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English abstract

Topological data analysis is a recent and fast growing field that approaches the
analysis of (the shape of) data using techniques from algebraic topology. Its main
tool, persistent homology, captures information about cycles in the data: its connected
components, loops, voids, and so on.

The first part of the thesis investigates the properties of persistent homology. Ho-
mology captures cycles in the data, but what additional information is stored in the
persistence (“the what”)? We show that it can capture the number of holes, but also
important geometric notions of curvature and convexity. Stability theorems provide
mathematically provable guarantees of desirable properties of persistent homology
(“the why”), but how do these theoretical results translate to practice? We show that
persistent homology does not always yield noise robust features in a classification
task.

The second part explores two applications of persistent homology. Firstly, we
demonstrate how it can be used to study the preservation of topology and geometry
(“the how”); here we focus on hyperdimensional computing that encodes the input
data into a very high dimensional space. Secondly, we extract persistent homology
features from EEG data during an audiovisual task in order to detect attention,
providing some understanding when it can be useful in neuroscience applications
(“the when”).

In both parts, we depart from the dominant stream in the literature by highlight-
ing the versatility of filtrations and signatures, the input and output of persistent
homology, beyond the canonical choices. In this way, we showcase how persistent
homology can be seen as a diverse family of rich descriptors of different aspects of
shape.





Dutch abstract

Topologische gegevensanalyse is een recent en snelgroeiend vakgebied dat (de vorm
van) gegevens analyseert met behulp van technieken uit de algebraı̈sche topologie.
Het belangrijkste onderdeel van topologische gegevensanalyse, persistente homolo-
gie, vergaart informatie over de cycli in de gegevens: de samenhangscomponenten,
lussen, leegtes, enzovoort.

Het eerste deel van het proefschrift onderzoekt de eigenschappen van persistente
homologie. Homologie legt de cycli in de gegevens vast, maar welke bijkomende
informatie is verscholen in de persistentie (“de wat”)? We tonen aan dat het niet
alleen het aantal gaten vastlegt, maar ook belangrijke geometrische concepten van
kromming en convexiteit. Stabiliteitstheorema’s bieden wiskundig aantoonbare
garantie voor gewenste eigenschappen van persistente homologie (“de waarom”),
maar hoe vertalen deze theoretische resultaten zich in de praktijk? We tonen aan dat
persistente homologie niet altijd kenmerken die robust zijn tegen ruis oplevert in
een classificatietaak.

Het tweede deel onderzoekt twee toepassingen van persistente homologie. Ten
eerste, we tonen aan hoe het kan gebruikt worden om het behoud van topologie en
geometrie te bestuderen (“de hoe”); hierbij concentreren we ons op hyperdimension-
aal rekenen dat invoergegevens integreert in een zeer hoge dimensionale ruimte. Ten
tweede, halen we tijdens een audiovisuele taak kenmerken van persistente homologie
uit EEG gegevens om aandacht op te sporen, wat ons inzicht verschaft wanneer het
nuttig kan zijn in neurowetenschappelijke toepassingen (“de wanneer”).

In beide delen wijken we af van de dominante richting in de literatuur door de
veelzijdigheid van filtraties en kentekenen, de invoer en uitvoer van persistente
homologie, te benadrukken bovenop de canonieke keuzes. Op die manier laten we
zien hoe persistente homologie kan worden beschouwd als een diverse familie van
uitgebreide beschrijvende elementen van verschillende aspecten van de vorm.
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Introduction

Topological data analysis (TDA) is a field that stands at the crossroads of diverse
disciplines, such as data analysis, algebraic topology, computational geometry,

computer science, statistics, and other related areas. Its main tool, persistent homol-
ogy (PH), captures information about k-dimensional cycles (connected components,
loops, voids, etc.), thereby providing representations of the shape of data. Chapter 1
gives the preliminaries about persistent homology, where we immediately emphasize
the versatility of filtrations and persistence signatures, the input and output of PH.
We also introduce the stability theorems, the pivotal result about PH that guarantees
robust behavior under minor perturbations of the input.

Over the past two decades, PH has found many applications in data science, e.g.,
in the analysis of local behavior of the space of natural images, analysis of images
of hepatic lesions, human and monkey fibrin, fingerprints, or diabetic retinopathy
images, analysis of 3D shapes, neuronal morphology, brain artery trees, protein bind-
ing, genomic or orthodontic data, coverage in sensor networks, plant morphology,
fluid dynamics, cell motion, structure of amorphous and nanoporous materials, or
spread of the Zika virus.1

Despite the widespread applications of PH, the reasons behind its success remain
elusive; in particular, it is not known for which classes of problems is PH most
effective, or to what extent can it detect geometric or topological features. In other
words, an important research question is the following:

(RQ) What is seen with persistent homology, or in more detail, what is seen with
long and short persistence intervals?

Chapter 2 (“the what”) aims to unravel some of these mysteries by identifying some
types of problems that can be tackled with PH. We consider three fundamental shape
analysis tasks: the detection of the number of holes, curvature and convexity from
2D and 3D point clouds sampled from shapes. There is theoretical evidence that
the number of holes of the underlying space can be detected from PH (under some
conditions about the target space, the sample density and closeness to the space),
but detection of the number of holes has only been explored for some example
point clouds. It has also recently been shown both theoretically and experimentally
that PH can predict curvature, which inspired us to investigate this problem in

1 An exhaustive collection of applications of topological data analysis (TDA) to real data can be found at
https://donut.topology.rocks/.

https://donut.topology.rocks/
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more detail. Regarding the important geometric problem of classification between
convex and concave shapes, to the best of our knowledge there are no previous
works investigating the applicability of PH to this task. Our contributions can be
summarized as follows.

• We prove that PH can detect convexity in Rd. This is a new and first result that
connects PH and convexity.

• We define the tubular filtration, a new filtration (medium through which PH is
extracted from data), that is crucial for the detection of convexity.

• We demonstrate experimentally that PH can detect the number of holes, cur-
vature, and convexity from synthetic point clouds in R2 or R3 in practice,
outperforming support vector machine (SVM) and fully-connected networks
on distance matrices, and PointNet, a benchmark deep learning architecture
for point clouds. For convexity detection, we also show that PH obtains a good
performance on real-world image data of plant leaves.

• We demonstrate experimentally that PH features allow to solve the above tasks
even in the case of limited training data, noisy and out-of-distribution test data,
and limited computational resources.

• We provide insights about the topological and geometric features that are
captured with long and short persistence intervals, and formulate guidelines
for applications that are suitable for PH.

• We provide data sets that can be directly used as a benchmark for our tasks or
other related point-cloud-analysis or classification problems. More or modified
data can be easily constructed with the publicly shared code.

It is often said that the key factor contributing to the practical success of PH is its
proven stability, due to the common presence of noise or measurement errors in real
data. Stability theorems ensure that the perturbation of PH under noise is upper
bounded by the perturbation of its input. However, little attention has been directed
towards understanding what these theorems mean in practice. In Chapter 3 (“the
why”), we ask the following questions:

(RQ1) How much does PH change under noise in the data?

(RQ2) How discriminative does PH remain if the data contains noise?

To address these questions, we evaluate the noise robustness of PH on the MNIST
data set of greyscale images. We investigate to what extent PH changes under typical
forms of image noise, and quantify the loss of performance in classifying the MNIST
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handwritten digits when noise is added to the data. More precisely, the contributions
are as follows:

• We evaluate the Euclidean l2 distance between the filtration functions, and
Wasserstein W2 or l2 distance between the persistence signatures, across 1 000

MNIST images, which quantify the noise sensitivity of the filtrations and result-
ing PH under rotation, translation, stretch-shear-reflect, brightness and contrast
change, or Gaussian, salt and pepper or shot noise. These distances provide
insights into noise sensitivity of PH for different filtrations and persistence
signatures under different types of noise.

• We evaluate the drop in accuracy of the SVM trained on non-noisy data,
and tested on non-noisy and then noisy data. These results help explain the
importance of the particular data set (classification problem) for the connection
between the stability of PH under noise, and the noise robustness of PH in a
classification task.

The results show that the sensitivity to noise of PH is influenced by the choice of
filtrations and persistence signatures, and in particular, that PH features are often
not robust to noise in a classification task.

The second part of the thesis further investigates the effectiveness of PH by con-
sidering two applications. In Chapter 4 (“the how”), we show how PH can be
used to analyze the preservation of structure with a given mapping. We focus on
hyperdimensional computing (HDC), an emerging and efficient learning paradigm
that centers on encoding the input data space into a very high dimensional (HD)
shape (typically, D = 10 000). Due to the hyperdimensionality and randomness that
is underlying the encoding, these spaces are difficult to study and understand. The
following research questions are of interest:

(RQ1) What kind of topological and geometric structure in the input space is pre-
served in the hyperdimensional (HD) space?

(RQ2) What is the power of linear separators in the HD space, compared to the input
space?

(RQ3) To what extent is noise tolerated in the HD space?

The literature on HDC can be seen as taking one of two directions. On the one
hand, there are some theoretical studies of the behavior of HDC, which provide little
intuition on how and why it works. On the other hand are the many applications
of HDC in various domains, that focus on the performance of HDC (accuracy
of the HDC classifier) on some real-world data that is very complex, providing
little understanding about the HD space. To this end, we employ PH to reveal
the topological and geometric features that are preserved with this encoding: for
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instance, it allows to formally study whether a circle in the plane remains a circle
in the high-dimensional space. The contributions are focused on an encoding of
Euclidean data, and are as follows.

• We provide an intuitive exposition of approximate distance preservation.

• For several synthetic, well-understood Euclidean data sets (in addition to
benchmark real-world data) and noise in the input and HD space, we quantify
the correlation between the distance matrices between the input and HD data,
the perturbation of PH with the HDC encoding, and linear separability of the
different representations.

The findings provide insights into the properties of the input data are preserved
with the HDC encoding, and to what extent is the approximation of structure
influenced by the parameters of the HDC encoding. We see that the number
of persistent connected components and loops mainly remains unchanged after
encoding; however, the non-negligible distance between PH on input and HD data
points to some changes in geometry. Moreover, although the (approximate) distance
preservation implies the preservation of linear separability, our experiments also
show that the input data with non-linear decision boundary might be linearly
separable in the HD space.

The final Chapter 5 (“the when”) explores the effectiveness of PH in neuroscience
applications. We consider a novel WithMe paradigm where experimental participants
are shown sequences of 5 so-called Target and 5 so-called Distractor digits on the
computer screen, being instructed to recall the Target digits. The main goal of this
project is to understand in what ways can the resulting electroencephalography (EEG)
data capture attention, which plays a pivotal role in advancing our understanding
of cognition. Identifying such biomarkers that monitor attention can enhance the
interaction between humans and AI agents, opening a range of applications in health,
revalidation or public security, such as improving gait characteristics of Parkinson’s
patients or detecting driver fatigue. More precisely, the main goal of this chapter is
to gain some understanding into the following research question:

(RQ) What type of WithMe electroencephalography (EEG) data representations are
closely associated with attention?

We evaluate the performance of SVM on various features extracted from univariate
time series (such as time domain features and recurrence plots), along with repre-
sentations derived directly from multivariate time series (such as global field power
and functional brain networks). Both of these types of representations include PH
features, that draw interest due to their stability, since neural data is very noisy (as a
result of changes in machine calibrations, spurious participant movements and envi-
ronmental conditions). The results are benchmarked against baseline EEG-specific
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models, including a deep architecture that learns the task-specific features. The main
insights are as follows.

• Attention can be captured with EEG, even for the short visual stimulus, as
indicated by an accuracy of more than 70% for some of the features, when
classifying between the Target and Distractor stimuli.

• Raw time series values, concatenated across EEG channels, are among the
most discriminative features. This contradicts the common understanding in
the literature that the extraction of relevant features is a crucial step in EEG
processing.

