
Machine Learning for Wireless
Communication
From next-generation spectrum sharing frameworks to
communication-aware learning agents

Miguel Camelo

Supervisor prof. dr. Steven Latré

Thesis submitted in fulfilment of the requirements for the degree of doctor in computer science
Faculty of Science | Antwerp, 2024

Faculty of Science

Machine Learning for Wireless
Communication

From next-generation spectrum sharing frameworks to communication-aware
learning agents

Thesis submitted in fulfilment of the requirements for the degree of
doctor in computer science

at the University of Antwerp

Miguel Camelo

Antwerp, 2024
Supervisor

prof. dr. Steven Latré

Jury
Chairman
prof. dr. Jeroen Famaey, University of Antwerp, Belgium

Supervisor
prof. dr. Steven Latré, University of Antwerp, Belgium

Members
prof. dr. Carlos Donato, Universidad Carlos III de Madrid, Spain
prof. dr. Eli De Poorter, University of Gent, Belgium
prof. dr. Rafael Berkvens, University of Antwerp, Belgium
prof. dr. Sofie Pollin, KU Leuven, Belgium

Contact
Miguel Camelo
University of Antwerp
Faculty of Sciences
IDLab - Department of Computer Science
Sint-Pietersvliet 7, 2000 Antwerp, Belgium
M: miguel.camelo@uantwerpen.be

© 2024 Miguel Camelo
All rights reserved.

Abstract

As services and networks continue to grow in complexity, the demand for network
management automation rises, encompassing not only the services but also the network
functions themselves. The main goal behind such networks’ management, orchestration,
and control systems is to optimize the network resources (e.g., spectrum, networking,
computing, etc.) to achieve efficiency while satisfying users’ requirements. These kind
of networks are the so-called Autonomous Networks (ANs). The recent advances in
Artificial Intelligence (AI), and more precisely in Machine Learning (ML), can provide
the enablers to allow these AN to manage the resources autonomously and be able to learn
and adapt themselves in very complex and dynamic environments optimally. Learning
and adaptation are the fundamental capabilities to provide the network of capabilities
to perform advanced autonomous tasks such as self-healing, self-diagnosing, and self-
provisioning.

In this context, the radio access domain is undergoing a radical transformation towards
a fully Autonomous Domain (AD). Wireless networks have experienced significant ex-
pansion and are now crucial segments within the more extensive network infrastructure.
This transformation is primarily focused on two key aspects of research. Firstly, these
networks face inherent complexities due to factors such as user mobility and the un-
reliability of wireless links. Moreover, the demanding requirements of 5G and future
networks, including ultra-low latency (1-10 ms), exceptional reliability (up to five nines),
high throughput (up to 20 Gbps), and flexible resource allocation, amplify the need for
advanced management techniques to tackle these intricate challenges effectively.

Secondly, a shortage of available spectrum hinders the deployment of 5G technologies.
Traditional static frequency plans, which allocate exclusive spectrum portions for single
usage or individual users, have become obsolete. While a significant portion of the allo-
cated spectrum remains underutilized, the spectrum used by everyday communication
technologies is overutilized. Global efforts are underway to update the exclusive-usage
spectrum allocation model and make additional spectrum available for broadband data,
thereby increasing spectrum reuse. Critical enabling technologies, such as Cognitive
Radios (CRs), continue to evolve providing capabilities to intelligently adapt radios to
their environment aiming to achieve Dynamic Spectrum Access (DSA) optimally.

DSA for spectrum sharing is a good example where there is a continuously growing
interest in how to enable the intelligent operation of the radio networks, which is mainly
driven by the increased complexity of the network’s management compared with the
legacy versions, imposes a totally different way to perform operations that were formerly
performed purely through human intervention (error pruned), mathematical optimiza-
tion (too slow), or first-generation AI such as expert/ruled-based systems (deriving the
rules are not anymore straightforward). It is here where the new generation of AI, ba-
sically driven by Deep Learning (DL) techniques in ML during the last 5-10 years, has

i

ii

provided a new set of algorithms and techniques to empower the new generation of data
analytic and intelligent decision engines to achieve the vision of fully ANs.

To successfully implement and deploy radio access ADs, significant novel contributions
and innovations are required in selecting, designing, and deploying AI/ML algorithms
managing the available resources (spectrum, networking, computing, storage). This is
fundamental as new challenges emerge: deciding when to use traditional management
algorithms, ML-based models, or even hybrid approaches; deciding where they have
to be deployed (radio vs. fog vs. edge); and how to manage their life cycle (from
data harvesting to intelligent decision-making). However, when applying AI to solve
problems in networking and to run in networks, it is crucial to focus not only on the
optimization problem to solve but also on the design of the learning algorithm itself,
considering both requirements when using a given technique and challenges when we
want to deploy them in networks.

Until a few years ago, the dominant trend among most AI practitioners for network-
ing was using "vanilla" versions of the ML algorithms to empower their controllers and
orchestrators. However, this approach did not account for the specificities and unique re-
quirements of networking functionalities, resulting in it not being a sensible choice. More
recently, there has been a growing adoption of specific techniques to design tailored so-
lutions that include aspects such as sustainability (energy consumption and carbon foot-
print), reliability (algorithms performance in unseen situations), scalability (centralized
vs. decentralized deployments), resource awareness (model size vs. accuracy), training
efficiency (labels vs. accuracy), communication awareness (communication overhead vs.
convergence), or responsiveness (real-time vs. non-real-time training), which can deliver
solutions that are (semi-) optimal and suitable to run in networks.

This dissertation investigates some of these challenges from two complementary points
of view. Firstly, on the radio network side, we investigate the challenges associated with
creating a novel spectrum-sharing framework that is built on top of the concept of radio
access ADs, i.e., the radio access network provides autonomy, abstraction, and collabora-
tion, such that we can go beyond the state-of-the-art spectrum sharing systems that are
mainly centralized and database-assisted. We approach these challenges by designing a
two-tier architecture that enables efficient spectrum sharing, built on top of the concept
of Collaborative Intelligent Radio Network (CIRN) and with the guarantee of incumbent
protection. Compared to new approaches like Citizens Broadband Radio Service (CBRS)
and Licensed Shared Access (LSA), our system requires no central infrastructure to con-
trol and grant access to the shared spectrum. Moreover, this is the first work that proposes
a system to protect the incumbent’s transmissions in a collaborative environment to the
author’s best knowledge.

We also provide a general framework that enables the development of Traffic Classifica-
tion (TC) algorithms optimized for wireless networks. Building on top of it, a procedure
based on DL to perform TC on spectrum samples is proposed. This procedure enables
the management algorithms running at the Gateway (GW) nodes (or beyond) to perform
better by having a broader view of the traffic flowing in the shared spectrum. To the best
of our knowledge, this is the first framework that allows the development of Radio Access
Technologies (RAT)-agnostic spectrum-based TC algorithms. Both frameworks are built
on top of a DL-based Technology Recognition (TR) algorithm that is also designed and
developed in this dissertation. This algorithm is a fundamental enabler for the proposed

iii

frameworks since it allows them to be ultimately radio technology agnostic. The two-tier
framework, which includes the TR algorithm, has been tested and validated in Colos-
seum, the world’s largest Radio Frequency (RF) channel emulator built for the DARPA
Spectrum Collaboration Challenge (SC2) competition. Using the Defense Advanced Re-
search Projects Agency (DARPA) Colosseum, we provided strong evidence about the
robustness of the proposed approach.

Secondly, on the ML side, we investigate two main challenges when designing DL and
Reinforcement Learning (RL) algorithms: 1) how to ensure training efficiency (labels vs.
accuracy) when they are used to solve networking problems, and 2) how to guarantee
scalability when they need to be deployed in a distributed networking infrastructure.
In the first case, we approach this challenge by making the label-efficient TR. For this,
the proposed DL algorithm empowering TR is based on Semi-supervised Learning (SSL)
that minimizes the need for labeling large data sets of spectrum data (raw In-phase and
Quadrature (IQ)), which is a time-consuming and challenging task. In the second case,
we approach this challenge by providing a novel approach that allows any table-based
Parallel Reinforcement Learning (PRL) algorithm to run RL-based applications with
minimal communication overhead in a distributed environment. To the authors’ best
knowledge, this is the first work that focuses on solving the communication overhead
of distributing PRL algorithms without requiring any a priori information about the
environment, making the agents communication-aware by design.

iv

Samenvatting

Naarmate diensten en netwerken in complexiteit blĳven groeien, neemt de vraag naar
automatisering van netwerkbeheer toe, waarbĳ niet alleen de diensten maar ook de
netwerkfuncties zelf worden omvat. Het belangrĳkste doel achter dergelĳke beheer-,
orkestratie- en controlesystemen van netwerken is om de netwerkmiddelen (bĳvoorbeeld
spectrum, netwerken, computing, enz.) te optimaliseren om efficiëntie te bereiken terwĳl
aan de behoeften van gebruikers wordt voldaan. Dit type netwerk wordt de zogenaamde
Autonomous Networks (ANs) genoemd. De recente vooruitgang in Artificial Intelligence
(AI) en meer specifiek in Machine Learning (ML) kan de mogelĳkheden bieden om deze
ANs in staat te stellen de bronnen autonoom te beheren en zich optimaal aan te passen
in zeer complexe en dynamische omgevingen. Leren en aanpassen zĳn de fundamentele
capaciteiten om het netwerk in staat te stellen geavanceerde autonome taken uit te voeren,
zoals zelfherstel, zelfdiagnose en zelfvoorziening.

In deze context ondergaat het domein van radiotoegang een radicale transformatie naar
een volledig Autonomous Domain (AD). Draadloze netwerken hebben een aanzienlĳke
expansie doorgemaakt en zĳn nu cruciale segmenten binnen de bredere netwerkinfras-
tructuur. Deze transformatie richt zich voornamelĳk op twee belangrĳke onderzoek-
saspecten. Ten eerste worden deze netwerken geconfronteerd met inherente complex-
iteiten door factoren zoals gebruikersmobiliteit en de onbetrouwbaarheid van draadloze
verbindingen. Bovendien versterken de veeleisende vereisten van 5G en toekomstige
netwerken, waaronder ultra-lage latentie (1-10 ms), uitzonderlĳke betrouwbaarheid (tot
vĳf negens), hoge doorvoersnelheid (tot 20 Gbps) en flexibeleallocatie van middelen, de
nood aan geavanceerde beheertechnieken om deze ingewikkelde uitdagingen effectief
aan te pakken.

Ten tweede wordt de huidige implementatie van 5G-technologieën belemmerd door een
tekort aan beschikbaar spectrum. Traditionele statische frequentieplannen, die exclusieve
delen van het spectrum toewĳzen voor enkelvoudig gebruik of individuele gebruikers,
zĳn verouderd. Terwĳl een aanzienlĳk deel van het toegewezen spectrum onderbenut
blĳft, wordt het spectrum gebruikt door alledaagse communicatietechnologieën overbe-
nut. Wereldwĳde inspanningen zĳn gaande om het exclusieve spectrumallocatiemodel
te actualiseren en extra spectrum beschikbaar te stellen voor breedbandgegevens, waar-
door het hergebruik van spectrum toeneemt. Kritische ondersteunende technologieën,
zoals Cognitive Radios (CRs), blĳven evolueren en bieden mogelĳkheden om radio’s
intelligent aan te passen aan hun omgeving, met als doel optimale Dynamic Spectrum
Access (DSA) te bereiken.

DSA voor spectrumdeling is een goed voorbeeld waarbĳ er een continu groeiende in-
teresse is in hoe de intelligente werking van de radionetwerken mogelĳk gemaakt kan
worden. Dit wordt voornamelĳk aangedreven door de toegenomen complexiteit van het
netwerkbeheer in vergelĳking met de oudere versies, wat een totaal andere manier van

v

vi

opereren vereist. Vroeger werden deze operaties uitgevoerd door puur menselĳke in-
terventie (foutgevoelig), wiskundige optimalisatie (te traag) of eerstegeneratie AI, zoals
expert-/regelgebaseerde systemen (waarbĳ het afleiden van regels niet meer vanzelf-
sprekend is). Hier komt de nieuwe generatie AI, voornamelĳk aangedreven door Deep
Learning (DL) technieken in ML tĳdens de afgelopen 5-10 jaar, in beeld. Deze heeft
een nieuwe reeks algoritmen en technieken geleverd om de nieuwe generatie van data-
analyse en intelligente besluitvormingsmachines te versterken, waarmee de visie van
volledig ANs bereikt kan worden.

Om radiotoegang ADs succesvol te implementeren en in te zetten, zĳn significante nieuwe
bĳdragen en innovaties vereist bĳ het selecteren, ontwerpen en implementeren van
AIs/MLs-algoritmen voor het beheer van beschikbare middelen (spectrum, netwerken,
rekenkracht, opslag). Dit is essentieel omdat er nieuwe uitdagingen ontstaan: beslis-
sen wanneer traditionele beheeralgoritmen, op ML gebaseerde modellen of zelfs hy-
bride benaderingen moeten worden gebruikt; beslissen waar ze moeten worden in-
gezet (radio versus fog versus edge); en hoe hun levenscyclus moet worden beheerd
(van gegevensverzameling tot intelligente besluitvorming). Bĳ het toepassen van AI om
netwerkproblemen op te lossen en in netwerken te draaien, is het echter cruciaal om niet
alleen te focussen op het op te lossen optimalisatieprobleem, maar ook op het ontwerp
van het leeralgoritme zelf, waarbĳ zowel de vereisten bĳ het gebruik van een gegeven
techniek als de uitdagingen bĳ netwerkimplementatie worden overwogen.

Tot voor kort was de dominante trend onder de meeste AI-beoefenaars voor netwerken het
gebruik van "standaard" versies van ML-algoritmen om hun controllers en orchestrators
te versterken. Deze benadering hield echter geen rekening met de specifieke kenmerken
en unieke eisen van netwerkfunctionaliteiten, wat resulteerde in een zinloze keuze. On-
langs is er een groeiende acceptatie van specifieke technieken om op maat gemaakte
oplossingen te ontwerpen die aspecten omvatten zoals duurzaamheid (energieverbruik
en koolstofvoetafdruk), betrouwbaarheid (prestaties van algoritmen in onvoorziene situ-
aties), schaalbaarheid (gecentraliseerde versus gedecentraliseerde implementaties), mid-
delenbewustzĳn (modelgrootte versus nauwkeurigheid), trainings-efficiëntie (labels ver-
sus nauwkeurigheid), communicatiebewustzĳn (communicatie-overhead versus conver-
gentie) of reactievermogen (real-time versus niet-real-time training), die oplossingen
kunnen bieden die (semi-) optimaal zĳn en geschikt zĳn om in netwerken te draaien.

Deze dissertatie onderzoekt enkele van deze uitdagingen vanuit twee complementaire
perspectieven. Ten eerste onderzoeken we aan de kant van het radionetwerk de uitdagin-
gen die gepaard gaan met het creëren van een nieuw kader rond spectrumdeling gebaseerd
op het concept vanradiotoegang ADs, dat wil zeggen, het radionetwerk biedt autonomie,
abstractie en samenwerking, zodat we verder kunnen gaan dan de bestaande spec-
trumdelingssystemen die voornamelĳk centraal zĳn en ondersteund door een database.
We benaderen deze uitdagingen door een tweelaagse architectuur te ontwerpen die ef-
ficiënte spectrumdeling mogelĳk maakt, gebaseerd op het concept van Collaborative
Intelligent Radio Network (CIRN) en met de garantie van bescherming van de huidige
gebruikers. In vergelĳking met nieuwe benaderingen zoals Citizens Broadband Ra-
dio Service (CBRS) en Licensed Shared Access (LSA), vereist ons systeem geen centrale
infrastructuur om de toegang tot het gedeelde spectrum te regelen en te verlenen. Boven-
dien is dit het eerste werk dat een systeem voorstelt om de transmissies van de huidige
gebruikers in een samenwerkende omgeving te beschermen, naar beste weten van de
auteur.

vii

Daarnaast bieden we ook een algemeen kader dat de ontwikkeling van Traffic Classifi-
cation (TC) algoritmen optimaliseert voor draadloze netwerken. Op basis hiervan wordt
een procedure voorgesteld op basis van DL om TC uit te voeren op spectrumsamples.
Deze procedure stelt de beheeralgoritmen die draaien bĳ de Gateway (GW)-knooppunten
(of verder) in staat beter te presteren door een breder beeld te hebben van het verkeer dat
in het gedeelde spectrum stroomt. Voor zover ons bekend, is dit het eerste kader dat de
ontwikkeling van spectrumgebaseerde TC-algoritmen mogelĳk maakt die onafhankelĳk
zĳn van Radio Access Technologiess (RATs). Beide kaders zĳn gebouwd op basis van
een op DL gebaseerd Technology Recognition (TR) algoritme dat ook is ontworpen en
ontwikkeld in deze dissertatie. Dit algoritme is een fundamenteel instrumentvoor de
voorgestelde kaders, aangezien het hen in staat stelt uiteindelĳk technologie-agnostisch
te zĳn. Het tweelaagse kader, inclusief het TR-algoritme, is getest en gevalideerd in
Colosseum, ’s werelds grootste Radio Frequency (RF) kanaalemulator gebouwd voor de
DARPA Spectrum Collaboration Challenge (SC2) competitie. Met behulp van de Colos-
seum van het Defense Advanced Research Projects Agency (DARPA) hebben we sterke
bewĳzen geleverd van de robuustheid van de voorgestelde aanpak.

Ten tweede onderzoeken we aan de kant van ML twee belangrĳke uitdagingen bĳ het
ontwerpen van DL- en Reinforcement Learning (RL)-algoritmen: 1) hoe de trainings-
efficiëntie (labels versus nauwkeurigheid) te waarborgen wanneer ze worden gebruikt
om netwerkproblemen op te lossen, en 2) hoe schaalbaarheid te garanderen wanneer
ze moeten worden ingezet in een gedistribueerde netwerkinfrastructuur. In het eerste
geval benaderen we deze uitdaging door de label-efficiënte TR te maken. Hiervoor is
het voorgestelde DL-algoritme dat TR versterkt gebaseerd op Semi-supervised Learning
(SSL), dat de noodzaak minimaliseert om grote datasets met spectrumgegevens (ruwe
In-phase and Quadrature (IQ)) te labelen, wat een tĳdrovende en uitdagende taak is. In
het tweede geval benaderen we deze uitdaging door een nieuwe aanpak te bieden die
elk op tabellen gebaseerd Parallel Reinforcement Learning (PRL) algoritme in staat stelt
RL-gebaseerde toepassingen uit te voeren met minimale communicatie-overhead in een
gedistribueerde omgeving. Naar beste weten van de auteur is dit het eerste werk dat
zich richt op het oplossen van de communicatie-overhead bĳ de distributie van PRL-
algoritmen zonder enige a priori informatie over de omgeving, waardoor de agenten van
nature communicatiebewust zĳn.

viii

Acknowledgements

Writing a Ph.D. thesis book is undoubtedly challenging, but writing this section has been
the hardest task for me, as it brought back so many memories that cannot fit into a single
book. However, below you will find the shorter version of my acknowledgments.

I would like to start by thanking my advisor, Steven Latré, the person who gave me the
opportunity to secure a research position in Belgium after my first Ph.D. After our first
interview, I knew I was meeting my possible new boss. Over the years, I discovered that
Steven was not only a brilliant researcher and an inspiring leader but also a professional
role model and, last but not least, someone you can really trust. Thank you, Steven, for
being the person you are.

When I joined IDLab-UAntwerp (formerly MOSAIC), Steven was a new professor leading
a group that included both new and experienced postdocs, as well as a new generation
of Ph.D. students. Thank you, Bart S., Esteban, Glenn, Pedro, and Serena, for the shared
moments during those initial years and for remaining my friends today. Over the years,
many more people have been part of this journey, whether through engaging research
discussions, simply sharing pleasant times during coffee breaks (from the cold server
room at Middelheim to Café René at the Beacon), or supporting me at any level until
today. The following is not an exhaustive list, but these are the people I can recall: Arno,
Bart L., Catherine, Céline, Daniel, Dimitri, Ensar, Esra, Henrique, Inton, Jakob, Jeremy,
Johan B., Johann M., Lee, Lynn, Maarten, Michelle, Najat, Nina, Patrick, Raf, Ruben, Tom,
Thomas, Werner, Xhulio, and Yorick. I extend my gratitude to all of you.

I would like to extend my sincere thanks also to my colleague Adnan Shahid, who
introduced me to the world of AI/ML for spectrum management and supported me
during those initial steps in this field. In addition, many thanks to my colleagues during
the DARPA SC2 competition from Ghent, IMEC, and Rutgers University for the great
adventure and interesting talks.

On a more personal note, I would like to thank my family and closest friends. First, I
want to thank my lovely wife Christine, for being the reason I started an adventure in
Belgium and for standing by my side each and every day for the last twelve years, as well
for giving me the most precious gift: our daughter, Helena. I love you both with my
hearth!. Of course, I extend this gratitude to my in-laws, for accepting me as one of their
own. I am deeply grateful for their hospitality and the way they have integrated me into
their lives.

ix

x

Me gustaría continuar con mi familia en Colombia, porque cada logro en mi vida es un
reconocimiento a todo el amor que me han dado. Un agradecimiento especial también va
para mi mamá, mi tía Gloria y mi tía Liliana por su amor y apoyo incondicional cada día
de mi vida. Obviamente, este agradecimiento se extiende a todo el resto de mi familia:
mi hermana, mis tíos y tías, y todos los que siempre han estado presentes. También
estoy profundamente agradecido con mis abuelos Marina y Baudelino por haber sido
mis mayores apoyos desde que tengo memoria. Agradezco su continuo apoyo y amor,
aun cuando ya no estén a nuestro lado.

De manera similar, me gustaría expresar mi sincera gratitud hacia mis buenos amigos
Paola y Nelson, y recientemente David, por recordarme las buenas vibras de mi país cada
vez que hablamos. También quisiera agradecer a mi amigo Carlos D. por sus excelentes
consejos (tanto profesionales como personales) que siguen siendo valiosos hasta hoy. Y
no olvidar a mis mejores amigos, Ferney, Julian y Luis Eduardo, por su apoyo y amistad
incondicional. ¡Muchas gracias!

Último, pero no menos importante, gracias a Dios, no solo por darme fuerza en esos
momentos difíciles en mi vida cuando necesitaba un apoyo divino, sino también por
darme la oportunidad de tener la mejor familia y amigos que uno pudiera desear.

May 2024, Antwerp
Miguel Camelo

"If all difficulties were known at the outset of a long journey,
most of us would never start out at all." – Dan Rather

Dedicated to my grandparents Marina and Baudelino, who taught me the meaning of
unconditional love. Algun dia nos volveremos a ver mis viejos.

xi

xii

Table of Contents

List of Figures . xix

List of Tables . xxii

List of Acronyms . xxix

1 Introduction 1

1.1 Research Context . 1

1.2 Problem Statement . 6

1.3 Research Questions . 9

1.4 Research Hypotheses . 11

1.5 Dissertation Outline . 14

1.6 Publications . 14

1.6.1 O: Patent Applications . 15

1.6.2 A1: Journal publications indexed by ISI Web of Science "Science
Citation Index Expanded" . 15

1.6.3 P1: Proceedings included in the ISI Web of Science "Conference
Proceedings Citation Index - Sciences" 15

2 Terminology and Background 17

2.1 Wireless Communication Systems . 17

2.1.1 Radio Spectrum and Communication Systems 17

2.1.2 Modulation and the Sampling Process 19

2.1.3 Cognitive Radios . 22

2.1.4 Collaborative Intelligent Radio Networks (CIRN) 25

2.2 Machine Learning . 33

2.2.1 Unsupervised and Supervised Learning 35

xiii

xiv TABLE OF CONTENTS

2.2.2 Semi-supervised Learning . 35

2.2.3 Reinforcement Learning and its Parallelization 37

2.2.4 Neural Networks and Deep Learning 41

3 Label-Efficient Automatic Wireless Technology Recognition 45

3.1 Introduction . 45

3.2 Related Works . 47

3.3 A Semi-supervised system for Technology Recognition 49

3.3.1 Automatic Signal Identification as a classification problem 49

3.3.2 Spectrum Manager Framework . 50

3.3.3 System description . 51

3.3.4 Semi-Supervised Learning using Deep Autoencoders 52

3.3.5 Baseline using CNN . 54

3.4 Data set generation . 55

3.5 Results . 57

3.5.1 Algorithm Convergence . 57

3.5.2 Model performance in the presence of noise 59

3.5.3 Labeling efficiency . 61

3.6 Conclusions . 62

4 A scalable and decentralized spectrum-sharing framework for Collaborative
Intelligent Radio Networks 63

4.1 Introduction . 63

4.2 Two-tier model framework for CIRN . 65

4.3 Incumbent protection in SCATTER . 68

4.4 System Implementation . 70

4.5 Experimental validation . 72

4.5.1 SCATTER protecting the incumbent alone 73

4.5.2 SCATTER and multiple CIRN protecting the incumbent 74

4.5.3 Execution time performance . 74

TABLE OF CONTENTS xv

4.6 Conclusions . 75

5 A General Approach for Traffic Classification in Wireless Networks 77

5.1 Introduction . 77

5.2 Related work . 79

5.2.1 Traffic Classification using L2 (and above) classification objects . . 79

5.2.2 Traffic Classification using L1 classification objects 82

5.3 A general framework for Traffic Classification 83

5.3.1 Limitation of the byte-based frameworks for Traffic Classification . 83

5.3.2 A Traffic Classification framework at any layer 84

5.4 Spectrum-based Traffic Classification system based on Deep Learning . . 88

5.5 Data set generation and Deep Learning model design 90

5.5.1 L1 packets Data set generation . 90

5.5.2 Traffic Classification tasks . 93

5.5.3 Deep Learning models design and training 98

5.6 Results and discussion . 101

5.6.1 L2 Frame characterization task (Task 1) 102

5.6.2 L7 Application characterization task (Task 2) 105

5.6.3 L7 Application identification Traffic Classification task (Task 3) . . 109

5.6.4 Comparison against Deep Learning and statistical Machine Learn-
ing on bytes . 111

5.7 Conclusion . 113

6 Parallel Reinforcement Learning with Minimal Communication Overhead 115

6.1 Introduction . 115

6.2 Related work . 117

6.2.1 Reinforcement Learning-based IoT applications 117

6.2.2 Parallel Reinforcement Learning . 118

6.2.3 Speeding-up RL-based IoT applications with PRL 119

xvi TABLE OF CONTENTS

6.3 Dynamic partitioning for Parallel Reinforcement Learning for IoT applica-
tions . 120

6.3.1 The need for a dynamic state-action space partitioning 120

6.3.2 Dynamic co-allocation of processing and storage 123

6.3.3 Local-affinity policy . 127

6.3.4 Algorithm complexity analysis . 128

6.4 Performance Evaluations . 129

6.4.1 Scenario and PRL algorithm . 129

6.4.2 Algorithm parameters and hyper-parameters selection 130

6.4.3 Performance using optimal hyperparameters 131

6.4.4 Number of agents . 132

6.4.5 Problem size . 134

6.4.6 Episodes Before Partitioning . 134

6.4.7 Energy consumption and total communication overhead 135

6.5 Conclusion . 136

7 Conclusions 139

7.1 Main research contributions . 139

7.2 Open challenges and future prospects of this research 145

7.2.1 Autonomous spectrum management frameworks 146

7.2.2 ML-based functions for autonomous spectrum management 146

7.2.3 Multi-Agent Reinforcement Learning running on distributed envi-
ronments . 148

References 150

List of Figures

1.1 A general Ettus USRP architecture based on the Ettus N310. 3

1.2 Evolution of Software Define Radios and their radio industry market over
time. 4

1.3 System architecture of SCATTER radio. 5

1.4 An AD for radio access networks. 6

1.5 Organization of this book and relationship with problem statements. . . . 14

2.1 Block diagram of a general communication system. 19

2.2 The modulation and demodulation processes in radio communication sys-
tems. 20

2.3 Different types of modulations. 21

2.4 A BPSK signal in baseband and modulated. 22

2.5 Double sideband and sideband effects when using real and complex sig-
nals in transmissions. 23

2.6 High-level hardware block diagram of the commercial-grade NI Ettus
USRP X410. 24

2.7 The cognitive radio cycle. 24

2.8 SCATTER system architecture. 26

2.9 High-level architecture of the SCATTER PHY. 28

2.10 McF-TDMA slot table structure and possible states. 29

2.11 FPGA configuration with dual PHY and RF-MON. 31

2.12 Relationships between AI, ML, and DL. 34

2.13 Comparing supervised, unsupervised, and semi-supervised learning. . . . 36

2.14 An agent-environment interaction in a MDP. 38

2.15 Reduction rate in the learning and execution time of the CS-RL algorithm
solving the Cliff problem in a grid of size 100x100. 40

xvii

xviii LIST OF FIGURES

2.16 A DNN model showing the input, hidden, and output layers. 42

3.1 A spectrum management framework. 50

3.2 Proposed semi-supervised learning approach workflow for TR. 51

3.3 SSL algorithm implemented using DAE. 53

3.4 Base-line SL algorithm implemented using CNN. 55

3.5 RF Monitor module and its connections. 55

3.6 Time and time-frequency signatures of the wireless technologies to be
recognized. 57

3.7 Model training convergence: accuracy and loss curves using the validation
data set. 58

3.8 Model accuracy at different SNR. 59

3.9 Confusion matrices for CNN and SSL algorithm using DAE at different SNR. 60

3.10 DAE reconstruction: Original q(t) signal and reconstructed q(t) signal. . . 61

3.11 Impact of the number of labels used during learning. 62

4.1 Two-tier model framework for incumbent protection using CIRN. 66

4.2 SCATTER architecture overview and the ICDE components for incumbent
protection. 67

4.3 Proposed two-step AI-based algorithm for incumbent protection. 68

4.4 CNN model used for TR. 70

4.5 An example of creating a probability tree based on a given incumbent
detection buffer. 72

4.6 Spectrum received from RF-MON and the incumbent detection output
from TR aligned to the SCATTER MF-TDMA scheduling. 74

5.1 Use case scenario where the traffic analysis will be incomplete if a byte-
based TC system is used. 84

5.2 Functional diagram of a general framework for traffic classification at any
layer. 86

5.3 The 4-steps TC system using spectrum data. 88

5.4 Hardware deployment and data flow from capturing traffic and data set
creation to model training and validation. 91

LIST OF FIGURES xix

5.5 DL architectures designed, implemented and evaluated for TC at spectrum
level. 100

5.6 Training time per epoch and accuracy on the test data set vs. the input size
N (number of IQ samples) in task 1. 102

5.7 Test data set normalized confusion matrices with different input sizes N
(number of IQ samples) in task 1. 104

5.8 Training time per epoch and accuracy on the test data set vs. the input size
N (number of IQ samples) in task 2. 105

5.9 Test data set normalized confusion matrices with different input sizes N
(number of IQ samples) in task 2. 107

5.10 Accuracy on the test data set vs. the input size N (number of IQ samples)
in task 3. 109

5.11 Test data set normalized confusion matrices with different input sizes N
(number of IQ samples) in task 3. 110

6.1 The item-fetch problem in a grid of 3x5, 2 RS, 2 AP, and 1 PS and the states
associated with each location. 122

6.2 Learning curve and communication cost of the evaluated algorithms on a
31x31 grid with 8 agents and 𝛽 = 100. 133

6.3 Impact of the number of agents in the communication cost with grid size
31x31 and 𝛽 = 100. 134

6.4 Impact of varying the size of the problem. The number of agents was fixed
to 8. 135

7.1 Research contributions in the context of CIRN. 144

7.2 An integrated view of this dissertation. 145

xx LIST OF FIGURES

List of Tables

1.1 A summary of this dissertation and the links between problem statements,
research hypotheses, and research questions. 13

2.1 Radio bands of the electromagnetic spectrum defined by the ITU. 18

3.1 Summary of the TR data set. 57

5.1 Comparison of our work and other contributions focusing on TC using DL. 80

5.2 Description of the proposed classification tasks to evaluate the spectrum-
based traffic recognition approach. 94

5.3 Sample distribution per task label and per technology within the task
labels (task 1) . 95

5.4 L1 and L2 packet length stats per label (task 1). 95

5.5 Sample distribution per task label and per technology within the task
labels (tasks 2 and 3). 96

5.6 L1 and L2 packet length stats per label (task 2). 96

5.7 L1 and L2 packet length stats per class (task 3). 97

5.8 Summary of the metrics used to evaluate the quality of the model’s pre-
dictions with the largest input lengths. 103

5.9 Prediction time per single L1 packet in task 1. 103

5.10 Prediction time per single L1 packet in task 2. 106

5.11 Parameters of the CNN and GRU-NN architectures. 108

5.12 Comparison of the three different approaches for TC on the three evaluated
tasks. 112

6.1 Parameters/variables used in the algorithms. 121

6.2 Possible partitions of the QT based on states. 123

xxi

xxii LIST OF TABLES

6.3 Numerical range of the algorithm’s variables. 132

6.4 Impact of Remote Updates and Exchange States in the Communication Cost.136

6.5 Comparison of transmitted packets between random and DP+LA locally
optimised partitioning. 136

Acronyms

5G-NR 5G New Radio.

AD Autonomous Domain.

ADC Analog-to-Digital Converter.

AE Autoencoder.

AI Artificial Intelligence.

AL Alamouti.

AMC Automatic Modulation Classification.

AN Autonomous Network.

AP Access Point.

API Application Programming Interface.

APM Adaptive Power Management.

ASI Automatic Signal Identification.

ATSSS 3GPP Access Traffic Steering Switching and Splitting.

B5G Beyond 5G.

BPSK Binary Phase Shift Keying.

CAGR Compound Annual Growth Rate.

CB Control-Broadcast.

CBR Constant Bit Rate.

CBRS Citizens Broadband Radio Service.

CCK Complementary Code Keying.

CI Collaborative Interface.

CIL CIRN Interaction Language.

CIR Collaborative Intelligent Radio.

CIRN Collaborative Intelligent Radio Network.

xxiii

xxiv Acronyms

CNN Convolutional Neural Network.

Conv Convolutional.

CP Control Plane.

CPU Central Processing Unit.

CQI Channel Quality Indicator.

CR Cognitive Radio.

CS-RL Constant-Share Reinforcement Learning.

CTW Context Tree Weighting.

CU Centralized Unit.

CWT Continuous Wavelet Transform.

DAC Digital-to-Analog Converter.

DAE Deep Autoencoder.

DARPA Defense Advanced Research Projects Agency.

DCI Downlink Control Information.

DDC Digital Down Converter.

DFN Deep Feedforward Networks.

DFS Dynamic Frequency Selection.

DL Deep Learning.

DMA Direct Memory Access.

DNN Deep Neural Network.

DP Data Plane.

DPI Deep Packet Inspection.

DRL Deep Reinforcement Learning.

DSA Dynamic Spectrum Access.

DSB Double Sideband.

DSM Dynamic Spectrum Management.

DSP Digital Signal Processing.

DSSS Direct-Sequence Spread Spectrum.

DT Decision Trees.

DU Distributed Unit.

Acronyms xxv

DUC Digital Up Converter.

EHF Extreme High Frequencies.

ETSI European Telecommunications Standards Institute.

FB Feature-Based.

FCC Federal Communications Commission.

FFT Fast Fourier Transform.

FIFO First In, First Out.

FIR Finite Impulse Response.

FNN Feedforward Neural Networks.

FPGA Field-programmable Gate Array.

FSL Few-Shot Learning.

FWA Fixed Wireless Access.

GB Gradient Boost.

GL Gossip Learning.

GMFA Generalized Mean Ambiguity Function.

GP Gaussian Processes.

GRU Gated Recurrent Units.

GW Gateway.

HDLC High-level Data Link Control.

HMM Hidden Markov Model.

ICDE Intelligent Control and Decision Engine.

ImRAT Intelligent multi-RAT.

IoT Internet of Things.

IoV Internet of Vehicles.

IP Internet Protocol.

IPP Incumbent Protection Policy.

IQ In-phase and Quadrature.

IR Intelligent Radio.

ITU International Telecommunication Union.

xxvi Acronyms

K-NN k-Nearest Neighbours.

L1 Physical Layer.

L2 Link Layer.

L7 Application Layer.

LB Likelihood-Based.

LBW Learning By Watching.

LR Learning Rate.

LSA Licensed Shared Access.

LSTM Long Short-Term Memory.

LTE Long Term Evolution.

LTE-PDCCH LTE Physical Downlink Control CHannel.

MAC Medium Access Control.

MARL Multi-Agent Reinforcement Learning.

MC Multiple Carrier.

McF-TDMA Multi-Concurrent-Frequency Time-Division Multiple Access.

MCS Modulation and Coding Scheme.

MDP Markov Decision Process.

Meta-L Meta-learning.

MF-TDMA Multiple Frequencies Time Division Multiple Access.

MILCOM Military Communications.

MIMO Multiple-Input and Multiple-Output.

ML Machine Learning.

MLOps Machine Learning Model Operationalization Management.

MLP Multi-Layer Perceptron.

MTL Multi-Task Learning.

NB Naïve Bayes.

near-RT near-real-time.

NMS Network Monitoring Service.

NN Neural Network.

Acronyms xxvii

OFDM Orthogonal Frequency-Division Multiplexing.

OOBE Out-Of-Band Emissions.

PDU Protocol Data Unit.

PHY Physical Layer.

PRL Parallel Reinforcement Learning.

PSR Packet Success Rate.

QAM Quadrature Amplitude Modulation.

QL Q-Learning.

QoS Quality of Service.

QPSK Quadrature Phase Shift Keying.

QT Q-Table.

RaF Random Forest.

RAN Radio Access Network.

RAT Radio Access Technologies.

ReLU rectified linear unit.

RF Radio Frequency.

RF-MON Radio Frequency Monitor.

RFIC Radio Frequency Integrated Circuits.

RFNoC RF Network-on-Chip.

RIC RAN Intelligent Controller.

RL Reinforcement Learning.

RNN Recurrent Neural Network.

RRU Remote Radio Unit.

RSSI Received Signal Strength.

RSUPP Repeated Spectrum Usage Pattern Prediction.

SARL Single-Agent Reinforcement Learning.

SARSA State–action–reward–state–action.

SAS Spectrum Access System.

SC Single Carrier.

xxviii Acronyms

SC2 DARPA Spectrum Collaboration Challenge.

SCLD Single Carrier Linear Digital.

SDAE Stacked Denoising AutoEncoder.

SDR Software Defined Radio.

SDRL Supervised Deep Reinforcement Learning.

Self-SL Self-Supervised Learning.

SG Stochastic Game.

SGD Stochastic Gradient Descent.

SHF Super High Frequencies.

SIGINT Signals Intelligence.

SINR Signal-To-Interference-Plus-Noise Ratio.

SL Supervised Learning.

SM Spatial Multiplexing.

SNR Signal-to-Noise Ratio.

SoC System-on-Chip.

SSB Single Sideband.

SSDRL Semi-Supervised Deep Reinforcement Learning.

SSL Semi-supervised Learning.

STFT Short Time Fourier transform.

SVM Support Vector Machines.

TC Traffic Classification.

TD Temporal Difference.

TDMA Time Division Multiple Access.

TDWR Terminal Doppler Weather Radar.

TL Transfer Learning.

TR Technology Recognition.

UDM User Data Management.

UHD USRP Hardware Driver.

USL Unsupervised Learning.

USRP Universal Software Radio Peripheral.

Acronyms xxix

UT User’s Terminal.

VAE Variational AutoEncoder.

VHF Very High Frequency.

VM Virtual Machine.

WLAN Wireless Local Area Network.

WNIC Wireless Network Interface Card.

WPA Wi-Fi Protected Access.

WSN Wireless Sensor Network.

Chapter 111
Introduction

1.1 Research Context

Beyond 5G (B5G) communication networks are expected 1) to increase data rates signif-
icantly, 2) to provide ultra-low latency and enhanced connectivity of a massive number
of devices, and 3) to bring improvements in network energy efficiency. Traditionally,
planning, implementation, and management of these networks and their services have
been primarily performed as a manual activity with some limited automated assistance.
However, it is recognized that this approach needs to be revised. It is expected that the
arrival of a new generation of networking systems that can provide network manage-
ment automation capabilities such as self-configuration, self-healing, self-optimizing,
and self-evolving [1, 2].

In this context, one critical network domain that is experiencing a radical transforma-
tion toward a fully Autonomous Domain (AD) [2, 1] is the radio (or wireless) access
domain [3, 4, 5]. Wireless technologies are becoming omnipresent and providing access
to the Internet to millions of users and machines with an increased network capacity to
support the ever-increasing number of devices and applications. New technologies for
5G and beyond, such as 802.11ax and 5G New Radio (5G-NR), are designed to support
challenging requirements such as extreme-low latency (1-10 ms), ultra-high reliability
(up to five nines), enhanced throughput (up to 20 Gbps), and flexible resource usage.
However, the current deployment of 5G technologies is being limited due to a shortage
of the available spectrum [6], which is mainly due to the obsolescence of the traditional
static frequency plan based on providing access to single usage or a single user, which
has granted exclusive use of a specific portion of the spectrum.

Currently, most of the allocated spectrum is underutilized, and the part mainly used by
the technologies we use for daily communication is over-utilized. This exclusive-usage
spectrum allocation model is being updated by several global efforts to make additional
spectrum available for broadband data and increase spectrum reuse [7] and current
progress in critical enabling technologies like Cognitive Radios (CRs) that provides a
framework to adapt the radio intelligently their environment aiming to exploit old and
new available spectrum so the performance of the communication network is improved
as a whole. The set of techniques that are used to achieve this objective with CRs are
grouped under the term Dynamic Spectrum Access (DSA), also known as Dynamic

1

2 CHAPTER 1. INTRODUCTION

Spectrum Management (DSM). The concept of DSM draws principles from the fields of
cross-layer optimization, Artificial Intelligence (AI), Machine Learning (ML), network
information theory, and game theory, among others. Examples of common tasks in
DSA include link adaptation, bandwidth management, multi-user Multiple-Input and
Multiple-Output (MIMO), interference management, dynamic spectrum sharing and
reuse, and channel bonding, among others.

Of course, the scenarios where DSA is required are not new, e.g., the Federal Commu-
nications Commission (FCC) Spectrum Policy Task Force [8] proposed spectrum policy
reform where secondary users can utilize those unused frequency bands dynamically
licensed to the primary users. However, it has been the recent developments in Soft-
ware Defined Radios (SDRs) platforms and AI that are making it possible to develop
feasible systems to enable the intelligent operation of the radio networks and realiz-
ing a true CR system. Moreover, DSA is becoming a must-have functionality for future
wireless communication systems driven by the increased complexity of the network’s
management compared with the legacy versions, which imposes a totally different way
to perform operations that were formerly performed purely through human interven-
tion (error pruned), mathematical optimization (too slow), or first-generation AI such as
expert/ruled-based systems (deriving the rules are not anymore straightforward).

With a large portion of real-world problems having the property that it is significantly
easier to collect the data (or, more generally, identify a desirable behavior) than to write
the program or rules explicitly [9], the current generation of AI systems are acquiring
their knowledge by extracting patterns from data, capability known as ML. In the last
5-10 years, Deep Learning (DL), which is a type of ML algorithm that uses multiple layers
to extract higher-level features from the raw input progressively, has emerged as a viable
approach to building AI systems that can solve complex problems in complicated, real-
world environments. DL approaches achieve great power and flexibility by learning
to represent the world as a composition of concepts from a large amount of data,
where each concept is defined in relation to simpler concepts. As the primary enabler
of autonomous operation is data, ML is then a crucial technology to empower the new
generation of data analytics and intelligent decision engines that present self-dynamic
capabilities to create innovative business and advanced network operations in a closed-
loop fashion. Throughout this dissertation, we will use the term ML to indicate (semi-
)supervised ML models that rely on complex DL architectures and are trained with large
amounts of input data, such as Deep Neural Network (DNN). In the case of an ML
algorithm that is not based on DL architectures or AI algorithms that are not ML, we will
refer to the specific algorithm for clarity.

CRs are now a real possibility thanks to recent developments in SDR platforms. These
radios offer a freely programmable computer that empowers developers to implement
diverse air interfaces and signal processing functions using software within a single
device. Hence, they transmit and receive data using software functionalities instead
of hardware. Typically, SDRs are composed of programmable general-purposes Digital
Signal Processing (DSP) or Field-programmable Gate Array (FPGA) chips. This underly-
ing infrastructure supports versatile calibration and enables the utilization of Application
Programming Interfaces (APIs) for optimizing overall performance. Moreover, SDRs play
a significant role in implementing decisions orchestrated by CR. These decisions encom-
pass dynamic adjustments to the network structure, frequency allocation, modulation
schemes, coding techniques, and other pertinent parameters following the cognitive ra-

1.1. RESEARCH CONTEXT 3

Figure 1.1: A general Ettus Universal Software Radio Peripheral (USRP) architecture
based on the Ettus N310 [10].

dio cycle (spectrum sensing, cognitive management, and subsequent control actions).
Through this cycle, radio nodes evolve from simply executing predefined protocols to
becoming intelligent agents that possess awareness of the radio domain, learn user
preferences, and exhibit self-programmable capabilities. Figure 1.1 shows a well-known
SDR from Ettus Research.

Today, SDR is a dominant industry standard thanks to the advent of Radio Frequency
Integrated Circuitss (RFICs) from companies like Analog Devices and cost-effective DSP-
intensive FPGAs from companies like Xilinx, where the continue innovation in semi-
conductor and software technology are driving higher development productivity and
more cost-effective products for radios that are now evolving to become frequency-agile
intelligent communication systems based on SDRs[11]. In Figure 1.2, we can see how
the shift towards SDRs has evolved over the past three decades, evolving from the initial
group of industries, such as Signals Intelligence (SIGINT)), electronic warfare, test and
measurement, public-safety communications, spectrum monitoring, and Military Com-
munications (MILCOM), which transitioned from traditional hardware radio systems
to SDR-based ones, towards 5G and beyond, many of them not necessarily label their
industry as SDR but offering/requiring such kind of capabilities [12].

Nevertheless, how far are we from having radio networks that autonomously collaborate
and reason about how to share the Radio Frequency (RF) spectrum, thereby avoiding
interference and jointly exploiting opportunities to achieve the most efficient use of the
available spectrum? This was the main question that the DARPA Spectrum Collabora-
tion Challenge (SC2) asked the participants [13, 14]. As an answer to this, a collaboration
among researchers from the University of Antwerp, the University of Ghent, and Rut-
gers University) designed and developed SCATTER, a Collaborative Intelligent Radio
Network (CIRN) that provides autonomous DSA capabilities and uses efficient collab-
oration information across multiple radio systems to facilitate coexistence in the same
spectrum band. Figure 1.3 shows a high-level view of the SCATTER Collaborative In-

4 CHAPTER 1. INTRODUCTION

Figure 1.2: Generational evolution of SDRs and their radio industry market over time
presented in [11].

telligent Radio (CIR) system architecture [15] and Figure 1.4 shows an example of a set
of CIRNs sharing a spectrum. The primary user is the radar, and CIRNs collaborate
to access and use the spectrum while protecting the radar efficiently. This problem is
further elaborated in Chapter 4.

It is important to highlight that during the development of this dissertation, I actively par-
ticipated in the design and development of the CIRN SCATTER for the SC2 competition.
My contributions were primarily focusing on the control layer of the radio, designing
ML-based algorithms to solve complex tasks for DSA scenarios such as blind Technology
Recognition (TR) for SIGINT (see Chapter 3), active incumbent protection (see Chapter
4), flow control mechanism (see [16]), spectrum prediction (see [17]), tasks where tradi-
tional radios are not able to cope with. The algorithms for those tasks were evaluated in
the Defense Advanced Research Projects Agency (DARPA) Colosseum testbed [18, 19],
the testbed used for the SC2. Colosseum is the world’s largest RF emulator designed to
support research and development of large-scale, next-generation radio network tech-
nologies in a repeatable and highly configurable RF environment. It combines 128 SDR
with a massive digital channel emulator backed by an extensive FPGA routing fabric.
Accessible as a cloud-based platform, Colosseum also provides other resources to create
real-time, large-scale radio environments, such as traffic generation, timing, and GPS

1.1. RESEARCH CONTEXT 5

COMM
Module

High/Low
priority
queues

Processing/Protocol
threads implementation

PHY Layer

COMM
Module

High/Low
priority
queues

Processing/Protocol
threads implementation

User Data
Management

Control Layer
(Rule based)

ZeroMQ

System time
module (<ms)

COMM
Module

High/Low
priority
queues

Processing/Protocol
threads implementation

MAC layer

CIL

Application
packets

TX
Gain/MCS
Adapter

RFMON

TX Gain
Slot Duty
cycle

Incumbent
Protection

Score
Control

Mandates
Filter

Flow
(un)block
MCS
freeze

Slot
Selection

Control Layer
(AI/ML based)

Spectrum
Predictor

Technology
Recognition

TX pattern
predictor

Environment
and

Mandate
Parser

User Data Plane Control Plane

Figure 1.3: As described in [15], SCATTER CIRN has three main blocks. The first is the
user data plane, where SCATTER performs data management at different layers of the
radio stack. The second one is the control plane, where the rule-based and the ML-based
control algorithms were running. The third one is the Radio Frequency Monitor (RF-
MON), which offers real-time spectrum monitoring through a continuous stream of Fast
Fourier Transform (FFT) samples.

synthesis. Moreover, their real-time channel emulator provides emulation of realistic
RF channel conditions for 256 radios (128 SDR, each one with two transmitters and two
receivers. After the SC2, Colosseum is owned and operated by the Institute for the
Wireless Internet of Things at Northeastern University, with research priorities on 5G
and 6G wireless systems, AI for wireless systems, space internet, smart and connected
implantable medical devices, smart cities, oceans, and ports, unmanned aerial vehicles
for civil and national defense [20].

6 CHAPTER 1. INTRODUCTION

v

Collaboration Network

Wire connexion

Wireless connexion

Incumbent

CIR

Legend

CIRN 1

CIRN 2

CIRN 3

Shared
spectrum

Figure 1.4: Notice that from a high-level perspective, a CIRN is a realization of an AD for
radio networks since it should provide the same operational principles of 1) autonomy,
i.e., they govern its behavior in support of business goals, 2) abstraction, i.e., they hide the
details of domain implementation, operations and the functions of the domain elements
from its users, 3) collaboration among ADs, i.e., cooperate based on the intent mechanism
to fulfill business and customer needs [1].

1.2 Problem Statement

In the previous section, we can see that network management and optimization require
advanced ML algorithms to deal with the ever-increasing complexity of network manage-
ment. Moreover, these algorithms are expected to be deployed and run on heterogeneous
gateways, controllers, and orchestrators across different ADs [21] to make autonomous
decisions. Based on data, these algorithms will be able to automatically manage the
composite mosaic of (radio) network functions and associated resources consumed by
various network services (e.g., network slices) and exploited by different tenants to craft
intelligence for networking.

As a candidate to enable radio access AD, CRs provide a set of closed-loop systems
that manage the resources within them, where each closed control loop can observe
its environment and functionality thanks to novel cognitive capabilities, reason about
those observations in the current situation, and take actions towards a set of well-
defined goals. This process allows CRs to adjust their behavior depending on the user
needs and business goals when the environment changes, all with minimal human
intervention.

To successfully implement and deploy radio access ADs, significant novel contributions
and innovations are required in selecting, designing, and deploying ML algorithms that
manage the available resources (spectrum, networking, computing, storage). This is
fundamental as new challenges emerge: deciding when to use traditional management
algorithms, ML-based models, or even hybrid approaches; deciding where they have to

1.2. PROBLEM STATEMENT 7

be deployed (radio vs. fog vs. edge); and how to manage their life cycle (from data
harvesting to intelligent decision-making).

However, when applying ML to solve problems in networking and to run in networks, it
is crucial to focus not only on the optimization problem to solve but also on the design
of the learning algorithm itself, considering both requirements when using a given
technique and challenges when we want to deploy them in networks. Until a few years
ago, the dominant trend among most ML practitioners for networking was using "vanilla"
versions of the ML algorithms to empower their controllers and orchestrators. However,
this approach did not account for the specificities and unique requirements of network-
ing functionalities, resulting in it not being a sensible choice. However, more recently,
there has been a growing adoption of specific techniques to design tailored solutions
that include fundamental aspects in design such as sustainability (energy consumption
and carbon footprint), reliability (algorithms performance in unseen situations), scala-
bility (centralized vs. decentralized deployments), resource-awareness (model size vs.
accuracy), training efficiency (labels vs. accuracy), communication-awareness (com-
munication overhead vs. convergence), or responsiveness (real-time vs. non-real-time
training) that can deliver solutions that are (semi-) optimal and suitable to run in net-
works.

