibly projected sequential quadratic programming.

Now that we know that the Lagrangian captures second-order information of the
problem, the authors in [24] introduced a family of regularized metrics that incorpo-
rate the second information by using the second-order derivative of the Lagrangian,

⟨ξx, ηx⟩x = ω1⟨ξx, D
2f(x)[ηx]⟩+ ω2⟨ξx, D

2c(x, λx)[ηx]⟩,

in which c(x, λx) = −⟨λx, h(x)⟩ and ω1 ∈ [0, 1], ω2 ∈ [0, 1]. The first and second
terms of this regulated metric correspond to the cost function and the constraint,
respectively. In addition to invariance, the metric needs to be positive definite, so:

if D2f ≻ 0 then ω1 = 1, ω2 = ω ∈ [0, 1),

if D2f ≺ 0 then ω2 = 1, ω1 = ω ∈ [0, 1),

where ω can also be updated in each iteration by a rule like ωk = 1− 21−k. We refer
the reader to the original paper for further details [24, Section 3.3]. Mishra and Kasai
in [19] exploited the idea of Riemannian preconditioning for tensor completion.

3. Problem statement. In the Tucker decomposition, we want to decompose
a dense d-mode tensor X ∈ R

n1×···×nd into a core tensor C ∈ R
r1×···×rd and d or-

thonormal factor matrices Ui ∈ St(ni, ri). The Domain of the objective function is
the following product manifold,

(C, U1, ..., Ud) ∈M := R
r1×···×rd × St(n1, r1)× · · · × St(nd, rd).

We solve the following optimization problem:

(3.1) min
(C,U1,...,Ud)∈M

∥X − C ×1 U1 ×2 · · · ×d Ud∥
2
F ,
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where ∥.∥F is the Frobenius norm. The objective function has a symmetry for the
manifold of orthogonal matrices O(ri), i.e.,

f(C, U1, ..., Ud) = f(C ×1 O
T
1 ×2 · · · ×d O

T
d , U1O1, · · · , UdOd).

So, this problem is actually an optimization problem on the product of Grassmann
manifolds.

We know from [11] that

(3.2) ∥X − C × {U}∥2F = ∥X∥2F − ∥C∥
2
F ,

where C × {U} = C ×1 U1 ×2 · · · ×d Ud. This means that the minimization of the
reconstruction error is equivalent to the maximization of the energy of the projected
tensor. So, for solving the problem (3.1) in a coordinate descent fashion we can recast
it as a series of subproblems involving the following maximization problem for the ith
factor matrix:

(3.3) max
[Ui]∈Gr(ni,ri)

1

2
∥UT

i Y(i)∥
2
F .

In this problem Y(i) is the matricization of the tensor Yi along the ith mode. The
tensor Yi ∈ R

r1×···×ri−1×ni×ri+1×···×rd is produced by projecting the tensor X to a
lower dimensional subspace by the help of the assumed fixed factor matrices while
mode i is excluded, i.e.,

(3.4) Yi = X ×−i {U
T } = X ×1 U

T
1 ×2 · · · ×i−1 U

T
i−1 ×i+1 U

T
i+1 ×i+2 · · · ×d U

T
d .

If we proceed to decompose a dense tensor X with a low multi-linear rank using
the formulation given in (3.3) on the product of Grassmannian manifolds equipped
with the Euclidean metric

⟨ξUi
, ηUi
⟩Ui

= trace(ξTUi
ηUi

),

we observe that coordinate descent would have poor convergence results. The relative
error plots for 10 random samples of X ∈ R

100×100×100 with multi-linear rank-(5, 5, 5)
can be seen in Figure 1.

To give a remedy for the slow convergence using the Euclidean metric, in the
next subsection we apply Riemannian preconditioning to construct a new Riemannian
metric which we will see in the experiments that it results in an excellent experimental
performance.

3.1. Riemannian Preconditioned Coordinate Descent. In this section, we
want to utilize the idea of Riemannian preconditioning in solving the problem (3.3).
For the problem

max
[Ui]∈Gr(ni,ri)

1

2
∥UT

i Y(i)∥
2
F ,

where Y(i) ∈ R
ni×

∏d
j=1,j ̸=i

rj , the Lagrangian is defined as

L(Ui, λ) = −
1

2
Trace(Y T

(i)UiU
T
i Y(i)) +

1

2
⟨λ, UT

i Ui − I⟩,
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Fig. 1. Convergence of Riemannian coordinate descent with the Euclidean metric for decom-
posing a random tensor having a low multi-linear rank. The best attainable relative error is zero,
and it is clear that the coordinate descent method has convergence problems in the Euclidean space.

in which λ ∈ R
r×r is a symmetric matrix representing the Lagrange multiplier. The

gradient of the Lagrangian w.r.t. Ui is

LUi
(Ui, λ) = −Y(i)Y

T
(i)Ui + Uiλ,

which due to the optimality condition must be equal to zero at a local minimum. We
estimate λ in a least square sense as follows:

λUi
= UT

i Y(i)Y
T
(i)Ui.

