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Deriving rules of thumb for facility decision making
in humanitarian operations

Renata Turkeš, Kenneth Sörensen, Daniel Palhazi Cuervo

Abstract

In this paper, we investigate the factors that have an impact on the choice of facility config-
uration for inventory pre-positioning in preparation for emergencies - a critical decision
faced by humanitarian managers. Current research in the field is rich with mathematical
models and solution algorithms for the problem of pre-positioning emergency supplies.
However, due to a lack of a strong mathematical background and/or computational in-
frastructure, the decision makers rely on simpler rules of thumb to guide their planning.
Some managerial implications have been offered in the literature, but these have been de-
rived from sensitivity analyses focused on a single factor and using a single case study,
and as such can be misleading as they ignore important interactions between many in-
stance characteristics. We carried out a large experimental study that analyses the effect
of different instance characteristics and their interactions on the facility decision making.
On the one hand, the outcomes of the study help us identify the most important factors
and factor interactions that are further used to yield policy recommendations for facility
planning. On the other hand, this study also demonstrates the extent of erroneousness
of the guidelines derived from simple analyses, and as such hopefully promotes better
experimental designs in the field of humanitarian logistics.

1 Motivation and literature review

Each year, millions of people worldwide are affected by disasters [1], underscoring the
importance of effective relief efforts. Humanitarian agencies play a key role in disaster
response (e.g., procuring and distributing relief items to affected population, providing
healthcare, assisting in the development of long-term shelters), and thus their efficiency
is critical for a successful disaster response [18].

The devastating effects of disasters has led to an an increasing interest in developing mea-
sures in order to diminish the possible impact of disasters, which gave rise to the field of
disaster operations management [13]. Operations research has the potential to help relief
agencies save lives and money, maintain standards of humanitarianism and fairness and
maximize the use of limited resources amid post-disaster chaos [16]. The disaster manage-
ment literature is abundant with mathematical models and solutions procedures that aim to
optimize humanitarian supply chain [2, 10, 16, 13, 3, 15, 22, 6, 14]. Although these optimiza-
tion tools are necessary to study the problems arising in humanitarian logistics, the lack of
mathematical background and/or computational infrastructure rarely allows practitioners
to effectively use these tools. Most of the aforementioned literature surveys recognize the
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challenge of carrying theory into practice as an important future research direction. One
way to do this is to pare down these models into simple guidelines that workers can use on
the ground [20], since managers most often prefer to rely on straightforward rules of thumb
to guide their planning process [11].

In this paper, we focus on the problem of advance procurement and pre-positioning of emer-
gency supplies at strategic locations as a strategy to better prepare for a disaster. Disaster
preparedness involves the activities undertaken to prepare a community to react when a
disaster takes place [2]. Adequate preparedness can significantly improve disaster response
activities. For instance, in India, a major cyclone in 1977 caused a death toll around 20,000
people. After an early warning system, meteorological radars and emergency plans were
established, similar cyclones caused considerably lower death tolls [29]. Pre-positioning
emergency inventory in selected facilities is commonly adopted to prepare for potential
disaster threat [19]. Humanitarian organizations typically purchase and stockpile the re-
quired relief items in strategic warehouses at pre-disaster and distribute them to affected
areas in order to save lives immediately in the early post-disaster [4]. Hence, configuring a
relief pre-positioning and distribution network in an effective and efficient way can play an
essential role in mitigating negative impacts of potential disasters [24].

So far in the literature on the pre-positioning problem, some managerial guidelines have
been derived, but most often through a sensitivity analysis carried out on a single pa-
rameter using a single case study (a common approach throughout humanitarian logistics
literature). For example, in [5], the authors employ a case study focused on worldwide
earthquake-caused disasters to investigate the sensitivity of facility location decision in hu-
manitarian relief on the available budgets. The results show that the increase of pre-disaster
budget for establishing distribution centres and procuring and stocking relief items yields
a greater number of open distribution centres (with approximately the same capacities),
whereas an increase in post-disaster funding for transportation decreased the number of
distribution centres (and increased the capacity differences between the centres). A Hurri-
cane Katrina case study is used in [8] to study the effect of supply amount and acquisition
time on the ability of a port to quickly recover from disasters, that is measured by the num-
ber of aids to navigation (which help vessels and mariners with navigation through the wa-
terways) to be repaired. The experimental results show that a decrease in supply amount
results in a decline in the amount of aids to navigation repaired. Similarly, an increase in
the supply acquisition time effectively reduces the amount of available time to repair the
aids and therefore decreases the number of aids repaired, what helps to reinforce the need
for coordination efforts well in advance of disaster events.

In [21], the authors use a case study focused on a hurricane threat in US Gulf Coast to study
how the optimal pre-positioning location and allocation policies change with respect to the
risk parameters. The study shows that increasing the level of risk aversion leads to a more
risk-averse policy with higher positioning costs and lower expected (transportation, salvage
and) shortage costs in general. The inventory level, however, does not necessarily increase
for every commodity; whether the inventory level of a commodity increases or decreases de-
pends on the associated shortage penalty cost. A Thai flood case study is introduced in [17]
to discuss the sensitivity of the pre-positioning facility and inventory decisions on different
time and cost parameters, and thereupon derive managerial implications. The results sug-
gest that an increase in the maximum response time at each demand location reduces the
total operation cost (that remains unchanged beyond a certain maximum response time),
implying that budget limitations can lead to a slow response system. In particular, with
greater maximum response time, the opening cost of the facilities and the holding cost de-
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crease, while the transportation cost increases. In other words, the more restrictive the time,
the model responds by opening more warehouses (with lower level of utilization of facility
capacity) in order to provide timely service for each demand location. The trade off be-
tween opening and transportation costs, however, has an impact on the choice between the
far-located low-cost and near-located high-cost warehouses.

However, opportunities to derive good rules of thumb are missed by sensitivity analysis on
a single parameter, as they ignore the influence of other factors that can completely reverse
the patters seen in individual analyses. For example, if opening few big facilities costs less
than opening many small facilities, but offers a greater storage capacity, it might often be
preferred. However, if the transportation budget is quite limited, or if the transportation
network is severely damaged after a disaster, opening many small facilities can be a better
facility configuration, as it allows to provide assistance to a greater number of demand lo-
cations. Studying only how the relationship between facility opening costs influences the
facility decisions can thus lead to serious misunderstanding of how the facility decisions
change with respect to this factor, as it does not investigate the interaction between facility
opening costs and the transportation budget or level of network damage. The importance of
considering the interaction between different parameters is notable in the aforementioned
articles, e.g., interaction between risk aversion and shortage penalty costs in [21], or the in-
teraction between maximum response time and opening and transportation costs in [17].
Deriving general rules of thumb necessitates a more complex analysis that evaluates differ-
ent parameters and investigates how they interact with each other.

In addition, the managerial implications are most often derived using a specific case study.
Most of the instance characteristics therefore implicitly remain fixed throughout the analy-
sis, such as the network and demand topology, or disaster type or scale. For different types
of instances, the guidelines derived can therefore be misleading. This was also explicitly
acknowledged by the authors of the aforementioned articles as a limitation of their work,
as they affirm that the policies could be improved and more insights could be gained with
information from other disasters, i.e., with multiple case studies [8, 17].

To avoid the aforementioned issues, we carry out a large computational study that includes
a comprehensive set of factors in order to answer the following questions:

(1) Which instance characteristics and/or their interactions have the largest influence on
the facility decision making?

(2) What are the best facility configurations for an instance with certain characteristics?

To the best of our knowledge, this paper is the first such attempt in the domain of human-
itarian logistics that we hope becomes a standard practice in the field. For this reason, we
also include a few examples that demonstrate how the conclusions can be misleading if
derived from an analysis of a single instance parameter, using a single case study.

The remainder of the paper is organized as follows. In Section 2, we describe the pre-
positioning problem, and the matheuristic that we use to solve the problem. Section 3 in-
troduces the instance characteristics and the response variables included in the study, and
describes the experimental set-up. The experimental results provide information about the
most important instance characteristics and their interactions, that are summarized in Sec-
tion 4.1, which is then used to derive some rules of thumb in Section 4.2. The experimental
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results are also used to provide some examples in Section 4.3 that illustrate how a simple
sensitivity analysis on a single parameter and/or using a single case study can yield mis-
leading conclusions. The paper ends with a summary of the most important contributions,
limitations and possibilities for future research in Section 5.

2 Description of the problem and solution procedure

Let V be the set of vertices representing the cities, villages or communities in the area that
might be affected by the disaster. The subset of vertices i ∈ V with Fi = 1 are potential
facility locations. A storage facility of any category q ∈ Q might be opened at any of these
potential facility locations, while the facility budget A is respected. The facility categories
differ in volume capacityMq and opening cost Aq.We consider a set of different commodi-
ties k ∈ K (e.g., food, water, medicine, blankets, clothing) with unit volume V k, unit acqui-
sition cost Bk and unit transportation cost Ck. These commodities may be pre-positioned
at open storage facilities if the facility capacity and acquisition budget B are respected.