• PH features perform poorly. Positioning our work with existing applications of
TDA in neuroscience, we point to the likely sources of the poor performance,
and the type of applications where PH can offer more meaningful insights.

The findings thus serve as a cautionary tale that sheds some light on the specific
problems in neuroscience where PH may not have an advantage.

Chapter 2

(the what)
Chapter 3

(the why)
Chapter 4

(the how)
Chapter 5

(the when)

Appendix A Appendix B Appendix C Appendix D

Part I Part II

Appendix

Figure 2.: Overview of the thesis structure. The main chapters (What, Why, When &
How, in blue) are based on four first-author publications, that investigate
the properties (Part I) and applications (Part II) of persistent homology.
The appendices (in grey) include the supplementary material, and two
second-author publications that are closely related to some of the main
chapters in the thesis.

An overview of the thesis is given in Figure 2. The data and code for the main
chapters are available on my personal website renata-turkes.github.io/, and it
also includes the slides, poster and video presentations whenever available. Ap-
pendix A contains the supplementary material for Chapter 2: it includes the proofs
of theoretical results, and the additional details about the experiments. Appendix B
is closely related to Chapter 2 and Chapter 3, as it proposes pull-back geometry to
study the sensitivity of PH to a given feature of interest (which translates to the
ability to solve a given classification or regression problem), or given perturbations
(such as affine transformations and noise). The supplementary material that details
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the experimental results for every data set considered in Chapter 4 is given in Ap-
pendix C. Finally, Appendix D can be seen as a precursor to Chapter 5, as it validates
the WithMe EEG data used in that chapter: here, we show that the benchmark
machine and deep learning models from the literature perform well, indicating that
the WithMe experimental paradigm is appropriate for eliciting attention.

Finally, in Chapter 6, we address some statements and ideas about PH that are often
found in the literature but that are inaccurate, imprecise, or prone to misinterpreta-
tion. By pointing to specific results from the thesis, we offer nuanced insights into
these “myths” about PH.
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1
Background on persistent homology

We start this chapter with intuitive definitions of shape, geometry, topology
and homology, leading to a gentle introduction to persistent homology (PH).

We highlight how the PH pipeline involves the choice of filtration and persistence
signature, the input and output for PH. We then define the most common filtrations:
Vietoris-Rips, Distance-to-Measure (DTM) and height, the widely used signatures:
persistence diagram (PD), persistence image (PI), persistence landscape (PL), and the
standard metrics between them. The final sections discuss (the theoretical complexity
of) PH computation, and introduce the main theoretical results that guaranteee the
stability of PH under minor perturbations of the input.
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1.1 shape , geometry, topology, (persistent) homology

1.1 Shape, geometry, topology, (persistent) homology

As humans we make sense of the world around us by studying the “shape” of
objects in our real life or digital environment. Geometry offers a common language
to model and describe shapes, for instance with descriptors such as distances or
angles [98]. Geometric similarity (which can be evaluated with Gromov-Hausdorff
distance) measures how far two subsets of a metric space are from each other, up
to an isometry, a map that preserves the distances. Invariance under isometries,
such as rotation or translation, is obviously useful for object recognition. In some
applications, however, the detailed geometric information can be redundant, or even
noise, as it can obscure the useful structure. A notable example is the Seven Bridges
of Königsberg problem, a historic puzzle concerning the possibility of a walk through
the city of Königsberg crossing each of its seven bridges exactly once and returning
to the starting point (Figure 1.1, left plot).

Figure 1.1.: Seven Bridges of Königsberg problem: Can you cross every bridge
once and return to the starting point (left plot [264])? Euler abstracted
the puzzle into a mathematical graph (right plot [39]): since only the
connection information is relevant, the shape of pictorial representations
may be distorted in any way, e.g., the distances are irrelevant, it does not
matter whether the edges drawn are straight or curved, or whether one
node is to the left or right of another.

As the story goes, by focusing solely on the relationships and connections between
objects and disregarding the specific measurements such as distances or detailed
notions of shape, Leonhard Euler abstracted the physical details into a mathematical
graph (marking the birth of graph theory, a branch of mathematics deeply rooted in
topology), where the graph nodes represent the landmasses, and the graph edges
represent the bridges (Figure 1.1, right plot). This allowed Euler to realize that the
problem’s solvability was not dependent on the distances or physical layout, and
to rather analyze the problem’s inherent connectivity structure. In this way, Seven
Bridges of Königsberg problem reduces to finding an Eulerian cycle in a multi-graph
with four nodes and seven edges, which was famously proven impossible by Euler in
1736. What he observed is that if every graph edge (bridge) is to be crossed only once,
then every graph node (landmass) must have an even number of edges attached
to it, implying that the answer to the problem is negative. In a similar fashion, by
focusing on the connectivity and relationships between locations rather than exact
geographical accuracy, urban metro maps simplify complex spatial information
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into easily understandable and clear representations. As another example, we can
think of animation in computer graphics, if one aims to develop software that can
continuously deform one object into another, in the sense that one can stretch and
change the shape, but cannot break or add to the shape [98].

Topology is a discipline in mathematics that studies properties that are preserved
under homeomorphisms - isomorphisms or structure-preserving maps between
topological spaces: stretching, bending, twisting, but not tearing or gluing, that
are continuous, one-to-one and onto, with continuous inverse. Hence, the joke
that a topologist cannot distinguish a coffee mug from a donut (Figure 1.2), is
mathematically formalized through the fact that there exists a homeomorphism
between these shapes, i.e., either shape can be continuously deformed into the other.
These topological properties that are preserved under homeomorphisms can be seen
as as alternative notion of shape or structure, that is weaker than the geometric
properties that rely on a metric (distance): for instance, a small circle, a large circle,
and a square, have the same topology. In other words, topology can be seen as a
type of geometry devoid of concrete spatial notions such as curvature, convexity,
distance, and the like [97] (and is sometimes referred to as “rubber-sheet geometry”).
As the most general type of a mathematical spaces that allow for the definition
of connectedness, continuity and limits, without specifying a metric, topological
spaces are increasingly relevant to applications in data, networks and biology, where
natural metrics may be obscured or nonexistent [135]. However, it is known that
there cannot exist an algorithm to determine when arbitrary topological spaces are
homeomorphic [250], i.e., to determine if two spaces have the same topology. We can
however compare some weaker notions, such as dimension and connectivity. This
allows us to assess the topological similarity between two spaces with the distance
between their topological invariants.

Figure 1.2.: A famous and traditional joke is that a topologist cannot distinguish a
coffee mug from a donut. This is because the two objects are topologically
equivalent, since it is possible to deform, continuously and without
tearing, one into the shape of the other. The illustration is taken from
[126].
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One of the essential topological invariants is homology, and the related Betti numbers.
Homology goes back to the beginnings of topology in Poincaré’s influential papers,
who represented the notion of connectivity of a space with its k-dimensional cycles:
connected components (k = 0), loops (k = 1), cavities (k = 2) and cycles in higher
homological dimensions. These cycles are shown to organize themselves into abelian
groups, called homology groups, and their ranks are non-negative integers referred
to as the Betti numbers of the space. The k-th Betti number βk is the number
of independent k-dimensional cycles that are not boundaries [119]. For example,
the circle has Betti numbers β0 = 1, β1 = 1, β2 = 0, and for a torus, we have
β0 = 1, β1 = 2, β2 = 1. This homology information can be very useful, as it
allows to uncover the underlying structure of a space, and distinguish between
topological spaces. Indeed, as a topological invariant, Betti number is preserved
under homeomorphisms, so that two spaces cannot have the same topology if some
of their Betti numbers are different: for instance, sphere and torus do not have the
same topology since their β1 is respectively 0 and 2 (Figure 1.3).

Betti Sphere Torus Two-holed Projective Klein
number torus plane bottle

β0 1 1 1 1 1

β1 0 2 4 1 2

β2 1 1 1 1 1

Figure 1.3.: The Betti numbers β0, β1 and β2 reflect respectively the 0-, 1- and 2-
dimensional homology, i.e., the number of connected components, loops
and voids (0-, 1- and 2-dimensional cycles). 1

Note, however, that having the same Betti numbers is a strictly weaker property than
having the same topology. Consider, for example, the circle and the cylinder. Both
topological spaces consist of one connected component (β0 = 1), one loop (β1 = 1)
and no higher dimensional cycles (βi = 0 for i ≥ 2), but they do not have the same
topology as they do not have the same intrinsic dimension. For the same reason, a
point and a disk have the same homology (there is a so-called homotopy equivalence
between them, i.e., continuous functions that resemble stretching and bending) and
therefore the same Betti numbers: one connected component (β0 = 1), and no higher
dimensional cycles (βi = 0 for i ≥ 1); but they do not have the same topology (there
is no homeomorphism between them, i.e., no bijective continuous transformation
with a continuous inverse). Homology thus allows us to distinguish between fewer
spaces than topology, but unlike topology, homology admits effective computation
and comparison algorithms [345]. For a detailed study of homology, we refer to
[153].
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Persistent homology (PH) can be seen as an extension of the notion of homology to
data (e.g., a point cloud, a finite set of data points in space). Real data are a finite
set of observations and do not directly reveal any topological information, since
topological features are usually associated with continuous spaces. To circumvent
this issue, the underlying topological structure of the data can be estimated e.g.,
with a simplicial complex (Section 1.2), a high-dimensional extension of a graph
that consists of vertices, edges, triangles and so on. One can, for instance, connect
each two point cloud points with an edge if they are within a given distance r ∈ R.
However, an important question immediately arises: how to choose this scale r? For
the example shape in the left plot of Figure 1.4 scale r = 0.3 (middle plot) captures
only the small circle, whereas scale r = 0.6 (right plot) captures only the big circle.

Figure 1.4.: A finite metric space, a point cloud, does not reveal any interesting
homology: each point is a connected component, and there are no higher
dimensional cycles, so that any two point clouds with the same number
of points have the same homology (left plot). A point cloud can be
represented with a topological space by connecting each two points with
an edge if they are within a given distance r ∈ R. The choice of scale r
is important, since for the given example, r = 0.3 reveals only the small
circle (middle plot), whereas r = 0.6 only captures the big circle (right
plot) as the small circle already gets “filled up”.

A notable advantage of PH is that it does not require to choose and fix the scale r ∈ R.
Instead, PH relies on a so-called filtration (Section 1.3), a nested family of topological
spaces that approximate the data at any scale r ∈ R. Matrix reduction algorithm
(Section 1.5) then allows to calculate the information about k-dimensional cycles that
persist across different scales of data [109, 111, 112, 384]. PH registers the scale (also
referred to as resolution, or time) r ∈ R at which every k-dimensional cycle appears
and disappears in the filtration, that are respectively referred to as the birth and death
values b and d. More precisely, PH is a multi-set of persistence pairs, or intervals,
(b, d). The k-dimensional cycles (b, d) with large persistence or lifespan l = d − b
(i.e., long intervals) represent relevant topological, i.e., homological, properties of the
input space (Figure 1.5). As we discuss throughout this thesis, the birth and death
values of each cycle often reveal additional information so that, although homology
is weaker than topology (which is further weaker than geometry), PH can capture
geometric information and therefore goes beyond topology (Figure 1.6).

This PH information can be represented via different signatures, e.g., using sets,
vectors, functions, or scalars (Section 1.4). The standard representation of PH is via
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Figure 1.5.: The 0-, 1- and 2-dimensional persistent homology PH0, PH1 and PH2 of
a point cloud sampled from the sphere (top row) and torus (bottom row)
captures the connected components, loops and voids (respectively 0-,
1- and 2-dimensional cycles). The number of long persistence intervals
(b, d) in the multi-set PHk, here represented with scatter plot points far
from the diagonal, reflects the number of k-dimensional cycles (Betti
number βk, see Figure 1.3): β0 = 1, β1 = 0, β2 = 1 for the sphere, and
β0 = 1, β1 = 2, β2 = 1 for the torus.

a so-called persistence diagram (PD), which can be seen as a scatter plot of birth and
death values for each cycle. Instead of working directly with PDs, these are often
represented by vectorized summaries that are better suited for machine learning
frameworks. A common choice is a persistence image (PI) (discretized weighted
sum of Gaussian kernels centered at the PD points), or a persistence landscape (PL)
(functions obtained by “stacking isosceles triangles” above persistence intervals, with
height reflecting their lifespan). The PH pipeline is visualized in Figure 1.7, and each
step is explained in greater detail in the next sections. For good choices of filtration
and signature [337], there are theoretical results that guarantee that PH with respect
to Wasserstein distance (Section 1.6) is stable under small perturbations of the input
(Section 1.7).

