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ABSTRACT

Autonomous shipping has recently gained much interest in

the research community. However, little research focuses on in-

land - and port navigation, even though this is identified by coun-

tries such as Belgium and the Netherlands as an essential step

towards a sustainable future. These environments pose unique

challenges, since they can contain dynamic obstacles that do

not broadcast their location, such as small vessels, kayaks or

buoys. Therefore, this research proposes a navigational algo-

rithm which can navigate an inland vessel in a wide variety of

complex port scenarios using ranging sensors to observe the en-

vironment. The proposed methodology is based on a machine

learning approach that has recently set benchmark results in var-

ious domains: model-based reinforcement learning. By random-

izing the port environments during training, the trained model

can navigate in scenarios that it never encountered during train-

ing. Furthermore, results show that our approach outperforms

the commonly used dynamic window approach and a bench-

mark model-free reinforcement learning algorithm. This work

is therefore a significant step towards vessels that can navigate

autonomously in complex port scenarios.

Keywords: Artificial Intelligence, Machine Learning, Con-

trol, Modeling and Optimization, Automation
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NOMENCLATURE

Set Operations

K × P The Cartesian product of two sets K and P.

K𝑛 The Cartesian power, deőned as K ×K × ... ×K⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
𝑛

.

Vector Operations

a ∥ b The concatenation of two vectors a and b.

𝑑𝑖𝑚(a) The amount of dimensions of vector a.

∥a∥1 The 𝐿1-norm of vector a.

Special functions

✶K (𝑘) Indicator function: 1 if 𝑘 ∈ K, else 0.

Probability

E𝑑 Expectation under distribution 𝑑.

𝑈 (𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥) A uniform distribution between 𝑥𝑚𝑖𝑛 and 𝑥𝑚𝑎𝑥 .

1. INTRODUCTION

A recent study from the European commission [1] őnds that

inland waterway transport (IWT) has a much lower carbon foot-

print compared to other modes of transport with only half the

amount of 𝐶𝑂2/(𝑡𝑜𝑛 ∗ 𝑘𝑚) compared to railroad transport and

only 17% that of road based transport. Additionally, IWT has

the potential to decongest road networks, which improves supply

chain reliability and further lowers the carbon footprint of the

European Union. The ports of Rotterdam and Antwerp are the

two largest ports in Europe, combining this with the fact that

both The Netherlands and Belgium have densely connected in-

land waterways, these countries can beneőt greatly from IWT to

transport freight from the port throughout the country. However,

due to a shortage of skippers in Belgium and The Netherlands,

it is not possible to increase the reliance on IWT in the supply

chain without a form of (semi-)autonomous vessel control. Also,
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a large part of vessel collisions are caused by human error, of

which a signiőcant portion has the potential to be avoided with

autonomous shipping [2].

Therefore, research interest in autonomous shipping has in-

creased [3], major advancements can partly be attributed to the

application of recent advancements in deep learning methods

such as generative models and convolutional networks [4] or

deep reinforcement learning (RL) [5] [6]. RL is a methodology

where an agent must learn a behavior by maximizing a reward

signal in an environment [7]; this method allows for superhuman

performance, since it does not rely on a human-labeled data set

such as supervised deep learning methods. For a long time, the

application potential of RL was limited to a small problem set.

However, recent advancements in the őeld have generalized this

methodology to a wider set of problems with complex observa-

tional inputs. These advancements are often demonstrated by

learning to play video games without human data.

Reinforcement learning approaches can roughly be split into

two major categories: model-based and model-free. Model-free

reinforcement learning uses its experience to either learn an eval-

uation function of how desirable certain actions are in a certain

state (Q-learning) [8] or directly learns a distribution that pre-

dicts the likelihood of an action being optimal in a state (policy

optimization) [9]. Notably, these methods never learn the actual

dynamics of the environment. Thus, they do not have the ability

to predict the outcome if they perform a certain action in the

environment, they only learn a heuristic of how good the action

is expected to be. On the contrary, model-based RL (MBRL)

learns that predictive capability, which allows these algorithms

to combine model-free RL with some form of planning over the

(learned) dynamics model [10]. This capability has been linked

to various theoretical advantages such as explainability, stability

and most notably: data-efficiency [10]. MBRL was for a long

time outperformed by its model-free counterparts. However, re-

cent works have also extended this methodology to a wider range

of problems; they show that MBRL can match or outperform

model-free methods on a variety of tasks while being signiő-

cantly more data-efficient [11] [12]. This paper builds upon these

advancements and propose a methodology that extends previous

work in autonomous shipping (see Sect. 2) with the use of a

MBRL agent.

The main goal of this paper is threefold. First, we propose

a methodology of approaching optimal path planning as a rein-

forcement learning problem. An algorithm is demonstrated that

can combine path following with collision avoidance of dynamic

obstacles. Here, ranging sensors are used to observe the environ-

ment. Second, we show the ability of reinforcement learning to

generalize over a large space of scenarios by training the algorithm

in various randomized scenarios. The performance of the path

planning is validated on scenarios that were never encountered

during training. Finally, we demonstrate that our MBRL approach

outperforms both the dynamimic window approach [13] and a

state-of-the-art model-free reinforcement learning algorithm.

This work őrst (Sect. 2) relates this work with the current

state of the art, both in autonomous shipping and RL; the added

value of this work is also highlighted in this section. Then, Sect.