We assumed that λUi
would be invertible. It is because we know for a fact that

ri ≪ ni and as a result ri <
∏

j ̸=i rj , so it is a reasonable guess that λUi
would be

invertible [7]. On top of that, in all of the experiments we have conducted, we never
had any issue with the invertiblity of λUi

.
The second-order derivative of the Lagrangian along ξUi

while keeping λUi
fixed

(see Theorem 2.8), is

D2L(Ui, λUi
)[ξUi

] = −Y(i)Y
T
(i)ξUi

+ ξUi
λUi

.

As we explained in Section 2.2, the second-order derivative of the Lagrangian cap-
tures all the second-order information of the cost function near the minimum. So, to
incorporate this information we introduce the Riemannian metric,

⟨ηUi
, ξUi
⟩Ui

= −ω1⟨ηUi
, Y(i)Y

T
(i)ξUi

⟩+ ω2⟨ηUi
, ξUi

λUi
⟩,

where ηUi
, ξUi

∈ R
ni×ri are tangent vectors in TUi

M. If we could have set both ω1

and ω2 equal to one, then the Riemannian gradient using this metric would have been
the Euclidean Newton direction. But the constants ω1 ∈ [0, 1] and ω2 ∈ [0, 1] should
be chosen in a way to make sure that the proposed metric stays positive definite for
all points on the manifold. Since, the matrix −Y(i)Y

T
(i) is negative semi-definite, we

choose ω1 = 0 and ω2 = 1, which results in

(3.5) ⟨ηUi
, ξUi
⟩Ui

= ⟨ηUi
, ξUi

λUi
⟩.
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Variables in the search space are invariant under the symmetry transformation, there-
fore the proposed metric must be invariant under the associated symmetries, i.e.

Ui 7→ UiQ and λUi
7→ QTλUi

Q, Q ∈ O(r).

It can be verified that this property holds for the Riemannian metric (3.5):

⟨ηUi
Q, ξUi

Q⟩Ui
= ⟨ηUi

Q, ξUi
QQTλUi

Q⟩ = ⟨ηUi
, ξUi

λUi
⟩ = ⟨ηUi

, ξUi
⟩Ui

.

In embedded submanifolds, the Riemannian gradient is obtained by orthogonally
projecting the Euclidean gradient onto the tangent space. Tangent vectors at the
point Ui in a Stiefel manifold can be represented by ξ = UiΩ+ U⊥

i B ∈ TUi
M, where

Ω ∈ Skew(r). Writing normal vectors as ν = UiA+ U⊥
i C ∈ NUi

M, we have

0 = ⟨ξ, ν⟩Ui
=

〈

UiΩ+ U⊥
i B,UiA+ U⊥

i C
〉

Ui

=
〈

UiΩ+ U⊥
i B,UiAλUi

+ U⊥
i CλUi

〉

= ⟨Ω, AλUi
⟩+ ⟨B,CλUi

⟩.

Considering λUi
to be invertible, it results in C = 0 and

A = Sλ−1
Ui

, S ∈ Sym(r).

Therefore, by putting the normal vectors at Ui as ν = UiSλ
−1
Ui

, the projection of a
given matrix G onto the tangent space of the Stiefel manifold is given by,

ProjUi
G = G− UiSλ

−1
Ui

,

which must comply to the tangent vector constraint on the manifold

UT
i (ProjUi

G) + (ProjUi
G)TUi = 0.

Consequently, we have the following Sylvester equation for the symmetric matrix S:

λUi
S + SλUi

= λUi
(UT

i G+GTUi)λUi
.

By Riemannian submersion theory [1, section 3.6.2] , we know that this projection
belongs to the horizontal space. Thus, there is no need for further projection onto the
horizontal space. If we define G as the Euclidean gradient in the total space, we can
simply compute the Riemannian gradient by

∇f[Ui] = G+ Ui.

Although we used second-order information to form a new preconditioned metric,
when we apply the Riemannian coordinate descent method to the Tucker decompo-
sition problem, it leads to a simple first-order algorithm. The preconditioned metric
gives us the second-order insight into the problem but the method itself is a first-order
method.

With the help of the metric, we introduce the proposed RPCD method in Algo-
rithm 3.1. RPCD is memory efficient, which is desirable because we wanted to reduce
the storage complexity of the original tensor X in the first place. To be specific,
assume ni = n and ri = r, then tensor Yi has nrd−1 elements and the Euclidean
and the Riemannian gradient both have nr elements. Empirically, we observed that
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the best choice for the step size is α = 1. In this case, one step of the inner loop in
RPCD is equivalent to one step of the classic orthogonal iteration method (also called
subspace iteration) [14, Section 8.2.4] for finding invariant subspaces. In other words,
we have shown that the orthogonal iteration method can be seen as a preconditioned
Riemannian gradient descent algorithm. The unit step size is also compatible with
the fact that the obtained direction is an approximation of the Newton direction.