To make the exposition as clear and concise as possible, we here provide only an
intuitive description of geometry and isometries, topology and homeomorphisms,
and homology, and focus in the remainder of this chapter on the main concepts in
the thesis, namely (Vietoris-Rips and alpha) simplicial and cubical complex, filtration,
PD, PI and PL. For a completely self-contained and precise treatment of PH, we
would need to introduce the notions of (abelian) group, ring, field, simplicial chain,
module, boundary maps, chain complex, homology group, persistence module,
topology, topological and metric spaces. These abstract notions from algebraic
topology are not needed for understanding the contributions of this thesis, and we
therefore refer interested readers to [110, 153]. For a gentle, but detailed introduction
to PH for a broad range of computational scientists, see [258].
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Homology

Topology

Geometry

Persistent
homology

Figure 1.6.: Persistent homology captures information about the cycles in the data,
and is shown to capture the homology of the underlying manifold, under
some mild assumptions. However, it has been shown that persistent
homology can also reveal the underlying dimension or curvature, thus
providing additional topological and geometric information.

1.2 Approximation of a space at scale r ∈ R

To approximate the shape of data, one can contruct a so-called structured complex, a
type of topological space that is particularly important in algebraic topology due
to its combinatorial nature that allows for the computation of homology. When the
space is a point cloud X ⊂ Rd, the most common choice for a structured complex is
the simplicial complex, a set composed of simplices (points, line segments, triangles,
tetrahedrons, and their k-dimensional counterparts), that is closed under taking
subsets (so that, for instance, if a triangle is in the simplicial complex, then all its
edges and vertices are also elements of the simplicial complex) [112, 258]. Formally,
simplicial complexes are defined in the following way:

Definition 1.1 (Abstract simplicial complex). Let X be a set. A collection K ⊂ 2X

of subsets of X is called a simplicial complex if σ ∈ K and τ ⊂ σ imply τ ∈ K. An
element σ ∈ K is called a (|σ| − 1)-simplex, where |σ| is the cardinality of σ.

A k-simplex may be realized geometrically as the convex hull of k + 1 affinely
independent points in Rd, d ≥ k. This gives us the familiar k-simplices: vertices,
edges, triangles, etc. [81]. A simplicial complex can be seen as a generalization
of a graph, where apart from nodes (0-simplices) and edges (1-simplices), it may
also include triangles (2-simplices), tetrahedra (3-simplices), and so on. As we will
see in more detail in the next section, the key idea behind PH is to construct a
filtration, a sequence of topological spaces by gradually adding simplices to the
data, and to study the evolution of topological features (components, holes, cavities,
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point cloud filtration 0 and 1-dim PD 0- and 1-dim PH

Figure 1.7.: Persistent homology (PH) pipeline. To calculate PH for the given point
cloud X, we first construct in some way a filtration {Kr}r∈R which
approximates X at different scales r ∈ R. 0-dimensional PD has one
persistent cycle, reflecting the single component, and 1-dimensional
PD reveals the two holes. A PD is often represented with some other
signature (denoted, in general, with PH) that is more amenable for
statistical (learning) frameworks, such as a PI.

and higher-dimensional voids) across the filtration. There are theoretical results
that guarantee that there exists r ∈ R such that the homology of these complexes,
constructed at scale r ∈ R on a dense-enough sample X from a manifold M, recover
the underlying homology of M (for details, see Appendix A.1.2). In the remainder of
this section, we introduce the three common structured complexes that we consider
in this thesis.

(a) (b) (c) (d) (e)

Figure 1.8.: The topology of a point cloud X (a) can be studied through the Vietoris-
Rips (b) or the related alpha (c) simplicial complex that consist of vertices,
edges, triangles, ..., and approximate X at some scale r ∈ R. If X is an
image (d), cubical complex (e), a union of vertices, edges, cubes, etc., is a
more natural representation.

1.2.1 Vietoris-Rips simplicial complex

To approximate a point cloud X with n points (in any metric space), it is common to
construct the Vietoris-Rips simplicial complex:

Definition 1.2 (Vietoris-Rips simplicial complex [348]). Let X be a metric space, and
let r ∈ R. The Vietoris-Rips simplicial complex of X at scale r is defined in the
following way:

VR(X, r) = {σ ⊂ X | d(x, y) ≤ r for all x, y ∈ σ}.
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In other words, VR(X, r) is built by constructing (i) a line segment for any pair of
points in X within distance r of each other, (ii) a triangle, if the points in a triplet are
all within distance r of each other, and so forth (Figure 1.8).

1.2.2 Alpha simplicial complex

Since Vietoris-Rips simplicial complex is large [258], one might rather choose the
alpha complex [114] (Figure 1.8), which is closely related to the Vietoris-Rips complex
[187], but consists of significantly less simplices and is faster to construct when the
dimension of the ambient space is 2 or 3 (for details, see Appendix A.1.4). The
construction of the alpha complex relies on the Voronoi diagram that partitions a set
of points in the Euclidean space into non-overlapping regions.2 A precise definition
is given below.

Definition 1.3 (Alpha simplicial complex [112]). Let X ⊂ Rd, and let r ∈ R. Let
B(x, r) further denote the ball centered at x ∈ X with radius r, and V(x) the Voronoi
cell of x ∈ X, the set of points y ∈ Rd that are at least as close to x than to any other
point x′ ∈ X:

VX(x) = {y ∈ Rd | ∥y − x∥2 ≤ ∥y − x′∥2 for any x′ ∈ X}.

The alpha simplicial complex of X at scale r is defined in the following way:

α(X, r) = {σ ⊂ X | ∩x∈σR(x, r) ̸= ∅}

where R(x, r) = B(x, r) ∩ VX(x).

1.2.3 Cubical complex

If data is an image rather than a point cloud, other types of structured complexes
might be more suitable. Let Z be a greyscale image, i.e., Z = [zuv], where zuv is the
greyscale value of the pixel (u, v), u ∈ {1, 2, . . . , nx}, v ∈ {1, 2, . . . , ny}, nx and ny are
the numbers of pixels in respectively x and y direction. We can consider the image
Z as a 2D point cloud X(Z, z0) ⊂ R2 consisting of all (u, v) ∈ R2 corresponding
to pixels with a greyscale value above a fixed user-given threshold z0, and to
approximate it with the Vietoris-Rips or alpha simplicial complex (Figure 1.8).

However, a point cloud (and its simplicial complex) is not the most intuitive rep-
resentation of an image, as it does not exploit its natural grid structure [129]. For

2 A nice video illustrating the alpha complex, and its difference to the Vietoris-Rips complex can be found
at https://www.youtube.com/watch?v=fnkvPy4ZCNY.
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an image Z, we can rather consider its so-called cubical complex K(Z) (Figure 1.8),
the cubical analog to a simplicial complex, in which the role of simplices is played
by cubes of different dimension (points, line segments, squares, cubes, and their
k-dimensional counterparts) [173]. The points correspond to the pixel corners, the
edges to the sides of the pixels, and the squares to the image pixels.3 More formally,
the cubical complex is defined in the following way.

Definition 1.4 (Cubical complex [172]). A cubical complex is a union of elementary
cubes I1 × I2 × · · · × Id ⊂ Rd, where Ii is an elementary interval Ii = [l, l] or
Ii = [l, l + 1] for some l ∈ Z.

1.3 Filtration, input for persistent homology

In the previous section, we discuss the different ways we can approximate the shape
of data X at a scale r ∈ R. However, different values of the resolution parameter
r create different simplicial complexes and reveal different cycles (Figure 1.4). To
circumvent this issue, the calculation of PH relies on a so-called filtration that
describes X at any scale:

Definition 1.5 (Filtration). A filtration is a family of nested topological spaces
{Kr}r∈R.

Typically, every Kr approximates X at scale r ∈ R in some suitable sense. In this way,
it provides a lens to look at X. One of the most common ways to build a filtration is
via structured complexes, i.e., every Kr is a simplicial or cubical complex. These can
be seen as sublevel sets of a filtration function ϕ : 2X → R, determined by a scale
cut-off r ∈ R:

Kr = {σ ⊂ X | ϕ(σ) ≤ r}.

In the next subsections, we discuss some common filtrations: Vietoris-Rips, Distance-
to-Measure (DTM) and height, via simplicial or cubical complexes (Figure 1.9).
However, depending on the task, there are many other filtrations one could choose,
such as rank [273], radial, erosion or dilation [129]. The resulting PH captures
completely different information about the cycles [337]. For example, whereas
PH with respect to the Vietoris-Rips filtration encodes the size of the hole, PH on
the height filtration informs about the position of the hole. For a more detailed
discussion about the influence of filtration, see Chapter 2 (and in particular, the
associated Appendix A.6) and Chapter 3.

3 Another way to construct a cubical complex from an image is to consider the dual of the cubical complex
defined above: the points reflect the pixels, the line segments the intersections of pairs of non-diagonally
neighboring pixels, and squares reflect the intersections of four pixels [320].
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Figure 1.9.: Filtration {Kr}r∈R approximates the data X (e.g., a point cloud or image)
across different scales r. The common choice for Kr is the Vietoris-Rips
simplicial complex (top row), where two vertices xi and xj are connected
with an edge if d(xi, xj) ≤ r. One can also construct a weighted Vietoris-
Rips simplicial complex, where Kr does not need to include all vertices:
for instance, Distance-to-Measure (DTM, middle row) filtration function
assigns to each vertex the average distance from a given number of
nearest neighbors; in this way, the outliers are smoothed out as they
appear later in the filtration. Other choices of filtration functions (on
simplicial or cubical complexes) are possible, such as the height filtration
(bottom row) which allows to“ scan” the point cloud or image e.g., from
top to bottom.

1.3.1 Vietoris-Rips filtration

The Vietoris-Rips filtration of a point cloud X ⊂ Rd is the nested family of simplicial
complexes {VR(X, r)}r∈R (Definition 1.2) (Figure 1.9, top row). The underlying
filtration function ϕ : 2X → R assigns to each simplex its diameter:

ϕ(σ) = max
x,y∈σ

d(x, y).

The Vietoris-Rips filtration is related to the sublevel sets of the distance function
δX : Rd → R, where δX(y) = min{d(y, x) | x ∈ X} is the distance to point cloud
X. Indeed, the Vietoris-Rips simplicial complex VR(X, r) approximates the sublevel
set

Kr = δ−1
X ((−∞, r]) = {y ∈ Rd | δX(y) ≤ r} = ∪x∈XB(x, r),
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where B(x, r) is a ball with radius r centered around x ∈ X [64].

1.3.2 Distance-to-Measure (DTM) filtration

The distance function δX underlying the common Vietoris-Rips filtration discussed
in the previous section is extremely sensitive to outliers (“even one outlier is deadly”,
or, in the language of robust statistics, the distance function has breakdown point
zero [67]). To circumvent this issue, [10, 64] propose to rather consider distance-to-
a-measure (DTM) function δX,m : Rd → R, where δX,m(y) is defined as the average
distance between y and a given number of nearest neighbors in X (and is thus a
smooth version of the distance function). In this way, the outliers have a large DTM
function value and appear late in the filtration (Figure 1.9, middle row).