3 proposes a theoretical formulation of optimal path planning as

a reinforcement learning problem, where it is shown that an op-

timal RL agent is able to provide optimal paths in environment

with dynamic obstacles. Sect. 4 thoroughly describes our ap-

proach and justiőes our design choices. Finally, the results of

our methodology are examined with qualitative and quantitative

measurements in Sect. 6.

2. RELATED WORKS

Firstly, some works in the autonomous shipping literature

focus purely on path following, assuming that the global path

never hits an obstacle. The main focus of these works is accurate

path tracking with complex dynamical simulations and external

disturbances. A recent work by Wang et al. [14] combines the

Fast Marching [15] method with RL to provide path following

behavior under disturbances from wind and waves. Fossen et

al. [16] proposed a methodology to achieve path following on

underactuated vessels. Good performance was demonstrated in

simulation and on a 1:70 scale vessel. Peng et al. [17] built

upon that methodology to achieve path following by using MPC

to optimize over a learned model.

Secondly, many works focus on COLREG-compliant colli-

sion avoidance in maritime scenarios. These works assume that

the only obstacles are other vessels and that their positions are

perfectly known. Some notable examples are described next.

Abdelaal et al. [18] proposed a non-linear MPC methodology to

control where paths that end up in a collision within the prediction

horizon are őltered out. However, perfect information about the

position of obstacles and the dynamics model is assumed. Kim

et al. [13] employ the Dynamic Window Approach (DWA) to

perform collision avoidance at sea. Chun et al. [5] employ an

RL algorithm for collision avoidance and COLREG compliance

at sea. They limit the scope to avoiding other vessels that share

their current position and velocity. Their proposed methodol-

ogy successfully avoids safety violations in scenarios with many

other vessels. Jiang et al. [19] build upon this work by adding

an attention mechanism to the RL system and also provide COL-

REG compliant collision avoidance in maritime environments.

This attention mechanism is a machine learning technique which

improves the ability of the algorithm to decide on which other

vessels it should focus, depending on the current context. Their

work makes similar assumptions as Chun et al., but it also remains

limited to rudder control only.

Thirdly, some works take steps towards autonomous ship-

ping in scenarios with imperfect information, such as vessels

that do not share their position or (drifting) buoys. Vanneste et

al. [20] proposed model-predictive reinforcement learning and

showed that their approach provided safer paths compared to

model-predictive control (MPC) in the Frenet frame. Similar to

our work, they also employed ranging sensor observations to deal

with unknown obstacles. Zhang et al. [21] provide a system that

relates the closest to this work. They provide an algorithm that

is able to navigate in scenarios with unknown static and dynamic

obstacles, however, their algorithm only works in one speciőc

port/waterway and is therefore not a truly general approach. Fi-

nally, Chen et al. [22] address the necessity of observation-based

autonomous navigation but limit the work to improving the ob-

servations without proposing a navigation methodology.
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All of the previously mentioned contributions are summa-

rized in table 1.

TABLE 1: A comparison of our work with different autonomous

shipping approaches.

Contribution
Path

Following
Avoidance

Type

Imperfect

Information

Wang et al. [14] Yes None No

Fossen et al. [16] Yes None No

Peng et al. [17] Yes None No

Chun et al. [5] Yes Dynamic No

Jiang et al. [19] Yes Dynamic No

Abdelaal et al. [18] Yes Dynamic No

Kim et al. [13] Yes Dynamic No

Vanneste et al. [20] Yes Static Yes

Zhang et al. [21] No Stat.+Dyn. Yes

Our contribution Yes Stat.+Dyn. Yes

3. PROBLEM FORMULATION

This section őrst describes the problem of optimal path plan-

ning in a formal manner, where we follow the formalism described

in [23]. Global (offline) planning is differentiated from (online)

local planning. We then show that it is possible to formulate the

local planning problem as a Markov Decision Process (MDP),

optimizing a behavior in this MDP provides an optimal local

path. Finally, it is noted that RL is a method to approximate the

solution of an MDP.

3.1 Autonomous Navigation

Autonomous navigation can be split into four tasks: global

planning, local planning, path following and control. Global plan-

ning provides a path from the current position to the destination

without considering dynamic obstacles; this can be precomputed

using only a map of the waterway. Local planning employs real-

time observations with the purpose of following the global path

while taking additional constraints into account, such as avoiding

dynamic obstacles. This means that an autonomous navigation

methodology őrst computes a global path to őnd a route from the

start to the goal. That global path is then used by the local planner

to safely guide the vessel to the destination. Subsequently, the

local path is then followed as closely as possible by deőning the

correct setpoints for the actuators of the vessel. In this work, the

actuators are the rudder (angle) and the propellor (thrust). The

local and global path planning problem is further formalized in

the following subsection.

3.2 Path Planning

Consider a conőguration space 𝜒 = [0, 1]𝑑 of a system, with

𝑑 ∈ N and 𝑑 ≥ 2. Some part of the state space contains obstacles,

and therefore should be avoided by the planning algorithm. We

denote this occupied part as 𝜒
𝑜𝑏𝑠 ⊆ 𝜒, the complement of this

set is the free part of the state space 𝜒
𝑓 𝑟𝑒𝑒 =

𝜒 \ 𝜒𝑜𝑏𝑠 . The initial

state 𝑥𝑖𝑛𝑖𝑡 ∈ 𝜒 is the starting location of the vessel, the goal region
𝜒
𝑔𝑜𝑎𝑙 ⊆ 𝜒 is the location that the autonomous vessel should

reach. We can therefore deőne every path planning problem

by the tuple (𝜒𝑓 𝑟𝑒𝑒, 𝑥𝑖𝑛𝑖𝑡 , 𝜒𝑔𝑜𝑎𝑙). A continuous function 𝜎 :

[0, 1] → R𝑑 is a collision free path if 𝜎(𝑡) ∈ 𝜒
𝑓 𝑟𝑒𝑒∀𝑡 ∈ [0, 1].

