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A B S T R A C T

Changes in climate can greatly affect the phenology of plants, which can have important feedback effects, such as
altering the carbon cycle. These phenological feedback effects are often induced by a shift in the start or end
dates of the growing season of plants. The normalized difference vegetation index (NDVI) serves as a straight-
forward indicator for assessing the presence of green vegetation and can also provide an estimation of the plants'
growing season. In this study, we investigated the effect of soil temperature on the timing of the start of the
season (SOS), timing of the peak of the season (POS), and the maximum annual NDVI value (PEAK) in subarctic
grassland ecosystems between 2014 and 2019. We also explored the impact of other meteorological variables,
including air temperature, precipitation, and irradiance, on the inter-annual variation in vegetation phenology.
Using machine learning (ML) techniques and SHapley Additive exPlanations (SHAP) values, we analyzed the
relative importance and contribution of each variable to the phenological predictions. Our results reveal a sig-
nificant relationship between soil temperature and SOS and POS, indicating that higher soil temperatures lead to
an earlier start and peak of the growing season. However, the Peak NDVI values showed just a slight increase
with higher soil temperatures. The analysis of other meteorological variables demonstrated their impacts on the
inter-annual variation of the vegetation phenology. Ultimately, this study contributes to our knowledge of the
relationships between soil temperature, meteorological variables, and vegetation phenology, providing valuable
insights for predicting vegetation phenology characteristics and managing subarctic grasslands in the face of
climate change. Additionally, this work provides a solid foundation for future ML-based vegetation phenology
studies.

1. Introduction

In-situ monitoring of changes in vegetation in inaccessible Arctic
regions is challenging, prompting many such studies to rely on remote
sensing techniques (Zmarz et al., 2018). In the field of remote sensing,
vegetation indices such as the Normalized Difference Vegetation Index
(NDVI) are used to quantify and qualify vegetation cover (Huang et al.,
2021). This is achieved through airborne or satellite spectral methods
(Ryu et al., 2021; Zhao et al., 2021) or ground-level measurements,

using handheld instruments (Balzarolo et al., 2011; Ferrara et al., 2010).
Vegetation activity monitoring using NDVI has shown both intra-annual
and inter-annual variations that can give valuable insights into
ecosystem changes (Beck et al., 2006; Rhif et al., 2022). Some param-
eters that can be derived from such intra-annual seasonal NDVI curves
are the start of the season (SOS), peak of the season (POS), and
maximum annual NDVI value (PEAK) (Li et al., 2017; Ma et al., 2022).

In high latitudes, the intra-annual temperature and irradiance vari-
ation are important factors that control the cycles in the growth and
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reproduction of the flora (Mølmann et al., 2021; Odland et al., 2003).
Over the last decades, different life-cycle events of vegetation
(phenology) have been observed to change in this region (Epstein et al.,
2013). This has been related to ongoing climate change (IPCC, 2021),
which has started to affect vegetation phenological cycles, productivity,
and community structure (Semenchuk et al., 2016). Inter-annual ana-
lyses found relationships between climate change and these changes in
vegetation dynamics, particularly with regard to the increase in surface
temperature, resulting in an increased PEAK NDVI and with a notable
impact on the length of the growing seasons (Arndt et al., 2019; Potter
and Alexander, 2020). Starting from the year 2000, scientists started to
name this phenomenon of an increasing PEAK “Arctic greening”
(Merrington, 2019). This phenomenon was hypothesized to persist with
continued climate warming, based on the compelling evidence of
increased PEAK NDVI (Beck and Goetz, 2011), plant productivity
(Loranty and Goetz, 2012), phenology (Semenchuk et al., 2016), and
vegetation composition (Walker et al., 2012b) between 1980s and early
2000s (Epstein et al., 2012, 2013).

Interestingly, the “Arctic greening” effect has not occurred every-
where at high latitudes and since the early 2000s, the relationship be-
tween PEAK NDVI with an increase in surface temperature has
weakened in many places (Bhatt et al., 2013; Myers-Smith et al., 2020).
In fact, in some regions, this relationship has even become negative,
introducing the term “Arctic browning” (Beck and Goetz, 2011). It is
generally believed that the shift towards browning must indicate that
other meteorological drivers (e.g., temperature, precipitation, wind,
photoperiod) or biological drivers (e.g., insect grazing, drought, etc.) are
in play. However, the issue still requires further study.

In Iceland, the same strong “Arctic greening” trend was shown to
occur during the 1980s–2000s as in many other high-latitude regions,
but with a notable stagnation of the national PEAK NDVI during
2000–2010, even if the surface temperatures continued to increase in
Iceland during that period (Björnsson et al., 2007; Raynolds et al.,
2015). What happened in Iceland after 2010 is unclear, but a recent
study showed that the inter-annual variation in the national average
PEAK NDVI has been large during 2001–2019 period (Olafsson and
Rousta, 2021). Therefore, it is of interest to further study how the NDVI
of Icelandic ecosystems responds to further warming.

The impact of climate change on high latitude vegetation is not only
limited to the air temperature increases. Soil warming studies have
revealed significant insights into how soil warming affects soil processes
and, consequently, vegetation. Soil warming experiments in high lati-
tudes have demonstrated that increased soil temperatures can lead to
changes in nutrient availability, microbial activity, plant composition
and biomass, all of which influence plant growth and ecosystem dy-
namics (Fang et al., 2023; Metze et al., 2024; Verbrigghe et al., 2022b).
For example, Bhattarai et al. (2023) found that soil warming resulted in
changes to below-ground plant biomass and fine root biomass, under
different warming conditions. These changes were associated with shifts
in plant community composition and soil chemistry, highlighting the
complex adaptation mechanisms of subarctic grasslands to prolonged
soil warming.

Continued climate change is expected to cause relatively higher in-
creases in surface temperatures at higher latitudes in the coming de-
cades (IPCC, 2021), which will likely lead to relatively more ecosystem
changes in plant productivity than at lower latitudes (Chen et al., 2021).
Potential changes include further temporal shifts in parameters that
characterize growing seasons (Semenchuk et al., 2016) and increases in
plant productivity (Street and Caldararu, 2022; Van Der Wal and Stien,
2014). However, it is important to further investigate the warming im-
pacts on NDVI to better underpin such predictions for future changes.
Combining data from manipulation (warming) experiments offer pos-
sibilities to study future high-latitude ecosystem NDVI responses
(Bjorkman et al., 2020; Leblans et al., 2017).

To relate changes in vegetation composition, biomass or NDVI to
environmental parameters, traditional statistical methods like (non-)

linear regression or linear mixed models have been most commonly used
(Estrella et al., 2021; Hope et al., 1993; Leblans et al., 2017; Mehmood
et al., 2024; Walker et al., 2012a; Wang et al., 2021). Additionally,
multivariate methods have also been used, for example multivariate
analysis of variance tests (Michielsen, 2014).

Despite massive advancements in the field of machine learning (ML)
during the last decade, ML is not yet often used for vegetation studies.
MLmodels can be used for various tasks, among which are classification,
regression, and image segmentation. In ML, models extract knowledge
from data and use this knowledge to produce an output relevant to the
task at hand. These models use three main learning paradigms: super-
vised learning, unsupervised learning or reinforcement learning. This
study only considers the first paradigm, as we build a regression model.
Within supervised learning, there are a multitude of model types, for
example, support vector machines (Hearst et al., 1998), boosted tree
ensembles (e.g., XGBoost (Chen and Guestrin, 2016) or LightGBM (Ke
et al., 2017)) and artificial neural networks (ANNs) (McCulloch and
Pitts, 1943). This analysis will use ANNs, particularly multilayer per-
ceptrons (MLPs), which are fully connected feedforward neural net-
works that consist of multiple layers of nodes that are connected with
each other by weighted edges.

