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Summary

Automated decision-making (ADM) systems used in high-stakes areas such as lending
or hiring often perpetuate biases present in their underlying data. Consequently, these
systems can adversely impact certain population groups, mirroring the sexist or racist
practices of our society. In this thesis, we inspect current approaches to auditing and mit-
igating such discriminatory biases in ADM systems. We highlight how these approaches
typically centre around single definitions of fairness, that aim to express how (un)fair
some system is through a single number and try to optimize for fairness accordingly.
We explain how these approaches fall short in adequately understanding and resolving
discrimination and argue how better approaches should be driven by more nuanced
considerations: rather than having one single fairness measure, auditors should focus
on which parts of the data a system behaves discriminatory, so that they then can then
address this behaviour in a targeted manner. To that end, our first two chapters focus on
new tools and methods for bias detection in ADM systems. The first inspects the potential
of interactive auditing toolkits, while the second improves an existing method for mea-
suring individual fairness, allowing auditors to decide for one decision subject at a time
whether they received just treatment. Our third chapter introduces a human-in-the-loop
approach to mitigate bias in ADM systems. We design a selective classifier that refrains
from making predictions when they are deemed as discriminatory. These rejected in-
stances, along with an explanation for their rejection, can be passed on to human experts
who can make better-informed decisions for them. The fourth chapter shifts focus from
new bias mitigation techniques to evaluating their effectiveness. We emphasize how the
traditional evaluation scheme, based on single fairness definitions, is not sufficient and
instead introduce a benchmarking-dataset to facilitate the evaluation of bias mitigation
strategies. This dataset includes a fair and biased version of its decision labels, allowing
precise assessment of how well a model can predict the fair labels after being applied on
the biased ones. Our fifth and final chapter zooms out from these specific considerations
surrounding bias in ADM systems and provides an overview of the research field in
general and how it has developed over the last 15 years. By highlighting research gaps,
we also conclude this thesis with a discussion and its implications for future work.
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Samenvatting

Systemen voor geautomatiseerde besluitvorming (ABV) die worden gebruik in risico-
volle domeinen zoals leningen of aanwerving, nemen vaak de vooroordelen van hun
onderliggende data over. Hierdoor kunnen deze systemen bepaalde bevolkingsgroepen
negatief beinvloeden, en seksistische of racistische praktĳken van de samenleving weer-
spiegelen. In dit proefschrift onderzoeken we de huidige manieren voor het controleren
en beperken van discriminatie in ABV systemen. Conventionele methodes, richten zich
op enkelvoudige definities van eerlĳkheid, die door middel van een enkel getal proberen
uit te drukken hoe (on)eerlĳk een system is en eerlĳkheid dusdaning optimaliseren. We
leggen uit waarom dit soort methodes niet geschikt zĳn om discriminatie volledig te be-
grĳpen en te bestrĳden en hoezo meer genuanceerde overwegingen noodzakelĳk zĳn: in
plaats van één enkele maatstaf voor eerlĳkheid te hanteren, moeten we begrĳpen op welke
specifieke delen van de data een ABV system discrimineert, zodat we dit gedrag gericht
kunnen aanpakken. De eerste twee hoofstukken van dit proefschrift richten zich daarom
op nieuwe systemen en methoden voor het detecteren van discriminatie in ABV syste-
men. Het eerste hoofdstuk onderzoekt het potentieel van interactieve auditinstrumenten
terwĳl het tweede hoofdstuk een bestaande methode voor het meten van individu-
ele eerlĳkheid verbetert. Hiermee kan men voor elk beslissingsonderwerp afzonderlĳk
bepalen of een ABV system een rechtvaardig besluit maakt. Ons derde hoofdstuk in-
troduceert een human-in-the-loop manier om discriminatie in ABV-systemen tegen te
gaan. We ontwerpen een selectief besluitvorming model, dat afziet van voorspellingen
wanneer deze als discriminerend worden beschouwd. De afgewezen gevallen kunnen,
samen met een verklaring voor hun afwĳzing, worden doorgegeven aan menselĳke ex-
perts die betere beslissingen kunnen nemen. In het vierde hoofdstuk onderzoeken we
hoe de effectiviteit van discriminatie-beperking technieken geevalueerd kan worden. We
laten zien hoe het traditionele evaluatieschema, gebaseerd op enkelvoudige definiets
van eerlĳkheid, niet voldoende is en introduceren in plaats daarvan een benchmark-
dataset om de evaluatie van discriminatie-beperking technieken te vergemakkelĳken.
Deze dataset bevat zowel eerlĳke als bevooroordeelde versies van de beslissingslabels,
zodat nauwkeurig kan worden beoordeeld hoe goed een model de eerlĳke labels kan
voorspellen na toepassing op de bevooroordeelde labels. Ons vĳfde en laatste hoofdstuk
gaat niet om specifieke overwegingen rondom discriminatie door ABV-systemen, maar
geeft een algemeen overzicht van het onderzoeksveld en hoe het zich de afgelopen 15
jaar heeft ontwikkeld. We benadrukken waar huidig onderzoek te kort schiet, en geven
op grond daarvan suggesties voor nieuwe onderzoekslĳnen die uit dit proefschrift naar
voren komen.
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Introduction

Over the past years, an increasing amount of automated decision-making (ADM) sys-
tems have been used in high-stake decision areas, such as lending, hiring or recidivism
prediction. These systems learn from historical data, coming in the form of tables, text,
images other formats, to predict a class label from the data’s features. For instance, in
a lending setting banks commonly have information about past loan applicants, such as
their age, occupation, their credit history etc. Given some recorded label of interest, in
this case, whether the applicants were granted loans or not, an algorithm can learn from
the data to differentiate between those loan applicants who should be approved and
those who should be denied. As a result of this learning process, the algorithm outputs
an ADM model that can make predictions for new applicants.

Models like these have the potential to make decision processes more efficient and poten-
tially more accurate. After all, they base their decisions on subtle statistical patterns in the
data, picking up correlations between the applicants’ characteristics and their chances to
receive a loan, that might not be obvious to human-decision makers. Yet, it is precisely
this mirroring of statistical patterns that gives rise to one of the biggest risks associated
with ADM systems: their perpetuation of discriminatory biases present in the training
data [93].

Consider the data that a loan approval system is based on. Even if no errors are made in
the recording of this data, it still contains all the systemic biases present in our society.
These range from representation bias, wherein only population groups with access to
financial services will be recorded in the data, to historical inequalities that link some
demographic groups to higher levels of education, income, or other relevant factors in
loan allocation settings. Lastly, given the racist, sexist and otherwise discriminatory
stereotypes in our society, the data is likely to capture directly discriminatory biases:
some people are denied a loan, simply because of their skin colour, their gender, or other
demographic factors. It is no surprise that any learning algorithm made to capture the
statistical associations between the data and the decision of interest, will pick out these
correlations and mirror them accordingly. That this is not just a theoretical threat but a
harsh reality harming many individuals’ lives has been brought to light by many case
studies of discriminatory algorithms. One notorious example is the COMPAS case, where
a model trained to make recidivism predictions, unjustifiably predicted higher risk scores
for black than white defendants [83]. Other examples include the childcare benefit scandal
in the Netherlands, where false allegations of fraud were disproportionately targeted
towards people with immigration backgrounds or dual citizenship [59].

Despite the public attention that these case studies have received, ADM systems are still
being increasingly deployed for decision processes in both the private and public sector.
It is therefore clear that the detection and ultimately mitigation of their biases is an urgent
matter. It is much less clear, however, how to actually approach the problem. In this

1



2 CONTENTS

thesis, we will see how many of the traditional approaches, that measure fairness through
a single mathematical definition and mitigate biases in completely automatated ways,
fall short of addressing the deeper issues at hand [21, 129]. As an alternative, we will
discuss how more flexible and context-dependent approaches, guided by domain experts
and ethicists, can allow for a more meaningful understanding and resolution of biases.
While we do not want to downplay the importance of stakeholder-driven approaches to
this topic, that focus on the involvement of policy-makers, industry representatives and
affected communities [16,18,140], we will still discuss this topic from a technological point
of view. In other words, we assess how technological systems can be designed, to allow for
a flexible and context-driven engagement with algorithmic biases, that empower human
auditors to better understand where biases occur and how to fix them. For the largest
part of this thesis, we are going to focus on algorithmic fairness in ADM systems based
on tabular data (the terms ADM system and classifier will be used interchangeably). For
some reflection on the risk of discrimination in other algorithmic systems, we refer to
Chapter 6 of this thesis.

The remainder of this introductory chapter is structured as follows: first, we will give
a short introduction to current methods to detect and measure bias in ADM systems.
In highlighting the disadvantages of these approaches, we will introduce the content of
Chapter 1 and Chapter 2 of this thesis, as both chapters introduce more nuanced methods
for bias detection. We will then continue with an overview of current research on bias
mitigation. We will discuss some existing approaches to make ADM systems fairer
and also explain how researchers typically evaluate the effectiveness of these fairness
interventions. Related to both of these topics, we introduce Chapter 3 and Chapter 4 of
this thesis, as Chapter 3 discusses a less automated approach towards bias mitigation,
and Chapter 4 describes a dataset that we have gathered, meant to facilitate the evaluation
of fairness intervention strategies. Finally, we introduce Chapter 5 of this thesis, which
does not deal with specific bias detection or mitigation methods but provides a high level
overview of other research areas and gaps within the field of algorithmic fairness.

Measuring Bias in ADM Systems

To formally assess whether an ADM system is biased towards some population groups,
one needs some metric defining what it would mean for the system to be absent of
discriminatory biases, i.e. what it would mean for the system to be fair. Over the years
multiple fairness metrics have been proposed, that can be roughly divided into two
categories: group fairness metrics and individual fairness metrics. Before we are going
to describe them in more detail, we are going to introduce some mathematical notation
that we will use throughout this section:

• � denotes the entire set of individuals we are making decisions for. Consequentially
we will use x to refer to one individual, for which x ∈ �.

• ý is a sensitive variable (e.g. race, gender, religion, ...) which for now we assume
to be binary. We use ý(x) = + to denote that x belongs to the demographic group
we consider to be privileged by society (e.g., men), and ý(x) = − to denote that x

belongs to a non-priviliged group (e.g. women).
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• Each individual is associated with a decision outcome �, in case of our running
example, it is whether they were granted a loan or not. We use � = 1 and � = 0

respectively, to denote the favourable and non-favourable decision outcome. For a
loan allocation system, e.g. � = 1 means being granted a loan.

• We use � for the ADM system supposed to mimic the recorded decision outcome
�. � (x) denotes the decision that was taken by f for x. Again it may or may not be
in favour of x (respectively, � (x) = 1 and � (x) = 0).

Further, we are going to illustrate the different metrics based on a toy example shown
in Table 1. This Table displays the decisions of two loan allocation models, that were
trained on historical bank data with sexist biases in its original labels.

Table 1: Toy dataset of a loan allocation setting, with two ADM models trained to predict
the original decision labels.

# Sex Credit Amount Credit History .... Bank Decision Model A Model B

1 Female 10k No defaults .... No Loan No Loan Loan
2 Female 40k Had defaults .... No Loan Loan Loan
3 Male 30k Unknown .... No Loan No Loan Loan
4 Male 12k No defaults .... Loan Loan Loan

Group Based Fairness

Group based fairness metrics assess the fairness of ADM systems by comparing their
predicted labels over the different demographic groups as defined by ý. This comparison
can either be made solely based on the decisions of a model � on those groups, or on
the errors � makes on them. The first category of group metrics are called outcome-based
metrics, while the second one are called error-based metrics.

Outcome-Based Metrics The most well-known outcome-based metric of fairness is
called Demographic Parity, which in a setting with a binary sensitive attribute requires
there to be no difference in positive decision ratio labels between the privileged group
and the underprivileged one (see 1).

( � (x) = 1|ý(x) = +) = ( � (x) = 1|ý(x) = −) (1)

Inspecting our toy problem in Table 1 we see that both ADM models satisfy demographic
parity in terms of the sex of loan applicants, as in both models the same ratio of male
and female applicants are granted a loan. Additionally, we see that the original decision
labels did not satisfy this metric, as 50% more of the male applicants were granted a loan
than the female ones. Striving for demographic parity in a loan allocation setting makes
sense when considering how receiving a loan opens up many opportunities, like buying
a house or starting a business: in a fair world, one would expect these opportunities
to be equally distributed across demographics. However, the problem with striving for
this metric is, that it assumes that all demographic groups are equally eligible for a loan,
despite possible differences that might justify handing out more loans to some groups
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over others. A more strict version of this metric is therefore provided by Conditional
Demographic Parity. This metric requires the ratio of positive decisions to be equal across
demographics, conditioned on some subset of non-sensitive features 	 ∈ � that are
imperative to the decision task.

( � (x) = 1|	 = # , ý(x) = +) = ( � (x) = 1|	 = # , ý(x) = −)∀# ∈ 	 (2)

Essentially, this metric requires the positive decision ratio across demographic groups
only to be equal, if these groups share the same non-sensitive characteristics as described
by 	. For instance, in our loan application setting, it seems reasonable to impose that
loan approval ratios should be equal across all demographics, conditioned on not having
a history of defaulting. In this case, we see in Table 1 that Model A does not satisfy
demographic parity: as the ratio of approved male applicants without default history
is 100%, while it is 0% for female applicants without defaulting history. Model B on
the other hand does satisfy conditional demographic parity (100% approval ratio across
sexes).

Error Based Measures In some settings, where we want to put more emphasis on the
ground truth labels that are available in the data, it makes more sense to inspect error-
based fairness metrics. Consider, e.g. the type of errors of a lending decision system.
First, there are False Positive errors, describing the ratio of instances that are (according
to the ground truth labels) not eligible for a loan, but were decided to be granted a loan
by the ADM system anyway. In a fair world, one would expect the False Positive Rates
to be similar across demographic groups. This notion is captured by the fairness metric
of Equal Opportunity, as defined as follows:

( � (x) = 1|�(x) = 0, ý(x) = +) = ( � (x) = 1|�(x) = 0, ý(x) = −) (3)

To exemplify in our toy problem, it is clear that Model A does not satisfy Equal Opportu-
nity: here the False Positive Rate for men is 0% while it is 50% for women. While, overall
the False Positive Rates are worse for Model B, it does still satisfy the fairness metric as
for both men and women these rates are 100%.

Next to inspecting a system based on its False Positive Rates, we can also assess its False
Negative rates, i.e. the ratio of instances not granted a loan even though they were
considered eligible for one by past decision-makers. Again, we would want these error
rates to be equal across demographic groups, which is what the fairness metric of Equal
Risk requires.

( � (x) = 0|�(x) = 1, ý(x) = +) = ( � (x) = 0|�(x) = 1, ý(x) = −) (4)

Assessing Table 1 we see both models satisfy Equal Risk, as the False Negatives are
equally distributed across men and women.

The fairness metric that requires both Equal Risk and Equal Opportunity to hold is called
Equal Odds. In other words, this metric demands that both the False Negative and False
Positive rates are independent of the sensitive features in the data.
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Individual Fairness Metrics

Different from group-based fairness metrics, individual metrics assess for each decision
subject at a time whether their prediction label can be considered fair. This type of metric
has evolved out of concerns that group-based metrics only provide “shallow" statistical
information on ADM systems’ biases, without guaranteeing that individual instances
are protected from their discriminatory behaviour [42, 52]. Individual fairness metrics
operate on the principle of treating likes alike, hence they require that individuals who
are similar according to some task-dependent similarity metric (commonly defined as an
inverse distance metric [89]) also receive similar decision outputs. For instance, in our
loan application setting, we could require that any group of individuals who are similar
in terms of their credit amount and their credit history should also receive the same
prediction label. Though intuitively this fairness notion makes a lot of sense, finding
an appropriate way to define “similarity" is not trivial. Consider instance #2 from Table
1 and imagine assessing the fairness of her prediction label based on her most similar
instance, which we can select from Table 2. It is difficult to decide whether instance #5
is most comparable to her, due to their similar credit amount, or instance #6, due to also
having a history of defaulting. With bigger datasets and more features to consider, the
problem of defining similarity becomes even more evident.

Table 2: Illustration of the difficulty of defining similarity, when assessing individual
fairness. Consider instance #2 from Table 1. Is #5 more similar to her or #6?

# Sex Credit Amount Credit History .... Bank Decision Model A Model B

5 Female 40k No defaults .... Loan Loan Loan
6 Male 5k Had defaults .... No Loan No Loan No Loan

Choosing between Metrics and going Beyond Single Notions

Though we have highlighted only a few of many fairness definitions that have been
introduced in the literature over the years, it should already have become apparent that
each captures some important intuition behind the meaning of fairness, yet, each comes
with a set of disadvantages. Hence, choosing which metrics to consider for the definition
of a system’s fairness, is far from arbitrary and will depend, among others, on these
considerations:

• How reliable is the ground truth - Error-based fairness metrics define fairness by com-
paring the ADM systems’ prediction inaccuracies across demographics. However,
what is considered to be inaccurate is determined by existing ground truth data,
which may be faulty/biased. For example, when bankers assess the eligibility of
loan applicants, unconscious biases such as racism or sexism, may influence their
decisions. Consequentially, some demographic groups will disproportionately
be denied a loan, even if they would have successfully repaid one when given the
chance. Failing to acknowledge these biases in historical decision-making processes
and solely requiring ADM systems to make equal portions of errors as defined by
the ground truth, comes at the risk of perpetuating the biases in them
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• How costly are errors? - While the ground truth of a dataset can rarely be seen
as 100% reliable, it still captures some important information that should be ac-
counted for. An automated lending system that pursues demographic parity, and
consequentially grants loans to ineligible candidates, could lead to considerable
financial losses for a bank: consider, e.g. Model B in Table 1. While it does satisfy
many of the existing fairness metrics, it does hand out a lot of loans that might
end up not being repayed. Further, the practice of disproportionately handing out
more loans to non-eligible candidates of some demographic group over another
can be seen as unfair in itself. For instance, we have already seen how Model A in
our toy example can be considered fair in terms of Demographic Parity, but is unfair
according to Equal Opportunity.

• What domain are we dealing with? - In some domains ADM systems making errors
to satisfy some fairness goal might be more problematic than in others. Consider,
for instance, a recidivism prediction algorithm, used to decide whether criminal
defendants should be released. Releasing a defendant who ends up recommitting
crimes would pose a large risk to the rest of society. Hence, pursuing a strict fairness
metric, like demographic parity, is potentially more dangerous in this domain
than in others. Also, the domain of a decision task determines how to measure
both conditional demographic parity and individual fairness. More precisely, for
conditional demographic parity, auditors need to define a domain-appropriate set
of attributes to condition on. Similarly, they need to find a suitable distance function
for the measurement of individual fairness.

• Should we prioritize group fairness or individual fairness? - Solely evaluating a system’s
fairness according to a group-based fairness metric comes at the risk of overlooking
cases of cherry-picking [42,52]. This term refers to the random distribution of positive
decision outcomes to underprivileged groups to achieve some global fairness goal,
without paying further attention to which individuals are granted these benefits. To
illustrate, consider Model A in 1. It satisfies fairness in terms of demographic parity,
yet, when inspecting which of the instances is granted a loan we see a questionable
pattern: instance #2, a woman asking for a big credit amount and with a history of
defaulting, is granted a loan, while instance #1, a woman without defaulting history
and lesser credit, is denied one. This is especially problematic, since for candidate
#1 there exists a similar male candidate who was granted a loan, while for #2 this
is not the case. In other words, while Model A does satisfy group fairness, it does
not satisfy individual fairness - a classical case of cherry-picking.

While the inspection of individual fairness metrics can account for cases of cherry-
picking, these metrics alone do not guarantee that certain demographic groups are
not consistently excluded from financial opportunities like receiving loans [52],
something that can only be measured through group-based metrics.

• Do we want to transform society? - Sometimes we want to focus on existing biases not
being inflated by an ADM system, other times we want to develop a system that
challenges the current status quo of society [128]. Consider again our loan decision
task: consistently only handing out loans to a narrow slice of society, does not only
exclude others from financially investing in their future but also shapes our image
of how an eligible loan applicant looks like. Never giving seemingly less appealing
applicants the chance to prove the current system wrong will reinforce our existing
stereotypes and widen the socioeconomic gaps of our society. Striving for more
strict fairness goals can challenge our current assumptions and beliefs.
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These discussion points are not meant to give any conclusive answers on which fairness
metrics should be used in which settings. While there have been attempts to answer this
question [113], we want to highlight how loaded the choice for an appropriate metric is,
and how considering just a single metric to define the fairness of an entire system is rarely
sufficient to completely understand other factors playing a role. Recently, researchers
have therefore argued for a more flexible approach when auditing the biases of ADM
systems. Rather than focusing on demographic parity or equal odds as single metrics,
we should try to understand where disparities occur, what their causes are, how they
look like on an individual level and to which extent they can be justified [52, 129]. To
shed sufficient light on all of these considerations, auditors should not measure a system’s
fairness through one quick calculation, but instead conduct rigorous and extensive audits
where not one but multiple bias metrics are inspected and interpreted under the right
domain context. We will explore the idea of more thorough bias audits and possible
fairness metrics to consider more deeply in Chapter 1 and 2.

The content of Chapter 1 is based on the following paper:

Lenders, D., & Calders, T. (2023). Users’ needs in interactive bias auditing
tools: Introducing a requirement checklist and evaluating existing tools. AI
and Ethics, 1-29.

In this chapter, we will highlight the potential of interactive toolkits for conducting
rigorous bias audits. These toolkits allow auditors to visualize and interact with the
model’s input data and its predictions. Through this interactive approach, auditors can
better understand which parts of the input data a model behaves unfairly on, what some
individual examples of discriminatory decisions are, but also assess the biases in the
input data itself, such as which demographic groups are underrepresented in it and
what other features may be correlated to demographic group membership. Based on a
literature review of existing interview studies with auditors and industry practitioners,
we identify what requirements tools need to fulfil to be usable in practical and realistic
settings. Further, we give an overview of currently existing interactive tools and analyse
to which extent they fulfil the identified auditing requirements. By shedding light on
how different tools satisfy different requirements, we give concrete suggestions on how
some of their functionalities can be combined to create better toolkits. This chapter
also sets the scene for the following chapters in this thesis, and highlights the intricate
considerations going into audits and their context-dependent nature.

In Chapter 2, we will zoom into the assessment of individual fairness as part of those
audits. We explore the already existing Situation Testing algorithm [89], as a method
to determine which individuals are discriminatorily affected by an ADM system. This
algorithm identifies for some instance in question, the most similar set of “neighbours"
from both the privileged and underprivileged group. If the proportion of positive
decisions is greater in the former group compared to the latter, it suggests that individuals
with similar characteristics, differing only in their sensitive attributes, are not treated
equally, leading us to infer discrimination. In Chapter 2, we will address the previously
raised concern of finding a suitable distance function that can be used for the similarity
analysis. We show how arbitrarily defining some function over all features in the data,
without considering their relation to the sensitive attributes or their importance to the
decision problem, will produce less reliable fairness assessments. As an alternative, we
propose learning a task-dependent distance function based on the available data and
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highlight the advantages of using this function in measuring individual fairness. We
propose utilizing our distance function with situation testing as a tool to flag potentially
discriminated instances. These instances can subsequently be forwarded to a human
auditor for further examination. The content of Chapter 2 is based on the following
paper:

Lenders, D., & Calders, T. (2021, September). Learning a fair distance func-
tion for situation testing. In Machine Learning and Principles and Practice of
Knowledge Discovery in Databases. ECML PKDD 2021. (pp. 631-646).

Fairness Interventions in ADM Systems

Now that we have introduced the considerations that go into detecting the fairness
of ADM systems, we discuss some approaches to mitigate possible unfairness issues.
We will first focus on completely automated bias mitigation approaches, which can be
categorized in one of three categories, describing in which stage of ADM model learning
the mitigation takes place: pre-processing, in-processing, or post-processing.

Pre-processing Like the name implies, these methods take place before ADM systems
are learned, namely during the pre-processing stage of the training data. The basic
assumption is that if the data can be preprocessed such that its discriminatory biases
are removed, an algorithm will not have any discriminatory biases to mirror and will
be fair from the start. One early example of a pre-processing approach can be found in
the work of Kamiran & Calders [74]. They propose to "massage" the data and flip some
of the negative decision labels of the underprivileged group to positive while doing the
opposite for some positive labels of the privileged group. This is done until demographic
parity is achieved in the training data. Instances for flipping are selected, according
to how close their prediction labels are to the decision boundary of an independently
trained classifier on this data. The idea is that we maintain the most information encoded
in the original labels, by only flipping instances with high probabilities of belonging to
the opposite class.

Another example of data pre-processing lies in the idea of representation learning. The
aim is to learn a new representation of the data in which only information relevant to
the decision task is encoded, and any information solely relating to sensitive features is
disregarded. By training a model on this new representation of the data, its decisions
should also not rely on any sensitive information [23, 49, 142]. To exemplify, Calmon et
al. propose to frame representation learning as an optimization problem. The objective
is to learn a new data representation, that is as close as possible to the original one, but
subject to both group and individual fairness constraints. The group fairness constraint
imposes a similar positive decision ratio across sensitive groups. The individual fairness
constraint ensures that similar individuals are mapped to similar labels in the new data
representation, regardless of their sensitive features [23].

In-processing Rather than changing the input data fed to some learning algorithm, it
is possible to change the algorithm itself to make its learning process more fair. This is
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the intuition of in-processing methods for bias mitigation methods. Many in-processing
methods work by formulating the classification task as a constrained optimization prob-
lem, aimed at maximizing some performance measure (e.g., accuracy) subject to some
fairness constraint (e.g., demographic parity or equal opportunity) [58, 94, 141]. Ad-
versary methods are another type of in-processing method frequently explored in the
literature: the main idea is to simultaneously learn a predictor and an adversary for
some decision task. The objective of the latter is to predict the sensitive group mem-
bership of some instance, solely based on either the prediction or the prediction error of
the former. By simultaneously maximizing the predictors’ performance in predicting a
decision outcome, and minimizing the adversary’s performance in predicting sensitive
group membership either demographic parity or equal odds can be achieved (depending
on if the adversaries’ input is the prediction itself or the prediction error) [144].

Post-processing This last family of bias mitigation methods directly operates on the
outputs of an ADM system, while leaving the underlying data and learning algorithm
untouched. One common way to do so is by adjusting the prediction probability thresh-
olds for different demographic groups, such that the resulting distribution of prediction
labels satisfies some fairness metric of choice [32, 94]. Another method is proposed by
Hardt et al., who outline how to flip some of the prediction labels of a model, such that
finally equal opportunity is achieved [32,94].

Measuring Effectiveness of Interventions

After applying one of the fairness interventions throughout the learning pipeline, re-
searchers need to evaluate the effectiveness of those interventions. Given some fairness
goal that their fairness intervention was optimizing for, they measure how close their
model is to achieving this goal while also evaluating its predictive performance. The
common assumption is that to compensate for the unfairness in the original labels, an
ADM model must sacrifice some accuracy on them to achieve the imposed fairness con-
straints. The interplay between predictive and fairness-related measures is commonly
summarized as the fairness-accuracy trade-off. Accordingly, a fairness intervention is
evaluated as successful if it achieves some fairness goal without compromising the pre-
dictive performance too much.

Beyond automated solutions

The fairness intervention techniques that have been discussed here and the way in which
their effectiveness is evaluated suffer from important shortcomings, all relating to the
automated and non-contextual nature of these approaches. As we have pointed out
earlier, measuring the fairness of an ADM model through one single metric is usually
not sufficient to understand the biases underlying it. Based on the same reasons, we
argue that it is difficult to guarantee fair models when solely optimizing for one of these
metrics and not accounting for more nuanced considerations. To reiterate some of the
concerns we raised earlier: the choice between which fairness metric to optimize for (and
according to which metric to evaluate a system) is far from arbitrary. Picking one metric
and blindly fixating on achieving the corresponding fairness goal comes at the risk of



10 CONTENTS

ignoring important aspects that are brought to light by other fairness metrics. Related
to this, the interventions that only optimize for group-based fairness measures, come at
the risk of cherry-picking, i.e. distributing positive decision outcomes arbitrarily across
underprivileged groups, without much concern for individual fairness [42, 52].

While some approaches seek to counteract this problem and simultaneously achieve
group- and individual fairness (e.g. [23]) by phrasing this as a multi-objective optimiza-
tion problem, these interventions may be hard to interpret. It becomes difficult to track
which fairness metrics are prioritized and which groups of the data receive different
decision labels than they would have received under a regular ADM system. Connected
to this, there is a general concern that automatized solutions for bias mitigation give
little insight into their reasoning and the logic behind where and why interventions
are applied [15, 99]. This is both problematic towards the designers of ADM systems,
who have little power to incorporate their domain knowledge into the decision-making
process [99], and towards the decision subjects, who are left in the dark about why they
receive certain decision outcomes [15]. These concerns are also echoed by new legislation
around ADM systems, most notoriously the EU AI Act [123]. Article 14 of this act states
that high-risk decisions, like loan approvals, cannot be made by automated models alone
and instead should be overseen and adaptable by human domain experts.

Drawing forth from this new legislation and the concerns outlined above, Chapter 3 of this
thesis will introduce a bias mitigation method that is not fully automatized but instead
aims for a hybrid human-machine decision-making process. The proposed methodology
is an extension of the selective classification framework, that traditionally has been used
for accounting for uncertainty in decision processes. Selective classifiers have the option
to reject a given ratio of predictions that they are not certain about and pass these on
to human decision-makers or other decision-making models [61]. In Chapter 3, we
show how this reject option is an excellent way to account for the unfairness of an ADM
model. Using inherently interpretable methods to both check for group- and individual
discrimination, our selective classification model rejects instances where it deems its
predictions as discriminatory. In our chapter we highlight how the explanations behind
these fairness-based rejections can empower a human domain expert to make more well-
informed decisions on the corresponding instances, overall increasing the fairness and
transparency of the decision process. The content of this third chapter is based on the
following paper:

Lenders, D., Pugnana, A., Pellungrini, R., Calders, T., Pedreschi, D. & Gian-
notti F. (In press). Interpretable and fair mechanisms for abstaining classi-
fiers. In ECML PKDD 2024: Joint European Conference on Machine Learning and
Knowledge Discovery in Databases

Questioning the Fairness-Accuracy Trade-Off

As we have explained previously, bias intervention techniques are commonly evaluated
according to their fairness-accuracy trade-off, i.e. checking if they satisfy some fairness
goal while compromising as little accuracy as possible. We have already highlighted how
choosing a single fairness metric and evaluating a bias intervention technique accord-
ingly, is dangerous and comes with the risk of ignoring other relevant fairness concerns,
while simultaneously undermining human expertise throughout the decision process.
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Beyond that, in this section, we also call into question the logical validity of the presumed
trade-off between fairness and accuracy in decision-making. Consider again Table 1 and
imagine we want to evaluate both Model A and Model B in terms of this trade-off. Both
models satisfy the imposed fairness goal of demographic parity, yet Model A has an ac-
curacy of 75%, while Model B only has an accuracy of 25%. Despite Model A providing
a better trade-off, we argue that it is not necessarily objectively better than Model B. The
problem here is that we only have access to the historical decisions for each loan appli-
cant, rather than the actual outcome we want to model, i.e. which applicants are eligible
and would pay back a loan when receiving one. Imagine a hypothetical world, where
we do have access to these labels, as displayed in Table 3. With access to these labels, we
can confidently say that Model B is not just the most accurate at predicting these labels,
but also the fairest, as all loan applicants get the decision outcome they deserve.

Table 3: Example of the “fair" decision labels in a loan allocation setting, that do not show
whether applicants were granted a loan, but instead highlight if they were eligible for
one

# Deserved Decision

1 Loan
2 Loan
3 Loan
4 Loan

This hypothetical example outlines the problems with evaluating fairness interventions
according to the fairness-accuracy trade-off on the labels at hand. The very reason why
we are applying fairness interventions in our ADM systems is that we assumed the
original decision process to be flawed. Because of biases and errors throughout the
process, not every applicant received the decision they deserved and we want to correct
these errors. Hence, in trying to measure how well an intervention works, it is internally
inconsistent to strive for high accuracy on labels that are not believed to be "true" in
the first place. This concern has now been raised by several researchers, both from
a theoretical perspective [48, 138] and in experimental settings. Regarding the latter,
researchers have simulated data with a fair and biased version of the decision labels
and evaluated their fairness interventions by applying them to biased train data and
measuring their accuracy on the fair one [51, 138, 144]. Though the advantage of such
a controlled setting is obvious, there is no denying that simulated approaches cannot
capture the complexity and intricacy of realistic data and its biases [47].