The filtration function ϕ : 2X → R (for any so-called weighted Rips filtrat) is defined
as ϕ({xi}) = δX,m(xi) for vertices, ϕ({xi, xj}) = ϕ({xi}) + ϕ({xj}) + d(xi, xj)/2 for
edges, and for simplices with degree greater than one as ϕ(σ) = maxxi ,xj∈σ{ϕ({xi, xj})}.
The number of neighbors that are considered is determined by the parameter m,
which represents the percentage of the total number of point cloud X points.

1.3.3 Height filtration

Similarly to the DTM filtration discussed in the previous subsection, we can consider
the so-called weighted Rips filtration that defines filtration function values on the
point cloud vertices via an arbitrary function. A useful example is the height filtration
function that assigns to each point the distance from some given hyperplane, as it
allows to “scan” the object of interest for some direction. More precisely, for a given
unit vector v ∈ Rd, we define ϕ({x}) = ⟨x, v⟩.

This results in a filtered simplicial complex of a point cloud, but a cubical filtration
with respect to the height function is often more reasonable for images (Figure 1.9,
bottom row), see Section 1.3.4 for a precise description. For an illustration of the two
approaches on an example point cloud and corresponding image, see Figure A.13.

1.3.4 Cubical filtration

To define a filtration function ϕ : K(Z) → R for an image Z = [zuv], one needs to
define the value of ϕ on each cube in the cubical complex K(Z) (Section 1.2.3). A
natural filtration function on a cubical complex assigns to each square the value
ϕ(u, v) of the image on the corresponding pixel (u, v).. The filtration function on the
line segments and points is defined as the minimum value of all bordering pixels.4

4 A natural filtration function on the dual cubical complex assigns the pixel values as the values of the
function on the points, and sets the function values for line segments and squares as the maximum value
of all bordering simplices. These two methods differ with respect to the diagonally neighboring pixels, as
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The cubical filtration is then a nested family {Kr}r∈R of cubical complexes Kr,
where Kr is the union of all cubes corresponding to pixels (u, v) with ϕ(u, v) ≤ r
(Figure 1.9, bottom row). Note that this means that (the cubes corresponding to) the
pixels with the lowest filtration function value appear first and persist the longest in
the filtration.

1.4 Persistence signature, output of persistent homology

Given a filtration {Kr}r∈R, persistent homology (PH) detects how the homology of
the complexes Kr changes as the parameter value r increases, capturing how the
features “persist” across changes in resolution. As already mentioned, k-dimensional
PH is a multi-set of intervals (bi, di), with bi and di corresponding to the scale r ∈ R

when a k-dimensional cycle i appears and disappears in the filtration (di = +∞ if
the cycle persists forever). In computational settings, there are always only finitely
many persistence intervals, and the intervals are truncated to the maximum filtration
value. Throughout this thesis, we thus assume PH consists of finitely many intervals
(b, d) with 0 ≤ b ≤ d < +∞. The length l = d − b of a persistence interval (b, d)
measures the lifespan — the so-called “persistence” — of the corresponding cycle in
the filtration.

A natural way to represent PH is via a PD, roughly a scatter plot of (b, d) points,
with their multiplicity (a precise definition is given in the next subsection). However,
PDs lack structure and are not amenable to statistics and machine learnings (e.g.,
PDs do not have a unique mean [45]). Moreover, Wasserstein distance between
PDs (Section 1.6) suffers from combinatorial explosion, growing quickly with the
number of persistence intervals [99]. It is therefore of interest to consider different
PH signatures, and in the following subsections we discuss the common vectorized
summaries, persistence image (PI) and persistence landscape (PL) (Figure 1.10).

Note that a plethora of persistence signatures have been introduced in the literature,
e.g., Betti numbers (across scales) [163, 341] or Euler characteristic, the difference
between the number of connected components and the number of holes (across
scales) [210]. Some PH signatures summarize the same information, but lie in
different metric spaces [340]. As already indicated, PH can also be summarized with
a scalar, for instance with: amplitude, distance from the empty PD [129]; entropy,
a real number calculated using the lifespans of all features [129], which thus only
depends on the persistence but not on the particular birth or death times; or an
algebraic function of bi and di − bi, e.g., ∑ bp

i (di − bi)
q, so that p and q determine the

importance of some of the qualities about cycles (e.g., size of holes) [4]. To avoid
choosing among the “zoo of persistence signatures” [340], it is possible to learn
the best vector summary (with e.g., PersLay, a simple neural network layer [56], or
ATOL, an unsupervised vectorization method [304]).

they are considered connected with the first approach, but not the second, what can result in substantially
different persistent homology.
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Figure 1.10.: Three common signatures for persistent homology (PH) are persistence
diagram (PD), persistence image (PI) and persistence landscape (PL).
PD is a scatter plot of birth and death values (bi, di), with their mul-
tiplicity, including the diagonal (left column). PI reflects the volume
below the weighted sum of Gaussian probability density functions eval-
uated on a grid superimposed over a PD, where the weight of each PD
point can e.g., reflect the the persistence li = di − bi. PL is a sequence
of functions R → R obtained by stacking isoscles triangles over the
midpoints of (bi, di) intervals, with the height of the triangles reflecting
the persistence li = di − bi.

1.4.1 Persistence diagram

Persistence diagram (PD) is the most straightforward representation of persistent
homology (PH), which can be seen as a scatter plot of points (bi, di), counted
with their multiplicity, and union all points on the diagonal, counted with infinite
multiplicity (Figure 1.10):

Definition 1.6 (Persistence diagram (PD) [77, 114]). Let {Kr}r∈R be a filtration, and
let k-dimensional persistent homology be the multi-set of intervals (bi, di), with bi
and di being the scale r when each k-dimensional cycle i is born, and when it dies,
within the filtration. The k-th dimensional persistence diagram PD is the union of
a finite multi-set of points in (bi, di) ∈ R2, and multi-set of points on the diagonal
{(x, y) ∈ R2 | x = y}, where each point on the diagonal has infinite multiplicity.
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The x and y axis in the plot, i.e., the birth and death values b and d depict the
scale r ∈ R at which each cycle is born and dies or is identified (i.e., merges)
with another cycle within a filtration. The points on the diagonal are included
with infinite multiplicity for technical reasons, namely, to ensure the existence of a
bijection between any two PDs, that is needed for a definition of the Wasserstein
metric (Section 1.6). The distance of a PD point (b, d) from the diagonal reflects the
persistence or lifespan l = d − b of the corresponding cycle.

An advantage of PDs compared to other persistence signatures is that they are
parameter-free, but they also have an important disadvantage: they are not conve-
nient for statistical inference, because their complicated structure makes common
algebraic operations - such as addition, division, and multiplication - challenging [31]
(so that, for instance, the mean might not be unique [232]). Furthermore, although
PDs can be endowed with a metric structure (Section 1.6) which enables to perform
some machine learning techniques such as some clustering algorithms, PDs do not
lend themselves to processing with techniques that require a Hilbert space structure,
including support vector machine (SVM) and principal component analysis (PCA)
[291]. It is therefore common in applications to consider vector representations of
PDs, and we discuss some popular choices in the remaining subsections.

1.4.2 Persistence image

Persistence image (PI) is constructed by superimposing a grid over a persistence
diagram (PD), and depicting the volume below the weighted sum of (Gaussian)
probability density functions, on each grid cell (Figure 1.10). This is a more sophisti-
cated variant of counting the number of cycles in each of the grid bins [302]. More
precisely, the definition is as follows.

Definition 1.7 (Persistence image (PI) [2]). Let PD be a multi-set of persistence
intervals (bi, di). Let η : R2 → R2 be the linear map η(x, y) = (x, y − x), gµx ,µy :
R2 → R a differentiable probability distribution with mean (µx, µy) ∈ η(PD),
and α : R2 → R2 non-negative weight function that is zero along the horizontal
axis (reflecting the PD diagonal), continuous, and piecewise differentiable. The
persistence surface is the function ψ : R2 → R defined by

ψ(x, y) = ∑
(b,l)∈η(PD)

α(b, l)g(b,l)(x, y).

The persistence image (PI) is the volume below the persistence surface, over each
region A in the discretization of a relevant subdomain of ψ :

PI(A) =
∫∫

A
ψ(x, y)dxdy.
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In applications, one commonly assumes Gaussian probability density function with
some given variance σ:

g(b,l)(x, y) =
1

2πσ2 e
−[(x−b)2+(y−l)2 ]

2σ2 ,

and for some resolution P ∈ N, discretizes the sub-domain of ψ into a P × P grid
(an image, with regions A corresponding to image pixels), which can be further
transformed into a vector of length P × P.

In other words, the multi-set of birth-death values (b, d) is first transformed into
birth-lifespan (b, l) = (b, d − b) coordinates, what makes sense since there are no
points below the PD diagonal. A Gaussian probability density function is centered
at each point (b, l), and persistence surface ψ is calculated as a weighted sum of
these functions. The heights of the peaks in ψ are thus influenced by some given
non-negative weight function α : R2 → R. Typically, α reflects some information
about the cycles, and it usually depends only on the vertical persistence coordinate l
(corresponding to the lifespan of the cycle, l = d − b), e.g., α(b, l) = l or α(b, l) = l2.
Then, one splits a subdomain of ψ into a P × P grid of regions. PI is the matrix
whose (i, j)-th entry or pixel is the integration value of ψ over the (i, j)-th region.
Obviously, one can combine PH information across multiple homological dimensions
by concatenating the PI vectors for each dimension, and provide this as input for
machine learning algorithms.

For constructing PIs, one thus needs to choose 1) the kernel function g(b,l)(x, y) and
its associated parameters, 2) the weight function α(b, l), and 3) the resolution P. An
advantage of PIs is their flexibility, e.g., different choices of the weight function
allow to highlight different types of cycles, such as persistent cycles (with large
persistence or lifespan), or cycles that are born early (with low birth values), or even
cycles that are short-lived. The three parameters are also a weakness, as their choice
is non-canonical [2]. However, [2, 373] demonstrate that for their machine learning
tasks, PIs have low sensitivity to the parameter choices of resolution and distribution
variance, which indicates the utility of PIs even with no prior knowledge about the
underlying data.

1.4.3 Persistence landscape

Persistence landscape (PL) can be seen as a sequence of functions obtained by
“stacking isosceles triangles” whose bases are the persistent homology (PH) in-
tervals (bi, di), and whose heights reflect the lifespans or persistence li = di − bi
(Figure 1.10):

Definition 1.8 (Persistence landscape (PL) [44, 45]). Let PD be a multi-set of persis-
tence intervals (bi, di). For each cycle (b, d), let g(b,d) : R → [0,+∞) be the following
piecewise linear function:
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g(b,d)(x) =


0 x /∈ (b, d)
x − b x ∈ (b, b+d

2 ]

d − x x ∈ ( b+d
2 , d]

Persistence landscape (PL) is a function λ : N × R → R, where λ(j, x) is the j-th
largest value of {g(bi ,di)

(x)}i. Alternatively, it may be thought of as a sequence of
functions λj : R → R, where λj(x) = λ(j, x). In applications, PL is a vector of length
N × P, concatenating values of N first λi functions, evaluated at P equidistant values
within the relevant interval in R.

In contrast to PDs, PLs lie in a Banach space, and are thus easy to combine with tools
from statistics: they obey a strong law of large numbers and a central limit theorem,
and the space of PLs does have a unique mean [44]. However, for many machine
learning tasks, it is necessary to consider finite vectors rather than functions, and a
discretization of the function λ into a vector requires two additional parameters: we
need to decide on the maximum number of first landscape functions λj to consider,
and on the number of points where each of these functions is evaluated, referred to
as the landscape resolution.

1.5 Computation of persistent homology

Computiation of persistent homology (PH) boils down to linear algebra [258]. For a
given filtered complex with N simplices, one first constructs a binary N × N matrix
which encodes the boundary information for each simplex. Matrix reduction via
Gaussian elimination allows to simply read off the birth and death times of each
cycle (see [258, Section 5.3.2 and Figure 7] for details and a nice toy example). In
the worst case, the computational complexity of this algorithm is O(N3) [384]. This
bound is sharp, as Morozov gave an example of a complex with cubic complexity
[243]. A comprehensive benchmarking of the state-of-the-art implementations for
the computation of PH is done in [258].