The pre-positioning facility and inventory decisions are made in the disaster preparedness
phase, under uncertainty about if, or where, a disaster might occur. We consider uncer-
tainties about demands, survival of pre-positioned supplies, and transportation network
availability, and represent them with a set S of possible disaster scenarios, that can occur
with given probabilities P s. The proportionRks

i of pre-positioned commodity type k ∈ K at
vertex i ∈ V that remains usable (i.e., that is not destroyed) in a disaster scenario s ∈ S can
be distributed with an average speed V to the beneficiaries that are in need of assistance,
as long as the transportation budget C is not violated. The demand for commodity type
k ∈ K at a vertex i ∈ V in disaster scenario s ∈ S is denoted by Dks

i . The set of edges Es

represents the transportation links in scenario s ∈ S,with the weight of an edge (i, j) being
the distance Ls

ij from vertex i ∈ V to vertex j ∈ V in scenario s ∈ S.

The aforementioned problem assumptions are an adapted version of the pre-positioning
problem definition that was introduced in [23] and has since been widely adopted in the
literature.
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Table 1: Notation for the instance and solution of the pre-positioning problem.

Sets

Q set of facility categories
K set of commodities
S set of scenarios
V set of vertices
Es set of edges in scenario s ∈ S

Coefficients

Fi

{
1, if a facility (of any category) can be open at vertex i ∈ V

0, otherwise
Vq volume capacity of a facility of category q ∈ Q (m3)
Aq opening cost of a facility of category q ∈ Q (e)
V k unit volume of commodity k ∈ K (m3)
Bk unit acquisition cost of commodity k ∈ K (e)
Ck unit transportation cost of commodity k ∈ K (e)
V average speed (km/h)
P s probability of scenario s ∈ S

Dks
i demand for commodity k ∈ K at vertex i ∈ V in scenario s ∈ S

RKs
i


proportion of pre-positioned commodity k ∈ K that remains usable at vertex i ∈ V

in scenario s ∈ S, Fi = 1

−1, otherwise

Ls
ij

{
distance from vertex i ∈ V to vertex j ∈ V in scenario s ∈ S (km), (i, j) ∈ Es

−1, otherwise
A total budget for opening the facilities (e)
B total budget for aid acquisition (e)
C total budget for transportation (e)

Decision variables

xiq

{
1, if a facility of category q ∈ Q is open at vertex i ∈ V

0, otherwise
yk
i amount of commodity k ∈ K pre-positioned at vertex i ∈ V

zsij


1, if the facility open at vertex i ∈ V fully meets the demands of vertex j ∈ V

in scenario s ∈ S

0, otherwise
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Given an instance of the pre-positioning problem described above, we want to determine
the best possible strategy to pre-position the aid. To solve the pre-positioning problem is to
develop a strategy that determines:

• the number, location and category of storage facilities to open, represented by binary
variables x = [xiq] that indicate whether a facility of category q ∈ Q is open at vertex
i ∈ V,

• the amounts y = [yki ] of commodity k ∈ K to pre-position at a facility open at vertex
i ∈ V, and

• the aid distribution strategy, represented by binary variables z = [zsij ] that indicate
whether a facility open at vertex i ∈ V serves the demands of vertex j ∈ V in scenario
s ∈ S,

that provides assistance to the greatest number of people possible, as soon as possible, i.e.,
that minimizes the unmet demand and response time in lexicographic order. The notation
for an instance and a solution of the pre-positioning problem is summarized in Table 1. An
example of a small pre-positioning problem instance, and the mathematical formulation
can be found in [26].

Since the pre-positioning problem becomes intractable for larger instances for commercial
solvers such as CPLEX, we employ a matheuristic that is able to find good solutions in a very
limited computation time, introduced in [28]. The matheuristic is based on the iterated local
search procedure, with the aid distribution sub-problem intermittently solved by CPLEX.
The experimental results in [28] suggest that a simple improvement of the matheuristic
would be to let the matheuristic run for most of the given computation time, but to also
allocate a very limited amount of time (only a few seconds) for CPLEX. The final solution
would of course be chosen as the better of the two solutions, yielded by the matheuristic and
by CPLEX. Such a heuristic has the best of both worlds: it will identify the optimal solution
for small instances which CPLEX can solve to optimality, find good solutions even for large
instances, and avoid CPLEX numeric difficulties for any instance. To find a solution of any
problem instance in our experiment, we therefore run the matheuristic for 60 seconds, and
CPLEX for 30 seconds, and select the better of two as the final solution.

3 Experimental set-up

In this section, we describe in detail the set-up of the extensive computational study that
we carried out. As mentioned before, the first goal of the experiment is to identify the
instance characteristics that have the most significant influence on the facility decision mak-
ing, and to determine how these characteristics influence each other. The second goal of the
experiment is to identify the rules of thumb for facility decision making in humanitarian
operations.

As described in Section 2, to solve the pre-positioning problem is to make not only the fa-
cility decisions, but also the inventory and distribution decisions. We limit our study only
to the analysis of the facility decisions, as they are the most critical. Indeed, it is shown
in [28] that it is the facility optimization part of the matheuristic that yields the most sig-
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nificant improvements of the solution quality. Besides, if the facility decisions are made,
the matheuristic provides a very good rule of thumb for the inventory and distribution de-
cisions: the greedy assignment of vertices with simultaneous inventory increase (that can
easily be done manually) is shown in [28] to find good inventory and distribution schemes.

Actually, in our experimental study, we will only focus on the number and the categories of
the facilities to open, without saying anything about the facility locations. While the location
decisions seem to be pretty straightforward (choose for locations where a high percentage
of pre-positioned aid remains usable, and in the neighbourhoods with high demand, as in
the greedy heuristic described in [28]), deciding on the number and categories of facilities
to be open seems more intricate. For the standard deterministic facility location problem in
commercial logistics, the demands of every customer must be met so that the transportation
cost or time needs to be minimized, and thus a good rule of thumb would be to open as many
facilities as possible. For the pre-positioning problem, it is unrealistic to request that the
demand must completely be met, and thus the objective is to provide service to the greatest
number of people possible, as soon as possible (minimize unmet demand and response time
in lexicographic order) such that the financial limitations are respected. This, combined
with multiple facility categories and uncertainties about a number of aspects of a disaster,
completely change the guidelines for the number and categories of facilities to open.

What a good facility configuration looks like for the pre-positioning problem instance there-
fore requires studying the influence of a number of instance characteristics. Before we de-
scribe each of them in detail, we give a general idea why they are important for this problem
and illustrate the discussion with a small example.

Obviously, the available budgets have an important effect on the the facility decisions. If
the inventory budget B is unlimited (i.e., very large), the demand of every vertex in every
scenario can be met (except the isolated demand locations that cannot be reached from any
potential facility location, or if there are insufficient number of potential facility locations),
and therefore the only objective is to minimize the response time. If the facility budget is
also unlimited, the best strategy is to open a facility of the largest category at every potential
facility location. Even if the facility budget is limited, a simple rule of thumb in this case
would be to open as many facilities (of the smallest category, as they are the cheapest) as
the facility budget permits, in order to provide the service as soon as possible. However,
the more restricted the inventory budget becomes, the greater is the focus on the primary
objective of minimizing unmet demand. It might become more preferable to open less fa-
cilities (and of bigger capacity) in order to make better use the pre-positioned aid across
different disaster scenarios. In addition, if the proportions of aid that would remain usable
are very low for many potential facility locations, we might prefer to open fewer facilities
(with a bigger capacity) where the proportion of aid that remains usable is high, as illus-
trated in the example below. On the other hand, if the transportation budget is also very
limited or if the transportation network would be destroyed across many disaster scenarios,
we would try to open more facilities in order to be able to reach many demand locations.
This gives a better idea why the mentioned instance parameters, but also their interactions,
might influence the facility decision making.