This dissertation investigates some of these challenges from two complementary points
of view. On the radio network side, we investigate the challenges associated with
creating a novel spectrum sharing framework that is built on top of the concept of
radio access ADs, i.e., the radio access network provides autonomy, abstraction, and
collaboration, such that we can go beyond the state-of-the-art spectrum sharing systems
that are mainly centralized and database-assisted. On the ML side, we investigate
two main challenges when designing DL and Reinforcement Learning (RL) algorithms:
1) how to ensure training efficiency (labels vs. accuracy) when they are used to solve
networking problems, and 2) how to guarantee scalability when they need to be deployed
in a distributed networking infrastructure. To be more precise, the following research
problems were identified concerning AI-based algorithms to support and realize novel
spectrum sharing frameworks for radio access ADs:

[𝑃1] Centralized multi-tier spectrum sharing models do not scale: The Citizens Broad-
band Radio Service (CBRS) and the Licensed Shared Access (LSA) models are ini-
tiatives that provide multi-tier spectrum sharing frameworks in the reallocated
spectrum. In these frameworks, the incumbent, i.e., the primary user or technol-
ogy that used the spectrum exclusively in the past, has to be protected against
interference caused by the new technologies sharing the same spectrum. For ex-
ample, CBRS offers three-tiered access to users via an automated frequency coor-
dinator, known as a Spectrum Access System (SAS), which guarantees that once
a higher priority user is transmitting, the lower ones must vacate the spectrum to
avoid interference. Although the multi-tier models are an initial step to mitigate
spectrum scarcity via spectrum sharing, they still suffer several fundamental prob-
lems. Firstly, a single point of control or coordination can become a bottleneck as
the number of users and devices increases [22, 23, 24]. Secondly, as these models
rely on well-defined rules and mechanisms [25], they must be optimized to ensure
fair and efficient use of the spectrum [26]. Thirdly, these models require a mas-
sive overhaul of the centralized infrastructure to support changes in environmental
conditions, regulations, and policies, which can be a very time-consuming and

8 CHAPTER 1. INTRODUCTION

bureaucratic task that slows down the deployment of new technologies or services
that rely on shared spectrum [27]. Finally, accommodating wireless communica-
tions within some specific frequency bands (e.g., radar spectrum) requires novel
spectrum-sharing paradigms since existing spectrum-sharing approaches are not
designed for all coexistence scenarios [28, 29].

[𝑃2] CR technologies can not share and reuse spectrum efficiently as they work in
isolation and have only local information: To achieve optimal spectrum usage,
CRs will provide the capabilities to dynamically learn and apply the best policy
that determines their spectrum allocation. Simultaneously, they must protect the
incumbents and minimize interference with other technologies. However, adding
learning capabilities to the radios is insufficient to protect the incumbent. The
uncertainty about the spectrum state is higher if only local spectrum measures
are used, and there is no mechanism for feedback on the radios’ decisions. One
potential solution to this challenge involves implementing centralized multi-tier
spectrum sharing models. However, as discussed in 𝐶1, it is important to note that
these models may not be scalable, limiting their usability in highly dynamic and
complex environments.

[𝑃3] Traffic Classification (TC) systems are not designed to support the spectrum
management decision-making processes for radio networks in a shared spec-
trum: The TC task is assumed to be performed on traffic that belongs to the same
network domain and over a byte/protocol representation of the packet at the Link
Layer (L2) (or above). These assumptions limit the capabilities of TC systems in
radio networks using shared spectrum, e.g., in unlicensed bands. The users’ traffic
from one radio network domain can be negatively impacted by users’ traffic trans-
missions from other radio networks without being noticed by the TC system, as
demonstrated in [30]. Contrary to a wired network, co-located radio transmissions
in the same spectrum band can generate Physical Layer (L1) packets that are not
detected by a receiver performing the TC task. Examples of these cases are when
the transmitter is using a radio technology that cannot be demodulated and de-
coded by the receiver (i.e., different technology) or when the transmission can be
demodulated and decoded (i.e., same technology) but the decoded traffic is already
encrypted in L2 (e.g., wireless devices belong to a different radio network domain
and its network is secured).

Concerning the design of DL and RL algorithms for spectrum sharing and/or to run
on a distributed infrastructure, e.g., an ad-hoc or mesh radio network, the following
research problems were identified:

[𝑃4] Collecting spectrum data to train DL models for spectrum sensing is easy, but
labeling is hard: Traditionally, TR is done by domain experts, which use carefully
designed hand-crafted rules to extract features from the radio signals. On the con-
trary, state-of-the-art approaches based on DNNs can extract features directly from
raw input data and automatically perform the recognition task on those features.
However, DNN-based approaches have two main drawbacks: 1) they are mainly
trained in a supervised way, which implies that the whole data used for training
must be labeled, and 2) their training algorithms, such as Stochastic Gradient De-
scent (SGD) [31], require a large amount of data to obtain a good performance [32].

1.3. RESEARCH QUESTIONS 9

Otherwise, the resulting trained model may suffer severe overfitting problems [33].
Generally, assigning labels to data can be expensive, e.g., very time-consuming,
and/or some of the data might not have any labels due to incomplete knowledge of
the ground truth class labels, e.g., the radio technologies to be classified are entirely
unknown. On the contrary, sensing the spectrum using modern radios allows the
collection of a large amount of unlabeled data at no cost.

[𝑃5] DL algorithms have outperformed traditional optimization methods in solving
several networking problems when considering learning-related performance
metrics like accuracy, but ML practitioners tend to neglect equally important
metrics related to the execution of these algorithms like inference time: In ML,
there is a prevailing emphasis on learning metrics (e.g., accuracy, loss) as the pri-
mary metric for evaluating ML models. While achieving high performance in such
metrics is undoubtedly crucial from a purely ML perspective, this often neglects
equally critical performance metrics that are very dependent when applied to spe-
cific domains or tasks. One particularly overlooked aspect is the inference time. In
real-world applications, the inference time can be as critical as accuracy, especially
in scenarios where real-time or low-latency decision-making is required. Addition-
ally, the choice of DL architecture, whether it is a DNN, Recurrent Neural Network
(RNN), or other variants, can have a high impact on inference time, scalability, and
energy consumption, which can produce a model with unprecedented capacity but
useless to solve the task in real-time.

[𝑃6] Table-based RL algorithms are not designed to run in decentralized networking
environments as they are not communication-aware: Many closed-loop control
problems are solved using RL-based algorithms as they introduce a natural way
to learn a task by interacting with its environment [34]. When used to solve a
task in a distributed environment, e.g., routing in radio networks [35] or driving
a robot in a warehouse [36], they reduce the learning time by sharing informa-
tion among multiple instances of the algorithm (i.e., multiple RL agents) [37]. An
example of them is Parallel Reinforcement Learning (PRL), a type of Multi-Agent
Reinforcement Learning (MARL), which reduces the learning time by leveraging
parallelization [38]. In general, PRL can reduce the learning time at a rate propor-
tional to the number of agents [39]. However, the execution time, i.e., actual time,
is reduced at a slower rate due to the communication overhead between agents and
the shared Q-Table (QT), the wasted learning of using overlapping search strategies,
and processing and storage constraints of the infrastructure. Moreover, this com-
munication overhead can highly reduce any efforts performed by other algorithms
directly optimizing resource utilization.

1.3 Research Questions

In the previous section, we identified five problems grouped into two complementary
views: spectrum sharing in radio networks and ML. This approach is natural in this
dissertation as the identified problems lie in the intersection of these two major research
areas. Next, a set of research questions will be defined regarding spectrum sharing
techniques and the design of ML algorithms for networking and/or running on networks
to investigate and develop solutions to address the identified problems above. Each one

10 CHAPTER 1. INTRODUCTION

of the following research questions targets one (part) of the problem statements described
in the previous section:

[𝑄1] Can we design an architecture for a spectrum-sharing system that does not re-
quire any central infrastructure to control and grant access to a shared spectrum?:
An architecture that does not require centralized authority controlling and grant-
ing access to the shared spectrum is crucial to guarantee scalability in the number
of users/incumbents compared to architectures such as CBRS and LSA. Moreover,
it is required to allow secondary users to use any available spectrum not used
by the incumbent inside the shared spectrum band to maximize spectrum usage.
However, they should not expect interference protection to maintain decentral-
ization. Out-of-band communication should be provided among incumbent and
secondary users to share information collaboratively, aiming to reduce uncertainty
about the environment (radio spectrum) while providing a mechanism to augment
the data used to learn and give feedback on the decisions made. To complement,
radios should be intelligent and fully autonomous to dynamically learn and apply
the best policy determining their spectrum allocation. Simultaneously, they must
protect the incumbent and minimize interference with other technologies.

[𝑄2] Can we formulate the TR problem for DL-based algorithms such that they can
use labeled and unlabeled data and design robust systems that can deal with dif-
ferent amounts of them?: In general, traditional methods such as Likelihood-Based
(LB) and expert Feature-Based (FB) engineering combined with pattern recognition
have been outperformed by supervised DL methods in the task of TR. Supervised
DL methods remove the need for expert knowledge about the environment and
the signal features used for classification by using the power of automatic feature
abstraction. However, it requires the whole data set to be labeled. In the case of the
technologies to be recognized and the environment being entirely unknown, the
labeling task becomes time-consuming and challenging. To overcome these limi-
tations, it is required to design a DL architecture that 1) can separate the feature
extraction from the classification task so we can use a large amount of unlabeled
data to extract the features of the signals, and 2) reduce the use of domain expert
knowledge so that only a small portion of the entire dataset has to be labeled for
the classifier while still obtaining a good performance, which is not the case of
supervised DL architectures.

[𝑄3] Can we design a general framework that enables the development of TC algo-
rithms optimized for wireless networks?: TC systems that are byte-based have
limited capabilities to be functional on wireless networks. We need to move from
TC systems that work at a byte representation of the packet to a generic framework
for TC at the spectrum level. Moreover, it should be wireless technology agnostic
(e.g., spectrum sensing + TR + packet assembly) since using an L1 packet as a clas-
sification object allows a classification at any layer for any technology as this object
contains the whole information carried by the transmitted packet. In this way, the
traffic generated by any other wireless device sharing the same spectrum can be
monitored, detected, assembled, and classified in real-time, even if it is encrypted,
belongs to a different network domain, or uses various wireless technologies.

[𝑄4] Can we provide communication-awareness capabilities to PRL agents to reduce
the communication overhead while deploying them in distributed infrastructure

1.4. RESEARCH HYPOTHESES 11

without requiring any a priori information about the deployment environment?:
RL-based algorithms solving a single problem collaboratively in a distributed en-
vironment can not assume that the partitioning and distributing of the state-action
space is given by using an a priori domain knowledge, as it is far from realistic. It
is required to design an algorithm that dynamically creates loosely coupled parti-
tions of the QT, representing the problem space and assigning each partition to the
agent exploiting it the most. If the partitioning algorithms can provide an optimal
co-allocation of storage and processing, i.e., the learning agents update mainly the
states in the partition assigned, then the communication cost can be minimized.
Moreover, this functionality will reduce the usage of resources such as spectrum,
bandwidth, and energy during the learning process, which is only achievable by
providing this as built-in functionality.

1.4 Research Hypotheses

Deploying radio networks that can handle the increasing demands on network capac-
ity of new applications and services while guaranteeing their Quality of Service (QoS)
requirements will depend on the radios’ capabilities to be aware of their spectrum en-
vironment, sharing and reusing it optimally. Centralized multi-tier spectrum sharing
models such as CBRS and LSA can not scale in the number of users/incumbents since
the need for a centralized authority controlling and granting access adds a lot of tech-
nical and administrative overhead. Simpler models like Dynamic Frequency Selection
(DFS) are more straightforward to deploy than CBRS and LSA. However, they lack 1) a
mechanism to exploit the spectrum not used by the incumbent and, if it does not work
correctly, 2) a mechanism to incentivize and enforce the incumbent protection.

CRs are the primary candidates as a technology enabler to design a spectrum-sharing
architecture that removes the need for a centralized authority to ensure scalability. How-
ever, a CR works mainly with local information obtained by its spectrum sensing func-
tional block; therefore, the uncertainty about the spectrum state is very high. This is
also increased as most of the deployments of CRs need to address the problem of how
to provide feedback about the radio’s decisions. Here is where collaboration plays a
key role. Collaboration among CR networks and incumbents reduces that uncertainty
while providing a mechanism to augment the data used to learn and give feedback on
the decisions made.

A set of interconnected radios with these capabilities create CIRNs [19]. More precisely, a
CIRN, i.e., AI-based autonomous radio technologies, or CIR, that exchange explicit infor-
mation to solve joint problems via collaboration, can share and reuse spectrum efficiently
without coordination and with the guarantee of incumbent protection. A realization of a
CIRN will be a step beyond modern CR networks since CIRN can reduce the uncertainty
about spectrum measures using the collaborative information and self-learning and self-
adapting the radio operation parameters based on experiences, requirements to have an
AD for the radio access as envisioned by the European Telecommunications Standards
Institute (ETSI) Autonomous Network (AN) program [1].

CIRN could be the key breaking idea to provide the capabilities to define a scalable
decentralized multi-tier model for next-generation spectrum sharing that can maximize

12 CHAPTER 1. INTRODUCTION

the spectrum’s use even if there are incumbents to protect. Based on this, let us state the
following hypothesis:

�
[𝐻1]: Data-driven TR is a practical approach to enable spectrum sharing in
CIRNs. Even with a small number of labeled measurements, acceptable
classification performance can be achieved.

CIRNs are empowered by ML-based algorithms such as spectrum sensing, blind TR for
SIGINT, reasoning about spectrum usage, i.e., TC, and decision-making, e.g., channel
selection and power control to mitigate interference. These algorithms must be designed
and deployed to perform their expected tasks in the radios. DL architectures are expected
to be at the heart of the algorithms empowering CIRN as they can extract features directly
from raw input data and automatically perform the recognition task on those features,
something that traditional approaches based on domain experts can not do anymore.

But why DL? Why not the traditional statistical ML approach? To exemplify the need
for DL approaches when working on raw spectrum data, we can see that designing
the features for TCs that use spectrum-based packets (or L1 packets) will be almost
impossible since 1) L1 packets are modulated, coded, and sometimes encrypted before
being transmitted. As a result, transmitting the same user’s L2 packet may result in a
very different spectrum view of the packet using either the same wireless technology, e.g.,
due to different Modulation and Coding Schemes (MCSs), or a different one, e.g., due to
different digital multi-carrier transmission schemes. Moreover, how can an expert draft
the features that can be used to differentiate a set of L1 packets belonging to YouTube vs.
Twitch transmissions?

Notice also that DL architectures are challenging to train and get good performance if
there is not enough labeled data. This challenge can be mitigated through the use of
semi-supervised learning techniques, which combine a small amount of labeled data
with a larger pool of unlabeled data to improve the learning process. By leveraging the
large and easily collectible unlabeled spectrum data available, Semi-supervised Learning
(SSL) could effectively reduce the dependency on extensive labeled datasets, making it
a practical approach for spectrum sharing in CIRNs. These techniques enable the DL
models to learn underlying patterns and features from the unlabeled data, which are
then fine-tuned using the limited labeled examples.

When deploying CIRNs, their performance in distributed environments heavily relies
on the efficiency of exchanging learning information among nodes in terms of latency
and amount. This challenge is exacerbated when the learning algorithm is based on RL,
which tends to have poor performance and low scalability in distributed environments
due to often overlooked communication overhead, especially in wireless environments,
which introduce higher latency. This leads us to state our second hypothesis for this
dissertation:

�
[𝐻2]: To efficiently employ data-driven methods in CIRNs, it is crucial to
leverage collaborative learning algorithms capable of operating over dis-
tributed infrastructures with minimal communication overhead, thereby
ensuring practical implementation and scalability.

1.4. RESEARCH HYPOTHESES 13

Table 1.1: A summary of this dissertation and the links between problem statements,
research hypotheses, and research questions.

Research
Questions

Hypotheses
H1 H2

Q1 P1, P2 P1, P2
Q2 P4 –
Q3 P3, P5 –
Q4 – P6

To summarize, Table 1.1 presents the relationships between problem statements, hy-
potheses, and research questions. Hypothesis 𝐻1 envisions a next-generation spectrum
sharing framework with incumbent protection based on the concept of CIRNs and data-
driven enabling technologies such as label-efficient TR and real-time spectrum-based TC,
directly addressing the problem statements 𝑃1, 𝑃2, 𝑃3, 𝑃4, and 𝑃5. A positive answer to
their research questions 𝑄1, 𝑄2, and 𝑄3 will strongly support hypothesis 𝐻1.

Hypothesis 𝐻2 focuses on leveraging collaborative learning algorithms to efficiently em-
ploy data-driven methods in CIRNs, addressing problem statement 𝑃6. Although 𝑃1 and
𝑃2 do not directly support𝐻2, the scalability issues of centralized spectrum-sharing mod-
els (𝑃1) and the inefficiency of CR technologies (𝑃2) while learning in isolation highlight
the need for distributed and scalable solutions. These challenges underscore the impor-
tance of developing communication-aware RL algorithms that can function effectively
in decentralized environments. Therefore, a positive answer to 𝑄1 will support 𝐻2 by
establishing the feasibility of a decentralized, scalable framework for spectrum sharing,
which is a prerequisite for implementing collaborative learning algorithms with minimal
communication overhead. Consequently, addressing research question𝑄4 positively will
provide the evidence needed to validate hypothesis 𝐻2.

This dissertation is composed of seven chapters. Figure 1.5 summarizes the organization
of this book and shows how each research contribution, presented in detail in Section
7.1, links to different chapters, problem statements, and research questions. Following
this introduction, Chapter 2 introduces some terminology and background required to
navigate this book’s different topics. In particular, we introduce concepts for wireless
communication systems, e.g., radio spectrum and CRs, and ML, e.g., different learning
techniques. The following four chapters present the four contributions described above.

Chapter 3 presents a SSL-based TR that provides the flexibility of exploiting a large
amount of unlabeled data while improving the classification accuracy by using a limited
labeled data set in CR. This contribution 𝐶1 tackles research problem 𝑃4 and acts as an
enabler technology to address the research problems 𝑃1, 𝑃2, and 𝑃3. Chapter 4 presents
a two-tier model for spectrum sharing based on AI-based autonomous wireless radio
technologies that exchange explicit information to solve joint problems via collaboration
and, as a result, can share and reuse spectrum efficiently without coordination and with
the guarantee of protecting legacy technologies. The realization of this framework is our
contribution 𝐶2 and addresses the research problems 𝑃1, 𝑃2, and 𝑃5. Notice that 𝑃5 was
partially covered by this contribution as the original TR module was modified to achieve
near real-time operation as required by the proposed spectrum sharing model.

14 CHAPTER 1. INTRODUCTION

1.5 Dissertation Outline

Problem Statement

P3, P5

Problem Statement

P4

Problem Statement

P6

Problem Statement

P1, P2, P5

Research Question

Q2

Research Question

Q1

Research Question

Q3

Research Question

Q4

Chapter 3 - C1

Label-efficient

Technology
Recognition

Chapter 4 - C2

AI-Based spectrum

sharing framework with
Incumbent protection

Chapter 5 - C3

Traffic Classification

at any layer

Chapter 6 - C4

Parallel RL with minimal

communicaiton overhead

Chapter 2

Terminology and Background

Chapter 7

Conclusions and future works

Chapter 1

Introduction

Figure 1.5: Organization of this book and relationship with problem statements, research
questions, and contributions. This book is organized into seven chapters covering two
functional blocks for CIRN, such as TR in Chapter 3 and TC at any layer in Chapter 5, a
spectrum sharing framework based on CIRN with incumbent protection mechanism in
Chapter 4, and a PRL algorithm that can run on distributed environments with minimal
communication overhead in Chapter 6.

On the side of contributions to ML-based solutions to support the novel spectrum shar-
ing framework for radio access ADs, Chapter 5 introduces and develops our contribution
𝐶3 to address the research challenge 𝑃3 and 𝑃5. This contribution provides a general
framework to achieve TC at any layer on the radio network together with the ML-based
algorithms that perform it, including the impact of the input data and the designed
architecture in terms of inference time for real-time applications. Complementing con-
tribution 𝐶1 in the topic of the design of DL and RL algorithms for networking and/or
to run on networks, Chapter 6 proposes a novel approach that allows any table-based
PRL algorithm to be deployed in distributed environments with minimal communication
overhead and without requiring any a priori information about the environment, i.e., the
agents are communication-aware by design. This contribution 𝐶4 explicitly overcomes
the limitations of these algorithms as described in the research problem 𝑃6. Finally,
we present our main contributions, open challenges, and future research prospective in
Chapter 7.

1.6 Publications

The results obtained during this research have been presented and published in several
international peer-reviewed scientific journals and conferences. Furthermore, two patent
applications were submitted for contributions related to Parallel Reinforcement Learning

1.6. PUBLICATIONS 15

and Technology Recognition. The following list provides an overview of the publications
as first author and patent applications during the research development of this thesis.

1.6.1 O: Patent Applications

• M. Camelo, A. Shahid, J. Fontaine, F. A. P. de Figueiredo, E. De Poorter, I. Moerman,
and S. Latré, European patent application for "A NEURAL NETWORK FOR IDEN-
TIFYING RADIO TECHNOLOGIES" filed at the European Patent Office (EPO) on
September 6, 2019, with application number EP 19195811.5.

• M. Camelo, M. Claeys, and S. Latré, European patent application for "EXPLORING
AN UNEXPLORED DOMAIN BY PARALLEL REINFORCEMENT" filed at the
European Patent Office (EPO) on October 12, 2018, and received the application
number EP 18200069.5.

1.6.2 A1: Journal publications indexed by ISI Web of Science "Science
Citation Index Expanded"

• M. Camelo, P. Soto and S. Latré, "A General Approach for Traffic Classification in
Wireless Networks Using Deep Learning," in IEEE Transactions on Network and
Service Management, vol. 19, no. 4, pp. 5044-5063, Dec. 2022, doi: 10.1109/TNSM.
2021.3130382. [IF 4.758].

• M. Camelo, R. Mennes, A. Shahid, J. Struye, C. Donato, I. Jabandzic, S. Giannoulis,
F. Mahfoudhi, P. Maddala, I. Seskar, I. Moerman, and S. Latré, "An AI-Based
Incumbent Protection System for Collaborative Intelligent Radio Networks," in
IEEE Wireless Communications, vol. 27, no. 5, pp. 16-23, October 2020, doi:
10.1109/MWC.001.2000032. [IF 12.777]

• M. Camelo, M. Claeys and S. Latré, "Parallel Reinforcement Learning With Mini-
mal Communication Overhead for IoT Environments," in IEEE Internet of Things
Journal, vol. 7, no. 2, pp. 1387-1400, Feb. 2020, doi: 10.1109/JIOT.2019.2955035.
[IF 10.238]

1.6.3 P1: Proceedings included in the ISI Web of Science "Conference
Proceedings Citation Index - Sciences"

• M. Camelo, Camelo, T. D. Schepper, P. Soto, J. Marquez-Barja, J. Famaey and S.
Latré, "Detection of traffic patterns in the radio spectrum for cognitive wireless
network management," 2020 IEEE International Conference on Communications
(ICC), 2020, pp. 1-6, doi: 10.1109/ICC40277.2020.9149077.

• M. Camelo, A. Shahid, J. Fontaine, F. A. P. de Figueiredo, E. De Poorter, I. Mo-
erman, and S. Latre, "A semi-supervised learning approach towards automatic
wireless technology recognition," 2019 IEEE International Symposium on Dynamic
Spectrum Access Networks (DySPAN), 2019, pp. 1-10, doi: 10.1109/DySPAN.2019.
8935690.

10.1109/TNSM.2021.3130382
10.1109/TNSM.2021.3130382
10.1109/MWC.001.2000032
10.1109/JIOT.2019.2955035
10.1109/ICC40277.2020.9149077
10.1109/DySPAN.2019.8935690
10.1109/DySPAN.2019.8935690

16 CHAPTER 1. INTRODUCTION

• M. Camelo, J. Famaey and S. Latré, "A Scalable Parallel Q-Learning Algorithm for
Resource-Constrained Decentralized Computing Environments," 2016 2nd Work-
shop on Machine Learning in HPC Environments (MLHPC), 2016, pp. 27-35, doi:
10.1109/MLHPC.2016.007.

10.1109/MLHPC.2016.007.

Chapter 222
Terminology and Background

One of the main aspects of the research presented in this book is that it falls in the
intersection between wireless communication systems and Artificial Intelligence (AI).
To make this book self-contained, this chapter provides all the basic terminology and
background information that will serve as fundamentals of all the chapters across this
book. The content of this chapter is partially based on information that can be found in
different seminar books and papers on the various research topics of this book as follows:

• Section 2.1: General concepts on wireless communication [40, 41], signal processing
[42, 43] , Cognitive Radio (CR) [40, 44, 45, 46, 47], and Collaborative Intelligent Radio
Networks (CIRNs) [15, 19, 16, 48].

• Section 2.2: Machine Learning (ML) and Deep Learning (DL) [33], Semi-supervised
Learning (SSL) [49], Single-Agent Reinforcement Learning (SARL) [50], and both
Multi-Agent Reinforcement Learning (MARL) and Parallel Reinforcement Learning
(PRL) [37, 51, 38].

2.1 Wireless Communication Systems

Wireless communication systems have evolved from the first practical radio wave-based
wireless telegraph system created by Guglielmo Marconi until very advanced Collabora-
tive Intelligent Radio Networks (CIRNs) that can reduce the uncertainty about spectrum
measures by a combination of collaborative information and self-learning techniques,
which results in automatically adapt the radio operation parameters based on pure expe-
riences with better performance compared to state of the art Cognitive Radios (CRs). In
this section, we introduce some of the essential terminology and background on wireless
communication systems, signal processing, and CRs that support the research presented
in the different chapters of this book.

2.1.1 Radio Spectrum and Communication Systems

Open space is the medium used in wireless communications to transfer information
via electromagnetic waves. The spectrum of such electromagnetic waves is organized

17

18 CHAPTER 2. TERMINOLOGY AND BACKGROUND

into frequency bands to group different types of wireless systems. Table 2.1 shows the
wavelengths and frequencies of electromagnetic waves as defined by the International
Telecommunication Union (ITU).

Table 2.1: Radio bands of the electromagnetic spectrum defined by the ITU. Beyond
ultraviolet are X-rays and Gamma-rays.

Electromagnetic waves Acronym Frequency Wavelength
Extremely low frequency ELF 30–300 Hz 10–1,000 km
Super low frequency SLF 300–3,000 Hz 1–100 km
Very low frequency VLF 3–30 kHz 100–10 km
Low frequency LF 30–300 kHz 10–1 km
Medium frequency MF 300–3,000 kHz 1,000–100m
High frequency HF 3–30MHz 100–10m
Very high frequency VHF 30–300MHz 10–1m
Ultra high frequency UHF 300–3,000MHz 100–10 cm
Super high frequency SHF 3–30 GHz 10–1 cm
Extreme high frequency EHF 30–300 GHz 10–1mm
Tremendously high frequency
(Terahertz radiation) THF 300–3,000 GHz 1–0.1mm

Infrared rays 43,000–416,000 GHz 7–0.7𝜇m
Visible light 430,000–750,000 GHz 0.7-0.4 𝜇m
Ultraviolet 750,000–3,000,000 GHz 0.4–0.1 𝜇m

Each one of these ranges provides different properties when transmitting radio waves.
Radio waves at lower frequencies, e.g., below 300 MHz, tend to follow the earth’s surface,
while higher ones propagate in a straight line. The range from 0 (or direct current,
DC) to Super High Frequencies (SHF) is commonly used for communication and other
purposes like radar, radio astronomy, spectroscopy, industrial, medicine, science, and
others. In contrast, the range of Extreme High Frequencies (EHF) and beyond is less
used due to environmental difficulties caused by attenuation due to atmospheric effects
and technical challenges in the radio transmitters and receivers, such as wave generation,
amplification, detection, and modulation. Finally, over 1000 GHz, waves become optical
and are traditionally limited to optical fibers.

We need to build a communication system to transfer information from one point to
another. Figure 2.1 shows a block diagram of a general communication system. This
system starts with the source, which generates either analog signals, e.g., speech, or
digital data, e.g., multimedia. The information generated by the source is then passed
to the source encoder, which generates binary data from the source. This binary data
is passed through a channel encoder to improve the receiver’s probability of correctly
reproducing the transmitted binary data. The channel-encoded data stream is then
modulated to generate the waveform transmitted across a channel such as a telephone
line, an optical fiber, or a radio link over the air. Of course, a channel can be subject to
different phenomena, such as noise and fading. This process is reversed at the receiver
to restore the source of information.

The wireless and guided (wired) electromagnetic wave channels are the two more com-
mon transmission channels. Examples of wireless channels are the atmosphere or the
free space. As these channels are open, they are usually affected by different noise sources

2.1. WIRELESS COMMUNICATION SYSTEMS 19

and attenuation effects. On the other hand, a waveguide channel provides a medium in
which a wave can propagate with little energy loss. A coaxial cable line and optical fiber
are well-known types of guided wave channels.

Source Source Encoder Channel Encoder Modulator

Channel

Source Source decoder Channel Decoder Demodulator

Receiver

Transmitter

Waveform

Figure 2.1: Block diagram of a general communication system.

2.1.2 Modulation and the Sampling Process

As indicated above, the modulation block generates the waveform transmitted across the
channel. In this sense, modulation is the act of changing the carrier signal’s properties
(amplitude, phase, frequency), i.e., the electromagnetic wave that will be transmitted in
a controlled way to transfer data across a channel or to obtain desired signal properties.
Figure 2.2 shows how the modulation block generates a waveform from a binary data
stream, and the demodulation block generates a data stream from a received waveform.
It is here where Analog-to-Digital Converters (ADCs) and Digital-to-Analog Converters
(DACs) play the role of the bridges between the analog (radio spectrum) and the digital
domain (bits).

Once a signal has been captured in a digital form, various signal processing techniques
can work on it. The conversion from a continuous-time signal to a discrete-time signal
is achieved by performing the sampling process, where some form of an algorithm (or
set of algorithms) generates a sequence of discrete values (numbers) representing the
original signal. The value of the given signal in a specific time and/or space is called
a sample, and the speed at which these samples are collected is called the sampling
frequency or sampling rate 𝑓𝑠 (i.e., one sample is taken each 1/ 𝑓𝑠 seconds).

To perform the conversion from analog to digital, a critical problem is determining
how fast we must sample a given signal to recover the original signal faithfully later.
According to the Nyquist sampling theorem, the minimum sampling frequency must be
at least twice that of the highest frequency component present in the original signal. This
value is also called the Nyquist rate 𝐵. As a result, high computing requirements exist
to achieve such sampling rates over signals with a high bandwidth (e.g., signals in the
Very High Frequency (VHF) band and above). It is here where complex sampling plays
a fundamental role.

20 CHAPTER 2. TERMINOLOGY AND BACKGROUND

Figure 2.2: Modulation and demodulation processes as mechanisms to convert a data
stream to a waveform and then recover a data stream from the waveform, respectively.

Let us consider a radio signal 𝑋(𝑡) that can be represented as follows:

𝑋(𝑡) = 𝑎(𝑡) ∗ cos 2𝜋f𝑐t + 𝜃(𝑡) (2.1)

where 𝑎(𝑡) is the amplitude modulation function, 𝜃(𝑡) is the phase modulation function,
and 𝑓𝑐 is the carrier frequency. Figure 2.3 shows different types of modulation based on
the change of some of these functions. Now, by applying the angle sum trigonometric
identity, we can decompose 𝑋(𝑡):

𝑋(𝑡) = 𝑎(𝑡) cos [𝜃(𝑡)] cos(2𝜋 𝑓𝑐𝑡) − 𝑎(𝑡) sin [𝜃(𝑡)] sin(2𝜋 𝑓𝑐𝑡)
𝑋(𝑡) = 𝐼(𝑡)𝑐𝑜𝑠(2𝜋 𝑓𝑐𝑡) −𝑄(𝑡)𝑠𝑖𝑛(2𝜋 𝑓𝑐𝑡)

(2.2)

where the 𝐼(𝑡) and 𝑄(𝑡) are termed as the in-phase and quadrature-phase modulation
functions, respectively. In this representation, 𝑋(𝑡) is a bandpass or low pass signal
since the 𝐼(𝑡) and 𝑄(𝑡) functions are modulating the carrier. We can also decompose the
bandpass signal into a low pass modulation function multiplied by a complex exponential
(carrier) and derive a new baseband equivalent modulation function 𝑋𝑏𝑏 , also known as
the IQ samples:

𝑋𝑏𝑏(𝑡) = 𝐼(𝑡) + 𝑗𝑄(𝑡)
𝑒 𝑗𝑥 = cos(𝑥) + 𝑗 sin(𝑥)

𝑋(𝑡) = 𝑅𝑒𝑎𝑙{𝑋𝑏𝑏(𝑡)𝑒 𝑗2𝜋 𝑓𝑐 𝑡}
(2.3)

Figure 2.4 uses a Binary Phase Shift Keying (BPSK) modulation as an example to show
the concepts described above. Note that the Nyquist rate for a signal with no frequencies
≥ 𝐵 can be reduced to just 𝐵 (complex samples/sec) instead of 2𝐵 (real samples/sec) as
established by the Nyquist theorem. In practice, this approach is widely used in digital
communication systems due to its simplicity for representing mathematical operations,

2.1. WIRELESS COMMUNICATION SYSTEMS 21

Figure 2.3: Different types of modulations. A modulated signal is a signal (b) in which
one or more of its properties, such as its frequency (c), amplitude (d), or phase (d), have
been varied in order to carry information from another signal (a).

its flexibility to generate any modulation scheme based on different values of 𝐼(𝑡) and
𝑄(𝑡), and lower computing requirements for sampling as it needs half as many complex-
valued samples as the original number of real samples with no information lost, and
the original 𝑠(𝑡) can be recovered, if necessary, with no error. Equivalent, complex
modulation allows doubling the data rate for a given signal bandwidth by using the
sine and cosine as an orthogonal basis to transmit independent information on both the
in-phase and quadrature-phase signals.

To finalize, let us use Figure 2.5 as a visual example to show the advantages of using
complex vs. real signals for modulation. Real signals have equivalent (mirrored) positive
and negative frequency spectrums, transmitting the same information in both sidebands.
This type of transmission is called Double Sideband (DSB). On the other hand, complex
signals have independent positive and negative spectra; therefore, each sideband can
transmit unique information. This type of transmission is called Single Sideband (SSB).

22 CHAPTER 2. TERMINOLOGY AND BACKGROUND

0 2 4 6 8 10 12 14
Time (s)

1.0

0.5

0.0

0.5

1.0

Am
pl

itu
de

a) Baseband signal

0 2 4 6 8 10 12 14
Time (s)

1.0

0.5

0.0

0.5

1.0

Am
pl

itu
de

b) Analog carrier

0 2 4 6 8 10 12 14
Time (s)

1.0

0.5

0.0

0.5

1.0

Am
pl

itu
de

c) Modulated carrier

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
I(t)

0.04

0.02

0.00

0.02

0.04
Q(

t)

d) In-phase and Quadrature samples

Figure 2.4: A BPSK signal is built from a) a digital baseband signal and b) an analog
carrier. The resulting c) BPSK modulated carrier can be represented by its In-phase and
Quadrature (IQ) values, where only the In-phase value changes.

2.1.3 Cognitive Radios

The radio spectrum is a finite resource; three main aspects govern it: location, time, and
frequency. Traditionally, spectrum is allocated based on frequency bands to different ra-
dio technologies in a fixed manner. However, this approach is not scalable since 1) some
bands are overcrowded while others are rarely used, and 2) it may take years before
authorities change them to support new technologies or use cases. The under-utilization
of the electromagnetic spectrum leads us to think in terms of spectrum holes, which can
be defined as a band of frequencies assigned to a primary user, but, at a particular time
and specific geographic location, the band is not being utilized by that user. Spectrum
efficiency can be enhanced by enabling secondary users, i.e., those not currently served,
to access available unused spectrum holes in the appropriate location and timeframe.
In 2002, the Federal Communications Commission (FCC) Spectrum Policy Task Force
[8] proposed spectrum policy reform where secondary users can utilize those unused
frequency bands licensed to the primary users, also known as the incumbent. CR tech-
nologies have been suggested as a solution to optimize spectrum utilization by leveraging
the presence of these vacant spectrum segments. Formally, we can define a CR as follows:

A CR is an intelligent wireless communication system that is aware of its surrounding
environment (i.e., the outside world) and uses the methodology of understanding-by-
building to learn from the environment and adapt its internal states to statistical variations
in the incoming RF stimuli by making corresponding changes in specific operating pa-

2.1. WIRELESS COMMUNICATION SYSTEMS 23

-fIF fIF

Lower
sideband

Upper
sideband

fc0 Hz (DC)

Baseband or low pass RF or Band pass

fIF

Lower
sideband

Upper
sideband

fc0 Hz (DC)

Baseband or low pass RF or Band pass

Figure 2.5: Double sideband and sideband effects when using real (left) and complex
signals (right) in transmissions, respectively.

rameters (e.g., transmit-power, carrier-frequency, and modulation strategy) in real-time,
with two primary objectives in mind:

• Highly reliable communication whenever and wherever is needed

• Efficient utilization of the radio spectrum

This definition highlights six pivotal concepts: awareness, intelligence, learning, adap-
tivity, reliability, and efficiency. Implementing this comprehensive set of capabilities is
achievable today, owing to remarkable advancements in Digital Signal Processing (DSP),
networking, Machine Learning (ML), computer software, and hardware. Beyond these
cognitive attributes, a CR also possesses the capability of reconfigurability. This latter
capacity is made possible through Software Defined Radios (SDRs), which serves as the
foundation for CR systems.

SDRs ideas started in the early 1990s, and the main objective of these platforms is to
provide a freely programmable computer so that developers can implement all kinds of
air interfaces and signal processing functions using software in one device and be able
to adapt it using the appropriate Application Programming Interface (API). Typically,
SDRs are composed of programmable general-purposes DSP or Field-programmable
Gate Array (FPGA) chips. The platform also provides the mechanism for adequate
calibration and APIs, so it can be adapted for optimal performance. Figure 2.6 shows
the high-level hardware block diagram of a well-known SDR platform provided by
the Ettus Universal Software Radio Peripheral (USRP). The Ettus RF Network-on-Chip
(RFNoC) framework is also a good example of a set of well-defined software APIs which
allows making FPGA acceleration more accessible to build functions such as Fast Fourier
Transform (FFT) and Finite Impulse Response (FIR) filters.

The importance of SDRs in CR is that these radio platforms provide the mechanism
to enforce the decisions made by the CR, such as dynamically changing the network,
frequency, modulation, coding, and any other parameters that are required to allow
a flexible spectrum usage according to its environment. Now, CRs make decisions
following the cognitive radio cycle, which is shown in Figure 2.7. This cycle allows
transforming radio nodes from blind and static execution of predefined protocols to
intelligent agents that are radio-domain-aware, learn user preferences, and can program
themselves.

24 CHAPTER 2. TERMINOLOGY AND BACKGROUND

Figure 2.6: High-level hardware block diagram of the commercial-grade NI Ettus USRP
X410 SDR [52].

The cognitive cycle is composed of three major components:

1. Spectrum sensing: Spectrum sensing refers to the task of estimating the radio channel
parameters such as transmission channel characteristics, interference/noise level,
spectrum occupancy, etc. Spectrum sensing is mainly done in the frequency and
time domain. However, it can also be done in code and phase domains. With
spectrum sensing, a CR can perform radio-scene analysis (detection of spectrum
holes) and channel identification (estimation of channel-state information, channel
capacity forecasting).

2. Cognition/management: There is a need to capture the best available spectrum to
meet the user communication requirements. CRs should decide on the best spec-
trum band to meet Quality of Service (QoS) requirements on all spectrum bands.

Spectrum Sensing Reasoning and
Learning Control action Reconfigurable

radio

Policy database Configuration
database

Signal
environment

System information and needs

Transmission

Knowledge base

Spectrum
Cognition/Management

Figure 2.7: The CR cycle.

2.1. WIRELESS COMMUNICATION SYSTEMS 25

Spectrum analysis, spectrum detection, dynamic spectrum management, routing,
and QoS provision are among the tasks included in the cognition/management
functions.

3. Control actions: Finally, the control action results in executing the decisions made by
the cognition/management block, such as changes in the transmit power, changes
in central frequency and bandwidth, and rate control.

As CR is considered a closed-loop system, the receiver must also give helpful information
to the transmitter (e.g., sensing spectrum information, quantized channel capacity, etc.).
The design of the cognitive cycle is traditionally addressed as a cross-layer design prob-
lem, where the physical layer implements sensing, cognition, and adaptation, whereas
the Medium Access Control (MAC) layer and above implements cooperation.

An important aspect in Figure 2.7 is that it follows the traditional CR cycle, where the
reasoning and learning capabilities are part of the spectrum cognition and management
block. However, novel spectrum sensing algorithms can go beyond monitoring and in-
clude learning and reasoning capabilities as well. Examples of these advanced spectrum
sensing algorithms are blind Technology Recognition (TR) for Signals Intelligence (SIG-
INT) presented in Chapter 3 and Chapter 3, while the spectrum cognition/management
block in a more traditional sense can be exemplified as the second step of the algorithm
presented in Chapter 4 and communication-aware learning from Algorithms 3 and 4 in
Chapter 6. This advanced integration of learning and reasoning beyond the typical CRs
framework is now being used on more sophisticated CR networks such as the SCATTER
CIRN, which are presented next.

2.1.4 Collaborative Intelligent Radio Networks (CIRN)

The DARPA Spectrum Collaboration Challenge (SC2) was designed to encourage re-
searchers to develop intelligent systems that collaboratively, rather than competitively,
adapt in real-time to the fast-changing, congested spectrum environment—redefining the
conventional spectrum management roles of humans and machines to maximize the flow
of Radio Frequency (RF) signals. The primary goal of DARPA Spectrum Collaboration
Challenge (SC2) was to imbue radios with advanced ML capabilities so that they could
collectively develop strategies that optimize the use of the wireless spectrum in ways not
possible with today’s intrinsically inefficient approach of pre-allocating exclusive access
to designated frequencies.

In response to this challenge, a team of researchers from the University of Antwerp, the
University of Gent, and Rutgers University designed, implemented, and validated an
advanced wireless end-to-end communication system called SCATTER. The SCATTER
system was designed as a CIRN in order to achieve the main goal of the entire challenge:
to encourage teams to include Artificial Intelligence (AI) elements in their networks to help
with increasing spectral efficiency and coexistence with other teams and their radios, as well as
to promote collaboration between teams, mainly in terms of spectrum usage and occupancy, to
achieve the common goal of increasing the combined throughput of all teams. This resulted in the
architecture presented in Figure 2.8 that shows the general architecture of our software
design and summarizes the interaction across modules.

26 CHAPTER 2. TERMINOLOGY AND BACKGROUND

COMM
Module

High/Low
priority
queues

Processing/Protocol
threads implementation

PHY Layer

COMM
Module

High/Low
priority
queues

Processing/Protocol
threads implementation

User Data
Management

Control Layer
(Rule based)

ZeroMQ

System time
module (<ms)

COMM
Module

High/Low
priority
queues

Processing/Protocol
threads implementation

MAC layer

CIL

Application
packets

TX
Gain/MCS
Adapter

RFMON

TX Gain
Slot Duty
cycle

Incumbent
Protection

Score
Control

Mandates
Filter

Flow
(un)block
MCS
freeze

Slot
Selection

Control Layer
(AI/ML based)

Spectrum
Predictor

Technology
Recognition

TX pattern
predictor

Environment
and

Mandate
Parser

User Data Plane Control Plane

Figure 2.8: SCATTER system architecture.

SCATTER system has been designed to split every functionality within different modules,
all connected through a common data bus where all information is exchanged. The pri-
mary purpose of this approach is 𝑖) to provide an abstraction layer that allows developers
to code modules using different programming languages, choosing the most convenient
one depending on the feature: while most of the modules are written in C/C++, the ML
modules are written in python using third party frameworks such as TensorFlow1 and
CuPy 2 to offload matrix computations to the GPU; 𝑖𝑖) to offer a fail-safe system: as each
module is an individual system process, in case one of them crashes, SCATTER system
can restart that process during runtime; and 𝑖𝑖𝑖) to follow a plug-in approach: replacing,
deleting, or adding a specific functionality is just a matter of attaching another process to
the data bus. Therefore, the API for any information exchange or supported functionality
is defined as a message template that two or more modules can exchange. For example, if
our decision engine needs to trigger an action, regardless of the submodule that initiates
it, it will result in the same action. This is especially useful for our Control Plane (CP)
modules, where multiple actions are simultaneously being taken from different modules.

As shown in Figure 2.8, SCATTER has three main blocks: the data plane, the control plane,
and the Radio Frequency Monitor (RF-MON) module. The Data Plane (DP) is composed
of the User Data Management (UDM), MAC, and Physical Layer (PHY) modules. The
CP comprises two main modules: the rule-based and the ML-based control layers. Each

1https://www.tensorflow.org
2https://cupy.chainer.org

https://www.tensorflow.org
https://cupy.chainer.org

2.1. WIRELESS COMMUNICATION SYSTEMS 27

module in the data path follows a template object architecture, offering basic input and
output of data, priority buffering, and the necessary reserved space for module-specific
functionalities implementation and support for communication with the CL.

The RF-MON module offers real-time spectrum monitoring in the form of a continuous
stream of FFT samples. A system time module synchronizes all modules based on the
system clock. Finally, some additional blocks are included to support specific require-
ments in the context of the SC2 challenge: the CIRN Interaction Language (CIL) module,
used to interact with other networks, and the environment and traffic flow QoS parser,
responsible for accepting input on required settings of the RF front-end and data traffic
types along with their QoS characteristics.

2.1.4.1 SCATTER Data Plane and RF-MON

As described below, the DP is composed of three main modules: the UDM, MAC, and
PHY modules. Let us describe them in more detail:

SCATTER PHY: The high-level architecture of the SCATTER PHY is depicted in Figure
2.9. The figure illustrates the different software/hardware layers composing the SCAT-
TER PHY and the threads within each one of them. Red dashed arrows indicate data
paths, while black arrows indicate control/information interaction between threads. The
SCATTER PHY is implemented as a SDR and is built upon the srsLTE library 3, evolving
beyond the existing Long Term Evolution (LTE) features. It communicates to a USRP
X family of SDR devices4 for pass-band conversion and transmission using the USRP
Hardware Driver (UHD) software API. As can be seen in the figure, the individual PHY
modules are connected to the ZeroMQ 5 (Data/Control) module, which interconnects
the SCATTER PHY with the MAC layer through the ZeroMQ bus. This module manages
the exchange of control and statistics messages between the SCATTER PHY and MAC
layer.

Communication with the SCATTER PHY is implemented through a well-defined inter-
face designed with Google’s Protocol Buffers (protobuf)6 for data serialization coupled
with the ZeroMQ messaging library for distributed exchange of control, statistics and
data messages. Implementing the ZeroMQ push-pull pattern allows the local or remote
MAC layer’s real-time configuration of several parameters and reading of several pieces
of information/statistics provided by the SCATTER PHY. Based on the ZeroMQ logic,
PHY and MAC layers can exchange control and data messages following a non-blocking
communication paradigm. The SCATTER PHY was designed to be completely decou-
pled and independent of the MAC layer module, not posing any constraints on hardware,
software, and/or programming language adopted by it.

In addition, the SCATTER PHY contains the following set of main features:

• Orthogonal Frequency-Division Multiplexing (OFDM) waveform: We adopt OFDM as
the SCATTER PHY waveform. OFDM is a mature technology implemented in a

3https://www.srslte.com/
4https://www.ettus.com/product/category/USRP-X-Series
5https://zeromq.org/
6http://code.google.com/p/protobuf/

https://www.srslte.com/
https://www.ettus.com/product/category/USRP-X-Series
https://zeromq.org/
http://code.google.com/p/protobuf/

28 CHAPTER 2. TERMINOLOGY AND BACKGROUND

FIFO data structure
Data path

Control interaction

Legend

PHY Demod #0

MAC Layer

PHY Tx #0

Control
Message

Relay

User &
control

data FIFO

In
fo

rm
 T

x
th

re
ad

 o
f

d
at

a
av

a
ila

bi
lit

y

USRP/UHD

Radio settings:
frequency, sample rate,

gain, timespec

M
o

di
fy

 T
x/

R
x

R
ad

io
 s

et
tin

gs

PHY Sync #0

User decoded
data and
statistics

Synchronized
and aligned

slots

PHY #0

Rx Streamer #0

T
x

S
tr

e
am

e
r

#0

0MQ Comm. ControlSCATTER PHY

PHY Demod #0

PHY #1

Rx Streamer #1

T
x

S
tr

ea
m

er
 #

1

Tx
Filter

Tx
Filter

Synch FIFO #0

User Data FIFO

Figure 2.9: High-level architecture of the SCATTER PHY.
wide range of products due to its several advantages such as robustness to severe
multi-path fading, low implementation complexity, easy integration with Multiple-
Input and Multiple-Output (MIMO), simple channel estimation, etc.

• Bursty transmissions: with discontinuous transmissions, it is possible to improve the
use of available spectrum and to coordinate its usage with other networks/radios
in an opportunistic/intelligent/collaborative way.

• Dual-Concurrent PHYs: having two physical interfaces simultaneously transmitting
and receiving at independent frequencies enables Multi-Concurrent-Frequency
Time-Division Multiple Access (McF-TDMA) scheme to be implemented by the
MAC layer. The ability to allocate concurrent slots allows for more flexible spec-
trum utilization, as vacant disjoint frequency chunks can be concurrently used.

• FPGA-based filtered transmissions: filtering the transmitted signal effectively min-
imizes Out-Of-Band Emissions (OOBE), allowing better spectrum utilization by
enabling radios to have their transmissions closer to each other in the frequency
domain.

• Out-of-Band Full-Duplex operation: both PHYs operate entirely independently, mean-
ing that transmission (TX) and reception (RX) modules can transmit and receive at
different channels, set different gains, and use different PHY bandwidths.

• Timed-commands: this feature allows the configuration of the exact time in the future
to (i) start transmission and (ii) change TX/RX frequencies/gains.

SCATTER MAC: The SCATTER MAC protocol is based on an enhanced Multiple Fre-
quencies Time Division Multiple Access (MF-TDMA) scheme, taking advantage of our
dual concurrent PHY support and the separated RX and TX channels offered per PHY.
Since two slots can be active simultaneously using PHY0 and PHY1, we can support a
McF-TDMA table where two slots can be allocated for TX and two for RX at any given

2.1. WIRELESS COMMUNICATION SYSTEMS 29

Figure 2.10: McF-TDMA slot table structure and possible states.

time slot per node. By employing a McF-TDMA scheme, the CIRN can utilize the entire
offered spectrum if needed. MAC layer maintains a McF-TDMA table per node and
updates it with every successful slot allocation/removal procedure. An example of a
McF-TDMA table is shown in Figure 2.10.

MAC layer is also responsible for exchanging slot allocation/removal control messages
and notifying neighbor nodes about any newly allocated/released time-frequency slots.
Based on the latency and throughput requirements of an incoming flow, MAC layer ini-
tiates one/multiple slot allocation procedures towards the destination node to serve the
incoming traffic. As a protection mechanism against slot allocation/removal procedure
failures, MAC layer periodically broadcasts table status to neighboring nodes to align all
McF-TDMA tables.

The MAC protocol is based on three generic operations:

• Support of a distributed slot setup protocol with any neighboring node that can
perform allocation, deletion, and move of any [channelX-timeslotY] slot. Each
allocated slot serves the traffic of a single link and all flows belonging to it.

• Maintain a schedule McF-TDMA table [slot, channel, type of slot, node] that keeps
track of the assignment of channel-time slot tuple to transmit or receive to/from a
specific node as well as Control-Broadcast (CB) slots.

• Support a semi-static Control-Broadcast slot allocation scheme. CBs are based on
slotted aloha medium access if there is a large number of nodes in the network
or are divided into mini-slots, where each mini-slot is used by one node, offering
a Time Division Multiple Access (TDMA) like medium access. The CB scheme
adapts to the channelization of the available bandwidth during boot time to avoid
the possibility of CB slots interfering across the available spectrum.

30 CHAPTER 2. TERMINOLOGY AND BACKGROUND

Apart from the basic MAC operation, several other features exist in the MAC layer
to support QoS requirements and link robustness. A double layer of buffering exists
to support aggregation/fragmentation of incoming network layer Protocol Data Units
(PDUs) in order to fit in the PHY PDU size (based on the running Modulation and
Coding Scheme (MCS) on the link) and avoid wasted space. Also, re-transmissions
are supported based on aggregated acknowledgments from the receiver, informing the
sender about successfully receiving a packet. Re-transmission maximum retries are
dynamically calculated per packet to ensure that the latency requirements of every packet
will not be violated while data packets are dropped proactively if it is found that it is not
possible to be delivered in time to the destination.

SCATTER User Data Management (UDM): Our decision engine is designed to track
radio performance constantly. To achieve this, UDM reports to the CP several metrics per
flow, such as the number of packets per second and average packet size. These metrics are
crucial for CP to understand how close the node is to fulfilling the flow QoS requirements
based on reported incoming traffic and, therefore, correctly quantify the success of our
system. UDM monitors all incoming traffic flows in runtime and reports the required
monitoring information to several submodules of the CP. UDM also performs buffering
when specific bursty types of traffic are injected into our system, taking into account the
latency characteristics of the bursty incoming traffic and reshaping the traffic flow to a
Constant Bit Rate (CBR)-like flow.

SCATTER RF-MON: The RF-MON module is very important to the whole system as it
gives the CP a local insight into the spectrum usage by enabling CP to access spectrum
sensing measurements. These measurements are used to train ML algorithms employed
to understand the environment better, optimize the spectrum usage, and cooperatively
work with other networks, entirely agnostic for other network’s characteristics.

RF-MON continuously monitors the whole competition bandwidth, which can go up to
40MHz in an SC2 scenario. Performing this compute-intensive task on the FPGA reduces
Central Processing Unit (CPU) load. It also reduces the amount of data to be transferred
from USRP to the host, as only periodic snapshots (time-averaged spectral energy) are
sent to the host. This custom FPGA module, along with transmit FIR filters, was built
and integrated within the SCATTER system using Ettus Research RFNoC framework as
shown in Figure 2.11. As SCATTER uses dual-concurrent PHY, samples from the second
radio are split into two streams, with one stream feeding RF-MON and the other stream
feeding the RX1 decoding pipeline.

2.1.4.2 Control Plane (CP) and Intelligent Decision Engine

The CP of the SCATTER system holds the intelligence of the system, making use of all
the knobs exposed by the MAC layer in addition to the ground truth vision provided
by the RF-MON. Those are the primary enablers of our decision engine. Any required
decision is taken by the sub-modules that constitute our decision engine: from MCS
and transmission gain adaptation, slots scheduling, Incumbent Protection, up to traffic
prioritization and score control. Let us describe the rule-based sub-modules in the CP
that support our decision engine.