Recently, ML has also shown promising results in the field of ecology
(Christin et al., 2019; Thessen, 2016), for use cases such as species
identification (Barhate et al., 2023; Barré et al., 2017; Chen et al., 2020;
Wäldchen and Mäder, 2018), behavioral studies (Clapham et al., 2020;
Schofield et al., 2019), ecological modeling and forecasting (Cho et al.,
2009; Strydom et al., 2021; Ye and Cai, 2011), remote sensing (Guo
et al., 2020; Li et al., 2020) and climate change studies (Kumar, 2023;
O'Gorman and Dwyer, 2018; Rolnick et al., 2022), among others. The
utilization of ML techniques has opened new avenues for understanding
complex ecological phenomena and predicting ecological responses.
Considering the proven potential of ML in addressing research questions
in the broad field of ecology (Gao et al., 2024; Jemeļjanova et al., 2024),
we propose to apply MLmethods to investigate the relationship between
vegetation phenology and environmental drivers in subarctic
grasslands.

Unfortunately, MLPs are black-box models. This means that, while
they can approximate any function, it is nearly impossible to determine
the structure of the approximated function. This led to a whole new field
within ML, explainable artificial intelligence (xAI), which tries to create
methods that allow human users to understand the predictions made by
an ML model (Vilone and Longo, 2021). Some popular examples include
sensitivity analysis (Zeiler and Fergus, 2014), Local Interpretable Model-
Agnostic Explanations (LIME) (Ribeiro et al., 2016), and SHapley Ad-
ditive exPlanations (SHAP) values (Lundberg et al., 2017). This study
uses the last method, as it is gaining in popularity and is now often used
in ecology. For example, Masago and Lian (2022) use SHAP values to
investigate how inter-annual variation in the daily average temperature
affected the first flowering date or the full blossom date of the Yoshino
cherry trees in Japan. He et al. (2022) construct a seagrass distribution
model and explain the importance of environmental variables in the
model and subsequent predictions. In Park et al. (2022), an XGBoost
model is trained to predict chlorophyll concentration, and they use
SHAP values to perform feature selection, as well as investigate feature
importance. SHAP values have a number of advantages over other
methods for understanding the output of a model. First, SHAP values are
model-agnostic, which means that they can be used with any ML model
(Lundberg et al., 2017). Second, SHAP values are able to account for
interactions between features, which is something other methods are not
able to do. Third, SHAP values have an intuitive interpretation, which
means that they are easy to understand and explain to others. Finally,
SHAP values have some desirable mathematical properties, such as local
accuracy, missingness, and consistency (Aas et al., 2021).

An earlier study was conducted by Leblans et al. (2017) at the same
research sites in Iceland (Sigurdsson et al., 2016), focusing on the
phenology of subarctic grasslands. They used a short-term temporal
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dataset from 2013 to 2015 with curve function fitting analyses based on
the methodology proposed by Zhang et al. (2003) to determine seasonal
(intra-annual) parameters (e.g. SOS). They found that the response to-
wards earlier SOS in the warmed subarctic grasslands did not saturate at
higher soil warming levels (i.e., +10 ◦C). Therefore they concluded that
growing seasons at high-latitudes grasslands are likely to continue
lengthening with future warming. However, there was still quite a large
unexplained inter-annual variability in their 3-year dataset, that war-
ranted a further study (Leblans et al., 2017). In this study, we extended
the analysis period to six years, compared to the three years used by
Leblans et al. (2017). This enabled a more comprehensive examination
of the inter-annual variability in NDVI phenology and annual maximum
values. Specifically, the variables used to study NDVI phenology were
the annual day numbers of the SOS and POS, as well as the PEAK, in each
plot. Our primary objective was to reanalyze the soil warming effects
using conventional linear statistics, as performed by Leblans et al.
(2017), and to assess the robustness of these relationships over a longer
timeframe. Additionally, our study extends previous research by
employing ML algorithms to identify further drivers of the unexplained
inter-annual variation in the studied variables. Specifically, we added a
set of three meteorological variables, namely air temperature, precipi-
tation, and irradiance. However, as predictions made by ML are often
not intuitive, we used xAI methods, providing deeper insights into the
model outputs.

Our objective was to study the relationship between soil temperature
and vegetation phenology. More specifically, we studied this relation-
ship using three vegetation phenology characteristics: SOS, POS and
PEAK. Additionally, we investigated the effect of other meteorological
variables on these characteristics. To this end, we postulated following
hypotheses:

A Soil warming
i. A higher soil temperature will introduce significantly earlier
SOS, as was found by Leblans et al. (2017) for individual years.

ii. The POS will take place at a similar time each year, regardless of
the soil temperature. Plants must use some external trigger to
“know” when to start to slow down growth and prepare for
autumn. The prevailing theory suggests that for most plants, this
is triggered by the length of the day (Adams and Langton, 2005;
Roeber et al., 2022), which remains consistent across different
years, and is mediated through the phytochrome system
(Sigurdsson, 2001).

iii. The PEAK value will not be significantly related to soil temper-
ature, as Verbrigghe et al. (2022a) showed that there was no
difference in above-ground biomass between the warming
treatments.

B Other meteorological variables
We expect that ML can identify other important controls for the

previously observed inter-annual variability of NDVI phenology and
PEAK values. Additionally, we expect that ML can identify the
importance of meteorological variables compared to the soil tem-
perature. Out of the three additional meteorological variables, we
hypothesized for both phenology and PEAK values:
i. Larger impact of meteorological variables compared to the soil
temperature, as they can also impact the soil temperature (Beer
et al., 2018; Tan et al., 2022; Xie et al., 2021).

ii. Within the meteorological variables, air temperature's influence is
expected to be the smallest due to its regulation of soil tempera-
ture, while precipitation may have an intermediate effect given
consistently high soil water content in these areas (Sigurdsson
et al., 2016). Additionally, a substantial impact of irradiance is
hypothesized, particularly in consistently cloudy sub-Arctic cli-
mates (Hou et al., 2015).

Ultimately, the contributions of this research advance our under-
standing of the relationships between soil temperature, other

meteorological variables, and vegetation phenology. We achieve this
goal by employing a methodology that exceeds standard practice, using
ML and SHAP values.

2. Materials and methods

2.1. Data

The study was carried out in the south of Iceland near the village of
Hveragerdi on the ForHot site (Sigurdsson et al., 2016), as shown in
Fig. 1. Following an earthquake in May 2008, the bedrock of one un-
managed (cold) grassland field site underwent a disruption, resulting in
the creation of areas with differently warmed soils. Another nearby
grassland field site had had such warmed soil gradients for at least six
decades, and those were not disturbed by the earthquake in 2008
(Sigurdsson et al., 2016). In spring 2013, five transects were selected in
each field site, each with five permanent plots across the natural soil
temperature gradients, resulting in a total of 50 studied plots. We
categorized the plots according to their annual soil temperature range,
as indicated in Table 1.

2.1.1. NDVI data
To be able to estimate vegetation phenology characteristics, we

measured the NDVI of all studies plots using a handheld instrument from
SKYE Instruments (SpectraoSense2). From 2014 to 2019, NDVI mea-
surements were done approximately bi-weekly from April to November,
except during periods with continuous snow cover in early spring, late
autumn, or winter. The measurements were always conducted on a clear
day. We refer to Leblans et al. (2017) for further information about the
NDVI measurements. As can be seen in Fig. 2, the NDVI data clearly

Fig. 1. Map depicting the research site locations near the village of Hveragerdi,
Iceland. “GO” (grassland old) marks the sites where the soil has been warming
for over six decades, and “GN” (grassland new) denotes the sites where soil
warming began following the May 2008 earthquake.
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showed a seasonal pattern, with a higher NDVI in the summer months.