Consider a small pre-positioning problem instance with 3 vertices, 1 facility category, 1
commodity type and 2 scenarios in Figure 1. Every vertex is a potential facility location,
and vertices i = 1 and i = 2 are demand locations in both scenarios. If the inventory
budget is unlimited, we would open a facility at both demand locations and pre-position
y11 = max{d 1001 e, d

30
0.8e} = 100 and y12 = max{d 500.7e, d

70
0.7e} = 100, i.e., 200 units of aid
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in total. The demand vertices in each scenario would be served from a facility open at
the demand location site, with zero total response time. However, if the inventory bud-
get would allow acquiring only 150 units of aid, we would open only one facility at ver-
tex i = 1 (where the proportion of aid that remains usable is higher) and pre-position
y11 = max{d 100+50

1 e, d 30+70
0.8 e} = 150 units of aid. In addition, even if the inventory bud-

get would allow to acquire 200 units of aid, but if the proportion of aid that would remain
usable at vertex i = 2 in both scenarios would be very low (e.g.,R11

2 = R12
2 = 0.2),we would

also only open a facility at vertex i = 1 and pre-position y11 = 150 units of aid.

rs1
R

11

1 = 1

D
11

1 = 100

rs2
R

11

2 = 0.7

D
11

2 = 50

rs3
R

11

3 = 0.9

D
11

3 = 0

rs1
R

11

1 = 0.8

D
11

1 = 30

rs2
R

11

2 = 0.7

D
11

2 = 70

rs3
R

11

3 = 0.5

D
11

3 = 0

Scenario s = 1, P 1 = 0.4 Scenario s = 2, P 2 = 0.6

Figure 1: GraphsG1 andG2 represent three cities and the road network that connects them
in two possible disaster scenarios. The scenarios occur with probabilities P 1 and P 2 respec-
tively, and both are defined with the demandDks

i and proportion of aid that remains usable
Rks

i for every commodity k ∈ K and every vertex i ∈ V, together with the availability of
every edge that is indicated in the graph.

The discussion and example above describe only some of the instance characteristics and
their interactions that can have an influence on the facility decision making. In our study,
we described each part of the instance information (Table 1) with a factor. The complete
list of factors that included in the experiment is given in Table 2. In the remainder of this
section, we describe each factor in greater detail, and in the final subsection we describe
how each experimental unit is evaluated.

3.1 Percentage of potential facility locations

The first instance characteristic that might influence the best facility configuration for a prob-
lem instance is the percentage of vertices that are potential facility locations. This factor can
become important for instances whose good solutions correspond to many open facilities
at the majority of potential facility locations, with total facility capacity that is much lower
than the total demand volume (Section 3.2, QV = 2). Indeed, increasing the percentage
of potential facility locations for such instances can change the best facility configuration
by opening more facilities to allow to pre-position more aid that is able to serve more de-
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Table 2: In the computational study, we investigate how different instance parameters and
their interactions influence the facility decision making.

Factor Notation Levels Description of levels

Percentage of potential
facility locations F

0.1
100F% of random vertices are potential facility
locations.0.5

1

Facility capacities QV
2 The capacity V1 of a small facility is QV times big-

ger than the volume of the average demand at a
vertex in a scenario; V2 = 2V1.

4
6

Facility unit opening
costs QAV

0.5 This factor represents the ratio between the unit
opening cost between a big and a small facility,
QAV = (A2/V2)/(A1/V1).

0.75
1

Number of scenarios S
5

S different disaster scenarios are considered, that
occur with the same probability 1

S
.

10
20

Average proportion of
aid that remains usable R

0.5 The proportions of pre-positioned aid that remains
usable are drawn from the normal distribution
N (R, 0.2).

0.75
1

Demand graphs D

Chile1

This factor represents the network and demand
topology that is defined from the case studies and
random instances introduced in [27], as explained
in Section 3.6.

Chile2

Chile3

Chile4

Turkey

Senegal

US1

US2

US3

US4

US5

US6

Random1

Random2

Random3

Transportation network
damage L

0 In every disaster scenario, 100L% of random edges
is destroyed.0.25

0.5

Facility budget AP
0.5 The facility budget is 100AP% of an estimated fa-

cility budget necessary to meet the expected total
demand.

0.75
1

Acquisition budget BP
0.5 The acquisition budget is 100BP% of an estimated

acquisition budget necessary to meet the expected
total demand.

0.75
1

Transportation budget CP
0.5 The transportation budget is 100CP% of an esti-

mated transportation budget necessary to meet the
expected total demand.

0.75
1
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mand vertices. Even if the total number of facilities in the best found facility configuration
is small relative to the total number of potential facility locations, increasing the percentage
of potential facility locations can influence the facility decision making. Indeed, if all initial
potential facilities are all located within one region (with many demand vertices outside this
region), and the transportation network is severely damaged (Section 3.7, L = 0.5) and/or
the transportation budget is very limited (Section 3.10, CP = 0.5), opening facilities at new
potential facility locations can improve the facility configuration. This demonstrates not
only the effect of the number of potential facility locations, but the interaction between this
and a few other factors, such as the facility capacities and transportation network damage
or transportation budget.

We therefore consider the percentage of vertices that are potential facility locations as a fac-
tor in our experiment, with 3 different levels that correspond to 10, 50 and 100% of random
vertices as the potential facility locations. The minimum level needs to be greater than zero,
since no facilities can be open (and therefore no non-trivial solutions exist) if there are no
potential facility locations. The maximum level is set to 100%, as it might be possible that a
facility can be open at any location (which is the case, e.g., for the US case study introduced
in [23] and described in [27]).

3.2 Facility capacities

For each problem instance, we consider that facilities of two different categories can be open,
a small facility q = 1, or a big facility q = 2. The relative capacities of these facility categories
influences the facility decision making, at least with regards to the number of open facilities.
Indeed, the smaller the capacities, the greater number of facilities is necessary to store the
total demand volume. However, if the inventory budget is limited (Section 3.9, BP = 0.5),
the number of open facilities in the best found solution (with a high unmet demand) might
also remain small even if the facility capacities are small.

We consider three different levels for the factorQV representing the facility capacities. The
factor levels QV = 2, QV = 4 and QV = 6 mean that the facility capacity of a small facility
V1 is 2, 4 or 6 times the volume of the average demand at a vertex (that is calculated from the
demands given in Section 3.6, when the complete set of 20 scenarios is considered, so that
the facility capacities remain the same for different levels of factor S, in order to properly
assess the effect of S). In all cases, we consider that the capacity of a big facility is 2 times
larger than the capacity of a small facility, V2 = 2V1. To define these capacities, we took
inspiration from the case studies described in [27].

3.3 Facility unit opening costs

Another factor that obviously has a strong influence on the facility decision making are the
facility opening costs.

For example, if opening 3 small and 2 big facilities yield the same total opening cost, big
facilities might be preferred for many instances, as this facility configuration would ensure
a greater total storage capacity (Section 3.2, V2 = 2V1 throughout the study) and thus allow
pre-positioning a greater volume of aid.
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In practice, due to the economies of scale, it is to be expected that the unit opening cost of
a big facility is lower than the unit opening cost of a small facility. If, however, the unit cost
of a big facility is only 75% of the unit facility cost of a small facility (as in the aforemen-
tioned example), opening small facilities might still be better for some instances, but this can
change if the unit cost of a big facility is 50% of the opening cost of a small facility. This is
why it is important to consider different levels of this ratio between the unit opening costs.

The third factor QAV that we included in the experiment represents the ratio between the
unit opening costs between a big and a small facility,QAV = (A2/V2)/(A1/V1).We consider
3 different levels QAV ∈ {0.5, 0.75, 1} that mean that the unit opening cost of a big facility
is respectively 50, 75 and 100% of the unit opening cost of a small facility. In other words,
since the capacity of a big facility V2 is 2 times greater than the capacity V1 of a small facility
for any problem instance (V2 = 2V1, Section 3.2), this means that the opening cost A2 of a
big facility is 1, 1.5 and 2 times greater than the opening cost A1 of a small facility.

For every problem instance, we consider that the unit opening cost of a small facilityA1/V1 =
10 e/m3 and therefore calculate the opening cost of a small facility as A1 = 10V1. The unit
opening cost QAV × 10 of a big facility can therefore be 5, 7.5 or 10 e/m3, and the opening
cost of a big facility is A2 = QAV × 10 × V2. To define these unit opening costs, we took
inspiration from the case studies described in [27].

3.4 Number of scenarios

As explained in the small example in the first part of this section (Figure 1), the number
of scenarios might also have an influence on the facility decision making. We therefore
consider the number of scenarios S as a factor, with three different levels S ∈ {5, 10, 20}.
The scenario probabilities are all equal, P s = 1

S .

3.5 Proportion of aid that remains usable

In the example in the first part of this section (Figure 1), we also described how the propor-
tions of aid that remain usable at the potential facility locations can also have an influence on
the facility decision making, and have therefore included them as a factor in the experiment.