1.6 Distances for persistent homology

Different metrics can be considered on the space of any persistence signatures. The
most common distance between PDs is the Wasserstein distance:

Definition 1.9 (Wasserstein distance [320]). Let PD1, PD2 be two persistence dia-
grams, and let p, q ∈ [1,+∞). The p-th Wasserstein distance between the persistence
diagrams is defined as:
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Wp,q(PD1, PD2) = inf
τ

(
∑

i
∥(bi, di)− τ(bi, di)∥

p
q

) 1
p
, (1.1)

where the infimum is taken across all bijections5 τ : PD1 → PD2, and the sum
across all persistence intervals (bi, di) ∈ PD1. The bottleneck distance for p = +∞ is
defined as

W∞,q(PD1, PD2) = inf
τ

sup
i

∥(bi, di)− τ(bi, di)∥
p
q . (1.2)

One commonly assumes that q = ∞, and denotes Wp = Wp,∞ for any p ∈ [1,+∞].6

As suggested by the notation, the bottleneck distance is the limit of the Wasserstein
distance for p going to infinity [112]. Wasserstein distance is popular in computer
vision [78], and it is the common metric for optimal transportation problem [180]
(with a bijection τ from PD1 to PD2 corresponding to a transport plan). For the
vectorized persistence signatures, such as PIs and PLs, lp = ∥ · ∥p distances are
common. The parameter p in both Wp and lp determines the importance of long
compared to short distances.

1.7 Stability theorems

Stability theorems are among the most important results in applied and computa-
tional topology [320], as they may be viewed as a precise statement about sensitivity
to some type of noise: stable representations of PH are robust under small pertur-
bations in the input (Figure 1.11). Stability results can be grouped into theorems
for PDs, and for vector summaries of PH: below we provide a general statement for
such theorems. A precise statement is explicit about the constant on the right-hand
side, which can depend on the filtration function, distance parameter p, and the
parameters of the PH signature of interest.

Theorem 1.10 (Stability theorem for persistence diagrams (PDs)). Let X be a trian-
gulable7 topological space with continuous tame8 functions ϕ, ψ : X → R. There exists a
constant c ∈ R such that:

5 There exists a bijection between any two PDs, since a PD includes the diagonal with infinite multiplicity
(see Definition 1.6).

6 A video lecture by Katharine Turner that counts the ways why it is more reasonable to rather set q = p
can be found at https://youtu.be/d_iqovKui6k?si=cRnQl0dsnRlKlFCe.

7 Triangulable space is homeomorphic to a simplicial complex, and it enables to replace topological with
piecewise linear spaces.

8 Tame functions have only finitely many critical values where homology groups change, ensuring a finite
number of persistence intervals.
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Figure 1.11.: Stability theorems imply that the persistent homology (PH) of a point
cloud (top row) and its noisy version (bottom row) remain similar. For
example, 1-dimensional PH of the noisy point cloud captures the loop,
together with a number of additional loops that might briefly appear
in the filtration, resulting in short persistence intervals (close to the PD
diagonal).

Wp(PD(ϕ), PD(ψ)) ≤ c∥ϕ − ψ∥p.

The stability of PDs was first proved for p = ∞ (the easiest case, since W∞ is the least
sensitive to details in the diagrams [112]) [62, 77, 102]. In this case, the right-hand
side for the Vietoris-Rips filtration (Section 1.3.1), ∥δX − δY∥, corresponds to the
Hausdorff distance dH(X, Y) between the point clouds. 9 A few years later, the
stability was shown to hold for large enough p and under additional assumptions
[78], and recently, for any p [320].

Theorem 1.11 (Stability theorem for vectorized persistent homology (PH)). Let X be
a triangulable topological space with continuous tame functions ϕ, ψ : X → R, and let PH
be a vectorized summary of PD. There exists a constant c ∈ R such that:

∥PH(PD(ϕ))− PH(PD(ψ))∥p ≤ cWp(PD(ϕ), PD(ψ)).

Persistence landscapes are shown to be stable for large enough p [44, Theorem
13, Theorem 16], but this fails to be true for p = 2 [320, Theorem 7.7]. Stability

9 Actually, for the Rips filtration, [63, Theorem 3.1] show that Wp(PD(ϕ), PD(ψ)) ≤ cdGH(X, Y), where
dGH is the Gromov-Hausdorff distance. This is useful since dGH(X, Y) ≤ dH(X, Y); for instance, if Y is
obtained from X by rotation (or any other isometric transformation), dH(X, Y) can be large, whereas
dGH(X, Y) = 0 and is therefore a more useful upper bound.
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of persistence images holds for p = 1 [2], but not for p = 2 [291, Theorem 3], [2,
Remark 6].

Stability of PH connects to manifold reconstruction and, specifically, topological
and geometric inference: Given a finite point cloud X of (noisy) samples from an
unknown manifold M, how can one infer properties of M? The theorems in this
section ensure that PH can uncover the homology of a manifold M from a finite set
of possibly inaccurate point samples [77].
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2
THE WHAT:
On the effectiveness of persistent homology

Even though persistent homology (PH) has been used in many different types of
applications, the reasons behind its success remain elusive; in particular, it is

not known for which classes of problems it is most effective, or to what extent it
can detect geometric or topological features. The goal of this chapter is to identify
some types of problems where PH performs on par or better than other methods in
data analysis. We consider three fundamental shape analysis tasks: the detection
of the number of holes, curvature and convexity from 2D and 3D point clouds
sampled from shapes. Experiments demonstrate that PH is successful in these
tasks, outperforming several baselines, including PointNet, an architecture inspired
precisely by the properties of point clouds. In addition, we observe that PH remains
effective for limited computational resources and limited training data, as well
as out-of-distribution test data, including various data transformations and noise.
For convexity detection, we provide a theoretical guarantee that PH is effective
for this task in Rd, and demonstrate the detection of a convexity measure on the
FLAVIA data set of plant leaf images. Due to the crucial role of shape classification
in understanding mathematical and physical structures and objects, and in many
applications, the findings will provide some knowledge about the types of problems
that are appropriate for PH, so that it can — to borrow the words from Wigner 1960

— “remain valid in future research, and extend, to our pleasure”, but to our lesser
bafflement, to a variety of applications.

This chapter is based on the following publication:

Renata Turkeš, Guido Montúfar, and Nina Otter, On the effectiveness of
persistent homology, Advances in Neural Information Processing Systems
35 (NeurIPS 2022): 35432-35448.

The research was supported by Fulbright, and respectively the ERC, DFG, NSF-
CAREER and the Royal Society grants 757983, 464109215, DMS-2145630, and
RGS\R2\212169.
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2.1 introduction

2.1 Introduction

Successful applications of persistent homology (PH) (Chapter 1) range from predic-
tion of biomolecular properties [51, 52, 353], face, gait and activity recognition [168,
195, 205, 383] or digital forensics [14], to discriminating breast-cancer subtypes [319]
or quantifying the porosity of nanoporous materials [204]. At the same time, the
reasons behind these successes are not yet well understood. Indeed, the data used in
real-world applications is complex, so that there are numerous effects at play and
one is often left unsure why PH worked, i.e., what type of topological or geometric
information it captured that facilitated the good performance.

The title of this chapter is inspired by a famous paper from 1960, “The unreasonable
effectiveness of mathematics in the natural sciences” [358], in which Wigner discusses,
with wonder, how mathematical concepts have applicability far beyond the context
in which they were originally developed. The same, we believe, is true for persistent
homology. While this method has been applied successfully to a wide range of
application problems, we believe that for PH to remain relevant, there is a need to
better understand why it is so successful. Thus, we distinguish between the usefulness
of PH for applications, which has been attested in hundreds of applications and
publications, and its effectiveness, namely that PH is capable of producing an intended
or desired result. Thus, here we initiate an investigation into the effectiveness of
PH, or in other words, we investigate what is seen by persistent homology: Given a
data set, i.e., a point cloud, which underlying topological and geometric features can
we detect with PH? This question is related to manifold learning and, specifically,
topological and geometric inference: Given a finite point cloud X of (noisy) samples
from an unknown manifold M, how can one infer properties of M [38, 40, 61, 67]?
Obtaining a representation of a shape that can be used in statistical models is an
important task in data analysis and numerous approaches to modeling surfaces and
shapes [339].

To pursue our investigation, we set out to identify some fundamental data-analysis
tasks that can be solved with PH. Since PH is inspired by homology, which provides
a measure for the number of components, holes, voids, and higher-dimensional
cycles of a space (Chapter 1) — to which we collectively refer as “topological
features” —, we start with the obvious question of whether PH applied to a point
cloud sampled from a geometric object can detect the number of (1-dimensional)
holes of the underlying object. Unlike homology, however, PH registers also the
persistence of topological features across scales, and can thereby capture geometric
information, such as the size or position of holes. We therefore also investigate
how well PH can detect fundamental geometric notions of curvature and convexity.
For each of the three problems, we first discuss theoretical results that provide a
guarantee that PH can solve these tasks. Detection of convexity with PH has not
been investigated in the literature to date, and we prove a new result.
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To investigate how well the PH pipeline works in practice, we compare its perfor-
mance against several baselines on synthetic point-cloud data sets. As a first machine
learning (ML) baseline we take an SVM trained on the distance matrices of point
clouds. We further consider fully connected neural networks (NN) with a single or
multiple hidden layers, also trained on distance matrices. As a stronger baseline we
consider a PointNet trained on the point clouds directly. PointNet [145, 282] is a deep
learning architecture designed specifically for point cloud data. Similar architectures
with convolutional (and fully connected and pooling) layers have been applied for
Betti-number and curvature estimation [146, 266]. For convexity detection, we also
evaluate the performance of PH on real-world data. The theoretical guarantees above
imply that the results for PH would generalize to new data.

Finally, we note that our goal is not to claim the superiority of PH compared to other
approaches in the literature, in particular, with state-of-the-art methods for each
of the problems. We do not necessarily expect that on well-specified mathematical
problems PH will beat state-of-the-art algorithms that have been specifically designed
for those tasks. Instead, what we think is interesting and remarkable is that PH
can in fact solve tasks it is not specifically or uniquely designed for. Moreover, an
advantage of PH is that it can reveal, e.g., both topology and curvature at the same
time, avoiding the need to employ and combine state-of-the-art models for each of
the tasks.

related work In spite of the growing interest in PH, so far there is only limited
work in the direction that we pursue here. There is indeed theoretical evidence
that the number of holes of the underlying space can be detected from PH (under
some conditions about the target space, the sample density and closeness to the
space) [70, 187, 255], and there is significant interest in investigating how well this
works in practice [66]. However, so far there are only few available results. Some
works demonstrate that PH can be used to detect the number of holes, but only on
individual toy examples (e.g. [300], [61, Figure 19], [193, Figures 9-20], [67, Figures 2,
3, 6, 11, 12]) without looking into the statistical significance between different classes
of data, or the accuracy of some classification algorithms on a comprehensive data
set. There are also some works where PH is used to estimate the Betti numbers on
a possibly larger data set, but only with the goal of using this information to e.g.,
study the behavior of deep neural networks [251] or ensure topologically correct
dimensionality reduction [265] or image segmentation [158], so that the soundness
of this estimation is not investigated, which is the focus of our work.

Some insights about PH and curvature have been obtained in the literature, starting
with an illustrative example in [81, Figure 12] which shows that PH on the filtered
tangent complex can distinguish between letters (C and I) that have the same
topology, since their curvature is different. Recently, [46] show both theoretically
and experimentally that PH can predict curvature (with computational experiments
replicated in [349]), which inspired us to investigate this problem in more detail.
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Regarding the important geometric problem of classification between convex and
concave shapes, we were not able to identify any previous works investigating the
applicability of PH to this task.