TX Gain and MCS adaptation: In the SCATTER system, link adaptation is controlling

2.1. WIRELESS COMMUNICATION SYSTEMS 31

Figure 2.11: FPGA configuration with dual PHY and RF-MON. The two PHYs are com-
posed of their own Digital Down Converter (DDC) and Digital Up Converter (DUC),
and Direct Memory Access (DMA)-First In, First Out (FIFO) to transfer data between the
FPGA target and host processor.

two main aspects of a link between two nodes, the MCS and the TX gain used. The
link adaptation plays a two-folded role: 𝑖) finding optimal settings for initializing and
keeping links stable with high Packet Success Rate (PSR) while not interfering, 𝑖𝑖) while
providing the first level of interference countering when other teams’ radios interfere
with a specific link. This means that the link adaptation algorithm must be able to
adapt TX gain and MCS fast enough when interference is detected through PSR and link
statistics like Received Signal Strength (RSSI) and Channel Quality Indicator (CQI). As all
data packets are acknowledged (ack) from the receiver to the sender, the acks were used
to push receiver-side statistics to the sender, thus closing a fast control loop between the
sender and the receiver. This control loop is the core of the link adaptation algorithm.

Traffic Flow Management: This module is responsible for sorting the offered traffic (also
known as mandates), aiming to maximize the efficiency of our system. To this end, we
defined a set of benefit-cost functions for each type of traffic to calculate its benefit. The
most beneficial traffic flows are selected first to be enabled in order to reach our target
score. For every type of mandate, our traffic management keeps track of its status and
evaluates its success. If the system cannot stabilize a flow due to bad channel conditions,
the node blocks it and picks the next most beneficial mandate on the list. A detailed
description of the whole traffic flow management is presented in [16].

CIL support: A node acting as gateway is the unique entity of a CIRN that is connected
to CIRN Interaction Language (CIL) network. This node collects mandate performance
reports and spectrum usage from each node, packs this information in a single report,
and sends it to other networks. When other networks share any related information, the
CIL module parses the messages and passes relevant values to sub-modules of the CP
for further processing.

32 CHAPTER 2. TERMINOLOGY AND BACKGROUND

Slot selection: The CP selects a slot between two nodes, combining the information
from multiple input sources. In order to combine this information, the input data must
be normalized. To this end, we designed a slot selection system using multiple filters,
representing each input source as a filter. For each filter output, the value is normalized
between 0 and 1 and a slot’s final "Goodness" value. The slot selection system supports
two classes of filters: 𝑖) MUL-filters, where the values are multiplied by a factor and then
increase the impact of the filter during the slot allocation procedure, e.g., the Incumbent-
presence filter downgrades the overlapping MAC slots with the incumbent’s spectrum
region or the external McF-TDMA filter to make sure two nodes do not select the same
slot; 𝑖𝑖) ADD-filters, with a summation effect to the slot Goodness. The SCATTER system
implements the following filters:

• External McF-TDMA filter (MUL): To ensure two nodes do not select the same slot,
we implemented a filter to turn off slots used by other team members.

• Slot prediction filter (ADD): the slot prediction module, which will be described
later in this section, provides a value that indicates the probability of a slot being
used in the future.

• Channelizing filter (ADD): to be more predictable for other competitors, we try to
allocate our slots in the same frequency channels. This filter gives a value for slots
in a channel based on the number of slots already allocated in that channel.

• Incumbent Protection - presence filter (MUL): This filter marks slots that (partially)
overlap with the transmission of incumbent technologies. The filter will downgrade
the slots in the overlapping spectrum. As a result, the system will give priority to
the slots in the non-overlapping spectrum.

• Zero-filter (MUL): In the case of active incumbents, a zero-filter is used to disable
the slots in the active incumbent spectrum to achieve maximum protection. The
goal is to avoid selecting slots in the spectrum where the active incumbent resides.
The filter receives the slot values from the TR module. Chapter 4 provides a detailed
description of the protection system implemented.

• Historic spectrum usage from other CIRN filter (ADD): This filter uses the spectrum
usage information from other teams provided via CIL to lower the Goodness value
of parts of the spectrum used by them. The filter will downgrade the parts of the
spectrum that the other teams need to improve their performance while trading off
our performance under certain limits.

During a typical slot allocation procedure between 2 nodes, the TX node, after applying
all filters, selects slots with the highest Goodness from available slots and then proposes a
subset of these slots to the RX node. The RX node selects the best slot out of the proposed
set based on its filters and reports the selected slot back to the TX node for allocation
between both nodes. In addition to the rule-based sub-modules, the CP also includes the
following ML-based sub-modules that create the Intelligent Decision Engine:

Spectrum Prediction: As detailed in [17, 53], we have designed and implemented a
Convolutional Neural Network (CNN) to learn and predict the usage of the spectrum.
The model was trained offline with historical spectrum data as a bootstrapping step. In
addition to the knowledge learned during the offline training, the model is also trained in

2.2. MACHINE LEARNING 33

an online fashion by accessing and using data from the RF-MON block in order to quickly
learn, recognize, adapt, and predict the (possibly new) behavior of other networks, aiming
to avoid interference with other transmissions in real-time. The outcome of this model is
a matrix of values with the same shape as the McF-TDMA scheduling grid. These values
are used as a filter in our slot selection module to enhance the view of our nodes when
they select, negotiate, and allocate slots.

Technology Recognition (TR): Identifying what is in the spectrum is critical to making
better decisions about accessing the spectrum. The TR module uses RF-MON data,
which is framed according to our McF-TDMA scheduling grid, to discriminate different
types of transmitting signals. As presented in Chapter 3, TR was initially designed to
recognize different transmitting technologies and background noise based on raw IQ
samples. A modified version of it for high performance and real-time classification was
able to recognize five types of radio signal signatures based on FFT samples: radar,
jammer, SCATTER, other teams, and noise, as presented in Chapter 4. Both versions
were implemented using Deep Neural Network (DNN) architectures.

TX pattern prediction: The modified version of TR was used to provide advanced
spectrum sensing capabilities in real-time to detect the incumbent’s transmission. As
part of a novel multi-tier spectrum-sharing framework to mitigate spectrum scarcity
via spectrum sharing, SCATTER CIRN provides an autonomous incumbent protection
system that allows the radios to learn and predict the time slots and frequencies where the
active incumbent will transmit in the near future concerning our McF-TDMA scheduling
grid. The TX pattern prediction sub-module can learn the transmission patterns of the
incumbent online in time and frequency so that it can adapt to any chance of its patterns
in real-time. This outcome is passed to the incumbent protection filter, marking the
slots in our scheduling grid that can not be used at a given moment. As a result, our
design allows efficient sharing and reuse of spectrum without centralized coordination in
contrast to state-of-the-art approaches such as Citizens Broadband Radio Service (CBRS)
and Licensed Shared Access (LSA). This functionality is further explained in Chapter 4.

Notice that ML-based modules in SCATTER, mainly Deep Learning (DL)-based, were a
fundamental component to achieve the main objective of the Defense Advanced Research
Projects Agency (DARPA) SC2. As we will see through this book, these algorithms
are very promising to empower the new generation of intelligent decision engines that
present self-dynamic capabilities to create innovative business and network operations
in a closed-loop fashion. In the next section, we will provide the background on ML that
facilitates reading this book.

2.2 Machine Learning

ML represents a transformative field of AI that has garnered widespread attention and
applications across various domains. At its core, ML empowers computers with the
ability to acquire knowledge and improve their performance without being explicitly
programmed. A ML algorithm is an algorithm that can learn from data. Traditionally,
these algorithms can be broadly categorized into three major types: Supervised Learning
(SL), Unsupervised Learning (USL), and Reinforcement Learning (RL). These categories
delineate the fundamental approaches through which machines can extract patterns,

34 CHAPTER 2. TERMINOLOGY AND BACKGROUND

make predictions, and optimize decision-making processes, laying the foundation for
advancements in fields as diverse as image recognition, natural language processing,
and autonomous radios.

More recently, DL, which is a type of ML technique, has emerged as a viable approach
to building AI systems that can solve complex problems in complicated, real-world
environments. DL approaches achieve great power and flexibility by learning to represent
the world as a composition of concepts, where each concept is defined in relation to
simpler concepts. This approach allows computer machines to build more abstract
representations from less abstract ones. Figure 2.12 shows how AI, ML, and DL relate to
each other. In this section, we introduce all the essential terminology and background
on AI and ML that are used to support the research in the different chapters throughout
this book.

Example:
Knowledge

bases

Example:
Logistic

regression

Example:
Shallow

autoencoders
Example:

MLPs
Deep

Learning

Representation
Learning

Machine
Learning

Artificial
Intelligence

Figure 2.12: Relationships between AI, ML, and DL.

2.2. MACHINE LEARNING 35

2.2.1 Unsupervised and Supervised Learning

Let 𝑋 =
{
𝑥1 , 𝑥2 , . . . , 𝑥𝑁

}
be a set of 𝑛 examples (or points), where 𝑥𝑖 ∈ 𝑋 for all 𝑖 ∈

[𝑛] := {1, . . . , 𝑛}. Typically, it is assumed that points are drawn independently and
identically distributed from a common distribution on 𝑋. The goal in Unsupervised
Learning (USL) algorithms is to learn useful properties of the structure of 𝑋. Now, let
𝑌 =

{
𝑦1 , 𝑦2 , . . . , 𝑦𝑁

}
be the set of labels or targets. In Supervised Learning (SL), the goal

is to learn a mapping from 𝑋 to 𝑌 given a training set of pairs
(
𝑥𝑖 , 𝑦𝑖

)
, where 𝑦𝑖 is the

label of the 𝑖th example 𝑥𝑖 for all 𝑖 ∈ [𝑁] :=
{
1, 2, . . . , 𝑁

}
. The task is well-defined since

a mapping can be evaluated through its predictive performance on test examples. When
𝑌 = R or 𝑌 = R𝑑, i.e., when labels are continuous, the task is called regression. On the
other hand, if 𝑦 takes values from a finite set, i.e., discrete labels, then the task is called
classification.

Roughly speaking, USL involves observing several examples of a random vector 𝑥 ∈ 𝑋
and attempting to implicitly or explicitly learn the probability distribution 𝑝(𝑥) or some
interesting properties of that distribution. On the other hand, SL involves observing
several examples of a random vector 𝑥 and an associated value or vector 𝑦, and learning
to predict 𝑦 from 𝑥, usually by estimating the predictive density 𝑝(𝑦 |𝑥), also known as
discriminative SL. Alternatively, a SL algorithm can try to model the class-conditional
density 𝑝(𝑥 |𝑦), also known as generative SL, by some USL procedure. Then, we can infer
the predictive density by applying the Bayes theorem:

𝑝(𝑦 |𝑥) = 𝑝(𝑥 |𝑦)𝑝(𝑦)∫
𝑦
𝑝(𝑥 |𝑦)𝑝(𝑦)𝑑𝑦

(2.4)

2.2.2 Semi-supervised Learning

As shown in Figure 2.13, Semi-supervised Learning (SSL) is an approach that falls be-
tween USL and SL. In this family of learning algorithms, the set 𝑋 is divided in two
subsets 𝑋𝑠 =

{
𝑥1 , 𝑥2 , . . . , 𝑥𝐿

}
, for which their corresponding labels 𝑌𝑠 =

{
𝑦1 , 𝑦2 , . . . , 𝑦𝐿

}
are provided, and 𝑋𝑢 =

{
𝑥𝐿+1 , . . . , 𝑥𝑁

}
, for which no labels are provided such that

𝑋 =
{
𝑥1 , 𝑥2 , . . . , 𝑥𝐿 , 𝑥𝐿+1 , . . . , 𝑥𝑁

}
. Of course, if SSL still requires labeled data as in SL, is

SSL still meaningful? If we assume that the distributions of examples, which will be elu-
cidated using the unlabeled data, are relevant to the learning problem, then the answer
is "yes". More formally, an important prerequisite to use SSL is that the knowledge on
𝑝(𝑥) that one gains through the unlabeled data set has to carry information that helps the
inference of 𝑝(𝑦 |𝑥). If this is not the case, then SSL will not provide any improvement over
SL, and it could even be the case that the use of unlabeled data degrades the prediction
accuracy by misguiding the inference.

Like other learning algorithms, SSL requires certain assumptions to hold to work. As
an example, SL learning algorithms also rely on assumptions such as the smoothness
assumption of SL that indicates that if two points 𝑥1 , 𝑥2 are close, then so should be the
corresponding output 𝑦1 , 𝑦2. Of course, without such assumptions, it would never be
possible to generalize from a finite training set to a set of possible infinite many unseen
cases. Let us now introduce the assumptions that need to be held by SSL to work correctly:

36 CHAPTER 2. TERMINOLOGY AND BACKGROUND

All Labeled Data

All Unlabeled Data

Some Labeled Data

Lots of Unlabeled
Data

Training
data

Supervised
Learning

Semi-Supervised
Learning

Unsupervised
Learning

Model

Model

Model

Figure 2.13: Comparing supervised, unsupervised, and semi-supervised learning.

• Semi-supervised smoothness assumption: If two points 𝑥1 , 𝑥2 in a high-density region
are close, then so should be the corresponding outputs 𝑦1 , 𝑦2.
By transitivity, this assumption implies that if two points are linked by a path of
high density (e.g., if they belong to the same cluster), their outputs are likely to be
close. If, on the other hand, they are separated by a low-density region, then their
outputs need not be close.

• The cluster or low-density separation assumption: If points are in the same cluster, they
are likely to be of the same class. Equivalent, the decision boundary should be like
in a low-density region.
Suppose we knew that the points of each class tended to form a cluster. This
assumption indicates that unlabeled data could aid in finding the boundary of
each cluster more accurately since one could run a clustering algorithm and use
the labeled points to assign a class to each cluster. This is reasonable based on the
sheer existence of classes: if there is a densely populated continuum of objects, it
may seem unlikely that they were ever distinguished into different classes.

• Manifold assumption: The (high-dimensional) data lie (roughly) on a low-dimensional
manifold.
A well-known problem of many statistical methods and learning algorithms is
the so-called curse of dimensionality. It is related to the fact that volume grows
exponentially with the number of dimensions, and an exponentially increasing
number of examples is required for statistical tasks such as the reliable estimation
of densities. A related problem of high dimensions, which may be more severe for
discriminative methods, is that pairwise distances tend to become more similar and
thus less expressive. If the data lie on a low-dimensional manifold, the learning

2.2. MACHINE LEARNING 37

algorithm can essentially operate in the space of the corresponding dimension, thus
avoiding the curse of dimensionality.

• Vapnik’s principle: When trying to solve some problem, one should not solve a more
complex problem as an intermediate step.
A problem related to SSL was introduced by Vapnik as the so-called transductive
learning[54]. In this problem, one is given a (labeled) training set and an (unlabeled)
test set. The main idea of this approach is to perform predictions only for the test
points. This contrasts to inductive learning, where the goal is to output a prediction
function defined on the entire space 𝑋. Now, suppose label predictions are only
required for a given test set. In that case, transduction can be argued to be more
direct than induction: while an inductive method infers a function 𝑓 : 𝑋 → 𝑌 on
the entire space 𝑋, and afterward returns the evaluations 𝑓 (𝑥𝑖) at the test points,
transduction consists of directly estimating the finite set of test labels, i.e., a function
𝑓 : 𝑋𝑢 → 𝑌 only defined on the test set. Note that transduction is not the same as
SSL: some SSL algorithms are transductive, but others are inductive.

We can see across the literature that most SSL algorithms can be seen to correspond to or
implement one or more of these assumptions. In general, SSL can be divided into four
main classes corresponding to the previous four assumptions: change of representation,
low-density separation, graph-based methods, and generative models.

2.2.3 Reinforcement Learning and its Parallelization

Notice that some machine learning algorithms do not just learn from a fixed data set. This
is the case for Reinforcement Learning (RL) algorithms that interact with an environment,
so there is a feedback loop between the learning system and the information it uses to
learn.

2.2.3.1 Single and Multi-Agent Reinforcement Learning

RL is a branch of Machine Learning (ML) that allows an entity, called the learning
agent, to solve a problem by trial and error. Problems in RL are formulated as Markov
Decision Processs (MDPs). A finite MDP is a tuple {𝑆, 𝐴, 𝑇, 𝑅} where 𝑆 is the set of
environment states, 𝐴 is the set of agent actions, both finite, and𝑇 : 𝑆×𝐴×𝑆→ [0, 1] and
𝑅 : 𝑆×𝐴×𝑆→ R are the transition probability and the reward functions, respectively. In
this model, the state 𝑠 ∈ 𝑆 describes the environment at each discrete time step 𝑡. After
observing the state 𝑠𝑡 ∈ 𝑆, the agent takes action 𝑎𝑡 ∈ 𝐴, and the environment changes to a
new state 𝑠′𝑡 ∈ 𝑆 according to the function 𝑇. Simultaneously, the agent receives a reward
𝑅𝑟 ∈ R that evaluates the immediate effect of the action taken according to the function
𝑅. However, the reward says nothing about the long-term effects of the action. Figure
2.14 shows how an agent interacts with the environment in the framework of MDPs.

One kind of MDPs assumes that there are terminal states, i.e., states that once an agent
is there, it can not leave it. Under this assumption, the learning process is separated into
episodes, which start in an initial state and end in a terminal state. A policy 𝜋 : 𝑆 → 𝐴
determines an agent’s action at any state. The primary objective of the agent is to find a

38 CHAPTER 2. TERMINOLOGY AND BACKGROUND

Agent

Environment

Action

At

State

St

Reward

Rt

State

St+1

Reward

Rt+1

Figure 2.14: An agent-environment interaction in a MDP.

policy that maximizes, for every 𝑠 ∈ 𝑆, the state-action value function 𝑄𝜋 : 𝑆 × 𝐴 → R,
also known as the Q-function:

𝑄𝜋(𝑠, 𝑎) = 𝐸
{ ∞∑
𝑡=0

𝛾𝑅𝑡
���𝑠 = 𝑠0 , 𝑎 = 𝑎0 ,𝜋

}
(2.5)

Where the discount factor 𝛾 ∈ [0, 1) is used to bound the sum, which otherwise might
grow unbounded. The Q-function represents the reward accumulated by the agent in the
long run for taking action 𝑎 in state 𝑠 and following the policy 𝜋. To obtain the optimal
Q-function, 𝑄∗(𝑠, 𝑎), equation (2.5) can be written as a Bellman optimally equation as
follows.

𝑄∗(𝑠, 𝑎) =
∑
𝑠∈𝑆

𝑇(𝑠, 𝑎, 𝑠′)
[
𝑅(𝑠, 𝑎, 𝑠′)+

𝛾 max
𝑎′

𝑄∗(𝑠′, 𝑎′)
] (2.6)

Intuitively, the Bellman optimality equation allows expressing the expected total reward
for an agent by taking 𝑎 in 𝑠 in terms of the optimal value from the next state. After
computing 𝑄∗ for every pair (𝑠, 𝑎) ∈ 𝑆 × 𝐴, the optimal policy, also known as greedy, can
be computed as 𝜋∗(𝑠) = 𝑎𝑟𝑔max𝑎′ 𝑄∗(𝑠′, 𝑎).

Depending on the availability of the MDP, RL algorithms can be divided into model-
based and model-free approaches [50]. Model-based RL algorithms find optimal policies
by interacting with a model of the environment, which is either provided as an MDP or
estimated from data (sampling). However, these learning algorithms have only practical
use in problems with small state-action space. On the contrary, model-free RL algorithms
do not require the MDP and learn through actual experience with the (real) environment.

Temporal Difference (TD) learning is a family of model-free RL algorithms that learn
directly by interacting with the environment and updating estimates of𝑄𝜋 based on other

2.2. MACHINE LEARNING 39

learned estimates. TD methods can be divided into On-Policy or Off-Policy according
to how the actions are selected during learning. On-Policy TD methods learn the policy
used to take action. Off-Policy TD learn one policy, called the target policy, while taking
actions following another policy, called the behavior policy. In other words, Off-Policy TD
algorithms separate exploration via the behavior policy that selects actions and generated
behaviors from the control via the target policy whose Q-function is the objective of the
learning process. Q-Learning (QL) [55] is an example of the Off-Policy TD RL algorithms
that is the basis of many Single-Agent Reinforcement Learning (SARL) and Multi-Agent
Reinforcement Learning (MARL) algorithms [56, 37]. QL is one of the most efficient and
simpler RL algorithms that updates its estimates 𝑄(𝑠, 𝑎) based on sample < 𝑠, 𝑎, 𝑠′, 𝑟 >,
at time 𝑡, with:

𝑄(𝑠𝑡 , 𝑎𝑡) + 𝛼 ·
[
𝑟𝑡+1 + 𝛾 ·max

𝑎′
𝑄𝑡(𝑠′, 𝑎′) −𝑄𝑡(𝑠𝑡 , 𝑎𝑡)

]
(2.7)

A generalization of the MDPs with multiple agents is defined by the Stochastic Game
(SG) framework. A SG is a tuple {𝑆, 𝐴1 , . . . , 𝐴𝑛 , 𝑇, 𝑅1 , . . . , 𝑅𝑛}, where 𝑛 is the number
of agents, 𝑆 is the set of environment states, 𝐴𝑖 , 𝑖 ∈ [1, 𝑛], are the set of actions available
to agent 𝑖, which generate the joint action set A = 𝐴𝑖 × · · · × 𝐴𝑛 , 𝑇 : 𝑆 ×A × 𝑆→ [0, 1] is
the transition probability function, and 𝑅 : 𝑆 ×A × 𝑆→ R is the reward function.

Depending on different choices in this framework, several types of MARL problem
descriptions and possible solutions can be derived. In our case, we are interested in fully
collaborative stochastic games with independent learners and a single shared policy
[38]. This model, also known as Parallel Reinforcement Learning (PRL), assumes that
all agents are independent, i.e., they only observe their local actions, they have the same
reward function 𝑅1 = . . . = 𝑅𝑛 , to maximize the joint return and update a unique policy.
These assumptions reduce the problem to an MDP, whose action space is the joint action
space of the SG. Assuming independent agents is more practical since the observability
of joint actions is hard to meet in real environments [57].

2.2.3.2 The Parallel Reinforcement Learning Problem

Traditionally, SARL algorithms are sequential: an agent perceives its current state 𝑠 ∈ 𝑆
by sensing the environment and then selects an action 𝑎 ∈ 𝐴. As a result of the selected
action, the agent moves to a new state 𝑠′ ∈ 𝑆 and receives a reward 𝑟 ∈ 𝑅. To learn the
optimal policy, the agent interacts with the environment for a finite number of steps. The
time that requires the agent to learn can be measured in two ways: learning and actual
time.

Definition 2.2.1. Learning time is the number of algorithm iterations that an agent
requires to find an optimal policy.

Definition 2.2.2. Execution time is the actual time that an agent requires to find an
optimal policy.

In SARL, the agent requires a long learning time and a tabular representation of the
q-values to guarantee convergence to an optimal policy. PRL aims to reduce the learning
time of SARL algorithms by increasing the number of agents solving the task and sharing
their experiences. Kretchmar introduces the PRL problem by using the well-known n-
armed bandit task and shows the complexities of sharing information among multiple

40 CHAPTER 2. TERMINOLOGY AND BACKGROUND

Figure 2.15: Reduction rate in the learning and execution time of the Constant-Share
Reinforcement Learning (CS-RL) [38] algorithm solving the Cliff problem (see example
6.6 in [50]) in a grid of size 100x100.

RL agents running in parallel and without using a common shared Q-Table (QT) [58].
More specifically, the learning challenge in PRL is the problem of designing strategies
for sharing and merging knowledge among the agents.

In previous work, Whitehead proved that the learning time, in terms of the number of
training episodes, can be reduced proportionally to the number of agents solving the task
if they update the same policy/QT [39]. However, in both cases, the execution time, in
terms of actual time, is reduced at a rate lower than 𝑛 due to the added communication
overhead and the wasted learning of using overlapping search strategies [58, 38, 39].
Therefore, a scalability problem in PRL requires developing strategies that simultane-
ously reduce both the learning and execution time while increasing the number of agents
solving a given task. Formally, we can define the communication cost as follows:
Definition 2.2.3. Communication cost (hardware-dependent) In distributed environ-
ments, RL agents running in parallel are interconnected via a communication network.
The communication cost of a PRL algorithm with 𝑛 agents is defined as the ratio be-
tween the cumulative (actual) time spent by exchanging messages among agents and its
execution time. This measurement has no units.
Definition 2.2.4. Communication cost (hardware-independent) The communication
cost of a PRL algorithm with 𝑛 agents is defined as the ratio between the cumulative
number of messages exchanged by the agents over the network and its learning time.
This measurement has messages/iteration as a metric unit.

Figure 2.15 shows the reduction ratio in the learning and the execution time, i.e., learn-

2.2. MACHINE LEARNING 41

ing/execution time of 𝑛 agents concerning a single agent, of a naive implementation
of the CS-RL algorithm [38] solving a RL problem using up to 64 agents on a unique
server with 20 cores, i.e., no communication overhead due to a computer network but
inter-processes messaging in the server. While the learning time is reduced linearly to
the number of agents solving the problem, the execution time was reduced to 65% less
with 64 agents, which will be much worse in a fully distributed scenario.

While the learning time in PRL depends on the strategy and frequency of sharing ex-
periences between agents, the execution time depends on the strategies to optimize
the available processing, storage, and communication resources. While distributed and
large-scale infrastructures, such as the Internet of Things (IoT), can provide the process-
ing and storage to guarantee the scalability of the PRL algorithms, it is required to design
new strategies that minimize the cost of exchanging information among agents over the
network. At the same time, these strategies should be independent of the type of RL
agent to provide flexibility at the moment of selecting the right RL algorithm behind the
IoT application.

2.2.4 Neural Networks and Deep Learning

Feedforward Neural Networks (FNN), also known as Deep Feedforward Networks
(DFN), or Multi-Layer Perceptrons (MLPs), is the most perfect example of Deep Learning
(DL). A FNN aims to approximate some functions 𝑓 ∗. In the case of a classifier, 𝑦 = 𝑓 ∗(𝑥)
maps an input example 𝑥 to a label 𝑦. It defines a mapping 𝑦 = 𝑓 ∗(𝑥;𝜃) and learns the
value of the parameters 𝜃, resulting in the best function approximation.

These models are called feedforward as information flows through the evaluated func-
tion 𝑓 from 𝑥, moving across the intermediate computations required to get 𝑓 , and then
to the output 𝑦. In FNN, there are no feedback connections where the (intermediate or
final) output of the model is fed back into the model itself. An example of a well-known
specialized FNNs is the Convolutional Neural Network (CNN), which is used for object
recognition directly from images. Another example of an extension of FNNs to include
feedback connections is called Recurrent Neural Network (RNN), which is now used for
processing temporal sequences and provides the means to power many natural language
applications by allowing modeling relationships between sequences and other sequences
rather than just fixed inputs.

The term networks is associated with FNN since they typically are represented as a
composition of many different functions whose relationships can be described via a
directed acyclic graph. For example, we can have three functions 𝑓 (1), 𝑓 (2), and 𝑓 (3)

connected sequentially to form 𝑓 (𝑥) = 𝑓 (3)(𝑓 (2)(𝑓 (1)(𝑥))), where 𝑓 (1) is called the first
layer of the network, 𝑓 (2) the second layer, and so on. The first layer of the model is
called the input layer, while the last layer is called the output layer. The number of layers
that are part of such composition gives the depth of the model, terminology where DL
and Deep Neural Network (DNN) emerge from.

The objective of training a FNN is to drive 𝑓 (𝑥) to match 𝑓 ∗(𝑥). The training data provides
noisy, approximate examples of 𝑓 ∗(𝑥) evaluated at different training points, where each
𝑥 is associated with a label 𝑦 ≈ 𝑓 ∗(𝑥). Note that the training examples specify what
the output layer must do at each point 𝑥 presented to the input layer, i.e., evaluating

42 CHAPTER 2. TERMINOLOGY AND BACKGROUND

𝑓 ∗ at 𝑥 should produce a value close to its associated 𝑦. However, the behavior of the
other layers is not directly specified by the training data, i.e., the learning algorithm must
decide how to use the intermediate layers to implement the best 𝑓 ∗ such that it can output
each expected output. However, the training data does not say what each layer should
do. This is why the intermediate layers are also called hidden layers. Traditionally, each
hidden layer is vector-valued, so the dimensionality of these hidden layers determines
the width of the model. Figure 2.16 shows a simplified version of a DNN model.

Input
layer

Output
layer

Hidden
layers

Figure 2.16: A DNN model showing the input, hidden, and output layers.

Finally, FNN are called neural because they are loosely inspired by neuroscience. Each
element of the hidden layer may be interpreted as analogous to a neuron in the brain.
In this way, instead of thinking of a layer as a vector-to-vector function, a layer can be
seen as parallel computing units able to act in parallel, where each one represents a
vector-to-scalar function. Again, the analogy with the brain is that each unit resembles
a neuron because it receives input from many other units and computes its activation
value. However, modern Neural Networks (NNs) research is guided by disciplines like
mathematics and engineering, where the goal is not to mimic the model of the brain
but to create function approximation machines that are designed to achieve statistical
generalization, models that occasionally can get some insights from what we know about
the brain. With this goal in mind, the activation functions are commonly selected to be
nonlinear so that by the composition of multiple layers, in theory, we could approximate
any function [59].

Nevertheless, why DL is being the most used ML approach to solve many complex
Artificial Intelligence (AI) tasks? Traditionally, simple ML models can solve complex
tasks by designing the correct set of features to extract what represents the input data for
that task. The main goal behind designing features, or algorithms for learning features,

2.2. MACHINE LEARNING 43

is to separate the factors of variation that explain the observed data. For example, a
helpful feature of a singer’s vocal range is the shape and structure of each individual’s
vocal folds. It, therefore, gives a vital clue as to whether the singer is a bass, tenor, alto, or
soprano. However, knowing what features should be extracted for many learning tasks
is challenging. For example, given a picture, how can we describe what exactly a cat is in
terms of pixel values? Many characteristics make this task difficult. For example, what
is the shape of a "general" cat? How do we geometrically define it? Moreover, this is
even more complicated as there are different types of cats, different environments where
the cat may be while capturing the picture, and there are different visual effects that
may impact the picture itself. In other words, a significant source of difficulty in many
real-world AI applications is that many factors of variation influence every single piece
of data we can observe.

Manually designing features for a complex task requires much human time and effort,
from weeks to months (for very specialized and easy problems), up to decades for an
entire community of researchers. ML can be used to solve this problem by not only
learning the mapping between inputs and outputs but also the representation itself. This
approach is called Representation Learning, which often performs much better than can
be obtained with hand-designed representations. Moreover, it can even be the case that
obtaining such representation is as difficult as solving the original problem.

DL solves this central problem in representation learning by introducing representations
that are expressed in terms of other, more straightforward representations. Therefore,
DL allows the computer to build complex concepts out of simpler concepts. In this
way, DL system can represent the concept of a cat by combining simpler ideas such
as corners and contours, which are defined in terms of edges, and so on. A perfect
example of a DL model for learning representations is the Autoencoders (AEs), which
is a combination of an encoder network that converts the input data into a different
representation and a decoder network that transforms the new representation back into
the original format. AE are trained to preserve as much information as possible when
the input is run through the encoder and then the decoder. Still, they are also trained to
make the new representation have various nice properties, e.g., remove noise from the
input example.

In practice, building DNNs requires addressing several design decisions needed to de-
ploy them. First, training a DNN requires choosing the optimizer, which is the algorithm
used to change the attributes of the DNN to create the best 𝑓 ∗, the cost function, which
is used to measure the performance of the model finding a relation between the input
and output, and the form of the output units, which is linked to the type of ML task that
is being solved. In this part, gradient-based learning algorithms will play a role as they
allow DNNs to compute the gradients of complicated functions. The back-propagation
algorithm and its modern generalizations can be used to calculate these gradients effi-
ciently. Secondly, we must also design the architecture of the DNN, which includes how
many layers the network should contain, how these layers should be connected, how
many units should be in each layer, and what type of units. Finally, we need to choose the
activation functions that will be used to compute the values of the layers. DL can safely
be regarded as the study of models involving more composition of learned functions or
concepts than traditional machine learning.

44 CHAPTER 2. TERMINOLOGY AND BACKGROUND

Chapter 333
Label-Efficient Automatic Wireless

Technology Recognition

The content of this chapter has been partially published in:

• M. Camelo, A. Shahid, J. Fontaine, F. A. P. de Figueiredo, E. De Poorter, I. Mo-
erman, and S. Latré, "A semi-supervised learning approach towards automatic
wireless technology recognition," 2019 IEEE International Symposium on Dynamic
Spectrum Access Networks (DySPAN), 2019, pp. 1-10, doi: 10.1109/DySPAN.2019.
8935690.

• M. Camelo, A. Shahid, J. Fontaine, F. A. P. de Figueiredo, E. De Poorter, I. Moerman,
and S. Latré, European patent application for "A NEURAL NETWORK FOR IDEN-
TIFYING RADIO TECHNOLOGIES" filed at the European Patent Office (EPO) on
September 6, 2019, with application number EP 19195811.5.

This chapter presents the Technology Recognition (TR) module, an Artificial Intelligence
(AI)-based functionality that provides advanced capabilities for spectrum sensing and
is used as an enabling technology for the research presented in Chapters 4 and 5. From
the wireless domain perspective, TR enables next-generation Cognitive Radios (CRs) to
sense the spectrum and reason what kind of technologies are transmitting, even if the
identified technologies are a-priori unknown. This capability is not part of traditional
approaches that require knowledge about specific features of the radio signals to identify
them. On the AI side, where most of the novelty is present, the proposed approach uses
Semi-supervised Learning (SSL) to tackle one of the well-known challenges using Deep
Learning (DL) models that are trained in a supervised way: high classification accuracy
requires a considerable amount of labeled data.

3.1 Introduction

According to Cisco, global mobile data traffic would increase seven-fold between 2017 and
2022, from 12 to 77 Exabytes (EB) per month, thereby increasing the Compound Annual
Growth Rate (CAGR) by 46 percent [60]. Recently, data has shown that the total global

45

10.1109/DySPAN.2019.8935690
10.1109/DySPAN.2019.8935690

46
CHAPTER 3. LABEL-EFFICIENT AUTOMATIC WIRELESS TECHNOLOGY

RECOGNITION

mobile data traffic, excluding traffic generated by Fixed Wireless Access (FWA), reached
93 EB per month at the end of 2022 and is projected to grow by a factor of 3.5 to reach 329 EB
per month in 2028 [61]. Such increased traffic cannot be accommodated even by spectrum
extension. In this regard, the radio spectrum becomes valuable since many wireless
technologies share the same spectrum. However, most spectrum is underutilized, while
radio technologies suffer poor performance due to interference in overutilized ones. In
such a coexisting environment, Cognitive Radio (CR) systems will play a significant role
in solving this problem [62]. Therefore, providing intelligence to the radios so they
can reason about using and sharing the available spectrum efficiently and defining new
spectrum access strategies is of fundamental importance.

Inside CR, Dynamic Spectrum Access (DSA) provides the capability to share the spec-
trum among multiple technologies opportunistically. One critical problem that DSA
faces is identifying if some technology is accessing the same spectrum and then taking
appropriate measures to combat the performance degradation due to interference. This
problem is termed the Technology Recognition (TR) problem, which refers to identifying
radio signals of wireless technologies without requiring any signal pre-processing such
as channel estimation and timing and frequency synchronization [63]. Traditionally, TR
is done by domain experts, who use carefully designed hand-crafted rules to extract fea-
tures from the radio signals. On the contrary, state-of-the-art approaches based on Deep
Neural Networks (DNNs) can extract features directly from raw input data and automat-
ically perform the recognition task on those features. However, DNNs approaches have
two main drawbacks: 1) they are mainly trained in a supervised way, which implies that
the whole data used for training must be labeled, 2) their training algorithms, such as
Stochastic Gradient Descent (SGD) [31], require a large amount of data to obtain a good
performance [32] otherwise, the resulting trained model may suffer severe overfitting
problems [33].

Generally, assigning labels to data can be expensive, e.g., very time-consuming, and/or
some of the data might not have any labels due to incomplete knowledge of the ground
truth class labels, e.g., the radio technologies to be classified are entirely unknown. On
the contrary, sensing the spectrum using modern radios allows for collecting a large
amount of unlabeled data at no cost. Therefore, it is of utmost importance to formulate
the TR problem that uses labeled and unlabeled data and designs robust systems that
can deal with different amounts of them.

Semi-supervised Learning (SSL) is a Machine Learning (ML) technique that learns from
unlabeled data by extracting a good representation of the data distribution and then
using it to solve the supervised problem with a reduced number of labels [49]. Given the
number of wireless technologies that already exist and the new ones under development,
there is a need for efficient spectrum usage via collaboration and coexistence. For this, CR
systems require a new TR approach that allows exploiting a large amount of unlabeled
data while improving the classification accuracy by using a limited labeled data set.

In this chapter, we propose an SSL-based TR system that can work on raw In-phase and
Quadrature (IQ) samples and does not require the whole data set to be labeled, which
is a time-consuming and challenging task. The proposed solution uses Deep Autoen-
coder (DAE), which requires an unlabeled data set and only a few labeled examples.
Moreover, its performance was evaluated in the Defense Advanced Research Projects
Agency (DARPA) Colosseum testbed [18, 19] against a DNN architecture trained using

3.2. RELATED WORKS 47

Supervised Learning (SL). We show that the proposed scheme outperforms the DNN
recognizing sixteen different and unknown radio technologies while only requiring a
limited labeled data set. Finally, this chapter provides a critical functional block to
support the ideas behind the Chapters 4 and 5.

The rest of this chapter is structured as follows. Firstly, Section 3.2 introduces some of
the most relevant work on TR. Secondly, the proposed SSL approach is presented in
Section 3.3, including the architectural design and training pipeline. Thirdly, the data
set generation and its details are described in Section 3.4. Fourthly, the experimental
results and performance evaluations are provided in Section 3.5. Finally, conclusions are
presented in Section 3.6.

3.2 Related Works

This section presents some of the most relevant work on TR. For a more exhaustive review
of the general radio signal identification problem, we recommend [44] and [64] to the
readers.

TR has been mainly applied to the identification of communication systems based on
the differentiation of their channel method access, e.g., Single Carrier (SC) vs. Multiple
Carrier (MC) [65], and it has been extended to classify various wireless communication
technology standards, e.g., WiMAX vs. LTE [66]. Similar to other related tasks in radio
signal identification, traditional approaches for TR are based on Likelihood-Based (LB)
and Feature-Based (FB) using high-order statistics features such as moments, cumulants,
and cyclic cumulants. Karami et al. propose an algorithm to identify Spatial Multiplexing
(SM) and Alamouti (AL)-coded Orthogonal Frequency-Division Multiplexing (OFDM)
signals for Multiple-Input and Multiple-Output (MIMO) systems based on second-order
signal cyclostationarity [63]. This algorithm only requires the cross-correlation of the
received signals on multiple antennas to discriminate between these two classes of OFDM
systems. Firdaoussi et al. propose a method to obtain the Generalized Mean Ambiguity
Function (GMFA) of the received signal and use it to discriminate between OFDM signals
and Single Carrier Linear Digital (SCLD) in channels with additive white Gaussian
noise [67].

For the identification of wireless technology standards, Bouzegzi et al. propose an
algorithm that can discriminate among different technologies such as WiMax, WiFi, and
DVBT by exploiting the fact that these technologies are based on OFDM but differ from
their intercarrier spacing used in OFDM [68]. The algorithm estimates the intercarrier
spacing based on the maximum-likelihood principle. The proposed algorithm does not
need a training sequence and is more robust than autocorrelation-based methods under
small-length cyclic prefixes and a multipath environment. Al-Habashna et al. propose
an algorithm based on second-order cyclostationarity properties of the LTE and WiMAX
technologies and use them as discriminating features for classification [66]. The proposed
algorithm does not require carrier, waveform, and symbol timing recovery information.
This approach also provides immunity to phase, frequency, and timing offsets. The
previous approaches for TR require expert knowledge for either modeling the signals
and the environment (LB methods) or selecting the required features (FB methods).
Therefore, they cannot be used to identify unknown radio technologies.

48
CHAPTER 3. LABEL-EFFICIENT AUTOMATIC WIRELESS TECHNOLOGY

RECOGNITION

More recently, several approaches based on Deep Learning (DL) have been proposed to
solve the TR task using raw time, frequency, and time-domain data. Kulin et al. propose
a Convolutional Neural Network (CNN) to identify single transmissions of ZigBee, WiFi,
and Bluetooth radio technologies using raw IQ and the Fast Fourier Transform (FFT),
the amplitude and phase of the raw IQ samples [69]. Without requiring any feature
engineering, the proposed models achieved an accuracy above 80% in scenarios with
Signal-to-Noise Ratio (SNR) > −10𝑑𝐵, above 95% accuracy using raw IQ samples, and
near 100% with FFT and amplitude/phase in scenarios with SNR> 5 dB.

Biter et al. propose a CNN that can recognize 802.x standard compliant technologies
using a time-frequency representation of the spectrum for a wide range of SNRs [70].
This model outperforms standard feature-based classification methods regarding clas-
sification accuracy and can detect and identify these technologies when they overlap
in time. Finally, Yi et al. propose a real-time external interference source classification
method for a ZigBee-based wireless sensor network using a CNN classifier and Received
Signal Strength (RSSI) values as input data [71]. As interference, the model can identify
WiFi beacons, WiFi video streaming, WiFi file transfer, Bluetooth iBeacon, and microwave
oven RSSI traces. The proposed model can achieve an accuracy of over 93%, detecting
the different interference classes with minimal computational resources.

In general, traditional methods such as LB and expert FB engineering combined with
pattern recognition have been outperformed by supervised DL methods in the task of TR.
Supervised DL methods remove the need for expert knowledge about the environment
and the signal features used for classification by using the power of automatic feature
abstraction. However, it requires the whole data set to be labeled. Labeling becomes
time-consuming and challenging for both the technologies to be recognized and the
environment to be entirely unknown. To overcome these limitations, in this chapter, we
propose a SSL approach for TR that separates the feature extraction from the classification
task in the DL architecture, so the use of unlabeled data is maximized. At the same time,
the proposed approach minimizes the use of domain expertise knowledge by requiring
only a small portion of the entire data set to be labeled to obtain a good performance,
which is not the case with supervised DL models.

It is worth noting that while this chapter explores SSL, several other learning approaches
have emerged in recent years that can also improve label efficiency during training. Self-
Supervised Learning (Self-SL) [72] leverages large amounts of unlabeled data to generate
predictive signals. Transfer Learning (TL) [73] allows the adaptation of pre-trained
models to new tasks with minimal labeled data. Few-Shot Learning (FSL) [74] and Meta-
learning (Meta-L) [75] enable rapid generalization from limited examples, addressing the
challenges of scarce data. Despite these recent advances and shifts in TR research, such as
distributed learning [76], SSL using DAE remains the state of the art for achieving label-
efficient TR [77]. Therefore, the solution proposed in this chapter serves as a baseline
against which novel architectures can be compared. These novel architectures have the
potential to further reduce the need for labeled data by utilizing new learning paradigms
or more advanced DAE architectures [78, 79].

3.3. A SEMI-SUPERVISED SYSTEM FOR TECHNOLOGY RECOGNITION 49

3.3 A Semi-supervised system for Technology Recognition

In this section, we present the proposed SSL approach by first reasoning about how to
define TR as an SSL learning problem and then derive the proposed core system along
with the description of the main components.

3.3.1 Automatic Signal Identification as a classification problem

Given a classification problem with an input vector set 𝑋 and their corresponding target
variables set 𝑌, the objective is to find a function 𝑓 that predicts 𝑦 ∈ 𝑌 given a new value
for 𝑥 ∈ 𝑋, where 𝑦 represents 𝐿 class labels.

𝑓 : R𝑛 → 1, ..., 𝐾
𝑦 = 𝑓 (𝑥) (3.1)

When the function 𝑓 is used to map a given signal 𝑠(𝑡) to a set 𝑆 of signal classes (labels)
without requiring any pre-processing of the signal, then the classification problem is
termed Automatic Signal Identification (ASI) [63]. Traditionally, this problem has been
studied in two main research lines: Automatic Modulation Classification (AMC), where
𝑌 is the set of modulation schemes to be identified, and TR, where𝑌 is the set of wireless
radio technologies to be identified, e.g., generic medium access technologies such as
SC vs. MC, standard wireless technologies such GSM, WiMAX, LTE, WiFi, Bluetooth,
and ZigBee, among other, or more recently, unknown technologies such as the ones
participating in the DARPA Spectrum Collaboration Challenge (SC2).

In ASI, three approaches have been mainly used in the literature: LB, FB, and supervised
DL. The first two use signal processing and pattern recognition methods to identify sig-
nals. On the other hand, DL methods are Artificial Intelligence (AI) algorithms that learn
by representing the world as a nested hierarchy of concepts, with each concept defined in
relation to more straightforward concepts and more abstract representations computed
in terms of less abstract ones [33]. DL algorithms allow building the mathematical func-
tion 𝑓 as a combination of many simpler functions. To date, most of the research on TR
has focused on using DNNs in a supervised way. However, this method has a drawback:
building 𝑓 for a complex task as TR requires a large data set of training examples with
their corresponding labels. Otherwise, the training with supervised learning techniques
on a small labeled data set often results in learning the training data but severely failing
to predict the correct class of unseen data (overfitting) [33]. A more detailed review of
related works on this subject is presented in Section 3.2.

In real environments, we often can collect large amounts of (unlabeled) IQ samples.
However, labeling all of them may be costly, e.g., in terms of time, and/or some of the data
might not have any labels at all due to incomplete knowledge of the ground truth class
labels, e.g., the radio technologies to be classified are entirely unknown and increases
the complexity of the labeling task. Therefore, solving the TR problem for unknown
technologies in unknown environments, which is the case of SC2, is challenging and
requires another approach that allows DL models to use unlabeled data to bootstrap the
learning and minimize the number of labels required to solve the supervised learning
task efficiently. It is here where SSL will play a key role.

50
CHAPTER 3. LABEL-EFFICIENT AUTOMATIC WIRELESS TECHNOLOGY

RECOGNITION

As explained in Section 2.2, SSL allows algorithms to learn with fewer labels compared
to DL-based SL approaches. To use SSL algorithms for recognition, it is required that the
knowledge acquired about the distribution of the examples from the unlabeled data set,
i.e., 𝑝(𝑥), is helpful to infer 𝑝(𝑦 |𝑥). Otherwise, semi-supervised learning may decrease
the performance of the SL classifier by misguiding it during the learning process. SSL
tries to use the unlabeled data to learn valuable information about the data and then use
it to fine-tune a classifier with a reduced number of labels. By extending this approach
and generalizing it to be used as a system for TR, we can use a reduced number of labels,
in comparison to a DL model, with reasonable accuracy on the recognition task, even
if the technologies are entirely unknown and no information about the environment is
provided.

3.3.2 Spectrum Manager Framework

Figure 3.1 shows a spectrum manager framework that elaborates where the results of
TR can be used. The framework comprises a spectrum manager, which makes spectrum
decisions, and𝑁 radios, which represent unknown wireless technologies. The goal of the
spectrum manager is to assist the 𝑁 unknown wireless technologies in making spectrum
decisions by first identifying them and then doing frequency domain analysis. In order
to enable this, the spectrum manager executes the following tasks in the listed manner:
a) training, b) validation, c) frequency domain analysis, and d) spectrum decision. In this work,
we focus on the lower two blocks, i.e., training and validation, to enable TR for CR systems.

Figure 3.1: A spectrum management framework.

Focusing on the TR block, the training task is used to train a model in a semi-supervised

3.3. A SEMI-SUPERVISED SYSTEM FOR TECHNOLOGY RECOGNITION 51

way with raw IQ samples of the 𝑁 radios using a DAE. A detailed description of the
semi-supervised approach and its implementation is given in Section 3.3 and Section
3.4, respectively. Once the model is trained, in the validation task, it can identify the
𝑁 unknown wireless technologies. In the frequency domain analysis task, frequency do-
main analysis of the identified technologies is done by extracting spectrum occupancy
information of the technologies. Finally, in the spectrum decision task, the radio uses the
extracted spectrum efficiency information to define actions, such as changing the radios’
center frequencies and assigning a collision-free time slot for transmissions, so that fair
coexistence can be achieved. Once the spectrum decisions are made, they are notified to
the 𝑁 radios via control channels.

3.3.3 System description

Sensing and capturing over-the-fly radio signals in the form of IQ samples is simple
and can be performed using Software Defined Radio (SDR) platforms. However, IQ
samples labeling is a difficult task for the following reasons: 1) an expert is required to
identify and label each captured sample, and 2) in unknown environments, the number of
unknown signals increases the complexity of the labeling task. The proposed approach
decouples the feature extraction via unsupervised learning and the classification tasks via
supervised learning while keeping the high expressiveness of DL models. The overall
workflow of the proposed semi-supervised learning approach is shown in Figure 3.2.
Below is a description of each block and the actual implementation details.

Figure 3.2: Proposed semi-supervised learning approach workflow for TR.

Spectrum sensing: This module is responsible for sensing the spectrum and capturing
IQ samples that the subsequent blocks will further process.

Data Transformation: Depending on the model to be trained, the original IQ samples,
which are time domain representations of radio signals, can be transformed into other
domains such as frequency or time-frequency. In this work, we focus on the IQ samples
representation as it does not require further processing, which can be seen as the rawest
version of spectrum data.

52
CHAPTER 3. LABEL-EFFICIENT AUTOMATIC WIRELESS TECHNOLOGY

RECOGNITION

Data labeling system: In this block, two steps are performed: a) sample selection and
b) labeling of the samples. Since the proposed architecture is semi-supervised, selecting
representative samples of the radio technologies that must be identified is essential. Here,
domain expert knowledge or in combination with pseudo labeling is used. This block
stores all the samples and the labels associated with the labeled samples.

Data storage: This block comprises two databases: 1) sample and 2) label databases. IQ
samples are stored in the sample database, while the label database stores the labels of
a reduced set of examples. Depending on the kind of data and the training strategy, the
databases are connected to one or more blocks: supervised learning (sample database
and label database), unsupervised learning (sample database), and the batch system
(sample database and label database).

Batch system for online training: In offline training, the input data is created by selecting
a portion of the data from the sample database via some predefined strategy, e.g., uniform
random selection. In online training, on the other hand, the input can be provided by a
batch system that takes data from the sample database and uses it to retrain a model.

Semi-supervised classification: This block receives the sensed data and performs the
classification task. The block also receives a limited labeled data set from the data labeling
system block. Based on the labeled and unlabeled data sets, different learning algorithms
can be used in the supervised and unsupervised learning blocks and how they interact
to perform the SSL task.

Technology Recognized: This is where the proposed architecture indicates to which
class a given capture sample belongs. Note that a class label may be as simple as the
name of the technology. However, it can also be more expressive and contain information
about the spectrum utilized over time, central frequencies, duty cycle, etc.

The proposed workflow is flexible to support a range of SSL algorithms, training meth-
ods, and input types. The selection of the semi-supervised approach mainly depends
on various factors, including the amount of available data, the number of labels, the
complexity of the radio signals to be identified, and the need for offline or online training
capabilities, etc.

3.3.4 Semi-Supervised Learning using Deep Autoencoders

The SSL TR block shown in Figure 3.2 was implemented using a DAE [80]. The resulting
architecture of the DAE for TR is shown in Figure 3.3. DAEs are DNNs trained to copy
its input to its output. A DAE is composed of two parts: an encoder that maps ℎ = 𝑓 (𝑥),
where ℎ is known as the code, and a decoder that produces a reconstruction 𝑟 = 𝑔(ℎ).
In practice, DAEs are not trained to get 𝑥 = 𝑔(𝑓 (𝑥)) but to obtain an ℎ that contains only
useful information about 𝑥. To do that, ℎ is constrained so that its dimension is smaller
than 𝑥. This kind of DAE is called under-complete. The learning process of a DAE can
be defined as:

minimize 𝐿(𝑥, 𝑔(𝑓 (𝑥))) (3.2)

where 𝐿 is a loss function indicating how similar is the input 𝑥 and the reconstructed
output 𝑔(𝑓 (𝑥)). Under-complete DAE aims to learn only important data distribution

3.3. A SEMI-SUPERVISED SYSTEM FOR TECHNOLOGY RECOGNITION 53

Figure 3.3: SSL algorithm implemented using DAE.

features. To enforce learning good features and avoid learning to copy the input to the
output, denoising DAE uses a different loss function to discourage learning the identity
function as follows:

minimize 𝐿(𝑥, 𝑔(𝑓 (𝑥̄))) (3.3)

where 𝑥̄ is a copy of 𝑥 that has been corrupted with some noise. In this way, the DAE
does not learn to map 𝑥 → 𝑥 but undo the corruption by learning the structure of 𝑝(𝑥)
[81].

For SSL, DAE provides a two-step training process: First, we train the DAE 𝑀𝐴𝐸, which is
composed of the encoder 𝑀𝐸 and decoder 𝑀𝐷 networks, in an unsupervised way using
only 𝑋𝑢 . Second, after the unsupervised learning, we create a train a classifier 𝑀𝐸𝐶 using
the encoder 𝑀𝐸 together with a SoftMax classifier 𝑀𝐶 in a supervised way using the
reduced labeled data set 𝑋𝑠 .

During the supervised training, 𝑀𝐸 is used as a feature extractor for 𝑀𝐶 . This step
provides an initial bootstrapping on the classification task. Then, a fine-tuned step is
performed, i.e., all layers in 𝑀𝐸𝐶 are retrained to increase the accuracy of the resulting
model. Algorithm 1 shows the pseudo-code of the training procedure.