The factorR that represents the proportions of aid that remains usable has three levels,R ∈
{0.5, 0.75, 1}. IfR = 0.5, the proportion of aid that remains usable at every potential facility
location in every scenario is a random number drawn from a normal distributionN (0.5, 0.2)
with the mean µ = 0.5 and variance σ2 = 0.2, so that the average proportion is 0.5. If
R = 0.75, the proportions are drawn from a normal distributionN (0.75, 0.2).Whenever the
proportion is smaller than zero, we set it to zero, and whenever the proportion is greater
than one, we define it to be one. Finally, if R = 1 every proportion is set to one, i.e., no aid
would be destroyed.
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(a) case-study-47-1-4-1 (b) case-study-14-1-1-9

(c) case-study-30-1-1-10 (d) case-study-30-3-3-51

Figure 2: Network graphs G1 = (V,E1) of the 4 base case studies that inspired the gener-
ation of the 30 case studies: (a) Chile 2010 earthquake and tsunami (b) Turkey 1999 earth-
quake (c) Senegal Mboro region disaster threat (d) US Gulf Coast hurricane threat.

3.6 Demand graphs

Probably one of the most important factors that influence the facility decision making is the
actual demand for commodities. We limit our study to a single commodity type, |K| = 1.
In [27], a number of case studies and a random instance generator for the pre-positioning
problem are introduced. The case studies are inspired from the 4 case studies collected from
the literature [9, 7, 25, 23], that focus on disasters of different type and scale that occurred
in different parts of the world (Figure 2). The random instance generator employs research
about the nature of disaster propagation to define reasonable random instance of any size.
We use these case studies and random instance generator to define 15 different levels of the
factor D that represents the demand graphs, what we explain in detail in the remainder of
this subsection. For each of the 15 levels, we define 20 demand graphs that correspond to
20 different disaster scenarios, what is the maximum number of scenarios considered in the
experiment (Section 3.4, S = 20). Whenever S = 5 or S = 10 in the experiment, we consider
the subset of 5 or 10 randomly chosen disaster scenarios, i.e., demand graphs.

Next to the demand information, the factor D contains the information about the number
of vertices, the network topology and the distances between the vertices (hence the name,
demand graphs). The number of (demand) vertices, the network and demand topology vary
greatly across the 15 different levels of factor D. Since these instance features are expected

12



to have a strong influence on the facility decision making, it could be worthwhile to include
them as separate factors in our experiment. However, this would mean that the demands
would have to be randomly defined for each of the factor levels. We do not proceed in this
manner in order to exploit the rich network and demand data that is contained in the case
studies that focus on real disasters. The alternative approach is discussed further in the
concluding section as a possible direction for future work.

Note that the factor D also includes the information about the commodity (unit volume
V k, unit acquisition cost Bk and unit transportation cost Ck). We adopt this information
from the case studies, rather than considering them to be constant, as the actual values of
demand are relative to this information. For example, extremely high values of demands
for a commodity indicates that the unit volume is probably very small (e.g., water bottle),
where lower demands indicate that the unit volume is larger (e.g., pallet of water bottles),
see [27].

The factor levelsD ∈ {Chile1, Chile2, Chile3, Chile4} are defined using the base pre-
positioning problem case study case-study-47-1-4-1 with 47 vertices, 1 facility category,
4 commodity types and 1 scenario. This problem instance describes a magnitude-8.8 earth-
quake that occurred in Chile in 2010, and is inspired from a case study introduced in [9].
The demands for each region are based on the Richter scale of the earthquake and the level
of damage and population size in each region, and are defined by analysing several sources
of information, such as press notes, National Emergency Office, Red Cross, etc. [9]. In the
base case study case-study-47-1-4-1, the only three potential facility locations are Lima,
La Paz and Buenos Aires in the three neighbouring countries Peru, Bolivia and Argentina.
In our experiment, however, we investigate the effect of the percentageF of potential facility
(random) locations (Section 3.1), and therefore remove these three vertices outside of Chile
from the network graph, considering a given percentage of demand locations within Chile
to be potential facility locations. In addition, the base case study case-study-47-1-4-1

considers 4 different commodity types (water, food, personal products and medicine) which
allows us to consider 4 different sets of demand graphs for each of the commodities (since
we have fixed the number of commodity types |K| to one throughout the experiment). To
define the 20 demand graphs that correspond to 20 different disaster scenarios, we multiply
the demand of every vertex by a random number generated from a probability distribution
N (µ, σ2) with the mean µ ∈ {0.5, 0.75, 1, 1.5, 2} and σ2 ∈ {0.1, 0.2, 0.3, 0.4}. Whenever this
random number is negative, we define the demand to be zero. The four different levels of
the factor D therefore each correspond to 20 demand graphs with 44 vertices.

The factor level D = Turkey is defined using the base pre-positioning problem case study
with 14 vertices, 1 facility category, 1 commodity type and 9 scenarios, case-study-14-1-
1-9. This problem instance describes a magnitude-7.6 earthquake that occurred in Turkey
in 1999, and is inspired from a case study introduced in [7]. In the original paper, the ex-
pected demands are defined using [12], which are then perturbed with certain percentages
to define the demands in 9 disaster scenarios [7]. We proceed in the same manner to define
the 20 demand graphs for our experiment, by multiplying the expected demands by 1, 1.2,
1.4, 1.6, 1.8, 2, 2.2, 2.4, 2.6, 2.8, 3, 3.2, 3.4, 3.6, 3.8, 4, 4.2, 4.5, 4.6 and 4.8 respectively. The
factor level D = Turkey therefore corresponds to 20 demand graphs with 14 vertices.

The factor level D = Senegal is defined using the base pre-positioning problem case study
with 30 vertices, 1 facility category, 1 commodity type and 10 scenarios, case-study-30-1-
1-10. This problem instance is inspired from a Senegal case study introduced in [25]. In the
original paper, the authors define the demand of a vertex in a scenario as the population size
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of the vertex multiplied by an uncertainty factor, where this uncertainty factor is a sum or
a random baseline term that is common for the whole region, and a correction term that is
specific for the given vertex. To define the 20 demand graphs, we adopt the same approach
and thus define the demand D1s

i at vertex i ∈ V in scenario s ∈ S as

D1s
i = Pi × (ξs + ξsi ),

where Pi is the population size of the vertex i, and ξs and ξsi are random numbers generated
from the uniform distribution on the interval [0, 1]. The factor level D = Senegal therefore
corresponds to 20 demand graphs with 30 vertices.

The factor levels D ∈ {US1, US2, US3, US4, US5, US6} are defined using the base pre-
positioning problem case study case-study-30-3-3-51 with 30 vertices, 3 facility cate-
gories, 3 commodity types and 51 scenario. This problem instance focuses on hurricane
threat in the Gulf Coast area of the United States, and is inspired from a case study intro-
duced in [23]. The case study is constructed using historical records from a sample of fifteen
hurricanes, obtained from the National Oceanic and Atmospheric Administration research
facility Atlantic Oceanographic and Meteorological Laboratory. Since the base case study
case-study-30-3-3-51 considers 3 different commodity types (water, food, and medicine),
we can consider 3 different sets of demand graphs for each of the commodities (since we
have fixed the number of commodity types |K| to one throughout the experiment). In ad-
dition, since the base case study case-study-30-3-3-51 considers 51 different scenarios,
and in our experiment we limit the number of scenarios to 20 (Section 3.4), we use this base
case study to define two groups of 20 demand graphs, that correspond to scenarios s = 1
to s = 20, and s = 31 to s = 50. The six different levels of the factor D therefore each
correspond to 20 demand graphs with 30 vertices.
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Figure 3: Network graphsG1 = (V,E1) of the 3 random instances that were used to generate
the demand graphs that correspond to levels D ∈ {Random1, Random2, Random3}.

Finally, the factor levelsD ∈ {Random1, Random2, Random3} are defined using the random
instance generator introduced in [27]. The instance generator is used to construct three
random pre-positioning problem instances with 50, 100 and 200 vertices (and 2 facility cat-
egories, 1 commodity type and 20 scenarios) whose demand graphs correspond to three
different levels of factor D (Figure 3).
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3.7 Transportation network damage

The more the transportation network is damaged, the more facilities would likely need
to be open in order to reach the demand locations. For this reason, we also include the
level of transportation network damage L in our experiment, with three different levels
L ∈ {0, 0.25, 0.5}. If L = 0, this means that no edges are destroyed, i.e., the distance matri-
ces correspond to the distances defined in Section 3.6. If L = 0.25, 25% of random edges are
destroyed in every disaster scenario, and if L = 0.5, the percentage of random edges that
are removed is 50%.