In Chapter 4 of this thesis, we therefore address the challenge of evaluating fairness
interventions without relying on synthetic data. To accomplish this, we introduce a
novel dataset comprising real-life data of students, including details about their leisure
activities and study habits. The dataset includes fair decision labels indicating whether
students passed a course. We obtained a biased version of these labels through a human
experiment where participants estimated performance based on the students’ available
information. We show how the latter version of the labels is biased against male students,
and how the dataset can be used to evaluate fairness interventions without relying on
the logically flawed fairness-accuracy trade-off. Further, we test different bias mitigation
algorithms on our sampled dataset and show that interventions that appear to work
well according to the traditional evaluation scheme, do not necessarily provide good
results in this new setting. While we do emphasize that our dataset should be used
with extreme caution and results on it should not be overgeneralized, the experiments
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in Chapter 4 provide further motivation for changing the way we currently reason about
biases in ADM systems. Further, by sampling the biased version of our dataset’s labels
through a human experiment, we emphasize the importance of humans not just in
tackling algorithmic biases, but also in understanding where the biases in our data come
from. The content of this chapter is based on the following paper:

Lenders, D., & Calders, T. (2023, March). Real-life performance of fairness
interventions-introducing a new benchmarking dataset for fair ML. In Pro-
ceedings of the 38th ACM/SIGAPP symposium on applied computing (pp. 350-357).

Zooming out

The majority of this thesis focuses on algorithmic biases in ADM systems and the short-
comings of traditional bias detection and mitigation methods. In each chapter, we tackle
concrete challenges relating to this and introduce novel methods for detecting and mit-
igating biases that provide more flexibility and emphasize the role of humans in these
settings.

In Chapter 5 of this work, we zoom out from those specific considerations and provide
a high-level overview of other research areas surrounding algorithmic fairness and how
the field has developed over the past years. For this purpose, this chapter describes a
scoping review of the literature in the field. This review aggregates information from
more than 1500 papers dealing with algorithmic fairness, highlighting which domains
these papers focus on, what technology they address, and if they focus on particular
demographic groups that suffer from algorithmic discrimination. Further, we describe
where current research efforts are coming from, both assessing the expertise of papers’
authors (particularly, if they come from a Computer Science or Law background) and
their geographical affiliation. In identifying popular research trends across disciplines,
we also highlight which areas around algorithmic fairness remain underexplored. Using
some case studies we emphasize the urgency of addressing these topics, also highlighting
what unique contributions technological and legal researchers can make. The content of
Chapter 5 is based on the following paper:

Lenders, D. & Oloo A. (Under submission). 15 Years of Algorithmic Fairness:
Scoping Review of Interdisciplinary Developments in the Field.

Drawing forth from the insights of Chapter 5, the final chapter of this thesis will identify
future research areas related to Chapter 1 - Chapter 4 of this thesis and conclude the
overall work.
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Interactive Auditing Toolkits

This chapter focuses on detecting biases in Automated Decision-Making (ADM) sys-
tems using interactive auditing tools. These tools are designed to be user-friendly,
requiring no programming knowledge, yet enabling rigorous and thorough bias audits.
To account for the subtle and complex way in which discriminatory patterns may unfold,
interactive tools need to offer a wide range of functionalities to ensure that auditors can
detect, understand, and contextualize all the important biases within a model. Many
interviews and usability studies have been conducted to identify the functional require-
ments an optimal tool should satisfy. Yet, no extensive checklist of these requirements
exists, nor is it clear to which extent current auditing tools fulfil them. In this chapter,
we provide an overview of currently existing tools, while also encapsulating auditors’
functional needs for such tools in one comprehensive checklist. More importantly, we
will evaluate each of the existing tools according to this checklist and identify ways their
shortcomings can be overcome. Common points of improvement we identified using our
checklist, concern the tools’ functionality to let users detect complex forms of bias (like
intersectional bias) and let users understand the causes of this bias1

1.1 Introduction

One essential part of creating fair ADM systems lies in auditing these systems for potential
biases before they are deployed. This need is emphasized by researchers [35, 128] and
legal institutions. For instance, Local Law 144 in New York City [8] mandates that any
automated hiring/employment system needs to be audited and similar regulations on a
more general level are proposed in the EU, in the form of the EU AI Act [46].

While it is clear that bias audits should take place, much less is clear about how they should
be conducted, as the legal regulations only give minimal guidelines about this [35, 111]

1This chapter is based on: Lenders, D., & Calders, T. (2023). Users’ needs in interactive bias auditing tools
introducing a requirement checklist and evaluating existing tools. AI and Ethics, pages 1-29..
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(for a more elaborate discussion of the regulations we refer to section 1.5). Given these
legislation gaps, there are still many open questions, around which components of a
model should be audited (e.g., one could only inspect the models’ output or also evaluate
the code behind the model) or when an audit can be considered to pass or fail [35]. While
these are important ongoing debates, the focus of this chapter will lie in the most common
part of an algorithmic bias audit: the assessment of the fairness/accuracy of a model’s
prediction and its underlying data [35]. For simplicity’s sake, we will (without wanting
to diminish the importance of other parts) use the term "audit" to refer to this specific part
of the process. Further, we will use the term "auditor" to refer to the organization/person
conducting this assessment. While the discussion on who this auditor should be is an
important one, we push these concerns aside and merely assume that an auditor is a team
or person (that could either be internal or external of the organization whose system is
audited) who wants to detect and understand the biases of an ADM model.

Even when making these simplified assumptions conducting an audit is still complex
and challenging, as there are many causes for why an ADM system may be biased, many
subgroups that may be affected by it, and many ways in which this bias may unfold
(see for instance some of the bias definitions in the introduction of this thesis). Hence,
any bias audit should be a rigorous and thorough process that sheds light on all these
concerns. To facilitate this process, various tools have been developed to assist auditors.
These tools enable them to visually and interactively inspect the underlying data behind
an ADM model, as well as its prediction outcomes on new data (e.g., granting a loan or
not) [3, 22, 116, 133, 135]. Unlike tools that come in the form of programming libraries
these interactive tools are usable by a wide range of people, as their usage does not
require technical or coding skills. Additionally, these tools can help standardise the
auditing process, by providing clear pointers on which considerations need to be made
throughout, and on which potential unfairness issues to explore. Lastly, these tools can
have a broad impact because they are accessible to the public for free. They can save time
and money for users who don’t have to start audits from scratch but can use the tools’
existing functionality. Despite their clear potential, many tools are developed in isolation
of those who might use them, begging the question of how suitable they are in realistic
settings. Interview studies with developers and other possible auditors can reveal an
answer to this question.

Veale et al., Holstein et al. and Constanza-Chock et al., for instance, conducted interviews
with practitioners and auditors to identify their current procedures in testing the fairness
of ADM systems [35,65,126]. Though they did not directly explore how interactive tools
can aid this process they still identified common obstacles that they face, that should
be considered when designing auditing toolkits. For instance, they found that auditors
often do not have information about decision subjects’ sensitive attributes, like gender
or race, complicating the asessment of how a system might impact demographic groups
differently. Hence, this reveals the requirement that interactive toolkits should enable a
bias audit when sensitive/demographic information is not available.

More recently, other interview studies were conducted in which potential auditors were
directly asked to list their requirements in auditing toolkits and identify points in which
to improve current ones [84, 86, 98, 110]. The studies identified essential user needs,
including the requirement for scalable bias audit tools. Since ADM models may make
occasional errors, auditors want to avoid wasting time on random mistakes and focus on
significant issues that indicate systematic discriminatory patterns [84].
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All aforementioned studies uncover important considerations that should go into the
design of interactive tools. However, so far only two attempts have been made to give an
extensive overview of all these requirements [98,110]. First, Richardson et al. introduced
a rubric listing both functional and non-functional criteria for interactive toolkits [110].
However, this rubric is not specifically targeted to ADM systems and some of its items,
like "[tool] can detect bias" or "[tool] contextualizes fairness" remain somewhat vague,
and do not provide actionable and concrete suggestions on how to implement them.
Nakao et al. also introduce a list of tool requirements. However, they base this list
solely on the results of their interview studies and therefore miss essential design needs
identified by other research works [98].

In this chapter, we present a literature review of interview studies with practitioners
to provide a more complete list of tool requirements. Further, we give concrete and
actionable insights into how these requirements can be implemented. We do so by first
examining how some currently available toolkits already fulfil some design criteria so
that developers of new tools can draw inspiration from their functionality. Second, if
none of our examined tools satisfies a given requirement, we provide pointers to relevant
literature that gives insight into how some functionality can be implemented. In doing
so we are, to the best of our knowledge, the first to provide a detailed overview of some
of the interactive tools that are already available.

1.2 Overview of selected fairness tools

To give an idea of some of the interactive tools that currently exist, we introduce six tools
that we will, later on, evaluate to determine whether they meet the needs of potential
auditors. By describing these tools, we do not aim to give a complete overview of
all the tools that are currently available but to give an initial understanding of their
functionalities. This understanding will form the basis for determining how auditors’
functional requirements can be met on a technical level. All the tools we review have
an interactive graphical interface, meaning that we excluded tools like AIF360 [12] or
FairLearn [95] that come in the form of a Python library. We also only review tools that
we were able to use and test ourselves.

To better understand how each tool can be used, we show how each of them assesses bias
in the prediction task associated with the "Adult Income Dataset". This dataset contains
information on individuals’ demographics and working life, like their type of job and
their amount of working hours. The associated decision task is to predict whether
an individual has a high or low income. We refer to the former as the "favourable
outcome" or the "positive label". The dataset contains the attributes "sex", "race" and
"age", which are known to elicit biases in ADM models trained on it. We will use the
term "protected group" to refer to the group of people that are, based on their sensitive
attribute values, historically at lower risk of receiving the favourable outcome than the
"unprotected" group. The auditing toolkits described in this section can be used to detect
and understand these patterns.

Note that some of the tools are merely prototypes that work only on this Adult dataset.
Even though they may not be used in real bias audits yet, we discuss their most important
components to see how their functionality may be useful to incorporate into future tools.
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1.3 Design Considerations for Fairness Tools

While we’ve only covered a few fairness audit tools, it is evident that interactive tools
are developed with different use cases and user needs in mind. However, research has
shown that there is a gap between what auditors need from a tool and what functionality
the tools offer [86, 110]. To identify this gap, we conducted a literature review to gain
insight into auditors’ practices and needs that should be accounted for in the design of
toolkits. In the next section, we will use this literature review as a basis to compile a list
of requirements for toolkits.

We used the earliest and widely-cited key studies by Veale et al. [126] and Holstein et
al. [65] as the base for a snowball sampling literature review. Both are interview studies,
where practitioners (in case of Veale et al. public sector decision-makers and in the case
of Holstein et al. ML developers) are interviewed to understand what tools, additional
research and organizational reforms they need to conduct better fairness audits. Within
all papers that cited either of two studies, we used the search query "interview study +
fairness assessment" to extract similar papers in which practitioners are interviewed to
understand their practices and need for assistance in conducting fairness audits.

Based on the results we identified two relevant lines of research. The first are interview
studies, where people working with ADM and other ML systems reported their current
practices and obstacles when assessing or ensuring the fairness of these [35, 65, 126].
These studies do not solely focus on the potential of interactive toolkits in addressing
these problems but also explore reformations in the organizational and legal sphere.

More recent studies also directly investigated the potential of fairness toolkits, in facil-
itating bias audits. Here, possible auditors were interviewed or asked to test tools, in
order to identify their requirements in them [84,86, 110].

In section 1.3.1 and 1.3.2 we will summarize both lines of research and identify the design
considerations (DC) for interactive auditing tools that emerge from them. In doing so
we only focus on the considerations for tools that help in detecting bias in ADM systems
(and not other ML applications). Further, we will only concentrate on the functionality
and not the usability of such tools. As we will see there is a lot of overlap in the design
considerations that have become apparent from the different interview studies.

1.3.1 Exploring current practices for bias detection in ADMs

The earliest significant study on algorithmic bias audits, conducted by Veale et al. [126],
involved semi-structured interviews with 27 individuals from the public sector. Semi-
structured interviews are a research method where participants are asked a series of
predetermined open-ended questions, but the interviewer also has the flexibility to ask
additional follow-up questions to explore topics in more depth. In this study, the intervie-
wees, who utilized ADM models for decision-making in areas like taxation or policing,
were asked to share their experiences with the models, express fairness concerns, and
discuss obstacles they encountered. While many of the reported issues lay on an organi-
zational level, interviewees also revealed some practices and concerns that are relevant
to the design of auditing toolkits: they reported that they were aware of discriminatory
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effects of ADM models and that they, therefore, avoided the use of sensitive attributes
when building such models. Further, they were wary of utilizing variables like "home
location” in their model, as they might serve as a proxy for the sensitive attribute "race”.
Still, guidelines of which variables to avoid in models were more of an informal nature,
as this is dependent on the decision task. Although not directly mentioned by Veale et
al., the fact that practitioners do not directly use sensitive attributes in their models but
have no formal way of identifying all proxy attributes poses serious considerations to the
design of auditing toolkits: first, if sensitive data is available but not being used, tools
should provide the functionality to detect proxy attributes, based on their correlation
with sensitive attributes (DC_identifying_proxies) Second, if no sensitive attributes are
available, tools should still allow auditors to conduct a fairness analysis. We will refer to
this design consideration as DC_no_sensitive_attributes.

One year after the interview study by Vaele et al., Holstein et al. released another
study building on top of their results. They conducted 35 semi-structured interviews
with ML developers, to find out about the obstacles they experience when assessing and
improving the fairness of ML systems. After the interviews, they also conducted a survey
to see whether their results were generalizable to a wider public. Similarly, as in Veale
et al. many of the identified issues lay on an organizational level or were specific to ML
applications that are not the focus of our paper. Still, practitioners also reported technical
issues in assessing/improving the fairness of ADM models, which should be considered
when designing auditing toolkits. The first issue relates to the already discussed design
consideration DC_no_sensitive_attributes, as practitioners reported that often access to
sensitive attributes is lacking. Another main issue relates to the preferred intervention
stage when improving the fairness of a system. Practitioners revealed that when a
model appears to be biased, they inspect the training data this model was based on, to
think about ways in which collecting more data or pre-processing the data can help in
mitigating the bias. Relating this to the design of interactive auditing toolkits, this means
that tools should help auditors in inspecting the training data so that they can identify
causes of prediction biases and resolve them. We will name this design consideration
DC_identifying_bias_causes. Further, auditors mentioned that the closer inspection of
input data is also important for assessing the quality of the test set that a model is audited
on. After all, only if the test set is representative of the data that the model is applied
on, the results of the fairness audit can be generalized. We will refer to this design
consideration as DC_fair_testset_design.

Another design consideration we extracted from their work relates to practitioners’ fear
that a wide range of biases may creep into a model and identifying all of them is time
intensive. Hence, they do not want to waste efforts on identifying occasional "one-off"
mistakes from a model but want to prioritize big, systemic biases, that are unlikely due to
chance. As we will see in section 1.4.3 there are ways in which auditing toolkits can meet
this requirement (DC_prioritize_systemic_biases). Connected to this, practitioners still
fear, that they have blind spots in analysing the fairness of a system and that they do not
think of all the attributes that can serve as grounds for discrimination. Hence, creating
a tool that can automatically suggest possibly discriminated subgroups or individuals,
could be a way to accommodate this fear (DC_account_for_blindspots, described in
further detail in section 1.4.3.2)

The final paper we are going to discuss was written by Constanza-Chock et al. [35]. They
interviewed 10 different auditors of ADM systems, that were either researchers, CEOs
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of dedicated auditing companies, or leads of internal company teams responsible for
bias audits. Their goal was to identify current auditing practices, as well as obstacles on
organizational, technical and legal levels these auditors faced.

One interesting discovery was that many auditors currently favour custom-built toolkits
over standardized ones. The preference for custom solutions is attributed to the fact
that standardized toolkits may not always fit tailored use cases, and some interviewees
expressed concerns about the overemphasis on quantitative measures of fairness that
try to express unfairness in a single number, without further consideration of its con-
text or origins. However, despite this preference for customization, we believe there are
compelling reasons to enhance standardized toolkits, as they are readily available to the
public, more cost-effective, and can be swiftly implemented, unlike developing a new
custom tool from scratch. While the study conducted by Constanza-Chock et al. did not
directly address how to capitalize on this potential, we identify several ways to overcome
the established disadvantages. First, to address the applicability to tailored use cases,
toolkits should offer a wide range of functionalities that cater to various scenarios. Ad-
ditionally, allowing some degree of customizability would be beneficial, enabling users
to not only examine pre-defined fairness or performance measures but also define their
own metrics (DC_variability_and_customizability_of_metrics). Related to the second
concern, that tools express the fairness of a system only through quantitative measures,
it is essential that tools also encourage deeper analysis of biases: for instance, by letting
users inspect the training data behind a model, tools can allow users to reason about
the causes of a models’ unfairness (DC_identifying_bias_causes). Further, by letting
users not just inspect demographic subgroups (e.g., based on gender or race) but also
subgroups based on other attributes in the data, users are encouraged to contextualize
biases better and understand their occurrences (DC_bias_contextualization).

Another interesting finding that reveals a design consideration for interactive tools is
how auditors currently deal with intersectional bias analysis: Constanza-Chock et al.
found that auditors generally have the intent to perform such analyses, but in practice
could not provide many cases in which they were conducted. They hypothesised that
this was likely due to the general difficulties surrounding such analyses, like dealing
with a large number of small subgroups and not being able to identify all marginalized
groups. Despite such difficulties, the importance of identifying and understanding in-
tersectional biases is clear, which is why tools should support and facilitate such analysis
(DC_intersectional_analysis).

1.3.2 Exploring the potential of tools

The studies discussed in the previous section address auditors’ current practices and
concerns when assessing the fairness of ADM systems. In this section, we will examine
the studies that explore how practitioners think toolkits can help in this assessment.
The first of these studies was conducted by Law & Du. They held 10 semi-structured
interviews with ML practitioners of the same company, working on different projects.
They introduced the practitioners to the case example of bias detection in the Adult dataset
(the same dataset we have described in section 1.2 of this paper) and then asked them
about their encounters with bias detection in ADM models and how they thought tools
could help them. As we already identified as DC_no_sensitive_attributes, practitioners
reported that not having access to sensitive attributes was a major obstacle for them
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in auditing a systems’ bias and that having tools that can help with that would be
highly useful. One concrete suggestion was to make tools that automatically predict
the sensitive attributes of data instances, based on other features in the input data.
Similarly as found by Holstein et. al, interviewees also expressed their fear of bias audits
becoming unscalable and suggested implementing functionality in tools that allow them
to prioritize big, systemic biases (DC_prioritize_systemic_biases) and functionality to
ensure they do not miss any of them DC_account_for_blindspots). Finally, they also
mentioned the importance of having tools that allow them to assess the training data, to
identify the causes of a model’s biases (DC_identifying_
bias_causes).

Richardson et al. conducted another study investigating toolkits’ potential in facilitating
algorithmic bias audits. In a usability study, they let 20 ML practitioners test one of two
fairness toolkits (Aequitas [115] or Google Fairness Indicators [122]) and let them reflect
on the usefulness of these. They used the results of this study to set up a rubric with tool
requirements. While this rubric also contains points regarding the tools’ usability and
tools that could be used for a broad range of ML applications, we will concentrate on the
functional requirements related to bias detection in ADM systems. All of these require-
ments are related to design considerations we already established from previous liter-
ature: DC_variability_and_customizability_of_metrics, DC_intersectional_analysis,
DC_no_sensitive_attributes, DC_bias_contextualization and DC_identifying_
bias_causes.

Another relevant paper is the work by Lee & Singh, who conducted semi-structured
interviews with ML practitioners to review programming libraries like IBM Fairness 360
or Fairlearn [13,95] that provide pre-defined metrics and algorithms to analyse and miti-
gate the bias of ADM systems. Based on the interviews, Lee & Singh establish how these
libraries could be improved. The first design considerations concern the need to inspect
the training data to identify bias causes and find possible proxies for protected attributes
(DC_identifying_bias_causes, DC_identifying_proxies) Second, they were concerned
about the customizability of tools to their use cases DC_variability_and_customizability
_of_metrics and the degree to which they could handle more complex form of bias (e.g.,
bias based on multiple non-binary sensitive attributes, DC_intersectional_analysis).
Third, they expressed their interest in tools that highlight the significance of biases, so
that they would not waste time inspecting disparities that are due to random chance
DC_prioritize_systemic_biases.

Even more recently a study was conducted by Nakao et al., who developed a new
prototype for an interactive auditing toolkit after they conducted several workshops
to identify stakeholders’ needs in such tool [98]. They specifically focused on fair-
ness audits in the context of a loan allocation system and therefore interviewed both
data scientists and loan officers as potential auditors of this system (note that we do
not review their developed prototype as part of our fairness tools since it is not pub-
licly available). In their study they identified the following design considerations:
DC_variability_and_customizability_of_metrics, DC_intersectional_analysis,
DC_identifying_proxies and DC_bias_contextualization.
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1.4 Functional Requirements for Tools

1.4.1 Functionality for detecting bias in models’ predictions

The first main category of requirements regards a tool’s functionality of letting users
identify bias in a model’s predictions. In the following sections, we will cover what
forms of biases should be detectable by toolkits (section 1.4.1.1), how it is important
that intersectional bias can be analysed (section 1.4.1.2) and how tools should offer bias
analysis that goes beyond sensitive attributes, in case that there are proxy attributes in a
model or attributes that make the treatment of groups with different sensitive attribute
values justifiable (section 1.4.1.3). In each section, we will also discuss to which extent
our reviewed tools offer the required functionality.

Table 1.1: Requirements related to tools’ functionality to let auditors find bias in an ADM
model’s predictions.

Functionality for detecting bias in a model’s predictions

Different forms of bias can be detected
[DC_variability_and_customizability_of_metrics]

Some standard bias measures are supported:
Outcome based (group) AE DL FS RD (   )RD WI(   )

Actual vs. Outcome based (group) AE RD FS FV RD WI

Probability based (group) RD RD FS RD (   )RD WI(   )

Similarity based (individual) RD RD FS RD RD WI

Causal based /
Tool provides customizable bias metrics /

Intersectional bias can be explored
[DC_intersectional_analysis]

Bias based on non-binary sensitive attributes AE RD RD FV RD WI

Bias based on multiple sensitive attributes RD RD RD FV RD WI(   )

Prediction bias beyond sensitive attribute(s)
[DC_bias_contextualization], [DC_identifying_proxies],

[DC_no_sensitive_attributes]

Tool lets user contextualize differences in outcomes RD DL RD RD RD WI

Indirect Bias Analysis (with access to sensitive attributes)
Functionality to find proxies RD RD FS RD RD WI

Functionality to relate proxies to decision attribute see section 1.4.1.2
Indirect Bias Analysis (without access to sensitive attributes)

Estimate sensitive attributes from data /
Functionality to relate (possible) proxies to decision attribute see section 1.4.1.2

1.4.1.1 Different forms of bias can be detected

This requirement pertains to the design consideration DC_variability_and_
customizability_of_metrics, which has been established by reviewing the works of [35,
110]. To reiterate, some practitioners have avoided using toolkits because they do not
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provide implementations for all the bias metrics relevant to their decision task. Therefore,
an implementable solution is to create toolkits that offer a wide range of standard metrics,
that can further be customized to their specific use case.

Some standard bias measures are supported Because bias is such a complex and non-
arbitrary concept, various, often incompatible definitions can be used. While it may be
tempting to only choose one of these definitions and assess a system’s fairness accordingly,
researchers have warned against such simplifications [11, 118]. Take for instance the
measure of "Equal Opportunity" in the example of our loan allocation system. According
to this definition, a system is free of bias if the "true positive rates" among all groups of
interest (e.g. all genders) are equal. The "true positive rate" is defined as the probability
that a loan applicant for which an ML model predicted a positive outcome (i.e. being
approved for a loan) also has a positive label in the data. While at first sight, this
definition may sound "fair" it does not account for the "unfairness" that might be present
in the labels, based on which a model’s errors are assessed. In the case of the Adult
dataset, it could be argued that the inequality in high and low incomes between genders
reflects the gender pay gap that is a result of direct discrimination as well as unequal
(and possibly unfair) societal expectations and opportunities for different genders [26].
Thus, the fact that more men than women have a positive label (i.e. high income) in
this data does not mean that this bias should be replicated by an ML model trained on
it. Especially, if the labels would be used as a proxy for who deserves a loan and not, it
can easily be argued that consistently giving more men than women a loan, would only
increase existing gender inequalities. To account for existing biases in the labels, it is
possible to choose a "bias-transforming" fairness goal [128] like "Demographic Parity".
With this measure, we ensure that an equal portion of men and women are granted a
loan by the system. Still, also this measure comes with disadvantages. For instance, it
ignores differences in qualifications or eligibility of population groups that could justify
a difference in outcome (i.e. loan vs no loan) [11]. One way to address this problem
is by focusing on similarity-based fairness measures, that are based on the principle of
"treating likes alike": individuals that are similar in terms of their eligibility for a loan
should obtain the same outcome [11].

As has become clear from this example, there is a variety of bias measures to take into
account when auditing an ML system and there is no single criterion that "makes or
breaks" the fairness of a system. Hence, a tool must support a wide range of these
metrics so that auditors can choose one or multiple to inspect based on the given use
case. To distinguish between the different forms of fairness that should be measurable
with a toolkit we will, similarly as [109], make use of the five bias categories specified
by [127].

Group-Based Measures The three definitions falling under the subcategory of group-
based bias measures measure whether there are substantial differences in treatment between
two or more groups (e.g., men vs. women vs. non-binary). This can first be measured by
comparing the classifier’s outcomes on the groups, second, by comparing the classifier’s
errors on them, and third by comparing the classifier’s predicted probabilities on them.
As can be seen in Table 1.1, most auditing tools support the bias definitions based on
classifiers’ errors, with Equal Opportunity (one of the measures discussed previously)
being one example of such definition. We have already pointed out how these error-based
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measures are not appropriate to account for the bias present in the ground-truth labels.
Hence, the fact that many tools do not support outcome-based measures (that do account
for this bias) poses a serious shortcoming for their applicability. Additionally, the fact
that so few tools support probability-based measures, is another drawback. Most ADM
models do not directly output binary decision labels for a prediction task, but instead
prediction probabilities, which can then be translated to binary labels by applying some
decision threshold on them. Yet, this threshold is quite flexible and may even change
throughout a system’s deployment. For instance, in the case of our loan approval system,
this may depend on the bank’s resources and the number of loans it can grant [72]. To be
able to guarantee the fairness of a system, independent of a chosen decision threshold,
it is thus useful to have tools that allow for probability-based bias assessments [72].
One example of such measure is the "Balance for positive class", demanding that for all
instances with a positive decision label in the data, the average prediction probability
is the same across groups [80] (i.e. the average prediction probability for women with
a positive label is the same as the average probability for men with a positive label).
Satisfying such a goal gives some guarantee that a model’s prediction will still be fair
once the decision threshold changes.

Currently, only three tools partly allow for the inspection of probability-based bias mea-
sures. FairSight operates on the ranking produced by a classifier, which is obtained when
ordering the decision instances according to their prediction probabilities. The tool then
prompts the user to specify which top-k instances of this ranking will be granted a
loan and calculates various bias metrics based on the protected/unprotected individuals
represented in this ranking (see Figure 1.4 (B)). While this gives some insights into the
probability-based fairness of the corresponding model, the tool does not operate directly
on prediction probabilities but only on the obtained ranking. The other two tools that
partly allow the exploration of probability-based bias measures are the WhatIf tool and
the RAI dashboard. Both allow users to visualize the prediction probabilities for different
subgroups, as can be seen in Figure 1.10 (A) for the RAI dashboard and Figure 1.7 (A)
for the WhatIf tool. However, neither of these visualizations is accompanied by formal
measures (note, that the same holds for output-based bias measures: both tools allow
for visualization of them but do not provide exact measures). Adding formal measures
would thus be an easy way to improve the suitability of both tools.

Adding a wider variety of bias measures to a tool like DiscriLens, which has been devel-
oped with one specific bias metric in mind (in DiscriLens’ case "conditional demographic
parity"), will prove a bigger challenge. This highlights the need to take a broad perspec-
tive when designing auditing tools and make them flexible for different tasks and fairness
notions.

Similarity based Measures The fourth group of bias definitions, in addition to the
three described above, are similarity-based ones, which define bias s on an individual
level by comparing the outcome of a data instance with those of similar ones. Currently,
only FairSight, the RAI dashboard and the WhatIf tool support users in exploring these
definitions. FairSight does so by enabling the user to conduct a "nearest neighbour"
analysis, where the user can select an instance and compare their predicted ranking
position to those of similar ones (see Figure 1.5 (d)). The WhatIf tool and the RAI
dashboard on the other hand provide a "What-if" analysis. Here users can change
feature values of an instance of choice, and observe how this affects the prediction. To
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illustrate, look at Figure 1.7 (B), showing this component of the WhatIf tool. Here a user
has selected a female data instance and changed their sex to "male". The outcome of
this change is that the probability of granting a loan raises from 0.283 to 0.535. There
are two primary reasons why this kind of similarity-based fairness analysis should be an
essential component of any auditing tool:

• First, consider our loan approval system and imagine that it satisfies the outcome-
based fairness measure demographic parity in regard to gender (i.e. for all gender
groups it grants the same proportion of loans). While this system may look fair
on the outside, there is no guarantee that the people who get granted a loan also
are eligible for one, or that the reasoning behind granting a loan is fair. It may
for instance still behave in an individually discriminating way like in the example
given above

• Second, in the study by Richardson et al., interviewees mentioned how they found
it easier to understand global patterns of discrimination (as given by group-based
fairness definitions) when being provided with individual examples of discrimi-
nated instances. This finding is also backed up by [41].

Both reasons should provide developers of new tools with motivation to include similarity-
based analyses in them. Still, it should be noted that similarity-based measures also come
with disadvantages, the biggest one being that it is not clear how to define similarity and
how similar two instances should be to receive the same decision outcome. In the case
of a loan allocation system, it is e.g. clear that a man and woman who are identical in all
features except their sex, should not be treated differently. However, if a man and woman
also differ on a relevant attribute (e.g., their current employment status), this is not so
arbitrary. On the one hand, a difference in this attribute can justify handing out a loan
to one person but not the other. On the other hand, differences in these attributes may
reflect systemic and societal gender inequalities (e.g., different lengths of parental leaves,
women working more part-time, etc.) that an auditor needs to account for [67]. Hence,
for functionalities like the "nearest neighbour analysis" in FairSight, it can be useful if a
tool lets auditors define their own similarity metric to allow for such considerations. We
will further elaborate on this point in section 1.4.1.1.

Causal-based Measures The fifth and last category of bias definitions are causal-based
ones [127]. These definitions are the most distinct, as they do not solely define bias
on the predictions of a model but also on the causal relationships that are assumed
to underlie it. In other words, we use causal-based definitions to examine whether
there are discriminatory causal relationships between a sensitive attribute and a decision
attribute in a model’s decision-making. Currently, no tool allows the user to investigate
these causal notions. As causal bias definitions lay in a niche research area within the
fairness literature, it may not be surprising that no tools support their exploration. Still, it
should be noted that there may be great potential in incorporating them into interactive
tools, especially by visualizing the causal relationships within a model through causal
networks. The paper by [27] gives a good overview of how causal networks could help in
the detection of bias in an ML model. Additionally, [139] and [98] present tools through
which causal analyses can be conducted, and also point out the merits of adopting a
causal framework. To give a more concrete example, refer to Figure 1.12 displaying a
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Figure 1.12: A graph visualizing the causal relationships within an ADM model trained
on the Adult dataset. This graph is visualized as a part of a auditing tool developed
by [139]. Though this tool is not openly accessible, its design and its use of causal
fairness definitions can still serve as an inspiration for other toolkits.

graph from [139], that visualizes the causal relationships within the Adult dataset. In their
tool, [139] show this graph to let users reason about problematic relationships between
attributes like "sex" or "race" and the decision attribute "Level" (short for "level of income").
In this case, we see that peoples’ sex has a direct causal effect on their income, but is also
linked to other attributes (e.g., the number of working hours) that may influence income
levels. The cited papers give more information on how to quantify these relationships
and how auditors could use visualizations like these to reason about the biases within
a system. For instance in this case it is clear that utilizing the ADM model based on
the causal relationships in 1.12 is problematic, since in this model there is a direct link
between "sex" and "income". If the causal relationships within the model were different,
and there was only an indirect link between people’s sex and their income level (e.g.,
explained by the link to different working hours between different sexes), auditors could
apply different reasoning as to why this link may or may not be acceptable.

Though the tools by [139] and [98] are not openly accessible, their design may still serve
as an inspiration to add further functionality to existing tools.