2.1.2. Soil temperature data
The soil temperature at a depth of 10 cm was monitored in all the

permanent plots using HOBO TidbiT v2 Water Temperature Data Log-
gers (Onset Computer Corporation, USA) since the spring of 2013
(Sigurdsson et al., 2016). In Table 1, the different soil warming cate-
gories with their accompanying temperature range are given, while
Fig. 2 shows the data for one of the 50 plots used in this study. The main
soil warming effect was an approximately constant shift in temperature
across the seasons, as shown by Sigurdsson et al. (2016).

2.1.3. Meteorological data
In addition to NDVI and soil temperature data, we also used mete-

orological data. As the measurement of meteorological variables such as
irradiance (global radiation), precipitation, and air temperature at the
Forhot site only began in 2019, we relied on data from another source.
Specifically, we obtained the aforementioned meteorological variables
from a weather station in Reykjavík,1 located approximately 40 km from
the research site, as this is the closest station where irradiance is
measured. We aggregated the data by taking the average on a weekly
resolution scale, and assumed that the weather conditions are the same
for all plots during each year. Given the distance between the weather
station and the research plots, the data serve as a proxy for the actual
weather conditions at the ForHot site. In Fig. 2, the three bottom panes
show all meteorological variables measured in the relevant period.

2.2. Data analysis

2.2.1. Estimating the NDVI seasonal characteristics
To extract the intra-annual vegetation phenology characteristics

(SOS, POS and PEAK) in each plot during each growing each growing
season, we first fitted a curve to the measured NDVI data. Based on the
approach of Zhang et al. (2003), we used a double logistic curve. We
require that the two logistic curves transition into each other continu-

ously, such that the resulting function is differentiable at every point.
These requirements result in the following formula for the estimated
NDVI:

N̂DVI(x) =

⎧
⎪⎨

⎪⎩

c
1+ eb1 ⋅(x− a1)

+ d x ≤ p

−
c

1+ eb2 ⋅(x− a2)
+ d+ c x > p

(1)

where the parameters a1, a2, b1, b2, c, d and p are fitted to a season's
NDVI data and x represents the week number (x ∈ 0, 1,…,52) of the
year. The parameter p has an important interpretation, as it is defined as
the date of the POS, i.e., where the maximal NDVI value is reached.

The best fit for the curve parameters is found using the Trust Region
Reflective algorithm (Conn et al., 2000). This generally robust optimi-
zation method finds the optimal set of parameters by minimizing the
mean squared error (MSE) between the predicted NDVI curve and the
NDVI data points. After the curve parameters have been fitted, we
extracted the start SOS, POS and PEAK for each plot in each year.

The SOS is considered to be the time of year when the NDVI increases
the fastest, i.e., the curvature of the NDVI curve increases the most. This
can be calculated using the second derivative of the fitted curves. As
shown in Fig. 3, the estimated start of season is themoment in time when
the second derivative of the first logistic function is maximal. Combined
with the aforementioned definition of the POS, we establish the
following equation for calculating the relevant vegetation phenology
characteristics:

ŜOS = argmax
x

−
cb21eb1(x− a1)

(
− eb1(x− a1) + 1

)

(1+ eb1(x− a1) )3
(2)

Table 1
Category of the temperature range of the plots.

Category Temperature Range

A Ambient
B +0.5 to 1 ◦C
C +2 to 3 ◦C
D +3 to 5 ◦C
E +5 to 10 ◦C

Fig. 2. Overview of all available variables for plot GN1A (unwarmed control plot). Whereas the NDVI and soil temperature (upper two figures) are unique for all 50
plots, the meteorological variables (bottom three figures) are the same for every plot.

1 Data courtesy of the Icelandic Meteorological Institute.
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P̂OS = p (3)

̂PEAK = ̂NDVI(p) (4)

where ŜOS indicates the estimated start of the season, P̂OS the date of
the peak of the season, and ̂PEAK the maximum value of the NDVI.

2.3. Statistical modeling and machine learning

2.3.1. Linear regression
After identifying the start and peak of the season for each plot and

year, we performed a linear regression analysis. In this analysis, we used
the SOS, POS, and PEAK as depenent variables, with the average soil
temperature in each plot an year as the independent variable. We con-
ducted this analysis using the ordinary least squares method available in
the statsmodels library (version 0.13.2) for Python 3.9.13 (Seabold and
Perktold, 2010). This approach also enabled us to compute the p-values
for the slope and intercept of the linear model through a t-test. These p-
values help use determine the statistical significance of the relationship
between soil temperature and vegetation phenology characteristics by
indicating whether the observed relationships are likely due to chance or
reflect a genuine underlying pattern.

2.3.2. Machine learning
To better understand the inter-annual variability in our results, we

used ML techniques to create models predicting different vegetation
phenology characteristics. Specifically, we trained three separate MLPs:
one to predict the start of the season, another to predict the peak of the
season, and a third to predict the height of the peak season. An MLP is a
type of ANN designed to mimic the way the human brain processes in-
formation. It consists of multiple layers of nodes (neurons): an input
layer, one or more hidden layers, and an output layer which is used to
provide the final predictions. Each node in a layer connects to every
node in the next layer, with each connection having a specific weight.
During training, the MLP adjusts these weights to minimize the differ-
ence between its predictions and the actual outcomes using an algorithm
called backpropagation, allowing it to learn complex patterns in the data
(Werbos, 1990).

Contrary to the linear models introduced in Section 2.3.1, the MLPs

also take meteorological variables into account. This meant that in total,
each MLP used 79 input variables, which included the average weekly
air temperature, precipitation and solar irradiance for the first 26 weeks
of the year, as well as the average soil temperature over the entire year.
We implemented the MLPs using the MLPRegressor class from the scikit-
learn package (version 1.1.3) (Pedregosa et al., 2011). To ensure the
models were as accurate as possible, we optimized their hyper-
paramaters – the parameters that control the learning process – through
a process called grid search, which we performed using Optuna (version
3.1.0) (Akiba et al., 2019). This process involved testing different
combinations of hyperparameters to find the best settings for each of the
three target variables. A description of these hyperparameters, the
ranges we explored, and the optimal values we found are provided in
Table 2.

To evaluate how well the models performed, we used three standard
metrics: MSE, mean average error (MAE), and the coefficient of deter-
mination (r2). For the grid search, we focused on minimizing the MSE to
identify the optimal set of hyperparameters. Prior to conducting the grid
search, we divided our data into a training set (80% of the data) and a
test set (20% of the data). This split ensures that the models are trained
on one portion of the data and tested on a separate, previously unseen
portion, allowing us to assess their ability to generalize to new, unseen
data accurately.

2.3.3. SHAP values
The 79 input features we used are not equally important, and each

one influences the model's predictions differently. To understand which
features are most significant, and what the direction of their impact is,
we use SHAP values. They are calculated by by examining how the
model's predictions change when a specific feature is included or
excluded, considering all possible combinations of features (Lundberg
et al., 2017). By averaging these effects, SHAP values provide a clear and
fair measure of each feature's contribution to the final prediction. This
method ensures that the importance of each feature is assessed in the
context of all other features in the model. In the end, SHAP values can
break down each prediction made by the model, showing the contri-
bution of each feature. The sum of the SHAP values for all features then
equals the model's output.

After training the MLP models, we computed SHAP values using the
model-agnostic Kernel SHAP method to understand which features are
most important in predicting the start and (height of the) peak of the
greening season. We used the implementation in the Python SHAP
package for this analysis Lundberg et al. (2017).