3.8 Facility budget

Finally, the budgets obviously play an important role in the facility decision making. Fac-
tor AP corresponds to the total available budget A for opening the storage facilities, that is
calculated as a percentage of an estimated facility cost necessary to meet the expected total
demand. Since the unit opening cost of a small facility is 10e/m3 (what is also the greatest
possible unit opening cost of a big facility, Section 3.3), a reasonable estimate of the facil-
ity budget necessary to store the volume VD of expected total demand could be 10 × VD.
However, different disaster scenarios that represent the uncertainties inherent to the pre-
positioning problem, imply that the facility capacities are rarely completely utilized across
all disaster scenarios. In addition, some pre-positioned aid might be destroyed, so that the
volume of aid that is pre-positioned at the facilities might be greater than the volume of aid
distributed to the beneficiaries. We therefore set the facility budget toA = AP×2×10×VD,
considering three different levels of the factor AP ∈ {0.5, 0.75, 1}. Note that the volume VD
of the expected total demand is calculated from the demands given in Section 3.6, when the
complete set of 20 scenarios is considered, so that the facility budget remains the same for
different levels of factor S, in order to properly assess the effect of S (and the same is true
when the acquisition budget is defined in Section 3.9). The choice of factor levels (also for
the factors corresponding to the acquisition and transportation budgets in the next subsec-
tions) is based on the case studies described in [27].

Another possibility would be to estimate the facility cost as the average between facility
cost of opening only small or only big facilities that are sufficient to store the expected total
demand volume. In this case, the facility budget A would change with respect to changes
in the factor QAV that corresponds to the ratios between different facility opening costs
(Section 3.3) and would therefore hinder the investigation of the effect of factorQAV on the
facility decisions (or its interaction with factor AP ).

3.9 Acquisition budget

It is to be expected that the budget B for procurement of the humanitarian aid has a strong
effect on the facility decision making. Similarly to the facility budget definition in Sec-
tion 3.8, for three different levels BP ∈ {0.5, 0.75, 1}, we define the acquisition budget B
to be 50, 75 or 100% of double the acquisition cost of the expected total demand.
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3.10 Transportation budget

Three different levels of the factorCP ∈ {0.5, 0.75, 1} indicate that the transportation budget
C is 50, 75 or 100% of an estimate of the transportation cost necessary to meet the expected
total demand. To find this estimate, we first calculate the total cost of transporting the re-
quired amount of aid to every demand location i ∈ V over the average distance from every
vertex j ∈ V connected with i ∈ V, to the demand vertex i ∈ V. Since the demand is rarely
completely met, and since the vertices are most often served from close-by open facilities
rather than from an average distance to the vertex, we define the transportation budget as
half the aforementioned transportation cost.

3.11 Experimental design and response variables

In the experiment, we consider all possible level combinations across all characteristics (full-
factorial experimental design). Since a lot of instance information is defined randomly (the
potential facility locations, choice of scenarios, proportions of aid that remain usable, and
the destroyed edges), we construct three replicates for each of the level combinations. This
results in an extensive computational study that involves

3× 3× 3× 3× 3× 15× 3× 3× 3× 3× 3 = 885 735

experimental units, i.e., pre-positioning problem instances.

We note here that, when constructing an instance, each instance characteristic under study
is defined only according to the levels of one factor and the underlying base instance, while
the values of other factors are ignored. In this way, we ensure that changes in one factor
only influence the corresponding part of instance information, while the remainder of the
instance remains constant, in order to properly evaluate the influence of that factor. For
example, the facility capacities and the available budgets are defined using the average and
expected demand volumes and shortest path distances obtained from the 20 demand graphs
in the underlying base instance, so that these values remain constant with different number
of scenarios S and that the impact of factor S can be properly evaluated.

Similarly, if the transportation budget C were defined according to the shortest paths of the
respective instance, the budget C would change with changes in the level of transportation
network damage L, what would make it difficult to study the effect of L (as we would not
know if a change in the facility configuration was yielded by the changes in the transporta-
tion network availability, or a change in the budget). Furthermore, we consider the distances
from every vertex to the demand locations, rather than only considering the distances from
potential facility locations when defining the transportation budget C (Section 3.10), in or-
der to properly analyse the effect of factor F. It is for the same reason that we ignored the
relationship between facility unit opening costs or proportions of aid that remain usable
when defining the facility and inventory budgets, so that e.g., the inventory budget B re-
mains constant for different levels of factor R and a proper analysis of the effect of R can be
carried out.

The folder that contains all the instances is very large (68GB), and we therefore publish only
the 15 instances that correspond to the 15 different levels of the demand factor D. Each of
the 15 instances contains the information about 20 demand graphs that represent 20 disaster
scenarios (demands, distances, commodity information, Section 3.6), but does not define
the potential facility locations, facility capacities and opening costs, scenario probabilities,
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proportions of aid that remains usable and the available budgets, i.e., Fi = 0, Vq = Aq = 0,
P s = 0, Rks

i = 0 and A = B = C = 0 for every i ∈ V, q ∈ Q, k ∈ K, s ∈ S. However, this
data is sufficient to replicate the experiment, as the remaining instance information can be
defined according to the rules listed in Table 2. The 15 instances are available for download
from the following webpage:

http://antor.uantwerpen.be/members/renata-turkes/.

The matheuristic introduced in [28] and described in Section 2 is employed to look for
promising facility decisions x = [xiq] for every problem instance. We are primarily in-
terested to learn if it is better to open small or big facilities and to what extent, i.e., we are
interested in the percentage X1/X of the open facilities which are of small capacity. For
further insights, we also record the numbers X1 and X2 of respectively small and big open
facilities in the best found solution.

Table 3: In the computational study, we investigate how different instance parameters and
their interactions influence the facility decisions in the best found pre-positioning emer-
gency strategy. We are mainly interested in the categories of facilities to be open (repre-
sented by the percentage of small open facilities X1/X, or analogously, percentage of big
open facilities), but we also keep track of the numbers of small and big open facilities, rep-
resented respectively by response variables X1 and X2.

Response variable Notation

Percentage of open facilities which are small X1
X

= X1
X1+X2

Number of small open facilities X1

Number of big open facilities X2

Next to the instances, a summary of the experimental results (a single, easy to read .csv file)
is also freely available at

http://antor.uantwerpen.be/members/renata-turkes/.

In addition to X1/X, X1 and X2, for every pre-positioning problem instance we register
a lot of instance and solution information, such as the number of (demand) vertices, coef-
ficient of demand volume variation across scenarios, the maximum number of small and
big facilities that the facility budget allows to be open, the total capacity open, the unmet
demand and response time, the average percentage of facility capacity, pre-positioned aid
and the budgets that are actually utilized. The rich experimental data can therefore be used
to gain further insights into the pre-positioning problem, e.g., into the effect of different in-
stance characteristics and their interactions on the quality of emergency strategy (i.e., unmet
demand and response time).

4 Experimental results and managerial implications

Using the experimental data, our first goal is to identify the instance characteristics that
have the highest impact on facility decisions. To this end, we estimate a number of linear
regression models with the purpose of quantifying the relationship between the instance
characteristics and the response variables described in Section 3. We first consider 3 ini-
tial models for the percentage X1/X of small open facilities and numbers X1 and X2 of
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open small and big facilities, that involve main effects only. We later extend these models
by including interaction effects between every pair of factors, to increase their explanatory
power. The second goal is to use these findings to derive rules of thumb for facility decision
making.

In Section 4.1, we examine the parameters of the 6 regression models and discuss the most
important instance characteristics and their interactions. Further analysis of the relation-
ship between these important instance characteristics and their interactions and the facility
decisions allows us to derive some policy recommendations in Section 4.2. The section ends
with some examples that illustrate how simplified analyses can lead to misleading conclu-
sions in Section 4.3.

4.1 Identifying the most influential instance characteristics and their in-
teractions

To compare the effect of the factors and their interactions in a straightforward manner, we
code each instance characteristic as a categorical factor and examine the regression model
parameter estimates of the indicator variables corresponding to each of the levels of every
factor (interaction). These parameters represent the difference between the mean response
for that level and the average response across all levels. The further the parameter values
are from zero, the higher the influence of the corresponding factor (interaction) is. This
approach allows to gain insights into the most influential characteristics on the best facility
configuration that is more appropriate that simply considering the p-values. Indeed, since
in our experiment the residuals cannot be assumed to be normally distributed with equal
variance, the p-values of the statistical tests do not properly determine the significance of
each term in the model. Moreover, the p-values on their own cannot be used to compare the
impact of each term on the response variables, as even very small differences in performance
may be highly statistically significant.

The models with main effects only, for estimating X1/X, X1 and X2, have adjusted coeffi-
cients of determinationR2 equal to 0.36, 0.41 and 0.61 respectively. In other words, the mod-
els are able to explain 36, 41 and 61% of the response variables’ variability by taking into
account the instance characteristics individually. Figure 4 shows the values of the regres-
sion model parameters estimated for each factor in both main-effects models. The factors
that have the strongest impact on the facility decisions areD, QV and F,which respectively
represent the demand topology, the facility capacities and the number of potential facility
locations, but they are also influenced by the remaining factors.