Customizable metrics While it is useful if a tool provides a couple of standard bias
measures by default, our reviewed interview studies revealed that auditors would also
like toolkits in which they can customize their own metrics (see DC_variability_and_
customizability_of_metrics in section 1.3) [35, 86, 110]. This also relates to findings
in other ML literature, where practitioners explain how they evaluate their products
on organization-defined and product-specific metrics, rather than standard ones [120].
While the customizability of metrics is arguably a broad requirement, we already touched
upon some ways in which this requirement could be fulfilled, like allowing users to
define a similarity function for similarity-based fairness measures (see section 1.4.1.1)
or allowing them to specify a decision threshold to translate prediction probabilities
to prediction labels (see section 1.4.1.1). Another suggestion that came forth from the
interview studies discussed earlier is to let users define metrics that can be used to assess
a model’s fairness in non-binary prediction tasks, like multi-class problems or regression
problems. In the case of a loan approval system, it might, e.g., be of interest not just
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whether an individual gets granted a loan but also what the height of that loan is, and
whether that is equally distributed among demographic groups.

1.4.1.2 Intersectional bias can be explored

Another design consideration for the development of tools is their functionality to detect
intersectional biases (DC_intersectional_analysis). "Intersectional bias" is a term that
was 1989 coined by Kimberly Crenshaw, to describe the discrimination that black women
faced in employment that could neither be fully explained by discrimination against sex,
nor discrimination against race [36]. Since then, the term has been used to describe how
people who come from a combination of marginalized groups (based on gender, race,
religion, class, and other identity markers), face different levels of discrimination than
cannot be explained by the "sum" of discrimination faced by each marginalized group in
isolation. ADM systems may also behave in intersectionally discriminatory ways, which
is why tools should assist in the detection of those.

To facilitate this, there are two functional requirements a tool should fulfil: first, it should
allow the analysis of bias based on non-binary sensitive attributes, and second, it should
allow the analysis based on combinations of these attributes. Both points are elaborated
on in the next paragraphs.

Bias based on non-binary sensitive attribute(s) The first consideration that needs
to be made when conducting an intersectional bias analysis, or even when analysing
bias from a single-axis, is which identities to include per sensitive attribute [130]. As
sensitive attributes are typically non-binary, auditing toolkits must support this non-
binary analysis. Out of our six tools, all do so except DiscriLens and FairSight. The
risk of using such simplifications should not be underestimated. Take for instance the
attribute "race"; using a tool like DiscriLens or FairSight, we are forced to discretize
this feature into two groups, e.g. "white" and "non-white". Yet, for any domain expert
using such tool, it is clear that this discretization does not account for all the different
types and levels of bias different non-white racial groups may face [65, 130]. Looking
for instance at Figure 1.10 (A), we see the distribution of predicted probabilities for
the group of white men, coloured men, and black men. The model predicts higher
probabilities of granting a loan for the group of white than coloured men. However, the
difference in prediction probabilities (and also False Negative Rates) is even larger, when
comparing the group of white and black men. This indicates that within the group of
coloured men, black men face especially averse effects. If an auditor would use a tool that
only allows bias detection on binary-sensitive attributes, they would miss this important
pattern. Fortunately, it should not be too difficult to allow for non-binary bias analysis in
DiscriLens and FairSight. Both tools heavily rely on colours to encode different groups
of interest in their data visualization/exploration. Adding more colour options to the
tools is one possible way to allow for fairness analysis of non-binary sensitive attributes.

Finally, note that in the question of which categories to include per sensitive attribute,
also broader issues need to be addressed, for instance how attributes like race or gender
were recorded (i.e. are they self-reported or recorded by the data collectors?). While it
is not possible for a tool to address these issues on a technical level, they can still pose
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serious threats to the fairness of an ADM system and therefore should not be ignored in
an audit [40, 130].

Bias based on multiple sensitive attributes Once it is clear which categories to include
for each sensitive attribute, the next step for an intersectional analysis is to decide on the
combinations of attributes that need to be inspected. To be able to conduct such analysis
with an interactive tool, the tool must support the fairness analysis based on multiple
sensitive attributes. Out of all tools, only FairVis and the RAI dashboard fully do so.
Indeed, when using this functionality we see that a model trained on the Adult dataset
also displays signs of intersectional discrimination. Looking at Figure 1.2 (b) we see the
"False Negative Rates" for different subgroups based on people’s "sex" and "race". We
observe that this rate is already quite high for women, even higher for black people and
highest for black women. This knowledge is crucial for a fairness auditor to decide on how
to improve an ML system. In this case, an auditor could e.g. recommend that before the
system can be deployed more data needs to be gathered for this subgroup. If an auditor
would only analyse one sensitive attribute at a time, they might not have found this
solution, and might only suggest collecting additional data for women and black people,
rather than the intersection of both. Following this example, more tools must allow the
analysis of intersectional discrimination. The WhatIf tool already partly supports this
feature, but only for subgroup combinations based on two sensitive attributes. Still, the
way this tool as well as FairVis and RAI dashboard allow for intersectional bias analysis
can serve as inspiration for other tools: the functionality works by letting users generate
subgroups of choice (see e.g. Figure 1.2 (A) for FairVis, Figure 1.8 (A) for the WhatIf
tool and Figure 1.9 (B) for the RAI dashboard), and then inspect and compare all fairness
metrics across all user-generated groups. Similar functionality could be added to other
tools.

1.4.1.3 Prediction bias beyond sensitive attributes

In the previous section, we assumed that in the fairness assessment of an ADM model
auditors have access to all relevant sensitive attributes and that they are only interested to
observe disparate behaviour of a model based on these attributes. The interview studies
revealed, however, that current auditing practices often go beyond the analysis of just
sensitive attributes for two reasons: first, it is important to contextualize differences in
outcomes between different demographic/sensitive groups, since a model’s decision to
treat groups differently may be justifiable (DC_contextualize_biases, [35, 98]). Second,
discriminatory biases may not always be based on attributes that are legally protected
(e.g., gender or race) but on attributes that might serve as a proxy for these (e.g., zipcode
for race), a phenomenon known as indirect bias. Functionality to conduct an indirect
bias analysis, both in the case in which auditors have access to sensitive attributes and
those in which they don’t is, therefore, essential in a toolkit as earlier indicated by
DC_identifying_proxies and DC_no_sensitive_attributes [65, 84, 86, 110, 126].

Contextualize differences in outcomes The functionality to contextualize biases is
important to understand why an ADM model may make less preferable decisions for
some population group over another. In some cases, a difference in treatment may be
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justifiable by so-called "explainable attributes" [75]. When for instance in our use case a
classifier decides that more men than women should receive a loan, this is not necessarily
problematic if this can, e.g., be explained by women in the data working in lower job
positions than men, indicating that they have less financial means to pay back a loan.
DiscriLens is a tool specially developed to contextualize biases and understand if they are
explainable. Here users specify a list of explainable attributes, and the tool automatically
highlights the cases where a protected and an unprotected group have a high difference
in positive decision probability, conditioned on these attributes. In other words, it only
displays biases that are not explainable. For instance, in Figure 1.3 (E), we see that
when specifically filtering for people with high education levels and high amount of
workinghours, still more men than women get granted a loan. Similarly, the "Model
Statistics" component of the RAI dashboard allows for the analysis of non-explainable
discrimination, by visualizing the prediction outcomes for the group of highly educated
men and women, to see if there are fundamental differences in both (see Figure 1.10).
Note how powerful the "subgroup generation" functionality is in the RAI dashboard, as
the same mechanism can be used to study intersectional discrimination (see the previous
section). Thus, adding similar functionality to other tools should make them more
suitable to auditors’ needs.

One final note for the contextualization of bias, is that the choice of "explainable" at-
tributes should always be carefully considered by a domain expert. In the previously
mentioned example, of women less likely to receive a loan because of having lower job
positions than men, an expert should always consider the question of why this is the
case and whether this is the result of historical bias (which in our example might very
well be the case, given that women are known to not receive the same job opportunities
as men). To make up for this already existing bias, it may not make sense to ignore "ex-
plainable" patterns of discrimination, but instead, critically question the extent to which
"explainable" discrimination is legitimately explainable [128].

Indirect Bias Analysis (with access to sensitive attributes) As explained earlier, indi-
rect discrimination in ADMs occurs when a model does not directly make use of sensitive
attribute information to derive its decisions, but when it relies on attributes that are prox-
ies for these. One famous example is the practice of redlining, where a model indirectly
disadvantages racial groups, by using the zip code of people as a factor in its decisions.
As we have found in our review, auditors are highly aware of the phenomenon of in-
direct discrimination, which is why they require tools that allow them to analyse it. In
the case that they have access to sensitive attributes, like gender or race, an auditing
tool can facilitate this analysis by first allowing them to identify proxy attributes and
then letting them explore a model’s behaviour on these. FairSight helps users in the
first step, by providing visualizations of how attributes are differently distributed among
sensitive groups, as well as giving a correlation measure between them (see Figure 1.4
(A) to inspect the component for this tool, and Figure 1.13a for a specific case example).
In Figure 1.13a we see that the feature "marriage" is considerably differently distributed
between the protected and unprotected group, caused by the fact that "Wife" is a feature
value that is only applicable to women, while "Husband" is a value only applicable to
men. The difference in feature distribution is also indicated by a high correlation measure
between the feature "marriage" and sensitive attribute "sex". To allow for the detection
of proxy attributes, also the RAI dashboard, the WhatIf tool and FairVis enable users
to visualize how attributes are differently distributed for population groups (see Figure
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their sex and ethnicity. Still, they were wary about additional biases introduced by this
process and also had concerns about storing (inferred) demographic information and
the associated risk of data leakage or misusing this data for secondary purposes [65].
Currently, none of our reviewed tools supports the estimation of sensitive information
based on other attributes in the data. However, given the risks of this approach, it is also
questionable to which extent this feature is desirable to deal with the analysis of indirect
bias.

Other literature on fairness in ADM explores alternative ways to deal with this problem.
First, though of less interest in our paper, there are legal regulations that could be en-
forced, to only allow trusted third parties to access sensitive attributes solely for auditing
purposes [78, 124, 125].

Another more technical approach for unravelling patterns of indirect discrimination is
the exploratory analysis of the ADM model [125]. In a 2017 paper Veale & Binns suggest
that exploratory analyses could be used to find interesting patterns in the data, that
could afterwards be more closely inspected for possible correlations with sensitive/de-
mographic groups (using additional data sources) [125]. This approach to identifying
indirect discrimination was also suggested by Ruggieri et al., who extracted potentially
discriminatory association patterns from the data (e.g. IF "zipcode" = XYZ THEN "no
loan") to then use additional databases to find whether the premises of these rules (i.e.
"zipcode" = XYZ) relates to sensitive information of individuals [114]. While additional
resources are needed to perform this second step, tools can facilitate the execution of the
first step by enabling auditors to analyze performance/fairness measures based on the
value/value combinations of other attributes in the data. This requirement was already
established in section 1.4.1.2 and further explored in section 1.4.1.3, highlighting how
important a flexible design of toolkits is and how limiting it is if tools only support the
fairness analysis based on one, pre-determined sensitive attribute.

1.4.2 Functionality for detecting bias in models’ input data

The rubric given in Table 1.1 focuses on a tool’s functionality to find biases in the pre-
dictions of a model. However, as we have found through our literature review, au-
ditors also find it important to inspect the input data for possible biases for two rea-
sons: first, to understand where biases in a model’s predictions may be coming from
(DC_identifying_bias_causes [35,65,84,86,110]) and second, to ensure that the fairness
audit of the model is conducted on a representative and "fair" test set (DC_fair_test_set_design
[65]). Lastly, also note that in our paper we focus on assessing the input data as part of
the audit after model development. Still, the assessment of the training data should be
an essential step before a model is trained, as basing a model on highly biased data might
not be desirable in the first place. Of course, the requirements listed in the upcoming
section still hold for tools that would be used for this purpose.

1.4.2.1 Finding bias causes in training data

In discussing a tool’s functionality to find bias causes we will distinguish between the
different bias causes established by Suresh & Guttag [121]. Note that many bias causes
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Table 1.2: Requirements related to tools’ functionality to let auditors find biases in an
ADM model’s input data.

Functionality for detecting bias in models’ input data
[DC_identifying_bias_causes], [DC_fair_test_set_design]

For identification of bias causes in the training data, let user...
Inspect the relation between attributes and ground truth RD RD RD FV RD WI

Inspect relation between features RD RD FS FV RD WI

Compare train and test set /
For identification of biased pattern in test data, let user...

Inspect subgroup sizes of interest RD RD RD FV RD WI(   )

(e.g., errors in how the data was collected) are not completely identifiable on a technical
level and that we will merely focus on those causes whose identification can be facilitated
by auditing toolkits.

Inspecting the relation between attributes and ground truth One possible source of
bias in ADM models comes from the bias that may be present in the ground truth that
the model is trained on, that the decisions that were made historically for the decision
subjects (e.g., high vs. low income or loan vs. no loan) in the training data. The
ground truth can be subject to historical bias or measurement bias [121]. The former occurs
when the label has been recorded correctly, but contains patterns of historical inequalities
between population groups (e.g., women being recorded to have lower income than men).
The latter (i.e. measurement bias) occurs when due to errors or biases in the decision
process, individuals did not get the label they were eligible for (e.g., women who are
not granted a loan, even though they would have paid it back if given the opportunity).
While it may not be possible to distinguish between these forms of bias in the labels,
it is still crucial that tools allow auditors to inspect the labels, to understand if they are
favoured more towards some groups than others. For this, tools should support all purely
label-based fairness measures, as discussed in section 1.4.1.1 (i.e. the measures that are
not based on prediction errors/prediction probabilities) on the model’s ground truth:
outcome-based measures, like demographic parity, similarity-based measures and causal
measures. When tools provide these measures, the same requirements hold as discussed
in section 1.4.1.2 and 1.4.1.3: the measures should be applicable on intersectional groups
and the bias measures should go beyond sensitive attributes, to contextualize biases and
understand patterns of indirect discrimination. Currently, FairVis, the RAI dashboard
and the WhatIf tool allow for partial analysis of bias in the ground truth labels. In
Figure 1.14, an example is shown where predictions of an ADM model are biased against
black women (high False Negative Rates) and favoured towards white men (higher False
Positive Rates). When we inspect the ground truth label balance, we find a reason for
why the ADM model is more biased towards predicting positive labels for white men:
they have more than double the ratio of positive labels in the ground truth than black
women. Though this information is useful to understand where the model’s bias comes
from, it would (among others) be useful if FairVis would let users contextualize this bias,
to understand whether the difference in ground truth label balance is "explainable" by
other attributes. Note, how the functionality to contextualize biases is lacking both in
FairVis’ functionality to assess fairness in predictions as well as fairness in ground truth
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might wish to make up for this unfairness, by choosing bias-transforming measures (as
mentioned in section 1.4.1.1) as their fairness-goal. Thus, having tools that supports
the analysis of input data, are needed to identify historical bias as a cause of bias in an
ML model, as well as to help auditors make well-informed choices about the fairness
requirements of a model.

As mentioned before, FairSight also supports the (visual) analysis of the input data,
which is done in two ways: first, per feature two histograms are provided to show how
the distribution of this feature differs on the protected and unprotected group (in this
case women vs. men, see Figure 1.4 (A) and 1.13a). This functionality can be useful to
detect patterns like the one mentioned above, but in its current form works only for one
binary sensitive attribute, which limits its usefulness. Additionally, FairSight provides
a two-dimensional graph where a dimensionality-reduced version of the input data is
visualized, and the protected and unprotected datapoints are colour-encoded (see Figure
1.5 (A)). While this can help in understanding how distinct both groups are overall, it
is hard to understand where potential differences come from and whether they might
indicate problematic historical biases.

Compare train and test set Another possible cause of bias in ADM systems is when the
data a model is trained on, is not representative of the data it is applied on [120]. To give
an example of this representation bias in the case of our loan application system: imagine
a bank using relatively old data to train their ML model, where some population groups
like non-male people are less represented than they are at the time of model deployment.
Since the model does not see all population groups equally at training time, it will likely
not perform accurately/fairly on the underrepresented groups once it is deployed. To
establish representation bias as the cause of a model’s unfairness, an auditing tool must
let users compare the distribution of train- and test set. For this, tools must make a clear
distinction between both so either can be individually inspected and then compared.
Currently, none of our reviewed tools supports this functionality. All tools require the
user to upload one dataset, along with its ground truth labels and the corresponding
model’s predictions. Users must choose whether this dataset is the same as the one the
model has been trained on or is a separate test set. Since representation bias is a common
cause of bias in ADM systems, this is a serious shortcoming in letting auditors identify
this as a bias cause.

1.4.2.2 Inspecting subgroup sizes of interest

As we have touched upon in the previous section, a crucial part of the fairness audit
of an ADM system, is ensuring that the audit is conducted on a representative test
set [10,65,120]. After all, if a test set does not contain all the groups that an ADM system
will be applied on, it is impossible to estimate whether the system will behave fairly on
those groups. The way in which auditing toolkits can help in crafting representative
test sets is by giving clear indications of the size of different subgroups in the data. We
already see an implementation of this in FairVis, where in Figure 1.14 we see (along with
some performance measures) the number of people represented in selected subgroups.
Though this is already useful, it could be even more useful if the tool would allow
users to order subgroups according to their size, just like it is already possible to order
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them according to performance/fairness measures. Also, in the WhatIf tool and the RAI
dashboard it is possible to observe the group sizes of selected subgroups. However, in
the WhatIf tool this is only possible for subgroups based on two sensitive attributes (see
Figure 1.8 (b)) and in the RAI dashboard it is only possible to observe the subgroup
size for one group at a time (see Figure 1.9 (c)). Functionality for an easier inspection of
subgroup sizes would be useful.

1.4.3 Functionality to make bias detection scalable

The requirements introduced in section 1.4.1 and 1.4.2 relate to the tools’ functionality to
audit an ADM system’s predictions and input data for bias. The requirements introduced
in this section focus on making sure that this audit is scalable. On the one hand this
refers to design consideration
DC_prioritize_systemic_biases [65,84,86], in that auditors do not want to inspect errors
of an ADM system that are due to chance, rather than reflective of systemic bias issues.
On the other hand, auditors fear that in focusing on only the big "obvious" biases, they
might miss important blindspots; something that should be accounted for according to
DC_account_for_blindspots [65, 84].

Table 1.3: Requirements to make a bias audit scalable.

Tool makes bias detection scalable

Tool let auditors narrow down the biases they need to inspect
[DC_prioritize_systemic_biases]

Report Confidence Intervals /
Group similar subgroups together RD DL RD RD RD

Group similar individuals together RD RD FS RD RD

Tool let auditors narrow down the biases they need to inspect
[DC_account_for_blindspots]

(Sub)group biases RD RD RD FV RD

Individual biases RD RD FS RD RD

1.4.3.1 Tool let auditors narrow down the biases they need to inspect

The first way to make bias detection more scalable is by providing tools that can narrow
down all the biases auditors need to inspect. In this section we explore how this can be
accomplished.

Report confidence intervals An ADM model is unlikely to yield the same performance
and the same positive decision ratio among all groups of interest. Hence, an important
question in the audit of an ADM system is which disparities are due to chance and which
ones reflect systemic issues. Hence, interviewees in the studies of [65] and [86] expressed
their interest in tools that let them explore the statistical significance of subgroup biases,
by reporting the confidence interval of bias measures. Currently, none of our reviewed
tools supports this feature but some literature on subgroup fairness in ADM gives insight
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into how it can be implemented: Wang et al. apply the same model on five different
test sets to calculate the confidence interval of the resulting bias metrics [130]. Similarly,
Friedler et al. have studied how significant biases are, by calculating and comparing
the bias metrics over multiple train-test-splits of a model [54]. Likewise, an interactive
fairness tool could take a model, a train and a test set as input to then automatically
divide the test set into different splits and calculate the confidence interval of the model’s
fairness measures over them. This would require more effort from the tool developers’
side, since this tool needs to access more than just a simple CSV-file of the test data, but
also the model itself. Alternatively, users themselves could provide the models’ results
on different test sets, over which a tool could (without needing access to the model)
calculate the confidence interval. This approach would require more effort from the
users’ side in setting up a file containing all the necessary data. In choosing which option
is more viable for an auditing toolkit, it is important to consider the current workflow
of ADM model builders and auditors. Hence, before the feature of reporting confidence
intervals is implemented in a tool, more conversations with practitioners would be needed
to understand how they currently set up their model evaluation and how an auditing
toolkit could account for that.

Group similar subgroups together Though not directly suggested by possible auditors,
but already implemented in some tools, another way to reduce the number of subgroups
an auditor needs to inspect, is to (automatically or manually) group similar subgroups
together. The RAI dashboard already allows one to do so: instead of e.g. generating
one subgroup of 50-year-old men, and another of 51-year-old men, users can generate a
subgroup of men with a certain age range (e.g. 50-55) and inspect a model’s performance
on it. Similarly, when working with categorical features, users can group people with
similar feature values. In the Adult dataset, there is for instance a variable "workclass" with
values like "Federal Government" "State Government" or "Local Government". Instead
of inspecting each subgroup individually, users of the RAI dashboard can generate
one subgroup of all people working for the government (see Figure 1.9 (b)) for the
dashboard’s subgroup generation component). Similar subgroups are also automatically
grouped together in DiscriLens: in Figure 1.3 (e), the group of people with more than
65 workinghours per week is suggested as a discriminatory itemset, allowing an auditor
to inspect a bigger group of people than when only looking at the group of people with
exactly 65 workinghours per week. Grouping similar subgroups together is currently
not possible in the other tools supporting the analysis of subgroup biases (i.e. FairVis
and the WhatIf tool). Hence, implementing this feature could help in making the bias
analysis more scalable.

Group similar individuals together When it comes to individual biases in an ML
system, it is even more unfeasible for an auditor to inspect all of them, since individual
biases only affect one data instance at a time. A way in which tools can help is to group
similar instances facing discrimination together. FairSight is the only tool that currently
does so, in its Feature Inspector tab (see Figure 1.6). Here, each feature is visualized
in a histogram, and data points that face high levels of individual discrimination are
marked in red, to observe their value for the given feature. To illustrate, in the histogram
showing the data distribution on the feature "sex", we see that on this feature most
individually discriminated instances have the value "female". Auditors can use this
histogram to study patterns of individual discrimination in a quick and scalable way.
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Another way in which the inspection of individual biases could be made more scalable
is by applying a clustering algorithm on instances that score high on an individual
discrimination score. The auditor could inspect the resulting clusters to find common
patterns of individual bias. A similar approach was once adopted by Luong et al., who
first identified individually discriminated instances, and then derived decision rules to
learn what sets them apart from other instances [89]. Linking individual examples of
discrimination to more general "discrimination rules”, can also be a promising way to
facilitate auditors’ understanding of global discrimination patterns in the model [109].
Hence, this kind of functionality could be added to tools that allow the inspection of
individual discrimination (i.e. RAI dashboard and the WhatIf tool), but where this
inspection needs to be done "one at a time".

1.4.3.2 Tool automatically highlights most important biases

Auditors are concerned that in efforts to make a bias audit scalable, they will miss hidden
but important patterns of bias (DC_account_for_blindspots) [65, 84]. Generally, they
know that by involving stakeholders in the auditing process, as well as having diverse
development teams they are more likely to identify the different population groups that
may be subject to bias [65]. Still, they also find it useful when a tool can automatically
suggest patterns of bias that would otherwise go unnoticed. In this section, we discuss
ways in which both group and individual biases can be automatically highlighted by our
toolkits.

Group Biases Currently, only FairVis and the RAI dashboard automatically suggest
subgroups that may be affected by bias (see Figure 1.2 (E) and Figure 1.15, for a close-
up of this feature). We see that the user has previously generated subgroups based on
combinations of people’s sex and race, and we already see the false negative rates for
these groups, including, e.g., the groups of black women and white women. In the
"suggested subgroups" tab we see other potential subgroups of interest, sorted according
to their False Negative Rates. In this case, the group of divorced black women from the
United States, as well as the group of unmarried white women working in the private
sector are suggested. When clicking on these suggestions, we indeed see that they have
considerably high False Negative Rates, also compared to their supergroups of black
women and white women.

Similar suggestions are also given in the RAI dashboard, as part of the "Error Analysis"
component ( Figure 1.9 (C). In this case, the user has selected to specifically look at the
subgroup of white men. Within this group, they want to inspect for which subgroups
the recall is especially high or low. On top of the error tree, we can see that the overall
recall for the group of white men is 0.29. When following one of the paths of the tree we
see that this score is much lower (0.0) for the group of white men older than 31 and with
an education level below 7 (where an education level of 7 describes people who have
followed education until 11th grade of high school).

The suggestions of FairVis and the RAI dashboard can help auditors in detecting other-
wise missed patterns of subgroup bias, but also contextualizing these biases. Thus either
of these features can be a useful addition to other auditing toolkits. Still, it should be
noted that their current implementation of subgroup bias suggestion may not be ideal.
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with high distortion are highlighted with different colour saturation than instance pairs
with low distortion. Additionally, instance pairs that differ on the sensitive attribute
"sex", are coloured differently than instance pairs with the same sex. Hence, to find
potentially discriminated instances, users could look for female-male instance pairs with
high distortion (as their difference in output might only be explained by sexist biases, as
the instances are otherwise close in input space).

No clear cases of individual discrimination are highlighted in the WhatIf tool and the
RAI dashboard. One possibility to add this functionality is by using the tool’s "what if”
analysis and automatically highlighting cases that experience a change in their prediction
outcome if the value of a sensitive attribute or a redlining attribute is changed.

1.5 Conclusion & Future Research

In this paper, we have presented an overview of the functional requirements that users
have for auditing toolkits. We evaluated six available toolkits according to these require-
ments and identified realistic ways to overcome their shortcomings. One of the most
common shortcomings is their lack of flexibility: many tools assume that there is only
one binary sensitive attribute that auditors need to assess for possible biases, and that
information on this attribute is always available. To address this issue, tools must be
developed that make less rigid assumptions about the availability and number of sen-
sitive attributes. Such toolkits allow for audits where discriminatory bias occurs solely
on the basis of proxy attributes and where bias may be of intersectional nature. Other
important design requirements include the tools’ functionality to assess the training data
for possible bias causes and the extent to which they make audits scalable.

While our requirement checklist and the tool evaluation can already guide developers
in creating better and more suitable tools, some aspects still should be studied to unlock
their full potential.

Integration in workflow The tools that we reviewed differ in the way they need to be set
up. Some are webtools that take CSV files of the data and models’ predictions as input [22,
115] others are evoked through python libraries [116,135]. Whether practitioners choose
to use toolkits in practice will depend on the ease with which they can be integrated
into their workflow. The ADM developers that were interviewed by Lee & Singh, for
instance, preferred tools that can be evoked in Python and that integrate well with other
python libraries like pandas or sklearn [86]. Additionally, they had privacy concerns
about using web-based tools, that require them to upload sensitive data on external
sites [86]. The preferred way of setting up tools likely also varies, depending on the
technical skills of an auditor and whether they are involved in system development or
not [90]. Hence, developers should spend serious effort on designing tools that easily
integrate into different types of workflows and that can run on local machines to minimize
privacy concerns.

The usability of the tools Auditing toolkits should offer the right functionality, but
at the same time, this functionality should be easy to use. To determine the current
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Sex Categories

# of Applicants # of Selected Selection Rate Impact Ratio
Male 1390 667 48% 1.00

Female 1181 555 47% 0.979

Table 1.4: An example of the type of report that is mandated by the Local Law 144.

usability of tools, more studies are needed. Some tool developers, already conducted
(small) usability studies as part of their research papers [3, 133, 135]. However, all these
studies suffer from some disadvantages like only testing the tools on university students
with Computer Science backgrounds and only giving the participants tasks that are
specific to the exact purpose of each tool. To illustrate, one of the tasks of the usability
study of FairSight was “Can you quantify the degree of fairness in the ranking outcome?”
[3], which requires participants to locate one specific fairness metric reported in the
tool. While it makes sense to study the usability of specific tool’s components, it is
worthwhile to give users more general tasks, that provide a better understanding of
how each tool would be used "in the wild”. Inspiration for task set-ups could be taken
from literature on the interpretability of explainable AI (xAI). For instance, Kaur et al.
purposefully manipulated the predictions of a Machine Learning model and studied
how well explanation methods could help participants in identifying these undesirable
patterns. A similar approach could be taken for testing the usability of bias auditing
tools, to see whether the tools help in finding unfair patterns in a model (as well as
contextualizing these patterns and identifying their causes) [76].

Need for clear legislation We have already mentioned how auditing toolkits are highly
relevant in light of upcoming legislation like Local Law 144 and the EU AI Act. To shortly
summarize: the EU AI Act calls for human oversight of decision-making systems to eval-
uate risks concerning health, safety, and fundamental rights. Though non-discrimination
is considered a fundamental right, the act does not provide specific guidelines on how
to ensure that a system does not violate it [46]. New York’s Local Law 144 is a bit
more precise in the requirements it imposes: it mandates that any algorithm used for
hiring decisions must undergo an audit by an independent third party, with the results
made publicly available. The audit should assess the algorithm’s output for potential
discrimination based on sex, race and their intersection and must report some basic mea-
surements regarding the corresponding population groups. To specify, it needs to report
the number of job applicants for each group, their selection rate (i.e., the percentage of
applicants that are selected to move forward in the hiring process) and their impact ratio.
The impact ratio is calculated as the selection rate for the group, divided by the selection
rate of the highest selected group. An example of such a report as mandated by the law
is given in Table, where the different measures among sexes are given 1.4 [8].

While Local Law 144 is more specific than the EU AI Act, it still lacks (similarly to the
EU AI act) specific standards for how the success or failure of an audit is determined.
Additionally, neither of the new legislation gives further information on how possible
signs of discrimination should be further inspected, e.g. by contextualizing differences in
selection rates or by trying to find their cause in the training data. On the one hand, not
having clear definitions of when an audit passes or fails helps in accommodating many
use cases, where the most sensible bias measure differs depending on the decision task
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(see section 1.4.1). On the other hand, researchers and auditors have warned that the lack
of more elaborate standards creates a risk of companies conducting minimal, superficial
audits, that merely fulfil the regulatory requirement without genuinely addressing bias
issues [35]. As hopefully, more rigid legislation will arise, the requirements in auditing
toolkits will evolve accordingly. Until then, we also believe that the currently available
toolkits and the requirements auditors have in them can shape the new rules that should
be set into place. Some of the requirements highlighted in our paper, such as tools’
functionality to inspect the training data for different forms of bias and the ability to
contextualize biases, are related to essential components of the overall auditing process.
Hence, our study and other relevant research contributions can serve as a basis for
determining the best practices for audits, which could in turn be incorporated into new
laws.
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Measuring Individual Fairness

In this chapter, we deal with one important part of bias audits, namely the measurement
of individual fairness, which can be done through situation testing. This method
originates from the social sciences, where it is used to assess discriminatory practices by
comparing the treatment of individuals in similar scenarios where only one variable of
interest (such as race, gender, or age) differs. In the data-driven equivalent of this practice,
the goal is to identify similar instances in the dataset, that exhibit significant differences
in their historical decision labels or prediction labels of an ADM model. A crucial
and non-trivial component of this approach is defining a suitable distance function to
determine similarity. This distance function must disregard attributes irrelevant to the
decision problem and weigh other relevant attributes appropriately. In this chapter, we
show how such a distance function, in the form of Weighted Euclidean distance, can be
automatically learned from the data without relying on external resources like Causal
Bayesian Networks or lengthy human annotation processes. We demonstrate how this
new way of defining distances improves the performance of current situation testing
algorithms, especially in the presence of irrelevant attributes.1

2.1 Introduction

As we have emphasized both in the Introduction and Chapter 1 of this thesis, one
crucial component of any bias audit lies in the measurement of individual fairness, both
in the historical decision labels of the training data and an ADM model’s predictions.
Though group fairness measures like demographic parity or equal opportunity are important
to understand global patterns of discrimination, individual fairness measures give a
more nuanced view of whether differences in treatment between demographics may be
justifiable by other features [128]. Further, enforcing individual fairness can prevent

1This chapter is based on: Lenders, D., & Calders, T. (2021, September). Learning a fair distance function for
situation testing. In Machine Learning and Principles and Practice of Knowledge Discovery in Databases. ECML PKDD
2021. (pp. 631-646).
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cherry-picking, i.e. blindly distributing positive decision outcomes in the pursuit of
some group fairness goal without paying further attention to whether these positive
decisions make sense on an individual level [42]. Lastly, as we have also found in our
literature review in Chapter 1, auditors find it easier to understand global patterns of
unfairness, when being given examples of how this discrimination looks on an individual
level [41, 109] (see Chapter 1.4.1.1). The goal of this chapter is, therefore, to zoom
into individual fairness and show how it can be measured in a context-dependent way,
appropriate to a given decision task.