Algorithm 3.1 RPCD/RPCD+

Input: Dense tensor X , set of orthonormal factor matrices {U} randomly initialized
on the Stiefel manifold, retraction operator R, step size α, Plus flag for selecting
between RPCD and RPCD+, tolerance error of the outer loop ϵ, tolerance error
of the inner loop specific for RPCD+ ϵ′, maximum number of iterations in the
outer loop Maxiter and maximum number of iterations in the inner loop specific
for RPCD+ Maxiter inner.
for k = 1 : Maxiter do

for i = 1 : d do

Yi ← X ×−i {U
T }

Ui, Ci ← UPDATE(RUi
, Y(i), Ui)

if Plus flag = true then

Ē0 ←
√

∥X∥2F − ∥Ci∥2F /∥X∥F
for k′ = 1 : Maxiter inner do

Ui, Ci ← UPDATE(RUi
, Y(i), Ui)

Ēk′ ←
√

∥X∥2F − ∥Ci∥2F /∥X∥F
if Ēk′ − Ēk′−1 ≤ ϵ′ then

break

Ek ←
√

∥X∥2F − ∥U
T
d Y(d)∥

2
F /∥X∥F

if k ≥ 2 then

if Ek − Ek−1 ≤ ϵ then
break

function UPDATE(RUi
, Y(i), Ui)

Ci ← UT
i Y(i)

G← −Y(i)C
T
i

∇f ← G+ Ui

Ui ← RUi
(Ui − α∇f)

return Ui, Ci

Output: Set of factor matrices {U}

In Algorithm 3.1 for the retraction, we use the QR-decomposition implemented
by the Householder algorithm in Matlab which has computational complexity O(nr2)
for n × r matrices. For the stopping criterion, we use relative error delta which
is the amount of difference in the relative error in two consecutive iterations, i.e.,
|Ek − Ek−1| < ϵ,

(3.6) E =
∥X − X̂∥F
∥X∥F

=

√

∥X∥2F − ∥U
T
i Y(i)∥

2
F

∥X∥F

where second equality comes from equation (3.2) and ∥C∥F = ∥UT
i Y(i)∥F . Since

computing the tensor Yi is a lot more expensive than the rest of the inner loop
computations, O(ndrd−1), so it would be a good idea to do multiple updates in every
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inner loop. In RPCD+, when plus flag = true, we repeat the updating process
as long as the change in the relative error would be less than a certain threshold ϵ′,
which can be much smaller than the stopping criterion threshold ϵ.

In the next section, we provide a convergence analysis for the proposed method
as an extension of the coordinate descent method to the Riemannian domain in a
special case that the search space is a product manifold.

4. Convergence analysis. The RPCD method can be thought of as an exten-
sion of Tangent Subspace Descent (TSD) [16]. TSD is a recent generalization of the
coordinate descent method to the manifold domain. To provide a convergence analy-
sis for RPCD, we generalize the convergence analysis of [16] to the case of product
manifolds where the exponential map and parallel transport are substituted by re-
traction and vector transport, respectively. Convergence analysis of the TSD method
is a generalization of the Euclidean block coordinate descent method described in [3].
The TSD method with retraction and vector transport is outlined in Algorithm 4.1.
The projections in TSD are updated in each iteration of the inner loop with the help
of the vector transport operator.

Algorithm 4.1 TSD with retraction and vector transport

Given Rx(ξ) as a retraction from a point x in the direction of ξ and T y
x as a vector

transport operator from a point x to a point y, see Definition 4.1.
Input: Initial point x0 ∈M, and P̃ 0 = {P x0

i }
m
i=1 are orthogonal projections onto m

orthogonal subspaces of the tangent space at x0

for t = 1, 2, ... do
Set y0 := xt−1, P̃ y0

:= P̃ t−1

for k = 1, ...,m do

αk = 1
Lk

▷ Lk is the Lipschitz constant for each block of variables determined by Lemma 4.8

Update yk = Ryk−1(−αkP
yk−1

k ∇f(yk−1))

Update P yk

i = T yk

yk−1P
yk−1

i T yk−1

yk for i = 1, ...,m.

Update xt := ym, P̃ t := P̃ ym

Output: Sequence {xt} ⊂ M

Before, we start to study the convergence analysis, it would be helpful to quickly
review some definitions:

Definition 4.1 (Vector transport [1, Definition 8.1.1]). A vector transport on a
manifoldM is a smooth mapping

T yk

yk−1 : Tyk−1M 7→ TykM,

associated with a retraction yk = Ryk−1(η).

Here we assume that our vector transport is an isometry. See [5, Section 10.5] for
other properties.

Definition 4.2 (Radially Lipschitz continuously differentiable function). We say
that the pull-back function f ◦ R is radially Lipschitz continuously differentiable for
all x ∈ M if there exist a positive constant LRL such that for all x and all ξ ∈ TxM
the following holds for r > 0,

∣

∣

∣

d

dt
(f ◦ R)(tξ)|t=r −

d

dt
(f ◦ R)(tξ)|t=0

∣

∣

∣
≤ rLRL∥ξ∥
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where d
dt

is the first-order derivative of a single-variable function.