Fig. 3. The SOS is estimated based on the second derivative of the fitted NDVI
curve. The SOS is defined as the week when the NDVI curvature increases the
most, and is indicated with a red line. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of
this article.)

Table 2
Overview of the explored ranges of hyperparameters used in the Optuna grid
search. The optimal values for the three different regression tasks are displayed
in the right-most three columns.

Description Range SOS POS PEAK

Number of neurons in first
layer

int: 10, 20, …,
100 100 70 30

Number of neurons in
second layer

int: 0, 10, …,
100

0 0 100

Strength of the L2
regularization term

float: 1e-4 —
1e-1 logscale

0.0290 0.0010 0.0606

the solver for weight
optimization adam, lbfgs adam adam adam

initial learning rate
float: 1e-4 —
1e-1 logscale 0.0031 0.0003 0.0028

learning rate schedule for
weight updates

constant,
adaptive

constant adaptive adaptive

maximum number of
iterations

int: 1000,
2000, …,
10,000

8000 8000 8000

maximum number of
iterations with no
improvement

int, 10, 20, …,
100

20 50 100

S. Mortier et al.
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3. Results

3.1. The logistic fitting

For most plots and years, good fits were found for the double logistic
curves that were fitted to the intra-annual individual plot NDVI data,
with an average r2 of 0.942 (± 0.095). However, for 5.8% of all plots and
years, the data did not follow a double sigmoid curve, and the r2 value
was lower than 0.80. These curves were not included in the analysis. The
mean estimated SOS was week 20.41 (± 2.40), the mean estimated POS
was week 29.97 (± 3.27), and the mean estimated PEAK was 0.842 (±
0.071) across all the soil warming treatments.

3.2. The average response to soil temperature

Fig. 4 shows the linear relationship found between the average
annual soil temperature and the three NDVI characteristics found by the
double-logistic curves. The parameters of the linear model are given in
Table 3. A significant linear relationship was found between average soil
temperature and SOS (p < 0.001), POS (p = 0.001) and PEAK NDVI
(p < 0.001) (Fig. 4 and Table 3). The relationship between soil tem-
perature and SOS was negative, with an estimated coefficient of
− 0.2160 (± 0.053). This means that for every 4.63 degrees of soil
warming, the greening season starts a week earlier. Otherwise stated,
the SOS happens 1.52 days earlier per degree of soil warming when

derived across multiple years. Similarly, we see that the date of the NDVI
peak shifted forward. The estimated coefficient of − 0.2353 (± 0.07)
indicates that for every 4.25 degrees of soil warming, the NDVI peaks a
week earlier, or the POS occurs 1.65 days earlier per degree of soil
warming. Finally, the PEAK value of the NDVI curve increased slightly
with increasing soil temperature.

Although the linear relationships that were observed between
average soil temperature and SOS, POS, and PEAK were significant
(Fig. 4), we also observed a lot of unexplained variance, which is indi-
cated by the relatively low r2 values in Table 3.

3.3. The machine learning approach

To explain a larger part of the variance, the possibility of predicting
characteristics of the NDVI curve using MLPs, based on both the soil
temperature and meteorological variables, was investigated. The per-
formance of the MLPs can be found in Table 4. From Tables 3 and 4, it
becomes evident that the inclusion of the meteorological variables and
the utilization of MLPs enabled us to explain a significantly larger part of
the variance compared to the linear models.

To investigate the impact of a given feature on the predictions made
by the model, we calculated SHAP values for all three MLPs. These can
be found in Fig. 5, Fig. 6 and Fig. 7 for the SOS, POS and PEAK,
respectively. In these figures, we separate the six years to investigate the
annual variation in the SHAP values. To obtain the SHAP value for one
meteorological variable, we summed the SHAP values of the 26 weekly
averages, as shown in Eq. (5). Next, we calculated the sum of absolute
values of the SHAP values A_SHAP for the four remaining features for all
n samples, as shown in Eq. (6). By taking the absolute value and adding it
over all years, we can investigate the total impact of a feature on the
prediction, regardless of the direction of the impact. The results for the
(A_SHAP) values are shown in Fig. 8.

SHAPfeature =
∑26

week=1

SHAPfeature,week (5)

A SHAPfeature =
∑n

i
∣SHAPfeature,i∣ (6)

When interpreting Figs. 5 and 8a, we see that the meteorological
variables had the largest impact on the prediction of the SOS. However,
within each year, this impact was approximately constant. The intra-
annual variation in the SOS was clearly the result of soil warming. In
fact, the Pearson correlation between soil temperature and its accom-
panying SHAP values was − 0.93, meaning that the higher the soil

Fig. 4. Linear model that predicts the start of the season (a), the peak date of
the season (b) and the peak value of NDVI (c), based on the average annual soil
temperature. The filled circles represent the mean values for each category (A
to E) of average soil temperature, with error bars indicating the standard de-
viation. The semi-transparent circles represent individual observations. The
colour indicates the soil warming category where the blue points are A plots,
the red points are B plots, the yellow points are C plots, the green points are D
plots, and the orange points are E plots. All models had a significant relation-
ship between the average soil temperature and the studied NDVI curve
parameter (See Table 3). (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Table 3
The parameters describing the results of the linear models, where different
variables are fitted against the average soil temperature over a whole year. The
SOS and POS are measured in weeks, while the intercept is measured in degrees
Celsius.

Target variable Slope Intercept r2 p-value

SOS − 0.216± 0.052 22.011± 0.454 0.06 <0.001
POS − 0.235± 0.070 31.755± 0.607 0.04 0.001
PEAK 0.005± 0.001 0.801± 0.013 0.05 <0.001

Table 4
Model performance of MLP after a 5-fold cross validation (CV) grid search. The
test set consists of 20% of the total data, and is split evenly across the years of
data taking. The naive MSE (MAE) is the MSE (MAE) when the mean of all
training samples is used as the prediction.

Target 5-fold CV MSE Test MSE (naive) Test MAE (naive) Test r2

SOS 3.408 4.760 (7.102) 1.521 (2.095) 0.322
POS 7.933 8.943 (11.103) 2.473 (2.696) 0.192
PEAK 0.004 0.004 (0.006) 0.053 (0.063) 0.248
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warming, the earlier the season started each year. All Pearson correla-
tion values can be found in Table 5.

From Fig. 8b and c, we can also conclude that the three meteoro-
logical variables also had the largest impact on the predictions of the
POS and PEAK. From Table 5, we can see that the POS was earlier and
the PEAK value of the NDVI was higher with increasing soil temperature,
as they had a Pearson correlation coefficient of − 0.85 and 0.91,
respectively. For the POS, Fig. 6 indicates that the size and direction of
the SHAP effect for the three meteorological variables shifts significantly
over the years, while the smaller effect of the soil temperature is rela-
tively stable across the six years and drives the intra-annual variation
within the dataset.

4. Discussion

The purpose of this study was to explore the relationship between
soil temperature and NDVI, along with the impact of meteorological
variables, utilizing ML techniques. The discussion will focus on
emphasizing the novelties of this work, addressing the hypotheses pre-
sented in the paper, discussing the findings in relation to previous
research, and highlighting the implications of the results.