In social sciences, individual fairness has often been measured through “situation test-
ing", where two nearly identical individuals, that only differ on one sensitive attribute
(like their gender or ethnicity), are put in similar situations, like applying for a loan, and
their difference in treatment is observed. This principle was translated into an algorithm
by Luong et al. [89]. To illustrate their methodology, let us revisit a toy dataset for a loan
allocation setting, with “race" being the sensitive attribute and “black people" being the
historically non-privileged group.

Table 2.1: Dataset of an illustrating example.

# Race of Owner Zip code Credit History Credit Amount Loan Approved?

1 Black 1234AZ Had Default 20-30k No
2 Black 1234AZ No Defaults 20-30k Yes
3 White 4567BY No Defaults 20-30k Yes
4 White 4567BY Had Defaults 10-20k Yes

Say we want to find out whether instance 1 was decided not to be granted a loan, because
of discriminatory bias against their race. Following Luong et al., we find its most similar
dataset instances, ! from the non-privileged (black people) and ! from the privileged
group (white people), and compare the positive decision ratio of both. If this ratio is
significantly lower for the nearest black than nearest white neighbours, the instance is
flagged as potentially discriminated. While the idea behind this algorithm is appealing,
it is challenging to accurately define distances in the data. First, Luong et al. state that
distances should only be defined on attributes relevant to the decision problem, but it is
not trivial which attributes can be seen as such. Second, in their distance function, all
attributes contribute equally to the defined distances, when it is desirable that features
more relevant to the problem also have a higher weight in the function.

Recognizing these shortcomings, Zhang et al. [144] recently proposed a more refined
approach for situation testing in which the distance function takes the causal relationships
between the features and the decision attribute into account: features that have a higher
causal effect on the decision attribute will also contribute more to the distances between
dataset instances. If, for instance, in the above dataset, a good “credit history" is the most
crucial factor for being eligible for a loan, this feature should also have the highest weight
in the distance function. Though in theory, this approach works well, in practice it is
hard to find an appropriate causal network to use for this method: networks defined by
experts are not always available, while network learning algorithms do not always yield
accurate or robust results [38].

Next to Zhang’s work, other studies discuss ways to learn fair distance measures, basing
this process on human feedback [69, 96, 131]. While incorporating human expertise
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can be appealing, this methodology can be time-consuming and prone to biases. For
example, Wang et al. [131] propose learning a distance function based on human ratings
of the likelihood that 200 data instances should receive a positive decision outcome.
The goal of this annotation process is to find which features humans find important
for a decision task, such that these can be appropriately incorporated into the distance
function. Alternatively, Ilvento [69] suggests learning a distance function by querying
human opinions on the similarity of multiple pairs of instances. As neither of these
annotation tasks is very trivial, and annotators may also be inconsistent in their ratings
it is hard to guarantee that a suitable distance function is learned.

To learn a task-appropriate distance function without external resources, this chapter
deals with how a function can be directly learned from the data. Rather than relying on
a causal network or human input, these distances are learned through an optimization
algorithm, which learns the parameters for the Weighted Euclidean distance, such that
features with the highest impact on the decision label contribute most to the distance. At
the same time, the distance function is "fair" in the sense that it does not discriminate be-
tween members of the privileged group and the unprivileged group. That is, if members
of both groups differ on attributes irrelevant to a decision problem, these attributes will
not contribute to the distance between the two instances. We demonstrate the superior
performance of our proposed distance function on both simulated and real-life data. In
addition to defining a new distance measure, we refine Luong’s situation testing algo-
rithm, by proposing methods for selecting its hyperparameters. While the main purpose
of the resulting algorithm is to detect individual discrimination, it could also be applied
for discrimination prevention. To do so, one could use the algorithm to first detect and
then remove discrimination in the data, such that classification algorithms trained on it
will be fair from the start.

In this chapter, we will not focus on this task, but will solely concentrate on situation test-
ing for discriminating detection. Futher, we emphasize from the start that this method
is not meant to give legally binding judgements about whether an individual is discrimi-
nated against, but is meant as a tool to flag potentially discriminated instances. Whether
the similarity between an instance and its neighbours is sufficient to base discrimination
decisions on, should still be determined by a human auditor.

2.2 Analysis of Existing Situation Testing Methods

Before we go into detail about the existing methods of situation testing, let us first re-
introduce some of the notations of our introduction, that we will use throughout the rest
of this chapter as well:

• � is a dataset, consisting of � individuals. We use the notation x to refer to one
individual of the dataset

• ý is sensitive variable (e.g. gender, race, religion, ..), which for this chapter we
assume to be binary. We use �(x) = + to denote that x belongs to the demographic
group we consider to be privileged by society (e.g., men) and �(x) = − to denote
that x belongs to a non-privileged group (e.g., women)
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• � is a decision outcome associated with each individual, where we use � = 1 and
� = 0 respectively, to denote the favourable and non-favourable decision outcome

• G are the attributes of the dataset that are legally grounded for being used in the
decision-making process. It is assumed that these attributes are given beforehand.
We use �(x) to denote the value of x for attribute � ∈ G

2.2.1 Situation Testing - Luong et al.

The basis of Luong’s situation testing algorithm is, to deem a protected instance with
negative decision label as discriminated, if there is a considerable difference in the ratio
of positive decision labels among its non-privileged and privileged neighbors. The
similarity between two people / and / is defined as the sum of value differences between
all legally grounded attributes of / and /, where VD� is an appropriate distance for the
domain of �.

�(x, y) =
∑

�∈G

VD�(�(x), �(y)) (2.1)

Luong et al. propose to use this distance function with a kNN classifier to define
discrimination scores. Each protected individual with a positive decision label, cannot
be discriminated and thus gets a discrimination score of 0. For each protected individual
with negative decision label, we define the discrimination score as the difference in
the ratio of positive decision labels among its ! nearest privileged and non-privileged
neighbors. If this score is higher than threshold +, we decide that the instance in question
was discriminated.

Shortcomings Luong’s approach Luong’s approach elegantly simulates the method of
situation testing. However, in some circumstances, their defined distance function may
not capture the full complexity of the problem. Consider e.g., the dataset displayed in
Table 2.1. In a fair setting, only applicants who pose a large risk of defaulting, should
not be considered eligible for a loan. The first question is which attributes of the data
to include in G, i.e. the set of legally grounded attributes used in the distance function.
While it is clear that “Race" should not be considered, the feature “Zip code" provides
more ground for discussion: on the one hand, the Zip code of a property might be a
proxy for someones’ financial means, which is fair to consider when deciding on loan
eligibility. On the other hand, it can be seen as a “red-lining attribute", i.e. an indicator of
“Race" that can be used for discriminatory practices and should therefore not be included
in G.

Even when excluding “Zip code" from the legally grounded attributes, Luong’s approach
may be too simplistic to define similarity. For instance, we could ask ourselves whether
dataset instance 3 or 4 is more similar to instance 1. According to Luong’s distance
function, both pairs are equally similar, because instance 1 and 3 only differ on their
credit history and 1 and 4 only on their credit amount. In reality, we however want to
put different emphasis on both features, depending on how they relate to a persons’ loan
eligibility.
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2.2.2 Situation Testing - Zhang et al.

Recognizing the above shortcomings, Zhang et al. recently proposed a more refined
method for computational situation testing, where the distance function is partly based
on causal relationships found in the dataset [144]. Given a Causal Bayesian Network
(CBN), that models these relationships, Zhang et al. propose to define the distance
between two dataset instances solely based on attributes that have a direct causal effect
on the decision attribute. Again this distance is measured as the sum of value differences
for each attribute, but this time these value differences are weighted based on their
causal relationship with the decision attribute. This causal relationship is measured by
the “intervention", in which an instance’s value on the attribute of interest is replaced by
the other instance’s value for that attribute. By calculating the difference in the probability
of a positive decision label before and after this intervention, we get an idea of how the
attribute change causally affected this probability. For the exact formulas of Zhang’s
approach, we refer to their paper [144].

Using this refined distance function, we again select the ! nearest protected unprotected
neighbors of a possibly discriminated instance. Again a discrimination score of an
instance is defined as the difference in the ratio of positive decision labels between both
groups.

Shortcomings Zhang’s approach While Zhang’s approach elegantly solves some of the
problems of Luong’s method, it suffers from the disadvantage that it heavily relies on a
causal network to define the distances between dataset instances. Causal networks given
by domain experts may not always be available or accurate, while networks learned by
algorithms may not be very robust [38]. Since the distance function of Zhang et al. is
only defined on the attributes that have a direct causal effect on the decision attribute, the
presence or absence of a causal link can make a tremendous difference on the distances
defined with this approach. Thus the results of Zhang’s algorithm may vary considerably,
depending on the causal network they were based on.

2.3 Learning a Fair Distance Measure

To overcome the shortcomings of Luong’s and Zhang’s distance measures, we propose a
way in which a distance function can be learned from the dataset. This function defines
distances of instances on the value differences between their features, as well as on the
importance of these features for the decision label. We ensure that features only correlated
to the decision attribute through a sensitive attribute, do not contribute to any distances.
To guarantee robust results, we do not rely on a causal network to define the distance
function but rather use an optimization algorithm to learn it. The distance metric we are
going to use for this task is the Weighted Euclidean distance, given by equation (2.2).
Note that to include nominal variables in the distance function these variables first need
to be one-hot-encoded. We assume that next to the label � and the sensitive attribute
�, there are numerical attributes þ1 , . . . , þ% . In order not to overload notation we will
denote þ�(x) by /� . We define the weighted Euclidean distance in the usual way; for a
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vector of weights w = (-1 , . . . , -%), the distance is:

�w(x, y) :=

√

√

%
∑

�=1

-�(/� − /�)2 (2.2)

In this function, the distance between two instances is defined as the sum of squared
differences between its features. These differences are multiplied by a weight, which in-
dicates how important the corresponding feature is for the overall distance. The question
that now arises is how to learn these weights. The basic idea behind our optimization
algorithm is that they should be learned such that the distances between instances with
the same class label are small while they are big between instances with different class
labels.

To make sure that the sensitive attribute does not directly contribute to the distance
between two instances, the distance function �w will only be defined over the non-
sensitive features of the dataset. However, this alone does not make sure that the distance
function does not differentiate between the protected and unprotected group through
"red-lining attributes". These are attributes like “height" which are strongly correlated
to “gender" and therefore (in case of discrimination) also correlated to the decision
attribute. Despite this correlation, red-lining attributes should not contribute to the
distance between two instances, and should therefore be assigned low weights in the
learning process. An easy way to ensure this is splitting the dataset � according to
sensitive attribute � when minimizing the distance between instances with the same
class label, and maximizing the distance between instances with a different class label.
With this approach, our distance function is given by �w∗ where w∗ is the vector of weights
that minimizes the objective function given in (2.3). We here use �− and �+ to refer to the
instances belonging to the non-privileged and privileged group respectively. Further, we
use |� | to denote the number of dataset pairs with the same class label and |� | to denote
the number of dataset pairs with a different class label.

{

1

|�(ý−)|

∑

x,y∈ý−

�(x)=�(y)

�2

w(x, y) +
1

|�(ý+)|

∑

x,y∈ý+

�(x)=�(y)

�2

w(x, y)−

1

|�(ý−)|

∑

x,y∈ý−

�(x)b�(y)

�2

w(x, y) −
1

|�(ý+)|

∑

x,y∈ý+

�(x)b�(y)

�2

w(x, y) + �‖w‖2

} (2.3)

In this function the term �‖w‖2 acts as an L2 regularizer, which forces weights not
relevant for the task to be close to zero. It is necessary to include this regularizer because
otherwise the weights of irrelevant attributes would neither increase nor decrease the
value of the objective function, since they are likely to be equally distributed among
instances with positive and negative class labels.
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2.3.1 Theoretical Justification of the Distance Optimization Problem

In this part we show that the theoretical optimal solution for the optimization problem
we defined in Equation 2.3 has several desirable properties, showing that it resolves some
of the problems we identified in the approach of Luong et al., without relying on a CBN
to do so.

The objective function is an estimator of the following risk function together with a
regularization term �(�) := �‖w‖2:

�(w) :=

∑

�=0,1

(

�[�2

w(x, y) | �(x) = �(y), ý(x) = ý(y) = �]

− �[�2

w(x, y) | �(x) b �(y), ý(x) = ý(y) = �]

)

All expected values are taken over the distribution that generated the dataset.

The next result shows that if an attribute only contributes to the label through the
sensitive attribute, then its weight will be 0 in the optimal solution. An attribute þ “only
contributing through the sensitive attribute” means that the label � is conditionally
independent from þ given the sensitive attribute.

Theorem 1. Let þ be an attribute such that � ⊥ þ|ý, and let w∗ be such that �(-∗) + �(-∗) is
minimized. Then þ(w∗) = 0.

Proof. Assume for the sake of contradiction that þ(w∗) b 0 and let w′ be the vector with
ÿ(w′) = ÿ(w∗) for all attributes ÿ b þ and þ(w′) = 0; that is: we get w′ by setting the
weight corresponding to þ to 0.

Clearly, �(w′) < �(w∗); �(w∗) = �(w′) + |þ(w∗)|. We will show now that �(w′) = �(w∗).
This is easy to see; first observe that:

�[�2

w∗(x, y)] − �[�2

w′(x, y)] = �[þ(w∗)(þ(x) − þ(y))2]

Then, since þ is independent of � conditioned on ý,

�[þ(w∗)(þ(x) − þ(y))2 |�(x) = �(y), ý(x) = ý(y) = �]

= �[þ(w∗)(þ(x) − þ(y))2 |ý(x) = ý(y) = �]

= �[þ(w∗)(þ(x) − þ(y))2 |�(x) b �(y), ý(x) = ý(y) = �]
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Combining these pieces we get:

�(w∗) − �(w′) =

∑

�=0,1

�[�2

w∗(x, y) − �′w
2(x, y) | �(x) = �(y), ý(x) = ý(y) = �]

−�[�2

w∗(x, y) − �′w
2(x, y) | �(x) b �(y), ý(x) = ý(y) = �]

=

∑

�=0,1

�[þ(w∗)(þ(x) − þ(y))2 | �(x) = �(y), ý(x) = ý(y) = �]

−�[þ(w∗)(þ(x) − þ(y))2 | �(x) b �(y), ý(x) = ý(y) = �]

=

∑

�=0,1

�[þ(w∗)(þ(x) − þ(y))2 | ý(x) = ý(y) = �]

−�[þ(w∗)(þ(x) − þ(y))2 | ý(x) = ý(y) = �] = 0

Given this, we know that �(w∗)+�(w∗) > �(w′)+�(w′), which contradicts the optimality
of w∗. Hence, in an optimal solution þ(w∗) = 0 has to hold. ¥ ¥

2.4 Learning the Distances and Setting Hyperparameters

In this section, we will show which algorithm was used to learn the Weighted Euclidean
distance. After learning, the function could be applied in the original situation testing
algorithm. Here we will, however, introduce additional adjustments to the algorithm,
which should help improve its performance.

2.4.1 Learning the distance function

To learn the Weighted Euclidean distance, the objective function given by (2.3) had to
be optimized. To do so we applied the “SLSQP" algorithm, implemented in Python’s
SciPy library. This is a quasi-Newton method, that assumes that the region around the
optimum of the objective can be approximated by a quadratic function. The first and
second derivatives of the objective are used to find the stationary point of this function.

2.4.2 Selecting neighbors from the privileged group only

Luong’s and Zhang’s discrimination scores are calculated as the difference in positive
decision labels between an instance’s nearest privileged and nearest unprivileged neigh-
bors. While this approach is not necessarily wrong, it moves away from the original
idea behind situation testing, where we only observe how a member of a non-privileged
group is treated differently than similar members from the privileged group. We argue
that there is no need to look at more than one non-privileged instance at a time since
we are only interested in how their decision label is different from privileged counter-
parts, not how it relates to decision labels of other non-privileged instances. After all,
the motivation behind individual measures of fairness is that an individual can be dis-
criminated based on their sensitive attribute even if there occurs no discrimination on a
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group level [42]. Based on these arguments, we suggest adapting the situation testing
algorithm by deriving an instance’s discrimination score only on the positive decision
rate among its ! privileged neighbors. We will later on refer to this as the “Situation
Testing k" approach as opposed to the original “Situation Testing k+k" approach. Note,
that a downside of this new approach is that high discrimination scores may be given
too easily: imagine for instance a group of equally capable males and females of which
80% received a job offer, regardless of their gender. In this case, the 20% of women
receiving the negative label will be wrongly flagged as potentially discriminated. We
will reduce this potential downside, by providing a method of choosing a threshold (that
turns discrimination scores into discrimination labels), that counteracts this effect (see
section 2.4.4). Further, we will see in the experiment section how the adapted approach
has positive effects on the performance of the algorithm and how it also helps in selecting
the hyperparameters of the algorithm.

2.4.3 Setting the number of selected neighbours

One issue that previous works only slightly touch upon is how to choose a good value for
!. Intuitively, ! should be big enough to guarantee that the class information we gather
from an instance’s neighbors is representative. At the same time, ! should not be too big,
otherwise, the selected neighbors may not be close to the instance in question anymore.
In this section, we try to quantify this intuition. For our reasoning, we make use of our
choice of the previous section, where we propose to infer the non-biased decision label
of a non-privileged group member from the decision labels of its privileged neighbors.
Since there is no way to say whether a derived non-biased class label is correct, we could
look at privileged group members instead. Since we assume that no discrimination
occurs in this group, any class label that is derived for a member of this group should
be the same as their actual class label in the dataset. In other words, we use a regular
kNN classifier (that utilizes the desired distance function) to predict the labels of any
privileged instance from the rest of the privileged group and see which ! yields the
highest accuracy in this approach. For our experiments, we choose to set the possible
!-values to {10, 20, 30, 40}. This approach can simultaneously be used to choose the best
value for � for the learned distance function, by checking which combination of ! and �
works best for an accurate prediction of the decision labels in the privileged group.

2.4.4 Setting the threshold

In the situation testing algorithm, we turn discrimination scores into discrimination
labels by checking whether they exceed a given threshold +. It is proposed to either base
+ on existing discrimination laws, or to let the analyst choose an appropriate value for
it. However, statistic-based discrimination laws do not always exist, and so far there is
no clear guideline on how to adopt a general approach for choosing +. The idea behind
our alternative approach for selecting + is that any difference in how a non-privileged
member was treated differently than its privileged neighbours, can only be interpreted as
discrimination if this difference is higher than expected by chance. To quantify this idea
we could look at the discrimination scores that are assigned to the privileged members
of the dataset with a negative decision label. Since we assume that they were not
discriminated, any discrimination score higher than 0 reflects some randomness in the
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data or the general chance of receiving a positive decision label. To make sure that the
discrimination labels assigned to the non-privileged individuals reflect more than bare
randomness, we could thus choose a threshold that lies higher than most discrimination
scores assigned to the privileged indices. This threshold could for instance be at the
maximum non-outlier value of the privileged discrimination scores. This value can
easily be found by making a boxplot of discrimination scores of the privileged members
with negative class labels and setting the discrimination-label threshold at its upper
whisker.

2.5 Experiments on Simulated Data

2.5.1 Generation Process of Data

Our first experiments were conducted on simulated datasets, based on the causal net-
works displayed in Figure 2.1a and 2.1b. In these datasets the “Wage" of an employee
is the decision attribute, which either can be “high" or “low". “Sex" is taken as the
sensitive attribute, where women represent the non-privileged group and men the priv-
ileged group. Further, the skill level and amount of working hours of each employee
are recorded, where a higher value for either of them increases an employee’s chance of
receiving a high wage. Since in the dataset based on Figure 2.1b, there is a link between
“Sex" and “Workinghours" (with women being likely to work fewer hours) this dataset
contains what we call “explainable discrimination": even though men receive on average
a higher wage than women, this difference is not seen as a form of illegal discrimination,
since it can be explained by other variables of the data. Note, that this is an oversimplified
example used for illustration purposes only. In real life these relations are much more
complex, and a presence of an “explanatory attribute" may not fully justify a different
treatment between members of a privileged and an unprivileged group.

In the datasets based on each network, we added 1, 4 or 7 features that are only correlated
to the persons’ sex. In our experiments, we assume that these attributes belong to the set
of legally grounded ones (and will be used in Luong’s distance function), even though
they do not give information about the decision label. The formulas used to generate
the data are given in Figure 2.2. Starting from the non-biased datasets, we simulate a

Workinghours

Skills

Sex

Wage
v1 vn..........

(a) Non explainable discrimination

Workinghours

Skills

Sex

Wage
v1 vn..........

(b) Explainable discrimination

Figure 2.1: Causal networks used for data simulation to generate the unbiased data. This
data is used as the ground truth in the experiments. A version of this ground truth in
which discrimination is added is used for testing the algorithms.

situation where a decision-maker is biased against women. This person decides that the
wage of several women should be “low", when in fact it was supposed to be “high". To
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Figure 2.2: The formulas to simulate the data corresponding to CBNs in Figure 2.1a and
2.1b. Note, that the generation process for both networks only differs for the variable
“Workinghours". For the train-sets we simulated 3500 datapoints, and for the validation
sets and each of the 10 test sets we simulated 500 points.

Sex ∼ Bernoulli(0.5)

RedlineSex=0 ∼ N(170, 2)

RedlineSex=1 ∼ N(175, 2)

Skills ∼ N(5, 2)

Workinghours ∼ N(5, 2) non expl.disc.

Workinghours ∼ 3 × Sex +N(5, 2) expl.disc.

Wage ∼ 3 × Skills + 3 × Workinghours +N(5, 2)

Wage Prob. =
Wage − min(Wage)

max(Wage) − min(Wage)

Wage Labels = Wage Prob. > 0.5

make this simulation more realistic, only labels from women who neither have a high
amount of working hours, nor a high level of skills is changed. To test the situation testing
algorithms, we split each dataset into train- validation and 10 test sets. The validation
set is used to choose the best value of ! and + (and where applicable �), while the test
sets are used to evaluate the performance of the algorithms.

2.5.2 Experimental Setup

We tested the following algorithms to see which are best at predicting the non-biased
class labels of the non-privileged instances (as given by the ground truth).

• Baseline: The discrimination scores of the baseline are based on a classifier trained
on the privileged dataset. Assuming that no discrimination occurs in this part of
the data, the trained classifier should predict “fair" labels on the non-privileged
data as well. Thus the discrimination scores of a non-privileged instance with a
negative decision label is taken as the classifier’s predicted probability that their
decision label should have been positive

• Situation Testing k + k: The situation testing algorithm as originally proposed by
Luong, using one of the following distance measures:

1. Luong - the distance function as given in section 2.2.1

2. Zhang - the distance function as given in section 2.2.2

3. Weighted Euclidean - the learned function as described in section 2.3

Recall that with this algorithm, the discrimination scores of an instance are based
on both its ! unprivileged and ! privileged neighbors







64 CHAPTER 2. MEASURING INDIVIDUAL FAIRNESS

2.6 Qualitative Experiments on Real Data

To investigate the working of the new distance function on a more realistic dataset, we
run some experiments on the “Adult" dataset, where for each individual is recorded
whether their annual income is higher than $50k, along with information about their
age, amount of working hours, education level, etc. As a sensitive attribute, we take the
“Sex" of individuals, assuming that some women do not have a low income because of
their specific characteristics but because of historical discrimination towards their sex.
Since we do not know the true discrimination labels of the adult dataset, we will study
the utility of the distance functions by exploring some case examples.

2.6.1 Case examples

We have visualized some properties of the 10 nearest unprivileged neighbours of two
dataset instances, as selected by the distance functions. For each interval-scaled feature,
we display the neighbors’ mean value on this feature, while for ordinal-/and nominal
scaled features we show the number of neighbors that have the same value as the instance
in question on that feature (denoted by |� |).

Table 2.2: Some properties of the neighbors of two dataset instances, as selected by the
distance functions. |� | here denotes the number of neighbors that have the same value
on the given feature as the instance in question.

instances
properties of neighbors as

selected by distance functions

# 1

feature value Luong Zhang W. Euclid.
age 44 � = 44.5 � = 45.9 � = 45.7
education level Doctorate |� | = 6 |� | = 10 |� | = 10
hours per week 38 � = 42.6 � = 55.9 � = 41.6
capital gain 0 � = 0 � = 0 � = 0
capital loss 0 � = 0 � = 0 � = 0
native country US |� | = 10 |� | = 10 |� | = 10
marital status Married |� | = 10 |� | = 10 |� | = 10
workclass Governmental |� | = 10 |� | = 1 |� | = 4

# 2

feature value Luong Zhang W. Euclid.
age 42 � = 41.5 � = 36.4 � = 35.6
education level High School |� | = 10 |� | = 10 |� | = 10
hours per week 50 � = 47.6 � = 40.2 � = 44.8
capital gain 5455 � = 1956.4 � = 4202.3 � = 5092.1
capital loss 0 � = 0 � = 0 � = 0
native country US |� | = 10 |� | = 10 |� | = 9
marital status Divorced |� | = 10 |� | = 3 |� | = 3
workclass Private |� | = 10 |� | = 9 |� | = 9

To understand these findings better we visualized the CBN learned for Zhang’s distance
function and the top 6 features ranked by their importance to the decision attribute,
according to the Weighted Euclidean distance.

Coherent with what we see in Figure 2.5 and Table 2.6, Zhang’s and the Weighted
Euclidean distance function put a high emphasis on finding neighbours with a similar
“capital gain" and “education level" as the instances in question. This comes at a cost
on the similarity of features, like “marital status" that are less important for the decision
attribute. Still, our learned distance function is better than Zhang’s function at finding
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marital
 status

capital gain

sex

Income

capital losseducation 
level

age

native country

hours per
week

workclass

Figure 2.5: CBN for Zhang’s distance
function.

Rank
Feature Importance According

to Weight. Euclid.

#1 education level
#2 capital gain
#3 capital loss
#4 age
#5 m. status = married
#6 hours per week

Figure 2.6: Ranked feature impor-
tances, according to learned Weighted
Euclidean distance function

neighbours similar on attributes like “hours per week", which may not be most important
for the decision task but also not trivial. This makes sense, given that Zhang’s approach
only defines distances based on the attributes directly affecting the decision attribute, and
“hours per week" is not one of them. Looking at the neighbours selected with Luong’s
approach, we see that a lower similarity on specific features results in a higher similarity
on others. Especially for instance #2 this might seem desirable, as here similarity is
quite high for most features. However, seeing that the neighbors differ a lot on “capital
gain", an attribute highly indicative for the decision label, this intuition is counteracted.
Given that we are dealing with a complex dataset, where it is not always possible to find
neighbors that are similar in all regards to some instance, it makes sense that a learned
distance function priorities similarity on the most important features of the data. This
especially holds, when recalling how the presence of irrelevant attributes worsened the
performance of Luong’s distance function in the simulated datasets.

2.7 Discussion and Conclusion

We have shown how a learned Weighted Euclidean distance function can be applied in
the situation testing algorithm originally proposed by Luong [89], to find discrimination
in data. The results on the simulated datasets show an advantage of utilizing the learned
distance function over previously defined ones. This especially holds when a dataset
contains multiple irrelevant attributes. With the experiments on a realistic dataset, the
performance is less straightforward to assess, however, there are indications that our
learned distance function also performs better here. Nevertheless, we here observed a
downside of the situation testing methodology: the more features a dataset has, the more
difficult it is to find neighbors for an instance that are similar on all relevant attributes.
Consequentially, the discrimination scores based on these neighbors might not be very
accurate. As seen in the experiments on the simulated data, the same problem occurs
when a dataset contains explainable discrimination and the unprivileged and privileged
group differ on an attribute relevant to the decision problem. Given these problems, we
emphasize that the situation testing algorithm should merely be used as a tool to support
discrimination detection. For instance, one could use the learned distance function to find
the nearest neighbors of a potentially discriminated instance. Whether these neighbors
are similar enough to base a discrimination judgement upon, should be decided by a
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human auditor.

In this study, we did not investigate yet how the situation algorithm with our proposed
distance function, performs when it comes to discrimination prevention. The task of
discrimination prevention is tackled by first using the algorithm to detect discrimination
and then remove it, such that a classifier trained on this de-biased data does not learn
to discriminate. How this approach affects the fairness and accuracy of a classifier, and
how these performance measures compare to other fair learning algorithms, can be a
direction for future research.
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Interpretable and Fair Selective

Classification

In Chapters 1 and 2 of this thesis we addressed how to detect discrimination in ADM
systems before they are deployed. While this is a crucial step towards making fairer ADM
algorithms, it is also important to overlook their decision-making as they are being put
to use. In this chapter, we will explore the potential of abstaining classifiers to achieve
this goal. Traditionally, abstaining classifiers were designed to increase the accuracy
of a decision process, by allowing them to refrain from making predictions in cases of
uncertainty. Now we will see how this framework can be extended to reduce the discrim-
inatory effect of a decision process, by letting classifiers abstain in cases of unfairness.
Specifically, we introduce IFAC, an Interpretable and Fair Abstaining Classifier, that
makes unfairness-based rejects based on inherently explainable fairness checks, namely
rule-based approaches and the previously introduced method of situation testing. We
show how by rejecting possibly unfair predictions, IFAC reduces demographic parities
in errors and positive decision rates in the non-rejected data. Further, we illustrate
with some examples of the explanations behind the rejections, how human auditors can
be empowered to review rejected instances and make more well-informed decisions on
them1.

3.1 Introduction

The previous two chapters of this thesis have made a clear case for why detecting bias in
an ADM system requires rigorous audits that go beyond single numerical measures of
fairness. Efforts should be put into adapting to the specific context of a decision-making

1This chapter is based on: Lenders, D., Pugnana, A., Pellungrini, R., Calders, T., Pedreschi, D. & Giannotti
F. (In press). Interpretable and fair mechanisms for abstaining classifiers. In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases 2024. Daphne Lenders is the first author of this work, as she was
responsible for conducting experiments and writing the majority of the work

67
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system, as well as understanding where discrimination occurs on a more fine-grained
individual level. It is clear that when it comes to the resolution of biases in an ADM system
similar considerations need to be made: to ensure that a system does not discriminate
against people throughout its deployment, we need a thorough understanding of which
of its decisions are unfair and should be overridden. Reflecting this concern, there is
a growing consensus that automated algorithms alone are not enough to successfully
resolve bias, but instead should be actively overseen and adapted by human experts with
sufficient knowledge about a domain and its historic biases. This call for human-in-the-
loop approach is now even mandated by AI legislation, such as the EU AI Act [45].

A way to put humans in the loop during the deployment of a system is provided by the
framework of selective classification. The original idea behind this framework is to build
a classifier that abstains from making a prediction when it is not certain about it. Though
this idea dates back to the 1970s [29], it has only barely been explored in the context of
increasing the fairness of models, by abstaining from predictions that might be unfair. In
this chapter, we propose a method to add this unfairness-based rejection mechanism to an
abstaining classifier. Emphasizing the importance of measuring unfairness both through
larger statistical patterns and local assessments, this mechanism is based on group and
individual fairness metrics. Further, we ensure that all unfairness-based rejects are
completely interpretable to a human auditor, such that the explanations behind the
rejections can help them in reviewing the original predictions and override them where
necessary. We name our methodology IFAC (Interpretable Fair Abstaining Classifier)
and show how by making rejections both based on the uncertainty and unfairness of
predictions, it increases accuracy and fairness over all non-rejected ones. By providing
examples of the explanations behind its rejections, we highlight how human auditors
could use them to make well-informed decisions about alternative (more fair) predictions.

3.2 Related Literature

Prediction with a Reject Option. The idea to allow a machine learning model to abstain
in the prediction stage dates back to the 1970s, when it was introduced for classification
tasks [29]. Two main frameworks allow one to learn abstaining models, i.e. ambiguity
rejection and novelty rejection [60]. The former focuses on abstaining from instances
where mistakes are more likely; the latter builds methods that abstain on instances that
are largely dissimilar from the training data distribution [81,102,134]. Within ambiguity
rejection, we can further distinguish between Learning to Reject (LtR) [29] and Selective
Prediction (SP) [43]. The former (LtR) requires one to define a class-wise cost function
that penalizes mispredictions and rejections [30, 33]. The latter (SP) requires instead
one to either pre-define a target coverage � to achieve and minimize the risk (bounded-
abstention) [57, 68, 105, 106], or fix a target risk � to guarantee and maximize the coverage
(bounded-improvement) [55, 56].