The DAE block of our system was designed by following a CNN architecture [82]. While
traditional DNNs are built by connecting a series of fully-connected layers, CNN connects
the neurons of a given layer, called the Conv layer, with only a few numbers of neurons
of the next layer to reduce the computational complexity of the learning. Note that this
kind of Neural Networks (NNs) has been shown to perform well with IQ samples as
input [83], which motivates us to follow the same design pattern.

The encoder of the DAE comprises two Conv layers with rectified linear unit (ReLU)
activation function, each followed by Batch Normalization and a Dropout layer for regu-
larization. We use strides> 1 instead of Max Pooling layers. Note that the dropout layers
allow the DAE to behave as a denoising DAE to improve its capacity as a feature extractor
[84]. Figure 3.3 shows an overview of the resulting architecture and the parameters of the

54
CHAPTER 3. LABEL-EFFICIENT AUTOMATIC WIRELESS TECHNOLOGY

RECOGNITION

Algorithm 1 SSL procedure using DAE.
Require: Unlabeled data set: 𝑋𝑢
Require: Labeled data set: 𝑋𝑠
Require: (Optional) Trained Autoencoder network: 𝑀𝐴𝐸

Require: (Optional) Trained Encoder-Classifier network: 𝑀𝐸𝐶

1: if 𝑀𝐴𝐸 Exists then
2: UnFreezeEncoderWeights(𝑀𝐴𝐸)
3: else
4: 𝑀𝐴𝐸 = CreateModel(𝑀𝐸 ,𝑀𝐷)
5: while Unsupervised training do
6: TrainAutoencoder(𝑀𝐴𝐸 , 𝑋𝑢)
7: if 𝑀𝐸𝐶 do not Exist then
8: 𝑀𝐸𝐶 = CreateModel(𝑀𝐸 ,𝑀𝐶)
9: while Supervised training do

10: FreezeWeightsEncoder(𝑀𝐸𝐶)
11: TrainClassifier(𝑀𝐸𝐶 , 𝑋𝑠)
12: UnFreezeWeightsEncoder(𝑀𝐸𝐶)
13: TrainClassifier(𝑀𝐸𝐶 , 𝑋𝑠)
14: return Trained models: 𝑀𝐴𝐸 and 𝑀𝐸𝐶

Conv layers. The specific parameters of each layer, such as the number of filters, strides,
dropout rate, etc., were determined using hyperparameter swapping. The proposed
encoder configuration generates an intermediate code of size 128, e.g., a reduction factor
of 16x.

Similarly, the decoder part follows the same pattern but in reverse order and replaces the
Conv layers with Transposed Conv. The DAE contains 1M of trainable parameters. The
Autoencoder (AE) was trained using batches of size 128, the Adam optimizer [85] with a
learning rate of 0.0004, and binary cross-entropy as the loss function for reconstruction.
We implemented our model in Keras [86] with TensorFlow [87] as the back-end, and
it was training during 200 epochs: 100 epochs in unsupervised mode, 50 epochs only
classifier (phase 1), and 50 epochs fine-tuning (phase 2).

The supervised part of the architecture is composed of the encoder part of the DAE in
addition to two dense layers, one with 128 neurons and the second with 17 neurons,
and a SofMax activation layer for classification. The resulting model (encoder+dense
layers and classification) has 500k and 18k trainable parameters in phase 1 and phase
2, respectively. This model was trained using the same parameters as the DAE except
that the loss function was categorical cross-entropy, and the learning rate was reduced
to 0.004.

3.3.5 Baseline using CNN

We implemented and trained a CNN architecture to be used as a baseline for comparison
with the proposed SSL approach using DAE. This architecture comprises three Conv lay-
ers with ReLU activation function, each followed by a max-pooling, batch normalization,
and a Dropout layer for regularization. The CNN model was fine-tuned to have a high
performance using the entire data set, and it was trained during 100 epochs to guarantee

3.4. DATA SET GENERATION 55

Figure 3.4: Base-line SL algorithm implemented using CNN.

a fair evaluation. Figure 3.4 shows an overview of the resulting CNN model.

3.4 Data set generation

We generated the data set in the DARPA Colosseum [18], the testbed used for the DARPA’s
three-year SC2 on smart radios and spectrum sharing. The SDRs available in Colosseum
are Ettus Universal Software Radio Peripheral (USRP) X310 with UBX 160 USRP Daugh-
terboards. Given this hardware configuration, the Radio Frequency (RF) monitor module
is implemented as a thread running along with the Physical Layer (PHY) of our radio
stack. The RF monitor uses the USRP ’s Radio stream # 1, where the RX channel is used
for spectrum sensing, and the TX channel supports dual PHY transmissions. Figure 3.5
shows how the RF monitor block interacts with the USRP and TR blocks. Note that this
module exclusively serves the ML algorithms running in our radio, and it sends the IQ
samples for TR to our data storage for labeling and future use during offline training.

During phase 2 of the competition (2018), twenty technologies participated and used the
Colosseum’s capabilities to train their Intelligent Radio (IR). We played 55 games in a
6 Mhz bandwidth scenario with a constant 60-dB path loss among all the nodes. Each
game was played against random technologies, and we managed to collect IQ samples
of 16 out of 19 technologies (excluding us) and noise (idle period). The IQ values are
stored using 16-bit binary integers. The RF monitor block was set to collect samples at
23.04Msps, giving us 43.04 ns space between IQ samples. Figure 3.6 shows the resulting
amplitude and spectrograms from some of the collected IQ samples for each unknown
technology. A particular case was Technology 1, which was transmitting out-of-band.

RF Front End
(RF Amp., Mixers,
Filters, ADCs, etc.)

DDC Decim.
UHD Control

Logic

USRP

UHD Driver:
Rx stream

10 Gbit Ethernet

RF Monitor
Module

IQ Samples

Configurable parameters:
• Rx frequency
• Rx gain
• Rx sample rate
• Dump periodicity
• Dump time
• Dump into file?

0MQ bus

Host PC
Technology
Recognition

Module

Figure 3.5: RF Monitor module and its connections.

56
CHAPTER 3. LABEL-EFFICIENT AUTOMATIC WIRELESS TECHNOLOGY

RECOGNITION

Technology 1 Technology 2

Technology 3 Technology 4

Technology 5 Technology 6

Technology 7 Technology 8

Technology 9 Technology 10

Technology 11 Technology 12

Technology 13 Technology 14

3.5. RESULTS 57

Technology 15 Technology 16

Figure 3.6: Time and time-frequency signatures of the wireless technologies to be recog-
nized.

Once the batches of IQ samples were collected, a couple of those were visualized as
spectrograms and labeled accordingly as different technologies. These limited examples
are the representative examples used in the SL classification part of the proposed semi-
supervised approach. After removing the noise of the captured signals using a Support
Vector Machines (SVM) and subsequently normalizing the whole data set in the range
[0,1], the total size of the IQ samples data set was 93 GBs.

The whole data set was transformed into 11.3M examples, where each example corre-
sponds to a pair of 1024 IQ values. For implementing the proposed approach and the
baseline, a data set with 1k labels per technology was used for training, validation, and
testing. Also, a second data set was created based on the 1k data set via data augmen-
tation to emulate ten different SNR levels. The summary of the TR data set is given in
Table 3.1.

Table 3.1: Summary of the TR data set.

Type Value
Total examples 11.3M
Size of example 1024 x 2 x 16 bits

Number of labels 17, 16 technologies + noise
Size data storage 93GB

Training and validation data set 1k examples per label
Augmented data set for SNR test 10k examples per label

3.5 Results

In this section, the proposed SSL approach is compared against the CNN trained in a
supervised way in terms of a) convergence performance, b) performance in the pres-
ence of different noise conditions, and c) labeling efficiency. For the comparison in the
result section, we termed the proposed approach and the baseline as 𝑀𝐸𝐶 and 𝐶𝑁𝑁 ,
respectively.

3.5.1 Algorithm Convergence

To evaluate the performance of DNN models, two performance metrics are often used:
the accuracy, which measures the proportion of examples that the model can predict

58
CHAPTER 3. LABEL-EFFICIENT AUTOMATIC WIRELESS TECHNOLOGY

RECOGNITION

Figure 3.7: Model training convergence: accuracy (top) and loss (bottom) curves using
the validation data set.

correctly, and the loss, which quantifies the inconsistency of the predicted value 𝑦̂ and
the actual label 𝑦. The original data set of 1k samples per technology was split into
training (80%), validation (10%), and test (%10) data sets. This evaluation used the
whole training labeled data set for training both models. The impact of reducing the
number of labels used for training is analyzed in Section 3.5.3. Figure 3.7 shows the
validation accuracy and loss of the models concerning the number of epochs. Here, we
limit ourselves to showing only the validation results, not the training results, because
we want to show the generalizing performance. The proposed SSL model 𝑀𝐸𝐶 achieves
similar convergence performance as the baseline model CNN trained using SL.

It is important to notice that at epoch 50, when the weights of the encoder𝑀𝐸 are unfrozen
for fine-tuning, a slight decrease in the accuracy for a couple of epochs is observed. This
is expected because the model 𝑀𝐸 needs to be modified for the new classification task.
However, later on, it keeps increasing the accuracy over time and reaching the same
performance as the CNN model. The loss curves decrease as expected, which indicates
correct learning over time. A smooth decaying loss function of 𝑀𝐸𝐶 shows that the
selected hyperparameters, such as learning rate and regularization, help the optimizer
to find an optimal point.

3.5. RESULTS 59

Figure 3.8: Model accuracy at different SNR.

3.5.2 Model performance in the presence of noise

A good accuracy performance of ML models for the TR problem under different noise
levels validates the models’ efficacy in noisy environments. One way to achieve this
is to apply data augmentation techniques to the available training data set, which can
be achieved by processing the data set and including different noise levels. However,
models that can implicitly learn to be more tolerant of noise without requiring explicit
training under noise are more potent in real applications. To evaluate this performance,
we generated a new data set by performing data augmentation on the original 1k data
set with different levels of SNR. The concern of this augmented data set is to validate
the performance of the trained models 𝑀𝐸𝐶 and 𝐶𝑁𝑁 and show how they can cope in
noisy environments. Figure 3.8 shows the accuracy of both models when we test the
augmented data set on the trained model.

The results show that the trained SSL model 𝑀𝐸𝐶 is more robust in noisy environments
than the baseline CNN. While the CNN is trained to accurately predict labels from
examples that come from the data distribution, the unsupervised training exploits the
properties of denoising DAE. Although we do not use the augmented data set to train the
models, which will increase their architecture size, we use dropout layers as a regularizer.
This selection has the same effect as adding noise to hidden layers [84]. The unsupervised
learning step in the proposed SSL approach exploits the denoising property of DAE,
which forces the trained model to be more resilient to noisy examples.

Figure 3.9 shows the two models’ confusion matrices at different SNR. For SNR levels
lower than −15𝑑𝐵, both networks cannot learn any useful information from the raw IQ
samples, and their accuracy is very low. Above this value, it is clear that the 𝑀𝐸𝐶 model
is more robust than the CNN-based model. The accuracy at 0 dB is 3x better in our 𝑀𝐸𝐶

model.

60
CHAPTER 3. LABEL-EFFICIENT AUTOMATIC WIRELESS TECHNOLOGY

RECOGNITION

Figure 3.9: Confusion matrices for CNN (left) and SSL algorithm using DAE (right) at
different SNR.

3.5. RESULTS 61

3.5.3 Labeling efficiency

The previous evaluations assumed that the 𝑀𝐸𝐶 model had been trained using the same
amount of labels as the CNN to have a fair comparison. Also, both models are fine-tuned
by adjusting the hyperparameters individually to achieve high accuracy, i.e., up to 97% on
the 1k data set. However, we aim to limit the required number of labeled data sets while
still achieving good performance using our approach. The first aspect to verify on the
DAE training is if the feature extraction task is performed correctly. This is fundamental
to reducing the number of samples of the labeled data set to train the classifier. Figure
3.10 shows a random 𝑞(𝑡) example from the test data set and the signal reconstructed by
the DAE. Although the signals are not entirely identical, it is clear that the encoder is
learning essential features to perform such reconstruction correctly. As the DAE training
is unsupervised, the next step is to evaluate the impact of the number of labels during
the supervised training.

Figure 3.10: DAE reconstruction: Original q(t) signal (top) and reconstructed q(t) signal
(bottom).

Figure 3.11 shows the impact of varying the number of labels available for training on
the achieved training and validation accuracy of both models. In this evaluation, we
train the models with the labeled data sets of different sizes, such as 10%, 33%, 55%,
77%, and 100% of the one used for the initial training. It is clear from the figure that the
proposed approach, 𝑀𝐸𝐶 , takes advantage of the Unsupervised Learning (USL) step to

62
CHAPTER 3. LABEL-EFFICIENT AUTOMATIC WIRELESS TECHNOLOGY

RECOGNITION

bootstrap the validation accuracy with a limited number of labels. More importantly, the
proposed approach achieves an accuracy of ≥ 70% with only 10% of the total number
of labels, translated to 4.6 times better accuracy than the CNN model using the same
amount of labeled data. In other words, 𝑀𝐸𝐶 generalizes better to unseen data than the
CNN with a reduced set of labels. Once more labeled data is available for training, the
CNN model increases its validation accuracy. On the other hand, note that both models’
training accuracy achieves 100%. This behavior, i.e., overfitting the training data set, is
expected since the DL models were designed and optimized for using the whole data
set. However, while 𝑀𝐸𝐶 was able to have an increasing validation accuracy with the
reduced data set, the CNN model memorized the reduced data set, and it did not extract
features to generalize unseen (validation) data.

Figure 3.11: Impact of the number of labels used during learning.

3.6 Conclusions

TR will play an essential role in how new wireless technologies make decisions to use
the available spectrum efficiently and coexist with any new, legacy, and even unknown
technologies. In this chapter, we have proposed a novel SSL approach for TR that
minimizes the need for labeling large data sets of spectrum data. In addition, the
proposed approach requires only raw IQ samples, which can easily be acquired from
low-cost sensing devices.

The evaluation illustrates that the proposed approach can achieve an accuracy of ≥ 70%
with only 10% of the total number of labels, translated to 4.6 times better accuracy than
the considered baseline CNN model using the same amount of labeled data. Besides,
we found that the resulting DL model is more robust under corrupted input, e.g., noisy
signals, than the CNN-based model, with up to 2x better accuracy at SNR levels of -5dB
and up to 3x at 0dB.

Chapter 444
A scalable and decentralized

spectrum-sharing framework for
Collaborative Intelligent Radio

Networks

The content of this chapter has been partially published in:

• M. Camelo, R. Mennes, A. Shahid, J. Struye, C. Donato, I. Jabandzic, S. Giannoulis,
F. Mahfoudhi, P. Maddala, I. Seskar, I. Moerman, and S. Latré, "An AI-Based
Incumbent Protection System for Collaborative Intelligent Radio Networks," in
IEEE Wireless Communications, vol. 27, no. 5, pp. 16-23, October 2020, doi:
10.1109/MWC.001.2000032.

As a first step of a cognitive radio cycle (see Section 2.1.3), the Technology Recognition
(TR) module presented in the previous chapter serves as a spectrum sensing technique
grounded in Machine Learning (ML). This chapter introduces an innovative multi-tier
spectrum-sharing framework built upon TR. We have redesigned its architecture for
near-real-time operation and enhanced it with new learning and reasoning modules, i.e.,
the second step of a cognitive radio cycle, to autonomously protect incumbent (primary)
technologies. Unlike conventional multi-tier architectures, which rely on centralized
authorities and predefined priorities to mitigate interference, our framework empow-
ers autonomous radios to share and reuse spectrum without coordination efficiently.
This paradigm shift enables more dynamic and efficient spectrum utilization compared
to state-of-the-art approaches being deployed worldwide, such as Citizens Broadband
Radio Service (CBRS) and Licensed Shared Access (LSA).

4.1 Introduction

New wireless technologies like 5G require more available radio spectrum to support new
applications with high demands on data. However, as presented in Section 3, this growth

63

10.1109/MWC.001.2000032

64
CHAPTER 4. A SCALABLE AND DECENTRALIZED SPECTRUM-SHARING
FRAMEWORK FOR COLLABORATIVE INTELLIGENT RADIO NETWORKS

is expected to keep increasing in the future [61]. As spectrum is, and will continue to
be, an obviously essential resource for wireless connectivity to transport such demands
of data, dynamic access, and management to additional wideband spectrum as well as
efficient utilization of the existing spectrum is of critical importance. However, today,
there is a shortage of available spectrum [6] to fulfill such demands, which is mainly due
to the obsolescence of the traditional static frequency plan based on providing access
to single usage or a single user, which has granted exclusive use of a specific portion
of the spectrum in a given geographic location. As a result, most of the allocated
spectrum is underutilized, and the part mainly used by the technologies we use for daily
communication is over-utilized.

This exclusive-usage spectrum allocation model is being updated by several global efforts
to make additional spectrum available for broadband data and increase the spectrum
reuse [7]. The Citizens Broadband Radio Service (CBRS) and the Licensed Shared Access
(LSA) models are initiatives that provide multi-tier spectrum-sharing frameworks in the
reallocated spectrum. In these frameworks, the incumbent, i.e., the technology that used
the spectrum exclusively in the past, has to be protected against interference caused by
the new technologies sharing the same spectrum. For example, CBRS offers centralized
three-tiered access to users via an automated frequency coordinator, known as a Spectrum
Access System (SAS), which guarantees that once a higher priority user is transmitting,
the lower ones must vacate the spectrum to avoid interference. As part of the SAS,
spectrum sensing techniques are fundamental to identify Radio Access Technologiess
(RATs) and make decisions based on it.

Although the multi-tier models are an initial step to mitigate spectrum scarcity via spec-
trum sharing, they still suffer several fundamental problems. Firstly, a single point of
control or coordination can become a bottleneck as the number of users and devices
increases [22, 23, 24]. Secondly, as these models rely on well-defined rules and mecha-
nisms [25], they are not optimized to ensure fair and efficient use of the spectrum [26].
Thirdly, these models require a massive overhaul of the centralized infrastructure to sup-
port changes in environmental conditions, regulations, and policies, which can be a very
time-consuming and bureaucratic task that slows down the deployment of new tech-
nologies or services that rely on shared spectrum [27]. Finally, accommodating wireless
communications within some specific frequency bands (e.g., radar spectrum) requires
novel spectrum-sharing paradigms since existing spectrum-sharing approaches are not
designed for all coexistence scenarios [28, 29].

As a solution, the DARPA Spectrum Collaboration Challenge (SC2)[14], a three-year
competition organized by Defense Advanced Research Projects Agency (DARPA), has
shown that Collaborative Intelligent Radio Network (CIRN), i.e., Artificial Intelligence
(AI)-based autonomous wireless radio technologies that exchange explicit information to
solve joint problems via collaboration, can share and reuse spectrum efficiently without
coordination and with the guarantee of incumbent protection [19]. This is a step beyond
modern Cognitive Radio (CR) networks since CIRN can reduce the uncertainty about
spectrum measures using collaborative information and self-learning and self-adapting
the radio operation parameters based on experiences.

Built on top of our Technology Recognition (TR) module, which serves as the first step
of the cognitive radio cycle (see Section 2.1.3), this chapter presents the architectural
design and experimental validation of a next-generation spectrum sharing framework

4.2. TWO-TIER MODEL FRAMEWORK FOR CIRN 65

with incumbent protection capabilities. The proposed architecture does not require any
central infrastructure to control and grant access to a shared spectrum based on the
concept of CIRN. Moreover, the incumbent protection capabilities are provided by a two-
step AI-based algorithm that, combined with collaborative information, can recognize,
learn, and proactively forecast the incumbent’s transmissions in near real-time. The near
real-time operation is achieved by optimizing the architectural design of TR module
in terms of input data (from In-phase and Quadrature (IQ) to averaged Fast Fourier
Transform (FFT) points) and size of the model.

The rest of this chapter is structured as follows. Section 4.2 introduces the spectrum
sharing based on the concept of CIRN. The proposed two-step AI-based algorithm for
incumbent protection is presented in Section 4.3. Implementation details and the inte-
gration in a CIRN are described in Section 4.4. Section 4.5 provides the experimental
results and performance evaluations. Conclusions are presented in Section 4.6.

4.2 Two-tier model framework for CIRN

Let us introduce the six main features of the multi-tier model shown in Figure 4.1 and on
which our system is based.

1. It has two tiers: the protected incumbent and the other users.

2. Other users can use any available spectrum not used by the incumbent inside the
shared spectrum band.

3. The users have no expectations of any interference protection.

4. There is a wired interconnection network for collaboration where the incumbent
reports spectrum power measurements, which determines if non-incumbent trans-
missions are causing interference to it and its frequency operation details (central
frequency and bandwidth).

5. Radio networks have (at least) one radio connected to the collaboration network to
receive the incumbent reports and may exchange information with others.

6. Causing interference with the protected incumbent is penalized.

Notice that while features 1-3 are shared with the Dynamic Frequency Selection (DFS)
model [7], features 4-5 are novel and are used to incentivize and enforce the incumbent’s
protection, and feature 6 is shared with CBRS. Specifically, the CBRS model penalizes the
radios causing interference to the incumbent by shutting their transmission down. The
proposed model is simpler and scales better than the CBRS and LSA frameworks in the
number of users/incumbents since it does not require centralized authority controlling
and granting access to the shared spectrum. However, it also implies that the incumbents
need spectrum sensing capabilities to collaborate and share information about their
spectrum power measurements.

On the radios’ side, they need to be intelligent and fully autonomous to dynamically
learn and apply the best policy determining their spectrum allocation. Simultaneously,

66
CHAPTER 4. A SCALABLE AND DECENTRALIZED SPECTRUM-SHARING
FRAMEWORK FOR COLLABORATIVE INTELLIGENT RADIO NETWORKS

v

Collaboration
Network

Wire
connexion

Wireless
connexion

Incumbent

CIRN

Legend

Figure 4.1: Two-tier model framework for incumbent protection using CIRN.

they need to protect the incumbents and minimize interference with other technologies.
However, adding learning capabilities to the radios is not enough to protect the incumbent
as the uncertainty about the spectrum state is higher if only local spectrum measures are
used, and there is no mechanism for feedback on the radio’s decisions. Here is where
collaboration plays a key role. Collaboration among networks and incumbents reduces
that uncertainty while providing a mechanism to augment the data used to learn and give
feedback on the decisions made. A set of interconnected radios with these capabilities
create CIRNs.

During the SC2, our team designed, implemented, and tested a CIRN called SCATTER
[15]. Figure 4.2 provides a simplified view of the SCATTER architecture and the sub-
modules of the Intelligent Control and Decision Engine (ICDE), which contains the
building blocks for our incumbent protection system. The six fundamental modules are
presented below.

Physical Layer (PHY): This layer is implemented as a Software Defined Radio (SDR) with
features such as Orthogonal Frequency-Division Multiplexing (OFDM) waveform, bursty
transmission, dual-concurrent physical layers, Field-programmable Gate Array (FPGA)-
based filtered transmission, out-of-band full-duplex operations, and layer configuration
based on timed commands [88].

Medium Access Control (MAC): This layer is based on an enhanced Multiple Frequencies
Time Division Multiple Access (MF-TDMA) scheme, which slices the band capacity along
with both time and frequency. Its capabilities include the distributed slot-allocation
protocol, slot allocation with Quality of Service (QoS) support, and robust mechanisms
against failures in slot allocation/removal procedures.

User Data Management (UDM): This layer audits and reports information about the
incoming traffic from the user/application space in run-time.

4.3. INCUMBENT PROTECTION IN SCATTER 67

UDM

MAC

PHY

RF-MON

Technology
Recognition (TR)

Repeated Spectrum
Usage Pattern

Prediction (RSUPP)

Incumben Protection
Policy (IPP)C

O
M

M
U

N
IC

AT
IO

N
 B

U
S

C
O

M
M

U
N

IC
AT

IO
N

 B
U

S

Collaboration
Interface (CI)

FA
C

AD
E

Data plane Control plane Intelligent Control and
Desicion Engine (ICDE)

Collaboration
Network

Figure 4.2: SCATTER architecture overview and the ICDE components for incumbent
protection.

Radio Frequency Monitor (RF-MON): This FPGA-based module performs the spectrum
sensing task in the system.

Collaborative Interface (CI): This module allows communication between the SCATTER
CIRN, the protected incumbents, and other CIRNs via a well-defined collaboration pro-
tocol or language. It is generally used to send and receive messages from other networks,
such as location, actual and predicted spectrum usage, performance metrics, and the
incumbent’s power measurement reports.

ICDE: This module controls and optimizes the radio’s performance by combining rule-
based and AI-based algorithms. It uses information such as the spectrum samples from
the RF-MON, the slot allocation status and link stats from MAC, traffic flow information
from the UDM, and the reports from the protected incumbent and other CIRNs from
CI. After combining and consuming the data from these sources, the ICDE module in-
telligently and dynamically adapts the radio parameters at different layers to improve
performance, increase spectrum efficiency, and collaborate with other networks to in-
crease spectrum reuse.

Although the SCATTER CIRN design did not follow any 5G standard, their functional
modules can be positioned inside 5G RAN architectures like the one proposed by the O-
RAN Alliance [89]. As an example, the ICDE module would be deployed inside the RAN
Intelligent Controller (RIC) near-real-time (near-RT) layer as either a standalone third-
party application or run as separated AI-trained models that change the behavior of other
control functionalities such as the scheduling policies and interference management.

68
CHAPTER 4. A SCALABLE AND DECENTRALIZED SPECTRUM-SHARING
FRAMEWORK FOR COLLABORATIVE INTELLIGENT RADIO NETWORKS

CIRNNoise/Idle Incumbent

Pattern
learned

Pattern
Forecast

Center frequency: fc
BW: bw

Tx init: t1
Tx end: t2
Interference: Normal

Tx init: t2
Tx end: t3
Interference: Normal

Tx init: t4
Tx end: t5
Interference: High

RF-Mon

Step 2: Pattern learning and forecast

Step 1: Incumbent recognition

Technology Recognition
sub-module

Incumbent report
received from CI module

time
now

RSUPP sub-module

Figure 4.3: Proposed two-step AI-based algorithm for incumbent protection.

4.3 Incumbent protection in SCATTER

Although the DFS scheme is simpler and easier to deploy than CBRS and LSA, it lacks
1) a mechanism to exploit the spectrum not used by the incumbent and if it does not
work correctly, 2) a mechanism to incentivize and enforce the incumbent protection. To
overcome these limitations, the two-tier sharing spectrum scheme with CIRNs requires
that the radios can:

• Share the spectrum in the sub-bands not used by the incumbent while transmitting.

• Share all the available spectrum while the incumbent points away from their radios
dynamically.

• Use collaborative information to minimize the probability of harming the protective
incumbent and the uncertainties about how others use the spectrum.

In other words, CIRNs need to detect and identify radio technologies, select the right
policy to execute according to the identification, and be proactive in maximizing the
spectrum usage efficiency. SCATTER radios implement two AI-based sub-modules inside
their ICDE that provide identification and spectrum usage pattern prediction to support
it.

TR: This sub-module recognizes spectrum signatures of different radio technologies and
idle (noise) separately. As input, it consumes the continuous stream of spectrum data
collected by the RF-MON module and outputs if a given technology is present in some
spectrum voxel, where a spectrum voxel is a geometrical realization of the spectrum in
terms of time, frequency, location, and power.

4.3. INCUMBENT PROTECTION IN SCATTER 69

Repeated Spectrum Usage Pattern Prediction (RSUPP): Under the assumption that some
technologies, like radars, use the spectrum following a fixed time-frequency pattern, this
sub-module implements an algorithm that learns and forecasts the pattern of the future
incumbent’s transmissions in real-time.

Figure 4.3 depicts how these two sub-modules interact to form the proposed two-step
algorithm described next. In the first step, the spectrum data provided by the RF-MON
module is processed by TR to identify the incumbent’s transmissions in the vicinity. This
information creates a 2D-binary grid marking the spectrum voxels where the incumbent
is detected. Next, this grid is forwarded to the RSUPP sub-module to perform the second
step. In this step, the RSUPP ’s algorithm learns any periodic pattern of the incumbent
and uses it to forecast its future transmissions.

However, what happens if the TR cannot recognize the incumbent due to other users
interfering with it? In this case, the probability of recognizing the incumbent by the TR
sub-module drops drastically. It is at this point where collaborative information plays a
fundamental role during step 1: by augmenting the view generated by TR with spectrum
power measurements at the incumbent side, we can reduce the uncertainty about the
incumbent existence when TR can not identify it because other interference signals are
hiding the incumbent. The only requirement for these spectrum power measures is
to provide enough information to determine where (frequency) and when (time) the
incumbent suffers interference.

Once the RSUPP has learned the incumbent transmission pattern, it forwards this in-
formation to the Incumbent Protection Policy (IPP) sub-module inside the ICDE. This
sub-module is responsible for translating the learned pattern into a policy to be executed
by the MAC layer so as not to interfere with the protected incumbent. Precisely, the
IPP controls the duty cycle of the SCATTER voxels/slots that overlap the incumbent’s
transmission according to the predicted pattern.

Notice that the effectiveness of this two-step algorithm relies on two facts. The first one
is that the traditional incumbents, e.g., radars, have waveforms that can be identified
and transmitted by following patterns that can be learned. Otherwise, our approach,
and any AI-based algorithm, will fail. SCATTER also implements a Deep Learning (DL)-
based algorithm inside the ICDE to forecast short-term spectrum occupancy following a
more generic approach [53, 15]. However, the algorithm proposed in this work has low
complexity and does not require offline training to forecast the incumbent’s transmission
pattern, which are two requirements to shorten the time to start protecting the incumbent.

The second one is that mechanisms exist to incentivize the appropriate collaboration
among different technologies towards a common goal [90]. In our proposal, the primary
source of incentives to protect the incumbent is the implicit gain in performance by reduc-
ing the interference between the incumbents and the CIRNs. However, this framework
also allows the use of an explicit mechanism to enforce the incumbent protection by the
CIRNs via collaboration, such as the scoring mechanism implemented in the SC2 (see
Section 4.5) or the one presented in [90]. For more comprehensive literature on mecha-
nisms to enforce cooperation and collaboration for dynamic spectrum sharing, we refer
the reader to [91].

70
CHAPTER 4. A SCALABLE AND DECENTRALIZED SPECTRUM-SHARING
FRAMEWORK FOR COLLABORATIVE INTELLIGENT RADIO NETWORKS

4.4 System Implementation

During the implementation phase, two main challenges were faced:

• How to identify the protected incumbent in near-real-time?

• How to learn the incumbent’s pattern in near-real-time but adapt if it changes
dynamically?

Convolu�onal layer
-1

Convolu�onal layer
-2

Fully connected
layer - 1

Convolu�onal layer

Ac�va�on func�on (ReLU)

Batch normaliza�on

Maxpooling

Dropout

8x4
floa�ng points

Ac�va�on func�on (so�max)

Output

3 x 3 filter kernel,
64 feature maps,

Dropout 0.4

3 x 3 filter kernel,
32 feature maps,

Dropout 0.4

1 x 500
neurons

Dropout 0.4

Fully connected
layer - 3

1 x 4 neurons

Convolu�onal layer
-3

2 x 2 filter kernel,
16 feature maps,

Dropout 0.4

In
pu

t l
ay

er

Fully connected
layer - 2

1 x 50 neurons
Dropout 0.4

Total trainable parameters: 95k

Figure 4.4: Convolutional Neural Network (CNN) model used for TR. It only requires
95k parameters, which is translated in short training time and fast prediction in run time.

In Chapter 3 we showed that CNN architectures could classify radio signals with high
accuracy. However, they are not designed to provide near-real-time operation (below
1 second). To address this problem, we design several pre-processing steps to reduce
CNN ’s complexity for TR. Figure 4.4 shows the implemented CNN architecture. This
architecture comprises three convolutional layers, followed by three dense ones. All
the layers have rectifier activation functions except the last one, which has a soft-max
function for classification. Max pooling is used in convolutional layers for down-sampling
the input, while dropout and batch normalization layers are used in convolutional and
dense layers to improve generalization and accelerate training.

The resulting model contains about 95k trainable parameters, equivalent to only 20% of
the model’s trainable parameters presented in Chapter 3 (95𝑘 vs. 500𝑘). The following
design choices achieve the low complexity for this model. First, we use averaged FFT
samples, which provide a frequency-only spectrum view, instead of raw IQ ones, which
give a time-only spectrum view. This operation, implemented in the RF-MON, allows us
to use up to 32-averaged 512-point FFT samples while still recognizing the incumbent, i.e.,
32x lesser examples to be processed in TR. We use the incumbent’s frequency operation
information shared via collaboration to compensate for the losses in frequency resolution
due to averaging. Second, we align the samples with the SCATTER’s MF-TDMA frames
before TR receives them, so TR ’s processing requirements are lowered. Third, we group
all the CIRN radio signatures under the same class, resulting in only four categories:
Incumbent, SCATTER, other CIRNs, and idle/noise. Finally, we recognize technologies
per SCATTER’s channel. As SCATTER uses 7(14) channels of 1.4Mhz in 10(20) MHz
band, the CNN input is only 32 floating-point values. TR was implemented in Python
and used the TensorFlow library for the CNN model1.

1https://www.tensorflow.org/

4.4. SYSTEM IMPLEMENTATION 71

With a sample rate of 23.04 Msps, time-slots of 25ms, and a frame of 500ms, each SCATTER
voxel contains 35 32-FFT samples. To maximize the incumbent’s protection and minimize
the number of false-positives identifications per voxel, we define that an incumbent
is detected in a SCATTER voxel if more than 15% of the samples are classified as an
incumbent with accuracy above 99%.

In scenarios with 10MHz bandwidth, the implemented TR sub-module outputs a 2D-
Boolean grid of size 7x20, where the value one means the incumbent is detected in a given
SCATTER voxel, and zero otherwise. This grid is sent to the RSUPP sub-module, which
simultaneously creates another 7x20 2D grid aligned with the SCATTER’s frame using
the timestamped reports received from the incumbent. As the RSUPP also receives the
grid created by TR, then it combines both grids using an OR operation. To decrease the
RSUPP ’s computational requirements even more, we learn the incumbent pattern only
on the SCATTER’s channels that overlap the incumbent transmission. Let us describe
how the RSUPP sub-module learns the incumbent’s pattern.

We create a boolean string for each channel on which the prediction will be executed.
The last string characters are used as a prefix to search in a buffered string that contains
a fixed number of previous strings. This buffer creates a probability tree representing all
possible incumbent states after the specified prefix. Figure 4.5 shows three possible trees
with three different prefixes based on a buffered string, where character A means that
the incumbent is detected in that SCATTER voxel, and X otherwise. The root of each tree
is the selected prefix, and each node sequence from the root represents sub-strings with
the same prefix. Links between nodes are labeled by the number of sub-strings with
the same character sequence. In this implementation, we set the buffer size to 1000, the
depth of the tree search to 400, and the pattern to find will have a string length between
80 and 400.

This process is done for all the prefixes starting from the end string (reading backward).
Notice that increasing the prefix length reduces the number of branches in the probability
tree. The algorithm combines the different trees, and if the first 𝑛 children are reachable
with a probability higher than a given threshold following the greedy path, the algorithm
determines that it has found a pattern candidate. If the same pattern is predicted a few
times in a row, it is used to avoid the incumbent on a given channel. Once a pattern is
found, we fix it and use it until we detect changes. Similarly, if the predicted pattern does
not match the learned one a few times in a row, we assume the incumbent pattern has
changed, and a new one will replace the old pattern.

Notice that the predicted and the learned pattern will not match when 1) the incumbent
changes its transmission pattern, or 2) the TR sub-module is not able to detect the incum-
bent due to interference and no information is received from the incumbent reporting
that interference, e.g., due to high packet latency. In the last case, the predicted pattern
is generated using only data from the blind TR. In this implementation, we set the times
a new pattern candidate has to be found consecutively to replace the old one to three.
However, in the case of non-reliable and congested collaboration networks, this value
may be increased to maximize the probability of detecting the incumbent with TR before
replacing the previously learned pattern.

The described algorithm is a slightly modified version of the Context Tree Weighting
(CTW) Markov predictor for binary sequences [92]. The main modification was imple-
menting a circular buffer to detect the periodic pattern of the incumbent’s transmission.

72
CHAPTER 4. A SCALABLE AND DECENTRALIZED SPECTRUM-SHARING
FRAMEWORK FOR COLLABORATIVE INTELLIGENT RADIO NETWORKS

Pr
efi

x:
 X

X

Pr
efi

x:
 X

X X A A X X A A A X A A X X
tn-14 tn

3 3

2
X

3

A

2

A

2 1
A

11

A

2

X A

X A X

Buffered string

2

2

A

11

A

X A

Pr
efi

x:
 A

XX

1

1

A

1

A

A

A A A
tn+3

Time

Predictions

Figure 4.5: Example of creating a probability tree based on a given incumbent detection
buffer, where A represents that the incumbent was detected during that specific time slot
and X otherwise.

Compared to other approaches used for spectrum prediction, e.g., predictors based
on Hidden Markov Model (HMM) [93] or Recurrent Neural Network (RNN)[94], our
predictor supports online training and has both low time and space complexities with
theoretical performance guarantees [92]. The RSUPP sub-module was implemented in
C++.

4.5 Experimental validation

The SC2 challenge provided a scenario to test the CIRNs capabilities to coexist and protect
the incumbent. In this scenario, CIRNs were challenged not to harm a Terminal Doppler
Weather Radar (TDWR) system, i.e., the incumbent, while sharing and exploiting the
available spectrum. This scenario lasted 330 seconds, where all the CIRNs shared 10
MHz of bandwidth. The scenario comprised up to five CIRNs, where one node per
network, the gateway, was connected to the collaboration network.

The incumbent to-be protected shares the following information via an implemented col-
laboration protocol called CIRN Interaction Language (CIL)[95, 96]: incumbent’s current
Signal-To-Interference-Plus-Noise Ratio (SINR) measurement (dB); a threshold that sets
the minimum SINR value on which other transmissions will start harming it; a violation

4.5. EXPERIMENTAL VALIDATION 73

flag that is activated when the threshold is breached; and incumbent’s center frequency
and bandwidth. The CIL protocol includes two critical design choices to guarantee the
scalability of the information sharing: 1) short messages and 2) a limited rate to produce
them. For example, an incumbent report has a size less than 0.5Kbit and is generated
at 10Hz. Generally, any information shared by peers via the collaboration network was
generated with rates between 0.1 and 10Hz, translating into proportional growth to the
number of sharing peers.

CIRNs follow a simple procedure to access the network. Once the scenario starts, CIRNs
and the protected incumbent(s) register to a collaboration server. Then, peer-to-peer
communication is established among CIRNs and the incumbent to begin collaborating.
Data plane traffic that CIRNs have to route among their nodes is rewarded with points if
their requirements of QoS hold for a determined period. The competition was designed
to award the CIRN that scores the most points. However, CIRNs were responsible for
computing their score and getting the score of other CIRNs via the collaboration network.
This scoring system has two main properties: 1) if any CIRN is scoring points below a
threshold, then all the CIRNs will receive the same score as the weakest CIRN, and 2) if
the incumbent reports that it is harmed in a period, then the CIRNs get no points during
that period. While 1) is used to promote collaboration among CIRNs, motivating them
to give spectrum to the weakest network, 2) is used to enforce and incentivize the CIRNs
to protect the incumbent.

The scenario had three difficulty levels and two incumbent bandwidths. The three levels
were easy, where the incumbent follows a slow transmission pattern; medium, where
the incumbent transmits shorter and faster than the easy one; and hard, where two
incumbents are transmitting in the same band, one with the easy and the other with
the fast pattern. For each difficulty, the incumbent could either use the entire available
bandwidth, ensuring no other CIRNs can transmit simultaneously, or use half of the
available bandwidth so that other CIRNs can transmit in the other half of the spectrum.
This section presents two of the executions of this scenario where SCATTER was involved
as a) a single CIRN and b) collaborating with multiple CIRNs. For visualization purposes,
the relative transmission power of the incumbents received by RF-MON was modified
(increased) to allow its visualization.

4.5.1 SCATTER protecting the incumbent alone

In this experiment, SCATTER CIRN was deployed alone to protect two incumbents
transmitting in the same channel (hard-level scenario) and using the total bandwidth.
Figure 4.6 (a) shows the spectrum view provided by RF-MON and the Boolean 2D grid
that the TR module forwards to the RSUPP module. Note that although the incumbents
were using the whole bandwidth, it was only detected in the channel overlapping its
center frequency. This is a side effect of the average applied to the FFT samples by
RF-MON to reduce the amount of processed data. However, the incumbents’ reports
provide lost information (frequency operation data). Nevertheless, it does not impact the
capabilities of TR to recognize the different incumbents correctly. SCATTER radios could
learn the incumbent patterns and schedule their transmissions between the transmissions
of the incumbents. In this experiment, 98% of the future incumbent’s transmissions were
correct, and most of the mistakes were at the beginning of the scenario where the RSUPP
started to learn.

74
CHAPTER 4. A SCALABLE AND DECENTRALIZED SPECTRUM-SHARING
FRAMEWORK FOR COLLABORATIVE INTELLIGENT RADIO NETWORKS

(a) SCATTER CIRN and two incumbents. (b) Multiple CIRNs and one incumbent.

Figure 4.6: CIRNs collaborating and protecting the Incumbent. Spectrum received from
RF-MON (top) and the incumbent detection output from TR (bottom) aligned to the
SCATTER MF-TDMA scheduling (1.4 MHz channels, 25ms per time slot).

4.5.2 SCATTER and multiple CIRN protecting the incumbent

In this experiment, three CIRNs were deployed, including SCATTER CIRN, to protect one
incumbent while using half of the available spectrum in the easy-level scenario. Figure
4.6 (b) shows how multiple CIRNs were able to protect the incumbent while maximizing
the use of the spectrum. Depending on the traffic demands, CIRNs try to use the
available spectrum left by the incumbent efficiently. For example, between seconds 0 and
4, high traffic demand is managed by the CIRNs. However, while the incumbent was
transmitting, no CIRNs scheduled transmissions in the 5MHz band (upper band). Note
that part of the incumbent was hidden due to a side-band transmission of another radio
(time slots between 50 and 60). As a result, TR could not identify the incumbent there.
However, this gap was well predicted by the RSUPP as an incumbent transmission. In
general, 95% of the future transmissions of the incumbent were predicted correctly. This
slight accuracy drop is expected since coexisting with other networks introduces a longer
learning time.

4.5.3 Execution time performance

On average, the two-step algorithm took less than 300ms. TR used 200ms to format
the pre-processed data received from RF-MON, i.e., transforming raw bytes into python
arrays, 100m for performing the TR task, and 50ms to predict the transmission pattern
of the incumbent for the next SCATTER’s frame. As the RSUPP is implemented in C++,
it can efficiently process the received raw bytes. Finally, learning a pattern varies, on
average, from 5 seconds in solo scenarios to 30 seconds in coexistence with other CIRNs.

4.6. CONCLUSIONS 75

4.6 Conclusions

We presented the architectural design and the experimental validation of an incumbent
protection system for the next generation of spectrum-sharing frameworks. Built on
top of the concept of CIRN, we designed and implemented a two-tier framework that
enables efficient spectrum sharing while protecting the incumbents. Compared to new
approaches like CBRS and LSA, our system requires no central infrastructure to control
and grant access to the shared spectrum. It only requires that the incumbents collaborate
with other networks by sharing information such as location, interference measurements,
and frequency operation parameters.

On the radio side, we proposed and implemented an AI-based two-step algorithm that
protects the incumbent autonomously. This algorithm uses spectrum data and informa-
tion the incumbent provides to recognize, learn, and proactively predict the incumbent
transmission pattern with an accuracy above 95% in near-real-time. We have experimen-
tally validated the proposed architecture and algorithm using Colosseum, the world’s
largest Radio Frequency (RF) channel emulator built for the SC2 challenge.

76
CHAPTER 4. A SCALABLE AND DECENTRALIZED SPECTRUM-SHARING
FRAMEWORK FOR COLLABORATIVE INTELLIGENT RADIO NETWORKS

Chapter 555
A General Approach for Traffic

Classification in Wireless Networks

The content of this chapter has been partially published in:

• M. Camelo, P. Soto, and S. Latré, "A General Approach for Traffic Classification in
Wireless Networks using Deep Learning," in IEEE Transactions on Network and
Service Management, doi: 10.1109/TNSM.2021.3130382.

In the previous chapter, we demonstrated that the successful deployment of wireless net-
works capable of meeting the growing demands of emerging applications and services
while ensuring Quality of Service (QoS) depends on the radios’ ability to perceive their
spectrum environment intelligently, enabling efficient sharing and reuse. The Technol-
ogy Recognition (TR) module, initially introduced in Chapter 3, has played a vital role
as the first step in the cognitive radio cycle and has given the foundation for the develop-
ment of the Collaborative Intelligent Radio Networks (CIRNs) framework, as showcased
in Chapter 4. In this chapter, we introduce a novel framework that empowers the Intel-
ligent multi-RAT (ImRAT) Gateway (GW), a type of Intelligent Radio (IR), to perform
Traffic Classification (TC) at any layer within the radio stack, leveraging spectrum data.
Additionally, we propose a Deep Learning (DL) architecture for the second step of the
cognitive radio cycle, encompassing learning and reasoning. This approach overcomes
the limitations of traditional TC systems, which typically assume that all traffic belongs
to the same network domain and rely on byte/protocol representations of packets at the
Link Layer (L2) (or above).

5.1 Introduction

In the realm of Cognitive Radio (CR) networks and spectrum sharing models, traditional
Network Monitoring Service (NMS) have long played a vital role in analyzing network
behavior and traffic patterns [97, 98, 99, 99]. These services have historically been in-
strumental in identifying bandwidth-intensive applications and critical network links,
enabling effective decision-making for network management and the assurance of Qual-
ity of Service (QoS) for users. With the integration of Machine Learning (ML) techniques,

77

78
CHAPTER 5. A GENERAL APPROACH FOR TRAFFIC CLASSIFICATION IN

WIRELESS NETWORKS

NMS has evolved to encompass automated network traffic analysis, including network
state predictions, anomaly detection, malware detection, and Traffic Classification (TC)
[100].

TC, a central component of network management, involves determining the origin of
network traffic, thereby allowing the inference of the specific application responsible for
generating that traffic [100, 101]. The ability to classify traffic into distinct categories
provides the foundation for enforcing tailored security and QoS policies. Over time,
various approaches have been developed to keep pace with advancements in user ap-
plications and communication protocols. In recent years, Deep Learning (DL)-based TC
systems have emerged as superior alternatives to traditional methods such as port-based
classifiers, Deep Packet Inspection (DPI), and statistical ML-based flow analysis, even in
scenarios involving encrypted traffic [102, 103, 104]. However, the traditional TC task is
assumed to be performed on traffic that belongs to the same network domain and over
a byte/protocol representation of the packet at the Link Layer (L2) (or above). These
assumptions limit the capabilities of TC systems in wireless networks using shared spec-
trum, e.g., in unlicensed bands. This is because users’ traffic from one wireless network
domain can be negatively impacted by traffic transmissions from other wireless networks
without being noticed by the TC system as demonstrated in [30].

Co-located transmissions within the same spectrum band in wireless networks can pro-
duce Physical Layer (L1) packets that escape detection by receivers tasked with TC. These
situations occur when transmitters utilize incompatible wireless technologies or when
decrypted traffic is already secured at the L2 within a distinct network domain. To over-
come these limitations, a shift from TC systems operating at the byte level to TC systems
functioning at the spectrum level becomes necessary. This approach allows for monitor-
ing, detecting, assembling, and classifying traffic generated by various wireless devices
sharing the same spectrum, even when the traffic is encrypted, originates from different
network domains, or employs diverse wireless technologies. However, this transition
introduces new challenges not present in byte-based TC systems. Spectrum-based pack-
ets are subject to modulation, coding, and encryption before transmission, resulting in
distinct spectral representations of packets. These variations can occur even within the
same wireless technology due to differences in Modulation and Coding Schemes (MCSs)
or when different digital multi-carrier transmission schemes are employed.

To this extent, we introduce a novel framework that achieves TC at any layer of the
radio network stack, relying on the Technology Recognition (TR) module proposed in
Chapter 3 for wireless technology-agnostic spectrum sensing capabilities. Building on
top of it, a procedure based on DL to perform TC on spectrum samples is proposed. This
procedure enables the management algorithms running at the Gateway (GW) nodes (or
beyond) to perform better by having a broader view of the traffic flowing in the shared
spectrum. Two DL-based architectures were designed to solve the task of classifying
packets directly on spectrum data. To evaluate the performance of the architectures,
we create and provide an open source data set containing 802.11 standard-compliant L1
waveforms, the first open and available data set for testing traffic classification at the
spectrum level. We believe this data set would foster reproducibility and allow further
advances on this topic. The data set and the code associated with this chapter can be
obtained in Zenodo1 and Github2, respectively.

1https://doi.org/10.5281/zenodo.5208200
2https://github.com/miguelhdo/tc_spectrum

https://doi.org/10.5281/zenodo.5208200
https://github.com/miguelhdo/tc_spectrum

5.2. RELATED WORK 79

The remainder of this chapter is structured as follows. We present the related work in
Section 5.2. The general framework for TC is introduced in Section 5.3, and the proposed
spectrum-based TC algorithm using DL is presented in Section 5.4. Finally, we show
the DL models’ performance evaluation results on both coarse-grained and fine-grained
traffic classification tasks in Section 5.6 and conclusions in Section 5.7.

5.2 Related work

This section presents some of the most relevant work on TC using DL approaches for
encrypted traffic. For a more exhaustive literature review on the general applications of
DL in wireless networks and on ML/DL approaches for TC, we refer the reader to [103]
and [102, 105], respectively.

5.2.1 Traffic Classification using L2 (and above) classification objects

Over the years, the applications have evolved, and so have the algorithms and tech-
niques used to classify the traffic generated by them [106, 101, 107, 102, 100]. The initial
approach was using port numbers. Later, traffic classifiers using DPI techniques were
designed to find patterns in the data packets’ payload. While port-based classifiers
are more accessible and faster than DPI methods, DPI outperformed them at the cost
of higher computational requirements. Unfortunately, both approaches are limited to
non-encrypted traffic that typically belongs to the same network domain. To avoid this
problem, ML approaches were proposed to classify the traffic using packet flows, where
flow measurements are used as features. However, it has been shown that its accuracy can
be affected by user behavior variations, device OS-specific patterns, and network-specific
conditions, among others [107].

80
CH

A
PTER

5.
A

G
EN

ERA
L

A
PPRO

ACH
FO

R
TRA

FFIC
CLA

SSIFICA
TIO

N
IN

W
IRELESS

N
ETW

O
RKS

Table 5.1: Comparison of our work and other contributions focusing on TC using DL.

Contributions Traffic
Representation

Classification
at any layer

Classification object
as input data

End-to-End
framework

Proposed
Model

Comparison against
other models

Comparison against
other traffic

representation

Multi-task
learning

Data set and
availability

[15] L2 Packet flow No Flow statistics
as images Yes 2D-CNN SVM, MLP, NB, DT No No Private

[16] L2 Packet flow No Session and Flow
statistics Yes 1D-CNN 2D-CNN No No Public

[17] L2 Packet flow No 24 statistical features
of a packet Yes 1D-CNN 1D-CNN

trained in supervised mode No No QUIC, Public

[18] L3/L4 packet No Raw bytes Yes SDAE, CNN,
LSTM-RNN RaF, MLP No No Restricted

[19] L2 Packet flow No Sequence of packet
statistics Yes CNN+LSTM-RNN CNN, LSTM-RNN No No RedIRIS, Public

[20] L7 packet No Raw bytes as images Yes VAE No No No IMT17, Public

[21] Raw DCI No Transport Block
Size Yes AE + softmax

+dense layer.
LSTM-RNN+softmax,

LSTM-RNN+dense layer No Yes Private

[23] Raw DCI No Transport Block
Size Yes LSTM-RNN,

1D-CNN, MLP
SVM, LR, K-NN,

RaF, GP No No Private

[8] L1 packet Yes Raw In-phase and Quadrature (IQ) samples No LSTM-RNN No No No Private

[10,24] L1 packet flow Yes Raw IQ samples
as images No 2D-CNN 2D-CNN on raw L2 packets Yes, raw

L2 packet No Private

This work L1 packet Yes Raw IQ samples Yes 2D-CNN GRU-RNN, GB
Yes, raw L2
packet and

packet length
No IDLAB-TC-SPECT,

Public

5.2. RELATED WORK 81

More recently, TC algorithms based on DL approaches have outperformed ML ones
based on traditional algorithms [102, 100, 105]. One example of these algorithms is
shown in [108] and [109], where authors proposed an end-to-end TC algorithm based on
Convolutional Neural Networks (CNNs) that converts raw traffic into images. In [108], the
authors took the first several packets of the traffic flows and their time-series features and
identified the application or protocol type that generates them. The Seq2Img model was
compared against four popular classifiers such as Support Vector Machines (SVM), Multi-
Layer Perceptron (MLP), Naïve Bayes (NB), and Decision Trees (DT). Results showed that
all approaches perform equally well when classifying protocols, but Seq2Img is almost
12% more accurate than other models when classifying applications.

To overcome the problem of data labeling, authors in [110] proposed a semi-supervised
approach that pre-trains a 1D-CNN model on an unlabeled data set to infer traffic patterns
and afterward re-train the model on a labeled data set to confirm those patterns. This
way, the amount of labeled data needed in the second step is considerably reduced. The
datasets are based on time-series features of a fixed number of sampled packets from
traffic flows. Results showed that the pre-training step increases the model’s accuracy by
up to 10% compared to a model without pre-training. A Stacked Denoising AutoEncoder
(SDAE), a CNN, and a Long Short-Term Memory (LSTM) were proposed as classifiers
in [111], where Netlog was developed to simplify the data labeling process. Comparison
against a Random Forest (RaF), which requires statistical features, and an MLP showed
that all DL models performed over 20% better than RaF in terms of accuracy, showing
that much more insightful features can be learned from raw data than from the statistical
features used by the RaF.