Definition 4.3 (Operator Sk). It is given as,

S0 = idT
y0M , Sk = T y0

y1 · · · T
yk−1

yk = Sk−1T yk−1

yk ; 1 ≤ k ≤ l,

where id is the identity operator. With this operator, we can write the update rule for

the projection matrices as P yk

i = (Sk)−1P y0

i Sk.

Definition 4.4 (retraction-convex). Function f : M → R is retraction-convex
w.r.t R for all η ∈ TxM, ∥η∥x = 1, if the pull-back function f ◦ Rx is convex in its
domain.

Proposition 4.5 (First-order characteristic of a retraction-convex function). If
f :M→ R is retraction-convex w.r.t a retraction Rx : TxM→M, then we know by
definition that the pull-back function is convex. For any direction η ∈ TxM, by the
first-order characteristic of the convex function f(Rx(rη)) : R→M, we have

f(Rx(rη)) ≥ f(Rx(sη)) + (r − s)
d

dt
(f ◦ Rx)(t)|t=s,

where r, s ∈ R. The second term can be interpreted as

d

dt
(f ◦ Rx)(t)|t=s = Df(Rx(sη))[JRx(sη)] = ⟨∇f(Rx(sη)),JRx(sη)⟩Rx(sη),

where JR is the Jacobian of the retraction operator and Df(·)[·] is the directional
derivative of function f in a specified direction. Thus, for r = 1 and s = 0,

f(Rx(η)) ≥ f(x) + ⟨∇f(x), η⟩x.

Proposition 4.6 (Restricted Lipschitz-type gradient for the pullback function).
We know by [6, Lemma 2.7] that ifM is a compact submanifold of Euclidean space
and if f has Lipschitz continuous gradients, then

f(Rx(η)) ≤ f(x) + ⟨∇f(x), η⟩x +
Lg

2
∥η∥2x, ∀η ∈ TxM,

for some Lg > 0.

First, we study the first-order optimality condition in the following proposition.

Proposition 4.7 (Optimality condition). Assume f is a retraction-convex func-
tion and there is a retraction curve between any two points on the Riemannian man-
ifoldM, then

∇f(x∗) = 0 ⇔ x∗ is a minimizer.

Proof. Considering any differentiable curve Rx∗(tη), which starts at a local op-
timum point x∗, the pull-back function f(Rx∗(tη)) has a minimum at t = 0 because
Rx∗(tη)

∣

∣

t=0
= x∗. We know that (f ◦ R)′(0) = ⟨∇f(x∗), η⟩x∗ , so for this to be zero

for all η ∈ Tx∗M, we must have ∇f(x∗) = 0.
From the first-order characteristic of the retraction-convex function f we have,

f(Rx∗(η)) ≥ f(x∗) + ⟨∇f(x∗), η⟩x∗ , ∀η ∈ R−1
x∗ (x),

and if ∇f(x∗) = 0 then f(x) ≥ f(x∗), hence the point x∗ is a global minimum point.
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With the following Lip-Block lemma and the descent direction advocated by Al-
gorithm 4.1, we can prove the Sufficient Decrease lemma.

Lemma 4.8 (Lip-Block). If f has the restricted Lipschitz-type gradient, then for
any i, k ∈ {1, ...,m} and all ν ∈ Im(P k−1

i ) ⊂ Tyk−1M, where Im(·) is the subspace
that a projection matrix spans, there exist constants 0 < L1, ..., Lm <∞ such that

(4.1) f(Ryk−1(ν)) ≤ f(yk−1) + ⟨∇f(yk−1), ν⟩yk−1 +
Li

2
∥ν∥2yk−1 .

Proof. By the fact that ν ∈ Tyk−1M, it can be seen easily that (4.1) is the block
version of the restricted Lipschitz-type gradient for the pullback function.

Lemma 4.9 (Sufficient decrease). Assume f has the restricted Lipschitz-type gra-
dient, and furthermore f ◦R is a radially Lipschitz continuous differentiable function.
Using the projected gradient onto the kth subspace in each inner loop iteration of Al-

gorithm 4.1, i.e., ν = − 1
Lk

P yk−1

k ∇f(yk−1), where P yk−1

k is the orthogonal projection
to kth subspace of Tyk−1M, then we have

(4.2) f(y0)− f(ym) ≥
m
∑

k=1

1

2Lk

∥P yk−1

k ∇f(yk−1)∥2yk−1 .

The following inequality also holds

(4.3) ∥P y0

i ∇f(y
0)− P y0

i Si−1∇f(yi−1)∥2y0 ≤ C

i−1
∑

k=1

∥P yk−1
k ∇f(yk−1)∥2yk−1 ,

for C = (m − 1)L2
RL/L

2
min, where Lmin = min{L1, ..., Lm} and LRL is the radially

Lipschitz constant. For more details on the operator S see Definition 4.3. Further-
more, there is a lower bound on the cost function decrease at each iteration of the
outer loop in Algorithm 4.1:

(4.4) f(y0)− f(ym) ≥
1

4Lmax(1 + Cm)
∥∇f(y0)∥2y0 ,

where Lmax = max{L1, ..., Lm}.