Fairness and Reject Option. There are a few works that analyze the effects on fairness
caused by a reject option. Jones et al. [71] show that even if abstaining can improve
the overall accuracy, some demographic groups can be negatively impacted by the reject
option. Lee et al. [85] propose a surrogate loss for the classification task considering
performance on different subgroups of instances. The proposed loss allows enforcing a
sufficiency condition to avoid unfair results. A similar approach for the regression task
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is proposed by Shah et al. [119]. Schreuder & Chzhen [117] provide a theoretical analysis
of the selective classification framework when introducing a fairness constraint in the
bounded-abstention problem.

Explainability and Reject Option. The study of explainable AI (XAI) methods in the
context of abstaining classifiers is limited. Fischer et al. [50] propose a reject option for
natively interpretable models such as prototype-based ones. Artelt et al. [4] consider
counterfactual techniques to explain reject options of learning vector quantization clas-
sifiers. Artelt & Hammer [5] introduce semi-factual explanations for the reject option,
yielding a model-agnostic approach at the expense of potentially high complexity. Fi-
nally, Artelt et al. [6] propose a model-agnostic framework to explain the abstention
mechanism, including counterfactual, semi-factual, and factual approaches.

3.3 Background

3.3.1 Selective Classification

Consider the triplet (A,G, �): G represents the legally-grounded features and takes
values in G ⊆ R�� ; A refers to the sensitive attributes and takes values in A ⊆ R�� ; �
is the (binary) target variable, whose domain is Y = {0, 1}. For example, if � encodes
being rich and our goal is to predict � given some set of features, G could include
educational level and employment status, while A could refer to gender or race. We
denote with X = G × A the whole feature space and with X = (G,A) the pair of both
legally grounded and sensitive features.

Given the hypothesis space ℋ of functions (classification models) mapping X to Y, a
learning algorithm aims to find a hypothesis / ∈ ℋ such that it minimizes some risk
measure �(/) = E[#(/(X), �)], where # : Y ×Y → R is a loss function and E is computed
over the joint probability distribution (X, �).

To reduce the classifier’s error rates, one can add a selection mechanism that allows the
model to abstain from predicting over more difficult-to-classify instances. More formally,
we can define a selective classifier2 as:

(/, �)(x) =

{
/(x) if �(x) = 1

abstain otherwise,
(3.1)

where � : X → {0, 1} is the so-called selection function or rejector3.

In practice, the selection function is often obtained by setting a threshold � on a confidence
function � : X → R, which determines the portion of the data on which the classifier
is more likely to misclassify. In such a case, the selection function can be defined as
�(x) = 1{�(x) ≥ �}.

To avoid rejecting too many instances, the selective classification framework introduces
the coverage, i.e. the percentage of instances for which the selective classifier must provide

2In this work, we use the terms abstaining and selective interchangeably.
3We use the term abstain and reject when �(x) = 0 and accept or selects when �(x) = 1.
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a prediction. Coverage is denoted as(�) = E[�(X)] and can be traded off for performance
improvements. In this case, performance is measured through the risk over the accepted

region, commonly called the selective risk and defined as �(/, �) =
E[#(/(X),�)�(X)]

(�)
.

To find a selective classifier that minimizes selective risk, it is necessary to select a lower
bound � as a target coverage [57]. Given a target coverage �, an optimal selective predictor
(/, �) (parameterized by �∗, �∗) is defined as:

arg min
�∈�,�∈«

�(/� , ��) s.t. (��) ≥ � (3.2)

We learn the optimal parameters using an empirical counterpart of selective risk and
coverage, using an i.i.d. dataset D = {(x� , /�)}

%
�=1

drawn from .

Finally, we call coverage-calibration the post-training procedure of estimating the threshold
� for the target coverage � specified in Eq. 3.2. This is generally done by estimating the
(1 − �) · 100-th percentile of the confidence function over a held-out calibration dataset.

3.3.2 Measuring Fairness With Association Rules & Situation Testing

Association Rules: In our methodology, we make use of association rules to identify
discriminatory behaviour of a base classifier /, upon which � can decide to reject its
predictions. Let us assume we have access to a dataset of realizations D. We recall

x� = (g� , a�) = (�1
�
, · · · , �

��
�
, �1

�
, · · · , ���

�
), where �

!

�
refers to the value taken by the !+/

legally grounded feature of instance � and �
!

�
to the !+/ sensitive feature of instance �.

We call a specific realization of a single variable within x� an item, e.g. if we consider the
variable race, race=White is an item. Let ℐ be the set of all possible items. A subset � of
ℐ is called an itemset.

We can decompose � into its legally grounded and sensitive parts, � = (�� , �ý), where ��
is an itemset containing only legally grounded features and �ý is an itemset that contains
only sensitive ones. A transaction� is a subset of � with exactly one item for every feature
in x. In other words, a sampled instance’s features x� can be seen as a transaction �. For
a transaction �, we say � verifies itemset (�� , �ý) if (�� , �ý) ⊆ �. The support of itemset

(�� , �ý) with respect to the dataset D is denoted as )+''D((�� , �ý)) =
|{�∈D:(�� ,�ý)⊆�}|

|D|
.

A decision rule is an expression (�� , �ý) → �. The support of a decision rule is
)+''D ((�� , �ý) → �) = )+''D((�� , �ý), �). The confidence of the rule is then defined

as �%% �D((�� , �ý) → �) =
)+''D ((�� ,�ý),�)

)+''D ((�� ,�ý))
.

To measure the impact of the sensitive features of a decision rule, the Selective Lift (slift)
measure introduced by Pedreschi et al. [101] can be used. In this chapter we use the
definition by difference of slift, which is detailed as follows:

)#� � +D ((�� , �ý) → �) = �%% �D ((�� , �ý) → �) − �%% �D ((�� ,¬�ý) → �) (3.3)
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Computing �%% �D(�� ,¬�ý) → � requires one to take the confidence of all the transactions
that verify �� but do not verify �ý.

Example. Consider an association rulerace = Black, education = Masters → income

= low, with race ⊆ A and education ⊆ G and income = �. Imagine the confidence of
this rule is 0.90 and its slift is 0.50. This means that the confidence of race b Black,

education = Masters → income = low is 0.90-0.50 = 0.40. Because of this high dif-
ference race = Black, education = Masters could be seen as a subgroup at risk of
discrimination.

As indicated by Pedreschi et al. [100], decision rules can be learned on the original data
using algorithms like Apriori [2] and then filtered according to fairness-based policies.

Situation Testing: Since association rules only detect global discrimination patterns, one
can use the Situation Testing algorithm to further analyse fairness on a local level [89]: To
check whether instance x� receives a fair outcome�, we use a distance function to searchD
for x� ’s !-nearest neighbors from a reference group and a non-reference group, meaning
we obtain two sets of instances K )

+) and K %)
+) . A reference group is defined by sensitive

feature values of those instances from the data we assume to be treated favorably, for
instance (race = White, sex = Male). All instances not belonging to this group are seen
as the non-reference group. To define instance x� ’s individual discrimination score we

calculate the ratio of positive decision ratio for K )
+) and K %)

+) : ���) =
|{ !∈K )

+) :/!=1}|

! , ���%) =
|{ !∈K %)

+) :/!=1}|

! and take the difference between both (���) − ���%)). If this score exceeds
some individual discrimination threshold +, it indicates that the treatment reserved to
instance � depends on its sensitive characteristics.

3.4 Methodology

We propose to learn a selective classifier that does not only reject instances based on the
uncertainty of their predictions but also their unfairness. In doing so we can decrease un-
fairness over all non-rejected instances. Further, by providing explanations for why some
predictions are marked as unfair, we aid human reviewers in understanding whether the
fairness concerns are indeed justified and enable a more informed decision process over
them. We call our approach IFAC (Interpretable and Fair Abstaining Classifier). The
intuition behind IFAC is visualized in Figure 3.1: on top of the base classifier / we have
our rejector �, which takes an instance’s features x� and the classifier /’s prediction as
its input. The rejector first executes a global fairness analysis on this instance, checking
if it falls under any subgroups at risk of discrimination, as identified by discriminatory
association rules (section 3.3.2). If it does, it performs a local fairness check using Situa-
tion Testing [89], evaluating how the prediction for /(x�) compares to the labels of similar
instances in the data. After this, a certainty assessment is performed. Depending on the
outcome of the assessment and the former fairness analysis there are four possibilities for
our rejector: in case the prediction is deemed as fair and it exceeds a dedicated confidence
threshold, the prediction is kept. Contrary, fair predictions that fall below this threshold
are rejected. If we are dealing with an unfair prediction exceeding a separate confidence
threshold for unfair data, it also gets rejected: though the prediction is certain, we have
reasons to doubt it, because it is unfair. Finally, on predictions that are both unfair and
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3.4.2 Step 3: Situation Testing

Part of the abstention mechanism of IFAC is based on a local fairness check for instances
that are covered by global discrimination patterns. The aim is to use the global check to
identify larger subgroups at risk of unfair treatment, while the local check allows us to
execute a more fine-grained analysis taking all of an instance’s characteristics into account.
Our local fairness check is performed via Situation Testing, comparing a prediction /(x�)
for instance � with the decision labels of similar instances from D+) (see section 3.3.2). For
the algorithm, a suitable distance function must be chosen e.g. by automatically learning
one from the data [87] (see Chapter 2 of this thesis).

3.4.3 Step 4: Calibrate Rejection Strategy

Whether the rejector keeps, rejects, or intervenes on the original prediction for x, depends
on the (un)certainty of the base classifier. To evaluate the confidence of the classifier, we
resort to the softmax response �(x) = max/∈Y )/ [53,56], where )/(x) ≈ (� = / |X = x) is
an estimate of the conditional probability. We then estimate two thresholds � � and �+ to
choose between prediction, intervention, and abstention. The final selective classifier is
in the form:

(/, �)(x) =

ùüüüüüú
üüüüü
û

/(x) if ���)(x) and �(x) => � �

abstain if ���)(x) and �(x) < � �

1 − /(x) if ¬���)(x) and �(x) < �+

abstain if ¬���)(x) and �(x) >= �+

To learn � � and �+ , / is applied on our second validation dataset D-�#2 and its predictions
are extracted. We then first extract those predictions that fall under discriminatory
associations as learned in Step 2. After, we apply the Situation Testing algorithm as set
up in Step 3 on those instances, and extract all that fail this individual fairness test. We
consider those as the unfair fraction of the validation data (D-�#+

2
) and the remaining ones

as the fair fraction D
-�#

�

2

. The number of rejections that can be made for both groups

is determined by two parameters given by the user, namely the target coverage � and
the unfair reject weight -+ . Given that the D-�#2 consists of � instances of which �+

belong to D-�#+
2

and � � belong to D
-�#

�

2

, we calculate the number of total rejections (Nrej),

the number of unfairness-based rejections (Nufr) and the number of uncertainty-based
rejections (Nucr) as follows:

Nrej = d(1 − �) · Ne; Nufr = #�%(dNrej · -+e ,Nu); Nucr = Nrej − Nufr (3.6)

We then proceed by separately ordering the fair and unfair instances of the validation
data according to the confidence function �(x). On the fair instances, we determine the
threshold � � such that Nucr instances fall below this threshold, and on the unfair sample
such that Nufr instances exceed �+ .
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3.5 Experimental Evaluation

The goal of our experimental section aims to address the following questions:

Q1: Does IFAC achieve comparable results to state-of-the-art selective classifiers in terms
of predictive performance and fairness?

Q2: How does IFAC explain the drivers behind unfairness-based rejections, and how
could these explanations be utilized?

Q3: How do coverage � and the unfair-reject weight +- affect our results?

3.5.1 Experimental Settings

Data and Baselines. We run experiments considering two real datasets, namely AC-

SIncome [40] and WisconsinRecidivism [7]. The former is about predicting high or low
income based on instances’ education, occupation etc. We define sex (male vs. female)
and race (white vs. black vs. other) as sensitive attributes and take the group of white
men as our reference group. We compare their treatment to each intersectional group
based on race and sex.

WisconsinRecidivism contains information about criminal defendants, like their type of
offense, number of prior offenses, etc. The task is to predict if they will not recidivate.
We take race as the sensitive attribute (white vs. black vs. other). Because of a base
classifiers’ lower False Negative and higher False Positive rates on white people, we define
this as the reference group 5.

We use different classification algorithms, namely a Random Forest, a Neural Network,
and an XGBoost Classifier. We fitted all models with the default parameters of the
corresponding Python libraries. Starting from these base classifiers, we compare IFAC

with the following model-agnostic methods:

• Full Coverage (FC): the classifier itself when predicting on all the instances (� = 1.00)

• Uncertainty Based Abstaining Classifier (UBAC): The plug-in algorithm by Herbei &
Wegkamp [62]. This is the most well-known model-agnostic method and achieves
state-of-the-art performance [104]. As for IFAC, we consider �(x) = max/∈Y )/(x)
as the confidence function. The rejection threshold is computed according to the
coverage-calibration procedure.

Because we consider discrimination based on non-binary sensitive attributes (and in the
case of ACSIncome even intersectional discrimination), we do not compare with the fair
abstention mechanism of Schreuder et al. [117] as a baseline, which only works on a
single binary sensitive feature.

Hyperparameters. For Q1 and Q2, we set � = .80 for the abstaining classifiers. Further,
for IFAC we set the unfair reject weight (-+) equal to 1.0. The intuition behind this is that

5For full details on the preprocessing steps executed on both datasets we refer to our github repository
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Table 3.1: Performance Results ACSIncome and WisconsinRecidivism

ACSIncome WisconsinRecidivism

Acc. Rec. Prec. Acc. Rec. Prec.

RF
FC .78 ± .01 .57 ± .02 .65 ± .03 .62±.01 .77±.01 .65±.01
UBAC .83 ± .01 .62 ± .02 .69 ± .03 .65±.01 .83±.01 .66±.01
IFAC .80 ± .01 .59 ± .04 .64 ± .03 .65±.01 .83±.01 .66±.01

NN
FC .80 ± .01 .58 ± .03 .71 ± .03 .63±.01 0.74±.01 .65±.01
UBAC .86 ± .01 .62 ± .03 .77 ± .03 .66±.02 .77±.01 .68±.02
IFAC .83 ± .01 .58 ± .03 .73 ± .02 .66±.02 .76±.01 .68±.02

XGB
FC .81 ± .01 .60 ± .03 .73 ± .03 .63±.01 .77±.01 .65±.01
UBAC .87 ± .01 .64 ± .03 .78 ± .03 .66±.01 .83±.01 .68±.01
IFAC .84 ± .01 .59 ± .03 .75 ± .03 .66±.01 .82±.01 .68±.01

if the coverage is large enough, IFAC should abstain from predicting any unfair instance,
and only if not, fairness interventions should be performed. For the Situation Testing
algorithm used by IFAC we set k, i.e. the number of neighbors used for the fairness
comparisons to 10, and t to 0.3. For extracting discriminatory association rules we use
the apriori algorithm of apyoriwith min. support of 0.01 and min. confidence of 0.85.

Metrics. For Q1, we evaluate predictive performance in terms of accuracy, precision,
and recall on all non-rejected instances. Concerning fairness measures, we report the
False Negative, False Positive, and Positive Decision Rates for the different demographic
groups of each dataset. Further, we report the range and the standard deviation across
demographic groups over these measures. Note, that we define these measures regarding
the desirable label of each dataset. Hence, the positive decision ratio for ACSIncome is
the ratio of high income prediction, and for WisconsinRecidivism it is the ratio of non-
recidivism predictions.

Experimental Setup. We split each dataset into training, two validation, and a test part
(40% for train, 15% for each validation, and 30% for test) and train the classifiers on the
former. For IFAC we learn the discriminatory associations on the first validation set. The
reject thresholds for both IFAC and UBAC are calibrated based on the second. Finally,
we randomly split the test set into 10 samples [87] and compute the final metrics on each
of these samples. We provide results as averages and standard errors over these 10 test
set samples.

3.5.2 Results

3.5.2.1 Q1: Performance & Fairness

We describe the predictive performance on each dataset and each classifier-methodology
combination in Table 3.1. As can be seen, both selective classification methods improve
upon the performance of FC, however, for UBAC this improvement is slightly larger,
especially for the income prediction task.

In Figure 3.3 we can see how the increased performance of UBAC comes at the cost of its
fairness. In this Figure, we highlight the results of a Random Forest classifier combined
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with different selective classification methods, showing the average False Negative -, False
Positive, and Positive Decision Rates (FNR, FPR, and PDR) over demographic groups (the
results for Neural Networks and XGBoost follow the same patterns and are included in
the Appendix A.3). We also highlight the range of these metrics across demographics
(i.e. the performance difference between the highest- and lowest performing group) and
the standard deviation. Fairer classifiers should score lower on both metrics, to ensure
that there are no big performance differences across groups.

Starting with ACSIncome, we see that for UBAC this is not the case: we observe an
especially unequal distribution of FNR across demographic groups, with the highest
difference being 0.4 (between white men and black women). This difference is even
higher than for the FC classifier, as the UBAC selection mechanism only decreases the
FNR for white men while increasing it for others. With using IFAC this effect does not
occur: through rejecting predictions that are at high risk of unfairness, FNRs decrease for
minority groups like women or black people, and overall the rates become more equal
across demographics, bringing the range down to 0.2 and the std. to 0.08. The patterns
are slightly less strong when considering the FPR and PDR across demographics, but still
hold. Similar patterns occur for WisconsinRecidivism: the range and standard deviation
for FNR, FPR, and PDR across demographics decrease when using IFAC, while they
increase with UBAC. We acknowledge that the effect is less strong here, but attribute this
to IFACs selection criteria for unfair instances being too strict. In Appendix A.4 we show
results with a lower threshold + for situation testing (meaning that more instances can get
rejected out of unfairness concern), where IFAC makes FNR, FPR, and PDR nearly equal
across groups. Further, we highlight how equalizing error rates across demographics is
only the first step towards improving the fairness of the decision task. As we illustrate
in the next section, enabling humans to review rejected instances and the explanation
behind them, is the most crucial contribution of our method.

3.5.2.2 Q2: Explaining Unfair Rejections.

One of the main advantages of IFAC is that it can explain why rejected predictions are
seen as unfair. In Figure 3.4 we show some explanations behind rejected instances for
both of our datasets, and we use the ACSIncome case to highlight how a human expert
can utilize them. We see two instances that were both rejected based on the same global
pattern of unfairness: the classifier predicting “low income" ratios for black women,
aged between 30 and 39 working in management, than for people with the same age
and occupation, but different demographics. While an algorithm only analyses such
patterns statistically, human experts can examine them with sensitivity surrounding
their historical context. For instance, it is well known that racism and sexism contribute
to hostile work environments for black women. Hence, a human expert can reason
how these dynamics may hinder fair compensation in roles like management, that are
normally associated with high salaries.

The results of situation testing provide further insight into the unfairness of the classifier:
For both instances, a high ratio of the 10 most similar white men have a high income;
explaining why their own low income predictions are marked as unfair. However, for
the first instance, many of the white men considered for the comparison have a higher
education level and amount of working hours than her. Since it makes sense, that people
working part-time do not get the same compensation as people working full-time, the
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3.6 Discussion & Conclusion

In this chapter, we have introduced IFAC, an Interpretable and Fair Abstaining Classifier.
This classifier rejects predictions from a base classifier, both in cases of uncertainty
and unfairness. Unfairness rejections are based on the interpretable-by-design methods
of unfair association patterns and situation testing. Through our experiments, we have
shown how using our abstention mechanism yields satisfying overall performance, while
improving fairness across demographic groups over all non-rejection instances. This
stands in contrast to a regular uncertainty-based abstaining classifier, that does not take
the fairness of predictions into account. We have also shown how the explanations behind
our abstention mechanism, can empower human decision-makers to review the rejected
instances and make fairer decisions for them. This holds immense potential for complying
with recent AI regulations, which require automated decision-making processes to be
supervised by humans to mitigate the risks of discrimination. By only having to review
instances at high risk of unfairness, our framework can make this process more practical
and time-efficient. To further empower human users, further research could involve
human experts in the selection of at-risk subgroups and in choosing distance function
and parameters for Situation Testing. Also, user studies can help in understanding how
humans engage with such a system. For this, one should consider adding explanations
for all non-rejected instances, so that humans can still explore the base classifier in the
accepted cases.
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Introducing A Benchmark Dataset

The previous chapters of this thesis have dealt with tools and algorithms for bias detection
and mitigation. The reoccurring theme and motivation behind each chapter was that
traditional approaches that measure or optimise fairness through single numeric metrics
are insufficient for thoroughly understanding and resolving discrimination. Instead of
assessing the fairness of one entire system through one number, efforts should be made to
understand and fix unfairness exactly where it occurs. This chapter further builds on this
idea, this time exploring it from the perspective of evaluating the effectiveness of fairness
interventions. We have collected a dataset with full information about which instances
are affected by discrimination. To do so we started with an already existing dataset
with information about high school students and their leisure- and study behaviour.
We assumed that the current version of the decision labels, showing whether students
passed or failed some exam, is fair and collected a biased version of these labels through
a human experiment. In this experiment we captured realistic human stereotypes by
letting participants predict students’ study performance based on the characteristics
available about them. We show how this new version of the labels is biased against boys,
and illustrate how the effectiveness of fairness interventions can be evaluated on the data
by applying them on the biased version and testing them on the fair one. Further, we
highlight the shortcomings of the traditional evaluation scheme given by the fairness-
accuracy trade-off. We show how some interventions that perform well according to
this trade-off do not necessarily perform well with respect to the unbiased labels in our
dataset1 2.

1This chapter is based on: Lenders, D., & Calders, T. (2023, March). Real-life performance of fairness interventions-
introducing a new benchmarking dataset for fair ML. In Proceedings of the 38th ACM/SIGAPP symposium on applied
computing (pp. 350-357).

2A "Datasheet" to give a detailed yet concise description of our new dataset is available in the Appendix B.1

81



82 CHAPTER 4. INTRODUCING A BENCHMARK DATASET

4.1 Introduction

As we have highlighted in the introductory chapter of our thesis, over the years many
methods have been designed to mitigate bias in ADM systems and improve the fairness
of a decision-making process. As we also have highlighted in this chapter, evaluating the
effectiveness of such fairness interventions is far from arbitrary. To reiterate that point,
take the decision task visualized in Table 4.1 with information about a loan applicant:
a banker decided not to grant her a loan, and Model A agrees with this decision, while
Model B disagrees. We can easily evaluate the accuracy of the models, but it is much
harder to evaluate their fairness. After all, the negative label might have been the result
of the banker being biased against women. If we knew that the applicant would have
paid back the loan if she had received one, we can say that our data set contains label bias
and that Model B is fairer than Model A, because it corrected this bias. When adopting
this point of view, we also see that, while Model A is more accurate in regards to the label
assigned by the banker, Model B is more accurate in regards to the deserved label.

Though assuming the existence of a "fair" and "biased" version of the label can theo-
retically help in evaluating fairness interventions, it is hard to apply in practice, as we
usually do not know which instances are affected by label bias. Therefore, researchers
typically evaluate their interventions by examining the accuracy-fairness tradeoff on the
labels at hand. They deem an intervention as successful if it satisfies a fairness definition
of choice while sacrificing little predictive performance on these labels [54, 73, 89]. It is
easy to see how this evaluation scheme is not optimal, as it makes little sense to strive for
high accuracy on labels that are not believed to be “true" in the first place.

Table 4.1: Without access to an unbiased label, it is difficult to evaluate the fairness of
Model A and B

Sex Credit Amount Job Status .... Bank Decision Model A Model B

Female 10k Employed .... No Loan No Loan Loan
Deserved Decision

?

Because assuming the existence of “fair" and “biased" labels overcomes the shortcomings
of this traditional evaluation scheme, some researchers use simulated data to test their
algorithms. One example of this is in Chapter 2 of this thesis, where we adopted a fully
simulated approach, characterizing the complete joint distribution of a sensitive attribute,
all legally grounded attributes, a biased, and an unbiased version of the decision label
with a Bayesian Network. A similar approach was taken by [137]. Other researchers use
semi-simulated approaches where they start from an existing dataset, apply some opera-
tions to make it bias-free, and then randomly add bias to it again, to have full information
about which instances are affected by this bias [51, 137, 144]. They then evaluate their
algorithms, by measuring how well they can predict the fair labels after being trained
on the biased ones. Though the advantage of these controlled settings is obvious, there
is no denying that these approaches cannot capture the complexity of realistic data and
its biases. For instance, in previous studies, bias was often introduced by arbitrarily
altering the decision labels of individuals from protected groups without considering
the specific characteristics of those individuals [51, 137, 144]. In reality, discrimination is
influenced not only by protected group membership but also by other personal attributes.
Hence, randomly changing labels fails to reflect the intricate dynamics of discrimination.
Additionally, in many experiments researchers hold the simplistic "We’re all equal" as-
sumption: in a fair world, a sensitive attribute is not correlated with a person’s other
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characteristics and their eligibility for a positive decision outcome [137,144]. Again, this
assumption is unlikely to reflect real-life, where a person’s sensitive information (like
their age or sex) may very well be correlated to their job, education, or other factors
relevant to a decision problem.

Another final disadvantage of tests on synthetic data is the risk of developers "making up
the data to suit the algorithm" [47]. When developers develop a fairness intervention, they
are likely to have some assumptions about the dynamics behind discrimination and the
way it has emerged in the data. If they base their simulated data on the same assumptions,
tests on this data will give an unrealistically optimistic view of the performance of the
intervention.

In this chapter, we address the problem of evaluating fairness interventions without syn-
thetic data by introducing a new dataset3. This data consists of real-life information about
students, their free time and study behaviour. As a fair version of the decision labels,
the dataset contains information about whether students passed a course, while we ob-
tained the biased version of the labels through a human experiment, asking participants
to estimate the students’ performance based on information about their demographics
and personality. We show how the latter version of the decision labels is biased against
male students, and explore some interesting discriminatory patterns in the data. We
proceed with describing the results of a small benchmarking study, to demonstrate how
our dataset can be used to evaluate fairness interventions and how it leads to new insights
about their performance, that would not be gained using traditional evaluation schemes.
Before concluding this chapter, we describe other use cases for our dataset, with which
we hope to encourage future research.

4.2 Relation to prior work

New Datasets for fair ML The dataset we introduce in this chapter is a contribution to
the work on better datasets for algorithmic fairness. This line of work has emerged from
the criticism towards the datasets currently used by the fair ML community, regarding
their data quality and the relevance of their associated prediction tasks [9,47]. Efforts have
been put into introducing new benchmarking datasets [17, 40, 82], with “folktables" by
Ding et al. being one prominent example [40]. Though we recognize these contributions,
we note that these datasets do not facilitate the objective evaluation of fair ML algorithms
as they do not provide both a fair and biased version of their decision labels. To the best
of our knowledge, our dataset is the first realistic one doing so.

ML for discrimination prevention Our dataset is intended for testing fair ML algo-
rithms that assume that the training data they are based on contains discrimination.
Mehrabi et al. [93] define “discrimination" as a type of bias, that arises when human
decision-makers have prejudices against specific groups of people and give them dif-
ferent decision labels than they deserve. In other publications, this type of bias is also
referred to as label bias [31, 70, 137]. Typical examples in which discrimination/label

3The collected dataset is under license CC BY-SA 4.0 as csv file available online: https://www.kaggle.com/
datasets/daphnelenders/performance-vs-predicted-performance
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bias occur are hiring processes or loan applications. Note how discrimination is different
from other types of data bias like representation bias, where the sampling procedure of
the data is biased but the data labels themselves are assumed to be correct [93]. There are
many fair ML algorithms specifically made to mitigate discrimination (as a special type
of data bias); some examples include [70, 89, 143, 144]. Developers of such algorithms
can greatly benefit from our new dataset, by testing how well their methods can detec-
t/remove the discrimination present in the biased version of our labels to obtain the fair
ones. Note, that our data may still contain unfair patterns in terms of the opportunities
students have when preparing for an exam (e.g., family support, being able to afford
tutors). Our dataset should not be used to see if ML algorithms can make up for these
kind of inequalities.

4.3 Creating a Dataset with a Biased And Fair Label

To create a realistic dataset with a fair and unfair version of the decision labels, we based
our data collection on an already existing dataset, that is publicly available online. It is
called the “Student Alcohol Consumption" dataset and consists of entries of high school
students following a course [34]. For each student, the grade is recorded for three exams,
as well as some demographic information (e.g., their sex or age) and information about
their free time behaviour (e.g., how often they go out) and study behaviour (e.g., their
study time). The decision task we are interested in is to predict whether students have a
passing grade for the third exam of the course, whereas grades are measured on a scale
from 0 to 20 and the lowest passing grade is 10. We started from the assumption that
the current version of the labels in the data is fair in regard to sex of the students. This
assumption is supported by the following observations:

• Every student had the chance to write the exam and prove their capabilities in the
subject. This setup is different than in other decision tasks, like loan applications,
where individuals that are denied a loan, do not get the chance to prove whether
they would have deserved it;

• The grades of an exam can be somewhat objectively measured since teachers typi-
cally make use of pre-defined rubrics when doing so;

• The positive decision ratio for girls in this dataset is 84,34% and with that only 3,5%
higher than for boys. Thus, at least on a group level, the distribution of passing
grades between boys and girls seems to be fair.

To obtain the biased version of these labels we conducted a human experiment, where
humans had to predict students’ exam performance based on limited information about
them. Because participants only saw this limited information and not the written exams,
we expected them to rely on stereotypes when making the predictions [79]. In particular,
we expected them to be biased against male students, as there are many stereotypes
about boys being less mature and more lazy throughout high school [19]. Further, we
expected that the introduced bias would not only be based on students’ sex but would
also interact with their other characteristics, like their free time or study behaviour. In
other words, we expected their bias to be complex and messy, like in real life.
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To make sure that these expectations were met, we first conducted a proof-of-concept
study, where we confirmed that humans indeed have stereotypes against boys when
predicting their school performance. With the same experiment, we found that in cases
where inherent biases are not present, they can be triggered through stereotype activation.
This is a process in which stereotypical information is presented, and which can lead
people to apply the presented stereotypes in decision processes [136]. In the next section,
we give a short description of this preliminary study and describe how we utilized the
results to conduct our main study. In section 4.4 we proceed with a description of the
resulting dataset and in section 4.5 we provide a case study to show how it can be used
to evaluate fairness interventions.

4.3.1 Proof-of-Concept Study

Our study design for our main experiment was based on a proof-of-concept study4.
In the task of this study, different from the main study, we presented the same eight
student profiles to the participants, containing basic information about each student, for
which participants had to make grade predictions. The main manipulation was that part
of the participants was presented with a version of these profiles for which the sex was
swapped. In other words, a profile that belongs to a female student was, in this condition,
said to belong to a male student (and vice versa). By comparing the predicted grades
across these two conditions, we found that for some students, participants predicted
lower grades for the male version of the profile than for the female version. This showed
that, as expected, participants have an inherent bias against boys when making grade
predictions. Since we only found this effect on some student profiles, this also confirmed
our hypothesis that the bias introduced in our experiment does not only depend on
students’ sex but also their other more complex characteristics.

The second goal of our proof-of-concept study was to see if bias against boys can be
triggered. For this purpose, our second experimental manipulation was exposing partic-
ipants to some form of stereotype activation before the prediction task. Next to a baseline
condition (where no stereotype activation was presented), we included two stereotype
activation conditions, in which information was presented that suggested that boys per-
form less well in high school than girls (for a more detailed description see section 4.3.3).
By comparing the difference in grades assigned to male and female versions of the profile
across different stereotype activation conditions, we found that in some cases discrim-
ination can indeed be triggered through stereotype activation. In other words, when
stereotypical information about boys is presented, participants are more likely to assign
a lower grade to a male than a female version of a student profile. We found this trig-
gered bias an interesting addition to the already present biases against boys and therefore
decided to include the different stereotype activation conditions also in our main study.

In general, the results of our proof-of-concept study showed that the used study setup is
appropriate to elicit interesting biases in human decision-makers. We, therefore, decided
to keep a similar study setup (regarding the materials that were used and the nature of
the grading task) for our main study, where we collected a biased version of the decision
label for all students of the original data. We will describe these materials and the exact
task in more detail in the next sections.

4More information on this study can be found in the Appendix B
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While the original dataset contains more than 30 attributes to describe each student,
we chose to only present eight of them per profile, as to not overload participants with
information. As attributes, we chose those that had high variability between students
and that could in legitimate or stereotypical ways be associated with school performance.
In Figure 4.2 we show an example of such a profile.

Just like in the figure, each student profile was presented in a tabular format. To convey
the sex of each student, we randomly assigned each profile to one of four male/female
names, depending on the students’ sex in the original dataset. These names were chosen
to represent common names in English-speaking countries. In the experiment, all eight
profiles were presented on one page, where the order of presentation was randomized.
On top of this page, participants were presented with a list of all student names followed
by a blank field. They were asked to use a drag-and-drop interface to rank the students
according to their expected performance. Additionally, they were prompted to enter
specific grade predictions (ranging from 0 to 20) in the blank field next to each student’s
name.