A combination of two CNN layers followed by one LSTM layer with two fully connected
layers at the end was proposed in [112]. The time-series features are taken from the
headers of the first 20 packets exchanged during the flow lifetime and did not include any
information that could identify users (MAC/IP addresses) to ensure data confidentiality.
Results showed that the combination obtained the best results in terms of accuracy and
F1-score. Autoencoders (AEs) are also a predominant option as models. For instance,
in [113], a network traffic flow is also transformed into an image later processed by a
semi-supervised model based on a Variational AutoEncoder (VAE). The authors took
data from the HTTP sessions (requests and responses) and converted them to a 28x36
image. The proposed VAE uses an MLP encoder and decoder that analyses images in an
unsupervised manner as a feature extractor. Then, the extracted features are mapped to
an app in a supervised manner. Results show that, even with two features, the network
traffic can be effectively discriminated in the unsupervised step, achieving an accurate
classification at the supervised step.

As pointed out by the authors in [114], most of the literature in the field of NMS is
focused on single-task learning, e.g., each model is designed and trained to solve one
specific learning task such as TC, traffic prediction, or anomaly detection. As a solution,
Multi-Task Learning (MTL) approaches have been proposed in [114] and [115], where TC
is used as one of the learning tasks to leverage helpful information contained in multiple
related tasks aiming to improve the generalization capabilities of all them while learning.
The authors in [114] used a MTL approach to jointly solve the TC and traffic prediction
task using traffic traces containing the Downlink Control Information (DCI) messages
carried within the LTE Physical Downlink Control CHannel (LTE-PDCCH) with a time
granularity of 1ms. Their proposal is a two-step procedure where they first use an AE

82
CHAPTER 5. A GENERAL APPROACH FOR TRAFFIC CLASSIFICATION IN

WIRELESS NETWORKS

to extract common feature representations among tasks and then use the encoder part
of it to train a traffic classifier (softmax layer with a softmax activation function) and a
traffic predictor (a dense layer with the rectified linear unit (ReLU) activation function)
simultaneously. Compared to conventional single-task learning approaches, which do
not use AE and tackle classification and prediction tasks separately, the MTL approach
always provided the highest performance.

More recently, the authors in [116] proposed a CNN architecture to perform TC without
having to decode and/or decrypt any of the transmitted flows. To achieve this, the input
to the model is raw physical control channel messages of a mobile network. The input
data is obtained by decoding the DCI messages carried within the LTE-PDCCH. Among
the information carried by the DCI messages, the authors used the number of allotted
resource blocks, the MCS, and the transport block size. The authors claimed that this
information should provide sufficient information for learning algorithms to classify the
application and service the user is running reliably. The results confirmed such claim and
the proposed CNN achieved an accuracy above 98%, outperforming other DL models
such as Recurrent Neural Network (RNN) and traditional ML approaches such as SVM
and RaF, Learning Rate (LR), k-Nearest Neighbours (K-NN), and Gaussian Processes
(GP).

5.2.2 Traffic Classification using L1 classification objects

All the previous works are byte-based approaches, which limits their application on
wireless networks (see Section 5.3.1). As a solution, a few spectrum-based traffic classi-
fiers have been proposed in recent years to perform TC on raw spectrum data. Authors
in [117] present a DL-based algorithm that classifies traffic patterns of different types
of applications directly from the radio spectrum with accuracy ≥ 96% and outperforms
state-of-the-art methods based on Internet Protocol (IP) packets with DL. They use images
representing the spectrum in time and time-frequency as input data for their CNN-based
DL architecture. An extension of this work was presented in [118], where a validation
with real-life data showed that a model trained with synthetic data could discriminate
between different traffic patterns but with a decreasing performance in terms of accuracy.
One advantage of this approach was the automatic extraction of the time-dependent fea-
tures to perform the TC task. However, in contrast to byte-based methods using statistical
data from traffic flows, this approach assumes that the spectrum patterns to be classified
belong to a single-user and single-flow, which is not the case in real environments.

An alternative to overcome the limitations of [117] is to use L1 packets and perform
the TC directly on them. Based on a RNN architecture, the authors in [119] showed
that TC on raw spectrum data could be performed on short time-series (a few hundred
samples) with an accuracy ≤ 85%. This accuracy can be considered low compared to
byte-based TC systems if we also consider that the L1 packets were single-modulated
with no coding, non-encrypted, and transmitted with a low data rate. One of the reasons
for this performance is the use of RNN architectures, such as LSTMs [120, 121], which
suffer from inefficient training and low accuracy with large data sequences [122, 123, 124].

Given the limitations of the previous spectrum-based proposals, this chapter introduces
a general framework to achieve TC at any layer in the radio stack. On top of this
framework, we propose an end-to-end spectrum-based TC procedure that is also Radio

5.3. A GENERAL FRAMEWORK FOR TRAFFIC CLASSIFICATION 83

Access Technologies (RAT) agnostic. At the heart of the procedure, we design, train, and
evaluate a CNN-based classifier that outperforms an optimized RNN architecture, similar
to the one used in [119], by achieving higher accuracy, even on large data sequences, and
lower complexity in terms of prediction time. Moreover, the proposed approach removes
the need for specialized algorithms for traffic flow separation/aggregation on spectrum
data like the one required in [117] as it uses as classification objects the IQ-samples
associated to one single L1 packet, which can be realized with simpler algorithms. This
framework will allow decision-making engines to enhance the view of the traffic that
is passing through the gateway nodes, not only traffic from the same network domain
(of which we can obtain a byte representation) but also traffic that is generated by any
nearby wireless device and captured directly on the shared spectrum. Table 5.1 provides
a comparison of the contributions of this chapter and the analyzed related works that
perform TC using DL.

5.3 A general framework for Traffic Classification

This section introduces the main limitations of the byte-based approaches for TC in
wireless networks using a shared spectrum and presents a general framework to perform
TC at any layer of radio network stack using a spectrum representation of a packet. This
framework provides the building blocks to design a DL-based traffic classifier for wireless
networks. In the rest of the chapter, the terms spectrum-based packet representation and
L1 packet are used as synonymous, similar to byte- or protocol-based representation and
L2 (or above) packet.

5.3.1 Limitation of the byte-based frameworks for Traffic Classification

Deploying wireless networks that can handle the increasing demands on network ca-
pacity of new applications and services while guaranteeing their QoS requirements will
depend on the radios’ capabilities to be aware of their spectrum environment, sharing
and reusing it optimally. Therefore, including capabilities to sense and understand the
environment state is fundamental to dynamically adapting the radio parameters to fulfill
users’ requirements while optimizing the shared spectrum usage [125, 48].

Large deployments of daily use technologies such as Wi-Fi and 4G/5G are based on
simple devices at the users’ side and a full management stack at the RAT GW node or
beyond. One of the management system’s key components is the NMS, which provides
various information related to the traffic generated by the users accessing the operator’s
core network. These services have recently been enhanced with ML techniques to perform
automatic network traffic analysis with high accuracy [100, 103, 102]. One of these traffic
analysis tasks is TC, which allows inferring the user’s application generating the traffic
to enforce specific security and QoS policies on it.

To picture the use of TC on wireless networks, let us consider a co-existence scenario in
a shared spectrum between two wireless networks, one using Wi-Fi and the other using
a private 4G/5G deployment, as shown in Figure 5.1. In this scenario, the management
system running on the private 4G/5G deployment wants to prioritize the traffic of user

84
CHAPTER 5. A GENERAL APPROACH FOR TRAFFIC CLASSIFICATION IN

WIRELESS NETWORKS

Core Network

TC

5G LTE Wi-Fi
User 1 User 2 User 3

SHARED SPECTRUM

RAT GW1
TC

RAT GW2

Figure 5.1: Use case scenario where the traffic analysis will be incomplete if a byte-based
TC system is used.

1 over user 2 dynamically so it can enforce a given QoS while maximizing the use of
its network resources. The GW nodes can perform TC to detect and identify the type
of application being executed at any moment by its users. On the other hand, user
3, which belongs to the Wi-Fi network, generates a large traffic volume using a non-
priority application. For simplicity, let us assume that a central entity manages both
GWs. However, this can easily be extended to independent management domains where
information exchange is allowed to enforce collaboration or/and cooperation among
them, as demonstrated in our previous work [30].

Traditionally, byte-based TC systems will be located at (or behind) the RAT GW and will
classify the traffic sent by the users’ devices in the wireless domain of the RAT GW. In the
example scenario, GW 1 can classify traffic from users 1 and 2 and use this information
to enforce traffic policies, e.g., GW 1 can determine to reduce the bandwidth assigned to
user 2 to guarantee QoS on the protected user 1. However, independently of the traffic
policies applied at GW 1 to protect user 1, the performance of user 1 can be negatively
impacted by the non-priority traffic generated by user 3. This is expected as the GW
1 can not see the traffic generated by user 3 as it will never pass through. Even with
a byte-based TC system working on all the users’ traffic, it would be difficult to infer
that the traffic generated by user 3 negatively impacts user 1 without knowing the users’
location.

5.3.2 A Traffic Classification framework at any layer

One possible solution to the abovementioned problem is that the GW 1 recognizes the
radio technology that interferes and adapts its behavior accordingly [126, 127, 30]. How-
ever, this approach is not enough to increase spectrum efficiency as

5.3. A GENERAL FRAMEWORK FOR TRAFFIC CLASSIFICATION 85

1. the interfering/interfered technology may not include a mechanism to adapt or
coexist, e.g., to change its frequency band to avoid the interference, and

2. traffic prioritization can be only based on technology and not on the application.
Therefore, specific traffic policies such as priority vs. non-priority traffic cannot be
applied.

For instance, if the GW 2 can recognize that some external device is transmitting a high-
priority/protected traffic, it can enforce a policy over its user 3 to reduce the impact on
that external device even if it is not under the same management domain as the other
wireless device. Moreover, the TC task cannot be performed at L2 or beyond the central
entity, as it requires specialized hardware to demodulate and decode the information of a
given technology. Therefore, performing TC to its users’ traffic and any other traffic in the
same spectrum is crucial for the future deployment of complex and advanced wireless
networks.

In general, wired and central-managed wireless networks, using (possibly) multiple
technologies, can implement TC at L2 with little effort as all the users’ traffic can be
obtained at the access points/gateways of the networks and should be the logical choice
for implementing a TC system. However, this task is more complex in decentralized
multi-technology wireless environments as the traffic from multiple wireless devices
flows through the same shared medium (the spectrum). In the case of multiple wireless
technologies, it is required to have specialized hardware to demodulate, decode, and
decrypt the messages sensed by the receiver to obtain the L2 packet for TC. In the case
of the same technology, each wireless device may belong to different wireless domains,
which are usually secured, so packets demodulated and decoded can be encrypted but
at the cost of requiring more complex classifiers. As a result, a general framework to
classify traffic directly at L1 is critical to address these wireless network limitations.

To this end, Figure 5.2 introduces a general framework that allows the classification of
different types of traffic using spectrum representation of the data packet. The proposed
framework comprises two main blocks: the traffic generators and the Intelligent multi-
RAT (ImRAT) GW. Let us describe each one of these blocks in more detail.

Traffic Generators: In general terms, traffic generators are a combination of a user’s
wireless terminal and the applications that run on it to generate traffic and are transmitted
over the spectrum to the ImRAT GW.

1. User’s Terminal (UT): This is a wireless device that runs the applications generating
the traffic and transmits it to the ImRAT GW. Although these devices may be very
complex and use advanced RATs, e.g., CRs [125] or Collaborative Intelligent Radios
(CIRs) [15, 48], so they can create fully autonomous and distributed networks, in
this framework we assume they are simpler devices that are connected to a (multi)
RAT GW node that performs the management tasks.

2. Applications: This is any software that runs over the UT and generates traffic. A
critical characteristic of these applications is that the generated traffic follows a
pattern at any radio stack level. This requirement is fundamental as any Artificial
Intelligence (AI)-based algorithm learning to discriminate among different classes
needs to find patterns in the data used to learn. For example, a pattern can be
learned from the application’s protocol generating users’ data traffic.

86
CHAPTER 5. A GENERAL APPROACH FOR TRAFFIC CLASSIFICATION IN

WIRELESS NETWORKS

Shared Spectrum

Intelligent multi-RAT GateWay 1
Traffic Generators

User 1

RAT
1

RAT
2

User 2

RAT
3

RAT
4

User n

RAT 2

...

Spectrum
Samples

Spectrum
Sensing

(1)

Spectrum Samples
Technology Label

Technology
Recognition

(2)

PHY Packets
Technology Label

PHY
Samples

Assembler
(3) Spectrum-based

Traffic Classifier
(4)

Traffic
Analyzer

(5)

Intelligent
Control and

Decision
Engine

(6)

Spectrum-based TC system

ImRAT GW m

Traffic Label
Technology Label

...

Figure 5.2: Functional diagram of a general framework for traffic classification at any
layer.

ImRAT GW: This is a wireless device that acts as a gateway to one or multiple RATs
and uses AI-based algorithms to perform wireless management tasks such as the NMS.
This device can also be integrated into more advanced Radio Access Network (RAN)
architectures like OpenRAN [89] or open5G [128]. The following internal blocks are
required for deploying spectrum-based TC algorithms.

1. Spectrum Sensing: This sub-module, typically found in CR, obtains samples of the
spectrum. The data type will depend on the input data required by the spectrum-
based TC. Some formats of these samples are the IQ (time domain), Fast Fourier
Transform (FFT) (frequency domain), Short Time Fourier transform (STFT) (time-
frequency domain), Continuous Wavelet Transform (CWT) (time-frequency do-
main). Note that although traditional radio transceivers do not provide access to
the received spectrum data, radio platforms running on Software Defined Radio
(SDR) [15] or software tools like Nexmon [129] can already provide access to it.

2. TR: This sub-module uses spectrum data to recognize the radio signatures of dif-
ferent RATs and idle (noise) separately (see Chapter 3 and [130]). As input, it
consumes the continuous stream of spectrum data collected by the spectrum sens-
ing sub-module and outputs if a given technology is present in some part of the
spectrum.

3. Multi-RAT L1 packet assembler: This sub-module puts together different spectrum
samples that belong to the same RAT and creates L1 packets. For this, the labels
created by TR are used to find a packet pattern. Note that the spectrum sensing, TR,
and this sub-module can be removed if we use the L1 packets already captured by
the Wireless Network Interface Card (WNIC) of the multi-RAT before they are de-
modulated and decoded. However, this implies having one WNIC per technology.
One advantage of the spectrum sensing + TR + Multi-RAT L1 packet assembler
is that they are technology agnostic and can be easily extended to support new
technologies without requiring adding new WNICs to perform the monitoring
task.

5.3. A GENERAL FRAMEWORK FOR TRAFFIC CLASSIFICATION 87

4. Spectral-based TC: This sub-module uses L1 packets to classify the application that
generated it. Compared to the byte-based TC, this approach is more complex and
needs to be more robust. The features that discriminate traffic classes at different
radio stack layers must be extracted from the raw spectrum. For example, a user-
level application generating traffic will generally have a very similar IP packet
carrying the application payload. However, the same packet at the L1 will be
different depending on properties like the RAT (5G vs. WLAN), its version (Wi-Fi
5 vs. Wi-Fi 6), the MCS (BPSK 1/2 vs. QPSK 1/2), etc.

5. Traffic Analyzer: This sub-module takes the output from the TCs and automatically
generates an analysis of the traffic flowing in the physical medium. The resulting
analysis is used to enhance the decision-making engines’ view controlling the radio
parameters aiming to optimize a(n) (multi-)objective function.

6. Intelligent Control and Decision Engine (ICDE): This sub-module combines the output
of different radio systems, e.g., the output of the NMS and the QoS requirements of a
given application/user, and intelligently and dynamically adapts the radio param-
eters at different layers to improve performance and increase spectrum efficiency.
An example of this module is being presented in [48, 53].

Notice that although we did not follow any Wireless Local Area Network (WLAN)
or 4G/5G standard to realize the ImRAT, their functional blocks can be positioned
inside 5G-RAN architectures like the one proposed by the O-RAN Alliance [89] and
coexist/coordinate with WLAN Access Points (APs) in the same network domain as
established by the 3GPP release 16 with the introduction of the 3GPP Access Traffic
Steering Switching and Splitting (ATSSS) [131]. As an example, the Spectrum Sensing,
TR, and the L1 packet assembler blocks can be implemented in the Remote Radio Unit
(RRU) for fast signal processing and spectrum-based TC empowered by ML models
can be deployed in the RAN Intelligent Controller (RIC) co-allocated Distributed Unit
(DU)/Centralized Unit (CU) to reduce the amount of data required to move L1 packets
to the classifier. In decentralized environments, where multiple networks may run
under their management domains, new approaches must be investigated and explored to
define mechanisms to incentivize collaboration among networks and enforce policies that
optimize global objectives shared by the networks in a fully automated fashion. Examples
of such collaborative approaches are the Collaborative Intelligent Radio Network (CIRN),
which were developed during the Defense Advanced Research Projects Agency (DARPA)
DARPA Spectrum Collaboration Challenge (SC2)[14]. Some of our recent works have
demonstrated the capabilities of such networks at the architectural level [15, 53] and
validated their performance via experimental results [48]. Theoretical and practical
developments of collaborative protocols to support such architecture can be found in
[90], and [95, 96], respectively.

This framework allows the deployment of TC systems that work on the spectral repre-
sentation of transmitted data and realize a general approach for TC for wireless networks
at any layer from L1 to the Application Layer (L7). This framework is general as the first
two blocks (TR and L1 packet assembler) provide a mechanism to be wireless technology
agnostic since using an L1 packet as classification object allows a classification at any
layer as this object contains the whole information carried by the transmitted packet. For
end-to-end designing, training, and deployment of the ML/DL algorithms behind the
sub-modules like TC and TR, this framework can be enhanced by the ideas presented in
[100] (byte-based TC) and Chapter 3, respectively.

88
CHAPTER 5. A GENERAL APPROACH FOR TRAFFIC CLASSIFICATION IN

WIRELESS NETWORKS

Deep Neural Network
Classifier

Data
Management

Control

Raw spectrum
data

Noise WiFi PHY packets

Step 1
Data Collection

Step 2
Packet Assembly

Step 4
Classification

Truncated PHY
packet

Step 3
Padding/Truncation

Coarse-grained traffic

Fine-grained traffic

Figure 5.3: TC system using spectrum data. 4 steps compose the system: a) data col-
lection, b) L1 packets filtering/assembly, c) zero padding or data truncation of the time
series, d) Fine- or coarse-grained traffic classification.

5.4 Spectrum-based Traffic Classification system based on
Deep Learning

TC at spectrum level using an L1 view of the packets enhances the traffic statistics
provided by an NMS by including information from any traffic flowing in a shared
medium such as a wireless link. However, L1 packets carrying the same payload can be
completely different due to several factors:

• Different RATs may use various schemes to transmit (e.g., Orthogonal Frequency-
Division Multiplexing (OFDM) vs. Direct-Sequence Spread Spectrum (DSSS)) and
modulate/code the data (Binary Phase Shift Keying (BPSK) vs. Quadrature Am-
plitude Modulation (QAM)).

• Different MCSs produce different packet lengths carrying the same data.

• Same RATs may have different L1 versions, and therefore each version may have
its specification (802.11n vs. 802.11ac).

• The L1 layer may encrypt the data before transmitting.

This heterogeneity makes the TC at the spectrum level an arduous task. In fact, it is almost
impossible to use ML algorithms that rely on any feature engineering. Here is where DL
plays a fundamental role: this ML technique allows the automatic feature extraction on
hyper-dimensional data [132]. These capabilities have also been used in the networking
domain to perform classification tasks on high dimensional data like spectrum samples
for modulation classification [83], and technology recognition [130, 69], or raw bytes and
images representing packets or packet flows at L1 or above for TC [104, 133, 117].

As we have shown in Section 5.2, L1 packets (or packet flows) can be treated as 2D time
series or images representing time series. Concerning time-series data, there are DL
architectures based on RNN, such as LSTMs [120, 121] and Gated Recurrent Units (GRU)
[134, 135], that are designed to exploit the structure of sequential data. However, they
are difficult to train and have low accuracy with large data sequences [122, 123, 124].

One way to address the limitations of RNN architectures on large data sequences is to
use CNNs for performing the automatic feature extraction while shortening the input

5.4. SPECTRUM-BASED TRAFFIC CLASSIFICATION SYSTEM BASED ON DEEP
LEARNING 89

sequence length before it is fed into the RNN architecture [112]. However, empirical eval-
uations have shown that even the recurrent layers are no longer needed for capturing the
time-series patterns with CNNs [124]. Assuming a generic approach for the selected DL
architecture for TC at spectrum level, Figure 5.3 shows a spectrum-based TC procedure
built on top of several of the functionalities presented in the general-purpose framework
for TC described in Section 5.3. The procedure comprises four main steps: data collection,
L1 packet filtering/assembling, zero-padding/truncation, and classification.

• Data collection: In this step, the algorithm continuously captures spectrum samples
and pre-processes them before being fed to the DL model. The first process to run
in this step is the spectrum sensing to capture the samples in a given format, such as
IQ or FFT samples. These samples are then normalized and grouped, for example,
by using a fixed-sized moving window. The fixed-size samples are then labeled
according to the RAT used to transmit them, their absence, i.e., noise, and a mix of
them, i.e., interference. This step can be implemented by the spectrum sensing and
TR sub-modules of the proposed framework as in [48].

• L1 packet assembly/filtering: One crucial aspect of the proposed algorithm is that
it assumes that an L1 packet is a self-contained time-series structure where it can
find and learn the upper layer protocol’s pattern. A combination of IQ samples and
labels from the first step provides a mechanism for assembling the L1 packets. More
precisely, the IQ samples labeled with a given technology (step 1) are used as a filter
to generate different IQ sample flows per technology. Then, the IQ samples labeled
as noise are used as a delimiter to assemble them into L1 packets. Cross-correlation
with sync words per technology or end-to-end ML approaches for packet detection,
such as [136, 137, 138], can be added to increase this step’s robustness.

• Time series Padding/Truncation: Once an L1 packet has been assembled, or a group/batch
of them, we perform the zero-padding for short sequences, and truncation for long
sequences, to normalize the length of all L1 packets to a given fix value. This step is
important as the training and inference speed of DL algorithms can be improved by
using sequences of the same length [139] at the cost of increasing the memory foot-
print. The optimal L1 packet length for padding/truncation is determined while
designing and training the TC ’s DL models. This value will depend on the DL
architecture, the technology that generates the L1 packet, and the layer on which
the features have to be extracted to perform the TC.

• Fine- or coarse-grained classification: In this step, the trained DL model consumes the
padded/truncated L1 packets processed in the previous step and classify them.
This step can be performed by a unique model or a cascade of simpler models for
multi-step classification. Let us use TC on WLAN as an example. An L1 packet can
be first classified by a model discriminating between the management, control, and
data frames at L2 (coarse-grained classification). Then, the L1 packets classified as
data frames can be passed through a second model that classifies them between
two types of L7 traffic, e.g., music vs. video (coarse-grained classification). Finally,
the samples labeled as music can be further classified according to the mobile
application that generates it, e.g., Spotify vs. GPodcast (fine-grained classification).

The automatic execution of these four steps provides a complete spectrum-based TC
system that is also technology agnostic. Of course, several decision choices will depend

90
CHAPTER 5. A GENERAL APPROACH FOR TRAFFIC CLASSIFICATION IN

WIRELESS NETWORKS

on the RATs sharing the spectrum and their hardware capabilities to run this algorithm,
the channel bandwidth and sampling rate of the sensing module, the traffic classes to
be discriminated, and at which layer their features can be extracted, and the architecture
that is used to build the model(s). However, the proposed framework in Section 5.3
and the procedure proposed in this section provide enough flexibility to cover a large
number of 5G and beyond use case scenarios using complementary RATs like WLANs
and 4G/5G.

5.5 Data set generation and Deep Learning model design

To validate the feasibility of a spectrum-based TC system, we design, implement, and
benchmark a DL model based on CNNs. In addition, we also design and implement a
baseline model that uses a RNN architecture, similar to the one designed in [119], which
is optimized for the provided data set. The rest of this section will describe how the
classification tasks are defined, how we create the data set to train the models in the
specified tasks, and the DL architecture design. This section focuses on the classifier as
this is the core of the procedure proposed in Section 5.4.

It is important to notice that the first two stages of the proposed procedure (data collection
and packet assembly) are implemented in an offline fashion for model training and
validation via the data set creation (see Section 5.5.1). This decision was made since
1) some of our previous works have already shown prototypes that demonstrate its
realization [48, 126], 2) the offline data generation provides a more flexible approach to
evaluate the feasibility of performing TC directly on L1 packets, and 3) the proposed
classifiers (see Section 5.5.3) have as input a single L1 packet, so time-related features
that can be extracted by processing spectral data streams are not required while the data
storage requirements are minimized in comparison to [117]. The impact of the third stage
(time-series padding/truncation) will be evaluated in Section 5.6.

5.5.1 L1 packets Data set generation

Generating a data set for spectrum-based classification is a difficult task. However, we
follow an approach that uses real L2 packets to generate L1 packets in the form of IQ
samples, an approach similar to the one proposed in [117]. Without loss of generality,
we selected the 802.11 wireless technology for generating the L1 packets. However, the
approach described below can also be used to generate L1 packets from other technologies
such as Long Term Evolution (LTE) with the same emulation platform3.

Our decision to use a mixed approach (real packet traces + emulation platform to gen-
erate the spectrum samples) is motivated by the recent efforts of standardization bodies
like the ITU [140], where multi-level ML pipelines are expected to be connected to em-
ulation/simulation sandboxes to generate data for training and performing preliminary
model testing [141]. This approach is important to support use cases like the one pre-
sented in this chapter, as generating real spectrum data for training the ML models
would require the setup and deployment of infrastructure that is hard to obtain in real

3https://www.mathworks.com/products/lte.html

5.5. DATA SET GENERATION AND DEEP LEARNING MODEL DESIGN 91

Data Collection

Processing

Pre-processing

Device 1

Wi-Fi AP

Pcap

Wireshark

Filter packets

L2 Packet

Decompose
Packets

Get
parameters

Rx/Tx

Radiotap

Get raw L2
packets

Labels

Generate
L2 and L8

labels

Generate
Waveforms

Training and Validation
datasets

Test
dataset

Create
dataset

PHY
Packets

Create Model Trained
Model

Train and
Fine-tune

model
Test Model

Unknown Device

Unknown Device

Unknown Device

Figure 5.4: Hardware deployment and data flow from capturing traffic and data set
creation to model training and validation.

life (e.g., isolated environments, management and control on radio transmitter/receiver
at different layers, a mechanism to change the channel conditions, etc.). These sandboxes
will provide the required flexibility to generate synthetic data to train and validate ML
models while a complete realization of an integrated wireless and ML architecture with
closed loops between the ML deployment platform, the sandbox, and the real network
will minimize the inaccuracies of the models inside the sandbox and increase the degree
of similarity between the sandbox and the real network.

As shown in Figure 5.4, we first perform a data collection step. In this step, we deployed
an AP with wired connectivity to the Internet. It was placed in a closed space (living room
of a home) where it shares the same channel with other APs deployed in neighboring
houses. Our AP was configured to use 802.11n standard, with legacy compatibility, on
channel 1 (2.4GHz) with 20 Mhz available bandwidth. Connected to this AP, a mobile
device was used to run several L7 applications to generate traffic. Other wireless devices
were also connected to the same AP but were not managed and might generate traffic.

This setup provides an easy-to-deploy mechanism to obtain real traffic that is both affected
by traffic generated by other wireless devices on the same channel and a large number
of variations of the 802.11n protocol stack such as MCS adaptation, L1 diversity (b, g,
and/or n due to legacy compatibility of the AP), and L2 packet diversity. Then, a sniffer
node (laptop) was used to capture packets over the air without being associated with any
WLAN. The captured packets were encrypted as our test network, and networks around
it were secured (mainly using Wi-Fi Protected Access (WPA)-2). The collected data were
stored in pcap files4. Each of these files is named such that we can, later on, retrieve the
name of the program/application generating the traffic. The packets in these files create
an intermediate data set.

The resulting pcaps were then passed to the pre-processing step. In this step, the L2

4https://gitlab.com/wireshark/wireshark/-/wikis/FileFormatReference

92
CHAPTER 5. A GENERAL APPROACH FOR TRAFFIC CLASSIFICATION IN

WIRELESS NETWORKS

packets were filtered to remove non-802.11 packets or packets that could not be accessed
by the library used to read the pcap files. On the filtered packets, each packet is de-
composed into the Radiotap header5 and the L2 frame. The Radiotap header, which the
host machine adds, obtains the physical layer parameters radios use to transmit/receive
the packet. We extracted some information from the L2 packet to generate the labels
associated with the L2 type of packet (Management, Control, and Data flags). Then,
it was converted to raw bytes. All the captured packets are labeled according to the
application/protocol that generated them. As our objective is to show the potential of
using a TC system that works on L1 packets, we create labels at L2 and L7. We describe
the classification tasks that were defined based on the generated labels in the following
subsection.

The L1 data set was then created by combining the raw L2 packets with the information
of the Physical Layer (PHY) associated with the L2 packet. For this purpose, we use
the Matlab WLAN (2020b) toolbox6 to generate standard-compliant waveforms of the L1
packets. To simulate the effects of an environment like a room in a house or a small office
over the transmitted signal, the generated waveform was passed through an 802.11n
(TGn) multipath fading channel with a delay profile model-B [142] with Gaussian noise.

The resulting L1 packets have a measured Signal-to-Noise Ratio (SNR) between 20 and
30dB. The modifications applied to noise-free raw IQ samples, such as adding fading
channel effects and Gaussian noise, can be seen as data augmentation techniques. With
this approach, it is also possible to generate additional L1 packets with other 802.11
PHY but carrying the same L2 Data Frame and use additional channel conditions. This
removes the limitations of creating a data set with such properties on real environments
as it will require a highly isolated environment with programmable radios to set the
desired parameters at different radio stack layers and with controllable devices that
generate different environment states where the label of the generated packet is known.

To the best of our knowledge, this is the first public data set that contains 802.11 standard-
compliant L1 waveforms for testing traffic classification at the spectrum level. The wave-
forms are generated by different 802.11 technologies (b, g, n), which result in different
transmission schemes such as DSSS in 802.11b and OFDM in 802.11g/n, different types
of L2 frames (management, control and data), and multiple MCS (modulations such
as BPSK and Complementary Code Keying (CCK) for 802.11b and BPSK, Quadrature
Phase Shift Keying (QPSK), 16-QAM, and 64-QAM for 802.11g/n with coding rates of
1/2, 3/4, and 5/6 according to the standard and modulation selected). Moreover, the
payload carried by these L1 packets (information at L2 and above) were generated using
real traces of the L7 application running on a mobile device and connected to a secured
802.11 AP with WPA-2. As a result, the provided data set is more realistic and complex
than the one used in [119], which is limited to High-level Data Link Control (HDLC), a
simpler L2 protocol whose unencrypted waveforms are modulated only with QPSK at
a unique data rate of 1Mbps. Finally, it is worth mentioning that the resulting data set
contains a single L1 packet per sample, which is equivalent to the expected output of
steps 1 and 2 of the proposed framework, where each packet is a sequence of IQ samples.
This approach reduces the storage requirements for the data set as any IQ sample that is
not part of a L1 packet, e.g., noise, is discarded.

5https://www.radiotap.org/
6https://www.mathworks.com/products/wlan.html

5.5. DATA SET GENERATION AND DEEP LEARNING MODEL DESIGN 93

5.5.2 Traffic Classification tasks

One of the properties to benchmark our approach is the capability to use L1 packets
to classify traffic at different layers and granularity, even if the packets are encrypted.
For this purpose, the three classification tasks defining the selected labels are described
below. Table 5.2 summarizes the proposed traffic classification tasks based on L1 packets.

5.5.2.1 Task 1 - L2 frame characterization

In this coarse-grained task, the TC algorithm uses L1 packets to determine if the trans-
mitted packet is a Management, Control, or Data L2 frame in 802.11.

5.5.2.2 Task 2 - Application characterization

In this coarse-grained task, the TC algorithm uses L1 packets to determine the type of
application inside the transmitted packet (e.g., audio or video). As only L2 Data frames
carry L7 application data, the algorithm should also discriminate against packets that do
not carry data.

5.5.2.3 Task 3 - Application identification

In this fine-grained task, the TC algorithm discriminates between the actual applications
generating the L7 traffic.

Table 5.3 shows the number of samples and their distribution in terms of frame type
and the physical layer technology used to transmit the packets in the generated data set
for task 1. The total number of samples is 466K, where 16% are Management, 54% are
Control, and 30% are Data frames. One interesting characteristic of this data set is that
each frame type was mainly generated with a different 802.11 physical layer. For example,
most of the Management frames were transmitted with 802.11b, which is expected as the
APs in 2.4GHz work in compatibility mode and use the oldest technology (802.11b) and
lowest MCS to transmit their Beacon frames aiming to increase its visibility and resilience.

Table 5.4 shows that the length distribution is highly associated with the type of frame
in terms of packet length (byte and number of IQ samples generated). While most of
the Management frames have a mean of 25K IQ samples, Data frames have a mean of
4.6K, and Control only 0.6K. Compared to the packet length at L2, which is the typical
representation used by byte-based TC systems, they differ in several orders of magnitude.
In this data set, the largest L2 packet did not exceed a length of 1.5Kbytes, which is only
1.1% of the largest L1 packet length found in this data set (131K IQ pairs).

94
CH

A
PTER

5.
A

G
EN

ERA
L

A
PPRO

ACH
FO

R
TRA

FFIC
CLA

SSIFICA
TIO

N
IN

W
IRELESS

N
ETW

O
RKS

Table 5.2: Description of the proposed classification tasks to evaluate the spectrum-based traffic recognition approach.

Task ID Traffic Classification
Task

Traffic Classification
type Input representation Layer on which the

task has meaning Number of Classes Classes

1 L2 packet type Coarse-grained IQ samples (Layer 1) L2 3 Management, Control, Data
2 L7 Application type Coarse-grained IQ samples (Layer 1) L7 3 Audio, Video, No application type

3 L7 Application Fine-grained IQ samples (Layer 1) L7 7 Netflix, Youtube, Twitch, Spotify,
Gpodcast, TuneIn, No application

5.5. DATA SET GENERATION AND DEEP LEARNING MODEL DESIGN 95

Table 5.3: Sample distribution per task label and per technology within the task labels
(task 1)

Total Samples Samples per
Task Label

Technology
802.11b 802.11g 802.11n

466348

Mgmt:
75156 74662 494 0

Ctrl:
250967 5340 245627 0

Data: 72264 5030 337 134858

Table 5.4: L1 and L2 packet length stats per label (task 1).

L1
(Values in IQ pairs)

L2
(Values in bytes)

Mgmt Ctrl Data Mgmt Ctrl Data
Mean 25139.37 676.54 4681.98 263.09 21.81 1066.93
Std 3683.24 434.35 3511.11 37.36 7.36 653.55
Min 1600 560 640 30 14 28
Max 37048 4928 131824 397 32 1546

The data set for tasks 2 and 3 is composed of 140K samples, where 67,8% of the packets
are L2 Data type, while the rest are Management (10.5%) and Control (21.7%) (see
Table 5.5). As a result of the 802.11n encryption, no payload of the Data frames can
extract information from higher layers, so traditional approaches like port mapping and
DPI will not work. Although tasks 2 and 3 are focused on TC at L7, the proposed
TC system uses L1 packets as input. Therefore, the class formed by Management and
Control packets provides a way to filter L1 packets that do not carry L7 information.
Analyzing Table 5.5, we can see that 27.8% of L1 packets were labeled as Audio while
40% were labeled as Video during the data set generation in terms of coarse-grained
labels. Similarly, in terms of fine-grained labels, 10% of the L1 packets in this data set
are generated by the Spotify application, 7.2% by TuneIn, 10.6% by Gpodcast, 11.9% by
YouTube, 13% by Netflix, and 15.1% by Twitch.

Focusing on task 2, Table 5.6 shows that, on average, L1 packets carrying Audio data are
smaller than those carrying Video data. However, this is not the case in L2 representation,
where both kinds of packets share similar statistical properties. Similarly, Table 5.7 shows
that L1 representation has more variation on the packet length distribution than L2 ones.
The variations on L1 packet lengths are mainly due to the changes on MCS. For example,
75% of the Data frames in the TuneIn application were using MCS 7, while this number
dropped to 20% in Twitch L1 packets. In fact, 70% of the Twitch L1 packets are using
MCS values between 3 and 7. This provides an interesting set of dynamic parameters
that make this representation of the data challenging to extract features.

Once the data set is created, the last steps of the processing are executed: model creation,
training with validation, and testing, which will be described in the following sub-section.

96
CHAPTER 5. A GENERAL APPROACH FOR TRAFFIC CLASSIFICATION IN

WIRELESS NETWORKS

Table 5.5: Sample distribution per task label and per technology within the task labels
(tasks 2 and 3).

Total
Samples

Samples per
Class Task 3

Samples per
Class Task 2

Frames
Mgmt Ctrl Data

140665

Spotify:
13822 Audio:

39053 0 0 39053Tunein:
10229

Gpodcast:
15002

Youtube:
16671 Video:

56253 0 0 56253Netflix:
18268

Twitch:
21314

No-App:
45359

No-App-Type:
45359 14805 30554 0

Table 5.6: L1 and L2 packet length stats per label (task 2).

L1
(Values in IQ pairs)

L2
(Values in bytes)

Audio Video No-App-Type Audio Video No-App-Type
Mean 5.77K 10.7K 9.5K 1.2K 1.24K 101.92
Std 5.03K 14.2K 11K 565.77 553.12 123.29
Min 640 640 560 28 28 14
Max 38.9K 138.2K 43.4K 1.5K 1546 579

5.5.
D

A
TA

SET
G

EN
ERA

TIO
N

A
N

D
D

EEP
LEA

RN
IN

G
M

O
D

EL
D

ESIG
N

97

Table 5.7: L1 and L2 packet length stats per class (task 3).

L1
(Values in IQ pairs)

L2
(Values in bytes)

Spotify Tunein Gpodcast Youtube Netflix Twitch No-App Spotify Tunein Gpodcast Youtube Netflix Twitch No-App
Mean 5.4K 2.9K 8K 7.3K 10.8K 13.2K 9.5K 1.4K 709.14 1.5K 1.1K 1.3K 1.3K 101.92
Std 2.0K 2K 6.9K 7.1K 12K 18.8K 11K 460.12 675.67 263.5 544.84 545.87 550.61 123.29
Min 640 640 960 640 640 640 560 28 28 78 28 28 28 14
Max 38.9K 38.9K 38.9K 65K 138.2K 138.2K 43K 1.5K 1.5K 1.5K 1.5K 1.5K 1.5K 579

98
CHAPTER 5. A GENERAL APPROACH FOR TRAFFIC CLASSIFICATION IN

WIRELESS NETWORKS

5.5.3 Deep Learning models design and training

As presented in Section 5.2, the literature is quite limited on TC using raw IQ samples
[117, 119]. Thus, to realize the proposed framework to perform TC at any radio stack, we
designed and implemented a DL model based on CNNs to overcome the limitations of
previous works that either use a RNN architecture [119], or require specific procedures
to separate different traffic from different users at spectrum level [117]. As proposed in
Section 5.3 and realized by the approach presented in Section 5.4, the object classification
for TC models are the IQ values associated with single L1 packet. To the authors’ best
knowledge, this is the first time that a CNN is used to solve TC at the spectrum level. As
a baseline, we implemented, fine-tuned, and optimized the RNN architecture proposed
in [119] to the data set used in this work. Figure 5.5 shows the two Neural Network (NN)
architectures designed for validating our approach. One advantage of the DL models is
their ability to perform automatic feature extraction on raw data to discriminate among
multiple classes. In fact, it is that property that allows our approach to performing TC at
any layer of the radio stack, e.g., L2 packet type or L7 application type, while using the
same input representation. Otherwise, expert knowledge is required to determine the
raw signal features allowing traffic class discrimination.

The design of the CNN architecture was based on some of our previous experiences
solving classification tasks using raw spectrum data such as in [30, 130, 117, 15, 127, 53].
More precisely, we started with a 2D-CNN architecture that worked well in the task of TR
with raw IQ samples (see Figure 3.4 in Chapter 3), and then we performed a fine-tuning
step where the number of Convolutional (Conv) and Dense layers, the number of filters,
the filter kernel size of the Conv layers, the maximum (max) pooling windows size, the
dropout rate, and the learning rate were varied. To find the optimal number of Conv and
Dense layers, we varied their number between 2 and 4. The lower limit is based on the
fact that we need at least two layers to learn non-linear functions, and the upper limit is
set to 4, as more than that decreases the model’s performance in all the experiments. For
the number of filters, we tried values between 8 and 128 (in steps of 8). Values above that
limit increase the complexity of the CNN to the point that makes it impractical. To reduce
the search space of the optimal configuration, we started by setting the same number of
filters on all the layers. We tried to vary this number among the layers when we found a
value that yielded a good performance. However, keeping the same number of filters on
all the layers provided the best results in our case.

Concerning the filter kernel size, we first tried with values in the set {2, 3, 5, 7}. These
values worked well for TR [130] and flow-level traffic recognition using images as input
[117]. However, as shown in Section 5.6, this range did not work well for classifying L7
applications (tasks 2 and 3). Therefore, we increased the range of the filter kernel size and
explored values between 8 and 64 (in steps of 8). The results indicated that for solving
task 1, the CNN architecture only required a small kernel filter size as it was similar to a
TR task. This can be explained as the frame type (task 1) is related to the 802.11 standard
used to transmit them, as indicated in Table 5.3. In contrast, tasks 2 and 3 require a larger
kernel size to learn helpful information at L7 directly from the spectrum. It is important
to recall that increasing the kernel size helps to augment the reception field, which is
important in classification tasks with large input sequences [143].

The number of dense layers was also selected in the range between 2 and 4, with a
decreasing number of neurons from the inner layer towards the output layer with a

5.5. DATA SET GENERATION AND DEEP LEARNING MODEL DESIGN 99

maximum value of 512 and a minimum value of 16 in the layer before the output.
As can be noticed, we follow the traditional approach of narrowing the network to
force it to remove useless information while keeping only the relevant information to
reduce computational costs. The resulting CNN architecture comprises four Conv layers,
followed by four dense connected layers. All the layers have ReLU activation functions,
except the last one with a soft-max function for classification, and are followed by a
Dropout layer to improve generalization (reduce overfitting) and a Batch Normalization
layer to accelerate training. Conv layers are also followed by Max Pooling layers to
down-sample the input.

Figure 5.5a shows the resulting CNN-based architecture proposed in this chapter. It
is important to note that during the design and fine-tuning phase, we also tried other
architectures that have been used to solve classification tasks with time-series data, such
as CNN+RNN [124] and WaveNet [143], which increases the learning capabilities on long
sequences by increasing the reception field without increasing the filter kernel size as it
is required in tradition Conv layers. However, they did not provide better performance
than the developed model for this chapter.

The RNN architecture, designed as the baseline, is inspired by [119] with fine-tuning and
optimization steps based on the data set provided in this chapter. Following a similar
approach as with the CNN, we varied the number of recurrent layers and the type and
number of recurrent units to find the model that performs the best. The number of
recurrent layers varied from 1 to 4, achieving the best performance with three recurrent
layers, a result that is aligned with [119]. We also varied the type of recurrent units
between GRU and LSTM, and we found that GRU had similar or outperformed the
LSTM in both execution time and accuracy in all the experiments we run. This result also
aligns with previous findings in other comparative studies, such as in [135]. Regarding
the number of recurrent units, we searched for the best value between 64 and 384 in steps
of 64 units. The upper limit was set at 384 since larger values generate execution times
that are prohibited for real-time classification. Again, the best performance was achieved
with values in the set {128, 256}.

The dense layers have the same configuration as the CNN architecture. This decision
was made to provide similar learning capacities in the classification layers between the
two models and allow a more fair comparison. We also tried other configurations for
the dense layers in the RNN, but the one used in the CNN always provided the same
or better accuracy. As indicated above, the three Recurrent layers have GRU units with
recurrent activation function sigmoid and activation tanh. This combination of functions
allows a fast implementation to improve performance7. Dropout layers also follow the
Recurrent layers to improve generalization. Figure 5.5b shows the resulting RNN model,
which we call GRU-NN, with the same hyper-parameters for the 3 tasks. Similar to the
CNN models, the only hyper-parameter that changes among tasks is the number of GRU
units (R), where it increases from 128 in task 1 to 256 in tasks 2 and 3.

7https://keras.io/api/layers/recurrent_layers/gru/

https://keras.io/api/layers/recurrent_layers/gru/

100
CH

A
PTER

5.
A

G
EN

ERA
L

A
PPRO

ACH
FO

R
TRA

FFIC
CLA

SSIFICA
TIO

N
IN

W
IRELESS

N
ETW

O
RKS

Convolutional
Layer 1

Convolutional
Layer 2

2 x N
floa�ng points

FxF filter kernel,
32 feature maps,

Dropout 0.1

FxF filter kernel,
32 feature maps,

Dropout 0.1

Convolutional
Layer 3

FxF filter kernel,
32 feature maps,

Dropout 0.1

Convolutional
Layer 3

FxF filter kernel,
32 feature maps,

Dropout 0.1

Fully connected
Layer 1

Fully connected
Layer 4

Fully connected
Layer 2

Fully connected
Layer 3

In
pu

t l
ay

er

128 neurons
Dropout 0.1 C neurons

64 neurons
Dropout 0.1

32 neurons
Dropout 0.1

CNN
Architecture Output

Activation
function (ReLU)

Batch
Normalization Dropout Dense layer Activation function

(softmax)
Convolutional
layer Maxpooling

(a) The resulting 2D-CNN-based architecture proposed in this chapter for TC.

Activation
function (ReLU)

Batch
Normalization Dropout Dense layer

In
pu

t l
ay

er

R units
Dropout 0.1

R units
Dropout 0.1

R units
Dropout 0.1

GRU
Layer 1

GRU
Layer 2

GRU
Layer 2

GRU layer Activation
function (tanh)

Recurrent activation
(sigmoid)

2 x N
floa�ng points

Fully connected
Layer 1

Fully connected
Layer 4

Fully connected
Layer 2

Fully connected
Layer 3

128 neurons
Dropout 0.1

C neurons

64 neurons
Dropout 0.1

32 neurons
Dropout 0.1

Activation function
(softmax)

GRU NN
Architecture

Output

(b) The resulting GRU NN-based architecture used as baseline for TC.

Figure 5.5: DL architectures designed, implemented and evaluated in Section 5.6 for TC at spectrum level.

5.6. RESULTS AND DISCUSSION 101

During the fine-tuning of both models, the hyper-parameters were selected using a multi-
round approach of hyper-parameter search over hundreds of executions. The first round
used a reduced version of the task 3 data set. Then, the resulting CNN and GRU-NN
architectures were used as a baseline for another round of hyper-parameter search but
using a reduced version of the data set of tasks 1 and 2. Similarly, it was determined
that the best results were obtained using Adam optimizer [85] with a learning rate of
0.001 and a batch size of 64. We use categorical cross-entropy as a loss function and early
stopping as a second method for regularization. A CNN and a RNN were created for
each task. Given the size of the generated data set and the number of samples per label
(≥ 10𝐾), we used hold-out cross-validation (i.e., validation with an independent test set)
to partition the data set. While the size of the data set allows for maintaining a large
number of samples in the training set, we can still guarantee that knowledge about the
test set is not leaked into the model, so we can also ensure generalization performance.
As a result, the data set was partitioned such that the models were trained with 70%
of the samples, while 15% was used for validation and 15% for testing. The models
were implemented in Python, Tensorflow 2.18 was used to create, train, and evaluate the
resulting models, and the hyper-parameter search was performed using hyperas9. The
training was accelerated using Tesla V100 GPUs in our GPULab facility10.

5.6 Results and discussion

This section presents the performance evaluations of the two models proposed in Section
5.5. For the L2 Frame type TC (task 1), we balanced the first data set by performing
under-sampling. As a result, the evaluation data set contains 75k samples per class,
driven by the class with fewer samples (see Table 5.4). Performing the same operation on
the second data set to generate the samples used for the L7 Application type TC (task 2)
and L7 application TC (task 3), the resulting datasets contains 39K samples per class in
task 2 and 10.2K samples per class in task 3 (see Tables 5.4 and 5.4, respectively).

We ran five evaluations on each task, where both models were trained, validated, and
tested over different lengths of the input L1 packet in the number of IQ sample pairs (100,
300, 500, 800, 1K, 3K, 5K). Notice that when the length of the L1 packet was shorter than
the required input length, we applied a zero-padding operation at the end to adjust it
(post-padding). Otherwise, we truncate it to the required length (post-truncation). For
each task, we select the results from the best evaluations per model and input size. In the
following subsections, we will analyze the models’ performance in terms of quality of
prediction (accuracy and macro-averaged11 precision, recall, and F1-score) over the test
data set, training time per epoch, and prediction time per sample. These three metrics are
good indicators of how good the model is when classifying unseen data, how costly/hard
it is to fine-tune and train the model, and the expected execution time when predictions
have to be done over a group of samples.

8https://www.tensorflow.org/
9https://github.com/maxpumperla/hyperas
10https://doc.ilabt.imec.be/ilabt/gpulab/index.html
11The metrics are calculated for each label and find their unweighted mean. We used the unweighted mean

as all the datasets are already balanced.

https://www.tensorflow.org/
https://github.com/maxpumperla/hyperas

102
CHAPTER 5. A GENERAL APPROACH FOR TRAFFIC CLASSIFICATION IN

WIRELESS NETWORKS

5.6.1 L2 Frame characterization task (Task 1)

In this coarse-grained TC task, the models must identify if a given L1 packet carries an
L2 frame of type Management, Control, or Data. This was the most straightforward task
among the three proposed in this chapter. One indicator is the small filter kernel size,
set to 2, or a reduced number of GRU units, only 128, required to achieve high accuracy.
Figure 5.6 (bottom) shows that even with short sequences, e.g., 500 IQ samples per packet,
the models already achieve around 98% accuracy. When the sequence had a length of 3K
and 5K IQ samples, the CNN model can outperform the GRU-NN model and achieved
an accuracy above 99.86%, as shown in Table 5.8. Finally, we notice that with an input
length of 3K and 5K, the CNN model achieved the same value in the prediction quality
metrics (with up to 2 decimal points), on average. This result can be expected when a
large and well-balanced data set is used to test a classifier that can correctly discriminate
each class with almost zero miss-classifications.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Number of IQ samples

0

200

400

600

800

1000

1200

1400

1600

1800

M
e
a
n

 t
ra

in
in

g
 t

im
e
 p

e
r

e
p

o
c
h

(S
e
c
o

n
d

s
)

GRU-NN

CNN

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Number of IQ samples

0.7

0.75

0.8

0.85

0.9

0.95

1

T
e
s
t

d
a
ta

s
e
t

a
c
c
u

ra
c
y

GRU-NN

CNN

Figure 5.6: Training time per epoch (top) and accuracy on the test data set (bottom) vs.
the input size N in task 1.

Figure 5.7 shows the resulting confusion matrices of different input lengths in the CNN.
Interestingly, even with an input length of 100 IQ samples, the models can accurately
discriminate the L1 packets carrying Management frames from the other types of frames.
At the same time, it still has trouble classifying the Control and Data frames. However,
this can be explained as Management frames were mainly transmitted using 802.11b (see
Table 5.3, in which waveform is generated using the DSSS modulation technique. In
contrast, the Control and Data frames are modulated using OFDM.

5.6. RESULTS AND DISCUSSION 103

Table 5.8: Summary of the metrics used to evaluate the quality of the model’s predictions
with the largest input lengths.

Task Input length
(IQ samples) Model Quality of prediction metrics (%)

Accuracy Precision Recall F1-score

1
3000 CNN 99.86 99.86 99.86 99.86

GRU-NN 98.07 98.18 98.07 98.09

5000 CNN 99.86 99.86 99.86 99.86
GRU-NN 99.28 99.30 99.29 99.29

2
3000 CNN 97.78 97.84 97.82 97.82

GRU-NN 76.03 75.96 76.40 75.68

5000 CNN 97.63 97.67 97.67 97.67
GRU-NN 78.10 78.33 78.45 78.21

3
3000 CNN 90.44 91.16 90.45 90.60

GRU-NN 52.36 53.09 52.58 50.44

5000 CNN 89.28 90.30 89.25 89.44
GRU-NN 54.48 56.05 54.77 52.82

Table 5.9: Prediction time per single L1 packet in task 1.

Input length
(IQ samples) Model Average prediction time

(ms)

3000 CNN 0.092
GRU-NN 4.71

Moving to the performance in terms of the training time, we can see in Figure 5.6 (top)
that the GRU-NN has a training time per epoch that increases linearly to the input length
(from 66s with input length 100 to 1646s with input length 5K). On the contrary, the CNN
training time per epoch increases sub-linear (from 21s with length 100 to 30s with length
5K). This result implies that GRU-NNs are hard to fine-tune, making them unfeasible
solutions when the problem requires long sequences to improve accuracy. Although this
was an expected result since RNN-based architectures process their input sequentially
while CNN can exploit parallel processing, it is interesting to experimentally validate that
CNNs outperform RNNs in sequence-to-label classification tasks using radio spectrum
data as it has been found in other research fields like speech recognition and voice
generation [143].