4.1. Using machine learning to study vegetation phenology

Currently, the standard practice in vegetation phenology studies
using NDVI consists of using traditional statistical methods such as (non-
)linear regression or linear mixed models (Estrella et al., 2021; Hope

Fig. 5. SHAP values of multi-layer perceptron that predicts the start of the greening season based on the average soil temperature, air temperature, precipitation, and
radiation. The colour indicates the soil warming category where the blue bars are A plots, the red bars are B plots, the yellow bars are C plots, the green bars are D
plots, and the orange bars are E plots. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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et al., 1993; Leblans et al., 2017; Mehmood et al., 2024; Walker et al.,
2012a; Wang et al., 2021). However, our results clearly indicate that,
after applying linear regression, a large amount of unexplained variance
remains. Our study advances the traditional approach by using ML
models, specifically MLPs, which integrate meteorological variables to
capture nonlinear relationships. This method allowed us to explain a
larger portion of inter-annual variance compared to traditional methods.
The use of SHAP values further provided insights into a deeper under-
standing of the complex interactions between soil temperature, meteo-
rological variables, and NDVI dynamics.

4.2. Effect of the soil temperature on SOS, POS, and PEAK in subarctic
grasslands

The first hypothesis stated that a higher soil temperature would lead
to an earlier SOS based on previous research by Leblans et al. (2017).
Such responses have also been found when past changes in NDVI have
been related to changes in annual, seasonal or monthly temperatures
(Arndt et al., 2019; Karlsen et al., 2014; Potter and Alexander, 2020).

The findings of this study supported this hypothesis, as a significant
relationship was observed between average soil temperature and the
start of the greening season. The negative coefficient (− 0.2160) in-
dicates that SOS occurs 1.5 days earlier per degree of soil warming
across the six years. This finding was consistent with a recent analysis
from the International Tundra Experiment covering up to 20 years of

Fig. 6. SHAP values of multi-layer perceptron that predicts the peak of the greening season (POS) based on the average soil temperature, air temperature, pre-
cipitation, and radiation. The colour indicates the soil warming category where the blue bars are A plots, the red bars are B plots, the yellow bars are C plots, the
green bars are D plots, and the orange bars are E plots. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)
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data from 18 sites and 46 open-top chamber warming experiments
across the Arctic, sub-Arctic, and alpine ecosystems (Collins et al.,
2021). They observed a 0.73-day earlier start of the greening season, in
an environment where the average air warming was 1.4 ◦C and the soil
warming approximately half of that (Collins et al., 2021). Our finding
was also consistent with previous research at the same ForHot site, as
Leblans et al. (2017) found that on average, the SOS occurred 1.6 days
earlier for every degree of soil warming.

Day length has traditionally been considered a dominant factor in
regulating the phenology of many plant species (Adams and Langton,
2005; Roeber et al., 2022), particularly in high-latitude ecosystems
where day length changes significantly throughout the growing season.
Therefore in this study, the second hypothesis stated that the date of the
POS would occur at a similar time each year, regardless of soil

temperature, as the day length remains consistent across all years.
However, our results indicate that temperature conditions in the soil can
have a considerable influence on the timing of POS. The hypothesis was
therefore rejected. This finding suggests that, in our sub-Arctic grass-
lands, day length might not be the primary factor influencing the timing
of the POS. While previous studies have highlighted the interplay be-
tween day length and air temperature in determining phenological
events (Malyshev et al., 2014), our study is unique in demonstrating the
notable impact of soil temperature. This underscores the need to
consider soil temperature as an influential factor in phenological studies,
particularly in the context of climate change where both soil and air
temperatures are rising.

The third hypothesis proposed that the PEAK NDVI would not be
significantly related to soil temperature, based on previous research by

Fig. 7. SHAP values of multi-layer perceptron that predicts the peak NDVI based on the average soil temperature, air temperature, precipitation, and radiation. The
colour indicates the soil warming category where the blue bars are A plots, the red bars are B plots, the yellow bars are C plots, the green bars are D plots, and the
orange bars are E plots. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Verbrigghe et al. (2022a), who had not found significant differences in
vegetation biomass across the warming gradients. However, the findings
of this study indicate a slight increase in the PEAK value with increasing
soil temperature. Although the relationship was not as strong as for the
SOS and POS, it suggests that higher soil temperatures may contribute to
higher NDVI peak values. It is worth noting that while NDVI is often used
to estimate vegetation biomass (Bui et al., 2024; Lumbierres et al., 2017;
Perry et al., 2022; Zhang et al., 2016), it is not measuring it directly, but
rather the amount of chlorophyll per surface area (Huang et al., 2021).
Therefore, “Arctic greening” measured using the NDVI, could occur
without any changes in vegetation biomass, if the plants are getting
“greener” due to a higher nutrient content in warmer soils. Further
research is needed to better understand this relationship and its under-
lying mechanisms.

4.3. Effect of the other meteorological variables

Hypothesis B focused on the impact of other meteorological variables
(air temperature, precipitation, and irradiance) on the inter-annual
variability of the NDVI phenology and PEAK values, and the potential
of ML to identify their importance. The results of the ML analysis using
MLPs showed that these variables have a strong impact on the pre-
dictions of the SOS, POS, and PEAK, and the r2 values of the MLPs were
much higher than those obtained by the linear regression.

The SHAP values also provided information on the relative impor-
tance of these variables. It was noteworthy that the three meteorological
variables had a much larger impact on the predictions than the soil
warming data. These findings align with other studies that emphasize
the significance of climatic variables over soil conditions because of
their influence on soil temperature in predicting vegetation responses
(Beer et al., 2018; Tan et al., 2022). However, the intra-annual variation
in the SOS, POS, and PEAK was found to be influenced by the soil
temperature. This influence of soil temperature highlights the signifi-
cant role of below-ground processes in driving vegetation phenology
and productivity (Fang et al., 2023). Studies have shown that soil tem-
perature can affect root growth, nutrient availability, and microbial
activity, all of which are crucial for plant development (Bhattarai et al.,

2023; Metze et al., 2024; Verbrigghe et al., 2022a). Understanding these
interactions is essential for accurately predicting how the ecosystems
will respond to ongoing climate change.

The SHAP values did not indicate significant differences among the
meteorological parameters, making it challenging to prioritize their
impact as hypothesized. This contradicts our hypothesis that air tem-
perature's influence would be minimal due to its regulation of soil
temperature, precipitation would have an intermediate effect, and
irradiance would have a substantial impact, especially in cloudy sub-
Arctic climates (Hou et al., 2015; Sigurdsson et al., 2016). However,
collectively, these meteorological factors exhibited a considerably
higher influence on the predictions compared to the soil warming data.
Therefore, our findings not only contribute to understanding the
dominant impact of meteorological parameters on vegetation dynamics,
but also emphasize the need for continued research to explain the in-
terdependencies and potential interactions between these factors.

4.4. Methodological considerations

It is important to note some limitations of the study. The analysis
focused on a specific location in Iceland, and the results may not be
directly applicable to other regions. The study period also covered a
limited period of time (2014–2019), and longer-term data would pro-
vide a more comprehensive understanding of the inter-annual variation
in NDVI. Furthermore, the meteorological data does not have the same
spatial resolution as the NDVI or soil temperature data. Indeed, as we
relied on the measurements of the nearest weather station, we had to
assume that the weather conditions were the same across all plots.

The SHAP values should also be interpreted with caution. Although
they are model-agnostic, we can only draw valid conclusions if the
model generalizes well. That is, if it has an acceptable test set perfor-
mance (Molnar et al., 2020). Furthermore, the SHAP values do not have
a causal interpretation (Frye et al., 2020). We cannot assume that if the
variable X has a large impact on the prediction of Y, then X causes Y. On
the contrary, Y might cause X, X and Y could both be caused by a con-
founding variable, or they could have no causal relationship at all.

Nevertheless, this study produces valuable insights and provides
clear directions for future research. Our promising results, achieved by
applyingML in a vegetation phenology study, emphasize the potential of
this approach in advancing our understanding of seasonal plant char-
acteristics based on NDVI data. They can also be viewed as a starting
point for other analyses in a broader ecological context.