Before the grading task, participants were exposed to one of three forms of stereotype
activation:

1. None - Baseline condition in which no extra information is presented.

2. CaseBased - Here we presented participants with three student profiles along with
the grades of the students. Two profiles belong to male students with low grades
(5/20 and 10/20), while one belongs to a female student with a high grade (17/20).

3. Statistics - Here we presented a graph showing statistics about how some risk
factors affect boys’ chance to pass an exam more than they affect girls’ passing
chances. One presented risk factor was, e.g., having more than 6 school absences,
which makes boys ∼15% more likely to fail, while girls only ∼4% more likely.

As mentioned before, we learned from our proof-of-concept study that stereotype activa-
tion conditions can negatively influence participants’ grade predictions for male students.
Hence, these conditions were added to our main experiment, to add another layer of bias
to the already inherent bias against boys. We also considered the different conditions as
a reflection of real life, where different decision-makers may be exposed to a different set
of assumptions about their decision subjects.

4.3.4 Participants

We recruited our participants through social media channels and the survey exchange
platforms SurveySwap and SurveyCircle. To participate, a consent form needed to be
filled out. We continued the data collection process until for every student in the original
dataset we had one participant making a grade prediction for them. Full information
about the participants of our experiment is included in Appendix B.
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Table 4.2: Relation between biased and fair labels as obtained through different conver-
sion strategies

(a) Girls (pass-fail strategy)

X
X
X
X
X
X
X
X

X
X

Predicted
Actual

Pass Fail

Pass 319 (74.54%) 56 (13.08%)
Fail 42 (9.81%) 11 (2.57%)

(b) Boys (pass-fail strategy)

X
X
X
X
X
X
X

X
X
X

Predicted
Actual

Pass Fail

Pass 267 (62.38%) 44 (10.28%)
Fail 79 (18.46%) 38 (8.88%)

(c) Girls (ranking strategy)

X
X

X
X

X
X
X
X
X
X

Predicted
Actual

Pass Fail

Pass 307 (71.73%) 17 (3.97%)
Fail 54 (12.62%) 50 (11.68 %)

(d) Boys (ranking strategy)

X
X
X
X
X
X
X

X
X
X

Predicted
Actual

Pass Fail

Pass 241 (56.31%) 7 (1.64%)
Fail 105 (24.53%) 75 (17.52%)

Another possibility is to use the ranking position assigned to each student. One could,
e.g., change the passing label of all lowest two ranked individuals to “False", and change
it to “True" for the highest two ranked individuals (results shown in Table 4.2c and 4.2d).

With both conversion strategies, we see that female student benefit from a higher true
positive rate (0.8837 and 0.8504 respectively for the pass-fail and the ranking strategy)
than boys (0.7946 and 0.6965), while the girls’ biased labels also contain more false
positives (0.8358 and 0.2537) than the boys’ (0.5366 and 0.0854). In other words, girls
are more frequently predicted to pass the exam when they would actually fail, while
boys are more frequently predicted to fail the exam when they would actually pass.
This shows, that the collected data can be used in testing fair ML algorithms, that treat
male students as the disadvantaged group. Further, this data gives a more complex and
interesting perspective on bias than simulated data, where usually only instances from
the disadvantaged group do not get the decision label they deserve.

For the experiments in the remainder of our chapter, we are going to use the binary
labels as obtained by the ranking strategy. This choice was based on the fact that the
labels obtained by the pass-fail strategy contain a lot of false positive individuals, while
most fairness interventions focus on false negatives (i.e. individuals who were assigned
a negative label when they deserve a positive one).

4.4.3 Subgroups affected by bias

Table 4.3: Subgroups with highest false negative (left) and false positive rates (right)

(a) Subgroups with highest false negatives rates

Subgroup Size #FN

studytime == ’less than 2 hours’ 272 94
romantic rel. == ’no’
AND ’studytime’ == ’less than 2 hours’ 196 75

sex == ’M’ AND studytime == ’less than 2 hours’ 184 66
alcohol consumption == ’very high’ 191 66
romantic rel. == ’no’ AND sex == ’M’
AND studytime == ’less than 2 hours’ 142 56

(b) Subgroups with highest false positive rates

Subgroup Size #FP

alcohol consumption == ’low’ AND sex == ’F’ 189 11
freetime == ’average’
AND goout == ’Thrice a week’ 90 8

sex == ’F’ 428 17
alcohol consumption == ’low’ AND sex == ’F’
AND romantic rel. == ’no’ 112 8

romantic rel. == ’no’ AND sex == ’F’ 264 12

We are now going to look more closely at the biases introduced by our experiment and
see which subgroups are most affected by high false positive and false negative rates
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Figure 4.4: Two subgroups suffering from high false negative rates (as detected by the
apriori algorithm). Even though both subgroups are not explicitly male/female we see
that in both groups there is a majority of male students, explaining higher false negative
rates for boys in the overall data

in their biased labels. For this purpose, we applied the apriori subgroup discovery, as
developed by [77], on our data. This algorithm finds the most interesting associations
between variables in the data and some property of interest (in this case being a false
positive or false negative), as measured by some quality measure of choice. In our case
we used the “weighted relative accuracy gain", a measure that both takes the strength of
the association between a subgroup and the target into account, as well as the size of the
subgroup (where bigger subgroups are seen as more interesting). In Table 4.3 we see the
top 5 subgroups with highest false negative and false positive rates.

One thing that immediately becomes apparent is that many of the false negative sub-
groups are explicitly male, while all top 5 false positive subgroups are female. Further,
we observe in both clusters of subgroups some stereotypes of typically “good" and “bad"
students. For instance, students with high alcohol consumption and low amount of
studytime are likely to be predicted to fail (when they actually pass), while students with
high studytime and low alcohol consumption are likely to be predicted to pass (when
they actually fail). Further, there are some student characteristics, which are in more
surprising ways connected with the bias patterns: in particular, we see that not being
in a romantic relationship is associated with both being a false negative and being a
false positive. Also, we see that going out regularly (thrice a week) is associated with
being a false positive, which may be surprising given that this trait may stereotypically
be associated with low-performing students. Both unexpected findings may however be
explained by the fact that there are not many false positives in the biased labels and that
it may be hard to find strong patterns of them.

We observe another interesting finding when inspecting the false negative subgroups
that do not explicitly contain the ’sex’ of the students, like the subgroup of students with
a short studytime and the subgroup of students with a very high alcohol consumption. In
Figures 4.4 we observe the distribution of male and female students over both subgroups,
as well as how their biased label relates to their actual one. Already at first glance, we see
that both subgroups contain a much higher proportion of male than female students. Rel-
atively speaking, there is no big difference in the proportion of false negative instances
within these subgroups; in the subgroup of students with high alcohol consumption,
there are even higher false negative proportions for girls (37.21%) than for boys (33.78%).
However, because there are that many more male students within both subgroups, ab-
solutely speaking a larger number of boys are affected by the false negatives, which then
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leads to higher overall false negative proportions among boys when looking at the data
as a whole. The combination of stereotypical biases and more complex patterns like
these, further highlights the overall appeal of our dataset, especially as an alternative to
simulated data.

4.5 Use case - Testing fair ML algorithms
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Figure 4.5: Experiments on our new dataset reveal that some interventions that perform
well according to the traditional evaluation scheme (i.e. good accuracy-fairness tradeoff
on biased labels), do not perform well in regards to the fair ones

In this section, we illustrate how our dataset can be used to test the effectiveness of
fairness interventions. First, we test two pre-processing interventions: the “massaging"
approach [73] and the “situation testing" algorithm [89]. With both interventions, label
bias is detected in the data, such that it can be removed and a classifier can be trained
on a de-biased version of it. Further, we test two in-processing approaches, namely
“meta fair learning" [25] and “exponentiated gradient reduction" [1]. Both algorithms
aim to mitigate discrimination at the training stage. The meta-fair algorithm does so
by building a classifier that maximizes accuracy under a given fairness constraint. The
reduction algorithm takes a base learner (i.e. any standard classifier) and reduces its
learning algorithm to a cost-sensitive classification problem, where iteratively different
instances are assigned different error weights until a fairness goal is achieved (while
simultaneously minimizing the classification error). For both in-training techniques, we
set “demographic parity" as the fairness goal, with which we aim to obtain equal positive
decision ratio’s between boys and girls.

We evaluate all interventions by how well the resulting classifiers can predict the fair
labels of a held-out test set, after being applied on the biased labels of the training set. In
this case, we used the biased version of the labels obtained by the “ranking" strategy (see
the previous section). Next to the four fairness interventions, we included an upper and
lower baseline: the upper baseline is a classifier trained on the fair version of the labels
and the lower baseline is a classifier trained on the unfair version without applying any
intervention.

We tested the performance of our baseline methods, the pre-processing algorithms and
the “exponentiated gradient reduction" algorithm in combination with three classifiers:
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a Multi Layer Perceptron, a Random Forest and a Logistic Regression classifier. As
the meta-algorithm does not rely on any external classifier and instead builds its own
classification model, we only report the results of this model itself. We used 10-fold cross-
validation and report the average accuracy over all 10 test sets, as well as the average
discrimination score. The discrimination score is measured as the difference in positive
decision ratios between boys and girls. Since in the fair labels of the dataset, nearly the
same ratio of boys and girls passes the exam, a fair classifier should have a discrimination
score of approximately zero. Further, since we are testing each intervention on the fair
labels of the dataset, the predictive accuracy should be as high as possible.

We also include results of the same experimental setup, where we evaluate each inter-
vention on the biased labels. This corresponds to the traditional evaluation scheme of
fair ML, where we have no access to the fair labels and aim for the best accuracy-fairness
tradeoff on the biased ones. The results are given in Figure 4.56.

When assessing the performance on the fair labels, we see that both in regard to accuracy
and fairness, the upper baseline performs best while the lower baseline performs worst.
The results of the fairness interventions are more surprising. We see that when applying
“massaging" or the “reduction" technique, the discrimination score of the predicted
labels has improved in comparison to applying no intervention. However, regarding the
accuracy, it performs worse. This clearly indicates that these interventions lead to some
form of window dressing: they ensure that a more equal ratio of boys and girls get a
positive decision outcome. However, they do not guarantee that the people assigned to a
positive label also deserve one. The results of the situation testing approach seem more
promising, especially using a logistic regression classifier after applying this method
yields satisfactory results. However, as with the “exponentiated gradient reduction"
method, it appears that the effectiveness of the intervention can depend a lot on the
classifier it is combined with. Finally, we see that with the “meta-learning" technique we
obtain an acceptable accuracy but also a relatively high discrimination score, indicating
that this intervention is not appropriate for this specific decision task. Note, that the
performances on the biased version of the labels, sketch a quite different picture. If we
would evaluate interventions based on their accuracy-fairness trade-off on the biased
labels, we would deem “massaging" or the “reduction" technique as effective techniques,
not recognizing how these interventions degrade the accuracy on the fair labels.

While it lies not in the scope of this chapter to provide a deep analysis of why some fairness
interventions are more successful than others, the results show how our benchmark
dataset brings new insights about fair ML algorithms, that would not be found using
traditional evaluation approaches. Developers of fair algorithms could apply a more
detailed error analysis to understand why/where their interventions fail. In particular, it
could be interesting to see whether certain interventions work well for some subgroups,
but have blind spots for others and how to improve performance on the latter. Further,
our dataset could be used to understand how the effectiveness of the fairness intervention
may depend on its hyperparameters7 or the classification models they are combined with.

6For full implementation, see: https://github.com/calathea21/benchmark_data_analysis
7we used the default ones of the AIF360 library: https://aif360.readthedocs.io/en/stable/
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4.6 Suggestion for other Use Cases

Our dataset can be used to evaluate the effectiveness of fair ML interventions, but there
are also other interesting use cases for it. In this section, we are going to highlight three
of them.

Exploiting knowledge about stereotype activation When collecting our dataset, par-
ticipants were exposed to different kinds of stereotype activation. It would be interesting
to see whether exploiting the information about which profile was graded under which
stereotype activation condition, can improve the effectiveness of a fairness intervention.
In real-life, this may translate to situations in which we know about the different cir-
cumstances in which decision-makers operate. If we, e.g., know that half of the bankers
deciding on loan applications received a different training than the other half, this may
help in removing the different sorts of biases that may have been introduced by both
groups.

Using portion of fair labels for transfer learning While it is not possible to access
a complete version of the fair decision labels for each dataset, there are situations in
which a small portion of the fair labels is available: for instance in the context of loan
applications, we may not know for the persons who were denied a loan whether they
would have deserved one, but we do know for the individuals that received one, whether
they paid it back. Using this small portion of the “fair labels", it might be possible to
train a classifier to then make predictions for all instances for which we do not know the
fair labels. Our dataset could be used to study the general viability of such an approach.

Incorporating domain knowledge Whether students get discriminated does not only
rely on their sex, but also on other characteristics that stereotypically are connected with
low school performance. This suggests that it may be beneficial to involve a domain
expert, with a deep understanding of the dynamics behind such stereotypes, in a fairness
intervention. With our dataset, it is easy to evaluate which ways of incorporating domain
knowledge are successful, and the results may generalize to other decision tasks.

4.7 Limitations & Conclusion

In this chapter we showed how we created a dataset, that can be used to benchmark
fair ML algorithms. We based this data on an already existing dataset, which contains
information about students and whether they pass an exam or not. We assumed that
the current version of this decision label is fair and collected a version of these labels,
which are biased against boys, through a human experiment. With this new dataset, we
facilitate the evaluation of fair ML interventions, by seeing how well they can predict the
fair labels after being trained on the biased ones. Our data overcomes the shortcomings
of simulated alternatives since it is more complex and realistic in terms of its introduced
bias.
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While our dataset has many potentials for the fair ML community, users should be aware
of its limitations. First, in the collection of our dataset we treated the “sex" of the students
as a binary variable. This is a direct consequence of the fact that no information on self-
reported (non-binary) gender identity was available in the original “Student Alcohol
Consumption" dataset. We acknowledge that this limits the validity of our study results
as well as our final dataset, as people who do not identify with a binary gender category
may face very different levels of discrimination, that should be accounted for in real-life
as well as algorithmic decision processes.

Further, the dataset is with a total of 856 instances, rather small. Many real-life datasets
for which fairness concerns arise are much bigger. Hence, at least in this regard, our data
may not capture the full complexity of real-life applications. Relating to this, researchers
should be cautious not to overgeneralize the results from experiments on our data. While
this goes with any type of benchmarking data, it is especially important in the context of
fairness. Whether a fairness intervention can be considered effective is dependent on the
domain of a decision task and the data at hand. Still, given the full information about
label bias in our data, using it as one test case is worthwhile to get a high-level idea of an
algorithm’s performance and its blind spots.

Lastly, we highlight that our data was made to test the effectiveness of fair ML interven-
tions that target discrimination. As previously mentioned, before collecting the biased
version of our labels, we assumed that the original version of the labels is fair. While
this assumption is true in the sense that every student had the opportunity to prove
their capabilities on an exam, it may not be true in regards to whether everyone had
the same opportunity when preparing for it (e.g., some students might have been able
to afford private lessons). If researchers are interested in seeing whether their fairness
interventions can compensate for such inequalities, our dataset should not serve as a
benchmark.
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Outlook

The previous chapters of this thesis have zoomed into various aspects regarding fairness in auto-
mated decision-making algorithms, focussing on specific tools and algorithms for bias detection,
mitigation and the evaluation of their effectiveness. The following chapter will zoom out from these
specific considerations and give a broader overview of the research surrounding algorithmic fair-
ness, how it has developed over the years and where its biggest gaps lay. For this purpose we present
a scoping review of the literature over the past fifteen years, utilising sources from Web of Science,
HEIN Online, FAccT and AIES proceedings. All articles come from the computer science and
legal field and focus on AI algorithms with potential discriminatory effects on population groups.
We annotated each article based on their discussed technology, demographic focus, application
domain and geographical context1 and analysed the evolution of the literature regarding these
characteristics. Though we observe a growing trend of literature addressing a broader variety of
topics and becoming more specific, a substantial portion of contributions remain generic and only
discuss algorithmic discrimination in the context of classification systems without concentrating
on the domains these systems operate in or the demographic groups they harm. Regarding the
geographical context of research, the focus is overwhelming on North America and Europe (Global
North Countries), with limited representation from other regions. This raises concerns about
overlooking other types of AI applications, their adverse effects on different population groups,
and the cultural considerations necessary for addressing these problems. With the help of some
highlighted works, we advocate why a wider range of topics must be discussed and why domain-,
technological, diverse geographical and demographic-specific approaches are needed. This chapter
also explores the interdisciplinary nature of algorithmic fairness research in law and computer
science to gain insight into how researchers from these fields approach the topic independently or
in collaboration. By examining this, we can better understand the unique contributions that both
disciplines can bring to move the research field forward.2

1The data is available at https://github.com/calathea21/algorithmic_fairness_scoping_review
2This chapter is based on the following paper: Lenders, D. & Oloo A. (Under submission). 15 Years of

Algorithmic Fairness: Scoping Review of Interdisciplinary Developments in the Field. Daphne Lenders is first author
of this paper. Both authors contributed equally in developing the research idea and questions, but Daphne was
main responsible for the quantitative result analysis
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5.1 Introduction

Research on algorithmic fairness has been present for about 15 years. What initially
started as a slow movement has become a popular and prominent research field, with
dedicated conferences about the topic, like ACM FAccT and AAAI AIES. Throughout
these years, the field has kept evolving, fueled by public discourses about unfair algo-
rithms, new legislations around AI and ever-emerging technologies. While it is generally
well known that the field develops rapidly, less is understood about how it has devel-
oped, what the most prominent research areas are and where the research efforts come
from. Yet, only when zooming out and having a better view of the large body of literature
that already exists, we get an idea of whether the research has kept up with the pace in
of technology and where the biggest research research gaps and opportunities lay. For
this purpose, we have conducted a scoping review on the field of algorithmic fairness.
Using four scientific databases, namely, Web of Science, Hein Online, ACM FAccT and
AAAI AIES proceedings, we have sampled a total of 1570 papers dealing with this topic
and have annotated them in terms of the domain they consider, the demographic groups
they focus on and technology they discuss. By providing aggregated results over these
three metrics, we sketch an overview of the most prominent research areas within the
field, and how these have developed over the years. In doing so, we also differentiate
between the research efforts coming from primarily Computer Science and Law based
perspectives. We highlight how authors with different expertise approach research areas
differently, and which areas remain under-addressed by either or both communities. By
then highlighting some research studies in less popular areas of the field, we emphasize
which areas need to be addressed to tackle algorithmic discrimination in all of its forms,
rather than limited to a narrow set of technologies and domains. To summarize, the first
part of our work addresses the following research questions:

RQ1: How has algorithmic fairness literature developed in terms of the domains they
address and what are the opportunities/gaps in adopting domain-specific approaches
from a technological and legal perspective?

RQ2: How has algorithmic fairness literature developed in terms of the demographic
groups they focus on? How does this differ between researchers with technological and
legal expertise?

RQ3: How has algorithmic fairness literature developed in terms of the technologies
they address? How does this differ between researchers with technological and legal
expertise?

Our last research concerns the geographical context of the research on algorithmic fair-
ness, both in terms of the authors’ affiliations and the geographical areas they address.
We showcase how much of the current literature is primarily centred around Global
Northern countries and highlight how more recent contributions, focussing on other
geographical areas, bring to light important considerations around algorithmic fairness
that should not be overlooked. Hence the last research question of this study is:

RQ4: What is the geographical scope of algorithmic fairness literature, both in terms of
researchers’ geographical affiliation and the content of their papers?
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5.2 Related Literature & Motivation

There are many literature reviews available related to algorithmic fairness. Different from
scoping reviews, these works dive into specific aspects of the topic, like bias mitigation
methods for classification algorithms [66], datasets commonly used in experiments [47],
or fairness concerns related to specific technologies like computer vision system. [91].
Their goal is to summarize the most important contributions and insights surrounding
these topics and identify concrete research gaps related to them. In comparison, scoping
reviews on algorithmic fairness are much more sparse. Rather than summarizing the
literature on one concrete topic, scoping reviews aim to give a high-level overview of
broad and general research areas that encompass many different technologies, domains
and disciplines. Scoping revies aim to sketch the breadth of these areas and identify
the most popular research directions. In doing so, they also highlight which areas are
currently underexplored and need more attention from the research community.

Vilaza et al. (2022) report a scoping review on ethics in technology and inspect 129
papers coming from the SIGCHI conferences. In particular, they assess the themes of
the ethical considerations in each paper (e.g. privacy, discrimination, mental well-being
etc.), the population groups that are discussed, and the type of technologies inspected
(e.g. web applications, social media, etc.). Similarly, a study by Birhane et al. (2022)
dives into the topic of AI ethics across FAccT and AIES papers. They aggregate results
of 535 papers, focusing on how concrete or abstract each work of literature is regarding
the ethical aspects they address. In particular, they inspect whether papers discuss case
studies of algorithmic systems already used by industry, and how much effort the works
put into understanding how real stakeholders are affected by these systems. A study that
emphasizes geographical regions/contexts in which AI ethics are addressed is conducted
by Urman et al (2024). Specifically, they inspect 200 papers describing AI auditing
studies, not just identifying which ethical aspects the AI systems are audited for, but
also highlighting the countries on which the audits were focused, and the geographical
affiliation of the authors contributing to these studies. Our contribution sets itself apart
from these already existing scoping reviews in various ways:

1. Different from other studies, we focus on algorithmic fairness as one sub-area of
AI ethics, rather than AI ethics in general. This allows us to identify the research
landscape and gaps more specific to this area, addressing the research focus in
terms of addressed domains, demographic groups, technologies and geographical
context

2. We are the first scoping review, to inspect the development of the research area
from an interdisciplinary perspective, focusing on how authors with Computer
Science and Law expertise address this topic differently, and where the research
gaps in either or both of the fields lay

3. To the best of our knowledge our study is the largest scoping review on AI ethics,
aggregating the results of a total of 1570 papers. By not merely focussing on
contributions coming from FAccT and AIES, we get a better overview of the current
literature.
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5.3 Methodology

To conduct our scoping review we adopt the PRISMA (short for: “Preferred Reporting
Items for Systematic Reviews and Meta-Analyses") guidelines [88]. This means that
our methodology consisted of three key steps: the first, was devising a search strategy,
by selecting the scientific databases for locating relevant papers and designing queries
to search these databases. The second step was going through the found papers and
deciding which ones to include in this review. The third and last step was annotating
the selected papers for relevant information and analysing the results. We are going to
describe each step in more detail in the following sections.

5.3.1 Databases & Search Query

We used Web of Science as our main database for scientific articles. Using their advanced
search function, we set up the search query as seen in Figure 5.1 to find papers related
to algorithmic fairness, with a focus on Computer Science or Law. The search query
uses filters to scan through papers based on their title and abstracts. It looks for specific
keyword combinations in either of them. The keyword combinations are all variations
of terms like “algorithmic fairness”, “fair Machine Learning”, or “discrimination in AI”.
By including the wildcard operator (*), we ensured that variations of words are captured
that come from the same root (e.g., including the wild card operator before and after ‘fair’
we automatically include terms like “unfair" and “fairly"). Further, we use the (NEAR\5)
operator to specify that two words should be placed within a distance of 5 words in the
text. The search query was based on an iterative process, adding or removing terms
depending on how many search results we obtained. For instance, initially, the query
accounted for terms like “bias in Machine Learning”. However, as “bias” is also a purely
mathematical (and not ethical) related concept, this yielded too many results, and we
excluded this term. After finalising our search query, we conducted a sanity check to
ensure that it captured highly cited and well-known papers. We used variations of the
same query for the database of papers from ACM FAccT and AAAI AIES proceedings,
as well as Hein Online. We chose the first two, as they are the the most prominent
conferences on ethics in socio-technical systems. We chose the latter because it is a
database containing mostly legal sources, underrepresented in the results of Web of
Science.

5.3.2 Selection of Papers

Once we executed our initial search query, we received a total of 6027 papers that required
screening for their relevance to the topic of algorithmic fairness. To perform the screening,
we utilised Rayyan.ai and established various inclusion and exclusion criteria. To be
included in the review, sources were required to have an abstract to ensure that each
source under consideration had a minimum level of information available. Moreover,
several categories of sources were excluded from the outset. These included introductory
notes, book reviews and tutorials, as they were not expected to provide in-depth research
content and were not aligned with the intended study scope. Additionally, abstracts of
workshops and tutorials for which the full article or chapter could not be accessed were
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((((TS=(*fairness NEAR/5 algorithm*OR *fairness NEAR/5 machine learning OR
*fairness NEAR/5 ML OR *fairness NEAR/5 artificial intelligence OR
*fairness NEAR/5 AI OR *fairness NEAR/5 classif*
OR
*fair NEAR/5 algorithm* OR *fair NEAR/5 machine learning OR *fair NEAR/5 ML OR
*fair NEAR/5 artificial intelligence OR *fair NEAR/5 AI OR
*fair NEAR/5 classif*
OR
discrimination NEAR/5 algorithm* OR discrimination NEAR/5 machine learning OR
discrimination NEAR/5 ML OR discrimination NEAR/5 artificial intelligence OR
discrimination NEAR/5 AI OR discrimination NEAR/5 classif*
OR
*justic* NEAR/5 algorithm* OR *justic* NEAR/5 machine learning OR
*justic* NEAR/5 ML OR *justic* NEAR/5 artificial intelligence OR
*justic* NEAR/5 AI OR *justic* NEAR/5 classif*))

AND SU=(Law OR Computer Science)) NOT SU = (Biology)))/
Figure 5.1: The Web of Science search query to capture relevant literature, based on key
phrases in papers’ title and abstract

excluded. Lastly, language was an exclusion criterion, with sources not in English being
excluded. We then used the articles’ titles as primary indicators of their relevance to the
field of algorithmic fairness. In case of ambiguity, we also used the papers’ abstracts to
decide on their relevance. Through this selection process we ended up with a total of
1570 sources to be included in this scoping review.

5.3.3 Data Extraction

For each of the papers we included for this analysis several features were available, namely
their title, abstract and year of publication. Many papers also had a DOI available, which
we used to automatically extract additional information from them using pybliometrics
[112]. This python library utilizes an API to extract information from the Scopus database.
In our case, we extracted the names of the papers’ authors, and for each author their
affiliation at the time of writing the paper (consisting of the name of their institution as
well as the corresponding country). This information would be used for answering RQ4.
To answer parts of research questions 1-3, we also extracted the main expertise areas of
each author, as they had self-reported in Scopus.

To extract information on authors’ affiliation and expertise on papers without a DOI,
we carried out a manual labelling process. We manually checked the papers to extract
the authors’ names and their affiliations at the time of writing. To determine their area
of expertise, we used platforms such as Google Scholar, LinkedIn, and Research Gate.
It is important to note that the different labelling processes of authors’ expertise may
have introduced some errors or biases in our final dataset of papers. This is because
the authors’ self-reported areas of expertise may differ from the ones we could establish
ourselves through a basic web search. Therefore, any results that pertain to this aspect
should be regarded as a proxy. Further, many papers had authors coming from mixed
backgrounds, with at least one author listing both “Computer Science" and “Law" as their
main expertise. Though generally, it could be interesting to inspect contributions from
authors with such mixed backgrounds, our result analysis focuses on the work coming
only from Law or only Computer Science expertise. This choice was made, because
we found many of the “mixed" expertise labels to not be completely reliable, i.e. we
found that a lot of Computer Scientists listed “Law" as one of their backgrounds, mostly
because “algorithmic fairness" is a topic with some legal implications, not because their
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work specifically deals with any specific legislation or other legal considerations.

To analyse papers’ domain-, demographic and technological focus, as we address in
RQ1-RQ3, we manually annotated papers according to these characteristics, using their
titles and abstract. We acknowledge that reading full papers would yield more precise
results, but since our database consisted of more than 1500 papers, time constraints did
not allow this. Through an iterative process, we identified recurring themes regarding
the three dimensions and merged similar categories into broader ones, where needed.
For example, to describe the papers’ technological focus we first had a separate category
for “Face Recognition", but because not many papers focussed on this topic, we decided
to include them in the broader category "Computer Vision“.

Below we list the annotation labels we ended up using for each of the three papers’
features:

• Domain - Criminal Justice, Education, Employment, Finance, Health, Judicature,
Public Sector, Other, None

• Demographic Groups as Based on - Age, Disability, Gender, Intersectional, Race,
Other, None

• Technological Approach - Computer Vision, Data Collection, Hybrid Human-
AI, NLP, Resource Allocation, Social Networks, Unsupervised Learning, Ranking,
Recommendation, Classification, Other, General

In the result analysis it will become clear that a lot of our found papers do not focus
on a specific domain or demographic group (as denoted by the “None" label for either
of both features). It is important to note, that both features were only assigned a “non-
None" label if papers made some demographic group or some domain the specific focus
of their research. To exemplify, many papers introduce novel bias mitigation methods
for classification tasks and test their method among others on the COMPAS dataset.
Even though this dataset falls under the criminal justice domain, these papers were not
tagged as such, unless they specified in their abstract that they went beyond the general
benchmark evaluation on this dataset, e.g. consulting domain experts’ opinions on the
matter or considering domain-specific legislation. Similarly, many papers consider “sex"
or “race" as sensitive attributes in their experimental settings. Again, their demographic
focus was not tagged as such, unless they dived into specific, historically- or culturally
grounded discrimination of those groups. Regarding the technological approach of pa-
pers, the “General" label was used if a paper provided a literature review on algorithmic
fairness or discussed this as a broad phenomenon, considering many different algorith-
mic approaches. Also, if a paper’s technological approach fell into multiple categories,
we chose the more specific one as the primary focus. For instance, a paper on hate speech
classification was labelled as "Natural Language Processing" instead of "Classification".

Lastly, to provide labels for the geographical content of papers to answer RQ4, we checked
if they mentioned any specific region (“Europe") or country (e.g. “United States") in their
title or abstracts and annotated them accordingly.
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fairness as a general problem, but approach the topic with awareness of the unique chal-
lenges in each domain. This holds both when focussing on algorithmic fairness from a
legal and technological point of view.

When inspecting Figure 5.3 it is striking how legal authors are much more likely to take
this approach to algorithmic fairness than Computer Scientists. A common theme that
is touched upon by them, is the adequacy of existing laws to address changes brought
by the ubiquitous use of AI systems in different domains. For example, Hertza examines
the regulatory landscape in the United States on credit lending, focusing on the Fair
Credit Reporting Act (FCRA) and the Equal Credit Opportunities Act (ECOA) [63]. He
argues that these laws are inadequate in safeguarding the rights of credit consumers in
light of the increasing reliance on big data and advanced algorithmic systems for lending
decisions. For example, the FCRA gives consumers the right to access their credit report
records, consisting of information about their loan history, on which credit decisions
were traditionally based. However, given that the FCRA was enacted in the 1970s, it did
not account for the type of third-party data that banks increasingly use to make their
decisions, such as lenders’ social media profiles or web browsing history. Lacking the
right to access this information and understanding how algorithms utilize it, makes it
impossible for consumers to challenge algorithmic decisions and assess their fairness. To
make up for these gaps in the legislation, Hertza proposes the adoption of the EU General
Data Protection Regulation (GDPR) for reforming consumer credit regulation in the US.
Because the GDPR is an industry-agnostic framework, it gives individuals the right to
access any personal information being processed about them, not just the information
on their credit history, that comes from financial institutions. Studies like these highlight
the advantage of domain-specific approaches when discussing algorithmic fairness from
a legal perspective: as many domains come with their own set of laws, only specific
contributions can give insights into their adequacy and invite researchers to challenge
them.

Figure 5.3 shows us that Computer Scientists are less likely to take domain-specific ap-
proaches. Still, when investigating some of their works, it becomes apparent why specific
contibutions are needed to understand the technological challenges within different sec-
tors. Take for instance Pena et al.’s paper set in the employment domain, exploring the
type of algorithms typically used to analyse resumes or other professional profiles (e.g.,
LinkedIn data) in a hiring context. Different from the typical data in other domains,
resumes are usually multimodal, as they consist of structured data (e.g., standardized
formats to display a person’s educational history), unstructured text (e.g., personal bi-
ographies) and even images (e.g. profile pictures). Consequentially, automatized solu-
tions for hiring decisions are also multimodal, meaning that one or more multiple models
are built to analyze the different data types and base decisions on them. While biases in
text-processing or computer vision models have been studied in isolation, the combina-
tion of these models and how this combination contributes to new discriminatory biases
is less well studied. Another employment-specific study by Rhea et al. even showed
how in a hiring setting, simple changes, like whether a resume is processed as raw text
or in a PDF file, can change the output of such decision-making systems [108]. We argue
that domain-specific approaches are much more likely to reveal problems like these, as
they encourage researchers to consider the input data and algorithmic systems that are
already in use, rather than making generic assumptions about them.