The extended models including the interaction effects, for estimating X1/X, X1 and X2,
have coefficients of determination R2 equal to 0.54, 0.69 and 0.82 respectively. This means
that the models are able to explain an additional 18, 28 and 21% of the variability in the re-
sponse variables by including the interactions between the instance characteristics (Table 4).

Figure 5 shows the values of the regression model parameters estimated for each interaction
in the extended models. The coefficient values of the individual factors are not included
since they are equal to those shown in Figure 4. This property follows from the fact that
the data used to estimate the models comes from the experiment described in Section 3.
Such an experiment was designed as a full factorial experiment (in which all possible factor
combinations are evaluated). Therefore, all main effects and all interaction effects can be
estimated independently.

18



F QV QAV S R D L AP BP CP

−15

−10

−5

0

5

10

15

Factor

Re
gr

es
si

on
m

od
el

pa
ra

m
et

er
es

tim
at

es

X1/X
X1

X2

Figure 4: The demand topologyD, the facility capacitiesQV and the number of open facil-
ities F have the strongest influence on the facility decision making. In addition, the surviv-
ability R of pre-positioned aid, availability L of the transportation network, the ratio QAV
between facility unit opening costs, the number S of scenarios and the facility and acqui-
sition budgets AP and BP have a great impact on at least the percentage X1/X of small
open facilities, or the numbers X1 and X2 of small and big open facilities in the best found
solution.

Table 4: The (adjusted) coefficients of determination R2 increase significantly if the interac-
tion effects between the instance characteristics are considered: the models that include the
interactions explain additional 18, 28 and 21% of the variability in the percentage of small
open facilities, and numbers of small and big open facilities, and thus play an important
role in facility decision making.

Response variable R2

Main effects Main and interaction effects

Percentage of small open facilities X1/X 0.36 0.54
Number of small open facilities X1 0.41 0.69
Number of big open facilities X2 0.61 0.82
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Figure 5: The interaction between the factor D and the remaining factors play the most
important role in the facility decision making. The facility decisions are also strongly in-
fluenced by the interactions between the number F of potential facility locations and the
facility capacities QV, or with the available facility and acquisition budgets AP and BP,
the interaction between those budgets, or the budgets with the ratio QAV of facility unit
opening costs.

Observe that there are several interaction effects whose parameter values show large devia-
tions from zero, i.e., there is a number of interactions that have a significant influence on the
facility decisions (Figure 5). The interactions between the demand topology, represented by
the factor D and the remaining factors, are clearly the most influential, as their coefficient
values are widely spread. The interactions between the number of potential facility loca-
tionsF and the facility capacitiesQV, the facility budgetAP, and the acquisition budgetBP
also have a strong impact on the response variables. In addition, the facility decisions are
also influenced by the interactions between the facility and acquisition budgetsAP andBP
and the ratioQAV of facility unit opening costs, and the interaction between those budgets.

The unexplained variability comes from the fact that the ten factors included in our experi-
mental study define a problem instance to a certain extent, but do not describe it completely.
Indeed, many instance coefficients are defined randomly under some assumptions defined
by the factor levels. For example, even though two problem instances can be defined for
the same levels of each of the factors, factor F = 0.1 only implies that 10% of vertices are
potential facility locations, so that the two instances can have very different sets of loca-
tions where aid can be pre-positioned. Although S = 5 assures that 5 scenarios are chosen
from the given 20, these scenarios are chosen randomly and can thus differ from instance
to instance. R = 0.75 implies that the average proportion of aid that remains usable at a
potential facility location is 75%, but it could be very low at the most strategic locations for
one problem instance, but (close to) 100% for another, with the same levels of R and the
remaining factors. Finally, if L = 0.25, then 25% of transportation links is destroyed, but
these are also chosen in a random manner, and can therefore vary from the most crucial
edges in the network, to the less relevant ones.
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4.2 Rules of thumb for pre-positioning facility planning

In the previous subsection, we identified which instance characteristics and their interac-
tions have the greatest influence on promising facility configurations. In this subsection we
describe a more detailed analysis of the experimental results to identify how these instance
characteristics influence the facility decision making, in order to derive some rules of thumb
for the facility planning in disaster preparedness.

As can be seen in Figure 5, the interaction between the demand topology, represented by
the factorD, and the other factors, has a strong influence on the facility decisions in the best
found pre-positioning emergency strategy. We therefore study these interactions one by
one, and provide further information about some related interactions if they were indicated
as important in Figure 5.

Across different disaster types and scales (represented by the factor D), the percentage
X1/X of small open facilities increases if more potential facility locations (represented by
the factor F ) become available, as both the number X1 and X2 of small and big open facili-
ties increase, but the latter increase at a lower rate (Figure 6). Indeed, if there is only a few
potential facility locations, it seems reasonable to focus on opening big facilities in order to
ensure more storage capacity and therefore pre-position as much aid as possible. The effect
is much stronger when F changes from F = 0.1 to F = 0.5, compared to the change from
F = 0.5 to F = 1, since F = 0.5 already offers a great number and variety of potential
locations to open the facilities. We note that the effect of F is not as strong when D corre-
sponds to the Turkey or US demand graphs, since even the smallest number of potential
facility locations (F = 0.1) comes very close to the number of demand vertices for these
case studies. Indeed, the expected number of demand vertices in a scenario for Turkey and
US is approximately 6 or 8, whereas the number of vertices is 14 and 30 respectively (and
the number of potential facility locations is defined as the percentage of the total number of
vertices, see Section 3.1). For these case studies, only one or a few small facilities are often
sufficient to pre-position the volume of total demand in a scenario, and it can even happen
that the facility budget does not allow any big facilities to be open. The number of demand
vertices is closer to the total number of vertices (which are also greater) in the other demand
graphs, so that a greater number of potential facility locations can significantly change the
best facility configuration. This difference in the number of demand vertices also greatly
explains the difference in the response variable across different levels of factor D.

Figure 5 shows that the interaction between factor F and factors QV, AP and BP, corre-
sponding to the facility capacities, facility and acquisition budget, also play an important
role in facility decision making. As expected, the numbersX1 andX2 of small and big open
facilities increases at a greater rate when facility capacities are relatively small, i.e., when
QV = 2 (Figure 7). When more facility or acquisition budget becomes available, repre-
sented by a greater AP and BP, the influence of the factor F is more strongly pronounced,
but in opposite directions. Indeed, it is primarily the number X1 of small open facilities
that increases at a greater rate with an increase in F when there is sufficient facility budget
available, i.e., when there is sufficient facility budget to actually open additional facilities
(Figure 8). On the other hand, the number X2 of big open facilities increases faster with an
increase in F when there is sufficient acquisition budget available, since it is then when the
additional storage capacity can actually be used to pre-position more goods (Figure 9). For
this reason, the increase in the percentage X1/X with greater F is more pronounced when
there is more facility budget, or when the acquisition budget is limited.
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Figure 6: Across different disaster types, scales and demand topologies D, the percentage
X1/X of small open facilities typically increases with an increase in the number of poten-
tial facility locations F, with the increase being particularly strong when the percentage of
vertices which are facility candidates changes from F = 0.1 to F = 0.5. The number X1

of small open facilities increases, whereas the number X2 of big open facilities increases
somewhat or remains unchanged.
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Figure 7: The effect of the number of potential facility locations, represented by factor F , on
the facility decision making, is greater when the facility capacities are smaller (QV = 2).
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Figure 8: The effect of the number of potential facility locations, represented by factor F , on
the facility decision making, is greater when there is more facility budget available (AP =
1).
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Figure 9: The effect of the number of potential facility locations, represented by factor F ,
on the facility decision making, is greater when there is more acquisition budget available
(BP = 1).
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With greater relative capacity of the facilities, represented by the factor QV, the percentage
X1/X of small open facilities increases for any level of the factor D (Figure 10). Indeed, if
the facility capacities are relatively large, small facilities can often provide sufficient storage
capacity. On average, the percentage of small open facilities increases from 29% for QV =
2 to 55.90% for QV = 6. Both the numbers X1 and X2 of small and big open facilities
decrease when the facility capacities are greater (as both their capacities, but also opening
costs increase), but the latter decrease at a more pronounced rate.
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Figure 10: Across different disaster types, scales and demand topologies D, the percentage
X1/X of small open facilities increases strongly with an increase in the facility capacities
QV. Both the number X1 and the number X2 of small and big open facilities decrease, but
the decrease in X2 is more pronounced.