In the future, it would be interesting to consider other model archi-
tectures or methodologies, for example, XGBoost (Chen and Guestrin,
2016). Additionally, other xAI approaches like LIME (Ribeiro et al.,
2016) could be considered, allowing comparison between different xAI

Fig. 8. Sum of the absolute SHAP values as defined in Eq. (6).

Table 5
Pearson correlation coefficient between the average soil tem-
perature and its corresponding SHAP values.

Target variable Pearson correlation

SOS − 0.93
POS − 0.85
PEAK 0.91
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approaches.

5. Conclusions

Our results only partly supported our hypotheses regarding the effect
of soil temperature on the timing of the SOS, timing of the POS, and peak
NDVI values. We observed a significant relationship between soil
warming and the timing of SOS and POS, indicating that higher soil
temperatures advance the onset of the growing season. Unexpectedly,
this also led to a corresponding shift in the timing of POS. Moreover, the
peak NDVI values showed a slight increase with higher soil tempera-
tures. Furthermore, we explored the impact of meteorological variables,
more specifically air temperature, precipitation, and irradiance, on
vegetation phenology and its inter-annual variation. The use of SHAP
values allowed us to gain insight into the relative importance and
contribution of each meteorological variable to the predictions. It
became evident that the three meteorological variables had the largest
impact on the prediction of SOS, POS, and PEAK NDVI values across the
six years. However, within a given year, the impact of the three mete-
orological variables remained approximately equal, while the variations
in phenological characteristics were primarily driven by soil
temperature.

For future work, we suggest further exploration of the underlying
mechanisms driving the observed relationships between soil tempera-
ture and phenology. Investigating the physiological responses of plant
species to soil temperature variations and exploring the interactions
between soil temperature and other environmental factors at finer
temporal and spatial scales would provide a more comprehensive un-
derstanding. Additionally, collecting data considering the soil charac-
teristics, e.g., soil chemistry or nutrient availability, could improve the
performance of the ML models, and further increase the explained
variance.

In addition, incorporating advanced remote sensing techniques, such
as satellite imagery, in conjunction with ground-based measurements
can improve the accuracy and comprehensiveness of phenological
studies in subarctic grassland ecosystems. Long-term monitoring at
multiple sites and the incorporation of various geographical locations
would provide valuable information on the generalizability of our
findings and the response of subarctic grasslands to ongoing climate
change.

This study contributes to our knowledge of the relationships between
soil temperature, other meteorological variables, and vegetation
phenology in subarctic grassland ecosystems. The findings enhance our
understanding of the mechanisms driving ecosystem dynamics in these
regions and have implications for predicting and managing subarctic
grasslands in the face of environmental change. Finally, this work also
functions as a proof-of-concept for ML-based vegetation phenology
studies, and thereby provides a solid foundation for future research in
this domain.
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Verbruggen, E., Richter, A., Sardans, J., Peñuelas, J., Bahn, M., Vicca, S., Janssens, I.
A., 2023. Decadal soil warming decreased vascular plant above and belowground
production in a subarctic grassland by inducing nitrogen limitation. New Phytol.
240, 565–576. https://doi.org/10.1111/nph.19177.

Ferrara, R.M., Fiorentino, C., Martinelli, N., Garofalo, P., Rana, G., 2010. Comparison of
different ground-based NDVI measurement methodologies to evaluate crop
biophysical properties. Ital. J. Agron. 5, 145–154. https://doi.org/10.4081/
ija.2010.145.

Frye, C., Rowat, C., Feige, I., 2020. Asymmetric shapley values: incorporating causal
knowledge into model-agnostic explainability. Adv. Neural Inf. Proces. Syst. 33,
1229–1239.

Gao, Y., Xue, X., Qin, G., Li, K., Liu, J., Zhang, Y., Li, X., 2024. Application of machine
learning in automatic image identification of insects - a review. Eco. Inform. 80,
102539 https://doi.org/10.1016/j.ecoinf.2024.102539.

Guo, Q., Jin, S., Li, M., Yang, Q., Xu, K., Ju, Y., Zhang, J., Xuan, J., Liu, J., Su, Y., Xu, Q.,
Liu, Y., 2020. Application of deep learning in ecological resource research: theories,
methods, and challenges. Sci. China Earth Sci. 63, 1457–1474. https://doi.org/
10.1007/S11430-019-9584-9.

He, B., Zhao, Y., Mao, W., Griffin-Nolanb, R.J., 2022. Explainable artificial intelligence
reveals environmental constraints in seagrass distribution. Ecol. Indic. 144, 109523
https://doi.org/10.1016/J.ECOLIND.2022.109523.

Hearst, M.A., Dumais, S.T., Osuna, E., Platt, J., Scholkopf, B., 1998. Support vector
machines. IEEE Intell. Syst. Appl. 13, 18–28. https://doi.org/10.1109/5254.708428.

Hope, A.S., Kimball, J.S., Stow, D.A., 1993. The relationship between tussock tundra
spectral reflectance properties and biomass and vegetation composition. Int. J.
Remote Sens. 14, 1861–1874. https://doi.org/10.1080/01431169308954008.

Hou, W., Gao, J., Wu, S., Dai, E., 2015. Interannual variations in growing-season NDVI
and its correlation with climate variables in the southwestern karst region of China.
Remote Sens. 7, 11105–11124. https://doi.org/10.3390/rs70911105.

Huang, S., Tang, L., Hupy, J.P., Wang, Y., Shao, G., 2021. A commentary review on the
use of normalized difference vegetation index (NDVI) in the era of popular remote
sensing. J. For. Res. 32, 1–6. https://doi.org/10.1007/s11676-020-01155-1.

IPCC, 2021. Technical summary. contribution of working group I to the sixth assessment
report of the intergovernmental panel on climate change. In: Masson-Delmotte, V.,
Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y.,
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Jemeļjanova, M., Kmoch, A., Uuemaa, E., 2024. Adapting machine learning for
environmental spatial data - a review. Eco. Inform. 81, 102634 https://doi.org/
10.1016/j.ecoinf.2024.102634.

Karlsen, S.R., Elvebakk, A., Høgda, K.A., Grydeland, T., 2014. Spatial and temporal
variability in the onset of the growing season on Svalbard, Arctic Norway —
measured by MODIS-NDVI satellite data. Remote Sens. 6, 8088–8106. https://doi.
org/10.3390/rs6098088.

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., Liu, T.Y., 2017.
LightGBM: a highly efficient gradient boosting decision tree. In: Advances in Neural
Information Processing Systems, 30. URL: https://github.com/Microsoft/LightGBM.

Kumar, S., 2023. A novel hybrid machine learning model for prediction of co2 using
socio-economic and energy attributes for climate change monitoring and mitigation
policies. Eco. Inform. 77, 102253 https://doi.org/10.1016/j.ecoinf.2023.102253.

Leblans, N.I., Sigurdsson, B.D., Vicca, S., Fu, Y., Penuelas, J., Janssens, I.A., 2017.
Phenological responses of Icelandic subarctic grasslands to short-term and long-term
natural soil warming. Glob. Chang. Biol. 23, 4932–4945. https://doi.org/10.1111/
gcb.13749.

Li, F., Song, G., Liujun, Z., Yanan, Z., Di, L., 2017. Urban vegetation phenology analysis
using high spatio-temporal ndvi time series. Urban For. Urban Green. 25, 43–57.
URL: https://www.sciencedirect.
com/science/article/pii/S1618866716304666 https://doi.org/10.1016/j.
ufug.2017.05.001.