A final argument for more domain-specific approaches is that they can foster collabo-
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rations with interdisciplinary researchers, industry and public institutions, allowing for
more in-depth and realistic analyses of unfair practices. Take for instance the study by
Elzayhn et al. [44], which is a collaboration between computer scientists, economic- and
legal researchers, as well as employees of the US Office of Tax Analysis. They analyse a
real-life dataset of taxpayers in the US and - taking domain knowledge about the Tax Pay-
ment System into account - analyze if tax audit rates (that partly depend on algorithmic
decisions) differ for black and non-black taxpayers. In working with realistic data, the
researchers have to deal with challenges often ignored in algorithmic fairness literature,
e.g. how to conduct an audit when information about sensitive attributes is not available,
but needs to be accurately inferred from the data. Further, by collaborating with the
Tax Analysis Office they identify possibilities in reducing the found racial impact, while
accounting for their budget and time constraints. Again, this paper forms a contrast
to more generic work on algorithmic discrimination, where computer scientists often
work in isolation of the institutions using algorithmic systems [126]. In those papers, re-
searchers also commonly use benchmarking datasets for testing their algorithms, which
are publicly available datasets, meant to standardize how algorithmic performance is
assessed. Though these datasets have their merits, researchers have warned about their
quality and the extent to which they can mirror realistic industry use cases [40]. Addi-
tionally, only using benchmark datasets can increase the risk of overgeneralizing results
obtained from them. Hence, working with domain-specific data that comes from inter-
disciplinary/industrial collaborations can provide more realistic views on the suitability
of AI technologies aimed at addressing algorithmic biases.

To conclude this section, we believe that generic work has been and can still be useful
to lay the foundation for algorithmic fairness, but that having more domain-specific
case studies will help in tackling more realistic challenges. We have observed a clear
trend towards researchers publishing more domain-specific papers, however, as Figure
5.2 shows, many papers remain generic and others revolve around similar domains
like health and criminal justice. This may come at the risk of ignoring the risk of
algorithmic discrimination in other domains, such as policing, insurance or sharing
economy platforms. Hence, broadening the scope of the research field and keeping up to
date with the diverse industries/institutions using algorithmic systems, will be essential
to reveal the technological challenges and legislation gaps specific to each domain and
create tailor-made solutions for them.

5.4.2 RQ2: Making Diverse (Intersectional) Demographic Groups the
Focus of the Research

Over the past few years, there has been a slight trend towards publishing more papers
that focus on specific demographic groups (e.g., based on race or sex) rather than tackling
algorithmic fairness from a generic perspective (see Figure 5.5. In 2023, around 10% of
the papers made some demographic group a focus of their work, compared to only 2-6%
in 2017-2019. The most prominent categories that papers focus on are race and gender.
Also, noticeably, over the years more papers focused on fairness for intersectional groups.
Whereas the first two papers on intersectional discrimination appeared only in 2019, in
2022 and 2023, a combined number of 18 papers have focused on this topic.

Similarly, when it comes to focusing on domains when studying algorithmic fairness, we
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et al. use the example of job recruitment to point out how these distinct categories
of disabilities affect algorithms differently (2022): a person with visual impairments,
for instance, may need more time on an automated recruitment test, lowering their
chances of making it to the next round of a selection procedure. A person with a history
of psychological/medical conditions may not have this problem but may instead have
bigger gaps on their CV that may be penalised by an algorithm. Lastly, automated video
analysis software, used, e.g. for job interviews, may perform okay on either of both
groups but not on people with speech impairments. The same paper then discusses
the idea of “reasonable accommodation" as a possible technical solution to address
these problems: if algorithmic systems have information on the type of disability of any
individual, they can be designed to accommodate each of them. For instance, automated
video analysis software could be designed to process sign language to accommodate
people with speech impairments. Additionally, algorithms for analysing CVs could be
designed to not penalize career gaps if a job applicant has a history of medical conditions.
While these are reasonable adjustments from a technological perspective, contributions
from a legal perspective point out how difficult it may be to gather data about peoples’
disabilities, as people might prefer not to disclose this information, for fear of it being
abused or lack of discretion in handling the data [14, 20]. A paper by Binns & Kirkham
(2021), therefore, explores the role of data protection and equality law, in ensuring
algorithmic fairness for disabled people, while simultaneously protecting their privacy.
For instance, they highlight how data protection laws (e.g., the GDPR) allow institutions
to collect “special category data" (including information about persons’ disability status)
if they have an appropriate lawful basis for wanting to process this data. Further, they
emphasize how these laws can create a safer and more trustworthy environment around
sharing personal data, as they define clear boundaries regarding how the data should
be used and with which parties it can be shared. Hence, ensuring strict enforcement of
these laws can increase peoples’ willingness to share sensitive information and ensure
that this information is only used to provide “reasonable accommodation", as mentioned
earlier.

The example papers surrounding algorithmic fairness for disabled people illustrate the
importance of delving into specific demographic groups to gain a clearer understanding
of how they are affected by algorithmic systems. By outlining both technologically- and
legally-driven research papers, we emphasize how expertise from both disciplines is
needed to find realistic solutions for the addressed challenges. Inspecting Figure 6, this
is especially a call for Computer Science researchers to adopt such demographic-specific
approaches, as they are less likely to do so than their legal counterparts. Specifically, only
around 7% of Computer Scientists make specific demographic groups the main focus of
their research, while this ratio is 14% higher for Law experts. Further, we emphasize
again, how the research on algorithmic fairness needs to broaden its scope and include
various demographic groups that go beyond just the race and gender of people. As Figure
5.7 points out, there are still many demographic features that are barely considered in
current research efforts, posing the risk of overlooking the harms faced by diverse and
intersectional communities.
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“fishing expeditions". Specifically, she examines their privacy-intruding nature, wherein
an excessive amount of taxpayer information is collected and analyzed in the pursuit of
detecting fraud, before having sufficient justification for why these taxpayers are targeted
as potentially fraudulent and why extra data needs to be collected for them. In her work,
Keunen alludes to various technologies used to collect this data, namely automated web
scraping and web crawling algorithms. While she primarily raises privacy concerns
related to these practices, it is clear how also from an algorithmic fairness standpoint
these techniques can be highly problematic. For instance, another work by Jo & Gebru,
explains how the availability and nature of data that can be crawled from online spaces
is influenced by demographic factors (2020), with e.g. younger generations being more
represented on the internet than older ones. Consequently, fraud-detection algorithms
relying on web-crawled data may disproportionately impact younger groups, as more
potentially incriminating data is available about them. Despite the clear fairness and
privacy concerns around web crawling, Keunen (2023) points out that their regulation
and the extent to which they can be considered “fishing expeditions" is still unclear:
explicit legislation is not available and so far only case law serves as an indication for
which data collection practices are prohibited. Hence, Keunen’s work showcases, how
for identifying other gaps in the legislation related to privacy and algorithmic fairness,
more legal experts need to dive into specific technologies, rather than primarily focusing
on AI as a general problem. Collaborating with Computer Science experts in doing so,
will be important to stay on top of the fast-paced development of technology.

To highlight some of the complex fairness considerations, that Computer Scientists cur-
rently make about other non-classification technologies consider the work of Jalal et
al. (2021), who explore image-reconstruction algorithms. These algorithms take low-
resolution images as input and try reconstructing them into higher resolutions. In doing
so, they are known to be biased. For instance, when low-resolution images of a black per-
son are given as input they are likely to reconstruct it into the image of a white person. The
work addresses the intricacies of even defining “fairness" in such a setting. Unlike classi-
fication tasks, where a classifier’s decision should be independent of sensitive attributes
(e.g., employment decisions should not be influenced by race), fair image reconstruction
algorithms must produce outputs that align with the sensitive characteristics in the in-
put. This introduces the challenge of estimating race and other sensitive attributes from
images, a task complicated by their non-discrete and highly ambiguous nature. Another
example of non-trivial fairness issues concerns the use of Generative AI systems. While
our scoping review found only 13 papers related to this technology, it seems reasonable
to assume that this number will rise, given the popularity of ChatGPT, DallE, and other
generative systems. Venkit et al. (2023) are some of the few authors exemplifying the fair-
ness issues arising through these systems, examining how text generation models exhibit
different sentiments and toxicity levels depending on the nationalities they are prompted
to write about. For example, when prompted to write about Irish people, human anno-
tators perceived the articles to be mostly benign and generic, while texts about Tunisian
people were rated to be much less positive and more focused on negative events in the
country. How such texts can perpetuate harmful stereotypes and how to restrict these
models are still largely unexplored questions. The topic is complicated considerably by
the seemingly infinite topics these systems can be prompted to write about and all the
ways a chatbot-human interaction could unfold. Hence, for just defining what it means
for such a huge system to be fair, more technological and legal research is necessary.

While it lies outside the scope of this paper to discuss the fairness concerns arising in
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fairness. The paper discusses the grading algorithm developed to predict students’ A
Level results when the exams could not be administered due to the Covid19 pandemic.
Though there were many unfairness complaints about the algorithm’s predictions (and
they were ultimately discarded) they turned out to be especially unfair towards students
from commonwealth schools outside of the UK, in which A-Levels are also the primary
form of examination. By focussing on the specific case of Bangladeshi schools, the
authors find how UK-based assumptions throughout the algorithm’s development, can
explain the disparity in predictions. One example is, that the grade predictions were
based on performance in mock exams, assuming that good performance on a mock exam
is predictive of a good performance on the real one. While intuitively this might make
sense, this assumption neglects the learning culture in Bangladesh where much more
emphasis is put on final examination and mock exams are not a common part of the
curriculum. To have some data to work with, Bangladeshi students were forced to take
some hurriedly set up tests, which they were not used to and had little time to prepare for.
Needless to say, grade predictions based on this type of data, did not reflect students’ real
capabilities. Another flaw in the design of the algorithm was the decision to base grade
predictions on the historical performance of the student’s school. If such data were not
available, international averages were used instead. This proved especially problematic
for Bangladeshi schools, which were less likely to possess (digital) records of historical
performance. Consequently, predictions frequently leaned on the international averages,
even though these were lower than the (unrecorded) actual historical performances.
These are only a few of many examples, of how a lack of cultural considerations led to
an algorithm, that was ultimately more unfair to some geographic groups than others.

Having additional papers adopting a cultural- and geographic-specific approach can
contribute to a more diverse and comprehensive understanding of algorithmic fairness,
shedding light on various perspectives and mitigating unfairness across different regions.
In addition to specific case studies, we also found several papers contributing to a more
global discourse on algorithmic discrimination. For instance, Amugongo et al. (2020)
examine fairness from a philosophical standpoint, exploring how African-based “Ubuntu
ethics" can enrich discussions about the essence of fairness. Another example is Nwafor’s
paper (2021), which delves into the policies and laws from global southern countries
concerning AI systems. Studies like these will be essential to make sure that legislation
outside Europe and the US is ready for upcoming technological developments. In her
paper Nwafor also advocates for a diverse representation in AI’s design, development,
deployment, and governance. Neglecting to engage marginalised communities in AI’s
development, leads to technological innovation being based on a a narrow slice of the
world, lacking a comprehensive analysis of diverse global groups. Integrating more
diverse perspectives not only enhances our understanding of algorithmic fairness but
also emphasizes the importance of cross-cultural learning to create more inclusive and
equitable AI systems.

5.5 Discussion & Conclusion

In this paper, we have presented a scoping review of the current literature on algorithmic
fairness. We selected and annotated 1570 papers to examine the evolution of the field in
terms of their domain-, demographic-, and technological focus and their interdisciplinary
nature, while also inspecting the geographical context in which the research takes place.
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We acknowledge two major limitations in our analysis. First, we used a basic search
query to collect papers for our dataset by using general terms such as "machine learning"
and "AI". However, this approach did not account for more specialised terms regarding
papers technological approach, their domain or demographic focus, which may have
caused us to miss valuable contributions within those areas.

The second limitation concerns our manual annotation process, which we based on the
papers’ titles and abstracts, rather than their full text. While both should give a good
reflection on the paper’s main topic, some important nuances might have been missed.

Despite these limitations, our results still provide a valuable overview of the current
research landscape surrounding algorithmic fairness, in particular the trending topics
and the gaps within the field. Our analysis shows that over the years, research has
started focusing on more specific and a wider variety of topics in terms of the addressed
technologies, domains and demographic groups. This stands in contrast to early work
in the field, which discussed algorithmic fairness concerns solely in classification tasks,
without questioning domain-specific challenges or the harms different demographic
groups might face. Through highlighting some papers, we have made a case for why
more specialised research is necessary, both from a legal and technological point of view,
as non-specific approaches come at the risk of ignoring the algorithmic systems that are
actually used by companies and the unique considerations that go into tackling their
discriminatory behaviour.

Finally, we examined the geographical context of ongoing research, by analysing authors’
affiliations and the papers’ geographical focus. While the trend is slowly changing, most
papers come from global north countries and focus on the algorithmic development and
regulations there. Through some case studies, we have emphasized how a lack of di-
verse cultural considerations in developing algorithms, can lead to severe discriminatory
results depending on where they are applied. Therefore, an inclusive approach is neces-
sary to comprehend the broader implications of algorithmic fairness in distinct contexts
and how to address these.





Chapter 6666666666666666666666666666666666666666666666666666666666666666666666666
Conclusion

This thesis has made various contributions towards shifting the discussion around al-
gorithmic fairness away from single mathematical fairness notions, and instead towards
more rigorous and human-centered approaches for measuring and mitigating bias.

Chapter 1 and 2 have focussed on bias detection in ADM systems. Specifically, in Chapter
1 we dealt with the potential of interactive auditing toolkits for conducting rigorous bias
audits. We identified the requirements for these toolkits to be usable in realistic settings.
We have inspected existing tools and shown how some of them fall short in exposing
more complex patterns of bias, such as intersectional discrimination or the potential
causes of such biases. By comparing different toolkits we also highlighted how their
functionality can be combined, to ultimately design a tool that meets auditors’ needs. In
Chapter 2 we zoomed in on one specific part of bias audits, namely the measurement
of individual fairness. One current individual fairness notion, as defined by situation
testing, is based on the principle of treating likes alike: if we want to know if an individ-
ual of some specific demographic group received fair treatment, we need to compare
their decision output to those of other similar individuals of other demographic groups.
Again, we have highlighted the importance of adapting context-dependent approaches
for measuring fairness, by showing the shortcomings of an arbitrarily defined distance
function to measure similarity in this setting. Moreover, we proposed a method to learn
an appropriate distance function from the data, such that similarities of individuals are
only defined based on attributes relevant to a decision task.

After concentrating on appropriate tools and methods for bias detection in this thesis’s
first two chapters, we proposed a new bias mitigation technique in Chapter 3. We
explored how the framework of selective classification, that allows classification model
to not make predictions for uncertain instances, can be extended to account for the
unfairness of predictions. In other words, we designed a method for learning a selective
classifier that rejects predictions that are either uncertain or unfair. We ensured that the
rejection-mechanism for unfair predictions is completely explainable and highlighted
how these explanations, that show why an original prediction was seen as discriminatory,
can empower humans to make more well-informed decisions on these instances. With
this contribution we highlighted the importance of properly understanding an ADM
model’s biases before these biases are resolved.

In Chapter 4 we moved from algorithms for bias mitigation to evaluating their effec-
tiveness. We made a case for why the popular evaluation scheme, provided by the
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fairness-accuracy trade-off is suboptimal for two reasons: first, this scheme measures
fairness only through single mathematical definitions, rather than encouraging more
thorough bias audits. Second, this evaluation scheme is logically flawed, as it requires a
high accuracy on decision labels that we believe to be flawed and biased to begin with.
As an alternative way to benchmark fairness interventions, we have presented a new
dataset containing a biased and fair version of its decision labels, providing full infor-
mation about which instances are discriminated. We have shown how this dataset can
be used to evaluate fairness interventions, by applying them on the biased version of
the labels and testing their accuracy on the fair ones. We have also shown how some
fairness interventions that work well according to the traditional evaluation scheme, do
not necessarily perform well according to this new one, further emphasizing the flaws of
the accuracy-fairness trade-off.

In the final chapter of this thesis, we have zoomed out from specific concerns regarding
bias detection and mitigation in ADM systems and instead provided a broader overview
of the field of algorithmic fairness. Specifically, we presented a scoping review of how the
research has evolved in the last 15 years, regarding its geographical context, discussed
domains, demographic groups and technologies. Distinguishing between contributions
from technological and legal experts, we established popular research trends and iden-
tified research gaps that deserve more attention from the community. Based on the
findings of this scoping review and based on the content of the other chapters of this
thesis we can establish various directions for future research that should evolve from this
thesis.

6.1 The Need for Case-Studies

In Chapters 1-3 of this thesis we have advocated for thorough and rigorous methods for
detecting and mitigating biases in ADM systems. We need to take a context-dependent
approach, that allows us to take the intricacies of a decision task into account and lets
us understand which biases are unacceptable and which ones can be justified by the
nature of the domain. While we have discussed tools and algorithms that enable such
context-driven approaches and empower human auditors to incorporate their domain
knowledge into decision tasks, we have not yet tested any of these approaches in a
specific setting like hiring or lending. As we have pointed out in our scoping review,
conducting case-studies and collaborating with experts from a field is highly important to
understand relevant legislation, time- and budget constraints, available data and current
technological practices within a domain. Hence, until these kinds of case studies are
conducted, it is difficult to estimate under which circumstances our proposed solutions
are viable and how they may be further adapted for realistic settings.

For instance, an intriguing case study could involve examining the fair selective classifier
introduced in Chapter 3 within a lending context. By testing this classifier in such
a scenario, we could observe how bankers review predictions flagged as unfair and
how they utilize the explanations provided for rejections. Additionally, this exploration
could offer insights into the compatibility of the methodology with the bank’s data and
workflow and the resources they can allocate to a human-in-the-loop approach. As
highlighted in Chapter 5, we argue that it is through case studies like these that we
can propel the field of algorithmic fairness forward and discover effective strategies for
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mitigating the harms caused by real-life ADM systems.

6.2 Involving End-Users

In this thesis, we have taken a technologically-centered approach to algorithmic fairness,
exploring how tools and algorithms can enable more rigorous and context-driven bias
audits and interventions. However, as mentioned in the introductory chapter, this ap-
proach is not meant to undermine the importance of stakeholder-driven approaches in
the field.

As the name implies, stakeholder-driven approaches involve the active engagement of
various stakeholders in the design, evaluation, and testing of a technological system.
Referring back to the example from the previous section, further developing our selective
classifier in the context of a lending setting would involve engaging bankers who use
the system and its decision subjects. We have already explained how the involvement of
bankers is essential for understanding how a system can fit into their current workflow
and practices. Equally important is understanding the perspectives of loan applicants,
as their lived experiences reveal their unique needs and challenges when applying for a
loan.

This also relates to the points we made in our scoping review about focusing on specific
demographic groups: understanding both the historical discrimination these groups
have faced and how these dynamics may play out under current circumstances is neces-
sary to address any inequalities.

The research presented in this thesis has not engaged in stakeholder-driven design and
has not viewed algorithmic fairness from a demographic-specific lens. While we believe
our proposed methodology can still serve as a solid foundation for building concrete and
contextually tailored approaches, this is certainly an area for future research. Related to
this, it is important to look beyond sexism and racism, the most commonly addressed
forms of discrimination in this thesis. As mentioned in Chapter 5, there are many more
sensitive attributes to consider. Furthermore, as discussed in Chapter 1, algorithmic
biases can still affect marginalized groups even if information about their nationality,
disability status, or other sensitive characteristics (beyond gender and race) is unavailable.

Exploring how the proposed methodologies in this thesis, such as learning a distance
metric for individual fairness (Chapter 2) and building a fair selective classifier (Chapter
3), can be applied to a variety of sensitive characteristics (some of which might not be
recorded in the data) would be a worthwhile effort. Adopting a stakeholder-driven
approach for this would be highly beneficial in addressing questions such as under
what circumstances individuals would feel comfortable sharing sensitive information
and understanding how intersectionally defined groups might experience unique harms
imposed by an algorithmic system.
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6.3 Going from static to dynamic settings

In Chapter 1-4 of this thesis, we have focussed on bias mitigation in automated decision
tasks, also referred to as classification tasks. Even if Chapter 5 has highlighted how there
are many more algorithmic technologies to consider, it is worthwhile to mention how even
the heavily discussed classification setting tends to be more complex than discussed in
this thesis. This is largely due to the dynamic nature under which those systems operate.
So far we have only considered static settings, assuming that after the data for some
task is gathered, a classification model is trained on a part of this data and its biases
are audited for on another part. Once a classification model (with or without fairness
interventions) is selected, we assume it does not change throughout its deployment and
is used in isolation from other algorithmic systems. In reality, both the learning and
deployment process of a decision-making model are a lot more complex: throughout
its deployment, a model may be retrained on new batches of data several times. What
is more, the nature of the data used for retraining might be directly influenced by the
decisions the system has made in the past [126]. For instance, in a lending setting a bank
continuously gathers new information about which loan receivers manage to pay back
their credits, which can be used to fine-tune decisions for new applicants. However, since
information is only available on those individuals who were granted a loan by the ADM
system in the first place, new biases might be introduced as a result of this retraining
process. Additionally, decision-making models might be used in combination with other
algorithmic systems, and the incoming data of new applicants may change over time as
a result of concept drift [28].

It is clear that fairness is even less straightforward to address in highly dynamic settings
like these. Hence, it remains to be studied how the tools and algorithms discussed in
this thesis can be adapted to account for this non-static nature. Similarly as pointed
out in the previous sections, we believe that case studies, working with realistic data
and investigating the current practices within a domain, are key to shed light on these
concerns.
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Appendix Chapter 3

A.1 Illustrative Example of IFAC’s Rejection Process

In Figure A.1 we see how our selective classification model IFAC behaves on one instance
x of ACSIncome. In this example, a base classifier predicts that a x has a low income
with a probability of 74.17%. To decide whether to keep this original prediction, IFAC
starts by analysing if the prediction falls under any global patterns of unfairness it has
recorded. In this case, the instance falls under the group of women, working in Sales
aged between 60 and 69, that is marked as potentially discriminated. The reason why
it is marked as such is that on a separate dataset, the ratio of negative prediction labels
for this subgroup is much lower when the sensitive part describing this subgroup (in
this case their sex) is negated. To illustrate: on this separate dataset the base-classifier
predicted a negative decision label 90% of the time for the group women, working in
Sales and aged between 60 and 69, as opposed to 40% for the same group of non-female
instances. Given this high difference, the first global fairness check has failed, and the
rejector proceeds with an individual fairness analysis. Here it makes use of the Situation
Testing algorithm, and compares the positive label ratios of x’s most similar instances
from the reference group (i.e. white men), with the positive label ratios of x’s most similar
instances from the non-reference group. In doing so, it can make a more fine-grained
fairness analysis, and not just assess the classifiers’ behaviour on the group of people
working in Sales and aged between 60 and 69; but also take into account other features,
like peoples’ education level or marital status. We observe here that even if individuals
are similar regarding all legally grounded features, their sensitive characteristics still
influence the ratio of positive decision labels, which is 2/3rd for our reference group
white men and 0 for our non-reference group. Because this difference is quite large the
local fairness test fails and the overall prediction is deemed as unfair. To then decide
whether to perform a fairness intervention or reject the prediction, the rejector checks if
the prediction probability of 74.17% falls above +_+% � ��)_��)+��%. In this case, it does,
meaning that our prediction is unfair but certain. Hence, the rejector rejects the original
low-income prediction. As a next step, this rejection and the explanation behind why
the original prediction was considered unfair can be passed on to a human decision-
maker. This person can use their domain knowledge as well as the explanation behind
the rejection, to form a new decision for the instance in question. For instance, they
may review the instances that were used for the similarity analysis in the individual
fairness check, and determine if these instances were similar enough to the instance in
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For binary classification we can write 1 = (�- |(¬ý, þ)) + (¬�- |(¬ý, þ)) which yields:

2(�- |(¬ý, þ)) < (�- |(¬ý, þ)) + (¬�- |(¬ý, þ))

(�- |(¬ý, þ)) < (¬�- |(¬ý, þ))

�%% �X((¬ý, þ) → �-) < �%% �X((¬ý, þ) → ¬�-)

(A.4)

¥

A.3 Full Fairness Results

In Table A.1 and A.2 we display the full fairness results for ACSIncome and Wisconsin-

Recidivism for each classifier-methdology combination.

Table A.1: Full Fairness Results Income Prediction

M. Wh. F. Wh. M. Bl. F. Bl. M. Oth. F. Oth. Range Std.

RF

FNR
FC .33±.03 .57±.03 .57±.09 .60±.11 .44±.18 .59±.22 .27 .11
UBAC .26±.03 .54±.04 .61±.11 .67±.10 .30±.18 .54±.26 .40 .17
IFAC .37±.04 .44±.06 .57±.08 .49±.11 .41±.17 .52±.25 .20 .08

FPR
FC .24±.03 .10±.01 .12±.04 .05±.01 .08±.07 .05±.05 .19 .07
UBAC .20±.03 .06±.01 .07±.03 .02±.01 .07±.08 .03±.04 .18 .07
IFAC .18±.03 .11±.01 .10±.04 .04±.02 .08±.07 .05±.05 .14 .05

Pos.
Ratio

FC .43±.02 .17±.01 .17±.03 .09±.01 .18±.07 .13±.07 .34 .12
UBAC .43±.03 .13±.01 .12±.03 .05±.02 .16±.07 .10±.07 .38 .13
IFAC .36±.02 .20±.01 .16±.03 .09±.02 .17±.08 .15±.07 .27 .09

NN

FNR
FC .34±.03 .52±.04 .60±.08 .69±.09 .40±.22 .56±.22 .35 .13
UBAC .24±.04 .56±.06 .63±.09 .75±.10 .38±.22 .42±.26 .50 .18
IFAC .35±.04 .47±.07 .60±.08 .60±.14 .38±.22 .44±.29 .25 .11

FPR
FC .19±.02 .06±.01 .07±.03 .03±.01 .04±.04 .07±.04 .16 .06
UBAC .15±.02 .03±.01 .04±.03 .01±.01 .02±.03 .03±.04 .13 .05
IFAC .13±.01 .06±.01 .06±.03 .03±.02 .02±.03 .07±.04 .11 .04

Pos.
Ratio

FC .40±.02 .15±.01 .14±.03 .07±.01 .15±.05 .16±.05 .34 .11
UBAC .40±.02 .09±.01 .10±.03 .03±.01 .12±.06 .11±.06 .37 .13
IFAC .33±.02 .15±.01 .12±.03 .07±.01 .12±.06 .15±.05 .27 .09

XGB

FNR
FC .29±.03 .57±.05 .57±.09 .62±.07 .36±.14 .52±.25 .33 .13
UBAC .20±.03 .62±.07 .65±.12 .80±.08 .16±.16 .43±.28 .65 .26
IFAC .33±.03 .47±.06 .61±.10 .62±.11 .38±.15 .40±.26 .29 .12

FPR
FC .19±.02 .05±.01 .07±.02 .04±.01 .08±.05 .03±.04 .16 .06
UBAC .14±.02 .02±.01 .03±.02 .02±.01 .03±.04 .02±.02 .12 .05
IFAC .11±.02 .06±.01 .06±.01 .03±.01 .06±.06 .02±.04 .09 .03

Pos.
Ratio

FC .42±.02 .13±.01 .14±.02 .08±.02 .19±.06 .13±.07 .34 .12
UBAC .41±.02 .08±.02 .09±.03 .04±.01 .15±.07 .10±.06 .38 .14
IFAC .32±.02 .15±.01 .12±.03 .06±.02 .16±.06 .13±.07 .27 .09
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Table A.2: Full Fairness Results Recidivism Prediction

White Black Other Range Std.

RF

FNR
BC .20 ± .01 .34 ± .02 .26 ± .02 .14 .07
USC .14 ± .01 .27 ± .02 .25 ± .02 .13 .07
FSC .14 ± .01 .24 ± .02 .24 ± .02 .10 .05

FPR
BC .61 ± .02 .51 ± .02 .55 ± .05 .09 .05
UBAC .66 ± .02 .53 ± .03 .54 ± .05 .13 .07
IFAC .64 ± .02 .56 ± .03 .56 ± .06 .08 .05

Pos.
Ratio

FC .72 ± .01 .59 ± .01 .65 ± .03 .13 .07
UBAC .79 ± .01 .63 ± .02 .66 ± .03 .15 .08
IFAC .77 ± .01 .66 ± .02 .67 ± .03 .11 .06

NN

FNR
FC .22 ± .01 .38 ± .02 .30 ± .02 .17 .08
UBAC .20 ± .01 .34 ± .02 .27 ± .02 .14 .07
IFAC .20 ± .01 .33 ± .02 .26 ± .02 .13 .06

FPR
FC .58 ± .02 .44 ± .02 .51 ± .06 .14 .07
UBAC .56 ± .02 .42 ± .02 .50 ± .05 .14 .07
IFAC .55 ± .02 .43 ± .02 .51 ± .05 .12 .06

Pos.
Ratio

BC .70 ± .01 .53 ± .01 .62 ± .03 .17 .09
UBAC .71 ± .01 .55 ± .01 .63 ± .03 .16 .08
IFAC .70 ± .01 .56 ± .01 .64 ± .03 .14 .07

XGB

FNR
FC .20 ± .01 .33 ± .03 .26 ± .02 .14 .07
UBAC .14 ± .01 .28 ± .02 .23 ± .02 .14 .07
IFAC .14 ± .01 .28 ± .02 .23 ± .02 .14 .07

FPR
FC .60 ± .01 .46 ± .03 .57 ± .03 .15 .07
UBAC .65 ± .02 .47 ± .04 .51 ± .03 .18 .09
IFAC .64 ± .02 .46 ± .04 .51 ± .03 .18 .09

Pos.
Ratio

BC .72 ± .01 .56 ± .02 .67 ± .02 .16 .08
UBAC .78 ± .01 .60 ± .02 .66 ± .02 .18 .09
IFAC .78 ± .01 .60 ± .02 .67 ± .02 .18 .09

A.4 WisconsinRecidivism Results with Less Strict Unfair-

ness Selection

In Figure A.2 we see the results of a Random Forest classifier combined with the different
abstention methods on WisconsinRecidivism. For the local fairness check as executed
with Situation Testing we now set the threshold t to 0.0. Intuitively this means, that
regardless of the local fairness results any instance falling under a global pattern of
discrimination will be considered as unfair (the situation testing results can still be
used as extra information for a human reviewer). We see here that with this less strict
unfairness selection, IFAC reduces FNR, FPR and PDR differences across demographics
more than when using t = 0.3.
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B.1 Datasheet for Dataset

Motivation

For what purpose was the dataset created? Was there a specific task in mind? Was

there a specific gap that needed to be filled? Please provide a description.

The dataset was created to provide a new benchmarking tool for fair Machine Learning
algorithms. Different than other datasets typically used for evaluating fair ML, our data
contains a fair and biased version of its decision label. Using this, we can check the
effectiveness of a fair ML intervention, by checking how well it can predict the fair labels
after being trained on the biased ones.

Who created this dataset (e.g., which team, research group) and on behalf of which
entity (e.g., company, institution, organization)?

Daphne Lenders and Toon Calders were responsible for collecting the biased labels of
this dataset. Both are affiliated with the ADReM Data Lab of the University of Antwerp.
The rest of the data (including its fair label) was based on an already existing dataset,
which is publicly available online1.

Who funded the creation of the dataset? If there is an associated grant, please pro-

vide the name of the grantor and the grant name and number.

The creation of the dataset was funded by the University of Antwerp - Research Excellence
Center DigiTax.

Any other comments? /

1https://www.kaggle.com/datasets/uciml/student-alcohol-consumption (license CC0)
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Composition

What do the instances that comprise the dataset represent (e.g., documents, pho-
tos, people, countries)? Are there multiple types of instances (e.g., movies, users,

and ratings; people and interactions between them; nodes and edges)? Please provide

a description.

Each instance in this dataset represents a high school student, following either a Por-
tuguese or Maths course. There is a variety of information available for each student,
including, e.g., information about their studytime, their school absences and their free
time behaviour. Special variable of interests are students’ sex, their performance on
an exam (pass vs. fail) and their predicted performance on that exam. The predicted
performance was based on an experiment, where students were presented with some
information about the students, based on which they had to make grade predictions.
Comparing the predicted exam performance with the actual exam performance we ob-
serve clear bias against boys.

How many instances are there in total (of each type, if appropriate)?