More strictly, it is a feasible path if it is collision free and if

𝜎(0) = 𝑥𝑖𝑛𝑖𝑡 and 𝜎(1) ∈ 𝜒
𝑔𝑜𝑎𝑙 .

Applied to planning in autonomous shipping, our problem is

deőned as follows:

• 𝜒 is the normalized Cartesian plane with 𝑑 = 2, it contains

all the coordinates that the autonomous vessel operates in;

• 𝜒
𝑜𝑏𝑠 contains regions where the autonomous vessel would

collide, such as other vessels, buoys or quay walls;

• 𝑥𝑖𝑛𝑖𝑡 is the initial location of the vessel, 𝜒𝑔𝑜𝑎𝑙 is the region

which is considered as the destination for the vessel e.g., a

certain dock in the port.

In autonomous shipping, not every collision-free path is de-

sirable, e.g., some paths are longer then necessary or are very

non-smooth, therefore, we need to deőne optimal path planning.

We can deőne an extra function 𝑐 : Σ → R≥0 that maps all the

paths to a certain cost. This cost function must be designed to

make sure that an optimal algorithm actually provides the de-

sired behavior. The goal of optimal path planning is to őnd the

path 𝜎∗ ∈ Σ𝑓 𝑒𝑎𝑠𝑖𝑏𝑙𝑒 where 𝑐(𝜎∗) = min{𝑐(𝜎) : 𝜎 ∈ Σ𝑓 𝑒𝑎𝑠𝑖𝑏𝑙𝑒}.

There exist several 0th order search algorithms that provably con-

verge to the optimal path. A notable example of such a search

algorithm is RRT*, proposed by Karaman et al. [23]. However,

these classical planning algorithms are only asymptotically op-

timal given a certain őxed obstacle set 𝜒
𝑜𝑏𝑠 , which leaves the

question how to act optimally in an environment with dynamic

obstacles. It is important to note that in a dynamic environment,

updating 𝜒
𝑓 𝑟𝑒𝑒 and 𝑥𝑖𝑛𝑖𝑡 and re-running an optimal planning algo-

rithm every timestep does not guarantee a globally optimal path,

since the state of other vessels (which deőnes 𝜒
𝑓 𝑟𝑒𝑒) is assumed

to be static in every calculation. On the other hand, methods such

as MPC [24] optimize over the model of the environment and

therefore take the actual optimal path, however, they are limited

to their planning horizon and are computationally expensive when

nonlinear dynamics are involved. We therefore need a decision-

making agent that acts according to current observations in the

environment and will have taken the full optimal path 𝜎∗
𝑑𝑦𝑛𝑎𝑚𝑖𝑐

when it has reached its goal region 𝜒
𝑔𝑜𝑎𝑙 . A common theoretical

framework to describe problems where sequential actions need

to be taken to optimize a long-horizon problem is the Markov

Decision Process. The next section deőnes path planning within

that framework.

3.3 Local Planning in the MDP Framework

A Markov Decision Process (MDP) is deőned by the state

space S, the action space A, the reward function 𝑅 : S ×A → R

and the transition model𝑇 : S×A → S′. The state space contains

all possible states that the agent can be in. In autonomous shipping

the state includes the location of the ownship (OS) (i.e. 𝑥𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ∈
𝜒), but also other information such as its heading and observed

obstacles. Note that every state has exactly one current location

𝑥𝑐𝑢𝑟𝑟𝑒𝑛𝑡 (a surjective function can be found between them). The

action space deőnes the output that the agent can provide. In

this paper, our agent learns to control the desired heading and

desired speed, therefore A ⊂ R2. The transition model deőnes

how a certain action 𝑎 ∈ A in a certain state 𝑠 ∈ S leads to a next

3
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state 𝑠′ ∈ S. A trajectory 𝜏 is a sequence of states and actions in

the environment [(𝑠0, 𝑎0), (𝑠1, 𝑎1), ..., (𝑠𝑓 𝑖𝑛𝑎𝑙 , 𝑎𝑓 𝑖𝑛𝑎𝑙)]. Because

every state can be mapped to exactly one coordinate in 𝜒 and

every action deőnes the next state, a trajectory 𝜏 in an MDP

deőnes a path 𝜎 in the conőguration space. The return 𝐺 (𝜏) in

an MDP is deőned as:

𝐺 (𝜏) =

𝐻∑︂

𝑡=0

𝛾𝑡 · 𝑅(𝑠𝜏𝑡 , 𝑎
𝜏
𝑖 ) (1)

, where 𝐻 denotes the horizon (length of the trajectory) and 𝛾 is

the discount factor, which is used to balance between long-term

and short-term effects of a decision. The value 𝑣𝜋 (𝑠𝑡 ) is the

expectation of the return starting from a state 𝑠𝑡 when acting with

policy 𝜋.