Li, W., Buitenwerf, R., Munk, M., Bøcher, P.K., Svenning, J.C., 2020. Deep-learning based
high-resolution mapping shows woody vegetation densification in greater Maasai
Mara ecosystem. Remote Sens. Environ. 247, 111953 https://doi.org/10.1016/J.
RSE.2020.111953.

Loranty, M.M., Goetz, S.J., 2012. Shrub expansion and climate feedbacks in Arctic
tundra. Environ. Res. Lett. 7 https://doi.org/10.1088/1748-9326/7/1/011005.

Lumbierres, M., Méndez, P.F., Bustamante, J., Soriguer, R., Santamaría, L., 2017.
Modeling biomass production in seasonal wetlands using modis ndvi land surface
phenology. Remote Sens. 9 https://doi.org/10.3390/rs9040392.

Lundberg, S.M., Allen, P.G., Lee, S.I., 2017. A unified approach to interpreting model
predictions. In: Advances in Neural Information Processing Systems, 30. URL: http
s://github.com/slundberg/shap.

Ma, X.Q., Leng, P., Liao, Q.Y., Geng, Y.J., Zhang, X., Shang, G.F., Song, X., Song, Q., Li, Z.
L., 2022. Prediction of vegetation phenology with atmospheric reanalysis over
semiarid grasslands in Inner mongolia. Sci. Total Environ. 812, 152462 https://doi.
org/10.1016/j.scitotenv.2021.152462.

Malyshev, A.V., Henry, H.A., Kreyling, J., 2014. Relative effects of temperature vs.
photoperiod on growth and cold acclimation of northern and southern ecotypes of
the grass arrhenatherum elatius. Environ. Exp. Bot. 106, 189–196. https://doi.org/
10.1016/j.envexpbot.2014.02.007.

Masago, Y., Lian, M., 2022. Estimating the first flowering and full blossom dates of
Yoshino cherry (Cerasus x yedoensis ‘Somei-yoshino’) in Japan using machine
learning algorithms. Eco. Inform. 71, 101835. https://doi.org/10.1016/J.
ECOINF.2022.101835.

McCulloch, W.S., Pitts, W., 1943. A logical calculus of the ideas immanent in nervous
activity. Bull. Math. Biophys. 5, 115–133. https://doi.org/10.1007/BF02478259/
METRICS.

Mehmood, K., Anees, S.A., Rehman, A., Pan, S., Tariq, A., Zubair, M., Liu, Q., Rabbi, F.,
Khan, K.A., Luo, M., 2024. Exploring spatiotemporal dynamics of ndvi and climate-
driven responses in ecosystems: insights for sustainable management and climate
resilience. Eco. Inform. 80, 102532 https://doi.org/10.1016/j.ecoinf.2024.102532.

Merrington, A.T., 2019. A Time Series Analysis of Vegetation Succession on Lava Flow
Fields at Hekla Volcano: Assessing the Utility of Landsat Data. URL:
https://skemman.is/handle/1946/33203.

Metze, D., Schnecker, J., de Carlan, C.L.N., Bhattarai, B., Verbruggen, E., Ostonen, I.,
Janssens, I.A., Sigurdsson, B.D., Hausmann, B., Kaiser, C., Richter, A., 2024. Soil
warming increases the number of growing bacterial taxa but not their growth rates.
Sci. Adv. 10 https://doi.org/10.1126/sciadv.adk6295 eadk6295.

Michielsen, L., 2014. Plant Communities and Global Change: Adaptation by Changes in
Present Species Composition or Adaptation in Plant Traits. A Case Study in Iceland.
Master’s thesis. Universiteit Antwerpen. URL: https://anet.be/record/opacuantwe
rpen/c:lvd:14296534/N.

Mølmann, J.A.B., Dalmannsdottir, S., Hykkerud, A.L., Hytönen, T., Samkumar, A.,
Jaakola, L., 2021. Influence of arctic light conditions on crop production and quality.
Physiol. Plant. 172, 1931–1940. https://doi.org/10.1111/ppl.13418.

Molnar, C., König, G., Herbinger, J., Freiesleben, T., Dandl, S., Scholbeck, C.A.,
Casalicchio, G., Grosse-Wentrup, M., Bischl, B., 2020. General pitfalls of model-
agnostic interpretation methods for machine learning models. In: International
Workshop on Extending Explainable AI Beyond Deep Models and Classifiers.
Springer, pp. 39–68.

Mortier, S., Hamedpour, A., Bussmann, B., Tchana Wandji, P.R., Sigurdsson, B.D.,
Verdonck, T., De Schepper, T., . Forhot dataset 2014-2019. URL: https://data.
mendeley.com/datasets/c9t7fx9n4h/1 https://doi.org/10.17632/
C9T7FX9N4H.1.

Myers-Smith, I.H., Kerby, J.T., Phoenix, G.K., Bjerke, J.W., Epstein, H.E., Assmann, J.J.,
John, C., Andreu-Hayles, L., Angers-Blondin, S., Beck, P.S., Berner, L.T., Bhatt, U.S.,
Bjorkman, A.D., Blok, D., Bryn, A., Christiansen, C.T., Cornelissen, J.H.C.,
Cunliffe, A.M., Elmendorf, S.C., Forbes, B.C., Goetz, S.J., Hollister, R.D., de Jong, R.,
Loranty, M.M., Macias-Fauria, M., Maseyk, K., Normand, S., Olofsson, J., Parker, T.
C., Parmentier, F.J.W., Post, E., Schaepman-Strub, G., Stordal, F., Sullivan, P.F.,
Thomas, H.J., Tømmervik, H., Treharne, R., Tweedie, C.E., Walker, D.A.,
Wilmking, M., Wipf, S., 2020. Complexity revealed in the greening of the Arctic. Nat.
Clim. Chang. 10 (2), 106–117. https://doi.org/10.1038/s41558-019-0688-1.

Odland, A., Junttila, O., Nilsen, J., 2003. Growth responses of matteuccia struthiopteris
plants from northern and southern Norway exposed to different temperature and
photoperiod treatments. Nord. J. Bot. 23, 237–246. https://doi.org/10.1111/j.1756-
1051.2003.tb00386.x.

O’Gorman, P.A., Dwyer, J.G., 2018. Using machine learning to parameterize moist
convection: potential for modeling of climate, climate change, and extreme events.
J. Adv. Model. Earth Syst. 10, 2548–2563. https://doi.org/10.1029/
2018MS001351.