The final metric to evaluate is how long (on average) the model takes to predict over a
single L1 packet. Table 5.9 shows that the CNN can classify an L1 packet containing
3K IQ samples in 92µs, 51 times faster than the GRU-NN. The pcap that generates this
data set includes 466K packets captured in 1193s. It gives us 390 packets per second on
average. Using the CNN model, those 390 packets would be classified in less than 35ms.
This prediction time is auspicious for its deployment in real-time traffic analyzers. Some
recent works have shown that similar pre-processing steps on 0.5s of spectrum data, i.e.,
getting spectrum data, framing/packetizing it, and formatting it before sending it to the
classifier, can be executed in less than 200ms [48].

104
CHAPTER 5. A GENERAL APPROACH FOR TRAFFIC CLASSIFICATION IN

WIRELESS NETWORKS

Mgm
t

Ctrl
Data

Predicted label
accuracy=0.87; misclass=0.13

Mgmt

Ctrl

Data

Tr
ue

 la
be

l

0.9933 0.0001 0.0066

0.0201 0.8187 0.1611

0.0338 0.1593 0.8069

Confusion matrix

1000

2000

3000

4000

5000

6000

7000

(a) N = 100

Mgm
t

Ctrl
Data

Predicted label
accuracy=0.98; misclass=0.02

Mgmt

Ctrl

Data

Tr
ue

 la
be

l

1.0000 0.0000 0.0000

0.0201 0.9793 0.0005

0.0338 0.0004 0.9658

Confusion matrix

0

1000

2000

3000

4000

5000

6000

7000

(b) N = 500

Mgm
t

Ctrl
Data

Predicted label
accuracy=1.00; misclass=0.00

Mgmt

Ctrl

Data

Tr
ue

 la
be

l

0.9991 0.0000 0.0009

0.0004 0.9996 0.0000

0.0026 0.0001 0.9972

Confusion matrix

0

1000

2000

3000

4000

5000

6000

7000

(c) N = 3000

Figure 5.7: Test data set normalized confusion matrices with different input sizes N
(number of IQ samples) in task 1.

5.6. RESULTS AND DISCUSSION 105

5.6.2 L7 Application characterization task (Task 2)

This coarse-grained TC task challenges the trained models to classify L1 packets accord-
ing to the type of application being carried at L7. The three discriminating classes are
Video, Audio, and packets that do not carry L7 application data (No App-Type). When
we defined this task, we hypothesized it should be more challenging than task 1. Our rea-
soning comes from two facts: first, all L1 packets carrying Data frames were transmitted
using 802.11n, similar to the task 1 data set, and 2) the high standard deviation on both
Audio and Video L1 packet lengths (see Table 5.6) would not allow using this feature for
discriminating between them. One way to validate our hypothesis is by analyzing the
model size, the achieved accuracy, and the impact of the input size on it.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Number of IQ samples

0

200

400

600

800

1000

1200

1400

M
e
a
n

 t
ra

in
in

g
 t

im
e
 p

e
r

e
p

o
c
h

(S
e
c
o

n
d

s
)

GRU-NN

CNN

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Number of IQ samples

0.5

0.6

0.7

0.8

0.9

1

T
e
s
t

d
a
ta

s
e
t

a
c
c
u

ra
c
y

GRU-NN

CNN

Figure 5.8: Training time per epoch (top) and accuracy on the test data set (bottom) vs.
the input size N in task 2.

Let us start by analyzing the model size (see Table 5.11). While task 1 only requires a
kernel size of 2, tasks 2 and 3 require a kernel size of 32. The increasing filter kernel size
is translated into a larger model, from 106K to 3.7M trainable parameters, and a larger
reception field is used to extract the raw signal features. Here, the reception field can be
understood as the number of consecutive IQ samples representing the learned features.
Similarly, the GRU-NN also increases its learning capabilities by setting the number of
GRU to 256, so double the number compared to task 1, and moving from 276K to 1.03M
trainable parameters.

In terms of prediction quality, the CNN model outperforms the GRU-NN model by far in

106
CHAPTER 5. A GENERAL APPROACH FOR TRAFFIC CLASSIFICATION IN

WIRELESS NETWORKS

Table 5.10: Prediction time per single L1 packet in task 2.

Input length
(IQ samples) Model Average prediction time

(ms)

3000 CNN 0.15
GRU-NN 5.13

all the metrics, but, in both cases, the achieved values are lower than the ones achieved in
task 1, even with larger input size. More in detail, Figure 5.8 (bottom) shows that while
the CNN model was able to achieve 97.8% accuracy on the test data set with an input
length of 3K IQ samples, the GRU could only achieve 78.1% with an input length of 5K
IQ samples. In fact, the GRU-NN dropped its accuracy with an input length larger than
500 IQ samples, which was recovered with an input length of 3K, and it was improved
at 5K by only 2%. This behavior has also been found in previous works in this area
(see Figure 7 in [119]). It may be possible that the GRU-NN can improve their accuracy
with larger sequences, but as we will analyze below, its training cost makes it unfeasible
(around 21min per training epoch). Notice that the CNN model achieved 97.6% with
an input length of 5K IQ samples, indicating that increasing the input length does not
help discriminate among the classes, at least from 3K to 5K. Of course, as the GRU-NN
showed, longer sequences may improve it. Similar to task 1, the CNN model achieved
similar prediction quality metrics, on average.

Focused on the CNN, which provides the best performance, Figure 5.9 shows that with
an input length of 500 IQ samples, the discrimination between L1 packets with Manage-
ment/Control frames (no application type) is perfect against Data frames (Audio+Video),
which is expected based on the results on task 1. However, the CNN model has diffi-
culties separating L1 packets carrying audio and video. With an input length of 1K IQ
samples, the CNN model achieved 92.1% accuracy (above 88% if we count only audio
and video). With an input length of 3K, this model achieved an accuracy of 97.8% (above
96.7% considering only audio and video classes). This is quite impressive because the
input data are L1 packets carrying L2-L7 payloads encrypted using the WPA-2 secure
method, transmitted with different MCS values, and include simulated channel effects
and noise.

Similar to task 1, Figure 5.8 (top) shows the linear dependency of the GRU-NN training
time per epoch concerning the input length, while this relation is sub-linear with the
CNN (from 17s with 100 IQ samples to 127s with 5K). However, the slope in the CNN
line is higher compared to the results in task 1. This is mainly due to the model’s larger
size. This result implies that the CNN model is faster to train and fine-tune than the
GRU-NN, similar to the results in task 1, but it also shows that the CNN model performs
much better than the RNN architecture when using longer sequences of data. The better
performance of the CNN is also reflected in the prediction time. Table 5.10 shows that
the CNN takes 150µs to classify an L1 packet containing 3K IQ, 34 times faster than the
GRU-NN. If we analyze the pcap of the Twitch video app, which is the application with
the largest mean packet length (see Table 5.7), it contains 21.7K packets, which were
captured in 159s. It gives us 136 packets per second on average. Using the CNN model,
those 136 packets would be classified in less than 20ms. It was, again, encouraging results
for TC on L1 packets in real-time.

5.6. RESULTS AND DISCUSSION 107

au
dio

vid
eo

no
-ty

pe

Predicted label
accuracy=0.79; misclass=0.21

audio

video

no-type

Tr
ue

 la
be

l

0.8190 0.1453 0.0357

0.2974 0.5704 0.1322

0.0000 0.0000 1.0000

Confusion matrix

0

500

1000

1500

2000

2500

3000

3500

(a) N = 500

au
dio

vid
eo

no
-ty

pe

Predicted label
accuracy=0.92; misclass=0.08

audio

video

no-type

Tr
ue

 la
be

l

0.9065 0.0578 0.0357

0.0076 0.8605 0.1319

0.0000 0.0000 1.0000

Confusion matrix

0

500

1000

1500

2000

2500

3000

3500

(b) N = 1K

au
dio

vid
eo

no
-ty

pe

Predicted label
accuracy=0.98; misclass=0.02

audio

video

no-type

Tr
ue

 la
be

l

0.9530 0.0470 0.0000

0.0169 0.9818 0.0013

0.0000 0.0000 1.0000

Confusion matrix

0

500

1000

1500

2000

2500

3000

3500

(c) N = 3K

Figure 5.9: Test data set normalized confusion matrices with different input sizes N
(number of IQ samples) in task 2.

108
CH

A
PTER

5.
A

G
EN

ERA
L

A
PPRO

ACH
FO

R
TRA

FFIC
CLA

SSIFICA
TIO

N
IN

W
IRELESS

N
ETW

O
RKS

Table 5.11: Summary of the parameters of the CNN and GRU-NN architectures used to perform the different classification tasks using
IQ samples as input data.

Classification Task
Task-dependent parameters Shared training parameters

CNN GRU NN optimizer learning
rate

Maximum
number of epochs

Batch
size

Loss
function

Early Stopping
monitored function

Model parameters
(N=5000)

Kernel Size
(F)

Model parameters
(N=5000)

GRU units
(R)

adam 0.001 200 64 Categorical
cross-entropy

Validation
lossFrame characterization 106K 2 276K 128

Application characterization 3.72M 32 1.03M 256
Application identification 3.72M 32 1.03M 256

5.6. RESULTS AND DISCUSSION 109

5.6.3 L7 Application identification Traffic Classification task (Task 3)

Task 2 is a coarse-grain version of this task, where the models must classify each L1
packet according to the application generating it. In addition to the class that identifies
the packets that do not carry L7 application data (No App), there are six other classes:
3 classes of applications that generate video-type traffic (Youtube, Netflix, Twitch) and
3 classes of applications that generate audio-type traffic (Spotify, TuneIn, GPodcast).
Section 5.5.2.2 and 5.5.2.3 provide more detailed information about the data set used for
this task.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Number of IQ samples

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
e
s
t

d
a
ta

s
e
t

a
c
c
u

ra
c
y

GRU-NN

CNN

Figure 5.10: Accuracy on the test data set vs. the input size N (number of IQ samples) in
task 3.

This task is helpful to determine how much more challenging or easier the TC is if
the traffic classes are fine-grained. We hypothesized that this task should be more
problematic than its coarse-grained version as the fine-grained applications may have
similar statistical properties, and the L7 protocols may also be similar. The coarse-grained
classification exploits this but can cause trouble for the fine-grained one. This idea comes
from analyzing Table 5.7, where we can see that while Netflix and Twitch L1 packets have
similar statistical length values very close, they are far from the length statistics of audio
applications. On the other hand, audio applications have statistical length values similar
to each other, which may increase the difficulty of discriminating among them. Notice
that this intuition contradicts the results found in [104], where the traffic characterization
task results are better than the application classification.

Figure 5.10 shows that this task is more challenging than the previous two. Although the
results are very similar to the ones in Figure 5.8 (right), there is a drop in accuracy of 7.4%
in the CNN (90.4% vs. 97.8% with 3K input length) and 23% in the GRU-NN (54.4% vs.
78.1% with 5K input length) compared to task 2. Focusing on the CNN model results,
Figure 5.11 shows that the sources of misclassification are located in Netflix vs. Twitch
(adding around 19% misclassifications) and Spotify vs. TuneIn∩Gpodcast (adding about
17% misclassifications). Finally, Table 5.8 shows that the precision of the CNN model is
higher than its recall for this task, on average. In other words, the CNN model tends to
have fewer false positives (mostly concentrated in Spotify, Netflix, and Twitch) than false
negatives (mostly concentrated in TuneIn, Gpodcast, and Netflix). We omit the training
and prediction time results as they are congruent to the results of the previous task since
the same data set was used but with fine-grained labels.

110
CHAPTER 5. A GENERAL APPROACH FOR TRAFFIC CLASSIFICATION IN

WIRELESS NETWORKS

spo
tify

tun
ein

gp
od

cas
t

yo
utu

be
ne

tfli
x

tw
itc

h
no

-ap
p

Predicted label
accuracy=0.84; misclass=0.16

spotify

tunein

gpodcast

youtube

netflix

twitch

no-app

Tr
ue

 la
be

l

0.84 0.00 0.02 0.00 0.03 0.01 0.09

0.01 0.84 0.00 0.01 0.00 0.08 0.06

0.10 0.00 0.82 0.01 0.05 0.01 0.00

0.00 0.00 0.00 0.93 0.00 0.03 0.03

0.00 0.00 0.00 0.02 0.83 0.05 0.09

0.00 0.00 0.00 0.01 0.10 0.65 0.23

0.00 0.00 0.00 0.00 0.00 0.00 1.00

Confusion matrix

0

200

400

600

800

1000

(a) N = 1K

spo
tify

tun
ein

gp
od

cas
t

yo
utu

be
ne

tfli
x

tw
itc

h
no

-ap
p

Predicted label
accuracy=0.90; misclass=0.10

spotify

tunein

gpodcast

youtube

netflix

twitch

no-app

Tr
ue

 la
be

l

0.94 0.01 0.01 0.00 0.03 0.01 0.00

0.07 0.87 0.00 0.01 0.00 0.05 0.00

0.10 0.00 0.87 0.00 0.02 0.00 0.00

0.01 0.01 0.00 0.92 0.01 0.05 0.00

0.02 0.00 0.00 0.00 0.85 0.12 0.00

0.02 0.01 0.00 0.01 0.07 0.89 0.00

0.00 0.00 0.00 0.00 0.00 0.00 1.00

Confusion matrix

0

200

400

600

800

1000

(b) N = 3K

spo
tify

tun
ein

gp
od

cas
t

yo
utu

be
ne

tfli
x

tw
itc

h
no

-ap
p

Predicted label
accuracy=0.89; misclass=0.11

spotify

tunein

gpodcast

youtube

netflix

twitch

no-app

Tr
ue

 la
be

l

0.90 0.00 0.04 0.00 0.03 0.03 0.00

0.08 0.81 0.00 0.01 0.01 0.09 0.00

0.09 0.02 0.87 0.01 0.01 0.01 0.00

0.01 0.01 0.00 0.92 0.01 0.06 0.00

0.02 0.00 0.00 0.00 0.83 0.14 0.00

0.02 0.01 0.01 0.00 0.03 0.93 0.00

0.00 0.00 0.00 0.00 0.00 0.00 1.00

Confusion matrix

0

200

400

600

800

1000

(c) N = 5K

Figure 5.11: Test data set normalized confusion matrices with different input sizes N
(number of IQ samples) in task 3.

5.6. RESULTS AND DISCUSSION 111

5.6.4 Comparison against Deep Learning and statistical Machine Learn-
ing on bytes

To compare the quality of the spectrum-based TC algorithm trained and evaluated in
the previous sub-sections, Table 5.12 compares its accuracy against two state-of-the-art
DL models that receive a byte representation of the packet at L2, and two ML classifiers,
trained with the Gradient Boost (GB) ensemble method. We use the packet’s input
representation length as a unique input feature for the statistical ML-based models. Note
that we can only use this feature for all three tasks as the 802.11n L2 packet’s payload
was encrypted.

The two DL models for the byte/protocol representation use the same architectures and
hyper-parameter configuration as the spectrum-based models presented in Section 5.4
and use a fixed-size input of 1546 bytes, the largest L2 packet captured in the datasets (see
Table 5.6), with post-zero-padding/truncation. The GB models were also fine-tuned via
hyper-parameter search, and the best results were achieved using a learning rate of 0.1,
maximum depth of the individual regression estimators set to 5, 500 number of boosting
stages, and 95% of the samples are used for fitting the individual base learners for both
models.

As expected, the DL models working on the byte representation of the packet at L2
provide the highest accuracy on all three evaluated tasks. The well-defined framing can
explain this at L2 and the shorter length of the input data compared to the dynamic
nature of the L1 representation of the input data, where the L1 header has a well-defined
structure. However, the number of IQ samples representing the payload depends on the
channel conditions and the MCS values used while transmitting. This is also reflected in
the high and similar accuracy obtained by both the CNN and GRU architectures used in
the byte-based approach.

To the author’s best knowledge, this is the first work that also performs TC on raw
bytes from encrypted 802.11n L2 packets. Although no pre-processing was done on
the raw packets except padding/truncation, the obtained results are aligned with other
approaches using DL on raw bytes with more pre-processing steps given the protocol
structure’s visibility on higher layers [104]. However, the spectrum-based approach still
provides a very competitive accuracy with a similar performance on task 1, a drop of
1.38% in task 2, and 4.37% in task 3, which is outstanding given the added complexity of
using spectral data as input, i.e., multi-dimensional, longer sequences, in comparison to
an input using raw bytes. In the case of specialized hardware that can demodulate and
decode the L1 packets of a given technology, it is clear that the packet-based approach,
even on encrypted packets, will be the natural choice to guarantee performance in both
accuracy and execution time. However, realizing the proposed framework removes the
need for specialized hardware as L1 packets of any technology can be captured and
classified without the need to demodulate and decode them with a limited negative
impact on performance. Of course, the proposed framework opens new challenges in
reducing complexity and improving the classifier’s performance and the whole chain.

112
CH

A
PTER

5.
A

G
EN

ERA
L

A
PPRO

ACH
FO

R
TRA

FFIC
CLA

SSIFICA
TIO

N
IN

W
IRELESS

N
ETW

O
RKS

Table 5.12: Comparison of the 3 different approaches for TC on the three evaluated tasks: DL models using raw spectrum and byte
representation and Gradient Boosting using the input length as feature.

Packet
representation

Machine Learning
Method Algorithm Features Input Length

(Number of Features)
Accuracy

L2 Frame
characterization

L7 App
characterization

L7 App
Identification

Spectrum NN CNN Raw IQ samples
with zero-padding

3000 99.86% 97.78% 90.44%
GRU 5000 99.28% 78.10% 54.48%

Ensemble Gradient Boosting Number of IQ samples
(L1 packet length) 1 99.06% 80.83% 59.66%

Bytes NN CNN Raw Bytes
with zero-padding 1546 99.99% 99.16% 94.81%

GRU 99.99% 99.12% 94.46%

Ensemble Gradient Boosting Number of bytes
(L2 packet length) 1 99.86% 76.35% 54.84%

5.7. CONCLUSION 113

Finally, the GB models show the worst performance, but their results indicate that the
input data’s length was enough to solve task 1. This result was expected given the high
correlation between L2 frame type and the packet length in the data set (see Table 5.3).
However, this feature is insufficient to differentiate the L7 application in tasks 2 and 3.
On the contrary, the DL models can automatically extract hidden features from the raw
data, probably higher-level protocol structures relevant to solving the other two TC tasks
with minimal pre-processing.

5.7 Conclusion

This chapter introduces a general framework to achieve TC at any layer in the radio stack.
With this framework, a ImRAT GW would be able to perform TC on any packet that
is being transmitted over the air in the surroundings of the GW, independent of the
technology and the wireless domain which packets belong. We also proposed a novel
procedure to perform TC on raw spectrum data on top of this framework. This procedure
first combines spectrum sensing with a state-of-the-art approach for recognizing radio
technologies to build a PHY representation of the packets. Then, a DL architecture is
used to perform TC on the L1 packet. As a result, a unique representation of a single L1
packet is needed to perform the TC at any layer as it already carries all the information
describing the different protocols at L2 and above without the added complexity needed
to perform demodulation, decoding, and decryption.

We focused on building and evaluating two DL architectures to classify the L1 packets
to perform the proposed procedure. For this, we created and performed a statistical
analysis on two different datasets that were used to solve three TC tasks: one coarse-
grained at L2 (task 1: frame identification in 802.11b/g/n), one coarse-grained at L7
(task2: Audio/Video/No-App type), and one fine-grained at L7 (task3: 3 Audio apps,
3 Video apps, No-App). The datasets were generated by combining packet traces from
real transmissions with a standard-compliant waveform generator for 802.11 radio tech-
nologies.

Performance evaluations showed that the DL model based on CNN could achieve the
best performance on the three proposed tasks, achieving above 99.9% in task accuracy
discriminating among classes in task 1, 97.8% in task 2, and 92% in task 3. These results
are very promising if we compare them to byte-based DL models, where spectrum-
based achieved similar accuracy on task 1, a drop of 1.38% in task 2, and 4.37% in
task 3. Finally, the proposed DL architecture could predict a given class in the order of
microseconds, compelling prediction times for integrating into spectrum-based real-time
traffic analyzers.

114
CHAPTER 5. A GENERAL APPROACH FOR TRAFFIC CLASSIFICATION IN

WIRELESS NETWORKS

Chapter 666
Parallel Reinforcement Learning with

Minimal Communication Overhead

The content of this chapter has been partially published in:

• M. Camelo, M. Claeys, and S. Latré, "Parallel Reinforcement Learning With Mini-
mal Communication Overhead for IoT Environments," in IEEE Internet of Things
Journal, vol. 7, no. 2, pp. 1387-1400, Feb. 2020, doi: 10.1109/JIOT.2019.2955035.

• M. Camelo, M. Claeys, and S. Latré, European patent application for "EXPLORING
AN UNEXPLORED DOMAIN BY PARALLEL REINFORCEMENT" filed at the
European Patent Office (EPO) on October 12, 2018, and received the application
number EP 18200069.5.

In previous chapters, we introduced AI-based solutions to enhance the performance of
Intelligent Radios (IRs) by making them spectrum-aware. However, simply improving
IRs’ spectrum-sharing capabilities may not suffice to handle the increasing data generated
by the next generation of agent-based smart applications, which continuously interact
with other applications and their environment. In this chapter1, we propose algorithms
that enable agent-based smart applications using Parallel Reinforcement Learning (PRL)
to share knowledge efficiently among learning agents over a network, minimizing com-
munication overhead and alleviating resource demands, such as spectrum, in wireless
networks. Consequently, PRL-empowered applications can seamlessly operate across
the network as scalable distributed intelligent programs.

6.1 Introduction

Addressing spectrum scarcity extends beyond the development of Intelligent Radios
(IRs) and encompasses a broader ecosystem, particularly the proliferation of intelligent

1Chronologically, this chapter was my first contribution to this thesis but is presented as the last chapter
for consistency in the narrative. This work was an initial part of our research in developing efficient and
distributed ML algorithms. While exploring various use cases, including IoT, we eventually decided to apply
these techniques to wireless networks, as they held significant potential, as was later demonstrated in the
preceding chapters, both during and after the DARPA SC2 project.

115

116
CHAPTER 6. PARALLEL REINFORCEMENT LEARNING WITH MINIMAL

COMMUNICATION OVERHEAD

applications interconnected within the Internet of Things (IoT). IoT is giving rise to a new
wave of distributed applications where computational decisions are made across diverse
endpoints, from IoT devices to gateways and cloud servers [144]. Many of these IoT
applications operate within the domain of Reinforcement Learning (RL) [34], a method
that enables autonomous learning by interacting with the environment. Examples of
these applications are autonomous robot navigation in industrial sites [145, 146], Smart
Traffic Signal Control [147] in cities, and the control and management of the network
infrastructures connecting IoT devices [148].

The rapid proliferation of these IoT applications and their continuous interaction with
their environments places considerable strain on the resources shared by the IoT devices
such as the spectrum[149, 150, 151]. While the algorithms and frameworks discussed in
the preceding chapters aim to enhance spectrum efficiency through the use of IRs, they
may not be sufficient to comprehensively address the challenge of these applications
generating data while learning and acting. To address this effectively, it is impera-
tive to augment these IoT-based smart applications with communication-awareness as
an integral component of their RL-driven learning algorithms. By doing so, these ap-
plications can strategically reduce their communication overhead by optimizing their
learning objectives while minimizing bandwidth and network resource consumption.
Communication-awareness will make their applications more spectrum-efficient since
they can minimize redundant or non-critical communication related to their learning.
However, achieving communication-aware smart applications poses a challenge due to
the nature of how RL algorithms learn.

In RL, the task is modeled as a Markov Decision Process (MDP). An MDP models the
problem as a set of states and actions, called the state-action space, transitions between
states, and rewards [50]. A RL agent aims to improve its policy, i.e., its memory, until it
learns the best action to take in each environment state. However, RL algorithms suffer
from two main problems from a learning perspective: 1) they require a long learning
time, in terms of learning steps, to converge to an optimal policy, and 2) the curse of
dimensionality of large state-action spaces [50], which is a result of interacting with
complex environments with an exponential combination of state-action pairs. While the
first problem is mainly addressed by Multi-Agent Reinforcement Learning (MARL) [37],
the second one is tackled by either 1) using an efficient representation of the space-action
space for table-based RL algorithms [152], or 2) using function approximation algorithms
[153].

Parallel Reinforcement Learning (PRL), a type of MARL, is a framework that allows
reducing the learning time by leveraging parallelization. MARL achieves this by sharing
knowledge among multiple RL agents that run in parallel and use a unique shared
policy without coordination [38]. In general, PRL can reduce the learning time at a rate
proportional to the number of agents [39]. However, the execution time, i.e., actual time,
is reduced at a slower rate due to the communication overhead between agents and the
shared Q-Table (QT), the wasted learning of using overlapping search strategies, and
processing and storage constraints of the infrastructure [154].

State-of-the-art PRL algorithms address the poor decrease in the execution time by either
1) assuming agents with unlimited capacity for processing, storage, and data link (infinite
bandwidth and no delay), or 2) partitioning the shared QT using domain knowledge
[155, 156]. Domain knowledge allows agents to learn about specific parts of the problem

6.2. RELATED WORK 117

and share/merge only information about the overlapping regions among partitions,
minimizing communication costs. However, this approach is not practical since assuming
domain knowledge is hard to meet in real, usually unknown environments, and it breaks
one of the main advantages of model-free RL algorithms.

In this chapter, we present a novel general-purpose partitioning algorithm that enhances
PRL algorithms to support the execution of RL-based applications in distributed envi-
ronments with improved execution time due to minimal communication overhead while
sharing information. In other words, it provides communication-awareness to the agents
by design. Performance evaluations of a PRL system solving the robot navigation problem
in an intelligent factory, i.e., an IoT-like environment where communication is expected
to be wireless, show that the proposed algorithm incurs almost no communication cost
in a converged state and is scalable in the number of RL agents solving the problem. An
essential property of the proposed algorithms is that it is application-agnostic since its
design is linked to the training aspect of RL agents and not to the application itself so
that it can be applied to other distributed applications/problems beyond smart IoT ap-
plications such as MARL version of spectrum sharing algorithms [157, 158, 159, 160, 161],
which can also target optimization of communication resources.

The rest of this chapter is structured as follows. Recent works on RL-based distributed
applications and PRL are discussed in Section 6.2. The proposed algorithm is described
in Section 6.3, and the results of the performance evaluations are provided in Section 6.4.
Conclusions are presented in Section 6.5.

6.2 Related work

This section reviews recent works that use RL algorithms to solve problems related to
different IoT domains and applications. Then, we discuss some state-of-the-art PRL
algorithms and analyze the main issues of extending RL-based IoT applications with
PRL.

6.2.1 Reinforcement Learning-based IoT applications

Mohammadi et al. implement a Deep Reinforcement Learning (DRL) agent to solve
the indoor localization problem using Bluetooth devices’ signal strength [162]. The
agent was trained following a Semi-Supervised Deep Reinforcement Learning (SSDRL)
approach. As a result, the proposed algorithm can improve up to 23% the estimation
of the distance to the target locations compared to a Supervised Deep Reinforcement
Learning (SDRL) model, which does not take into account experiences with no reward.
Min et al. propose a RL-based algorithm that protects the location and usage pattern
of healthcare IoT devices when their information is offloaded to the edge [163]. The RL
agent learns to choose the offloading rate and the local computing rate with an increase
of 36.6% of the privacy level, and a decrease of 9.63% and 68.79% of the energy used by
the healthcare IoT devices and the computation latency at the edge, respectively.

Salahuddin et al. propose a heuristic to select and reconfigure services on the Internet
of Vehicles (IoV) [164]. By modeling the service configurations and the cost of migrating

118
CHAPTER 6. PARALLEL REINFORCEMENT LEARNING WITH MINIMAL

COMMUNICATION OVERHEAD

Virtual Machines (VMs) between the set of available data centers as an MDP, they were
able to select a setting that reduces the VM migration overhead over the long term.
Wang et al. develop a RL-based algorithm for the IoV that selects a routing protocol
that maximizes the packet delivery ratio and minimizes the end-to-end delay [165].
As a result, the proposed algorithm can dynamically change the routing protocol and
maximize network reliability and communication quality. El-Tantawy et al. propose
a MARL framework to learn and control the signal switching sequence at a junction
to minimize the intersection delay [166]. The results show a reduction in the average
intersection delay of up to 39%. Mannion et al. extend this work by using PRL, where
multiple agents share their experiences while learning in parallel on separate instances
of a problem [155].

RL algorithms are also being used to optimize aspects such as power consumption and
channel interference in IoT wireless access technologies. Khan et al. propose an algorithm
that uses MARL to adapt the power of transmission to minimize the interference between
IoT devices [167]. Simulation results show that the average throughput of the system
was increased. Zhu et al. use a RL approach to design a new scheduling mechanism for
Cognitive IoT [168]. Simulation experiments show that the algorithm achieves an appro-
priate policy that maximizes the system throughput while reducing power consumption
and packet loss. In the same line, an algorithm that solves the adaptive sampling interval
problem for Wireless Sensor Network (WSN) via RL is proposed in [169]. This algorithm
avoided nearly 73% of transmissions while keeping a similar quality of the recollected
data compared to when the smallest sampling interval was adopted. Debizet et al. pro-
pose a Q-Learning (QL)-based Adaptive Power Management (APM) hardware module
to optimize the energy consumption of IoT System-on-Chip (SoC) [170].

6.2.2 Parallel Reinforcement Learning

While Single-Agent Reinforcement Learning (SARL) [56] and general MARL [37] have
been an object of extensive research, PRL has been less studied. The effectiveness of using
a cooperative mechanism among RL agents has been proved in [39]. Using observations
of other agents as an auxiliary source of experience, called the Learning By Watching
(LBW) strategy, the learning time decreases at a rate of Ω(1/𝑛), where 𝑛 is the number of
agents.

Kretchmar evaluates two algorithms where multiple agents do not interact with each
other directly but by sharing Q-values [38]. The first algorithm, the Constant-Share
Reinforcement Learning (CS-RL), assumes a shared QT that an agent can access and
update at any moment. The second algorithm, the Max-Shared RL (MS-RL), assumes
that the agents communicate much less often. The results show that CS-RL and MS-RL,
each with ten agents and considering no communication overhead, are 7.6x and 1.2x
faster than a single agent, respectively. The sub-linear speed-up in CS-RL was due to
increased wasted learning in small problems with overlapping search strategies.

A parallel version of Q-learning via a communication scheme with local cache (PQL-C)
was presented in [171]. Based on a master-slave model, slave agents are assigned to
different parts of the QT and learn over a subgroup of states. When an agent requires a
Q-value from a remote state, it contacts the master agent that keeps a shared copy of the
QT. The communication among agents is reduced by keeping a copy of the most recent

6.2. RELATED WORK 119

values in a local cache at the slave nodes. This value is only updated when the number
of requests is more significant than a given threshold.

Mannion et al. propose the State Action Space Partition (SASP) algorithm that extends
PQL-C by adding a static partition strategy for the QT based on domain knowledge [155].
The Prioritized Field Learning Method (PFLM) improves the performance of the PQL-C
in the early stages by assigning priorities, which change dynamically, to partitions that
are being updated the most [156]. Quan Liu et al. propose the divide-and-conquer
strategy based on a scalable parallel reinforcement learning (DCS-SPRL) algorithm [172].
This algorithm decomposes the original problem into smaller ones by considering the
capacity of available resources. Then, a scheduling algorithm assigns problems to agents.
The scheduling algorithm dynamically selects which subproblems must be solved and
which are put idle.

Finally, a Co-allocation of Storage and Processing (PCSP) PRL algorithm is proposed in
[154]. This algorithm performs dynamic allocation of agents to partitions. Instead of
requesting data from remote partitions, this algorithm deploys temporal agents on those
partitions until they either reach a goal state or visit a state in their origin partition. The
main idea behind this approach is to minimize the communication cost by performing
only local operations on remote partitions. Results show that the number of episodes
decreases proportional to Ω(1/𝑛), while it is up to 24 times faster than CS-RL with
centralized QT in terms of execution time.

6.2.3 Speeding-up RL-based IoT applications with PRL

IoT applications are becoming more intelligent, and RL algorithms enhance them by
adding learning capabilities and making decisions autonomously by interacting with the
environment. To deploy table-based RL algorithms and avoid the curse of dimensionality
of large state-action spaces, most works use an efficient representation of the states and
actions that reduce the requirements for storage in constrained IoT devices. Regarding
where the decisions are taken, some works assume a centralized computational plat-
form, where observations of multiple agents are recollected via sensory data from the
environment, and actions are taken in a centralized way. Other applications are fully
distributed, and decisions are taken at the nodes. In both cases, RL-based algorithms
found optimal solutions without a priori information about the environment. However,
the cost of collaborating and sharing information among agents, in terms of execution
time, is not evaluated or ignored merely by assuming resources with unlimited capacity
in storage, processing, and data link (i.e., unlimited bandwidth and no delay).

Similarly, the design and deployment of PRL algorithms have been focused on reducing
the required training period. However, the communication costs associated with PRL in
distributed environments have yet to be thoroughly researched. In fact, most algorithms
have assumed either 1) domain knowledge to partition the problem into loosely coupled
subproblems, reducing communication among agents by only sharing knowledge be-
tween subproblems with overlapping states, or 2) specialized parallel hardware, which
is very expensive, or distributed environments with unlimited storage, processing, and
bandwidth capabilities. As a result, most algorithms are not scalable in terms of the
number of deployed agents and perform poorly in distributed environments, limiting
their deployment on IoT infrastructures with constrained devices.

120
CHAPTER 6. PARALLEL REINFORCEMENT LEARNING WITH MINIMAL

COMMUNICATION OVERHEAD

It is important to recognize that although there has been a paradigm shift from multi-
agent table-based RL towards DRL-based agents in recent years [173, 174], which use
Neural Network (NN)s as function approximators of the QT, the contributions presented
in this chapter remain state of the art for table-based PRL multi-agent systems. Moreover,
the ideas presented here can be extended to MARL with DRL to improve their scalability,
which is a current research topic in these areas [175, 176].

6.3 Dynamic partitioning for Parallel Reinforcement Learn-
ing for IoT applications

New Smart-X IoT applications include domains such as robotics, telecommunications,
vehicular traffic, resource management, and distributed control [144]. The large-scale,
distributed, and resource-constrained nature of the IoT requires algorithms that solve the
problems behind these applications under dynamic and uncertain environments, with
large state-action spaces and collaborating with other entities in a short time. Here is
where PRL [51, 37] is increasingly being used since these algorithms match perfectly
to these new requirements. In this section, we will introduce the motivation of the
problem and our dynamic partitioning algorithm that allows deploying PRL algorithms
in constrained IoT environments. Table 6.1 summarizes the most relevant parameters
used in the rest of the chapter.

6.3.1 The need for a dynamic state-action space partitioning

PRL-based IoT applications face two main challenges in constrained IoT environments: 1)
how to optimize the resource usage in terms of spectrum, bandwidth, processing power,
storage capacity, and energy consumption, and 2) how to increase the performance in
terms of execution and learning time. Both challenges are highly linked to partitioning
and assigning the problem to RL agents. In order to see this relationship, we will intro-
duce our use case test scenario, which is based on a simplified version of the item-fetch
use case for Autonomous Vehicles in a Smart-Factory [177] with wireless communication
capabilities.

In this use case, multiple wireless autonomous mobile robots are distributed around
a factory. The task of the robots is to transport the inventory from the replenishment
stations (RS), where the shelving units are filled, to the picking stations (PS), where they
are incrementally emptied. There is one robot per RS and one Access Point (AP) located at
each RS, which has a logical location in the factory. The main objective of robots is to learn
the path from their RS to the location of the PS, where they leave the transported inventory
while reducing the energy consumption due to a) wireless transmissions between agents
and b) distance traveled. Notice that the energy constraint reduces this problem to find
the shortest path between the RSs and the PS. Figure 6.1 (a)2 shows the simplified version
of an item-fetch problem in a grid of 3x5 with two RS, one PS, and one shortest path for
each agent, called 𝑔0 and agent 𝑔1. Notice that, without loss of generality, the association
of an AP to the RS will help us to highlight the link between learning algorithms that are

2This figure contains some assets from Freepik.com

6.3. DYNAMIC PARTITIONING FOR PARALLEL REINFORCEMENT LEARNING FOR
IOT APPLICATIONS 121

Table 6.1: Parameters/variables used in the algorithms.

Parameter/Variable Description
S Set of states
A Set of actions
N Set of agents
E Set of episodes

𝐸𝑚𝑎𝑥 Maximum number of episodes
S Set of partitions
𝛼 Learning rate
𝛾 Discount factor
𝜖 Epsilon for 𝜖-greedy policy
𝜂 Wildcard threshold
𝜅 Local policy Affinity
𝜏 Local policy tolerance
𝛽 Episodes before calling the partitioner
Δ Communication cost
𝜌 Number of remote updates
𝜇 Number of iterations
𝜆 Number of exchanged states
𝑅𝑆 Replenishment station
𝑃𝑆 Picking station

communication-aware and the objectives of the task that the algorithm is trying to solve,
as we are going to see below.

As we want to solve this problem using a RL approach, we model it as an MDP as follows.
Each environment state is related to a unique location identified by a single point in a
2D-Euclidean space, i.e., a state is a pair (𝑥, 𝑦) ∈ Z2. Every agent has four possible actions
(UP, DOWN, LEFT, RIGHT). If the robot arrives at a location on the grid sides, any action
that moves it out of the grid will result in no movement. This decision allows the agents
to avoid collisions when they reach a limiting wall or stop exploring locations out of
the defined environment in real environments. The reward for visiting any state is -1,
except for reaching the goal state, where the reward is +100. This reward configuration
motivates the selection of the shortest path toward the goal. Figure 6.1 (b) shows the
assigned state to a given location in the grid. The location of the RSs is mapped to states 𝑠0
and 𝑠1, which are the initial states for the agents 𝑔0 and 𝑔1, respectively, and the location
of the PS is mapped to state 𝑠7, the goal state for both agents.

Once the MDP is defined, the agents must meet the following conditions to parallelize
the problem (See Section 2.2.3):

Be Fully collaborative: This implies that agents receive the same reward after taking
the same action in the same state, which is required to maximize the joint reward of
the agents [178, 57]. This condition only depends on the reward function in simulated
and real environments. Therefore, it must be guaranteed during the design of the MDP
model.

Update a unique and shared policy: This allows minimizing the wasted learning of

122
CHAPTER 6. PARALLEL REINFORCEMENT LEARNING WITH MINIMAL

COMMUNICATION OVERHEAD

(a)

(b)

Figure 6.1: (a) The item-fetch problem in a grid of 3x5, 2 RS, 2 AP, and 1 PS. (b) States
associated with each location (b).

using overlapping search strategies [38, 39]. All agents must update the same QT in
simulated and real environments.

Take actions that have local effects only: This assumption reduces the problem to an
MDP, whose action space is the joint action space of the Stochastic Game (SG). Assuming
independent agents is also a practical decision since the observability of joint actions is
hard to meet in real environments [57]. The locality of the effects of taking actions can
be ensured by either including a collision avoidance mechanism in real environments or
interacting with an isolated copy of the environment in simulated ones.

Note that in small-sized problems, a SARL or a centralized PRL algorithm with a few
agents may be fast enough to solve it, and then the resulting table can be fully deployed
to each agent. However, if the problem becomes complex and the state-action space is
very large, these approaches can not scale in space or time due to the cost of sharing

6.3. DYNAMIC PARTITIONING FOR PARALLEL REINFORCEMENT LEARNING FOR
IOT APPLICATIONS 123

information among agents. Moreover, although solving the learning problem will also
result in a reduction of the energy consumption due to wireless transmissions since
power received at a given distance is inversely proportional to the square of the distance
from the transmitter, this reduction will be negligent compared to the communication
overhead of the learning procedure as demonstrated in Section 6.4. Therefore, we need
to tackle this problem from the perspective of the operation of the learning algorithm
itself. For this, the state-action space and the policy, represented by the QT, must be
divided and assigned to the distributed agents in such a way that a) agents try to keep
only states associated with their (shortest) paths, and b) reduce communication among
agents querying state-action values of states that are exploring. In this context, a QT
partitioning is equivalent to problem decomposition. In this work, we assume that q-
values associated with a given state are always in the same partition; therefore, the word
state and q-values related to that state are interchangeable.

Most state-of-the-art PRL algorithms assume an a priori knowledge of the environment.
It allows optimal state-action space partitioning by decomposing the main problem into
small, loosely coupled ones and assigning them to the agents. Table 6.2 shows two
possible ways of partitioning the QT of the example based on the q-values assigned
to a given state. Note that 𝑠7 was not included in the partitions as it can be assigned
to any partition. In a distributed scenario, a random partition of the QT will entail
communication between agents 𝑔0 and 𝑔1 each time 𝑔0 needs a q-value associated with
𝑠1, and it would be the case if 𝑔0 follows its shortest path to the RS as in Figure 6.1 (right).

Table 6.2: Possible partitions of the QT based on states.

Type of partitioning Agent Assigned states with their q-values

Random 𝑔0 𝑠0 , 𝑠2 , 𝑠4 , 𝑠6 , 𝑠8 , 𝑠10 , 𝑠12
𝑔1 𝑠1 , 𝑠3 , 𝑠5 , 𝑠9 , 𝑠11 , 𝑠13 , 𝑠13

Optimal 𝑔0 𝑠0 , 𝑠1 , 𝑠2 , 𝑠3 , 𝑠4 , 𝑠5 , 𝑠6
𝑔1 𝑠8 , 𝑠9 , 𝑠10 , 𝑠11 , 𝑠12 , 𝑠13 , 𝑠14

A PRL algorithm can avoid communication among agents by using domain knowledge
and assigning the q-values following the optimal partition as in Table 6.2. In this case,
no communication is required between agents once the agents follow the optimal paths.
Note that this partitioning allows assigning agents to partitions with the main objectives
of 1) focusing on a specific part of the problem and 2) limiting communication among
agents. However, this approach is not practical since assuming domain knowledge is
hard to meet in real, usually unknown environments, and it breaks one of the main
advantages of model-free RL algorithms. In general, the proposed algorithm, PARTI-
TIONER, works as an add-on for any PRL algorithm that wants to reduce its execution
time in distributed environments. How PARTITIONER creates the initial and subsequent
partitions is described below.

6.3.2 Dynamic co-allocation of processing and storage

As IoT environments are large, dynamic, and mostly unknown, the assumption of parti-
tioning and distributing the state-action space using an a priori domain knowledge is far
from realistic. We aim to design an algorithm that dynamically creates loosely coupled
partitions of the QT, which represents the problem space, and assign each partition to

124
CHAPTER 6. PARALLEL REINFORCEMENT LEARNING WITH MINIMAL

COMMUNICATION OVERHEAD

the agent exploiting it the most. If the partitioning algorithms can provide an optimal
co-allocation of storage and processing, i.e., the learning agents update mostly the states
in the partition that it is assigned, and the communication cost is minimized. Algorithm 2
shows a generic PRL algorithm that includes a state-action space partitioning procedure
(PARTITIONER).

Algorithm 2 PRL algorithm with dynamic partitioning.
Require: Total states |𝑆 |, actions |𝐴|, Max number episodes 𝐸𝑚𝑎𝑥
Require: Number of episodes before calling PARTITIONER 𝛽
Require: Set of agents 𝑁 with |𝑁 | = 𝑛 agents

1: if 𝑛 > 0 then
2: Call PARTITIONER and create the initial 𝑛 partitions
3: Assign agents to partitions
4: Distribute and initialize the QT
5: for 𝑒 ∈ 𝐸 do
6: Execute RL episode 𝑒 ∈ 𝐸 on 𝑔, ∀𝑔 ∈ 𝑁
7: if if episode number %𝛽==0 then
8: ∀𝑔 ∈ 𝑁 stop learning
9: Call PARTITIONER and create 𝑛 partitions

10: Obtain statistics from 𝑔, ∀𝑔 ∈ 𝑁
11: return 𝑄𝑇 of size |𝑆 | |𝐴|

6.3.2.1 Initial partitioning

Before a PRL algorithm is deployed on the IoT infrastructure, an initial partitioning of
the state-action space is executed. In this initial step, the q-values, pairs of state-action
values, are mapped to partitions (Algorithm 2 line 2), and then the agents are mapped to
partitions (Algorithm 2 line 3). The PARTITIONER algorithm takes as inputs the number
of states |𝑆 | and the number of actions |𝐴|, which are required to determine the QT size
and to verify if there are enough available resources to deploy the distributed QT, and
the number of agents |𝑁 |=n, to determine the number of partitions to create. Although
we are assuming that only one agent is assigned to each partition, MARL architectures
that support the separation of the learning from storage will allow taking into account
the hardware capabilities of the available IoT devices [154].

We assume no previous domain knowledge, so we propose two different procedures to
create the initial mapping from q-values to partitions. The first procedure creates the
partitions via a random assignment of q-values to partitions. Once the partition is created,
agents are randomly assigned to these partitions. The second procedure assigns q-values
to partitions during the learning episodes (Algorithm 2 line 6) on the fly. Initially, there
are no q-values assigned to partitions, but the (empty) partitions are already assigned
to the agents. Then, suppose an agent visits a state that no agent has visited before. In
that case, it creates the q-values entries for that state and all the available actions in its
partition and initializes them, then updates the value related to the taken action. In both
procedures, the maximum number of new entries per partition will be limited to the
local storage size.

In the case of the PRL algorithm having access to domain knowledge, it can use such infor-
mation to create the initial partitioning and dynamically update it under environmental

6.3. DYNAMIC PARTITIONING FOR PARALLEL REINFORCEMENT LEARNING FOR
IOT APPLICATIONS 125

changes that may increase the communication cost.

6.3.2.2 Dynamic Partitioning

After the PRL algorithm has assigned agents to partitions, the agents start learning until
it reaches a maximum number of episodes 𝐸𝑚𝑎𝑥 . While the algorithm runs, the episodes
before the partition parameter, or 𝛽, defines when the agents must stop learning and
call the PARTITIONER algorithm. Our PARTITIONER algorithm comprises two steps:
a local optimization procedure that splits each partition into smaller ones, which uses
statistics about the state updates, and a global and distributed optimization procedure
that re-distributes states among agents, which is based on state-trading heuristics.

Local optimization (performed by each agent locally): As we want to keep states that a local
agent in its partition mainly visits, we need to determine which states have been visited
the most by each one of the 𝑛 agents. To do it, during the learning phase, each agent
keeps track of the number of updates that the agent 𝑔𝑖 ∈ 𝑁 has performed on state 𝑠
since the last call to PARTITIONER. Let𝑈𝑃𝐷𝐴𝑇𝐸𝑆(𝑠, 𝑔𝑖) be the data structure inside each
state 𝑠 to store that information. Each partition is divided into 𝑛 + 1 internal partitions
when PARTITIONER is called. The states are re-assigned to the internal partitions as
follows: a state 𝑠 ∈ 𝑆 in the local partition 𝑝𝑙 ∈ 𝑃 is assigned to the internal partition 𝑝𝑙 ,𝑘 ,
where 𝑘 ∈ [1, 𝑛 + 1] and 𝑙 ∈ [1, 𝑛], if the agent 𝑔𝑘 has updated 𝑠 the most in the previous
learning period. As a result, partition 𝑝𝑙 ,𝑘 will contain the states that agent 𝑔𝑘 has visited
the most.

To avoid local optima in the global optimization step, the special partition 𝑝𝑙 ,𝑛+1 will
store the states that were visited below the given threshold parameter 𝜂 ∈ [0, 1]. The
procedure is as follows. Before the algorithm assigns states to the internal partitions, it
normalizes the total number of updates per state between 0 and 1. Then, all states with
normalized total updates value ≤ 𝜂 are assigned to partition 𝑝𝑙 ,𝑛+1. In other words, 𝑝𝑙 ,𝑛+1
contains the states that were updated just a few times, compared to the total number of
updates performed during the previous learning period in the partition, and thus are
not strongly bound to a specific agent. These states are used as wildcards in exchanging
other states that an agent has most remotely updated during the global optimization
step. Algorithm 3 shows the pseudo-code of this optimization step.

Algorithm 3 LOCAL OPTIMIZER heuristic
Require: Access to local partition 𝑝𝑙
Require: Access to local UPDATES map
Require: Threshold parameter 𝜂 ∈ [0, 1]

1: for each 𝑔𝑙 ∈ 𝑁 do
2: Create 𝑛 + 1 internal partitions on 𝑝𝑙
3: for 𝑠 ∈ 𝑆 in local partition 𝑝𝑙 do
4: 𝑛𝑜𝑟𝑚𝑢𝑝𝑑𝑎𝑡𝑒𝑠 ← normalize total updates on state 𝑠
5: if 𝑛𝑜𝑟𝑚𝑢𝑝𝑑𝑎𝑡𝑒𝑠 > 𝜂 then
6: 𝑘 ← Determine id of agent that updated 𝑠 the most
7: move 𝑠 to internal partition 𝑝𝑙 ,𝑘
8: else
9: move 𝑠 to internal partition 𝑝𝑙 ,𝑘+1

126
CHAPTER 6. PARALLEL REINFORCEMENT LEARNING WITH MINIMAL

COMMUNICATION OVERHEAD

To illustrate how this algorithm works, we will use the example of Figure 6.1 and an
initial random partitioning as described in Table 6.2. Let us assume that 𝛽 episodes have
run, and then each agent stops the RL algorithm and starts running the Algorithm 3.
Each agent creates 𝑛 + 1 = 3 new partitions to re-order the states in their partition 𝑝0 ∈ 𝑃
(Algorithm 3 line 2). Note that after running several iterations, it is expected that the
states {𝑠0 , 𝑠1 , 𝑠2 , 𝑠5 , 𝑠6} have been mainly visited by agent 𝑔0, and {𝑠8 , 𝑠9 , 𝑠12 , 𝑠13 , 𝑠14} by
agent 𝑔1.

Back to agent 𝑔0, after normalizing the number of updates received by its local states
in its partition 𝑝0 ∈ 𝑃 (Algorithm 3 line 4), we may expect that the states 𝑠0 , 𝑠2, and 𝑠6
were mainly visited by agent 𝑔0 and 𝑠4 , 𝑠8, and 𝑠12 by agent 𝑔1, with normalization values
> 𝜂. In this case, then states {𝑠0 , 𝑠2 , 𝑠6}, and their related q-values, are moved to the new
internal partition 𝑝0,0 and {𝑠4 , 𝑠8 , 𝑠12} to 𝑝0,1 (Algorithm 3 line 6-7). As state 𝑠10 is far
from any shortest path of 𝑔0 and 𝑔1, then it is expected that its number of updates by any
agent, after normalization, is < 𝜂, and therefore it can be moved to 𝑝0,2 (Algorithm 3 line
9). A similar process is executed in 𝑔1. Now, we are ready for the global optimization
step.

Global optimization (performed among agents): Reducing agent communication can be
achieved by putting states near the agent that visits it the most. In order to do it, a
global trading heuristic to exchange states among partitions is performed after the LO-
CAL OPTIMIZER has created the 𝑛 + 1 divisions inside each partition. Let 𝑔1 and 𝑔2 be
two agents in the system. If 𝑔1 has states in the internal partition 𝑝1,2, then it offers them
to 𝑔2. Let |𝑝1,2 | be the number of states in partition 𝑝1,2. When 𝑔2 receives the offer from
𝑔1, it checks how many states it contains in its internal partition 𝑝2,1 and shares it with
𝑔1. Without loss of generality, let us assume that |𝑝1,2 | ≤ |𝑝2,1 |. Then 𝑔1 sends its states
in 𝑝1,2 to 𝑔2 together with at most 𝑧 = |𝑝2,1 |-|𝑝1,2 | states from 𝑝1,𝑛+1. 𝑔2 sends |𝑝2,1 | − 𝑧
states from its partition 𝑝2,1 back to 𝑔1. This procedure is repeated among all agents
following a random ordering when selecting the agent to exchange states. In order to
support stochastic environments, the map UPDATES is reset after this step. It allows
faster convergence when the transition between states changes over time. Algorithm 4
shows the pseudo-code of the global optimization step.

Algorithm 4 GLOBAL OPTIMIZER heuristic
Require: Access to Distributed QT with |𝑆 | |𝐴| values

1: for each pair 𝑔𝑙 , 𝑔𝑘 ∈ 𝑁 do
2: for each internal partition 𝑝𝑙 ,𝑘 do
3: if |𝑝𝑙 ,𝑘 | ≥ 0 then
4: 𝑔𝑙 offers |𝑝𝑙 ,𝑘 | states to 𝑔𝑘
5: if |𝑝𝑘,𝑙 | ≥ 0 then
6: if |𝑝𝑘,𝑙 | ≥ |𝑝𝑙 ,𝑘 | then
7: 𝑔𝑙 sends min

(
|𝑝𝑙 ,𝑘 | + |𝑝𝑙 ,𝑛+1 |, |𝑝𝑘,𝑙 |

)
to 𝑔𝑘

8: else
9: 𝑔𝑘 sends min

(
|𝑝𝑘,𝑙 | + |𝑝𝑘,𝑛+1 |, |𝑝𝑙 ,𝑘 |

)
to 𝑔𝑙

Let us return to the example to illustrate how the Algorithm 4 works. Based on what 𝑔0
and 𝑔1 are expecting to learn, a possible output from Algorithm 3 can be the following:
agent 𝑔0 may have {𝑠0 , 𝑠2 , 𝑠6} ∈ 𝑝0,0, {𝑠4 , 𝑠8 , 𝑠12} ∈ 𝑝0,1, and 𝑠10 ∈ 𝑝0,2; agent 𝑔1 may
have {𝑠1 , 𝑠5} ∈ 𝑝1,0, {𝑠14 , 𝑠13 , 𝑠9} ∈ 𝑝1,1, and {𝑠3 , 𝑠11} ∈ 𝑝1,2. Let us assume that agent
𝑔0 triggers the communication with agent 𝑔1 (Algorithm 4 line 2-4). Agent 𝑔0 offers the

6.3. DYNAMIC PARTITIONING FOR PARALLEL REINFORCEMENT LEARNING FOR
IOT APPLICATIONS 127

states in its internal partition 𝑝0,1 to Agent 𝑔1. As |𝑝0,1 | = 3 > 2 = |𝑝1,0 |, then 𝑔1 prepares
the set of states 𝑝1,0 ∪ 𝑠3 ∨ 𝑠11 to exchange them with 𝑔0 (Algorithm 4 line 9). Note that
we used one of the states in the wildcard partition 𝑝1,2 to get the maximum number of
states from 𝑔0.