Proof. The inequality (4.3) was proved in [16, Lemma 4.3] with a slight difference
in notation and using the exponential map and parallel transport instead of a retrac-
tion and a corresponding vector transport. Because of radially Lipschitz continuous
differentiability of f ◦ R, we have constant LRL instead of Lf . The inequalities (4.2)
and (4.4) were proven in [16, Lemma 4.1] with the mentioned changes.

In the following theorem, we give a convergence rate for the global convergence,
then we prove a tighter global rate of convergence for retraction-convex functions.

Theorem 4.10 (Global convergence). Assume f has restricted Lipschitz-type
gradient and is lower bounded. Then for the sequence generated by Algorithm 4.1, we
have ∥∇f(xt)∥2xt → 0, and we have the following as the rate of convergence:

(4.5) min
i={1,...,t}

∥∇f(xi−1)∥xi−1 ≤

√

1

t

(

f(x0)− f(xt)
)

4Lmax(1 + Cm) .
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Proof. From (4.4), we have

(4.6) f(x0)− f(xt) ≥
1

4Lmax(1 + Cm)

t
∑

i=1

∥∇f(xi−1)∥2xi−1 ,

So, from the fact that f is lower bounded, we can easily conclude that

t→∞ : ∥∇f(xt)∥2xt → 0.

The inequality (4.5) can be derived effortlessly from (4.6).

Theorem 4.11 (Tighter global convergence). Let f : M → R be a retraction-
convex function and the Sufficient Decrease lemma holds for the sequence {xt} ⊂ M.
If we denote the sufficient decrease constant 1/K, i.e.

L2
min

4Lmax (L2
min + L2

RLm(m− 1))
=

1

K
,

then for t > 1 and ηt = R
−1
xt (x∗)

(4.7) f(xt+1)− f∗ ≤
K∥ηt∥

2
xt(f(x1)− f∗)

K∥ηt∥2xt + t(f(x1)− f∗)

Proof. From the retraction-convexity of function f we have

0 ≤ f(xt)− f(x∗) ≤ −⟨∇f(xt), ηt⟩xt ≤ ∥∇f(xt)∥xt∥ηt∥xt .

After combining that with the result of Sufficient Decrease lemma 4.9, we will have

f(xt)− f(xt+1) ≥
1

K∥ηt∥2xt

[

f(xt)− f(x∗)
]2
.

We know that for every real-valued decreasing sequence At if At − At+1 ≥ αA2
t for

some α, then At+1 ≤
A1

1+A1αt
. Using this on the above inequality, we reach the

convergence bound (4.7).

Transitivity for vector transports, i.e. T y
x T

z
y = T z

x , does not hold for Riemannian
manifolds in general. But due to the fact that each point and each tangent vector in
a product manifold is represented by Cartesian products, we can obtain the constant
C in a simpler way than what has come in the proof of Lemma 4.9. For product
manifold in the Tucker decomposition problem (3.1), each orthogonal projection of
the gradient is simply the gradient of the cost function w.r.t the variables of one of the
manifolds in the product manifold, and therefore the gradient projection belongs to
the tangent space of that manifold. For a tangent vector satisfying ξy0 = R−1

y0 (y
i−1)

which is the case for product manifolds, we have

∥∇f(y0)− Si−1∇f(yi−1)∥2y0 ≤ L2
RL∥ξy0∥2y0

≤ L2
RL

i−1
∑

j=1

∥

∥

∥
−

1

Lj

P yj−1

j ∇f(yj−1)
∥

∥

∥

2

yi−1

≤
L2
RL

L2
min

i−1
∑

j=1

∥

∥

∥
P yj−1

j ∇f(yj−1)
∥

∥

∥

2

yi−1
,
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where in the second inequality we exploited triangular inequality on Ty0
M and the

fact that vector transport is isometric. So, the factor m − 1 is removed from the
rates of convergence in Theorem 4.10 and Theorem 4.11, thus they match the rates
of convergences of the coordinate descent method in the Euclidean setting [3].

The Tucker decomposition problem (3.1) is not retraction-convex, so we can not
use the result of Theorem 4.11 for it. But by Proposition 4.6 and the fact that the ob-
jective function is lower bounded, we reach the following corollary from Theorem 4.10.

Corollary 4.12. The RPDC algorithm given in Algorithm 3.1 with m = d has
the same rate of global convergence as given in Theorem 4.10, wherein C = L2

RL/L
2
min.

It is worth noting that the proof of convergence for the HOOI method which
solves the same objective function was investigated in [36], but it did not provide a
convergence rate.

5. Experimental Results. In this section, we evaluate the performance of our
proposed methods on synthetic and real data. We implemented the proposed methods
in Matlab1 R2023a and also used available Matlab implementations of other methods
for comparison. The experiments were performed on a laptop computer with an
Intel Core-i7 12700H CPU and 32 GB of memory. We used Matlab’s default setting
regarding the use of CPU cores usage. The stepsize for RPCD and RPCD+ is set to
one. For the tables, ϵ is put to 0.001 and for the figures, it is set to 10−5. For the
RPCD+ algorithm, we choose ϵ′ = ϵ/10.