S. Mortier et al.

https://doi.org/10.1016/J.BIOCON.2019.108269
https://doi.org/10.1016/j.rse.2021.112358
https://doi.org/10.1007/S10201-009-0275-7/TABLES/2
https://doi.org/10.1111/2041-210X.13256
https://doi.org/10.1002/ECE3.6840
https://doi.org/10.1038/s41467-021-23841-2
http://refhub.elsevier.com/S1574-9541(24)00272-3/rf0115
https://doi.org/10.1088/1748-9326/7/1/015506
https://doi.org/10.1088/1748-9326/7/1/015506
https://doi.org/10.1088/1748-9326/8/1/015040
https://doi.org/10.1088/1748-9326/8/1/015040
https://doi.org/10.1088/2515-7620/ac0bd1
https://doi.org/10.1111/nph.19177
https://doi.org/10.4081/ija.2010.145
https://doi.org/10.4081/ija.2010.145
http://refhub.elsevier.com/S1574-9541(24)00272-3/rf0145
http://refhub.elsevier.com/S1574-9541(24)00272-3/rf0145
http://refhub.elsevier.com/S1574-9541(24)00272-3/rf0145
https://doi.org/10.1016/j.ecoinf.2024.102539
https://doi.org/10.1007/S11430-019-9584-9
https://doi.org/10.1007/S11430-019-9584-9
https://doi.org/10.1016/J.ECOLIND.2022.109523
https://doi.org/10.1109/5254.708428
https://doi.org/10.1080/01431169308954008
https://doi.org/10.3390/rs70911105
https://doi.org/10.1007/s11676-020-01155-1
https://doi.org/10.1017/9781009157896.002
https://doi.org/10.1016/j.ecoinf.2024.102634
https://doi.org/10.1016/j.ecoinf.2024.102634
https://doi.org/10.3390/rs6098088
https://doi.org/10.3390/rs6098088
https://github.com/Microsoft/LightGBM
https://doi.org/10.1016/j.ecoinf.2023.102253
https://doi.org/10.1111/gcb.13749
https://doi.org/10.1111/gcb.13749
https://www.sciencedirect.com/science/article/pii/S1618866716304666
https://www.sciencedirect.com/science/article/pii/S1618866716304666
https://doi.org/10.1016/j.ufug.2017.05.001
https://doi.org/10.1016/j.ufug.2017.05.001
https://doi.org/10.1016/J.RSE.2020.111953
https://doi.org/10.1016/J.RSE.2020.111953
https://doi.org/10.1088/1748-9326/7/1/011005
https://doi.org/10.3390/rs9040392
https://github.com/slundberg/shap
https://github.com/slundberg/shap
https://doi.org/10.1016/j.scitotenv.2021.152462
https://doi.org/10.1016/j.scitotenv.2021.152462
https://doi.org/10.1016/j.envexpbot.2014.02.007
https://doi.org/10.1016/j.envexpbot.2014.02.007
https://doi.org/10.1016/J.ECOINF.2022.101835
https://doi.org/10.1016/J.ECOINF.2022.101835
https://doi.org/10.1007/BF02478259/METRICS
https://doi.org/10.1007/BF02478259/METRICS
https://doi.org/10.1016/j.ecoinf.2024.102532
https://skemman.is/handle/1946/33203
https://doi.org/10.1126/sciadv.adk6295
https://anet.be/record/opacuantwerpen/c:lvd:14296534/N
https://anet.be/record/opacuantwerpen/c:lvd:14296534/N
https://doi.org/10.1111/ppl.13418
http://refhub.elsevier.com/S1574-9541(24)00272-3/rf0285
http://refhub.elsevier.com/S1574-9541(24)00272-3/rf0285
http://refhub.elsevier.com/S1574-9541(24)00272-3/rf0285
http://refhub.elsevier.com/S1574-9541(24)00272-3/rf0285
http://refhub.elsevier.com/S1574-9541(24)00272-3/rf0285
https://data.mendeley.com/datasets/c9t7fx9n4h/1
https://data.mendeley.com/datasets/c9t7fx9n4h/1
https://doi.org/10.17632/C9T7FX9N4H.1
https://doi.org/10.17632/C9T7FX9N4H.1
https://doi.org/10.1038/s41558-019-0688-1
https://doi.org/10.1111/j.1756-1051.2003.tb00386.x
https://doi.org/10.1111/j.1756-1051.2003.tb00386.x
https://doi.org/10.1029/2018MS001351
https://doi.org/10.1029/2018MS001351


Ecological Informatics 82 (2024) 102730

13

Olafsson, H., Rousta, I., 2021. Influence of atmospheric patterns and North Atlantic
oscillation (NAO) on vegetation dynamics in Iceland using remote sensing. Eur. J.
Remote Sens. 54, 351–363. https://doi.org/10.1080/22797254.2021.1931462.

Park, J., Lee, W.H., Kim, K.T., Park, C.Y., Lee, S., Heo, T.Y., 2022. Interpretation of
ensemble learning to predict water quality using explainable artificial intelligence.
Sci. Total Environ. 832, 155070 https://doi.org/10.1016/J.
SCITOTENV.2022.155070.

Pedregosa, F., Varoquaux, G., Gramfort, A., V, M., Thirion, B., Grisel, O., Blondel, M.,
P, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M.,
Perrot, M., Duchesnay, E., 2011. Scikit-learn: machine learning in Python. J. Mach.
Learn. Res. 12, 2825–2830.

Perry, E., Sheffield, K., Crawford, D., Akpa, S., Clancy, A., Clark, R., 2022. Spatial and
temporal biomass and growth for grain crops using ndvi time series. Remote Sens. 14
https://doi.org/10.3390/rs14133071.

Potter, C., Alexander, O., 2020. Changes in vegetation phenology and productivity in
Alaska over the past two decades. Remote Sens. 12 https://doi.org/10.3390/
rs12101546.

Raynolds, M., Magnússon, B., Metúsalemsson, S., Magnússon, S.H., 2015. Warming,
sheep and volcanoes: land cover changes in Iceland evident in satellite NDVI trends.
Remote Sens. 7, 9492–9506. https://doi.org/10.3390/rs70809492.

Rhif, M., Abbes, A.B., Martinez, B., de Jong, R., Sang, Y., Farah, I.R., 2022. Detection of
trend and seasonal changes in non-stationary remote sensing data: case study of
Tunisia vegetation dynamics. Eco. Inform. 69, 101596 https://doi.org/10.1016/j.
ecoinf.2022.101596.

Ribeiro, M.T., Singh, S., Guestrin, C., 2016. “Why should i trust you?” Explaining the
predictions of any classifier. In: Proceedings of the ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining 13–17-August-2016,
pp. 1135–1144. https://doi.org/10.1145/2939672.2939778.

Roeber, V.M., Schmülling, T., Cortleven, A., 2022. The photoperiod: Handling and
causing stress in plants. https://doi.org/10.3389/fpls.2021.781988.

Rolnick, D., Donti, P.L., Kaack, L.H., Kochanski, K., Lacoste, A., Sankaran, K., Ross, A.S.,
Milojevic-Dupont, N., Jaques, N., Waldman-Brown, A., Luccioni, A.S., Maharaj, T.,
Sherwin, E.D., Mukkavilli, S.K., Kording, K.P., Gomes, C.P., Ng, A.Y., Hassabis, D.,
Platt, J.C., Creutzig, F., Chayes, J., Bengio, Y., 2022. Tackling climate change with
machine learning. ACM Comput. Surv. (CSUR) 55, 96. https://doi.org/10.1145/
3485128.

Ryu, J.H., Oh, D., Cho, J., 2021. Simple method for extracting the seasonal signals of
photochemical reflectance index and normalized difference vegetation index
measured using a spectral reflectance sensor. J. Integr. Agric. 20, 1969–1986.
https://doi.org/10.1016/S2095-3119(20)63410-4.

Schofield, D., Nagrani, A., Zisserman, A., Hayashi, M., Matsuzawa, T., Biro, D.,
Carvalho, S., 2019. Chimpanzee face recognition from videos in the wild using deep
learning. Sci. Adv. 5 https://doi.org/10.1126/SCIADV.AAW0736.

Seabold, S., Perktold, J., 2010. Statsmodels: econometric and statistical modeling with
python. In: 9th Python in Science Conference.

Semenchuk, P.R., Gillespie, M.A., Rumpf, S.B., Baggesen, N., Elberling, B., Cooper, E.J.,
2016. High Arctic plant phenology is determined by snowmelt patterns but duration
of phenological periods is fixed: an example of periodicity. Environ. Res. Lett. 11
https://doi.org/10.1088/1748-9326/11/12/125006.

Sigurdsson, B.D., 2001. Elevated [CO2] and nutrient status modified leaf phenology and
growth rhythm of young Populus trichocarpa trees in a 3-year field study. Trees 15,
403–413. https://doi.org/10.1007/s004680100121.

Sigurdsson, B.D., Leblans, N.I., Dauwe, S., Gudmundsdóttir, E., Gundersen, P.,
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