Finally, 𝑔1 performs the same procedure to get the states it updated the most in 𝑝0 before
partitioning. After both agents have exchanged their states, the new partitioning will be
the following: {𝑠0 , 𝑠1 , 𝑠2 , 𝑠5 , 𝑠6 , 𝑠10 , 𝑠11} ∈ 𝑝0, and {𝑠3 , 𝑠4 , 𝑠8 , 𝑠9 , 𝑠12 , 𝑠13 , 𝑠14} ∈ 𝑝1. Note
that the main difference of this partitioning, which is optimal after convergence and
following a greedy policy, with the optimal partition presented in Table 6.2 are the states
that are not part of the shortest paths of the agents, i.e., {𝑠3 , 𝑠4 , 𝑠10 , 𝑠11}, and which final
partition would mainly depend on the number of updates that they may receive during
agents’ exploration phase.

6.3.3 Local-affinity policy

In general, action selection policies for SARL algorithms do not exploit information
related to the locality of a state to select actions. However, in distributed environments,
this information is fundamental in improving the initial partitioning. For this reason,
we introduce a second policy, called the local-affinity policy, which is executed once the
agent selects an action following its behavior policy (e.g., 𝜖−greedy).

Note that during the learning period, each agent keeps track of the updates performed by
remote agents on its local partition. As a way of exploring and exploiting states that are
stored locally and may be good states for a given agent’s actions, the local-affinity policy
tries to select an action that, in the past, moved the agent to another local state and whose
q-value is close to the q-value of the action chosen by the agent’s policy. Identifying if an
action 𝑎 taken in state 𝑠 moved the agent to a remote/local state 𝑠′ in the past is performed
as follows: each time we select an action, we tag it as local or remote according to the
location of the next state 𝑠′.

Algorithm 5 shows a QL agent that includes the local-affinity policy. Given a state 𝑠,
the agent selects an action 𝑎 using the behavior policy. Then, this action is evaluated by
the local-affinity policy. This policy selects an alternative action 𝑎′, with a probability of
𝜅 ∈ [0, 1], which moved the agent to a local state last time it was taken, and for which the
difference between 𝑄(𝑠, 𝑎′) and 𝑄(𝑠, 𝑎), which is normalized in the range |𝑎𝑚𝑎𝑥 − 𝑎𝑚𝑖𝑛 |,
where 𝑎𝑚𝑎𝑥 = max𝑎′ 𝑄(𝑠′, 𝑎′)−𝑄(𝑠, 𝑎) and 𝑎𝑚𝑖𝑛 = min𝑎′ 𝑄(𝑠′, 𝑎′)−𝑄(𝑠, 𝑎), is minimal and
less than a maximum tolerance 𝜏 ∈ [0, 1]. In other words, this policy acts as a 𝜖-greedy
policy, where 𝜖 = 𝜅 allows local states exploitation. Note that if no available actions move
the agent to local states, it follows the behavior policy. Like the exploitation-exploration
trade-off in 𝜖-greedy policies, high values of 𝜅 may make the agent stuck in local states. In
contrast, low values may reduce the possibility of exploring states in their local partition.
Algorithm 6 shows the pseudo-code of the proposed policy.

Compared with a non-modified version of Q-learning, Algorithm 5 differs in the new
lines 5, 7-11. Note that lines 7-11 do not modify the behavior of the agent and are only
used to store information about the times a state is updated by a given agent (Algorithm
5 line 7) and tag states are local or not (Algorithm 5 line 8- 11). On the other hand, calling
Algorithm 6 will force the agent to find local states via exploration and controlled by

128
CHAPTER 6. PARALLEL REINFORCEMENT LEARNING WITH MINIMAL

COMMUNICATION OVERHEAD

Algorithm 5 Q-Learning with local-affinity
Require: Access to Distributed QT
Require: agent identifier 𝑙 (𝑔𝑙)

1: repeat(for each 𝑒 ∈ 𝐸)
2: Initialize 𝑠
3: repeat(for each iteration)
4: Use behavior policy to choose 𝑎
5: 𝑎 ← LocalAffinity(a, 𝜅, 𝜏)
6: Take action 𝑎, observe 𝑟, 𝑠′
7: 𝑈𝑃𝐷𝐴𝑇𝐸𝑆(𝑠, 𝑔𝑙) = +1
8: if 𝑠′ is local state then
9: (𝑠, 𝑎).𝑚𝑜𝑣𝑒𝑇𝑜𝐿𝑜𝑐𝑎𝑙 = 𝑇𝑟𝑢𝑒

10: else
11: (𝑠, 𝑎).𝑚𝑜𝑣𝑒𝑇𝑜𝐿𝑜𝑐𝑎𝑙 = 𝐹𝑎𝑙𝑠𝑒

12: 𝑠 ← 𝑠′

13: 𝑇𝐷𝑒𝑟𝑟𝑜𝑟 = max𝑎′ 𝑄(𝑠′, 𝑎′) −𝑄(𝑠, 𝑎)
14: 𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼 · (𝑟 + 𝛾 · 𝑇𝐷𝑒𝑟𝑟𝑜𝑟)
15: 𝑠 ← 𝑠′

16: until s is goal state
17: until e == 𝐸𝑚𝑎𝑥 or convergence = true

Algorithm 6 Local-Affinity Policy
Require: action 𝑎, affinity 𝜅 and tolerance 𝜏

1: if random.nextDouble() ≥ 𝜅 then
2: for 𝑎2 ∈ 𝐴 do
3: if (𝑠, 𝑎2).moveToLocal then
4: if |𝑄(𝑠,𝑎2)−𝑄(𝑠,𝑎)|

|𝑄(𝑠,𝑎𝑚𝑎𝑥)−𝑄(𝑠,𝑎𝑚𝑖𝑛)| ≤ 𝜏 then
5: new action← 𝑎2
6: return new action

the parameter 𝜅. Retaking the example, if agent 0 would have 𝑠1 in its local partition
and 𝑠5 would be in a remote one, and assuming the Q-values of their actions towards
destination via the shortest path are similar at 𝑠0, then Algorithm 6 will try to privilege
the path via 𝑠1 as it is a local state (Algorithm 6 line 4-5).

6.3.4 Algorithm complexity analysis

The proposed algorithm aims to reduce the communication overhead of PRL algorithms
when they run in distributed environments. However, this is achieved by adding some
extra cost, in time or space, to the learning process itself. Following, we present the
complexity analysis of PARTITIONER among all the agents 3.

Time: Algorithm 3 runs in 𝑂(|𝑆 |) and Algorithm 4 runs in 𝑂(|𝑁 |3). Therefore, PARTI-
TIONER has a time complexity of 𝑂(|𝑆 | + |𝑁 |3).

Space: Algorithm 3 requires𝑂(|𝑆 | |𝐴|) to store the QT. Algorithm 5 requires𝑂(|𝑆 | |𝐴| |𝑁 |)
3We have excluded the Algorithm 6 from the complexity analysis since it does not change the complexity of

the RL algorithm

6.4. PERFORMANCE EVALUATIONS 129

to store the data structure UPDATES and the label variable moveToLocal per q-value.
Therefore, PARTITIONER has a time complexity of 𝑂(|𝑆 | |𝐴| |𝑁 |). Clearly, the data struc-
ture UPDATES is wasting the space obtained by distributing the QT. However, this can
be improved if PARTITIONER only stores the number of local or remote updates per
state, regardless of the agent that performed the update. It reduces the space complexity
of the data structure UPDATES to 𝑂(|𝑆 | |𝐴|). Of course, the agents will run Algorithm 4
in a more stochastic fashion since the exchange of states is random and uses states that
are not important to them. In the long term, the algorithm will converge if the states are
exchanged enough times to guarantee that states can reach the partitions where an agent
will exploit it the most.

Communication: Measured in terms of the number of messages exchanged between
agents during learning and partitioning. By assuming one message can contain the q-
values associated with a given state, Algorithm 4 will require 𝑂(|𝑆 |) messages during
partitioning, i.e., in the worst case, all the agents exchange all their states, and Algorithm
5 will exchange up to 𝑂(𝜇)messages while the agents are learning. Then PARTITIONER
has a total communication complexity of 𝑂(|𝑆 | + 𝜇) Note that although the number of
messages exchanged between agents in Algorithm 5 does depend on 𝑛, its effects are
canceled since we expect that 𝜇 is reduced proportionally to 𝑂(1/𝑛).

From a practical point of view, our solution can be deployed in two main setups: 1) Simu-
lated agents deployed in the cloud/edge that are learning by interacting with an isolated
simulated environment and control resource-constrained Robots in real environments,
2) Real agents interacting in a real environment. In the first case, offloading the learning
task from the constrained IoT devices to cloud/edge will improve the execution time in
distributed environments such as cloud/edge by minimizing the communication cost
and removing the (highly probable) latency of taking actions and changing states in the
real environment. Of course, the quality of the policy will depend on the accuracy of the
environment model used by the simulated agents during training. In the second case, our
solution will reduce the energy consumption of the IoT devices since the energy required
to transmit messages over the network, e.g., in wireless devices, is minimized. Note
that if the IoT-RL application is controlling moving robots, the assumption of using a
collision avoidance mechanism is inevitable since RL algorithms involve a trial-and-error
component [179, 180].

6.4 Performance Evaluations

In this section, we present the results of evaluating the performance of our algorithm
in terms of communication cost and the impact of changing the number of agents, the
partitioner execution frequency, and the problem size.

6.4.1 Scenario and PRL algorithm

To evaluate our algorithm, we simulate the item-fetch use case for Autonomous Vehicles
in a Smart Factory scenario, which is described in Section 6.3.1 using the Brown-UMBC
Reinforcement Learning and Planning (BURLAP) library 3.0 [181]. RL agents are modi-

130
CHAPTER 6. PARALLEL REINFORCEMENT LEARNING WITH MINIMAL

COMMUNICATION OVERHEAD

fied version of QL BURLAP agents implementing Algorithm 5. We use the in-memory
computing framework Apache Ignite 2.3 [182] to implement the multi-agent framework
proposed in [154], where each RL agent is both a processing agent, i.e., it runs the RL
algorithm, and storage agent, i.e., it stores part of the shared QT. The multi-agent system
was deployed in a computer cluster composed of 8 PC Dell Optiplex 780 running Ubuntu
16.04, where each PC runs a single agent at most.

To run the algorithm in different environment setups, we model the evaluation scenario
as a BURLAP environment, and each agent interacts with a copy of it in isolation. This
removes the need to implement collision avoidance algorithms required when agents
share the same environment. As a proof of concept, we also use the resulting framework
to deploy two RL agents that control the same number of Sparki robots [183] in an
emulated environment of size 7x7. Some media showing a demo of our proposal in the
emulated scenario can be found in [184].

The proposed algorithm is implemented inside the PRL algorithm CS-RL[38]. We se-
lected the CS-RL algorithm for two main reasons. Firstly, this algorithm is an implemen-
tation of the LBW collaboration strategy [39], and therefore, it decreases to the minimum
required learning time at a rate of Ω(1/𝑛). Secondly, if we assume distributed agents
updating a shared QT, CS-RL has the highest communication overhead and will allow
us to verify if the proposed algorithm will also work in this worst-case scenario. Finally,
as our approach assumes a table representation of the Q-function, then the algorithm
convergence is guaranteed.

6.4.2 Algorithm parameters and hyper-parameters selection

Each agent runs a QL algorithm with the following configuration: 𝜖-greedy policy with
𝜖= 0.1, 𝛼= 0.1, 𝛾= 0.9, and 𝐸 = 5000 episodes. These parameters worked well for a single
agent solving the problem with one 𝑅𝑆 in one corner and one 𝑃𝑆 in the center. To obtain
the threshold 𝜂, affinity 𝜅, and tolerance 𝜏 hyper-parameters for the proposed partitioner,
we first run a set of experiments in a grid of size 31 × 31. The values of 𝑛, 𝜏, and both 𝜅
and 𝜂 were incremented in steps of 1, 0.01 and 0.1, respectively.

To compute the communication cost Δ and ensure that our evaluations are hardware-
independent, we use definition 2.2.4, resulting in the following formula:

Δ =
𝜆 + 𝜌

𝜇
(6.1)

Where 𝜆 is the cumulative number of the states exchanged after partitioning, 𝜌 is the
cumulative remote updates performed by the agents, and 𝜇 is the total learning time
(number of iterations). In our implementation, and without loss of generality based
on the complexity analysis of our algorithm, the number of remote updates represents
only the update operation of a Q-value in a remote partition, and the number of states
exchanged after partitioning is used as a good estimate of the number of messages
required to move states between agents after partitioning. For each result, we computed
the cumulative values of the 𝜇 and Δ. Then, 𝜇 and the Δ were normalized between
0 and 1 using the maximum and minimum values for 𝜇 and Δ among all the results.
After normalization, the result with the best tuple (𝜂, 𝜅, 𝜏) was selected following a

6.4. PERFORMANCE EVALUATIONS 131

multi-objective formulation of the problem since reducing the number of iterations may
increase the communication cost. The globally optimized tuple is chosen as:

min
𝜂,𝜅,𝜏

0.5𝜇 + 0.5Δ (6.2)

By solving the equation 6.2 using a hyper-parameter sweeping, we obtained 𝜂 = 0.3,
𝜅 = 1.0, 𝜏 = 0.1. This result is congruent with the features exposed by this scenario. For
example, a combination of a low 𝜅, which results in applying the local-affinity policy
most of the time, and a high 𝜏, which allows exploiting local states but (possibly) not
optimal, was expected due to most of the states have more than one action that minimizes
the length of the path towards the destination. Thus, when agents are traveling paths that
increase the communication cost, i.e., two or more agents find the same shortest path, the
local-affinity policy allows agents to explore alternative and optimal paths. Of course,
other types of problems may require different values for 𝜏 to guarantee the convergence
of the PRL algorithm.

The 𝜂 seems to be a good trade-off between exploiting the intra-partition found by the
local optimization step and having a large temporal local partition with states available
for the global optimization step. A low 𝜂 may limit the capability of leaving local optima
in scenarios where the agents explore partitions of different sizes. For example, if the PE
is located in one of the grid corners, then the agent at the opposite corner on the diagonal
will have to explore the most. With a low 𝜂, at some point in time, it will have a large
number of states in its partition mainly visited by itself, but it will not have many states
to get those located in remote partitions, which may be interesting for itself. In the same
way, a high 𝜂 will limit the exchange of states between partitions. Although increasing
the number of states in the local temporal partition will allow more opportunities to
exchange states, it will not happen since the intra-partitions will contain only a few states
to trade with other agents.

6.4.3 Performance using optimal hyperparameters

To evaluate and compare the performance of the implemented CS-RL algorithm with our
dynamic partitioner (DP) with local-affinity (LA) policy and globally optimized, CS-RL
DP+LA Globally Optimized, we also implemented four variants of the CS-RL algorithm.
The first is the fully distributed CS-RL with random partitioning. The second one is the
CS-RL algorithm using our partitioner but no local-affinity policy, CS-RL DP-only with
𝜂 = 0. The third one is the CS-RL algorithm with our partitioning strategy with the tuple
(𝜂, 𝜅, 𝜏) that is locally optimized for a given 𝛽 and 𝑛, CS-RL DP+LA Locally Optimized.
Finally, a CS-RL using an optimal partitioning was implemented to have a reference to a
lower bound communication cost.

Note that a comparison against the one with only dynamic partitioning gives us a good
view of the positive impact of our local-affinity policy, while comparing against the
DP+LA that is locally optimized provides a baseline to measure how good the global op-
timized parameters, i.e., obtained among all the results, generalize to different variations
of the problem (𝑛, 𝛽, problem size).

Figure 6.2 shows the communication cost and the iterations per episode (training curve)

132
CHAPTER 6. PARALLEL REINFORCEMENT LEARNING WITH MINIMAL

COMMUNICATION OVERHEAD

during the evaluated algorithms’ training period with eight agents, 𝛽 = 100, and 5000
episodes. The CS-RL with random and static partitioning has the highest communi-
cation cost, which is over 0.85. This value is expected since the probability of having
two consecutive states in the same partition is around 1/𝑛. CS-RL with only dynamic
partitioning obtains a higher reduction in the communication cost, near 50% compared
to using a random partitioning. However, as it does not have preferences for exploring
local states, only the 𝜖−greedy policy provides some exploration, and it gets stuck in a
local optimum.

Table 6.3: Numerical range of the algorithm’s variables.

Parameter/Variable Range
𝛼 [0, 1]
𝛾 [0, 1)
𝜖 [0, 1]
𝜂 [0, 1]
𝜅 [0, 1]
𝜏 [0, 0.01]
𝛽 [10, 50, 100]

|𝑁 | = n [2, 8]
Square grid side [31, 51, 71, 101, 301]

CS-RL with dynamic partitioning and local-affinity policy obtain the best results, and
the communication cost is reduced to less than 0.02 in both cases (globally and locally
optimized). In other words, less than 2% of the total changes in the QT are performed
by remote agents. Since the locally optimized version uses the best tuple (𝜂, 𝜅, 𝜏) for the
specific grid size, 𝑛 and 𝛽, its communication cost is reduced at the highest rate. However,
the globally optimized gets comparable results. Regarding iterations per episode, the
partitioner did not affect the convergence of the PRL algorithm.

Finally, it is noticeable that after converging the RL agents, they still minimally commu-
nicate. This results from the problem definition and is not a limitation of the proposed
algorithm. In our evaluation scenario, the picking station can be accessed in four direc-
tions. It means that when there are more than four agents, some agents need to share
information to exploit the access states surrounding the picking station. In more practical
scenarios, the picking station may be only accessible via one single cell. Therefore, the
lower bound for the number of messages that need to be exchanged is Ω(𝑛 + |𝑆 |).

6.4.4 Number of agents

Figure 6.3 shows the cumulative communication cost against the increase in the number
of agents in a 31x31 grid and 𝛽 = 100. Since more agents are solving the problem con-
currently, the probability of updating remote states and communication costs increases.
CS-RL with random partitioning performs worst and obtains a communication cost pro-
portional to 𝑛−1

𝑛 . CS-RL with only dynamic partitioning significantly improves and
maintains a cumulative communication cost lower than 0.55. The proposed algorithm
using the local and global optimized hyperparameters always keeps the communication
cost lower than 0.42 and 0.38, respectively. These results show the positive impact of

6.4. PERFORMANCE EVALUATIONS 133

Figure 6.2: Learning curve (left) and communication cost (right) of the evaluated algo-
rithms. Grid size 31x31, 8 agents and 𝛽 = 100.

using the local-affinity policy to explore more states in the local partition. It is essential
to show that even if the number of agents increases, the relative improvement among
agents remains almost constant.

Note also that the cumulative Δ increase concerning the 𝑛 does not represent a scalability
issue of the proposed algorithm but an increase of the 𝜌 and/or 𝜆 due to concurrency. In
fact, Figure 6.2 shows how our algorithm could also converge with eight agents. Finally,
although the proposed algorithm with locally optimized hyperparameters obtains the
best performance, the tuple (𝜂, 𝜅, 𝜏) used in the globally optimized one gets close results.
These results are independent of the number of agents 𝑛, grid size, and 𝛽, as shown in
the following subsections.

134
CHAPTER 6. PARALLEL REINFORCEMENT LEARNING WITH MINIMAL

COMMUNICATION OVERHEAD

Figure 6.3: Impact of the number of agents in the communication cost with grid size
31x31 and 𝛽 = 100.

6.4.5 Problem size

We have shown that the globally optimized tuple (𝜂, 𝜅, 𝜏) provides good results for a
different number of agents and 𝛽 in a small grid with a fixed size of 31x31. However, it
is important to verify that our algorithm is generic enough to reuse the hyperparameters
found in small problems on larger ones without losing performance and, simultaneously,
avoid extra training time by performing a hyperparameter sweep again. Figure 6.4 shows
how the tuple (𝜂 = 0.3, 𝜅 = 1.0, 𝜏 = 0.1), which was found in Section 6.4.2 for a 31x31
grid with a state-action space of size 3844 q-values (31 × 31 states × 4 actions), also
performs well in larger grids. Note that since we only have optimal values for (𝜂, 𝜅, 𝜏)
with different 𝑛 and 𝑏𝑒𝑡𝑎 on a fixed problem size (Section 6.4.2), then the curve for DP+LA
Locally Optimized is not presented in Figure 6.4.

While the communication cost of CS-RL with random partition remains above 0.8, CS-RL
with dynamic partitioning only and DP+LA using the globally optimized tuple remain
below 0.42 and 0.32 with minimum values of 0.28 and 0.08, respectively, for all the
evaluated grids. It means that the performance of our proposal is independent of the
problem size, and It can be applied to problems with large state-action spaces by using
the optimized tuple (𝜂, 𝜅, 𝜏) found in a smaller problem. A more detailed statistical
analysis of the results shows that when the problem size increases, the minimum values
for the communication cost tend to be a little higher. For example, when the algorithm
converged, the minimum communication cost was 0.08 in a grid of 301x301 but 0.014 in
a grid of 51x51. However, it is still below the expected 0.1% of the 𝜖−greedy policy with
𝜖 = 0.1.

6.4.6 Episodes Before Partitioning

The changes in the 𝛽 parameter directly affect the number of remote updates 𝜌. If
we execute the partitioner less often, i.e., we increase 𝛽, then both the 𝜌 and 𝜇 will

6.4. PERFORMANCE EVALUATIONS 135

Figure 6.4: Impact of varying the size of the problem. The number of agents was fixed to
8.

increase. At the same time, 𝜆 will decrease because the RL algorithm will provide more
information about the q-values that are more interesting for the agent. On the contrary,
when PARTITIONER is called too often, then more states will be exchanged, i.e., 𝜆 will
increase and may become comparable to 𝜌 and, therefore, the overall communication
overhead increases.

For this specific problem, Table 6.4 shows that the 𝜌 value adds the highest contribution
to the cumulative communication cost. In this evaluation scenario, this result is expected
since the RL agents converge fast to an optimal solution. This allows agents to have just
a few calls to PARTITIONER before the states are distributed to the correct partition.
Finally, 𝜆 may also increase independently of the 𝛽. For example, in dynamic environ-
ments, where the transition probability function is stochastic, the same (𝑠, 𝑎) pair may
take the system to different states. Then, the locality of a state, which is exploited by the
local-affinity policy, may also change each time.

6.4.7 Energy consumption and total communication overhead

Our previous results demonstrated the benefits of using PRL with built-in communica-
tion awareness. As presented in Section 6.3.1, the main objective of robots was to learn
the path from their RS to the location of the PS, where they leave the transported in-
ventory while minimizing energy consumption related to wireless communication and
travel distance. By solving this problem through MDP, the robots successfully learned
the optimal routes, aligning with the energy-saving objectives, i.e., the distance traveled
is the shortest and also the number of visited states.

Let us compare the two extreme cases in the largest grid of size 301x301, 8 agents, and 𝛽 100
using the values presented in Table 6.5. On the one hand, we have random partitioning
with a cumulative and minimal communication cost Δ of 0.87. This is translated into
performing transmissions due to remote updates 87% of the time. On the other hand,

136
CHAPTER 6. PARALLEL REINFORCEMENT LEARNING WITH MINIMAL

COMMUNICATION OVERHEAD

Table 6.4: Impact of Remote Updates and Exchange States in the Communication Cost.

Algorithm Cumulative 𝛽
10 50 100

Total % Δ Total % Δ Total % Δ

Random partitioning Remote updates (𝜌) 154743 100.0 157062 100.0 156389 100.0
Exchanged states (𝜆) 0 0.0 0 0.0 0 0.0

Communication Cost (Δ) 0.82 100 0.83 100 0.82 100
Dynamic Partitioning (DP) only Remote updates (𝜌) 76304 83.6 74936 99.4 79812 99.8

Exchanged states ((𝜆)) 14964 16.4 431 0.6 200 0.2
Communication Cost (Δ) 0.48 100 0 100 0.42 100

DP+LA globally optimized Remote updates (𝜌) 54837 98.0 61997 99.7 65577 99.8
Exchanged states (𝜆) 1113 2.0 164 0.3 117 0.2

Communication Cost (Δ) 0.30 100 0.33 100 0.35 100
DP+LA locally optimized Remote updates (𝜌) 54837 98.0 56010 99.4 59392 99.7

Exchanged states (𝜆) 1113 2.0 340 0.6 191 0.3
Communication Cost (Δ) 0.30 100 0.30 100 0.32 100

DP+LA locally optimized has a cumulative Δ of 0.32 and minimal Δ at convergence of
0.08. The minimal Δ is due to remaining transmissions needed to share information
to exploit the access states surrounding the PS derived from the problem definition, as
explained in Section 6.4.3.

Interestingly, despite our goal of minimizing energy consumption and finding the short-
est path, random partitioning led to 2.7 times more cumulative transmissions than
DP+LA optimization and ten times more transmissions even after convergence. As
an example, assuming 802.11ac APs with transmitting power of 14dBm, 20MHz channel,
and 64 Byte payloads as presented in [185], the mean energy consumption will be 260.65
Joules/packet (J/packet) in the worst case, e.g., where agents have no local states in their
partitions, 226.7 J/packet with random partitions, 83.4 J/packet with DP+LA locally
optimized, and 20.8 J/packet with DP+LA locally optimized after convergence.

Table 6.5: Comparison of transmitted packets between random and DP+LA locally opti-
mised partitioning.

Partitioning Cumulative Δ (until convergence) Minimal Δ (after convergence)
Random 0,87 0,87

DP+LA locally optimized 0,32 0,08
Reduction transmitted packets 63,22 90,80

6.5 Conclusion

In this chapter, we proposed a general-purpose partitioning algorithm to enhance PRL
algorithms and improve the execution time by minimizing the communication overhead
of RL-based applications in distributed environments. To the authors’ best knowledge,
this is the first work focused on solving the communication overhead of distributing
PRL algorithms without requiring any a priori information about the environment. The
proposed algorithm combines a dynamic partitioning strategy, which iteratively splits
the main problem into multiple small and loosely coupled ones without requiring any a

6.5. CONCLUSION 137

priori domain knowledge, with an efficient co-allocation of processing and storage that
minimizes agent communication. Performance evaluations showed that the proposed
algorithm incurs no communication cost when the PRL algorithm converges and is
scalable when more agents are added. Moreover, it removes the assumption of having
domain knowledge or unlimited resource capabilities to perform an optimal partitioning
of the problem, which is hard to meet in real, and usually unknown, environments.

Finally, further evaluations have demonstrated the versatility of our algorithm, as factors
such as problem size and the number of agents have a minimal impact on its perfor-
mance. Our proposed approach enables RL-based distributed applications to expedite
their learning process by leveraging multiple agents in parallel while maintaining low
communication overhead. This makes it possible to deploy this multi-agent system even
on resource-constrained devices. Additionally, we have shown that PRL agents, equipped
with built-in communication awareness, offer a mechanism to optimize resource utiliza-
tion (e.g., spectrum, bandwidth, and energy). This optimization is achieved indirectly by
strategically minimizing redundant or non-critical communication during learning. In
contrast, RL agents with optimization objectives solely focused on resource usage, e.g.,
as a task in a Cognitive Radio (CR), may not achieve the same level of communication
overhead reduction, given the learning procedure’s inherent nature.

138
CHAPTER 6. PARALLEL REINFORCEMENT LEARNING WITH MINIMAL

COMMUNICATION OVERHEAD

Chapter 777
Conclusions

In this chapter, we summarize the main contributions of this dissertation that were mainly
directed to address the problem statements presented in Section 1.2. These contributions
are the results of investigating the research questions formulated in Section 1.3, which
will be answered by validating the hypotheses presented in 1.4. We finalize this chapter
by analyzing the open challenges after this research’s different contributions and future
prospects.

7.1 Main research contributions

This dissertation aims to provide a novel framework for spectrum sharing based on
recent advances in Deep Learning (DL) to tackle research problems 𝑃1 to 𝑃5 and design
them such that we can overcome some of the overlooked limitations when using or
when deploying them in wireless networks to tackle the research problems 𝑃4 to 𝑃6,
respectively. In this context, let us recall the two main hypotheses that we stated in
Section 1.4 for this research:

[𝐻1] Data-driven Technology Recognition (TR) is a practical approach to enable spec-
trum sharing in Collaborative Intelligent Radio Networks (CIRNs). Even with
a small number of labeled measurements, acceptable classification performance
can be achieved.

[𝐻2] To efficiently employ data-driven methods in CIRNs, it is crucial to leverage
collaborative learning algorithms capable of operating over distributed infras-
tructures with minimal communication overhead, thereby ensuring practical
implementation and scalability.

In order to validate these hypotheses, we have defined four research questions that
were presented in Section 1.3. Through this dissertation, we have provided a set of
contributions to answer such questions. Specifically, four main research contributions
were identified in this dissertation:

139

140 CHAPTER 7. CONCLUSIONS

[𝐶1] A label-efficient TR as enabling technology for next generation spectrum sensing
techniques for Dynamic Spectrum Access (DSA). [Chapter 3, research problem
𝑃4 and enabler technology to solve research problems 𝑃1, 𝑃2, and 𝑃3]
TR will play an essential role in how new wireless technologies make decisions
to use the available spectrum efficiently and coexist with any new, legacy, and
even unknown technologies. In Chapter 3, we proposed a novel Semi-supervised
Learning (SSL) approach for TR that minimizes the need for labeling large data sets
of spectrum data. More precisely, the main findings in this contribution are the
following:

• We introduced an SSL approach for wireless TR that can work on raw In-phase
and Quadrature (IQ) samples and does not require the whole data set to be
labeled, which is a time-consuming and challenging task.

• The proposed scheme was implemented using Deep Autoencoders (DAEs),
which requires an unlabeled data set and only a few labeled examples. The
scheme’s performance was evaluated against a Deep Neural Network (DNN)
architecture that requires the whole data set to be labeled. We showed that
the proposed scheme outperforms the DNN while requiring a limited labeled
data set.

• We validated our approach in Colosseum [19, 18], the world’s largest RF chan-
nel emulator built for the DARPA Spectrum Collaboration Challenge (SC2)
competition. The results demonstrated that the designed algorithms suc-
cessfully recognized sixteen unknown wireless technologies with an accuracy
above 97% using the entire data set and > 70% using only 10%. This translates
to 4.6x times better accuracy than the DNN model using the same amount of
labeled data. Using the Defense Advanced Research Projects Agency (DARPA)
Colosseum, we provided strong evidence about the robustness of the proposed
approach.

These three findings provide a positive answer to the research question 𝑄2: Can
we formulate the TR problem for DL-based algorithms such that they can use la-
beled and unlabeled data and design robust systems that can deal with different
amounts of them?.

[𝐶2] A novel architecture for next-generation spectrum sharing frameworks. [Chapter
4, research problems 𝑃1 and 𝑃2]
In Chapter 4, we presented the architectural design and the experimental validation
of the next generation of a spectrum-sharing framework with the capabilities to
protect the incumbent. Specifically, the main findings in this contribution are the
following. Specifically, the main findings in this contribution are the following:

• We designed a two-tier architecture that enables efficient spectrum sharing,
built on top of the concept of CIRN and with the guarantee of incumbent
protection. Compared to new approaches like Citizens Broadband Radio
Service (CBRS) and Licensed Shared Access (LSA), our system requires no
central infrastructure to control and grant access to the shared spectrum. It
only requires that the incumbents collaborate with other networks by sharing
information such as location, interference measurements, and frequency op-
eration parameters. This approach takes spectrum-sharing frameworks to an

7.1. MAIN RESEARCH CONTRIBUTIONS 141

entirely new era compared to the state-of-the-art spectrum-sharing systems,
which are mainly database-assisted [186].

• We designed and implemented a two-step Artificial Intelligence (AI)-based al-
gorithm that, combined with collaborative information, can recognize, learn,
and proactively forecast incumbent’s transmissions in near real-time and with
an accuracy above 95%. Compared to recent works in AI for spectrum man-
agement [187], this is the first work that proposes a system to protect the
incumbent’s transmissions in a collaborative environment to the author’s best
knowledge.

• We validated our approach in Colosseum [19], the world’s largest RF channel
emulator built for the SC2 competition, using up to two incumbents with
different transmission patterns simultaneously and sharing spectrum with up
to 5 additional networks, each one composed of up to 10 nodes.

The results of this contribution positively answer the research question𝑄1: Can we
design an architecture for a spectrum sharing system that does not require any
central infrastructure to control and grant access to a shared spectrum?.

[𝐶3] A novel framework to achieve Traffic Classification (TC) at any layer on the radio
network stack. [Chapter 5, research problems 𝑃3 and 𝑃5]
In Chapter 5, we introduced a novel framework to achieve TC at any layer on the
radio network stack. Building on top of it, a procedure based on DL to perform
TC on spectrum samples is proposed. This procedure enables the management
algorithms running at the Gateway (GW) nodes (or beyond) to perform better by
having a broader view of the traffic flowing in the shared spectrum. The main
findings of this chapter are summarized as follows:

• We presented a general framework that enables the development of TC algo-
rithms optimized for wireless networks. To the best of our knowledge, this is
the first framework that allows the development of Radio Access Technologies
(RAT)-agnostic spectrum-based TC algorithms.

• We proposed a spectrum-based TC procedure that exploits the proposed
framework’s functional blocks and works on Physical Layer (L1) packets. Com-
pared to similar works like [119], the proposed procedure includes the traffic
classifier design and the complete chain to achieve spectrum-based TC. More-
over, the proposed approach removes the need for specialized algorithms to
separate/aggregate users’ traffic flows (e.g., a radio identification procedure
[188]), as the one required in recent approaches like [117], as it uses as classi-
fication object single L1 packets (as a sequence of raw IQ samples).

• We designed and evaluated a DL architecture based on Convolutional Neural
Networks (CNNs) to solve the task of classifying packets directly on spectrum
data. To the best of the authors’ knowledge, this is the first work that uses this
type of DNN to solve such a task. Moreover, we demonstrate that the proposed
architecture outperforms a Recurrent Neural Network (RNN) architecture,
also used in [119], and that is traditionally used to solve classification problems
with time series as input data.

• We presented the first detailed analysis of the performance achieved by differ-
ent spectrum-based classifiers using DL architectures in terms of 1) classifica-
tion accuracy on different classification tasks at different radio stack layers (L2

142 CHAPTER 7. CONCLUSIONS

and L7), including a comparison against encrypted L2 byte-based packet clas-
sifiers, and 2) execution time in training and inference using 802.11 standard-
compliant L1 packets and with input sequences of more than 3K spectrum
samples. These evaluations complement and extend previous results where
the performance of DL approaches solving the TC problem has been evaluated
and compared using byte [189] and spectrum representation of the packets
[119, 117]. Moreover, these results provide initial insights into the feasibility
of this approach for real-time classification.

• We create and provide an open-source dataset that contains 802.11 standard-
compliant L1 waveforms. The waveforms are generated by different 802.11
technologies (b, g, n), which results in different transmission schemes such as
Direct-Sequence Spread Spectrum (DSSS) in 802.11b and Orthogonal Frequency-
Division Multiplexing (OFDM) in 802.11g/n, different types of L2 frames
(management, control, and data), and multiple Modulation and Coding Scheme
(MCS). Moreover, the payloads carried by these L1 packets (information at L2
and above) were generated using real traces of the L7 application running on a
mobile device and connected to a secured 802.11 Access Point (AP) with Wi-Fi
Protected Access (WPA)-2. This is the first open and available dataset for test-
ing traffic classification at the spectrum level. We believe this dataset would
foster reproducibility and allow further advances on this topic. The dataset
and the code associated with this contribution can be obtained in Zenodo1

and Github2, respectively.

These results provide a positive answer to the research question𝑄3: Can we design
a general framework that enables the development of TC algorithms optimized
for wireless networks?

[𝐶4] A novel general-purpose partitioning algorithm that enhances Parallel Reinforce-
ment Learning (PRL) algorithms to support the execution of Reinforcement Learn-
ing (RL)-based applications in distributed environments with improved execution
time and minimal communication overhead. [Chapter 6, research problem 𝑃6]
Chapter 6 presented a novel general-purpose partitioning algorithm that enhances
PRL algorithms to support the execution of RL-based applications in distributed
environments with improved execution time by making the agents communication-
aware by design. The main findings of this contribution are three-fold:

• We provided a novel approach that allows any table-based PRL algorithm
to run RL-based applications with minimal communication overhead in a
distributed environment. To the authors’ best knowledge, this is the first
work that focuses on solving the communication overhead of distributing PRL
algorithms without requiring any a priori information about the environment,
making the agents communication-aware by design. We achieved this by
combining a dynamic partitioning strategy with an efficient heuristic that
performs a co-allocation of processing, i.e., the RL agent, and storage, i.e., Q-
table, that minimizes agent communication. Our approach exploits the agent’s
exploration capabilities to build the necessary domain knowledge to divide
the state-action space into multiple small and loosely coupled partitions and
assign a given partition to the agent that exploits it the most.

1https://doi.org/10.5281/zenodo.5208200
2https://github.com/miguelhdo/tc_spectrum

https://doi.org/10.5281/zenodo.5208200
https://github.com/miguelhdo/tc_spectrum

7.1. MAIN RESEARCH CONTRIBUTIONS 143

• We designed and implemented a local-affinity policy that exploits the locality
of state-action values in a given partition without affecting the convergence
guarantee of the RL algorithm. This policy, which is executed after the learning
policy of the RL agent, includes a second action selection filter to detect which
(semi) optimal actions may take the agent to a new state located in the same
partition as the actual state.

• We provided performance evaluations of a PRL system solving the robot
navigation problem in a smart factory and showed that the proposed algorithm
incurs almost no communication cost in a converged state and is scalable in
the number of RL agents solving the problem. Moreover, the results showed
that the communication-aware learning capability of the agents indirectly
drastically reduces the usage of available resources, e.g., energy consumption
or spectrum usage due to wireless communication transmissions, which may
complement the system’s overall efficiency.

The results of our final contribution provide a positive answer to the research ques-
tion 𝑄4: Can we provide communication-awareness capabilities to PRL agents
to reduce the communication overhead while deploying them in distributed in-
frastructure without requiring any a priori information about the deployment
environment?

Figure 7.1 summarizes the contributions presented in this dissertation in the context
of Machine Learning (ML)-based algorithms for the next-generation spectrum-sharing
frameworks using CIRNs. As mentioned before, part of the success of this research is that
the TR module and the pattern prediction algorithm were implemented in the SCATTER
radio [15] and evaluated in the Colosseum testbed during the DARPA SC2.

A complete visualization of all the contributions in this dissertation is presented in Figure
7.2. This figure is an extension of the one presented in Figure 4.2 and indicates where the
TC block would be placed and how a control- or user-plane application can be deployed
to run a PRL-based algorithm. Notice that although the example used in Chapter 6 is
the robot navigation problem in a smart factory, it is expected that in the future, the
communication system integrated into them will be based on intelligent radios and that
Multi-Agent Reinforcement Learning (MARL)-based algorithms at the user (e.g., the
presented item-fetch application for autonomous vehicles in a smart-factory) and/or the
control plane (e.g., wireless routing) will be running and exchanging information over
the air.

Let us now analyze these contributions and how they support our two hypotheses from
the perspective of the problem statements presented in Section 1.2. Hypothesis 𝐻1
envisions a next-generation spectrum sharing framework with incumbent protection
based on the concept of CIRNs, which directly addresses the problem statements 𝑃1 and
𝑃2 via 𝐶2. Specifically, 𝐶2 provides an architecture for next-generation spectrum sharing
frameworks with a guarantee of incumbent protection that does not require any central
infrastructure to control and grant access to a shared spectrum, providing the solution
to the problem statement 𝑃1 (Centralized multi-tier spectrum sharing models can not
scale). Simultaneously, this framework is built on top of the concept of CIRNs and
contains a two-step ML-based algorithm that, combined with collaborative information,
can recognize, learn, and proactively forecast incumbent’s transmissions in near real-
time. This outcome directly tackles the problem statement 𝑃2 (Cognitive Radio (CR)

144 CHAPTER 7. CONCLUSIONS

Figure 7.1: Research contributions in the context of CIRN. The two first components have
been validated and demonstrated during the DARPA SC2 competition (team SCATTER).
The third component has been validated using emulated data, and the data set is publicly
available for repeatability of the research.

technologies can not share and reuse spectrum efficiently as they work in isolation
and only local information).

Complementing 𝐶2, 𝐶3 provides a general framework to perform TC at any layer of the
radio network, which removes the limitation of TC systems that are based on packets
at Link Layer (L2) (or above) when using them in wireless environments. This novel
capability allows the radio to sense and understand the environment state based on the
traffic that flows over the spectrum to adapt the radio parameters dynamically, so the
users’ requirements are fulfilled while optimizing the shared spectrum usage, which ad-
dresses the problem statement (𝑃3 TC systems are not designed to support the spectrum
management decision-making processes for radio networks in a shared spectrum).

The use of SSL to design a DL model for TR in 𝐶1 allows the use of all the collected
spectrum data to train the DL while only requiring labeling a part of it to achieve a com-
petitive performance compared to a model that requires the whole dataset to be labeled,
solving the problem statement 𝑃4 (Collecting spectrum data to train DL models for
spectrum sensing is easy, but labeling is hard). At the same time, the proposed algo-
rithm is a critical functional block of the contributions 𝐶2 and 𝐶3, supporting hypothesis
𝐻1 too. In this regard, the designed and evaluated a DL architecture based on CNNs
to solve the task of classifying packets directly on spectrum data from contribution 𝐶3
provided experimental validation of the feasibility to deploy this approach for real-time
operations, addressing the problem statement (𝑃5 DL algorithms have outperformed
traditional optimization methods in solving several networking problems when con-
sidering learning-related performance metrics like accuracy, but ML practitioners tend
to neglect equally essential metrics related to the execution of these algorithms like
inference time).

7.2. OPEN CHALLENGES AND FUTURE PROSPECTS OF THIS RESEARCH 145

Shared Spectrum

PRL-based App

UDM

MAC

PHY

RF-MON

Technology
Recognition (TR)

Repeated Spectrum
Usage Pattern

Prediction (RSUPP)

Incumben Protection
Policy (IPP) C

O
M

M
U

N
IC

AT
IO

N
 B

U
S

C
O

M
M

U
N

IC
AT

IO
N

 B
U

S

Collaboration
Interface (CI)

FA
C

AD
E

Data planeControl plane

Spectrum-based
Traffic Classifier

(TC)

UDM

MAC

PHY

RF-MON

Technology
Recognition (TR)

Repeated Spectrum
Usage Pattern

Prediction (RSUPP)

Incumben Protection
Policy (IPP)C

O
M

M
U

N
IC

AT
IO

N
 B

U
S

C
O

M
M

U
N

IC
AT

IO
N

 B
U

S

Collaboration
Interface (CI)

FA
C

AD
E

Data plane Control plane

Collaboration
Network

Spectrum-based
Traffic Classifier

(TC)

PRL with minimal communication overhead

PRL-based App

Collaboration
Network

RL-based APPPRL-based App

PRL with minimal communication overhead

Intelligent Control and
Desicion Engine (ICDE) Intelligent Control and

Desicion Engine (ICDE)

Figure 7.2: Combining the different contributions of this dissertation into the SCATTER
CIRN.

Hypothesis 𝐻2 focuses on leveraging collaborative learning algorithms to efficiently em-
ploy data-driven methods in CIRNs, addressing problem statement 𝑃6. For this, Con-
tribution 𝐶4 provides a novel general-purpose partitioning algorithm that enhances PRL
algorithms. This enhancement supports the execution of RL-based applications in dis-
tributed environments with minimal communication overhead and without requiring
any a priori information about the environment, making the agents communication-
aware by design, thus addressing problem statement 𝑃6 (Table-based RL algorithms
are not designed to run in decentralized networking environments as they are not
communication-aware). Compared to the other contributions, which directly support
hypothesis 𝐻1 by providing tailored solutions to radio network problems, 𝐶4 offers a
more generic solution. It enables any table-based PRL algorithm to run on a distributed
network, independently of the specific problem being solved, including CIRNs. In other
words, when novel solutions are developed on top of 𝐶4 and tailored to learn and solve
problems in CIRNs, they will address the learning scalability issues in table-based RLs in
centralized environments (𝑃1) and the inefficiency of traditional CR technologies when
learning in isolation (𝑃2).

7.2 Open challenges and future prospects of this research

In the previous section, we presented this dissertation’s main contributions and how they
answered the research questions and validated the stated hypotheses. However, tech-
nology is evolving every day, and new challenges emerge at the same peace. Therefore,
it is crucial to analyze the open challenges this dissertation has left and the perspective
of this research from both the radio spectrum management and ML point of view.

146 CHAPTER 7. CONCLUSIONS

7.2.1 Autonomous spectrum management frameworks

It is essential to recognize that although we demonstrated that CIRNs could collaborate
to share spectrum efficiently while protecting the incumbents autonomously, we believe
and hope this research brings new research challenges where game theory, AI, and
wireless networks converge all together. More specifically:

1. The proposed architecture is based on decentralization and collaboration. The
DARPA SC2 competition provided a point score system to incentivize collabora-
tion [96, 16]. However, that scoring system was designed for a competition, not a
real use-case scenario. Therefore, further research is required to design and vali-
date practical mechanisms to incentivize the collaboration among CIRNs toward a
common objective like fair spectrum sharing and incumbent protection.

2. Today’s integration of AI-based functionalities in networking devices is still in the
early stages. Most algorithms are designed and trained offline to be later deployed
on devices without automation. Unfortunately, this approach is not scalable, error-
pruned, and reduces the opportunities for adoption at a large scale. Therefore,
further efforts are required towards designing an end-to-end AI-native architecture
in 5G and beyond to support advanced technologies like CIRNs.

7.2.2 ML-based functions for autonomous spectrum management

In this dissertation, we presented two state-of-the-art ML-based functionalities to provide
novel capacities to CIRNs: TR and TC at any layer. However, during the design of the
DNN architectures and its implementation, the following open challenges remain:

7.2.2.1 Technology Recognition

1. The proposed DL model for TR can be implemented to use either IQ samples, as
shown in Chapter 3, or average Fast Fourier Transform (FFT) values, as in Chapter 4.
There is a trade-off between selecting one of the other, e.g., raw IQ removes the need
for any transformation of the spectral data, but the models require a bigger DNN
to achieve good performance. However, similar works on modulation recognition,
which is closely related to TR, have proposed other input representations of the
spectral data, such as spectrograms [190] or wavelet transform [191]. As the DL
model proposed for TR is also performing automatic feature extraction on raw IQ
samples, further research is required to evaluate and analyze the impact of the input
representation on the model complexity and performance, an important aspect to
consider when implementing and deploying the algorithm in real hardware.

2. The workflow of the proposed SSL approach for TR provides the building block
to gather data from the radios, pre-process the data for exploiting unsupervised
learning, and only label a few samples per class. However, it is important to
include a mechanism to automatize the whole workflow, and Machine Learning
Model Operationalization Management (MLOps) frameworks would be ideal for
this. However, how do we integrate MLOps into the system to provide the ML

7.2. OPEN CHALLENGES AND FUTURE PROSPECTS OF THIS RESEARCH 147

workflows required for this task? Moreover, it is expected that functionalities such
as TR would become virtualized functionalities that can be easily deployed on any
radio. Therefore, how can we provide management and orchestration capabilities
for intelligence to the radios? These are open questions that recent projects are
trying to answer from an architectural point of view [192], and that can be explored
and extended to the radio domain.

3. In general, traditional methods such as Likelihood-Based (LB) and expert Feature-
Based (FB) engineering combined with pattern recognition have been outperformed
by supervised DL methods in the task of TR. Supervised DL methods remove the
need for expert knowledge about the environment and the signal features used
for classification by using the power of automatic feature abstraction. However, it
requires the whole data set to be labeled. Labeling becomes time-consuming and
challenging for both the technologies to be recognized and the environment to be
entirely unknown. To overcome these limitations, in this chapter, we propose an
SSL approach for TR that separates the feature extraction from the classification
task in the DL architecture, so the use of unlabeled data is maximized. At the same
time, the proposed approach minimizes the use of domain expertise knowledge by
requiring only a small portion of the entire data set to be labeled to obtain a good
performance, which is not the case with supervised DL models.

4. Although SSL using DAE remains state of the art for achieving label-efficient TR,
several techniques have emerged in recent years. Self-Supervised Learning (Self-
SL)[72] leverages large amounts of unlabeled data to generate predictive signals.
Transfer Learning (TL)[73] allows the adaptation of pre-trained models to new
tasks with minimal labeled data. Few-Shot Learning (FSL)[74] and Meta-learning
(Meta-L)[75] enable rapid generalization from limited examples, addressing the
challenges of scarce data. These recent advances also open new opportunities to
develop novel architectures that further reduce the need for labeled data, utilizing
either these novel learning paradigms or more advanced DAE architectures [78, 79].

7.2.2.2 Traffic Classification using spectrum data

1. The DL model for TC should be validated on L1 packets affected by real channel
conditions as a performance decrease is expected is expected as demonstrated in
[117, 118]. Depending on the results, several mechanisms can be used to minimize
the negative impact on accuracy. For example, the mechanism we used to create
the dataset, i.e., generating synthetic standard-compliant L1 packets that carry real
L2 frames, can perform data augmentation to improve generalization.

2. The evaluations were only carried out on the proposed DL models to solve the TC
tasks. Although the prediction time was very promising, we only focused on the
classification tasks with L1 packets, where the models run on high-end hardware.
In addition, we did not benchmark the pre-processing step nor compared the
models against state-of-the-art TC systems on L2. Therefore, it is essential to
benchmark the complete procedure in several implementation platforms. This
includes Software Defined Radio (SDR)-only, SDR+host machine, and RAT on-
chip for pre-processing and CPU, low-end GPUs, high-end GPUs for running the
models, and their respective comparison against byte-based approaches. Those
evaluations will provide an initial base on further improvement on the proposed

148 CHAPTER 7. CONCLUSIONS

models such that they can run on constrained-resource devices and find a good
trade-off between model size and accuracy while providing competitive results
compared to TC systems on L2 packets.

3. As presented in Chapter 5, we created three different TC models to solve three
different but related tasks. This approach does not scale well at the network edge
as it involves a parallel execution of the various models (for training and inference)
with the inevitable increment of computational and storage requirements. To over-
come this problem, Multi-Task Learning (MTL) should be explored to reduce the
computing/storage requirements, achieve higher performance, and simplify the
training procedure. As recently investigated and demonstrated in [114] and com-
bined with distributed learning approaches, such as Gossip Learning (GL) used
in [116], MTL might speed up the learning process and increase the system’s scal-
ability. Alternative, or in combination with MTL, techniques like Neural Network
(NN) quantization [193] and or pruning [194] to reduce the complexity of each
model can be explored. A related problem is a possible bias and damage to the
model performance caused by using fixed-length input as required by CNNs in
the presence of significant variations in the input data’s length. An alternative to
address this problem is to explore RNNs again in the context of MTL (e.g., RNN-
based Autoencoders (AEs)) to reduce the final complexity of the resulting model.
However, a careful performance analysis should be conducted to determine if the
reduction in computation complexity obtained using MTL compensates for the in-
evitable complexity increase of using RNNs to support input of variable lengths
instead of CNNs.

4. Transmitting L1 packets over the air will result in receiving packets with a large
variety of Signal-to-Noise Ratio (SNR) values compared to the values used in the
generated dataset (20 to 30dB). Changes in the SNR values will modify the original
signal and negatively impact the DL classifier’s performance in the case of low
SNR values, as shown in previous work [83, 130]. For this, data augmentation
techniques can provide a data set with packets generated with more SNR values
(e.g., in the range between -20 to 20 dB), so an SNR sensitivity analysis can be
performed. With the resulting dataset, researchers could investigate mechanisms
to mitigate the negative impact on the classifier’s performance when packets are
received with low SNR. For instance, denoising AEs as feature extractors may
improve the performance in the presence of high noise levels. Additionally, the
augmented dataset could foster the development and implementation of novel
algorithms, closing the performance gap when a classifier is trained with a synthetic
but standard-compliant dataset and deployed in a real environment.

7.2.3 Multi-Agent Reinforcement Learning running on distributed en-
vironments

AI-based closed-loop control will be a key aspect of future networks, and MARL algo-
rithms will naturally empower many of them. Distributed intelligence running across
the network, e.g., an AI-based functionality running on the radios, needs to be designed
such that the cost of sharing the knowledge among agents over the network is minimal
so that it has a minimal impact on the learning process. In this dissertation, we focused

7.2. OPEN CHALLENGES AND FUTURE PROSPECTS OF THIS RESEARCH 149

on PRL as a particular case of MARL. However, MARL is a framework, and several ap-
proaches can be followed to realize it, which results in the need for further research on
designing and implementing similar mechanisms tailored to other MARL approaches.
More precisely:

1. In the case of PRL, we need to investigate the performance of this algorithm fur-
ther using other RL algorithms like State–action–reward–state–action (SARSA) and
other types of problems from different domains (e.g., routing on wireless networks
[35]). Besides, it may be helpful to design and implement a heuristic to automati-
cally tune the tuple (𝜂, 𝜅, 𝜏) to avoid a parameter sweeping to select them.