To establish a fair and objective evaluation of our approach relative to others,
we employed a uniform stopping criterion across all algorithms, based on a measure
of relative error delta. This metric quantifies the degree to which an algorithm can
reduce relative error, ensuring that any observed differences in performance are not
due to variations in stopping criteria.

The reported time for each method is the actual time that the method spends
on the computations which leads to the update of the parameters, and the time for
calculating the relative error or other computations are not taken into account. For
the RPCD+ algorithm, we also take into the count the time needed to evaluate the
relative error in the inner loop. For HOOI and ST-HOSVD implementations, we use
tucker als and hosvd from the Tensor Toolbox [21]2, respectively.

5.1. Synthetic Data. In this part, we give the results for two cases of Tucker
decomposition on dense random tensors. In both cases, the elements of random
matrices or tensors are drawn from a normal distribution with zero mean and unit
variance. In the first case, we generate each rank-(r1, r2, r3) tensor A1 from the i-
mode production of a random core tensor in R

r1×r2×r3 and 3 orthonormal matrices
constructed by the QR-decomposition of random ni by ri matrices. In the second case,
which has more resemblance with real data with intrinsic low-rank representations,
we construct each tensor A2 by adding noise to a low-rank tensor,

A2 = L/∥L∥F + 0.1 · N/∥N∥F ,

where L is a low-rank tensor generated similar to A1 and N is a tensor with random
elements.

In both set of experiments, we set r1 = r2 = r3 = 5. Because of the memory
limitation, except in the last experiment we increase the dimension of just the first

1Implementation of RPCD and RPCD+ can be found via https://github.com/utvisionlab/rpcd
2The latest release can be found here https://gitlab.com/tensors/tensor toolbox/-/releases
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Table 1

Execution time comparison in seconds for the RPCD+, HOOI and ST-HOSVD methods in the
low-rank (A1) and low-rank with noise (A2) settings.

A1 A2

n RPCD+ HOOI ST-HOSVD ST-HOSVD RPCD+ HOOI ST-HOSVD ST-HOSVD

(eigs) (svds) (eigs) (svds)
[100,100,100] 0.04 0.1 0.02 0.06 0.05 0.1 0.02 0.07
[1000,100,100] 0.08 0.14 0.05 0.18 0.08 0.14 0.05 0.39
[10,000,100,100] 0.38 1.71 0.84 1.52 0.4 1.72 0.86 4.22
[20,000,100,100] 0.72 5.52 2.70 3.04 0.74 5.64 2.83 9.19
[40,000,100,100] 1.33 20.17 9.54 6.09 1.45 19.75 9.72 16.90
[1000,1000,1000] 4.52 4.56 7.69 10.72 5.02 5.27 9.34 92.3

mode of the input dense tensor to have the performance comparison in higher dimen-
sions. In the last experiment, we uniformly increase all dimensions of the input tensor
to demonstrate the effect of tensor volume on different methods. Each experiment is
repeated 5 times and the reported time is the average value. The results can be seen
in Table 1.

As it can be seen in Table 1, increasing the dimensionality leads to the emergence
of a performance gap between the RPCD+ and HOOI algorithms. This is because
in RPCD+, the subproblem (3.3) is solved inexactly by the QR-decomposition; but
in HOOI, it is solved almost exactly by finding the eigenvectors of the large matrix
Y(i)Y

T
(i). In tucker als, it is done by the Matlab function eigs that uses the Lanczos

algorithm with the number of computations (the number of additions and multiplica-
tions) approximately equal to T (4n2

i ri + 8r3i ), where T is the number of iterations in
the loop of the Lanczos algorithm. Without loss of the generality, we analyze the com-
putational complexity for the last block i = d. The number of computations of Yd is
equal to 2

∑d−1
k=1

∏k
l=1 rl

∏d
m=k nm. Therefore in total, the number of computations of

HOOI is approximately equal to 2
∑d−1

k=1

∏k
l=1 rl

∏d
m=k nm+n2

d

∏d−1
k=1 rk+T (4n2

dr+8r3d)
which is higher than RPCD/RPCD+ with the number of computations approximately

equal to 2
∑d−1

k=1

∏k
l=1 rl

∏d
m=k nm+T ′(4nd

∏d
k=1 rk+2r2dnd−2r3d/3), where T

′ is the
number of iterations in the inner loop of RPCD+. RPCD+ solves the the subproblem
(3.3) inexactly, therefore T ′ is significantly smaller than T .

Both the RPCD+ and HOOI methods reach desirable relative error, zero in the
first case and 10% for the second case, in the same number of iterations. But as the
cost of each iteration is less for the RPCD+ method, we observe a reduced computa-
tional time in total.