As expected, the greater the unit opening cost of a big facility is compared to the unit open-
ing cost of a small facility (represented by greaterQAV ), the greater is the percentageX1/X
of small open facilities, across different demand topologies D (Figure 11). In other words,
the more expensive the big facilities are, the more we prefer small facilities. Moreover, Fig-
ure 5 shows that the interaction between the factor QAV and the available facility and ac-
quisition budgets, plays an important role in the facility decision making. As we will see
later in Figures 16 and 19, the effect ofQAV is more prominent if the facility budget is strict
and if the acquisition budget is less restrictive. Indeed, ifQAV = 0.5 orQAV = 0.75, open-
ing big facilities yields greater total storage capacity for the same amount of facility budget,
compared to opening small facilities. The importance of greater storage capacity is of par-
ticular significance when the facility budget for ensuring enough capacity is strict, or when
there is sufficient acquisition budget that can be used to procure and store the relief items
in that capacity.

Figure 12 shows that the percentageX1/X of small open facilities decreases if the number S
of disaster scenarios is greater, for any level of factor D (Figure 12). Indeed, when there are
more disaster scenarios, i.e., where there is more uncertainty about how the disaster might
affect a region, it makes more sense to focus on opening big facilities (so that the numberX2

of big open facilities is larger, and the numberX1 of small open facilities is smaller), as such
emergency plans are more flexible and enable to better utilize the pre-positioned supplies
across possibly very different disaster scenarios.
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Figure 11: Across the majority of disaster types, scales and demand topologies D, the per-
centage X1/X of small open facilities is greater when the big facilities are more expensive
(represented by a largerQAV ), as a consequence of a lower numberX2 of big open facilities.
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Figure 12: Across different disaster types, scales and demand topologies D, the percentage
X1/X of small open facilities is lower if the number S of disaster scenarios is greater. The
number X1 of small open facilities decreases, whereas the number X2 of big open facilities
increases.
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The greater the average percentage R of aid that remains usable, the greater is the percent-
age X1/X of small open facilities, since the number X1 of small open facilities typically
increases, whereas the number X2 of big facilities decreases (Figure 13). The total number
of facilities open is lower when a considerable proportion of aid might be destroyed. In-
deed, using a small example in Section 3, we explain how it might be better to open fewer
facilities where the proportion of aid that remains usable is the greatest. In order to ensure
the sufficient storage capacity, there is a preference for big open facilities.
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Figure 13: Across different disaster types, scales and demand topologies D, the percentage
X1/X of small open facilities is greater if greater proportions of aid remain usable after the
disaster, represented with a greater value of factorR. The numberX1 of small open facilities
increases, whereas the number X2 of big open facilities decreases, with an increase in R.

Irrespective of the demand topology D, the percentage X1/X of small open facilities in-
creases with greater levelL of transportation network damage, since the numberX1 of small
open facilities increases, and the numberX2 of big open facilities decreases (Figure 14). This
seems reasonable, as more facilities are necessary in order to reach the beneficiaries.

Figure 15 shows that the percentage X1/X of small open facilities increases with greater
facility budget, represented by the factorAP, for any demand graphD. Both the numbers of
small and big facilitiesX1 andX2 typically increase when more facility budget is available,
but the former increase at a greater rate or more often. As we can see from Figure 8, the effect
of the facility budgetAP is stronger when there are more potential facility locations (where
the greater number of facilities can actually be open). Figure 5 indicates that the effect of
the interaction between the facility budgetAP and the ratioQAV of the unit opening costs,
and the acquisition budget BP, also has a strong influence on the facility decision making.
The effect of AP on X1/X is more pronounced when the unit opening cost of big facilities
is smaller than of the small facilities (when QAV = 0.5) (Figure 16). Indeed, the stricter the
facility budget, the greater is the focus on big facilities which can ensure sufficient storage
capacity, in particular if the unit opening cost of big facilities is smaller than the cost of small
facilities. This effect of AP is also more pronounced when there is less acquisition budget
is available (BP = 0.5), as it is then of lesser importance to open more big facilities in order
to ensure sufficient storage for the acquired emergency supplies (Figure 17).
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Figure 14: Across different disaster types, scales and demand topologies D, the percentage
X1/X of small open facilities is greater if the transportation network is severely damaged,
represented with a greater value of factor L. The number X1 of small open facilities in-
creases, whereas the number X2 of big open facilities decreases, with an increase in L.
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Figure 15: Across different disaster types, scales and demand topologies D, the percentage
X1/X of small open facilities is greater if there is more facility budget AP available. Both
the number X1 and the number X2 of small and big open facilities increase with greater
AP, but the increase in X1 is more pronounced.
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Figure 16: The effect of the facility budget AP on the facility decisions is influenced by
the ratio QAV between facility unit opening costs. When big facilities are less expensive
(QAV = 0.5), a considerable number X2 of them can already be open even for a more
limited facility budget, so that it remains unchanged if more budget becomes available, and
therefore an increase in the numberX1 of small open facilities implies also a greater increase
in the percentage X1/X of small open facilities.
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Figure 17: The effect of the facility budget AP on the facility decisions is influenced by the
acquisition budget BP. When the acquisition budget is greater (BP = 1), it becomes more
beneficial to ensure a larger storage capacity to pre-position the additional goods, so that
the number X2 then also increases, and as a consequence, the increase in the percentage
X1/X of small open facilities is somewhat less pronounced.
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When more acquisition budget becomes available, represented by a greater BP, the per-
centageX1/X of small open facilities decreases, since the numberX1 of small open facilities
typically decreases, and the number X2 of big open facilities increases (Figure 18). Indeed,
as already mentioned, big facilities become more important when there is actually sufficient
acquisition budget available, as they can ensure sufficient storage capacity for the acquired
emergency supplies. As expected, this effect is pronounced even more when the unit cost
of big facilities is smaller than the unit cost of small facilities, i.e., when QAV is smaller
(Figure 19).
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Figure 18: Across different disaster types, scales and demand topologies D, the percentage
X1/X of small open facilities is lower if there is more acquisition budget BP available. The
number X1 of small open facilities decreases, whereas the number X2 of big open facilities
increases with greater BP.

For any demand graph D, the percentage X1/X of small open facilities decreases, with
greater transportation budget, represented by the factorCP (Figure 20). Indeed, if the trans-
portation budget is limited, it is of greater importance to open more (and thus more small)
facilities.

4.3 Analysis simplifications can yield misleading conclusions

In Section 1, we motivated our large computational study as a method that can help gain
better insights into the pre-positioning facility decision making, that are often missed by
simplified analyses that are more common in the humanitarian logistics literature.

The first simplification that is common in the humanitarian logistics literature is an investi-
gation of only the main effects of one or multiple factors. Figure 21 demonstrates how such
a simplified analysis can yield misleading conclusions. Indeed, Figure 21 shows the effect
of the factor AP that represents the facility budget, on the facility decision making, where
it seems that the percentage X1/X of small open facilities increases when there is more fa-
cility budget available, as the number of X1 of small open facilities increases, whereas the
number X2 of big open facilities does not significantly change.
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Figure 19: The effect of the acquisition budget BP on the facility decisions is influenced by
the ratio QAV between facility unit opening costs. When big facilities are less expensive
(QAV = 0.5), it is also possible to open a greater number X2 of them in order to bene-
fit from more storage for pre-positioning the additional goods obtained with greater BP ;
consequently, the the decrease in the percentage X1/X of small open facilities is more pro-
nounced.
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Figure 20: Across different disaster types, scales and demand topologies D, the percentage
X1/X of small open facilities is lower if there is more transportation budget CP available.
The number X1 of small open facilities decreases, whereas the number X2 of big open fa-
cilities increases with greater CP.
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However, we have seen in the Section 4.2 that this is not always the case. For example, if the
facility budget is limited (AP = 0.5), and the unit opening cost of big facilities is as large as
the unit cost for small facilities (QAV = 1), the numberX2 of big open facilities is limited, so
that an increase in the facility budget can in this case yield an increase in the number of big
open facilities (Figure 16). In this case, the percentage ofX1/X on average remains the same,
whereas the number X2 of big open facilities increases with greater AP, contrary to what
we can see when only investigating the main effect of the facility budget AP (Figure 21). In
addition, Figure 17 shows that the number X2 of big open facilities is strongly influenced
by the interaction between the facility and acquisition budget, represented by factors AP
and BP : if there if sufficient acquisition budget available, it becomes important to also
open additional big facilities when the facility budget increases, in order to ensure a greater
storage capacity to pre-position the acquired supplies. Finally, we can also see in Figure 8
that the numbers of small and big open facilities do not increase with greater facility budget
AP if there is not sufficiently many potential facility locations (F = 0.1).
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Figure 21: This example shows how studying the factors individually can lead to misleading
conclusions and policy recommendations. Simply analysing the influence of the factor AP
that represents the facility budget, it seems that the percentageX1/X of small open facilities,
as well as the numbers X1 and X2 small and big open facilities, increase with an increase
in the available budget. However, earlier analysis revealed that this behaviour is strongly
influenced by the interaction of the factor AP with the ratio between facility unit opening
costs, and the acquisition budget, represented respectively with factors QAV and BP.