Our dataset consists of a total of 856 instances. Note, that the two dataset entries might
relate to the same student, whereas one entry corresponds to the student’s performance
in a Maths course and the other to the performance in a Portuguese course.

Does the dataset contain all possible instances or is it a sample (not necessarily
random) of instances from a larger set? If the dataset is a sample, then what is the

larger set? Is the sample representative of the larger set (e.g., geographic coverage)?

If so, please describe how this representativeness was validated/verified. If it is not

representative of the larger set, please describe why not (e.g., to cover a more diverse

range of instances, because instances were withheld or unavailable).

The instances in our dataset are sampled from a larger dataset that is publicly available.
In sampling from this data, we excluded all students whose grade for the last exam of
the course was 0. Further, we randomly sampled 428 from the 430 male instances, and
428 from the 560 female instances. These steps were taken so that in the collection of our
biased labels, we could present each participant with four male and four female student
profiles, which the participants had to make grade predictions for.

What data does each instance consist of? “Raw” data (e.g., unprocessed text or
images) or features? In either case, please provide a description.

Each instance consists of several features, that are either categorical or numerical in
nature.

Is there a label or target associated with each instance? If so, please provide a

description.

While other features of the data could potentially be used as a target as well, our intended
target label is whether each student passed or failed the third exam of the course they
were following. Our dataset consists of both a biased and a fair version of this label. The
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fair version was obtained, by checking whether a student’s grade for the last exam was ≥
10. There are multiple ways in which the biased label can be obtained and all are based on
a human experiment where participants ranked eight student profiles according to their
expected performance and predicted their grade for the exam. The first way to obtain the
biased label is by checking whether the predicted grade for the exam is ≥ 10. The second
way is to look at the ranking position each student was assigned to: the passing-labels of
most highly ranked instances were always changed to “true", while they were changed
to “false" for the two lowest rated instances.

Is any information missing from individual instances? If so, please provide a de-

scription, explaining why this information is missing (e.g., because it was unavailable).

This does not include intentionally removed information, but might include, e.g., redacted

text.

No information is missing.

Are relationships between individual instances made explicit (e.g., users’ movie
ratings, social network links)? If so, please describe how these relationships are

made explicit.

Relationships between individual instances are not made explicit.

Are there recommended data splits (e.g., training, development/validation, test-
ing)? If so, please provide a description of these splits, explaining the rationale behind

them.

There are no recommended data splits.

Are there any errors, sources of noise, or redundancies in the dataset? If so, please

provide a description.

Since our dataset was partly based on an already existing dataset, and partly based on
our own experiment there are two types of noise in the data. The first relates to the
noise that was already present in the original data, which consists of information of high
school students and their exams for a course. A lot of information of the high school
students was self-recorded, like, e.g., information on their drinking behaviour or their
studytime. Thus it is questionable to which extent the students were truthful in reporting
this information. Also, in the collection of this data, the sex of the students was treated as
a binary variable. Thus, important information on non-binary gender identity may have
been lost. Second, our biased labels also contain some noise, due to the fact that they were
gathered through a human experiment. In this experiment 107 participants each made
grade predictions for 8 student profiles. Because each participant might have different
stereotypes and biases when estimating students’ exam performance, the labels may not
be very consistent. It should be noted that this noise was intentionally introduced, to
reflect the complexity of real-life decision making and discriminatory biases.

Is the dataset self-contained, or does it link to or otherwise rely on external re-
sources (e.g., websites, tweets, other datasets)? If it links to or relies on external

resources, a) are there guarantees that they will exist, and remain constant, over time; b)
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are there official archival versions of the complete dataset (i.e., including the external re-

sources as they existed at the time the dataset was created); c) are there any restrictions

(e.g., licenses, fees) associated with any of the external resources that might apply to a

future user? Please provide descriptions of all external resources and any restrictions

associated with them, as well as links or other access points, as appropriate.

While the main part of our dataset can be used as it is, it is possible to extent it further
using the original data it was based on. As this data was publicly available online
(license CC0), we included a preprocessed version of it on our kaggle and github page.
This data contains some information of the students, that we did not present when asking
participants to make grade predictions for them. It is possible to link this information
to our collected data, using the indices of both datasets. Because we make both the
preprocessed original data and our collected data available online, we can guarantee that
both will keep existing without any changes (except changes we might make ourselves).

Does the dataset contain data that might be considered confidential (e.g., data
that is protected by legal privilege or by doctor-patient confidentiality, data that
includes the content of individuals non-public communications)? If so, please pro-

vide a description.

No, this dataset does not contain any of such data.

Does the dataset contain data that, if viewed directly, might be offensive, insulting,
threatening, or might otherwise cause anxiety? If so, please describe why.

As mentioned, our dataset consists of both a fair and biased version of its decision label.
Comparing the biased label with the fair one, we see that participants had discriminatory
biases (mostly targeted against boys) when making grade predictions. These biases may
be offensive. Also, “sex" is treated as a binary variable in our dataset, which was a
direct consequence of the binary gender categories used in the original “Student Alcohol
Consumption" dataset. While we recognize that this may be offensive to some people
(especially those who identify with a non-binary gender category), we emphasize that
this does not reflect our own beliefs about gender identities.

Does the dataset relate to people? If not, you may skip the remaining questions in this

section.

Yes, the dataset relates to people.

Does the dataset identify any subpopulations (e.g., by age, gender)? If so, please

describe how these subpopulations are identified and provide a description of their re-

spective distributions within the dataset.

Yes, our datast contains information about students’ sex, and it is also possible to infer
their age using the original data it was based on. In our dataset half of the students
(i.e. 428 out of 856) are male and the other half are female. The ages of students range
between 15 and 22. There are 169 students who are 15 years old, 230 who are 16 years,
230 who are 17 years, 172 who are 18 years, 41 who are 19 years and 15 students who are
20 years or older (9 students that are 20, 3 that are 21 and 2 that are 22).
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Is it possible to identify individuals (i.e., one or more natural persons), either di-
rectly or indirectly (i.e., in combination with other data) from the dataset? If so,

please describe how.

No, it is not possible to identify individuals from out dataset.

Does the dataset contain data that might be considered sensitive in any way (e.g.,
data that reveals racial or ethnic origins, sexual orientations, religious beliefs, po-
litical opinions or union memberships, or locations; financial or health data; bio-
metric or genetic data; forms of government identification, such as social security
numbers; criminal history)? If so, please provide a description.

The sex of the students might be considered as sensitive data. Further, in the original
data there is some information about the parents of the students including their job
and education level. Both might give some indication of the socio-economic status of
the students. Finally, the data also contains information about the drinking behaviour
of students. This information can especially be considered as sensitive, given that not
all of the students are of legal drinking age (in Portugal, the country where the data
was collected this age is 18+). We emphasize that we do not want to encourage illegal
drinking, by distributing our dataset. Still, we also highlight that none of the students
of which the data was collected have to fear unwanted consequences for their actions, as
the data is completely anonymous and cannot be traced back to any individuals.

Any other comments? /

Collection Process

How was the data associated with each instance acquired? Was the data directly

observable (e.g., raw text, movie ratings), reported by subjects (e.g., survey responses),

or indirectly inferred/derived from other data (e.g., part-of-speech tags, model-based

guesses for age or language)? If data was reported by subjects or indirectly inferred/derived

from other data, was the data validated/verified? If so, please describe how.

The information about the students as well as their grades were gathered in a previous
study by Cortez and Silva. The data was gathered from two high schools in Portugual, for
more information on how they collected this data we refer to their paper2. We collected
the biased labels for this dataset through a survey, where participants were asked to
make grade predictions for students, based on short descriptions about them. In the
paper corresponding to our dataset, we give a more detailed description of this survey,
including the exact task set-up, the materials we used and information about participant
recruitment procedures.

What mechanisms or procedures were used to collect the data (e.g., hardware
apparatus or sensor, manual human curation, software program, software API)?
How were these mechanisms or procedures validated?

2Cortez, P. & Silva, A. (2008). Using data mining to predict secondary school student performance. In A.
Brito and J. Teixeira Eds., Proceedings of 5th FUture BUsiness TEChnology Conference (FUBUTEC 2008), pp. 5-12,
Porto, Portugal, April, 2008, EUROSIS, ISBN 978-9077381-39-7.
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We used the survey platform Qualtrics3 to set up our survey. Our survey was based on
multiple pilot studies, were we tested its clarity and suitability.

If the dataset is a sample from a larger set, what was the sampling strategy (e.g.,
deterministic, probabilistic with specific sampling probabilities)?

As previously mentioned the data we collected our biased labels for, was sampled from
a slightly bigger dataset that was already publicly available online. We excluded all
students with a grade equal to 0 from this dataset, and randomly sampled 428 male and
428 female instances from the rest of the data.

Who was involved in the data collection process (e.g., students, crowdworkers,
contractors) and how were they compensated (e.g., how much were crowdworkers
paid)?

The collection of our data was based on voluntary participation. Further, we also put
our survey on the Survey Exchange platforms SurveySwap and SurveyCircle4. Here
participants who filled out our survey were rewarded with survey-responses for their
own survey.

Over what timeframe was the data collected? Does this timeframe match the cre-
ation timeframe of the data associated with the instances (e.g., recent crawl of old
news articles)? If not, please describe the timeframe in which the data associated with

the instances was created.

The biased labels were sampled from January until March 2022. This timeframe does not
match the creation of the data associated with the instances: the information about each
student was recorded in 2005 and 2006.

Were any ethical review processes conducted (e.g., by an institutional review board)?
If so, please provide a description of these review processes, including the outcomes, as

well as a link or other access point to any supporting documentation.

To collect our biased labels we obtained ethical approval by the Ethics Committee for the
Social Sciences and Humanities of the University of Antwerp, under reference number
SHW_21_128. To start the review process we gave a detailed description of our exper-
imental setup, possible risks involved in participation and the way in which we would
store and process the collected data. We received a positive outcome for this review
process.

Does the dataset relate to people? If not, you may skip the remaining questions in this

section.

Yes, the dataset relates to people.

Did you collect the data from the individuals in question directly, or obtain it via
third parties or other sources (e.g., websites)?

3https://www.qualtrics.com
4https://surveyswap.io/ and https://www.surveycircle.com/en/surveys/
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We obtained the data about the students through an already existing dataset (this existing
dataset was based on asking individuals directly for their information). The biased
labels were also obtained directly, by specifically asking our participants to make grade
predictions for the students.

Were the individuals in question notified about the data collection? If so, please

describe (or show with screenshots or other information) how notice was provided, and

provide a link or other access point to, or otherwise reproduce, the exact language of the

notification itself.

Again, for details on the data collection of the original data (with the information about
the students) we refer to the paper of Cortez and Silva. To collect the biased labels for this
dataset, participants first had to fill out a consent form, before they could start the survey.
Here it was also explained that the collected data would be made publicly available.

Did the individuals in question consent to the collection and use of their data? If

so, please describe (or show with screenshots or other information) how consent was

requested and provided, and provide a link or other access point to, or otherwise repro-

duce, the exact language to which the individuals consented.

Yes, our participants had to consent to the collection and use of their data. The consent
form can be seen when following our survey link: https://uantwerpen.eu.qualtrics.
com/jfe/form/SV_5gOFzeF3xtGSinI

If consent was obtained, were the consenting individuals provided with a mecha-
nism to revoke their consent in the future or for certain uses? If so, please provide

a description, as well as a link or other access point to the mechanism (if appropriate).

As the participants’ data was collected anonymously, and survey responses could not be
matched to individuals’ identity, we did not provide participants with a mechanism to
revoke their consent.

Has an analysis of the potential impact of the dataset and its use on data subjects
(e.g., a data protection impact analysis) been conducted? If so, please provide a

description of this analysis, including the outcomes, as well as a link or other access

point to any supporting documentation.

Because we are dealing with anonymous data, no formal analysis has been conducted.

Any other comments? /

Preprocessing/cleaning/labeling

Was any preprocessing/cleaning/labeling of the data done (e.g., discretization or
bucketing, tokenization, part-of-speech tagging, SIFT feature extraction, removal
of instances, processing of missing values)? If so, please provide a description. If

not, you may skip the remainder of the questions in this section.
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Before collecting our biased decision labels based on the original dataset, we applied
some pre-processing steps on it. All steps are described below:

• Parent’s education - This was a variable that was not part of the original dataset.
Instead the dataset consisted of two variables, namely Fedu and Medu to respectively
denote the father’s and the mother’s education level. We obtained our variable
Parent’s education by taking the maximum of the two.

• Studytime - Originally, this variable consists of four levels (less than 2 hours vs. 2-5
hours vs. 5-10 hours vs. more than 10 hours). Because there were little students with
a studytime of longer than 10 hours, we decided to merge the latter two levels

• Absences Originally, this variable ranges from 0 to 93. Since high values for this
variable were quite uncommon, we decided to bin all absences ≥ 7 into one level
called More than 6

• Freetime - Originally, this variable ranged from 1 (very low) to 5 (very high). We
binned this variable into three categories, where 1 & 2 are binned into level, and 4
& 5 are binned as well

• Gooing out - Again, this variable originally ranged between 1 and 5. We decided
to bin the last two levels (4 & 5)

• Alcohol Consumption - The original dataset consisted of two variables denoting the
student’s alcohol consumption namely Walc (alcohol consumption in the weekend)
and Dalc (alcohol consumption throughout the week). For our experiment we only
showed the students’ alcohol consumption in the weekend. This variable originally
consisted of 5 levels, where we binned the latter two ones

Was the “raw” data saved in addition to the preprocessed/cleaned/labeled data
(e.g., to support unanticipated future uses)? If so, please provide a link or other

access point to the “raw” data.

Yes, a not-preprocessed version of the data is being provided on our kaggle page as well.

Is the software used to preprocess/clean/label the instances available? If so, please

provide a link or other access point.

Yes, the (Python) code that we used to preprocess the data is available on github: https:
//github.com/calathea21/settingUpBenchmarkCollection

Any other comments? /

Uses

Has the dataset been used for any tasks already? If so, please provide a description.



B.1. DATASHEET FOR DATASET 141

The dataset has been used for our own benchmarking experiment. Here we tested the
effectiveness of several fairness interventions, by checking how well they can predict the
fair labels of the dataset after being trained on the biased ones.

Is there a repository that links to any or all papers or systems that use the dataset?
If so, please provide a link or other access point.

No such repository is available.

What (other) tasks could the dataset be used for?

The dataset was created mostly for benchmarking studies, like the one previously de-
scribed. However, there are some other interesting use cases for the fair Machine Learning
community. It could for instance be interesting to use the data to better understand the
dynamics behind discriminatory decision making, by checking how exactly the fair labels
relate to the biased ones, and if there are some clear patterns in which discrimination/-
favouritism occurs. This knowledge could then also be exploited to create better fairness
interventions.

Is there anything about the composition of the dataset or the way it was collected
and preprocessed/cleaned/labeled that might impact future uses? For example, is

there anything that a future user might need to know to avoid uses that could result in

unfair treatment of individuals or groups (e.g., stereotyping, quality of service issues) or

other undesirable harms (e.g., financial harms, legal risks) If so, please provide a de-

scription. Is there anything a future user could do to mitigate these undesirable harms?

Though the dataset can be a useful tool for benchmarking fair ML algorithms, users
should be careful not to overgeneralize their findings to other decision tasks. A fairness
intervention that performs well on our dataset, is not guaranteed to work well on others,
and may not be as fair/accurate as intended. Also, users should be cautious with the fact
that we treat “sex" as a binary variable in our dataset. If researchers start developing new
fairness algorithms based on our data, they should take into account that our data does
not provide information on the types of discrimination non-binary people might face.

Are there tasks for which the dataset should not be used? If so, please provide a

description.

Our dataset was made to test the effectiveness of fairness interventions targeting label
bias. We say that our collected version of the decision labels (i.e. whether students pass
an exam or not) contain label bias as they do not accurately reflect whether the students
actually passed or not, and where instead the result of a biased decision process. Label
bias is different than other forms of biases, like selection bias or historical bias. Hence,
fairness interventions that specifically target this kind of bias, should not be benchmarked
on our dataset.

Any other comments? /

Distribution
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Will the dataset be distributed to third parties outside of the entity (e.g., company,
institution, organization) on behalf of which the dataset was created? If so, please

provide a description.

Our dataset is publicly available online (under license CC BY-SA 4.05) meaning that any
third party can access and use it, as long as they give appropriate credit, provide a link
to the license and indicate if changes were made to the data.

How will the dataset will be distributed (e.g., tarball on website, API, GitHub) Does

the dataset have a digital object identifier (DOI)?

The dataset is distributed via kaggle: https://www.kaggle.com/datasets/daphnelenders/
performance-vs-predicted-performance. It’s DOI is: 10.34740/kaggle/dsv/3689065

When will the dataset be distributed?

Our dataset is already publicly available on kaggle.

Will the dataset be distributed under a copyright or other intellectual property (IP)
license, and/or under applicable terms of use (ToU)? If so, please describe this li-

cense and/or ToU, and provide a link or other access point to, or otherwise reproduce,

any relevant licensing terms or ToU, as well as any fees associated with these restric-

tions.

Our dataset is licensed under the Creative Commons Attribution-ShareAlike 4.0 Inter-
national License. To view a copy of this license, visit http://creativecommons.org/
licenses/by-sa/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain
View, CA 94042, USA.

Have any third parties imposed IP-based or other restrictions on the data associ-
ated with the instances? If so, please describe these restrictions, and provide a link or

other access point to, or otherwise reproduce, any relevant licensing terms, as well as

any fees associated with these restrictions.

No restrictions has been imposed on the data.

Do any export controls or other regulatory restrictions apply to the dataset or to
individual instances? If so, please describe these restrictions, and provide a link or

other access point to, or otherwise reproduce, any supporting documentation.

No export controls or other regulatory restrictions apply to the dataset.

Any other comments? /

Maintenance

5http://creativecommons.org/licenses/by-sa/4.0/
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Who will be supporting/hosting/maintaining the dataset?

Daphne Lenders will be responsible for supporting, hosting and maintaining the dataset.

How can the owner/curator/manager of the dataset be contacted (e.g., email ad-
dress)?

Daphne Lenders can be contacted by her institutional email: daphne.lenders@uantwerpen.be

Is there an erratum? If so, please provide a link or other access point.

As for now there is no erratum.

Will the dataset be updated (e.g., to correct labeling errors, add new instances,
delete instances)? If so, please describe how often, by whom, and how updates will be

communicated to users (e.g., mailing list, GitHub)?

The dataset was based on an existing dataset and on a one-time human experiment.
Unless new experiments are conducted, or mistakes in the current data are found, it is
unlikely that the dataset will be updated.

If the dataset relates to people, are there applicable limits on the retention of the
data associated with the instances (e.g., were individuals in question told that their
data would be retained for a fixed period of time and then deleted)? If so, please

describe these limits and explain how they will be enforced.

There are no limits on the retention of the data.

Will older versions of the dataset continue to be supported/hosted/maintained? If

so, please describe how. If not, please describe how its obsolescence will be communi-

cated to users.

If new versions of the dataset will be made available, all older versions will still be
accessible through the kaggle website.

If others want to extend/augment/build on/contribute to the dataset, is there a
mechanism for them to do so? If so, please provide a description. Will these con-

tributions be validated/verified? If so, please describe how. If not, why not? Is there a

process for communicating/distributing these contributions to other users? If so, please

provide a description.

No formal mechanism for contributing to our dataset consists yet, as for now it is unlikely
to be expanded. If there are suggestions for extending or augmenting the data, it is
possible to send an email to daphne.lenders@uantwerpen.be.

Any other comments? /
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(Org. Girl with Grade = 8/20)
Reason School Choice - Curriculum
Parents’ education - Middle School
Studytime - between 2 and 5 hours

Absences - 3
Going out - Twice a week

Alcohol consumption - moderate
Freetime - average

In a relationship - no

(a) Student Profile 1

(Org. Girl with Grade = 10/20)
Reason School Choice - Curriculum
Parents’ education - Middle School

Studytime - less than 2 hours
Absences - 1

Going out - Twice a week
Alcohol consumption - very high

Freetime - high
In a relationship - no

(b) Student Profile 2

(Org. Girl with Grade = 13/20)
Reason School Choice - Close to home

Parents’ education - High School
Studytime - between 2 and 5 hours

Absences - 4
Going out - Once a week

Alcohol consumption - moderate
Freetime - low

In a relationship - yes

(c) Student Profile 3

Figure B.2: Some of the profiles that participants had to make grade predictions for

As can be seen in this Figure, each student profile was presented in a tabular format.
To convey the sex of each student, we randomly assigned each profile to one of four
male/female names, depending on the students’ sex in the original dataset and whether
the profile was in the ’sex-swapped’ condition or not. The four male and female names
were chosen to represent common names in English speaking countries. In the experi-
ment all eight profiles were presented on one page, where the order of presentation was
randomized. On top of this page, participants were presented with a list of all student
names followed by a blank field. They were asked to use a drag-and-drop interface
to rank the students according to their expected performance. Additionally, they were
prompted to enter specific grade predictions (ranging from 0 to 20) in the blank field next
to each students’ name.

Before the grading task, participants were exposed to one of three forms of stereotype
activation:

1. None - Baseline condition in which no extra information is presented.

2. CaseBased - Here we presented participants with three student profiles along with
the grades of the students. Two profiles belong to male students with low grades
(5/20 and 10/20), while one belongs to a female student with a high grade (17/20).

3. Statistics - Here we presented a graph showing statistics about how some risk
factors affect boys’ chance to pass an exam more than they affect girls’ passing
chances. One presented risk factor was, e.g., having more than 6 school absences,
which makes boys ∼15% more likely to fail, while girls only ∼4% more likely. All
risk factors were chosen such that none of the presented profiles contained any of
these risk factors.

As can be seen, both the CaseBased and Statistics condition contained stereotypical
information against boys. We were interested to see whether presenting this information
prior to the prediction task would differently affect the grade predictions for male and
female students.

B.2.3 Participants

The participants were recruited through social media channels and the survey exchange
platforms SurveySwap and SurveyCircle. To participate, a consent form needed to be
filled out. All responses were completely anonymous, and after a quality controls6, to

6see: https://github.com/calathea21/analyzing_proof_of_concept
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filter out short responses and respondents who did not follow the survey instructions
correctly, we were left with data of 157 participants.

In table B.1 we show how the participants were distributed over the different conditions
of our experiment. In table B.2 the participant counts per gender and age category are
shown. Figure B.3 gives an overview of the nationality of the participants.

Table B.1: Number of Participants Across the Conditions

h
h
h
h

h
h
h
h

h
h

h
h
h
hh

Datatype
Stereotype Act.

None Case Based Statistics

Original N = 28 N = 28 N = 27
Sex-Swapped N = 29 N = 30 N = 27

Table B.2: Number of participants by gender and by age

Gender Count % of total

Female 107 63.3%
Male 60 35.5%
Prefer not to say 2 1.2%

Age Count % of total

18 - 24 97 57.4%
25 - 34 63 37.3%
35 - 44 7 4.1%
65 - 74 1 0.6%
Prefer not to say 1 0.6%
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participants under the “Statistics" condition (difffemale - male = 3.037) is higher than under
the “CaseBased" (difffemale - male = -1.588) and “None" conditions (difffemale - male = -0.597).
This confirms our hypothesis that biases against boys are not always inherent but can be
triggered, in particular through the “Statistics" stereotype activation.

One more general finding of our study is that significant effects of “stereotype activation"
or “sex" (or their interaction), were only found on certain profiles. In particular, we
observed that no effects occurred on “stereotypically good" profiles, of students with e.g.
high amount of study time or low alcohol consumption (see Appendix, profile 4 and 8).
Even though we did not go into a deeper analysis of this, it confirms our hypothesis that
the occurrence of bias does not only depend on the sex of the students, but also on their
other, more complex characteristics. While a more elaborate study is needed to generalize
our findings to real-life human behaviour, our results show that the experimental setup
of our study is appropriate to elicit interesting biases in human decision makers. As some
of these biases are discriminatory, we deemed the setup as useful for our main study.

B.2.6 All Statistical Results

Now that we have illustrated the type of main- and interaction effects we found in our
proof-of-concept study, we will show the statistical results on all the student profiles.

B.2.6.1 Profile 1

(Org. Girl with Grade = 8/20)
Reason School Choice - Curriculum
Parents’ education - Middle School
Studytime - between 2 and 5 hours

Absences - 3
Going out - Twice a week

Alcohol consumption - moderate
Freetime - average

In a relationship - no

(a) Student Profile 1 (b) Average grade predictions

Figure B.5: Results on Student Profile 1

Table B.3: Results Statistical Test Profile 1

Sum of Squares df Mean Square F p

Datatype 6217 1 6217 2.570 0.111
Stereotype Activation 18868 2 9434 4.0309 0.020
Datatype * Stereotype Activation 14.9 2 7.47 0.0030 0.997
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Table B.4: Results Post Hoc Test Profile 1

Comparison
Stereotype Activation Stereotype Activation Mean Difference SE df t ptukey

CaseBased - None 21.30 9.03 163 2.360 0.051
CaseBased - Statistics 23.17 9.15 163 2.531 0.033
None - Statistics 1.87 9.19 163 0.203 0.978

B.2.6.2 Profile 2

(Org. Girl with Grade = 10/20)
Reason School Choice - Curriculum
Parents’ education - Middle School

Studytime - less than 2 hours
Absences - 1

Going out - Twice a week
Alcohol consumption - very high

Freetime - high
In a relationship - no

(a) Student Profile 2 (b) Average grade predictions

Figure B.6: Results on Student Profile 2

Table B.5: Results Statistical Test Profile 2

Sum of Squares df Mean Square F p

Datatype 637 1 637 0.260 0.611
Stereotype Activation 23819.80 2 11909.90 5.157 0.007
Datatype * Stereotype Activation 37551.4 2 18775.7 8.4024 0.001

Table B.6: Results Post Hoc Test Profile 2

Comparison
Stereotype Activation Stereotype Activation Mean Difference SE df t ptukey

CaseBased - None -26.95 8.97 163 -3.006 0.009
CaseBased - Statistics -22.33 9.09 163 -2.456 0.040
None - Statistics 4.63 9.13 163 0.507 0.868
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B.2.6.3 Profile 3

(Org. Girl with Grade = 13/20)
Reason School Choice - Close to home

Parents’ education - High School
Studytime - between 2 and 5 hours

Absences - 4
Going out - Once a week

Alcohol consumption - moderate
Freetime - low

In a relationship - yes

(a) Student Profile 3 (b) Average grade predictions

Figure B.7: Results on Student Profile 3

Table B.7: Results Statistical Test Profile 3

Sum of Squares df Mean Square F p

Datatype 12536 1 12535.5 5.255 0.023
Stereotype Activation 1527.5 2 763.7 0.311 0.733
Datatype * Stereotype Activation 3242.391 2 1621.196 0.664 0.516

Table B.8: Results Post Hoc Test

Comparison
Datatype Datatype Mean Difference SE df t ptukey

Sex-Swapped
(Male)

-
Original
(Female)

-17.2 7.52 163 -2.29 0.023

B.2.6.4 Profile 4

(Org. Girl with Grade = 15/20)
Reason School Choice - Reputation

Parents’ education - University
Studytime - more than 5 hours

Absences - 0
Going out - Twice a week

Alcohol consumption - high
Freetime - high

In a relationship - yes

(a) Student Profile 4 (b) Average grade predictions

Figure B.8: Results on Student Profile 4

Table B.9: Results Statistical Test Profile 4

Sum of Squares df Mean Square F p

Datatype 128 1 128 0.0523 0.819
Stereotype Activation 2658.2 2 1329.1 0.5438 0.582
Datatype * Stereotype Activation 4338 2 2169 0.894 0.411
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B.2.6.5 Profile 5

(Org. Boy with Grade = 8/20)
Reason School Choice - Unknown
Parents’ education - Middle School
Studytime - between 2 and 5 hours

Absences - 2
Going out - Once a week

Alcohol consumption - very high
Freetime - low

In a relationship - yes

(a) Student Profile 5 (b) Average grade predictions

Figure B.9: Results on Student Profile 5

Table B.10: Results Statistical Test Profile 5

Sum of Squares df Mean Square F p

Datatype 9711.7 1 9711.71 4.045 0.046
Stereotype Activation 3880.80 2 1940.40 0.797 0.453
Datatype * Stereotype Activation 482.29 2 241.15 0.098 0.907

Table B.11: Results Post Hoc Test

Comparison
Datatype Datatype Mean Difference SE df t ptukey

Sex-Swapped
(Male)

-
Original
(Female)

15.2 7.54 163 2.01 0.046

B.2.6.6 Profile 6

(Org. Boy with Grade = 10/20)
Reason School Choice - Curriculum
Parents’ education - Middle School

Studytime - less than 2 hours
Absences - 4

Going out - Twice a week
Alcohol consumption - high

Freetime - high
In a relationship - no

(a) Student Profile 6 (b) Average grade predictions

Figure B.10: Results on Student Profile 6

Table B.12: Results Statistical Test Profile 6

Sum of Squares df Mean Square F p

Datatype 9710 1 9710 4.041 0.046
Stereotype Activation 22613 2 11307 4.869 0.009
Datatype * Stereotype Activation 1317 2 658 0.270 0.764
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Table B.13: Results Post Hoc Test Datatype (Profile 6)

Comparison
Datatype Datatype Mean Difference SE df t ptukey

Sex-Swapped
(Female)

-
Original
(Male)

15.22 7.55 163 2.01 0.046

Table B.14: Results Post Hoc Test Stereotype Activation (Profile 6)

Comparison
Stereotype Activation Stereotype Activation Mean Difference SE df t ptukey

CaseBased - None -28.0 8.99 163 -3.11 0.006
CaseBased - Statistics -12.4 9.12 163 -1.36 0.365
None - Statistics 15.6 9.15 163 1.71 0.206

B.2.6.7 Profile 7

(Org. Boy with Grade = 13/20)
Reason School Choice - Close to home

Parents’ education - High School
Studytime - between 2 and 5 hours

Absences - 0
Going out - Twice a week

Alcohol consumption - moderate
Freetime - low

In a relationship - yes

(a) Student Profile 7 (b) Average grade predictions

Figure B.11: Results on Student Profile 7

Table B.15: Results Statistical Test Profile 7

Sum of Squares df Mean Square F p

Datatype 1626 1 1626 0.665 0.416
Stereotype Activation 281 2 141 0.057 0.944
Datatype * Stereotype Activation 7474 2 3737 1.557 0.214
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B.2.6.8 Profile 8

(Org. Boy with Grade = 15/20)
Reason School Choice - Reputation

Parents’ education - University
Studytime - more than 5 hours

Absences - 2
Going out - Once a week

Alcohol consumption - moderate
Freetime - high

In a relationship - no

(a) Student Profile 8 (b) Average grade predictions

Figure B.12: Results on Student Profile 8

Table B.16: Results Statistical Test Profile 8

Sum of Squares df Mean Square F p

Datatype 49.5 1 49.5 0.0201 0.887
Stereotype Activation 1303.0 2 651.5 0.265 0.767
Datatype * Stereotype Activation 8253 2 4127 1.724 0.182
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B.4 Survey Main Study

Because the survey we used for our Main Study was very close to that of our proof-of-
concept study, we do not provide a copy of it (the survey used for the proof-of-concept
study can be seen in Appendix C). As mentioned previously, the main change in this
study lay in the presentation of the student profiles. Whereas in the proof-of-concept
study each participant had to rank and grade the same eight student profiles, different
profiles were presented per participant in our main study. Further, because the data
from our main study is made publicly available, we added the following remark to our
consent form:

Re-use of Data The data that is collected in this study will be made available
to public, so that it can be re-used for future scientific studies. This means, that
researchers outside the university of Antwerp might access your anonymous
responses. No personal information will be shared, however.

B.5 Results Main Study

B.5.1 Participants

In table we present the number of participants in our main study, distributed over the
different “Stereotype Activation" conditions. In Table B.18 we show the number of
participants by gender and age, while in Figure B.13 we show the number of participants
by their nationality.

Table B.17: Number of Participants Across the Conditions

Stereotype Act. Count % of Total

None 32 30.2%
CaseBased 34 32.1%
Statistics 40 37.7%

Table B.18: Number of participants by gender and by age

Gender Count % of total

Female 74 69.2%
Male 32 29.9%
Prefer not to say 1 0.9%

Age Count % of total

18 - 24 68 63.3%
25 - 34 33 30.8%
35 - 44 5 4.7%
45 - 54 1 0.9%

B.5.2 Understanding the Effect of Stereotype Activation

In our paper we have shown how our collected benchmark data contains biases based
on students’ sex, that are mostly targeted against boys. However, this is only one of
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Figure B.14: Visualization of how different stereotype activation conditions affected the
type/amount of bias introduced by our experiment.