As the Tensor Toolbox implementation of the ST-HOSVD method is inefficient
due to the using the eig function, we modified the hosvd function to utilize the more
efficient eigs and svds functions. As can be seen from Table 1, the ST-HOSVD
method performs exceptionally well in lower dimensions, but as the dimension in-
creases, although it outperforms HOOI, it still lags behind RPCD+.

We also investigated the case of overestimating the multi-linear rank for the syn-
thetic data. We observed that in such cases, unlike the HOOI method which gets
very slow, the proposed method does not need much additional time to compute the
factor matrices. For example, in decomposing a noisy tensor X ∈ R

10000×100×100 and
multi-linear rank−(5, 5, 5) with over estimated lower multi-linear rank−(7, 7, 7), the
required time for RPCD+ and HOOI methods went from .39 and 1.71 seconds to .41
and 3.16 seconds, respectively.
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(a) 16x16 (b) 8x8

Fig. 2. Compression of Yale face database (1th row) with HOOI (2th row) and RPCD+ (3th row)

5.2. Real Data. In the first experiment of this subsection, we compare the
RPCD+ and HOOI methods for compressing the images in Yale face database3[4].
This dataset contains 165 grayscale images of 15 individuals. There are 11 images per
subject in different facial expressions or configuration, thus we have a dense tensor
X ∈ R

64×64×11×15. For two levels of compression, we decompose X to three tucker
tensor with multi-linear rank (16, 16, 11, 15) and (8, 8, 11, 15), respectively. The results
are shown in Figure 2.

The first row in each figure contains the original images, the second and third
rows contain the results of the compression using the HOOI and RPCD+ methods,
respectively. The attained relative error for both algorithms are the same but RPCD+
is faster (0.09 vs 0.15 seconds) for the case of 16×16. The difference in speed becomes
larger (0.06 vs 0.12 seconds), when we want to compress the data more, that is the
case of 8× 8.

In another comparison for the real data, we compare RPCD, RPCD+ and HOOI
with a newly introduced SVD-based method called D-Tucker4 [18]. D-Tucker com-
presses the original tensor by performing randomized SVD on slices of the re-ordered
tensor and then computes the orthogonal factor matrices and the core tensor using
SVD. The paper [18] reported that this method works well when the dimensions of a
tensor is high in two modes, and the rest of the modes are low dimensional. That is,
for Xre ∈ R

I1×I2×K3×···×Kd where we have I1 ≥ I2 ≫ K3 ≥ · · · ≥ Kd, the algorithm
needs to compute L = K3 × · · · ×Kd randomized SVDs.

The results from the real data are presented in Table 2 and Figure 3. As shown
in Table 2, three different target ranks for each dataset are used. The first set of
target ranks was chosen based on the D-Tucker paper [18]. For the second set, we
multiplied the first set of target ranks by the factor of five. For the third target ranks
we aim for compression, around 10% relative error, raising the ranks of the first set
uniformly to achieve the desired quality. The first set of target ranks was used for the
plots of Figure 3. We initialized the factor matrices using the standard practice of
setting the main diagonal to one and the rest to zero, as commonly done in iterative
eigen-solvers. The reason for the discrepancy of timing results between the figure
and table is the smaller stopping criterion chosen to produce the plots. For Figure 3,
we allowed the algorithms to iterate more to clearly see the convergence behavior of
different methods. The vertical axis in Figure 3 is representing the difference between

3A 64x64 version can be found here http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.
html

4We use the Matlab implementation they provided in https://datalab.snu.ac.kr/dtucker/
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Table 2

Execution time in seconds and relative error for the D-Tucker, RPCD, RPCD+ and HOOI
methods on the real datasets.

Dataset Yale [4] Brainq [25] Air Quality5 HSI [13] Coil-100 [27]

Dimension [64 64 11 15] [360 21764 9] [30648 376 6] [1021 1340 33 8] [128 128 72 100]

Target Rank [5 5 5 5] [10 10 5] [10 10 5] [10 10 10 5] [5 5 5 5]

time(s) E(%) time(s) E(%) time(s) E(%) time(s) E(%) time(s) E(%)

D-Tucker 0.11 30.46 0.8 77.38 0.58 33.08 3.13 45.17 5.84 36.64

RPCD 0.04 30.02 2.88 78.35 0.87 32.87 6.33 43.69 1.24 36.42

RPCD+ 0.02 29.93 2.81 77.87 0.84 32.74 4.20 43.48 0.72 36.35

HOOI 0.02 29.92 41.09 77.92 33.82 32.72 4.31 43.42 0.74 36.35

Target Rank [25 25 5 5] [50 50 5] [50 50 5] [50 50 10 5] [25 25 25 25]

time(s) E(%) time(s) E(%) time(s) E(%) time(s) E(%) time(s) E(%)

D-Tucker – – 3.93 60.78 – – 12.18 32.60 – –

RPCD 0.06 26.84 2.75 67.86 1.51 24.44 9.28 32.18 2.77 24.37

RPCD+ 0.04 26.56 4.53 65.18 1.52 24.39 6.57 32.10 1.73 24.30

HOOI 0.05 26.54 96.51 65.00 84.50 24.32 6.57 32.06 1.65 24.24

Target Rank [17 17 11 15] [360 2700 9] [300 300 6] [220 220 33 8] [70 70 70 70]

time(s) E(%) time(s) E(%) time(s) E(%) time(s) E(%) time(s) E(%)