A policy 𝜋 : S×A → [0, 1] in an MDP deőnes the probabil-

ity distribution over actions in a certain state. The optimal policy

is deőned as follows:

𝜋∗ = argmax
𝜋

E𝜋 [𝐺 (𝜏 |𝜋)] (2)

This means that if we set the reward in our MDP, such that

𝐺 (𝜏) = −𝑐(𝜎), the optimal policy 𝜋∗ in the MDP deőnes the

expected optimal path in a dynamic environment 𝜎∗
𝑑𝑦𝑛𝑎𝑚𝑖𝑐

. RL

is designed to converge to the optimal policy in an MDP, there-

fore a trained RL agent can produce the optimal path by taking

sequential actions, given that the rewards in an episode sum to

−𝑐(𝜎).

4. METHODOLOGY

The following section describes the approach that has been

taken. It őrst details the simulation that is proposed (the envi-

ronment of the MDP). Next, we provide details about our state

representation and reward formulation respectively. Then, the

problem of overőtting is described and an approach to tackle

this problem is provided. Finally, a large part of this section is

dedicated to MBRL and MuZero [11].

4.1 Simulation

The focus of this paper is not on control but rather on nav-

igational planning, therefore we employ a three degree of free-

dom (3-DOF) kinematic model, which is an extension of the

simulation provided by the MOOS-IVP framework [25]. This

fast-to-compute model allowed us to speed up the simulation and

therefore increase the computational research capacity towards

the focus of this paper, i.e. generalization and unstructured ob-

servations. Nevertheless, the signiőcant delay between control

inputs and physical effects, is still maintained. Also, the vessel is

underactuated, since there are three DOFs (surge, sway and yaw)

and only two controllers: the rudder (yaw) and the thrust (surge).

The model is described as follows:

• The current pose vector at time step 𝑡: p𝑡 = [𝑥𝑡 , 𝑦𝑡 , 𝜃𝑡 ]
𝑇 ,

where (𝑥𝑡 , 𝑦𝑡 ) represents the current position and 𝜃𝑡 is the

current heading in degrees.

• An informal representation of the time derivative
𝛿p𝑡

𝛿𝑡
at time

step 𝑡: v𝑡 = [𝑠, 𝜃̇]𝑇 , where 𝑠 represents the translational

velocity and 𝜃̇ the angular velocity of the vessel.

• The control inputs u𝑡 = [𝑢𝑡ℎ𝑟𝑢𝑠𝑡 , 𝑢ℎ𝑒𝑎𝑑𝑖𝑛𝑔]
𝑇 .

v𝑡 is simulated non-linearly as follows:

𝐹𝑑𝑟𝑎𝑔 =
1

2
𝜌𝑠2𝑐𝑑𝐴 (drag equation) (3)

𝑎 =
𝑢𝑡ℎ𝑟𝑢𝑠𝑡 − 𝐹𝑑𝑟𝑎𝑔

𝑚
(4)

v𝑡+𝑑𝑡 = v𝑡 +

[︃
𝑎 · 𝑑𝑡

𝑢ℎ𝑒𝑎𝑑𝑖𝑛𝑔 · 𝑇 · 𝑑𝑡

]︃
, (5)

Where Eqn. 4 calculates the magitude of acceleration on the

vessel. p𝑡 is now updated as:

p𝑡+𝑑𝑡 = p𝑡 +

⎡⎢⎢⎢⎢⎣

𝑠𝑖𝑛(𝜃) (𝑠 · 𝑑𝑡)

𝑐𝑜𝑠(𝜃) (𝑠 · 𝑑𝑡)

𝜃̇ · 𝑑𝑡

⎤⎥⎥⎥⎥⎦
. (6)

Where 𝑇 is the turn rate (a constant) and 𝑑𝑡 is the time step. The

drag equation (3) has the following parameters: 𝜌 represents the

mass density of the ŕuid, 𝐴 is the reference area and 𝑐𝑑 is the

drag coefficient.

4.2 State Representation

Since the sensors on OS can never see the full environment

(because of the limited range and shadowing), the RL agent does

not take the full state 𝑠𝑡 as its input but rather an observation 𝑜𝑡
which contains information about the state. The perception of

obstacles is computed by performing ray tracing between the OS

and all obstacles in the environment. The distance between OS

and every intersection with an (dynamic) obstacle is represented

as d. All the odometry of OS is contained in the odometry

vector m = [𝛿, 𝛿̇, 𝑞, 𝑠, 𝜃], with 𝛿 the rudder angle, 𝑞 the distance

to the goal and the other scalars as deőned in Sect. 4.1. The

errors w.r.t. the global path are contained in e = [𝑒𝑥 , 𝑒𝑦 , 𝑒𝜓], this

vector contains the line-of-sight (LOS) path following errors as

proposed by Fossen et al. [16] and are depicted in Fig. 1. 𝑒𝑥 and

𝑒𝑦 are the relative 𝑥 and 𝑦 deviations between OS and the closest

point on the global path (point 𝑎 in Fig. 1). 𝑒𝜓 describes the

heading error between the heading of OS and a straight line from

OS to a point on the tangent in 𝑎. That point on the tangent (𝑏 in

Fig. 1) lies at a őxed distance from 𝑎, i.e. 𝑑𝑖𝑠𝑡 (𝑎, 𝑏) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡.

Furthermore, the relative coordinates to the ten closest points on

the path are added in z = [𝑥0, 𝑦0, ..., 𝑥9, 𝑦9].