Similarly, a simplified analysis that employs a single case study (i.e., that ignores the inter-
action with factor D) can yield misleading conclusions. This is demonstrated in Figure 22
that shows the effect of the number of potential facility locations, represented by the factor
F, on the facility decisions for the Turkey case study (D = Turkey, Section 3.6).

It seems that the numbers X1 and X2 of small and big open facilities remain the same,
regardless the changes in the number of facility candidates. However, we have seen in the
Section 4.2 that the facility decisions change significantly when there are more potential
facility locations. Indeed, Figures 6 shows that that the percentage X1/X of small open
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facilities, and the numbers X1 and X2 all increase with an increase in F, for any other case
study, i.e., for other levels of factorD (and further analysis, in Figures 7, 8 and 9, shows that
the increase rate is strongly influenced by facility capacities, facility and acquisition budget,
represented respectively by factors QV, AP and BP ).
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Figure 22: This example shows that studying the pre-positioning facility decisions using
a single case study can lead to misleading conclusions and policy recommendations. The
graph shows the influence of the number of potential facility locations, represented by the
factor F, on the percentage X1/X of small open facilities, and the numbers X1 and X2 of
small and big open facilities for the Turkey case study. From this analysis, it seems that the
number of potential facility locations does not have a strong impact of the facility decisions.
However, earlier analysis which includes other case studies focusing on disasters of differ-
ent type and scale (i.e., the interaction with the factor D representing demand topologies),
revealed thatX1/X,X1 andX2 increase significantly when there are more facility candidate
locations.

5 Conclusions, limitations and future research

Facility decision making is the crucial aspect of the pre-positioning disaster planning. Good
facility configurations can be found by employing mathematical models and solution proce-
dures, but humanitarian workers rarely use these tools in practice and rather rely on simpler
rules of thumb to guide their planning. The best facility configurations are highly depen-
dant on the instance characteristics and therefore a thorough investigation of the impact of
these characteristics is necessary to obtain meaningful policy recommendations. The com-
mon practice in the literature to derive managerial implications is sensitivity analysis on
one or a few instance characteristics, carried out separately and using a single case study.
Conclusions obtained through such simplified observations are of low reliability and can
often be misleading.
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In this paper we describe the extensive computational study that we carried out in order
to analyse the importance of a comprehensive set of instance characteristics and their in-
teractions on the facility decision making. The main contributions lie in the outcome of the
study that answers the two research questions introduced in Section 1, i.e., it identifies which
factors and their interactions have the greatest influence on the facility decisions, and how
they influence the facility planning. The most important factors and their interactions are
listed in Section 4.1; an investigation of their effect on the best facility configuration helped
us to derive some rules of thumb for facility planning in Section 4.2. The main insights that
can help the practitioners to make better facility decisions are the following.

(1) Each of the considered factors has an influence on the facility decision making, in the
following order: demand topology, facility capacities, number of potential facility lo-
cations, proportions of aid that remains usable, acquisition, facility and transportation
budget, number of scenarios, ratio of facility unit opening costs, level of transporta-
tion network damage; and the interactions between these factors explain up to 28% of
the variability in facility decisions.

(2) There is a stronger preference for small facilities when the facility capacities are large,
when there is more facility candidates available, when the aid survivability is greater,
when the acquisition or transportation budget is restricted and when there is more fa-
cility budget available, when there is less uncertainty about the disaster, when the unit
opening cost of a big facility is closer to the unit cost for a small facility, or when the
transportation network is more severely damaged; and these effects can be particularly
pronounced or changed when the interactions between these effects are considered.

Next to the practical implications, the outcomes of the study also demonstrate the impor-
tance of such elaborate computational studies and thereby constitute a methodological con-
tribution of the work. The experimental results show that including interactions between
instance characteristics significantly increases the explanatory power of the regression mod-
els. In particular, we also offer some examples that show how simplified analysis of only
the main effects and/or using a single case study can lead to erroneous conclusions. Hope-
fully, these results will motivate better experimental designs in the field of humanitarian
logistics.

In addition, the insights gained can be used to design better heuristics for the pre-positioning
or related problems by incorporating the problem specific knowledge into heuristic ele-
ments. For example, the experimental results show that the best found facility configu-
ration does not necessarily completely utilize the available facility budget (although more
facilities could be open), and therefore a good heuristic needs to consider the facility deci-
sions where less than a maximum number of facilities is open. The total number of open
facilities in the best found solution can vary significantly even for small changes in some of
the instance parameters, and thus a local search that always closes one, and opens another
facility is not sufficient to find the best facility configurations. Starting from an initial solu-
tion, we can change the facility configuration (by closing or opening small or big facilities,
or by changing the facility categories) according the values of different important instance
characteristics identified in this paper, for the given problem instance.

Furthermore, by emphasizing the importance of some of the instance characteristics, the
outcomes of the study can also be beneficial in the discussion on the standard pre-positioning
problem definition, what has been identified as an important future research direction in
the recent survey of pre-positioning problem literature [6]. The authors recognize that there
are several problem aspects that are considered by some studies and ignored by others, so
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that it would be of interest to investigate whether and how the facility and inventory deci-
sions are affected if these problem aspects are included. For example, a literature review in
[27] shows that the pre-positioning problem definitions often ignore the uncertainties in the
aid and/or transportation network survivability. Our experimental results, however, show
that the best facility configuration changes greatly with respect to the average proportion
of aid that remains usable and the level of transportation network damage, represented by
the factors R and L. These factors play a significant role in the facility decision making and
therefore need to be incorporated into the definition of the pre-positioning problem.

Finally, the experimental data and summary of results are made publicly available on the
following website:

http://antor.uantwerpen.be/members/renata-turkes/,

in order to allow to replicate the study and/or gain a better understanding of the pre-
positioning problem. Next to the information about the best found facility configuration
(i.e., the percentage of small open facilities, and the numbers of small and big open fa-
cilities), the summary of results also records information about the quality of emergency
strategy (unmet demand and response time) and other properties of the solution for ev-
ery pre-positioning problem instance. The results can therefore be immediately employed
to, for example, investigate the impact of the instance characteristics on the quality of pre-
positioning strategy. A first look at the data shows that the most important factors that
influence the unmet demand the number of potential facility locations available, the level
of transportation network availability, the proportions of aid that remain usable, and the
available budgets (Figure 23). A more thorough investigation of the effects of these char-
acteristics and their interactions can help to gain valuable insights into the problem and to
obtain some managerial implications. For instance, Figure 23 suggests to focus on ensur-
ing sufficient number of potential facility locations, or that it is worthwhile to invest in the
availability of the transportation network, and in preventing the aid from being destroyed
after the disaster.

Our study shows that factor D, representing the demand graphs, has a very strong influ-
ence on the facility decision making (what further supports the importance of considering
multiple case studies). An important limitation of our experimental set-up is that is does
not answer what are the key properties of these demand graphs, and how do they influence
the choice of the best facility configuration. We chose to exploit the rich and realistic net-
work and demand information from the available case studies and therefore preserved this
information in a single factor. As mentioned earlier in Section 3.6, it might be worthwhile to
rather consider a set of separate factors to be included in future experimental studies. Some
of the factors that could be considered are the number of vertices, the size of geographi-
cal area (reflecting the disaster scale), the number of demand vertices, demand distribution
(e.g., random or clustered, reflecting localized and dispersed disasters), demand variance
across vertices in a single scenario and across different disaster scenarios. The outcomes of
our experiment already give an idea that there is a strong relationship between the number
of demand vertices, the coefficient of demand volume variance across disaster scenarios (ra-
tio of the standard deviation to the mean) and the best facility configuration, and a deeper
look at these dependencies might yield further valuable insights. The main challenge with
this alternative experimental set-up is a reasonable definition of demands for each of the
factor level combinations.
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Figure 23: The factors that have the greatest main effect on the percentage of unmet demand
are the number of potential facility locations, the level of transportation network damage,
the proportions of aid that remain usable, and the available budgets, represented by factors
F, L, R, AP, BP and CP respectively.

The applicability of the findings obtained is also limited by the underlying problem assump-
tions. For example, the best facility configuration is defined by the choice of the objective
function, and therefore different rules of thumb might apply if the lexicographic order be-
tween unmet demand and response time was relaxed or if logistics cost were to be min-
imized. The same is true if a multi-echelon, multi-period or multi-modal formulation of
the pre-positioning problem would be considered. Interesting potential future research di-
rections might thus be directed towards designing similar experiments for other problem
formulations and other problems in humanitarian logistics.
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