Some further recent work investigating the topological and geometric features seen
by PH are the following. Bubenik and Dłotko [45] show that using PH of points
sampled from spheres, one can determine the dimension of the underlying spheres.
A connection has also been established between PH and the magnitude of a metric
space (an isometric invariant) [257]. There have been several efforts in using PH
to estimate fractal dimensions, such as [311] in which Schweinhart proves that the
fractal dimension of some metric spaces can be recovered from the PH of random
samples.

main contributions Our contributions can be summarized as follows.

• We prove that PH can detect convexity in Rd (Theorem 2.2).

• We define a new tubular filtration function (medium through which PH is ex-
tracted from data), that is crucial for the detection of convexity (Definition 2.1).

• We demonstrate experimentally that PH can detect the number of holes (Sec-
tion 2.2), curvature (Section 2.3), and convexity (Section 2.4) from synthetic
point clouds in R2 or R3, outperforming SVMs and fully-connected networks
trained on distance matrices, and PointNet trained on point clouds. For convex-
ity detection, we also show that PH obtains a good performance on a real-world
data set of plant leaf images.

• We demonstrate experimentally that PH features allow to solve the above tasks
even in the case of limited training data (Section 2.2), noisy (Section 2.2) and
out-of-distribution (Section 2.4) test data, and limited computational resources
(Section 2.2, Section 2.3, Section 2.4).

• We provide insights about the topological and geometric features that are
captured with long and short persistence intervals (Section 2.5), and formulate
guidelines for applications that are suitable for PH (Section 2.6).

• We provide data sets that can be directly used as a benchmark for our tasks
or other related point-cloud-analysis or classification problems. We provide
computer code to construct more data and replicate our experiments.
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2.2 Number of holes

In this section, we focus on the task of (ordinal) classification of point clouds by
the number of 1-dimensional holes. Research in psychology shows that global
properties often dominate perception, and, in particular, that topological invariants
such as the number of holes, inside versus outside, and connectivity can be effective
primitives for recognizing shapes [278]. Extracting such topological information can
therefore prove useful for many computer vision tasks. There are theoretical results
in the literature that ensure that PH with respect to the alpha simplicial complex
is successful for this problem, under some assumptions (Appendix A.1.2), and the
computational experiments that follow demonstrate this success in practice.

data We consider 20 different shapes in R2 and R3, with four different shapes
having the same number of holes (0, 1, 2, 4 or 9). For each shape, we construct 50
point clouds each consisting of 1 000 points sampled from a uniform distribution
over the shape, resulting in a balanced data set of 1 000 = 20 × 50 point clouds. A
few examples of these point clouds are shown in Figure 2.1. The label of a point
cloud is the number of holes in the underlying shape.

shapes

number of holes 0 1 2 4 9

Figure 2.1.: Number of holes data set.

ph pipeline For each point cloud X and scale r ∈ R, we consider its alpha
complex (Section 1.2.2). We will look into scenarios in which data contains noise,
and therefore, instead of the standard distance function, we consider Distance-to-
Measure (DTM) as the filtration function (Section 1.3.2). We extract 1-dimensional
PDs, that are then transformed to PIs, PLs (Section 1.4), or a simple signature
consisting only of lifespans l = d − b of the 10 most persisting cycles (as there
are at maximum 9 holes of interest in the given data set)1, and classified with an
SVM. We consider a “PH simple” pipeline, which relies on the 10 lifespans, and a
“PH” pipeline wherein grid search is employed to choose the best out of the three
aforementioned persistent signatures and the values of their parameters. For more
details on the pipeline, see Appendix A.2.2 and Appendix A.3.2.

1 Although a sphere has no 1-dimensional holes, its PD might consist of many short intervals which
correspond to the small holes on the surface. In addition, in the presence of noise, additional small holes
might appear for any point cloud. Hence, it is not a good idea to consider the cardinality |PD| of the PD
as the signature.
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results We investigate the clean and robust test accuracy under four types of
transformations (translation, rotation, stretch, shear) and two types of noise (Gaus-
sian noise, outliers). For more details on these transformations, see Appendix A.3.1.
We train the classifier on 80% of the original point clouds, and test on the remaining
20% of the data either in its original form or subject to transformations and noise.
The results reported in Figure 2.2 (with detailed results across multiple runs in
Appendix A.3.3) show that PH obtains very good test accuracy on this classification
task, even in the presence of affine transformations or noise, outperforming baseline
machine- and deep-learning techniques.2 We reach a similar conclusion in case of
limited training data and computational resources. Firstly, the evolution of the test
accuracy across different amounts of training data demonstrates that PH achieves
good performance for a small number of training point clouds, which is not the case
for other pipelines (Appendix A.3.5). Secondly, although the hyperparameter tuning
of the PH pipeline does take time (as we consider a wide range of parameters for the
different persistence signatures), it is still less than for PointNet (Appendix A.3.6).
Moreover, Figure 2.2 shows that even the simple PH pipeline, where the SVM is
used directly on the lifespans of the 10 most persisting cycles (without any tuning of
PH-related parameters) performs well.

Figure 2.2.: Persistent homology can detect the number of holes.

2.3 Curvature

This section considers a regression task to predict the curvature of an underlying
shape based on a point cloud sample. Estimating curvature-related quantities is of
prime importance in computer vision, computer graphics, computer-aided design
or computational geometry, e.g., for surface segmentation, surface smoothing or
denoising, surface reconstruction, and shape design [59]. For continuous surfaces,

2 Interestingly, although PointNet was designed with the idea to be invariant to affine transformations, it
performs poorly when the test data is translated or rotated (and this is consistent with some previous
results [200, 354, 366, 375–378]), or when it contains outliers. Traditional neural networks perform very
poorly, which might not come as a big surprise, since it was recently demonstrated that they transform
topologically complicated data into topologically simple one as it passes through the layers, vastly
reducing the Betti numbers (nearly always even reducing to their lowest possible values: βk = 0 for
k > 0, and β0 = 1) [251]. Of course, the choice of activation function and hyperparameters might have an
important influence on performance [251].
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normals and curvature are fundamental geometric notions that uniquely characterize
local geometry up to rigid transformations [146]. Recently, it has been shown that,
using PH, curvature can be both recovered in theory (Appendix A.1.3), and effectively
estimated in practice [46]. We run a similar experiment, evaluating the PH pipeline
against our baselines, and also taking a closer look into the importance of short
intervals.

data A balanced data set is generated in the same way as in [46]: We consider unit
disks Dκ on surfaces of constant curvature κ: (i) κ = 0, Euclidean plane, (ii) κ > 0,
sphere with radius 1/

√
κ, and (iii) κ < 0, Poincaré disk model of the hyperbolic

plane. Curvature κ lies in the interval [−2, 2] so that a disk with radius one can
be embedded on the upper hemisphere of a sphere with constant curvature κ (as
it spherical cap). For each κ ∈ {−2,−1.96, . . . ,−0.04, 0, 0.04, . . . , 1.96}, we construct
10 point clouds by sampling 500 points from the unit disk Dκ with the probability
measure proportional to the surface area measure [44, Section 2.7, Section 4.1]. A
few examples with κ ∈ {−2,−1,−0.1, 0, 0.1, 1, 2} are illustrated in Figure 2.33.These
101 × 10 = 1 010 point clouds are considered as the training data, whereas the test
data set is built in a similar way for 100 values of κ chosen uniformly at random
from [−2, 2]. The label of a point cloud is the curvature κ of the underlying disk
Dκ . Note that all these disks are homeomorphic: they are contractible, so that their
homology is trivial and homology is thus unable to distinguish between them [46].

shapes

curvature -2.00 -1.00 -0.10 0.00 0.10 1.00 2.00

Figure 2.3.: Curvature data set.

ph pipeline For each point cloud X, we first calculate the suitable matrix of pair-
wise distances between the point-cloud points: hyperbolic, Euclidean or spherical,
respectively for negative, zero and positive curvature [44, Section 2.7]. The input for
PH is the filtered Vietoris-Rips simplicial complex (Section 1.3.1).4 We extract 0- and
1-dimensional PDs, which are then transformed into PIs, PLs (Section 1.4) or lifes-
pans, to be fed to SVM. More details on the pipeline are provided in Appendix A.2.2
and Appendix A.4.1.

3 The unit disks with negative curvature are here visualized on hyperbolic paraboloids. These saddle
surfaces have non-constant curvature, but they locally resemble the hyperbolic plane.

4 Alpha complex is faster to compute, but involves Delaunay triangulation, whose unique existence is
guaranteed only in Euclidean spaces. To calculate PH, we rely on the Ripser software [335], which is at
the time the most efficient library to compute PH with Vietoris-Rips complex [258].
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results Figure 2.4 shows the mean squared errors for the PH and other pipelines,
together with their regression lines, with detailed results across multiple runs listed in
Appendix A.4.2. The results show that PH indeed detects curvature, outperforming
other methods.5 Next to the PH pipeline discussed above, wherein a grid search is
used to tune the parameters (Appendix A.2.2), we also consider SVM on the lists of
lifespans of all persistence intervals (PH simple), and SVM only on the 10 longest
lifespans (PH simple 10), in order to investigate if it is only the longest intervals that
contribute to prediction. We see that the performance drops if we only focus on the
longest 10 intervals, so that the many short intervals together capture the geometry
of interest for this problem. Similarly as in Section 2.2, the grid search across the
different parameters for persistence signatures does take time (Appendix A.4.3), but
Figure 2.4 shows that SVM on a simple signature of all (0-dimensional) lifespans
performs well. We highlight that the data used here, as was the data in Bubenik’s
work [46], is sampled from surfaces with constant curvature. In future work it
would be interesting to conduct similar experiments on shapes with non-constant
curvature.

0-dim PH 0-dim PH 0-dim PH ML PointNet
simple simple 10

MSE = 0.06 MSE = 0.21 MSE = 0.08 MSE = 0.34 MSE = 578.28

1-dim PH 1-dim PH 1-dim PH ML PointNet
simple simple 10

MSE = 0.34 MSE = 0.29 MSE = 0.18 MSE = 0.66 MSE = 0.43

Figure 2.4.: Persistent homology can detect curvature.

2.4 Convexity

In this section, we consider the binary classification task that consists of detecting
whether a point cloud is sampled from a convex set. Convexity is a fundamental
concept in geometry [87], which plays an important role in learning, optimization

5 Simple machine and deep learning techniques are able to differentiate between positive and negative
curvature, but perform poorly in predicting the actual value of the curvature of the underlying surface.
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[30], numerical analysis, statistics, information theory, and economics [301]. Further-
more, points of convexities and concavities have been demonstrated as crucial for
human perception of shapes across many experiments [310].

To the best of our knowledge, prior to our work PH has not been employed to analyze
convexity, and it is a task for which PH’s effectiveness might seem surprising. In
the first decade after the introduction of PH, it was seen primarily as the descriptor
of global topology. Recently, there have been many discussions and a greater
understanding that PH also captures local geometry [3]. However, it is still suggested
that the long persistence intervals capture topology (as was the case with the
detection of holes in Section 2.2), and many—even too many for the human eye to
count—short persistence intervals capture geometrical properties (as was the case
with curvature prediction in Section 2.3). However, as we show in Theorem 2.2
(proof in Appendix A.1.1) and as our experiments suggest, it is a single, and the
second-longest persistence interval that enables us to detect concavity. A crucial
ingredient in our result is the introduction of tubular filtrations (Definition 2.1),
which, to the best of our knowledge, are a novel contribution to the TDA literature
(details in Appendix A.1.1).

Definition 2.1 (Tubular filtration). Given a line α ⊂ Rd, we define the tubular
function with respect to α as follows:

τα : Rd → R

x 7→ d(x, α) ,

where d(x, α) is the distance of the point x from the line α. Given X ⊂ Rd and a
line α, we are interested in studying the sublevel sets of τα, i.e., the subsets of X
consisting of points within a specific distance from the line. We define

Xτα ,r = {x ∈ X | τα(x) ≤ r} = {x ∈ X | d(x, α) ≤ r} .