All these vectors are combined with the previous action of

the agent to form the full observation:

o𝑡 = d𝑡 ∥ m𝑡 ∥ e𝑡 ∥ z𝑡 ∥ u𝑡−1 (7)

Because there is much temporal information in the transition

between subsequent time steps, we employ frame stacking, such

that the three previous observations are concatenated with the

current one using a simple őrst-in-őrst-out buffer. This forms the

total observation that is presented to the agent:

o𝑡𝑜𝑡𝑎𝑙 = o𝑡 ∥ o𝑡−1 ∥ o𝑡−2 ∥ o𝑡−3 (8)

4



Published in the conference proceedings of ASME OMAE 2023. June 11 - 16, 2023. Melbourne, Australia. Author version.

FIGURE 1: THE LEFT PART SHOWS: ex AND ey . THE RIGHT PART

SHOWS eψ .

4.3 Reward Shaping

The reward should motivate the agent to stick to the global

path as best as possible while there is no risk for a collision. The

agent should avoid dynamic obstacles at all cost while navigating

along the path to the goal as a second priority. Therefore, we

deőne the total reward function by balancing the encouraging

reward 𝑅(𝑠𝑡 ) that incentivizes the agent to follow the path closely

and the constraint cost 𝐶 (𝑠𝑡 ) that indicates if a collision happens.

The reward function is designed as follows:

𝑟𝑡𝑜𝑡𝑎𝑙 = 𝐶𝑟 · 𝑅(𝑠𝑡 ) + 𝐶𝑐 · 𝐶 (𝑠𝑡 ) (9)

𝑅(𝑠𝑡 ) = 𝑅𝑝𝑎𝑡ℎ (𝑠𝑡 ) + 𝑅𝑔𝑜𝑎𝑙 (𝑠𝑡 ) (10)

with:

𝐶 (𝑠𝑡 ) = ✶𝜒𝑜𝑏𝑠
(𝑥𝑡 , 𝑦𝑡 ) (11)

𝑅𝑔𝑜𝑎𝑙 (𝑠𝑡 ) = ✶𝜒𝑔𝑜𝑎𝑙
(𝑥𝑡 , 𝑦𝑡 ) ∗ 1000 (12)

𝑅𝑝𝑎𝑡ℎ (𝑠𝑡 ) = − ∥e𝑡 ∥1 (13)

Where𝐶 (𝑠𝑡 ) discourages the agent for hitting an obstacle and

we followed [17] in deőning the path-following reward 𝑅𝑝𝑎𝑡ℎ (𝑠𝑡 ).

Finally, 𝑅𝑔𝑜𝑎𝑙 (𝑠𝑡 ) is an extra bonus for the agent if it completes

an episode by reaching the goal. In our work, we choose 𝐶𝑟 = 1

and 𝐶𝑐 = −1000.

4.4 Domain Randomization

RL policies suffer from distributional shift: they do not work

outside of the conőguration space that they were trained in. For-

mally, this happens because samples from the state space S𝑡𝑟𝑎𝑖𝑛

of that port are not i.i.d. samples from another port with state

space S𝑡𝑒𝑠𝑡 . We therefore need to train our agent with represen-

tative samples of a distribution S𝑡𝑟𝑎𝑖𝑛 ⊇ S𝑡𝑒𝑠𝑡 . The case where

S𝑡𝑟𝑎𝑖𝑛 = S𝑡𝑒𝑠𝑡 means that our agent only learns to navigate in a

single port scenario. Since the goal of this paper is to provide a

general navigation algorithm, we make sure that |S𝑡𝑟𝑎𝑖𝑛 | is many

times larger than |S𝑡𝑒𝑠𝑡 |, forcing the agent to generalize over a

large amount of possible port conőgurations. To provide a suffi-

ciently large S𝑡𝑟𝑎𝑖𝑛 we employ domain randomization [26] in our

simulator by randomizing the following elements (see Fig. 2),

based on the docks found in the Port of Antwerp:

FIGURE 2: RANDOMIZATION OF THE SHIPPING ENVIRONMENT.

• The length of a dock: 𝑑∗ ∼ 𝑈 (300, 900),

• Center of the waterway, with reference to the backbone:

𝑏∗ ∼ 𝑈 ( − 600, 600),

• The width of the waterway: 𝑤∗ ∼ 𝑈 (300, 900).

Furthermore, we randomize the starting location of every other

vessel in the environment and their goal regions, this makes sure

that the behavior of simulated vessels can not be memorized by

the agent, but needs to be predicted by their current movements.

The goal position of OS is randomized as well. Since every path

planning problem is deőned by the tuple (𝜒𝑓 𝑟𝑒𝑒, 𝑥𝑖𝑛𝑖𝑡 , 𝜒𝑔𝑜𝑎𝑙) and

the global path is part of the state space, randomizing the goal

region 𝜒
𝑔𝑜𝑎𝑙 and the starting location 𝑥𝑖𝑛𝑖𝑡 also randomizes the

state space.

4.5 Model-based Reinforcement Learning and MuZero

This section őrst describes the key idea behind model-based

RL. Next we provide an overview of the model-based RL algo-

rithm that is used in this paper: MuZero [11]. Finally, we provide

the objective function that is minimized during training.