D-Tucker – – – – – – – – – –

RPCD 0.08 10.42 65.75 10.30 8.05 10.89 27.38 10.52 14.58 10.15

RPCD+ 0.06 10.37 101.56 10.16 14.34 10.84 22.87 10.47 10.76 10.02

HOOI 0.05 10.34 1243.86 10.12 395.23 10.83 17.96 10.44 4.58 9.93

relative error of each algorithm and the relative error of the most accurate algorithm
(a.k.a Emin). The plots are cut at 10−3 as smaller differences in relative error is
minuscule and we can ignore them.

As shown in Table 2, the RPCD+ method consistently achieves a better final rel-
ative error than RPCD, thanks to its precision update process. Additionally, in some
cases, RPCD+ is faster due to its smaller number of required iterations to converge.
We observe that in the Air Quality and HSI datasets, D-Tucker is computationally
advantageous, but as shown in Figure 3, this advantage is due to early stopping, re-
sulting in poorer precision. In contrast, RPCD+ and HOOI perform well in terms
of speed and precision in the Yale and Coil-100 datasets, which have large L values
and the provided code for D-Tucker returns ‘‘rank deficient warning’’. For the
third set of target ranks, the implementation of D-Tucker did not work. For Brainq
and Air Quality datasets, we can see the advantage of RPCD as the cost of updating
each factor matrix becomes higher for large target ranks. In such cases, it is better to
alternate between factor matrices instead of finding a better update for each of them.

Both RPCD+ and HOOI offer the best low multi-linear rank approximation, but
HOOI is considerably slower in high-dimensional cases. It is worth noting that the
slight difference in the relative Error between RPCD+ and HOOI reported in Table 2
which is a bit in favor of HOOI is the equal stopping criterion used for the methods.
Each step of HOOI decreased the error more than one step of RPCD+ as it can be
seen in Figure 3. Therefore, it is natural to choose a lower stopping criterion for
RPCD+ but we used equal stopping criterion to avoid the concern of its arbitrary
selection. An important observation from these experiments is that RPCD+ performs
well in lower dimensions and offers superior performance in high-dimensional cases,
as seen in the results from the synthetic data. Therefore, RPCD+ is a reliable general
method for multi-linear data analysis.

For all datasets except Brainq, we observe almost identical convergence behavior
when we start at different starting points. The effect of different initialization on the
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Fig. 3. Convergence behavior of different methods for the real datasets. Y-axis is the difference
between the relative error at each iteration and the best achieved relative error.

100 100.2 100.4 100.6 100.8 101 101.2
10−3

10−2

10−1

100

time(s)

re
lE
rr

-
re
lE
rr

m
in

D-Tucker
RPCD
RPCD+
HOOI

100 100.2 100.4 100.6 100.8 101 101.2
10−3

10−2

10−1

100

time(s)

re
lE
rr

-
re
lE
rr

m
in

D-Tucker
RPCD
RPCD+
HOOI

100 100.2 100.4 100.6 100.8 101 101.2
10−3

10−2

10−1

100

time(s)

re
lE
rr

-
re
lE
rr

m
in

D-Tucker
RPCD
RPCD+
HOOI

100 100.2 100.4 100.6 100.8 101 101.2
10−3

10−2

10−1

100

time(s)

re
lE
rr

-
re
lE
rr

m
in

D-Tucker
RPCD
RPCD+
HOOI

100 100.5 101 101.5
10−3

10−2

10−1

100

time(s)

re
lE
rr

-
re
lE
rr

m
in

D-Tucker
RPCD
RPCD+
HOOI

100 100.5 101
10−3

10−2

10−1

100

time(s)

re
lE
rr

-
re
lE
rr

m
in

D-Tucker
RPCD
RPCD+
HOOI

Fig. 4. Convergence behavior for decomposing the Brainq dataset using different random ini-
tializations.

performance of different methods for Brainq can be seen in Figure 4.

6. Conclusion. In this paper, we introduced RPCD and its improved version
RPCD+, first-order method solving the Tucker decomposition problem for high-order,
-dimensional dense tensors with the Riemannian coordinate descent method. For



RIEMANNIAN PRECONDITIONED COORDINATE DESCENT 21

these methods, we constructed a Riemannian metric by incorporating the second
order information of the reformulated cost function and the constraint. We proved
a convergence rate for general tangent subspace descent on Riemannian manifolds,
which for the special case of product manifolds like the Tucker decomposition matches
the rate in the Euclidean setting. Experimental results showed that RPCD+ as a
general method has competitive performance among competing methods for high-
order, high-dimensional tensors.

For a future work, it would be interesting to examine the RPCD method in solving
tensor completion problems. Another interesting line of work would be to incorporate
latent tensors between the original tensor X and the projected tensor Y for further
reducing computation costs.
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