We call {Xτα ,r}r∈R≥0 the tubular filtration with respect to α.

Theorem 2.2 (Convexity detection with PH). Let X ⊂ Rd be triangulable6. We have
that X is convex if and only if for every line α in Rd the persistence diagram in degree 0 with
respect to the tubular filtration {Xτα ,r}r∈R≥0 contains exactly one interval.

data We construct a balanced data set by sampling 5 000 points from convex and
concave (nonconvex) shapes in R2. First, we consider the “regular” convex shapes
of triangle, square, pentagon and circle, and their concave variants, sampling 60
point clouds of each of the eight shapes, 480 point clouds in total. Next, we build
480 “random” convex and concave shapes, in order to be able to investigate if an

6 Recall, triangulable spaces are homeomorphic to a simplicial complex.
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algorithm is actually detecting convexity, or only the different basic shapes. A few
examples are shown in Figure 2.5. To construct a random convex shape, we generate
10 points at random, and then build their convex hull using the quickhull algorithm
[350]. We construct random concave shapes in a similar way, but instead of the
convex hull, we build the alpha shape [113, 115] with the optimized alpha parameter,
which gives a finer approximation of a shape from a given set of points. If the
alpha shape is convex (i.e., if the alpha shape and its convex hull are the same), we
reconstruct the concave shape from scratch. A point cloud has label 1 if it is sampled
from a convex shape, and 0 otherwise.

shapes

convexity 1 0

Figure 2.5.: Convexity data set.

ph pipeline To build a filtration (Section 1.3), we consider cubical complexes
filtered by tubular functions that measure the distance of points from a certain line
(Section 1.3.3, Definition 2.1). For a good choice of line, multiple components would
be seen in the filtration of a point cloud sampled from a concave shape, at least for
some values r ∈ R (see also the illustrations in Appendix A.1.1). For this reason
we consider the cubical complex, rather than the standard Vietoris-Rips simplicial
complex (Section 1.2.1) wherein these separate components could be connected with
an edge (for details, see Appendix A.5.1). To build an image from the point cloud,
we construct a 20 × 20 grid and define a pixel as black if it contains any point-cloud
points, and white otherwise.

Since sources of concavity can lie anywhere on the point cloud, we consider nine
different lines for the tubular filtration function (for a visualization of the pipeline,
see Appendix A.5.1). For each of the nine lines, we extract 0-dimensional PD
(Section 1.4.1), as it captures information about the components. If the point cloud
is thus sampled from a convex shape, its PD will only see a single component for
any line, whereas there will be multiple components at least for some lines for point
clouds sampled from concave shapes. For this reason, for each of the nine lines,
we focus our attention only on the lifespan of the second most persisting cycle. We
can consider this 9-dimensional vector as our PH signature, but in our experiment
choose an even simpler summary: the maximum of these lifespans, since we only
care if there are multiple components for at least one line. This scalar could even be
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used as some measure of the level of concavity of a shape (as in Appendix A.6.2.3,
where PH detects a continuous measure of concavity on a real-world data).

results As already indicated, to gain some insights into how well the different
approaches discriminate convexity from concavity rather than differentiating between
the different basic shapes, we look at the classification accuracies under different
conditions (Figure 2.6, with detailed results across multiple runs in Appendix A.5.2).
We start with the easiest case, where both the train and test data consist of simple
regular convex and concave shapes (Figure 2.5, first row), and then proceed to the
scenario where both train and test data are random shapes (Figure 2.5, second row).
Next we proceed to out-of-distribution test data, where we train on the regular and
test on random shapes, or vice versa. In every case, we train on 400 and test on 80
point clouds. The results show that PH is able to detect convexity, surpassing other
methods significantly in all scenarios except for PointNet in the scenario on the data
set of regular shapes which performs on par. Results reported in Appendix A.5.3
show PH is also computationally efficient.

Figure 2.6.: Persistent homology can detect convexity.

The PH pipeline above makes a wrong prediction when concavity is barely pro-
nounced, or if it is missed by the selected tubular filtration lines (for details, see
Appendix A.5.4). However, the accuracy of PH can easily be improved simply by
considering a finer resolution for the cubical complexes and/or additional tubular
filtration lines. The particular PH pipeline summarized in this section would also
make a wrong prediction if the data set would include shapes that have small or
non-central holes, e.g., a square with a hole in the top left corner. In this case, the
accuracy could also be improved by considering a finer cubical complex resolution
and by considering additional non-central tubular filtration lines within shapes, or by
adding (the maximum lifespan of the) 1-dimensional PH which captures holes. The
pipeline is not limited to polygons, or connected shapes, and it can be generalized to
surfaces in higher dimensions (Theorem 2.2). In Appendix A.7, we also consider the
real-world data set FLAVIA for which we demonstrate that a PH pipeline is effective
in detecting a continuous measure of convexity.
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2.5 Long and short persistence intervals, topology and geometry

Here we discuss how our results contribute to the important and ongoing discussion
about the interpretation of long versus short persistence intervals. When PH was first
introduced in the literature, the long intervals were commonly considered as impor-
tant or “signal”, and short intervals as irrelevant or “noise” [77]. Subsequently the
discussion has refined when it was shown that short and medium-length persistence
intervals have the most distinguishing power for specific types of applications [29,
328]. The current understanding is roughly that long intervals reflect the topological
signal, and (many) short intervals can help in detecting geometric features [3]. We
believe that our work brings new insight into this discussion. We give a summary
of the implications of our work in this section, and we provide a more detailed
discussion in Appendix A.6.

topology and long persistence Stability results (Section 1.7) guarantee
that a number of longest persistence intervals reflect the topological signal, i.e., the
number of cycles [70]. These theorems give information about the threshold that
differentiates between long and short persistence intervals. In Section 2.2, where
we focus on the topology of underlying shapes, the experiments demonstrate that
this threshold can be learned with simple machine-learning techniques. However, it
is important to highlight that the distinction between long and short persistence is
vague in practice. Indeed, seemingly short persistence intervals capture the topology
in Section 2.2, but the second-longest interval is topological noise in Section 2.4, since
every shape in the data set has only a single component (although this second-longest
interval captures important geometric information, what enabled us to discriminate
between convex and concave shapes). These two problems also clearly indicate how
the long intervals that encode topology might or might not be irrelevant, depending
on the signal of the particular application domain.

geometry and short persistence The current understanding is that (many)
short persistence intervals detect geometry. Section 2.3 confirms that this indeed can
be the case. However, we highlight that all cycles can encode geometric information,
such as the information about their size (with respect to the Vietoris-Rips and related
filtrations, as in Sections 2.2 and 2.3) or their position (with respect to the height
or tubular filtration, as in Section 2.4). This further implies that, depending on the
application, any number of short or intervals of any persistence can be important,
which was clearly demonstrated in Section 2.4, where we show that a single interval
detects convexity.
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2.6 Conclusions

main contribution The goal of this chapter is to gain a better understanding of
the topological and geometric features that can be captured with persistent homology.
We focus on the detection of the number of holes (Section 2.2), curvature (Section
2.3), and convexity (Section 2.4). Theoretical evidence for the first two classes of
problems has been established in the literature, and we prove a new result that
guarantees that PH can detect convexity (Theorem 2.2). We also experimentally
demonstrate that PH can solve all three problems for synthetic point clouds in R2

and R3, outperforming a few baselines. This is true even when there is limited
training data and computational resources, and for noisy or out-of-distribution test
data. For convexity detection, we also show the effectiveness of PH in a real-world
plant morphology application.

relevance Firstly, the findings point the way to further advances in utilizing the
potential of PH in applications: we can expect PH to be successful for classification
or regression problems where the data classes differ with respect to number of holes,
curvature and/or convexity. Detailed guidelines are discussed in Appendix A.6.
Due to the crucial role of shape classification in understanding and recognizing
physical structures and objects, image processing and computer vision [211], our
results demonstrate that PH can—to borrow the words from Wigner [358]—“remain
valid in future research, and extend, to our pleasure”, and lesser bafflement, to
a variety of applications. Secondly, the results advance the discussion about the
importance of long and short persistence intervals, and their relationship to topology
and geometry (Section 2.5). Topology is captured by the long intervals, geometry is
encoded in all persistence intervals, and any interval can encode the signal in the
particular application domain.

limitations The results focus on three selected problems and data sets, and it
would therefore be interesting to consider other tasks. In addition, we do not have
an extensive comparison of the state-of-the-art for the given problems. Our work
seeks to understand if PH is successful for a selected set of tasks by benchmarking it
against some well-performing methods.

future research An in-depth analysis of the hypothetical applications dis-
cussed in the supplementary material (Appendix A.6) and selected success stories of
PH from the literature could further improve our understanding of the topological
and geometric information encoded in PH, and the interpretation of persistence
intervals of different lengths. Alternative approaches for the detection of convexity
with PH (relying on higher homological dimensions, or multiparameter persistence)
are particularly interesting avenues for further work. Furthermore, even though
our results imply that PH features are recommended over baseline models for the
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three selected classes of problems, they also provide inspiration on how to improve
existing learning architectures. Further work could investigate deep learning models
on PH (and standard) features or kernels [43, 156, 288, 368], an additional network
layer for topological signatures, or PH-based priors, regularization or loss functions
[43, 72, 75, 76, 158, 360, 379].
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3
THE WHY:
Noise robustness of persistent homology, across
filtrations and signatures

Often cited as the most favorable property of persistent homology (PH) and the
main reason for practical success are the stability theorems that give theoretical

results about noise robustness, since real data is typically contaminated with noise or
measurement errors. However, little attention has been paid to what these stability
theorems mean in practice. To gain some insight into this question, we evaluate the
noise robustness of PH on the MNIST dataset of greyscale images. More precisely,
we investigate to what extent PH changes under typical forms of image noise, and
quantify the loss of performance in classifying the MNIST handwritten digits when
noise is added to the data. The results show that the sensitivity to noise of PH is
influenced by the choice of filtrations and persistence signatures (respectively the
input and output of PH), and in particular, that PH features are often not robust to
noise in a classification task.

This chapter is based on the following publication:

Renata Turkeš, Jannes Nys, Tim Verdonck, and Steven Latré, Noise robust-
ness of persistent homology on greyscale images, across filtrations and signatures,
PLOS ONE 16, No. 9 (2021): e0257215.
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3.1 Introduction

The recent popularity of persistent homology (PH) (Chapter 1) in data analysis is
primarily attributed to its proven stability (Section 1.7): PH is robust under small
perturbations in the input, which is of crucial importance for practical applications
due to the unavoidable presence of noise or measurement error in real data [2].
Moreover, PH is commonly assumed to be a topological invariant and therefore
robust under affine transformations.

However, it is often overlooked in the literature how strongly the stability theorems
are influenced by the choice of a:

• filtration, the input for PH, or the medium through which the homology
information is extracted from data (Section 1.3). Indeed, it is important to
remember that PH is not directly calculated on the data (e.g., an image, or
a point cloud), but on the filtration that approximates the shape of data
at different scales (see Figure 3.3, Figure 3.4). The filtration must satisfy
the underlying assumptions in the stability theorem, which then ensures
robustness under minor perturbations in the input - filtration, not necessarily
under minor perturbations of the data. Moreover, the level of robustness is
directly determined by the filtration.

• persistence signature, the output of PH, or the medium used to represent PH
(Section 1.4 ). Indeed, the stability theorems do not provide a guarantee of the
noise robustness of PH in general, but rather prove the stability of a selected
signature (with the corresponding metric).

In addition, the choice of filtration influences the type of information captured
with PH: for some filtrations, PH can reveal geometric information and thus not
be invariant e.g., under rotation or translation. Furthermore, even if the stability
theorem holds for the given filtration and signature, little attention has been paid
to what these stability theorems mean in practice. In particular, it is unclear if the
stability results imply the noise robustness of PH features in a classification task.