4.5.1 Model-based Reinforcement Learning. As the

name suggests, a key part of MBRL is the transition model

𝑇 : S × A → S′. Although some works provide that function

to the agent, we make no such assumption and therefore learn 𝑇

from environment experience. The advantage of having this tran-

sition function is that these predictions can be used in a planning

algorithm to improve the long term reasoning capability of an RL

agent. Since 𝑇 only makes predictions for a single step instead

of learning a quantity over the full horizon, this function is often

easier to learn. The agent can then use imagination (planning)

over that model to learn other functions such as the value or the

policy, improving the data efficiency. To clarify these abstract

concepts, the model-based algorithm that was used in this paper

is explained thoroughly in the next section.

4.5.2 Operation. MuZero [11] is a state-of-the-art MBRL

algorithm that combines learning and planning. It employs three

learned functions (represented by neural networks) during its

search:

• the representation function ℎ𝜙 , which maps an observation

o𝑡 to a latent state l𝑡 ,

5
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FIGURE 3: THE TREE SEARCH OF MUZERO.

• the transition function 𝑔𝜙 that predicts 𝑟𝑡+1 and l𝑡+1 from l𝑡
and 𝑎𝑡−1,

• the prediction function 𝑓𝜙 takes a latent state l𝑡 to predict its

value 𝑣𝑡 and a predicted policy 𝜋′.

all these functions depend on one combined set of parameters 𝜙,

which are the weights and biases of the neural networks.

To understand how these functions deőne the decision mak-

ing process, lets őrst assume they are perfectly trained already.

First, the agent takes an observation from the environment at time

step 𝑡, as deőned by Eqn. 8. This observation is provided as the

input to ℎ𝜙 , which outputs a latent state: l𝑡 = ℎ𝜙 (o𝑡 ). This latent

state is a lower-dimensional representation of the actual observa-

tion. The agent is fully allowed to represent the observation in any

way it wants, as long as this representation helps the agent to ac-

curately predict 𝑟𝑡+1, 𝑣𝑡 and 𝜋′ in the following steps. Concretely,

our representation model takes a 𝑑𝑖𝑚(o𝑡𝑜𝑡𝑎𝑙)-dimensional input

and outputs a 32-dimensional latent state (32 ŕoating point num-

bers).

Second, this latent state is used as the root node in a planning

algorithm called Monte Carlo Tree Search (MCTS) [27], which

has the goal of őnding the best possible action at the root, based

on the sum of rewards that are predicted throughout the search.

This is the purpose of 𝑔𝜙: for every action that is explored in

a node it can predict the next node and the corresponding re-

ward: 𝑟𝑡+(𝑛+1) , l𝑡+(𝑛+1) = 𝑔𝜙 (𝑎𝑡+𝑛, l𝑡+𝑛) (see Fig. 3). Note that

this function is the transition function 𝑇 , only represented in la-

tent space instead of observation space. A search could now be

performed, which maximizes the reward over every possible tra-

jectory from the root and then takes that action. However, this

quickly becomes computationally intractable. Therefore we need

to limit the depth and the width of the tree with estimations in-

stead of the actual search values. Since the value is an estimation

of the expected return from a certain (latent) state, we can search

until the computational budget is exhausted, after which we per-

form an estimation of how much reward will still be collected

from a speciőc leaf node: 𝑣𝑡+𝑑 = 𝑓𝜙 (l𝑡+𝑑), with 𝑑 the depth of the

leaf node. The predicted rewards on a certain search trajectory

summed with this value estimation in the root node is now the

best estimate of what return an action in the root node will deliver.

The following three steps compile the descision making pro-

cess:

1. Encode the current observation with ℎ𝜙 ,

2. Predict an optimal policy 𝜋′ using 𝑓𝜙 ,

3. Perform a MCTS with 𝑔𝜙 as the transition model. The search

is guided by 𝜋′ as a prior belief, but improves this policy

using the predicted rewards from 𝑔𝜙 and a value prediction

from 𝑓𝜙 in the leaf nodes. This improved policy is 𝜋̄,

4. Sample an action accoring to the distribution 𝜋̄.

We can summarize this process (rather informally) as:

𝑣𝑡𝑟𝑒𝑒𝑡 , 𝜋̄ = 𝑀𝐶𝑇𝑆(o𝑡 , 𝑔𝜙 , ℎ𝜙 , 𝑓𝜙) (14)

𝑎𝑡 ∼ 𝜋̄ (15)

where 𝑣𝑡𝑟𝑒𝑒𝑡 is the tree search value, which is an updated value

estimate of the root node, based on the predicted rewards and

leaf-node values during the search.

The exact methodology of exploring during the search and

combining the predicted rewards, values and predicted policy to

form 𝜋̄ and 𝑣𝑡𝑟𝑒𝑒𝑡 is left out of this work due to space constraints.

It is well explained in [11], updated with some changes that were

proposed in [28]. The adaptions from [28] were a key element to

reach stable training performance and should not be overlooked

by anyone reproducing this work.

After every action that is performed in the environment, the

tuple (𝑎𝑡 , o𝑡 , 𝑣
𝑡𝑟𝑒𝑒
𝑡 , 𝜋̄) is stored in a bufferD to be used for training

the neural networks. That training process is described next.