2. State-of-the-art MARL algorithms are based on Deep Reinforcement Learning
(DRL) [195]. The core of a DRL agent is a supervised DL algorithm, and these
algorithms suffer from scalability problems when running over a distributed net-
work due to communication overhead [196]. One problem is that our approach
for table-based PRL can not be directly applied to DRL agents as the knowledge
about state-action space is not represented as a table but is encoded internally in
the weights of the DNN. In this case, further research is required to design DRL
algorithms that reduce the communication overhead by design.

150 CHAPTER 7. CONCLUSIONS

Bibliography

[1] ETSI, “Autonomous Networks, supporting tomorrow’s ICT business,” 3rd
Generation Partnership Project (3GPP), White Paper 40, October 2020, 1st Edition.
[Online]. Available: https://www.3gpp.org/DynaReport/23288.htm

[2] T. Forum, “Autonomous Networks: Empowering digital transformation – from
strategy to implementation,” TM Forum, Whitepaper IG1305, September 2022.

[3] O-RAN Alliance, “AI/ML Workflow Description and Requirements v01.02.02,”
O-RAN Alliance, Technical Specification, 2020.

[4] A. Garcia-Saavedra et al., “O-RAN: Disrupting the Virtualized RAN Ecosystem,”
IEEE Communications Standards Magazine, pp. 1–8, 2021.

[5] O-RAN Alliance, “Architecture Description v02.00.00,” O-RAN Alliance, Technical
Specification, 2020.

[6] Vodafone. An industrial 5g spectrum policy for europe. vodafone
public policy paper. (Visited on 06-January-2020). [Online]. Avail-
able: https://www.vodafone.com/content/dam/vodcom/files/public-policy/
5g-report/an-industrial-5g-spectrum-policy-for-europe.pdf

[7] P. Marshall, Three-Tier Shared Spectrum, Shared Infrastructure, and a Path to 5G. Cam-
bridge University Press, 2017.

[8] F. C. Commission, “Spectrum policy task force,” FCC, Report ET Docket No. 02-
135, November, 2004.

[9] A. Karpathy. Software 2.0. Visited on 10-August-2021. [Online]. Available:
https://karpathy.medium.com/software-2-0-a64152b37c35

[10] E. Research. Usrp n310. (Visited on 06-January-2023). [Online]. Available:
https://www.ettus.com/all-products/usrp-n310/

[11] N. I. Corp. (2023) Software defined radio: Past, present, and future. Visited
on 10-July-2023. [Online]. Available: https://www.ni.com/en/perspectives/
software-defined-radio-past-present-future.html

[12] M. Polese, L. Bonati, S. D’Oro, S. Basagni, and T. Melodia, “Understanding
o-ran: Architecture, interfaces, algorithms, security, and research challenges,”
Commun. Surveys Tuts., vol. 25, no. 2, p. 1376–1411, jan 2023. [Online]. Available:
https://doi.org/10.1109/COMST.2023.3239220

[13] DARPA. (2016) Spectrum collaboration challenge (sc2). [Online]. Available:
https://www.darpa.mil/program/spectrum-collaboration-challenge

151

https://www.3gpp.org/DynaReport/23288.htm
https://www.vodafone.com/content/dam/vodcom/files/public-policy/5g-report/an-industrial-5g-spectrum-policy-for-europe.pdf
https://www.vodafone.com/content/dam/vodcom/files/public-policy/5g-report/an-industrial-5g-spectrum-policy-for-europe.pdf
https://karpathy.medium.com/software-2-0-a64152b37c35
https://www.ettus.com/all-products/usrp-n310/
https://www.ni.com/en/perspectives/software-defined-radio-past-present-future.html
https://www.ni.com/en/perspectives/software-defined-radio-past-present-future.html
https://doi.org/10.1109/COMST.2023.3239220
https://www.darpa.mil/program/spectrum-collaboration-challenge

152 BIBLIOGRAPHY

[14] ——. Darpa spectrum collaboration challenge. Visited on 10-
August-2021. [Online]. Available: https://www.darpa.mil/news-events/
spectrum-collaboration-challenge-sc2

[15] S. D. Giannoulis, C. Donato, R. Mennes, F. A. P. de Figueiredo, I. Jabandzic, Y. D.
Bock, M. Camelo, J. Struye, P. Maddala, M. Mehari, A. Shahid, D. Stojadinovic,
M. Claeys, F. Mahfoudhi, W. Liu, I. Seskar, S. Latré, and I. Moerman, “Dynamic and
collaborative spectrum sharing: The scatter approach,” in 2019 IEEE International
Symposium on Dynamic Spectrum Access Networks (DySPAN), 2019, pp. 1–6.

[16] R. Mennes, J. Struye, C. Donato, M. Camelo, I. Jabandžić, S. Giannoulis, I. Moer-
man, and S. Latré, “Collaborative flow control in the darpa spectrum collaboration
challenge,” IEEE Transactions on Network and Service Management, vol. 17, no. 4, pp.
2024–2038, 2020.

[17] R. Mennes, M. Camelo, M. Claeys, and S. Latré, “A neural-network-based mf-
tdma mac scheduler for collaborative wireless networks,” in 2018 IEEE Wireless
Communications and Networking Conference (WCNC), 2018, pp. 1–6.

[18] L. Bonati, P. Johari, M. Polese, S. D’Oro, S. Mohanti, M. Tehrani-Moayyed, D. Villa,
S. Shrivastava, C. Tassie, K. Yoder, A. Bagga, P. Patel, V. Petkov, M. Seltser, F. Restuc-
cia, A. Gosain, K. R. Chowdhury, S. Basagni, and T. Melodia, “Colosseum: Large-
scale wireless experimentation through hardware-in-the-loop network emulation,”
in 2021 IEEE International Symposium on Dynamic Spectrum Access Networks (DyS-
PAN), 2021, pp. 105–113.

[19] P. Tilghman, “Will rule the airwaves: A darpa grand challenge seeks autonomous
radios to manage the wireless spectrum,” IEEE Spectrum, vol. 56, pp. 28–33, 2019.

[20] N. U. Institute for the Wireless Internet of Things. Colosseum: The world’s
most powerful wireless network emulator. (Visited on 06-January-2023). [Online].
Available: https://www.northeastern.edu/colosseum/

[21] ITU-T, “ Architectural framework for machine learning in future networks includ-
ing IMT-2020,” ITU-T, Recommendation, 2019.

[22] Y. Xiao, S. Shi, W. Lou, C. Wang, X. Li, N. Zhang, Y. T. Hou, and J. H. Reed, “Decen-
tralized spectrum access system: Vision, challenges, and a blockchain solution,”
IEEE Wireless Communications, vol. 29, no. 1, pp. 220–228, 2022.

[23] M. Troglia, J. Melcher, Y. Zheng, D. Anthony, A. Yang, and T. Yang, “Fair: Federated
incumbent detection in cbrs band,” in 2019 IEEE International Symposium on Dynamic
Spectrum Access Networks (DySPAN), 2019, pp. 1–6.

[24] Z. Li, W. Wang, J. Guo, Y. Zhu, L. Han, and Q. Wu, “Blockchain-assisted dynamic
spectrum sharing in the cbrs band,” in 2021 IEEE/CIC International Conference on
Communications in China (ICCC), 2021, pp. 864–869.

[25] M. M. Sohul, M. Yao, T. Yang, and J. H. Reed, “Spectrum access system for the
citizen broadband radio service,” IEEE Communications Magazine, vol. 53, no. 7, pp.
18–25, 2015.

[26] D. Stojadinovic and M. Buddhikot, “Design of a secondary market for fractional
spectrum sub-leasing in three-tier spectrum sharing,” in 2019 IEEE International
Symposium on Dynamic Spectrum Access Networks (DySPAN), 2019, pp. 1–8.

https://www.darpa.mil/news-events/spectrum-collaboration-challenge-sc2
https://www.darpa.mil/news-events/spectrum-collaboration-challenge-sc2
https://www.northeastern.edu/colosseum/

BIBLIOGRAPHY 153

[27] T. W. Hazlett, “Assigning property rights to radio spectrum users: Why did fcc
license auctions take 67 years?” The Journal of Law & Economics, vol. 41, no. S2, pp.
529–576, 1998. [Online]. Available: http://www.jstor.org/stable/10.1086/467402

[28] C. Baquero Barneto, T. Riihonen, M. Turunen, L. Anttila, M. Fleischer, K. Stadius,
J. Ryynänen, and M. Valkama, “Full-duplex ofdm radar with lte and 5g nr wave-
forms: Challenges, solutions, and measurements,” IEEE Transactions on Microwave
Theory and Techniques, vol. 67, no. 10, pp. 4042–4054, 2019.

[29] S. Biswas, A. Bishnu, F. A. Khan, and T. Ratnarajah, “In-band full-duplex dynamic
spectrum sharing in beyond 5g networks,” IEEE Communications Magazine, vol. 59,
no. 7, pp. 54–60, 2021.

[30] P. Soto, M. Camelo, J. Fontaine, M. Girmay, A. Shahid, V. Maglogiannis, E. De
Poorter, I. Moerman, J. F. Botero, and S. Latré, “Augmented wi-fi: An ai-based
wi-fi management framework for wi-fi/lte coexistence,” in 2020 16th International
Conference on Network and Service Management (CNSM), 2020, pp. 1–9.

[31] L. Bottou, F. E. Curtis, and J. Nocedal, “Optimization methods for large-scale
machine learning,” Siam Review, vol. 60, pp. 223–311, 6 2016. [Online]. Available:
http://arxiv.org/abs/1606.04838

[32] A. Halevy, P. Norvig, and F. Pereira, “The unreasonable effectiveness of
data,” IEEE Intelligent Systems, vol. 24, pp. 8–12, 3 2009. [Online]. Available:
http://ieeexplore.ieee.org/document/4804817/

[33] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. The MIT Press, 2016.

[34] O. B. Sezer, E. Dogdu, and A. M. Ozbayoglu, “Context-aware computing, learning,
and big data in internet of things: a survey,” IEEE Internet of Things Journal, vol. 5,
no. 1, pp. 1–27, 2017.

[35] T. Hendriks, M. Camelo, and S. Latré, “Q ² -routing : A qos-aware
q-routing algorithm for wireless ad hoc networks,” in International Conference on
Wireless and Mobile Computing, Networking and Communications, vol. 2018-Octob,
2018.

[36] X. Chen, Y. Li, and L. Liu, “A coordinated path planning algorithm for multi-
robot in intelligent warehouse,” in 2019 IEEE International Conference on Robotics
and Biomimetics (ROBIO), 2019, pp. 2945–2950.

[37] L. Busoniu, R. Babuska, B. D. Schutter, and B. D. Schutter, “A comprehensive
survey of multiagent reinforcement learning,” Systems, Man, and Cybernetics, Part
C: Applications and Reviews, vol. 38, pp. 156–172, 2008.

[38] R. M. Kretchmar, “Reinforcement learning algorithms for homogeneous multi-
agent systems,” Workshop on Agent and Swarm Programming, 2003.

[39] S. D. Whitehead, “A Complexity Analysis of Cooperative Mechanisms in Rein-
forcement Learning,” AAAI-91 Proceedings, pp. 607–613, 1991.

[40] K.-L. Du and M. N. Swamy, Wireless communication systems: from RF subsystems to
4G enabling technologies. Cambridge University Press, 2010.

http://www.jstor.org/stable/10.1086/467402
http://arxiv.org/abs/1606.04838
http://ieeexplore.ieee.org/document/4804817/

154 BIBLIOGRAPHY

[41] P. Baudin, Wireless transceiver architecture: Bridging RF and digital communications.
John Wiley & Sons, 2014.

[42] J. W. Leis, Digital signal processing using MATLAB for students and researchers. John
Wiley & Sons, 2011.

[43] V. K. Madisetti, The Digital Signal Processing Handbook-3 Volume Set. CRC press,
2018.

[44] Z. Zhu and A. K. Nandi, Automatic Modulation Classification. John Wiley & Sons,
Ltd, 12 2014. [Online]. Available: http://doi.wiley.com/10.1002/9781118906507

[45] S. K. Jayaweera, Signal processing for cognitive radios. John Wiley & Sons, 2014.

[46] S. Haykin, “Cognitive radio: brain-empowered wireless communications,” IEEE
Journal on Selected Areas in Communications, vol. 23, no. 2, pp. 201–220, 2005.

[47] J. Mitola and G. Maguire, “Cognitive radio: making software radios more per-
sonal,” IEEE Personal Communications, vol. 6, no. 4, pp. 13–18, 1999.

[48] M. Camelo, R. Mennes, A. Shahid, J. Struye, C. Donato, I. Jabandzic, S. Giannoulis,
F. Mahfoudhi, P. Maddala, I. Seskar, I. Moerman, and S. Latre, “An ai-based incum-
bent protection system for collaborative intelligent radio networks,” IEEE Wireless
Communications, vol. 27, no. 5, pp. 16–23, 2020.

[49] O. Chapelle, B. Schlkopf, and A. Zien, Semi-Supervised Learning, 1st ed.,
O. Chapelle, B. Scholkopf, and A. Zien, Eds. The MIT Press, 9 2006. [Online].
Available: https://direct.mit.edu/books/book/3824

[50] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. Cambridge,
MA, USA: A Bradford Book, 2018.

[51] K. Tuyls and G. Weiss, “Multiagent learning: Basics, challenges, and
prospects,” AI Magazine, vol. 33, p. 41, 2012. [Online]. Available:
https://aaai.org/ojs/index.php/aimagazine/article/view/2426

[52] E. Research. Introducing the most advanced sdr – the ni ettus usrp x410.
(Visited on 06-January-2023). [Online]. Available: https://www.ettus.com/
introducing-the-most-advanced-sdr-the-ni-ettus-usrp-x410/

[53] R. Mennes, F. A. P. D. Figueiredo, and S. Latré, “Multi-agent deep learning for
multi-channel access in slotted wireless networks,” IEEE Access, vol. 8, pp. 95 032–
95 045, 2020.

[54] V. Vapnik, Estimation of dependences based on empirical data. Springer Science &
Business Media, 2006.

[55] C. J. C. H. Watkins, “Learning from delayed rewards,” Ph.D. dissertation, King’s
College, Cambridge, 1989.

[56] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement learning: A
survey,” Journal of Artificial Intelligence Research, vol. 4, pp. 237–285, 1996.

[57] F. S. Melo and M. Lopes, “Convergence of independent adaptive learners,” Progress
in Artificial Intelligence, Proceedings, vol. 4874, pp. 555–567, 2007.

http://doi.wiley.com/10.1002/9781118906507
https://direct.mit.edu/books/book/3824
https://aaai.org/ojs/index.php/aimagazine/article/view/2426
https://www.ettus.com/introducing-the-most-advanced-sdr-the-ni-ettus-usrp-x410/
https://www.ettus.com/introducing-the-most-advanced-sdr-the-ni-ettus-usrp-x410/

BIBLIOGRAPHY 155

[58] R. M. Kretchmar, “Parallel reinforcement learning,” in The 6th World Conference on
Systemics, Cybernetics, and Informatics, 2002.

[59] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks
are universal approximators,” Neural Networks, vol. 2, no. 5, pp. 359–366,
1989. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
0893608089900208

[60] I. C. Systems, “Cisco visual networking index: Global mobile data traffic forecast
update, 2017-2022 (white paper),” Cisco Public Information, pp. 1–35, 2017.

[61] Ericsson, “Mobile data traffic outlook,” Ericsson, Ericsson Mobility report data and
forecasts, June 2023.

[62] M. Bkassiny, Y. Li, and S. K. Jayaweera, “A survey on machine-learning techniques
in cognitive radios,” IEEE Communications Surveys & Tutorials, vol. 15, pp. 1136–
1159, 2013. [Online]. Available: http://ieeexplore.ieee.org/document/6336689/

[63] E. Karami and O. A. Dobre, “Identification of sm-ofdm and al-ofdm
signals based on their second-order cyclostationarity,” IEEE Transactions on
Vehicular Technology, vol. 64, pp. 942–953, 3 2015. [Online]. Available:
http://ieeexplore.ieee.org/document/6819454/

[64] O. Dobre, “Signal identification for emerging intelligent radios: classical problems
and new challenges,” IEEE Instrumentation & Measurement Magazine, vol. 18, pp.
11–18, 4 2015. [Online]. Available: https://ieeexplore.ieee.org/document/7066677

[65] M. Shi, A. Laufer, Y. Bar-Ness, and W. Su, “Fourth order cumulants in distin-
guishing single carrier from ofdm signals,” in MILCOM 2008 - 2008 IEEE Military
Communications Conference. IEEE, 11 2008.

[66] A. Al-Habashna, O. A. Dobre, R. Venkatesan, and D. C. Popescu, “Second-order
cyclostationarity of mobile wimax and lte ofdm signals and application to
spectrum awareness in cognitive radio systems,” IEEE Journal of Selected
Topics in Signal Processing, vol. 6, pp. 26–42, 2 2012. [Online]. Available:
http://ieeexplore.ieee.org/document/6111235/

[67] M. Firdaoussi, H. Ghennioui, and M. E. Kamili, “Recognition of ofdm
and scld signals based on the generalized mean ambiguity function,” in
2016 International Conference on Wireless Networks and Mobile Communications
(WINCOM). IEEE, 10 2016, pp. 230–234. [Online]. Available: http:
//ieeexplore.ieee.org/document/7777219/

[68] A. Bouzegzi, P. Ciblat, and P. Jallon, “Maximum likelihood based methods
for ofdm intercarrier spacing characterization,” in 2008 IEEE 19th International
Symposium on Personal, Indoor and Mobile Radio Communications. IEEE, 9 2008, pp.
1–5. [Online]. Available: http://ieeexplore.ieee.org/document/4699444/

[69] M. Kulin, T. Kazaz, I. Moerman, and E. D. Poorter, “End-to-end learning from
spectrum data: A deep learning approach for wireless signal identification in
spectrum monitoring applications,” IEEE Access, vol. 6, pp. 18 484–18 501, 2018.
[Online]. Available: http://ieeexplore.ieee.org/document/8325299/

https://www.sciencedirect.com/science/article/pii/0893608089900208
https://www.sciencedirect.com/science/article/pii/0893608089900208
http://ieeexplore.ieee.org/document/6336689/
http://ieeexplore.ieee.org/document/6819454/
https://ieeexplore.ieee.org/document/7066677
http://ieeexplore.ieee.org/document/6111235/
http://ieeexplore.ieee.org/document/7777219/
http://ieeexplore.ieee.org/document/7777219/
http://ieeexplore.ieee.org/document/4699444/
http://ieeexplore.ieee.org/document/8325299/

156 BIBLIOGRAPHY

[70] N. Bitar, S. Muhammad, and H. H. Refai, “Wireless technology identification
using deep convolutional neural networks,” in 2017 IEEE 28th Annual International
Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC). IEEE,
10 2017, pp. 1–6. [Online]. Available: http://ieeexplore.ieee.org/document/
8292183/

[71] S. Yi, H. Wang, W. Xue, X. Fan, L. Wang, J. Tian, and R. Matsukura, “Interference
source identification for ieee 802.15.4 wireless sensor networks using deep learn-
ing,” in 2018 IEEE 29th Annual International Symposium on Personal, Indoor and Mobile
Radio Communications (PIMRC). IEEE, 9 2018.

[72] J. Gui, T. Chen, J. Zhang, Q. Cao, Z. Sun, H. Luo, and D. Tao, “A survey on self-
supervised learning: Algorithms, applications, and future trends,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, pp. 1–20, 2024.

[73] F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, and Q. He, “A
comprehensive survey on transfer learning,” Proceedings of the IEEE, vol. 109, no. 1,
pp. 43–76, 2021.

[74] G. Huang, I. Laradji, D. Vázquez, S. Lacoste-Julien, and P. Rodríguez, “A survey of
self-supervised and few-shot object detection,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 45, no. 4, pp. 4071–4089, 2023.

[75] T. Hospedales, A. Antoniou, P. Micaelli, and A. Storkey, “Meta-learning in neural
networks: A survey,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 44, no. 9, pp. 5149–5169, 2022.

[76] H. Navidan, M. Girmay, M. Seif, H. V. Poor, I. Moerman, and A. Shahid, “Vehicular
intelligence at the edge: A decentralized federated learning approach for technol-
ogy recognition,” in 2024 IEEE Vehicular Networking Conference (VNC), 2024, pp.
283–289.

[77] M. Girmay, V. Maglogiannis, D. Naudts, M. Aslam, A. Shahid, and I. Moerman,
“Technology recognition and traffic characterization for wireless technologies in
its band,” Vehicular Communications, vol. 39, p. 100563, 2023. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2214209622001103

[78] I. Remadna, L. S. Terrissa, Z. Al Masry, and N. Zerhouni, “Rul prediction using
a fusion of attention-based convolutional variational autoencoder and ensemble
learning classifier,” IEEE Transactions on Reliability, vol. 72, no. 1, pp. 106–124, 2023.

[79] D. D. Chakladar, S. Datta, P. P. Roy, and V. A. Prasad, “Cognitive workload es-
timation using variational autoencoder and attention-based deep model,” IEEE
Transactions on Cognitive and Developmental Systems, vol. 15, no. 2, pp. 581–590, 2023.

[80] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, “Greedy layer-wise training
of deep networks,” in Proceedings of the 19th International Conference on Neural
Information Processing Systems. MIT Press, 2006, pp. 153–160. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2976456.2976476

[81] G. Alain and Y. Bengio, “What regularized auto-encoders learn from the
data-generating distribution,” J. Mach. Learn. Res., vol. 15, pp. 3563–3593, 1 2014.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2627435.2750359

http://ieeexplore.ieee.org/document/8292183/
http://ieeexplore.ieee.org/document/8292183/
https://www.sciencedirect.com/science/article/pii/S2214209622001103
http://dl.acm.org/citation.cfm?id=2976456.2976476
http://dl.acm.org/citation.cfm?id=2627435.2750359

BIBLIOGRAPHY 157

[82] Y. LeCun and Y. Bengio, “Convolutional networks for images, speech, and time-
series,” in The Handbook of Brain Theory and Neural Networks, M. A. Arbib, Ed. MIT
Press, 1995.

[83] T. J. O’Shea, J. Corgan, and T. C. Clancy, “Convolutional radio modulation recogni-
tion networks,” in Engineering Applications of Neural Networks, C. Jayne and L. Iliadis,
Eds. Springer International Publishing, 2016, pp. 213–226.

[84] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: a simple way to prevent neural networks from overfitting,” The Journal
of Machine Learning Research, vol. 15, pp. 1929–1958, 2014.

[85] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in Interna-
tional Conference on Learning Representations (ICLR), 2015.

[86] F. Chollet et al. (2015) Keras. [Online]. Available: https://keras.io

[87] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,
G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G. Murray,
B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and X. Zheng,
“Tensorflow: A system for large-scale machine learning,” in Proceedings of the 12th
USENIX Conference on Operating Systems Design and Implementation, ser. OSDI’16.
USA: USENIX Association, 2016, p. 265–283.

[88] F. A. de Figueiredo, D. Stojadinovic, P. Maddala, R. Mennes, I. Jabandzic, X. Jiao,
and I. Moerman, “Scatter phy: A physical layer for the darpa spectrum collabora-
tion challenge,” in 2019 IEEE International Symposium on Dynamic Spectrum Access
Networks (DySPAN) (IEEE DySPAN 2019), 11 2019.

[89] O-RAN Alliance, “O-ran: Towards an open and smart ran,” O-RAN Alliance,
White Paper, 2018.

[90] A. Sinha and M. P. Wellman, “Incentivizing collaboration in a competition,” in
Proceedings of the 18th International Conference on Autonomous Agents and MultiA-
gent Systems. International Foundation for Autonomous Agents and Multiagent
Systems, 2019, pp. 556–564.

[91] T. Alpcan, H. Boche, M. L. Honig, and H. V. Poor, Mechanisms and games for dynamic
spectrum allocation. Cambridge University Press, 2013.

[92] R. Begleiter, R. El-Yaniv, and G. Yona, “On prediction using variable order markov
models,” J. Artif. Int. Res., vol. 22, pp. 385–421, 12 2004.

[93] G. Ding, Y. Jiao, J. Wang, Y. Zou, Q. Wu, Y. Yao, and L. Hanzo, “Spectrum inference
in cognitive radio networks: Algorithms and applications,” IEEE Communications
Surveys Tutorials, vol. 20, pp. 150–182, 2018.

[94] D. Roy, T. Mukherjee, M. Chatterjee, and E. Pasiliao, “Primary user activity pre-
diction in dsa networks using recurrent structures,” in 2019 IEEE International
Symposium on Dynamic Spectrum Access Networks (DySPAN), 2019, pp. 1–10.

[95] DARPA. Phase 3 sc2 cil project. Visited on 10-August-2021. [Online]. Available:
https://github.com/Furtad0/CIL

https://keras.io
https://github.com/Furtad0/CIL

158 BIBLIOGRAPHY

[96] D. Stojadinovic, F. A. P. de Figueiredo, P. Maddala, I. Seskar, and W. Trappe, “Sc2 cil:
Evaluating the spectrum voxel announcement benefits,” in 2019 IEEE International
Symposium on Dynamic Spectrum Access Networks (DySPAN), 2019, pp. 1–6.

[97] M. Hoyhtya, H. Sarvanko, M. Matinmikko, and A. Mammela, “Autocorrelation-
based traffic pattern classification for cognitive radios,” in 2011 IEEE Vehicular
Technology Conference (VTC Fall), 2011, pp. 1–5.

[98] M. K. Ehsan, “Performance analysis of the probabilistic models of ism data traffic
in cognitive radio enabled radio environments,” IEEE Access, vol. 8, pp. 140–150,
2020.

[99] G. S. Uyanik and S. Oktug, “Primary user activity classification aided channel
assignment in cognitive radio networks,” in 2016 IEEE Symposium on Computers and
Communication (ISCC), 2016, pp. 838–842.

[100] G. Aceto, D. Ciuonzo, A. Montieri, and A. Pescapé, “Toward effective mobile en-
crypted traffic classification through deep learning,” Neurocomputing, vol. 409, pp.
306 – 315, 2020.

[101] S. Valenti, D. Rossi, A. Dainotti, A. Pescapè, A. Finamore, and M. Mellia, Reviewing
Traffic Classification. Springer Berlin Heidelberg, 2013, pp. 123–147.

[102] F. Pacheco, E. Exposito, M. Gineste, C. Baudoin, and J. Aguilar, “Towards the de-
ployment of machine learning solutions in network traffic classification: A system-
atic survey,” IEEE Communications Surveys Tutorials, vol. 21, no. 2, pp. 1988–2014,
2019.

[103] C. Zhang, P. Patras, and H. Haddadi, “Deep learning in mobile and wireless
networking: A survey,” IEEE Communications Surveys & Tutorials, vol. 21, pp. 2224–
2287, 2019.

[104] M. Lotfollahi, M. J. Siavoshani, R. S. H. Zade, and M. Saberian, “Deep packet:
A novel approach for encrypted traffic classification using deep learning,” Soft
Computing, vol. 24, no. 3, pp. 1999–2012, 2020.

[105] P. Wang, X. Chen, F. Ye, and Z. Sun, “A survey of techniques for mobile service
encrypted traffic classification using deep learning,” IEEE Access, vol. 7, pp. 54 024–
54 033, 2019.

[106] T. T. T. Nguyen and G. Armitage, “A survey of techniques for internet traffic classi-
fication using machine learning,” IEEE Communications Surveys & Tutorials, vol. 10,
pp. 56–76, 2008.

[107] S. Rezaei and X. Liu, “Deep learning for encrypted traffic classification: An
overview,” IEEE Communications Magazine, vol. 57, no. 5, pp. 76–81, 2019.

[108] Z. Chen, K. He, J. Li, and Y. Geng, “Seq2img: A sequence-to-image based approach
towards ip traffic classification using convolutional neural networks,” in 2017 IEEE
International Conference on Big Data (Big Data). IEEE, 2017, pp. 1271–1276.

[109] W. Wang, M. Zhu, J. Wang, X. Zeng, and Z. Yang, “End-to-end encrypted traffic
classification with one-dimensional convolution neural networks,” in 2017 IEEE
International Conference on Intelligence and Security Informatics (ISI). IEEE, 2017, pp.
43–48.

BIBLIOGRAPHY 159

[110] S. Rezaei and X. Liu, “How to achieve high classification accuracy with just a
few labels: A semi-supervised approach using sampled packets,” arXiv preprint
arXiv:1812.09761, 2018.

[111] X. Wang, S. Chen, and J. Su, “Real network traffic collection and deep learning
for mobile app identification,” Wireless Communications and Mobile Computing, vol.
2020, 2020.

[112] M. Lopez-Martin, B. Carro, A. Sanchez-Esguevillas, and J. Lloret, “Network traffic
classifier with convolutional and recurrent neural networks for internet of things,”
IEEE Access, vol. 5, pp. 18 042–18 050, 2017.

[113] D. Li, Y. Zhu, and W. Lin, “Traffic identification of mobile apps based on varia-
tional autoencoder network,” in 2017 13th International Conference on Computational
Intelligence and Security (CIS). IEEE, 2017, pp. 287–291.

[114] A. Rago, G. Piro, G. Boggia, and P. Dini, “Multi-task learning at the mobile edge:
An effective way to combine traffic classification and prediction,” IEEE Transactions
on Vehicular Technology, vol. 69, no. 9, pp. 10 362–10 374, 2020.

[115] M. Miozzo, Z. Ali, L. Giupponi, and P. Dini, “Distributed and multi-task learning
at the edge for energy efficient radio access networks,” IEEE Access, vol. 9, pp.
12 491–12 505, 2021.

[116] H. D. Trinh, A. Fernandez Gambin, L. Giupponi, M. Rossi, and P. Dini, “Mobile
traffic classification through physical control channel fingerprinting: A deep learn-
ing approach,” IEEE Transactions on Network and Service Management, vol. 18, no. 2,
pp. 1946–1961, 2021.

[117] M. Camelo, T. De Schepper, P. Soto, J. Marquez-Barja, J. Famaey, and S. Latré,
“Detection of traffic patterns in the radio spectrum for cognitive wireless network
management,” in 2020 IEEE International Conference on Communications (ICC), 2020.

[118] T. De Schepper, M. Camelo, J. Famaey, and S. Latré, “Traffic classification at the
radio spectrum level using deep learning models trained with synthetic data,”
International Journal of Network Management, vol. n/a, no. n/a, p. e2100, 2020.

[119] T. J. O’Shea, S. Hitefield, and J. Corgan, “End-to-end radio traffic sequence recogni-
tion with recurrent neural networks,” in 2016 IEEE Global Conference on Signal and
Information Processing (GlobalSIP), 2016, pp. 277–281.

[120] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, 1997. [Online]. Available:
https://doi.org/10.1162/neco.1997.9.8.1735

[121] F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning to forget: continual predic-
tion with lstm,” in 1999 Ninth International Conference on Artificial Neural Networks
ICANN 99. (Conf. Publ. No. 470), vol. 2, 1999, pp. 850–855 vol.2.

[122] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training recurrent neural
networks,” in International conference on machine learning, 2013, pp. 1310–1318.

[123] Z. C. Lipton, J. Berkowitz, and C. Elkan, “A critical review of recurrent neural
networks for sequence learning,” arXiv preprint arXiv:1506.00019, 2015.

https://doi.org/10.1162/neco.1997.9.8.1735

160 BIBLIOGRAPHY

[124] S. Bai, J. Z. Kolter, and V. Koltun, “An empirical evaluation of generic convolutional
and recurrent networks for sequence modeling,” arXiv preprint arXiv:1803.01271,
2018.

[125] S. K. Sharma, T. E. Bogale, S. Chatzinotas, B. Ottersten, L. B. Le, and X. Wang,
“Cognitive radio techniques under practical imperfections: A survey,” IEEE com-
munications surveys and tutorials, 2015.

[126] V. Maglogiannis, A. Shahid, D. Naudts, E. De Poorter, and I. Moerman, “Enhancing
the coexistence of lte and wi-fi in unlicensed spectrum through convolutional
neural networks,” IEEE Access, vol. 7, pp. 28 464–28 477, 2019.

[127] A. Shahid, J. Fontaine, M. Camelo, J. Haxhibeqiri, M. Saelens, Z. Khan, I. Moer-
man, and E. Poorter, “A convolutional neural network approach for classification
of lpwan technologies: Sigfox, lora and ieee 802.15.4g,” in Annual IEEE Communi-
cations Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks
workshops, vol. 2019-June, 2019.

[128] P. K. Taksande, P. Jha, A. Karandikar, and P. Chaporkar, “Open5g: A software-
defined networking protocol for 5g multi-rat wireless networks,” 2020.

[129] M. Schulz, D. Wegemer, and M. Hollick, “Nexmon: Build your own wi-fi testbeds
with low-level mac and phy-access using firmware patches on off-the-shelf
mobile devices,” in Proceedings of the 11th Workshop on Wireless Network Testbeds,
Experimental Evaluation & CHaracterization, ser. WiNTECH ’17. New York, NY,
USA: Association for Computing Machinery, 2017, p. 59–66. [Online]. Available:
https://doi.org/10.1145/3131473.3131476

[130] M. Camelo, A. Shahid, J. Fontaine, F. A. P. de Figueiredo, E. De Poorter, I. Moerman,
and S. Latre, “A semi-supervised learning approach towards automatic wireless
technology recognition,” in 2019 IEEE International Symposium on Dynamic Spectrum
Access Networks (DySPAN), 2019, pp. 1–10.

[131] M. Boucadair, O. Bonaventure, M. Piraux, Q. D. Coninck, S. Dawkins,
M. Kühlewind, M. Amend, A. Kassler, Q. An, N. Keukeleire, and S. Seo, “3GPP
Access Traffic Steering Switching and Splitting (ATSSS) - Overview for IETF
Participants,” Internet Engineering Task Force, Internet-Draft draft-bonaventure-
quic-atsss-overview-00, 2020-05-30, work in Progress. [Online]. Available: https:
//datatracker.ietf.org/doc/html/draft-bonaventure-quic-atsss-overview-00

[132] F. Shaheen, B. Verma, and M. Asafuddoula, “Impact of automatic feature extrac-
tion in deep learning architecture,” in 2016 International conference on digital image
computing: techniques and applications (DICTA). IEEE, 2016, pp. 1–8.

[133] Wei Wang, Ming Zhu, Xuewen Zeng, Xiaozhou Ye, and Yiqiang Sheng, “Malware
traffic classification using convolutional neural network for representation learn-
ing,” in 2017 International Conference on Information Networking (ICOIN), 2017, pp.
712–717.

[134] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk,
and Y. Bengio, “Learning phrase representations using rnn encoder-decoder for
statistical machine translation,” arXiv preprint arXiv:1406.1078, 2014.

https://doi.org/10.1145/3131473.3131476
https://datatracker.ietf.org/doc/html/draft-bonaventure-quic-atsss-overview-00
https://datatracker.ietf.org/doc/html/draft-bonaventure-quic-atsss-overview-00

BIBLIOGRAPHY 161

[135] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of gated
recurrent neural networks on sequence modeling,” arXiv preprint arXiv:1412.3555,
2014.

[136] M. Kim, Z. Zhang, D. Kim, and S. Choi, “Deep-learning-based frame format
detection for ieee 802.11 wireless local area networks,” Electronics, vol. 9, no. 7,
2020. [Online]. Available: https://www.mdpi.com/2079-9292/9/7/1170

[137] V. Ninkovic, D. Vukobratovic, A. Valka, and D. Dumic, “Preamble-based packet
detection in wi-fi: A deep learning approach,” 2020.

[138] D. Magrin, C. Pielli, C. Stefanovic, and M. Zorzi, “Enabling lte rach collision
multiplicity detection via machine learning,” in 2019 International Symposium on
Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOPT), 2019,
pp. 1–8.

[139] M. Dwarampudi and N. Reddy, “Effects of padding on lstms and cnns,” arXiv
preprint arXiv:1903.07288, 2019.

[140] ITU-T, “Architectural framework for machine learning in future networks
including imt-2020,” ITU-T, Recommendation ITU-T Y.3172, Jun, 2019. [Online].
Available: http://handle.itu.int/11.1002/1000/13894

[141] F. Wilhelmi, S. Barrachina-Munoz, B. Bellalta, C. Cano, A. Jonsson, and V. Ram, “A
flexible machine-learning-aware architecture for future wlans,” IEEE Communica-
tions Magazine, vol. 58, no. 3, pp. 25–31, 2020.

[142] V. Erceg, L. Schumacher, P. Kyritsi, A. Molisch, and D. S. Baum, “Tgn channel
models,” IEEE, Tech Report Version 4, May 2004.

[143] A. v. d. Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalch-
brenner, A. Senior, and K. Kavukcuoglu, “Wavenet: A generative model for raw
audio,” arXiv preprint arXiv:1609.03499, 2016.

[144] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash, “Internet
of Things: A Survey on Enabling Technologies, Protocols, and Applications,” IEEE
Communications Surveys and Tutorials, vol. 17, no. 4, pp. 2347–2376, 2015.

[145] H. X. Pham, H. M. La, D. Feil-Seifer, and L. V. Nguyen, “Autonomous UAV
navigation using reinforcement learning,” arXiv preprint arXiv:1801.05086, 2018.
[Online]. Available: http://arxiv.org/abs/1801.05086

[146] D. N. Ray, A. Mandal, S. Majumder, and S. Mukhopadhyay, “Human-like grad-
ual multi-agent q-learning using the concept of behavior-based robotics for au-
tonomous exploration,” in 2011 IEEE International Conference on Robotics and
Biomimetics, 2011, pp. 2725–2732.

[147] P. Mannion, J. Duggan, and E. Howley, “Parallel reinforcement learning for traffic
signal control,” in Procedia Computer Science, vol. 52, no. 1, 2015, pp. 956–961.

[148] N. C. Luong, D. T. Hoang, S. Gong, D. Niyato, P. Wang, Y.-C. Liang, and D. I. Kim,
“Applications of deep reinforcement learning in communications and networking:
A survey,” IEEE Communications Surveys & Tutorials, 2019.

https://www.mdpi.com/2079-9292/9/7/1170
http://handle.itu.int/11.1002/1000/13894
http://arxiv.org/abs/1801.05086

162 BIBLIOGRAPHY

[149] F. Restuccia, T. Melodia, and J. Ashdown, Spectrum Challenges in the
Internet of Things: State of the Art and Next Steps. John Wiley &
Sons, Ltd, 2022, ch. 19, pp. 353–375. [Online]. Available: https:
//onlinelibrary.wiley.com/doi/abs/10.1002/9781119892199.ch19

[150] I. T. U. ITU. Spectrum management: Key applications and regu-
latory considerations driving the future use of spectrum. (Visited
on 18-July-2023). [Online]. Available: https://digitalregulation.org/
spectrum-management-key-applications-and-regulatory-considerations-driving-the-future-use-of-spectrum/

[151] ——. Iot and imt spectrum issues. (Visited on 18-July-2023).

[152] A. W. Schapaugh and A. J. Tyre, “A simple method for dealing with large state
spaces,” Methods in Ecology and Evolution, vol. 3, no. 6, pp. 949–957, 2012.

[153] J. N. Tsitsiklis and B. Van Roy, “An analysis of temporal-difference learning with
function approximation,” IEEE Transactions on Automatic Control, vol. 42, pp. 674–
690, 1997.

[154] M. Camelo, J. Famaey, and S. Latré, “A scalable parallel Q-learning algorithm
for resource constrained decentralized computing environments,” in Proceedings of
MLHPC 2016: Machine Learning in HPC Environments, 2016, pp. 27–35.

[155] E. H. Patrick Mannion, Jim Duggan, “Parallel Reinforcement Learning with State
Action Space Partitioning,” in The 12th European Workshop on Reinforcement Learning,
2015.

[156] M. Kushida, K. Takahashi, H. Ueda, and T. Miyahara, “A comparative study of par-
allel reinforcement learning methods with a PC cluster system,” in IEEE/WIC/ACM
Conf Intelligent Agent Technology, 2006, pp. 416–419.

[157] D. Wang, W. Zhang, B. Song, X. Du, and M. Guizani, “Market-based model in cr-iot:
A q-probabilistic multi-agent reinforcement learning approach,” IEEE Transactions
on Cognitive Communications and Networking, vol. 6, no. 1, pp. 179–188, 2020.

[158] H. Li, “Multi-agent q-learning for competitive spectrum access in cognitive radio
systems,” in 2010 Fifth IEEE Workshop on Networking Technologies for Software Defined
Radio Networks (SDR), 2010, pp. 1–6.

[159] B. Xia, M. H. Wahab, Y. Yang, Z. Fan, and M. Sooriyabandara, “Reinforcement
learning based spectrum-aware routing in multi-hop cognitive radio networks,” in
2009 4th International Conference on Cognitive Radio Oriented Wireless Networks and
Communications, 2009, pp. 1–5.

[160] C. Tarver, M. Tonnemacher, V. Chandrasekhar, H. Chen, B. L. Ng, J. Zhang, J. R.
Cavallaro, and J. Camp, “Enabling a “use-or-share” framework for pal–gaa shar-
ing in cbrs networks via reinforcement learning,” IEEE Transactions on Cognitive
Communications and Networking, vol. 5, no. 3, pp. 716–729, 2019.

[161] X. Tan, L. Zhou, H. Wang, Y. Sun, H. Zhao, B.-C. Seet, J. Wei, and V. C. M. Le-
ung, “Cooperative multi-agent reinforcement-learning-based distributed dynamic
spectrum access in cognitive radio networks,” IEEE Internet of Things Journal, vol. 9,
no. 19, pp. 19 477–19 488, 2022.

https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119892199.ch19
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119892199.ch19
https://digitalregulation.org/spectrum-management-key-applications-and-regulatory-considerations-driving-the-future-use-of-spectrum/
https://digitalregulation.org/spectrum-management-key-applications-and-regulatory-considerations-driving-the-future-use-of-spectrum/

BIBLIOGRAPHY 163

[162] M. Mohammadi, A. Al-Fuqaha, M. Guizani, and J.-S. Oh, “Semisupervised deep
reinforcement learning in support of iot and smart city services,” IEEE Internet of
Things Journal, vol. 5, no. 2, pp. 624–635, 2017.

[163] M. Min, X. Wan, L. Xiao, Y. Chen, M. Xia, D. Wu, and H. Dai, “Learning-based
privacy-aware offloading for healthcare iot with energy harvesting,” IEEE Internet
of Things Journal, 2019.

[164] M. A. Salahuddin, A. Al-Fuqaha, and M. Guizani, “Software-defined networking
for rsu clouds in support of the internet of vehicles,” IEEE Internet of Things Journal,
vol. 2, no. 2, pp. 133–144, 2015.

[165] C. Wang, L. Zhang, Z. Li, and C. Jiang, “Sdcor: Software defined cognitive routing
for internet of vehicles,” IEEE Internet of Things Journal, 2018.

[166] S. El-Tantawy, B. Abdulhai, and H. Abdelgawad, “Multiagent reinforcement learn-
ing for integrated network of adaptive traffic signal controllers (marlin-atsc):
Methodology and large-scale application on downtown toronto,” IEEE Transac-
tions on Intelligent Transportation Systems, vol. 14, no. 3, pp. 1140–1150, 2013.

[167] M. I. Khan, M. M. Alam, Y. L. Moullec, and E. Yaacoub, “Cooperative reinforcement
learning for adaptive power allocation in device-to-device communication,” in 2018
IEEE 4th World Forum on Internet of Things (WF-IoT), 2018, pp. 476–481.

[168] J. Zhu, Y. Song, D. Jiang, and H. Song, “A new deep-q-learning-based transmission
scheduling mechanism for the cognitive internet of things,” IEEE Internet of Things
Journal, vol. 5, no. 4, pp. 2375–2385, 2017.

[169] G. M. Dias, M. Nurchis, and B. Bellalta, “Adapting sampling interval of sensor
networks using on-line reinforcement learning,” in 2016 IEEE 3rd World Forum on
Internet of Things (WF-IoT), 2016, pp. 460–465.

[170] Y. Debizet, G. Lallement, F. Abouzeid, P. Roche, and J. Autran, “Q-learning-
based adaptive power management for iot system-on-chips with embedded power
states,” in 2018 IEEE International Symposium on Circuits and Systems (ISCAS), 2018,
pp. 1–5.

[171] A. Printista, M. Errecalde, and C. Montoya, “A parallel implementation of Q-
learning based on communication with cache,” Journal of Computer Science & Tech-
nology, 2002.

[172] Q. Liu, X. Yang, L. Jing, J. Li, and J. Li, “A parallel scheduling
algorithm for reinforcement learning in large state space,” Frontiers
of Computer Science, vol. 6, pp. 631–646, 2012. [Online]. Available:
http://link.springer.com/10.1007/s11704-012-1098-y

[173] R. Bokade, X. Jin, and C. Amato, “Multi-agent reinforcement learning based on
representational communication for large-scale traffic signal control,” IEEE Access,
vol. 11, pp. 47 646–47 658, 2023.

[174] S. Gronauer and K. Diepold, “Multi-agent deep reinforcement learning: a
survey,” Artif. Intell. Rev., vol. 55, no. 2, p. 895–943, feb 2022. [Online]. Available:
https://doi.org/10.1007/s10462-021-09996-w

http://link.springer.com/10.1007/s11704-012-1098-y
https://doi.org/10.1007/s10462-021-09996-w

164 BIBLIOGRAPHY

[175] C. Zhu, M. Dastani, and S. Wang, “A survey of multi-agent deep reinforcement
learning with communication,” in Proceedings of the 23rd International Conference
on Autonomous Agents and Multiagent Systems, ser. AAMAS ’24. Richland, SC:
International Foundation for Autonomous Agents and Multiagent Systems, 2024,
p. 2845–2847.

[176] C. Liu and D. Liu, “Deep reinforcement learning algorithm based
on multi-agent parallelism and its application in game environment,”
Entertainment Computing, vol. 50, p. 100670, 2024. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1875952124000387

[177] P. R. Wurman, R. D’Andrea, and M. Mountz, “Coordinating Hundreds of Coop-
erative, Autonomous Vehicles in Warehouses,” AI Magazine, vol. 29, no. 1, p. 9,
2008.

[178] M. Tan, “Multi-Agent Reinforcement Learning: Independent vs. Cooperative
Agents,” in Machine Learning Proceedings 1993, 1993, pp. 330–337.

[179] F. Sadeghi and S. Levine, “Cad2rl: Real single-image flight without a single real
image,” arXiv preprint arXiv:1611.04201, 2016.

[180] C. Cai, C. Yang, Q. Zhu, and Y. Liang, “Collision avoidance in multi-robot systems,”
in 2007 International Conference on Mechatronics and Automation, Aug 2007, pp. 2795–
2800.

[181] J. MacGlashan. Burlap: Brown-umbc reinforcement learning and planning.
[Online]. Available: http://burlap.cs.brown.edu/

[182] M. Zheludkov, T. Isachenko et al., High Performance in-memory computing with Apache
Ignite. Lulu. com, 2017.

[183] ArcBotics. The sparki robot. [Online]. Available: http://arcbotics.com/products/
sparki/

[184] imec. Teaching intelligent robots the art of delegation. [Online]. Available:
https://vimeo.com/340200165

[185] M. O. Demir, G. K. Kurt, and M. Karaca, “An energy consumption model for
802.11ac access points,” in 2014 22nd International Conference on Software, Telecom-
munications and Computer Networks (SoftCOM), 2014, pp. 67–71.

[186] M. Hoyhtya, A. Mammela, A. Chiumento, S. Pollin, M. Forsell, and D. Cabric,
“Database-assisted spectrum prediction in 5g networks and beyond: A review and
future challenges,” IEEE Circuits and Systems Magazine, vol. 19, pp. 34–45, 2019.

[187] M. Chen, U. Challita, W. Saad, C. Yin, and M. Debbah, “Artificial neural networks-
based machine learning for wireless networks: A tutorial,” IEEE Communications
Surveys Tutorials, vol. 21, pp. 3039–3071, 2019.

[188] S. Riyaz, K. Sankhe, S. Ioannidis, and K. Chowdhury, “Deep learning convolutional
neural networks for radio identification,” IEEE Communications Magazine, vol. 56,
no. 9, pp. 146–152, 2018.

https://www.sciencedirect.com/science/article/pii/S1875952124000387
http://burlap.cs.brown.edu/
http://arcbotics.com/products/sparki/
http://arcbotics.com/products/sparki/
https://vimeo.com/340200165

BIBLIOGRAPHY 165

[189] G. Aceto, D. Ciuonzo, A. Montieri, and A. Pescapé, “Mobile encrypted traffic
classification using deep learning: Experimental evaluation, lessons learned, and
challenges,” IEEE Transactions on Network and Service Management, vol. 16, no. 2, pp.
445–458, 2019.

[190] Y. Zeng, M. Zhang, F. Han, Y. Gong, and J. Zhang, “Spectrum analysis and con-
volutional neural network for automatic modulation recognition,” IEEE Wireless
Communications Letters, vol. 8, no. 3, pp. 929–932, 2019.

[191] J. Yang and F. Liu, “Modulation recognition using wavelet transform based on
alexnet,” in 2019 IEEE 7th International Conference on Computer Science and Network
Technology (ICCSNT), 2019, pp. 339–342.

[192] A. Banchs, M. Fiore, A. Garcia-Saavedra, and M. Gramaglia, “Network intelligence
in 6g: Challenges and opportunities,” in Proceedings of the 16th ACM Workshop on
Mobility in the Evolving Internet Architecture, ser. MobiArch ’21. New York, NY,
USA: Association for Computing Machinery, 2021, p. 7–12. [Online]. Available:
https://doi.org/10.1145/3477091.3482761

[193] A. Gholami, S. Kim, Z. Dong, Z. Yao, M. W. Mahoney, and K. Keutzer, “A survey
of quantization methods for efficient neural network inference,” 2021. [Online].
Available: https://arxiv.org/abs/2103.13630

[194] A. Renda, J. Frankle, and M. Carbin, “Comparing rewinding and fine-
tuning in neural network pruning,” 2020. [Online]. Available: https:
//arxiv.org/abs/2003.02389

[195] M. R. Samsami and H. Alimadad, “Distributed deep reinforcement learning: An
overview,” 2020. [Online]. Available: https://arxiv.org/abs/2011.11012

[196] J. Keuper and F.-J. Preundt, “Distributed training of deep neural networks: Theo-
retical and practical limits of parallel scalability,” in 2016 2nd Workshop on Machine
Learning in HPC Environments (MLHPC), 2016, pp. 19–26.

https://doi.org/10.1145/3477091.3482761
https://arxiv.org/abs/2103.13630
https://arxiv.org/abs/2003.02389
https://arxiv.org/abs/2003.02389
https://arxiv.org/abs/2011.11012

166 BIBLIOGRAPHY

	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Research Context
	Problem Statement
	Research Questions
	Research Hypotheses
	Dissertation Outline
	Publications
	O: Patent Applications
	A1: Journal publications indexed by ISI Web of Science "Science Citation Index Expanded"
	P1: Proceedings included in the ISI Web of Science "Conference Proceedings Citation Index - Sciences"

	Terminology and Background
	Wireless Communication Systems
	Radio Spectrum and Communication Systems
	Modulation and the Sampling Process
	Cognitive Radios
	Collaborative Intelligent Radio Networks (CIRN)

	Machine Learning
	Unsupervised and Supervised Learning
	Semi-supervised Learning
	Reinforcement Learning and its Parallelization
	Neural Networks and Deep Learning

	Label-Efficient Automatic Wireless Technology Recognition
	Introduction
	Related Works
	A Semi-supervised system for Technology Recognition
	Automatic Signal Identification as a classification problem
	Spectrum Manager Framework
	System description
	Semi-Supervised Learning using Deep Autoencoders
	Baseline using CNN

	Data set generation
	Results
	Algorithm Convergence
	Model performance in the presence of noise
	Labeling efficiency

	Conclusions

	A scalable and decentralized spectrum-sharing framework for Collaborative Intelligent Radio Networks
	Introduction
	Two-tier model framework for CIRN
	Incumbent protection in SCATTER
	System Implementation
	Experimental validation
	SCATTER protecting the incumbent alone
	SCATTER and multiple CIRN protecting the incumbent
	Execution time performance

	Conclusions

	A General Approach for Traffic Classification in Wireless Networks
	Introduction
	Related work
	Traffic Classification using L2 (and above) classification objects
	Traffic Classification using L1 classification objects

	A general framework for Traffic Classification
	Limitation of the byte-based frameworks for Traffic Classification
	A Traffic Classification framework at any layer

	Spectrum-based Traffic Classification system based on Deep Learning
	Data set generation and Deep Learning model design
	L1 packets Data set generation
	Traffic Classification tasks
	Deep Learning models design and training

	Results and discussion
	L2 Frame characterization task (Task 1)
	L7 Application characterization task (Task 2)
	L7 Application identification Traffic Classification task (Task 3)
	Comparison against Deep Learning and statistical Machine Learning on bytes

	Conclusion

	Parallel Reinforcement Learning with Minimal Communication Overhead
	Introduction
	Related work
	Reinforcement Learning-based IoT applications
	Parallel Reinforcement Learning
	Speeding-up RL-based IoT applications with PRL

	Dynamic partitioning for Parallel Reinforcement Learning for IoT applications
	The need for a dynamic state-action space partitioning
	Dynamic co-allocation of processing and storage
	Local-affinity policy
	Algorithm complexity analysis

	Performance Evaluations
	Scenario and PRL algorithm
	Algorithm parameters and hyper-parameters selection
	Performance using optimal hyperparameters
	Number of agents
	Problem size
	Episodes Before Partitioning
	Energy consumption and total communication overhead

	Conclusion

	Conclusions
	Main research contributions
	Open challenges and future prospects of this research
	Autonomous spectrum management frameworks
	ML-based functions for autonomous spectrum management
	Multi-Agent Reinforcement Learning running on distributed environments

	References