4.5.3 Learning. To learn, MuZero optimizes three objec-

tives. The őrst objective is the n-step bootstrapping objective,

which is an extension from standard TD-learning [7]. The goal

is to minimize the expected mean squared error between the pre-

dicted value𝑉𝜙 (o𝑡 ) at time step 𝑡 and the actual return for 𝑛 steps

summed with the tree search value at time step 𝑡 + 𝑛. This means

minimizing the following objective:

𝐽𝑉 (𝜙) = E(o𝑡 ,𝑟𝑡 ,𝑣𝑡𝑟𝑒𝑒𝑡 )∼D

[︁
(𝑉𝜙 (o𝑡 ) − 𝑉̂ (o𝑡 ))

2
]︁
, (16)

with

𝑉̂ (o𝑡 ) =

𝑛−1∑︂

𝑘=0

𝛾𝑘𝑟 (o𝑡+𝑘) + 𝛾𝑛𝑣𝑡𝑟𝑒𝑒𝑡+𝑛 . (17)

The second objective is to minimize the mean squared error

between the predicted reward 𝑅𝜙 (o𝑡 ) at a certain time step with

the actual received reward. This leads to minimizing the following

objective:

𝐽𝑅 (𝜙) = E(o𝑡 ,𝑟𝑡 )∼D
[︁
(𝑅𝜙 (o𝑡 ) − 𝑟𝑡 )

2
]︁
. (18)

The third and őnal objective is to minimize the KL-

divergence between the predicted policy 𝜋′ (.|o𝑡 ) and the im-

proved search policy 𝜋̄(.|o𝑡 ):

𝐽𝜋 (𝜙) = Eo𝑡∼D [KL(𝜋̄(.|o𝑡 ), 𝜋
′ (.|o𝑡 ))] . (19)
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As noticeable from equations 16 trough 19, all objectives

are parameterized by one set of parameters 𝜙. This means that

we can jointly optimize these objectives by minimizing the total

MuZero objective:

𝐽𝑡𝑜𝑡𝑎𝑙 (𝜙) = 𝐽𝑉 (𝜙) + 𝐽𝑅 (𝜙) + 𝐽𝜋 (𝜙). (20)

This minimization can be done by a gradient based method, in

this work, we follow [28] in employing the Adam [29] optimizer.

This objective formulation leads to the natural question of

how the transition model𝑇 (·) is learned, since it does not seem to

appear in the total MuZero objective. The answer lays in the fact

that predictions are not performed directly on an observation.

Instead, an observation is forwarded trough the representation

model, after which it is forwarded trough the transition model

for 𝑘 times. This 𝑘-step rollout is then used to make all the

predictions that are used to compute Eqn. 20. The chain rule of

derivatives therefore makes sure that ℎ𝜙 and 𝑔𝜙 are also optimized

by minimizing the total objective. Note again that these two

functions together are the total transition function 𝑇 (.). Since 𝑔𝜙
takes its own output (together with a recorded action) as the next

input, this is a recurrent neural network [30]. For an unroll of

depth 𝑘 , this process is summarized as:

𝑉𝜙 , 𝜋𝜙 = ( 𝑓𝜙 ◦ 𝑔
𝑎𝑡+𝑘
𝜙

◦ ... ◦ 𝑔
𝑎𝑡
𝜙

⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞
𝑘

◦ℎ𝜙) (o𝑡 ) (21)

This has the result that that the representation - and dynamics

model only optimize their approximation of 𝑇 with the goal of

being as useful as possible to predict a reward, value and policy.

All aspects of the environment which are irrelevant to optimizing

the performance of the agent are therefore ignored by the model.

5. EXPERIMENTAL SETUP

Our agent is trained and tested in a custom simulator that

is based on the MOOS-IVP [25] framework. The agent is the

MuZero algorithm as described in Sect. 4.5. It provides actions

in a 2D action space A = H × P, where H is a set that con-

tains 9 discrete, evenly spaced values between -30 and 30 which

represent the desired change in heading for OS (in degrees).

P = {dead slow, half, full} represents 3 discrete desired speed

values for the vessel (1m/s, 2.5m/s, 5m/s). The desired heading

and speed from the OS are passed to a proportional-integral-

derivative (PID) controller which sets the values of 𝑢𝑡ℎ𝑟𝑢𝑠𝑡 and

𝑢ℎ𝑒𝑎𝑑𝑖𝑛𝑔. These signals control the motion of the vessel as de-

scribed in Sect. 4.1. On every reset of our agent (after a collision

or when the OS reaches its goal), six other vessels select a random

start location and goal region in one of the docks, after which they

calculate a path using RRT* [23]. The default waypoint behavior

from MOOS-IVP makes sure that the vessels follow that global

path to their goal. Every 10th reset, a new environment is gen-

erated with the methodology described by 4.4. This generation

algorithm does not only provide static obstacles (the docks and

buoys), but also a valid starting point and goal regions for both the

OS and the other vessels. To train the RL agent, we implemented

a performant, distributed version of which allowed us to run 25

workers in parallel which asynchronously collect data in separate

simulations.

FIGURE 4: OS EVADES OTHER VESSELS.

FIGURE 5: OS EVADES A BUOY.

6. RESULTS AND DISCUSSION

This section describes the results of our research. First the

qualitative results validate our research by showing the operation

of our agent in a randomly selected scenario. Second, the quanti-

tative results are analyzed to evaluate the performance of the agent

over many scenarios. Third, we provide a quantitative compari-

son between our method, the Dynamic Window Approach (DWA)

and a model-free RL method.

6.1 Qualitative Results

Fig. 6 shows the path of the OS in two random scenarios. The

agent has never seen these scenarios during training. Subőgure (a)

shows how the OS remains on the global path from start to őnish

until it reaches its end goal (which is also randomly generated).

The path is about 2.7km long. Subőgure (b) shows the OS

diverging from its path around point (0, -500) and (0, -1500)

to evade dynamic obstacles. It is visible that OS recovers from

the evasion with a smooth trajectory back to the global path. This

"smoothness" is incentivized by the LOS path following reward

(Sec. 4.3). Furthermore, Fig. 5 and 4 show two screenshots from

the proposed simulator. OS is visible as a yellow vessel, other

vessels and their paths are visible in different colors. The global

path is shown as small red squares. Fig. 4 shows a scenario

where OS has to diverge from its global path to evade the red

and white vessels. It can be seen that OS successfully performs

an evasive maneuver after detecting the other vessels using its

ranging sensors. On the other hand, Fig. 5 shows an evasive

maneuver after OS detects a buoy in its őeld of view. In the

screenshot, the OS has already evaded the buoy and is heading

7
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(a) OS encounters no dynamic obstacles (b) OS encounters dynamic obstacles

FIGURE 6: THE RECORDED TRAJECTORY OF OS IN TWO RANDOMLY SELECTED SCENARIOS.

back to the global path.

6.2 Quantitative Results

Fig. 7 shows the evolution of the path following and collision

avoidance performance during the training process. It is visible

that the MuZero agent achieves a 70% success rate after 3 million

environment steps or about 10 thousand episodes in the environ-

ment. This success rate deőnes the fraction of episodes that fully

traverses the global path without a collision. A fully trained agent

has an average episode length of 300s, this means that the agent

is able to sail safely for a period of 15 minutes on average, before

encountering a safety violation. Furthermore, all the subőgures

in Fig. 7 conőrm that the proposed reward correctly prioritizes

collision avoidance over path following. First, the episode length

immediately increases from the start, meaning that the őrst prior-

ity of the agent is to learn to not collide. Second, at this stage, the

path errors also sharply increase, again conőrming that the agent

does not prioritize path following. After the intial phase (around

time step 1M), the agent starts to learn that following the path is

a good guidance for reaching the goal, hence it can be seen that

the success rate sharply increases while the path errors decrease.

The reward also sharply increases at this point. This is expected,

since every success provides 2000 reward in total to the agent:

+1000 for reaching the goal and not receiving the -1000 since no

collision happened. Therefore, Fig. 7 strongly indicates that the

proposed reward is well-designed, it correctly incentivizes the

agent to follow the global path while avoiding collisions.

6.3 Comparison with the Dynamic Window Approach

The success rate and episode length in Fig. 7 compare our

approach with the Dynamic Window Approach (DWA), which is

a commonly used collision avoidance algorithm in autonomous

shipping [13] [31]. The provided DWA baseline is an average

of 100 subsequent episodes in the shipping environment. It is

visible that the proposed methodology signiőcantly outperforms

DWA with a success rate of 70% compared to 55% of DWA.

This supports our theoretical observations in Sec. 3, since DWA

cannot predict the motion of other vessels, it is often trapped in

irrecoverable scenarios. The other metrics in Fig. 7 do not show

a baseline, since DWA does not employ the LOS approach [16].

6.4 Comparison with Model-Free RL

Table 2 shows the training progress of MuZero [11] and

PPO [9] respectively. PPO is a model-free reinforcement learn-

ing algorithm that has also been used in previous work within

the context of autonomous shipping [5]. Although PPO quickly

őnds a suboptimal policy within 500 thousand time steps, the

performance afterwards oscillates and no good policy is found

within the data budget. MuZero, however, succeeds in őnding a

much better policy before stagnating. We suspect that this is be-

cause MBRL can explore in two ways: the traditional way where

the agent performs exploratory actions in the environment, but

also by imagining many possibilities by using the learned tran-

sition model during the search phase. This concept is known as

two-phase exploration [10].

7. CONCLUSION

This paper introduces model-based reinforcement learning to

the őeld of autonomous shipping. Results show that our approach

is able to provide generalized navigation of autonomous vessels in

a wide variety of port scenarios. This generalization is achieved

by employing domain randomization. It is shown that our path

planning methodology provides safer behavior than the dynamic

window approach and we show the advantage of model-based re-

inforcement learning over a benchmark model-free reinforcement

learning algorithm. Because our proposed algorithm uses rang-

ing sensor observations without any ground-truth knowledge of

other vessels, this paper’s approach is a step toward autonomous

navigation in complex inland - and port scenarios.
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FIGURE 7: METRICS LOGGED DURING THE TRAINING PROCESS. E_X, E_Y, E_PSI: PATH FOLLOWING ERRORS (SECT. 4.2); A SUCCESS

REPRESENTS A FULL COLLISION-FREE EPISODE (START TO GOAL); REWARD AS IN SECT. 4.3; EPISODE LENGTH: STEPS (=SECONDS)

PER EPISODE. A RUNNING AVERAGE FILTER (WINDOW SIZE 100) WAS USED. DWA BASELINE INCLUDED FOR RELEVANT METRICS.

TABLE 2: A COMPARISON BETWEEN A STATE-OF THE ART MODEL-FREE AGENT (PPO) AND MUZERO.

time step 0 500k 1M 1.5M 2M 2.5M 3M 3.5M 4M 4.5M 5M

MuZero -1100 -900 -800 -760 -800 -200 0 150 75 210 220

PPO -1100 -680 -480 -470 -760 -940 -270 -570 -780 -1045 -1056
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