To investigate these issues, we carry out computational experiments that evaluate the
noise robustness of PH on the MNIST dataset of greyscale images, under different
types of noise. More precisely, the main objective of this work is to address the
following research questions, across different filtrations and persistence signatures:

(RQ1) How much does PH change under noise in the data?

(RQ2) How discriminative does PH remain if the data contains noise?

The findings of this analysis can therefore help to guide the choice of appropriate
filtrations and signatures, especially in the presence of noise in the data. To the
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best of our knowledge, this issue has not been studied in literature so far. In the
majority of studies that apply PH to tackle a particular problem (and are thus not
concerned with noise robustness in particular), a single filtration and signature
are commonly adopted, without a discussion on the motivation, assumptions, and
implications behind the specific choice. There are a few noteworthy examples in the
literature, such as [129], which do consider multiple filtrations and/or signatures
(on the MNIST data set), but they focus on the discriminative power, rather than
the noise robustness of PH features. The authors do conclude, however, that PH is
reputed for its robustness to noise, and suggest conducting a similar study under
different types of image noise [129].

The next sections introduce our choice filtrations and persistence signatures (Sec-
tion 3.2), and detail how this choice influences the stability theorems (Section 3.3). We
then proceed to evaluate the robustness of PH on the MNIST image data set of hand-
written digits (Section 3.4), concluding with a summary of findings and limitations
of this work, that motivate some suggestions for future research (Section ??).

3.2 Choice of filtrations and signatures

This section discusses the choice of filtrations and persistence signatures used in
this chapter, and specifices the choice of their parameters. We consider the binary-,
greyscale-, density-, and radial-filtered cubical complexes, and the Rips and DTM-
filtered simplicial complexes constructed from an image Z = [zuv] (Figure 3.1).

binary filtration The binary filtration function considers binary values of
pixels by introducing a greyscale threshold z0:

ϕz0(u, v) =

{
0 zuv ≥ z0

1 otherwise.
(3.1)

PH with respect to this filtration function corresponds to the homology of the image
[129], meaning that it only determines the number of cycles (Betti numbers, see
Section 1.1). It is of crucial importance that the greyscale threshold parameter z0 is
sufficiently low, so that all dark pixels are part of the filtration immediately at scale
r = 0. Indeed, if only a single pixel along some hole has a greyscale value below
the given threshold z0, this pixel will only be a part of the filtration at resolution
r = 1, as any other pixel in the image, so that the hole is never seen at any scale in
the filtration.
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3.2 choice of filtrations and signatures

greyscale filtration In order to study how cycles persist with respect to
the greyscale value, a nonbinary filtration function is a more natural choice. In the
greyscale filtration function, one relates each pixel to its greyscale value:

ϕgrsc(u, v) = max(Z)− zuv.

An advantage of the greyscale compared to other considered filtrations is that it
is parameter-free. In particular, it does not require an a-priori defined greyscale
threshold. Next to the number of cycles, PH with respect to the greyscale filtration
function thus also captures information about the brightness of the cycles.

density filtration If the greyscale value of a single pixel changes significantly
(e.g., from black to white), an existing hole in an image might get disconnected, or
an additional single-pixel hole might appear. To avoid such sensitivity to outlying
greyscale values, we can rather consider the density filtration function. Thereby,
we relate each pixel to the number of “dark-enough” pixels in its neighborhood.
More precisely, let the neighbourhood N((u, v), d0, z0) be the set of all pixels (u′, v′)
with zu′v′ ≥ z0 (for a given threshold z0), that are within given distance from pixel
(u, v) :

∥(u′, v′)− (u, v)∥2 ≤ d0.

Density filtration function is then defined as:

ϕd0,z0(u, v) = N(d0)− |N((u, v), d0, z0)|,

where N(d0) is the total number of pixels within distance d0, for any (u, v). The
threshold parameter z0 is not of crucial importance. For instance, if only one pixel
along a hole is very bright, the hole will never be seen in the binary filtration, but
it will persist from early on in the density filtration, for most of the values of z0. A
good choice for the size of the neighbourhood d0 obviously depends on the size of
the image. For the data set of 28 × 28 MNIST images, we take d0 = 1.

radial filtration While the greyscale and density filtration capture infor-
mation about the brightness of cycles, it is possible to capture other information.
For example, the position of cycles is captured with PH if one considers the radial
filtration function defined as the distance from a given reference pixel (u0, v0) :

ϕ(u0,v0),z0
(u, v) =

{
∥(u, v)− (u0, v0)∥2 zuv ≥ z0

max(u′ ,v′) ∥(u′, v′)− (u0, v0)∥2, otherwise

Similar to the binary filtration function, the greyscale threshold z0 is crucial for the
radial filtration as well, whereas the density and Rips filtration are less sensitive
to this parameter (point cloud points corresponding to non-neighboring pixels can
still be connected with an edge, for a sufficiently large resolution r). However, to
be consistent, we take the same threshold value z0 = 0.5 max(Z) for the Rips, DTM,
binary, density and radial filtrations.
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The choice of the reference pixel (u0, v0) depends on where the important topological
features are expected to be located in an image, and how this location differs across
classes of data. For instance, if we consider (u0, v0) to be a pixel in the center of
the image, the holes in digits 6 and 9 would be seen at the same resolution r in the
filtration. Since we aim to differentiate between digits 6 and 9, we will consider
(u0, v0) = (0, 0).

rips and dtm filtration As discussed in Section 1.2 (see in particular Fig-
ure 1.8), it is also possible to construct a point cloud from a given image by replacing
every dark enough pixel with a point cloud point, and study the Vietoris-Rips
(Section 1.3.1) or Distance-to-Measure (DTM) filtration (Section 1.3.2).

Figure 3.1.: Filtration functions on an image. The first plot shows an example MNIST
image Z, with greyscale pixel values in [0, 250]. The next four plots
respectively show the heatmap for the binary, greyscale, density and
radial filtration function ϕ : K(Z) → R, where K(Z) is the cubical
complex corresponding to the given example image. The final two plots
visualize the heatmap of ϕ : K(Z) → R, where ϕ is the discretized
version of the Rips and DTM filtration functions dX(Z,z0)

: R2 → R and
dX(Z,z0),m : R2 → R, and X(Z, z0) is the point cloud obtained from image
Z and threshold greyscale value z0.

Figure 3.2.: Filtration on a cubical complex. The first image represents the values
[0, 100] of the filtration function ϕ : K(Z) → R. The next nine plots
show the cubical complexes K10 ⊆ K20 ⊆ K30 ⊆ · · · ⊆ K90, where Kr
corresponds to the union of all cubes, i.e., pixels (u, v) with the filtration
value ϕ(u, v) ≤ r. There is only one 1-dimensional cycle, i.e., hole, which
is first seen in K40, and then disappears or closes in K70.

Persistent homology (PH) information in dimension k captures the values of res-
olution r when each k-dimensional cycle is born and when it dies in a filtration,
denoted with b and d. The cardinality of this multi-set of persistence intervals (bi, di)
(i ∈ N+) counts the number of k-dimensional cycles (although many or even a
majority might only show up in the filtration for a brief while, i.e., for a small range
of resolution values r, yielding very short lifespans or persistence li = di − bi, and as
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will be explained later in the chapter, can thus be considered as irrelevant). However,
the choice of the filtration defines the interpretation of the birth values and death
values, which can reflect additional topological or geometric information, such as
their size or position (Table 3.1).

Consider some examples in Table 3.1. The table lists 1-dimensional PH calculated for
a few example MNIST images (or an image with an outlying pixel), across selected
filtrations. The notation (b, d)∗ implies that multiple cycles appear and disappear
at the same time (thus, PH is a multi-set, where each element has its multiplicity).
The notation (b, d)∗∗ implies that there are multiple intervals with a similar birth
and death value. As already noted, the cardinality of the set of persistence intervals
determines the number of cycles. However, the definition of filtration implies the
interpretation of birth and death times, so that PH with different filtrations captures
different topological (and geometric) information, what further influences its noise
robustness and discriminating power. For example, an additional point at an outlying
distance from a point cloud can have an important influence on PH with the Rips
filtration (e.g., an additional black pixel within a hole will change the persistence of
that hole, see persistence intervals in red), but this is less true for the DTM filtration,
as the outlier will have a large distance from the nearest point cloud neighbours
and will thus appear only very late in the filtration. A reverse example is a pixel
with an outlying greyscale value (e.g., a white pixel in a dark region) which has an
important influence on PH with the binary, greyscale and radial filtration (in blue),
but much less for the density, Rips and DTM filtration. If geometric information is
captured, PH becomes sensitive under some affine transformations. Furthermore,
1-dimensional PH with binary, greyscale and density filtration cannot differentiate
between digits 0, 6 and 9 (as they all have one hole of similar brightness), but radial
filtration allows to discriminate between digits 6 and 9 (as the holes have a different
position), and Rips and DTM filtrations enable to distinguish between 0 and 6 (as
the holes are of different size).
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3.2 choice of filtrations and signatures

Obviously, the choice of filtration has an important influence on the noise robustness
and discriminative power of PH. If PH only registers the number of holes, it is of
topological nature and is invariant under rotations, translations, or stretching (in
topology, a coffee mug is equivalent to a donut, see Figure 1.2), which can be useful
in some applications, such as recognition of animals, cars, or people in images.
If PH also captures the position of holes, it is sensitive to rotation, but able to
differentiate, e.g., between digits 6 and 9. If the size of the holes is also captured, the
PH information is not robust to rescaling, but it enables us to differentiate between a
6 and a 0.

In order to evaluate the noise robustness of PH, we are interested in computing the
distance between PH information of two images. These two images will, for example,
be the non-noisy and noisy version of an image. In the computational experiments,
the distance between PH is calculated using the Wasserstein W2 distance between
persistence diagrams (PDs), or l2 distance between persistence landscapes (PLs) or
persistence images (PIs) (Section 1.4, Section 1.6). The parameter p in both Wp and
lp determines the importance of long compared to short distances.

Furthermore, for a chosen p, the choice of persistence signature also influences the
importance of cycle lifespans. Indeed, it is easy to see that the Wasserstein Wp

p

and lp
p distances between PDs and PLs or PIs corresponding to PH1 = {(b, d)} and

PH2 = ∅ reflect (d − b)p, (d − b)p+1 and αp(b, d − b), where α is the weight function
for PIs (see Section 1.4.2). Since we consider α(b, d − b) = (d − b)2 as the weight
function, this means that the cycles that persist for a short time matter the least for
PIs, and the most for PDs (Table 3.2).

Persistence signature Limiting behaviour of δ2(PH, ∅)

PD O(l2)
PL O(l3)
PI, with weight function β(b, l) = l2 O(l4)

Table 3.2.: Persistent homology across signatures. The choice of persistence sig-
nature, and the corresponding metric, determines how sensitive PH is
to cycles (b, d) with short persistence, or lifespan, l = d − b. The table
lists the limiting behavior, or growth rate, of the function δ2(PH, ∅) =
δ2({(b, d)}, ∅) = f (d − b) = f (l), where distance δ represents the Wasser-
stein W2 distance between persistence diagrams, or l2 distance between
persistence landscapes or persistence images. The growth rate reflects the
importance of a cycle with lifespan l, which influences the noise robust-
ness and discriminative power of PH.

The choice of persistence signature, and the corresponding metric, therefore has
an important influence on the noise robustness and discriminative power of PH,
although, surprisingly, little research has been carried out in this area before [122].
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Recently, [122] evaluated the overlap between the lp distances between persistence
landscapes and persistence images, and the Wasserstein Wp distances between persis-
tence diagrams, on three different data sets (including MNIST images). The results
clearly show that the distances between vectorized persistence summaries greatly
differ from the distances between PDs. Another recent and detailed investigation
of the distance correlation between different persistence signatures can be found in
[340]: the authors conclude that the considered signatures are “same but different”,
as they commonly contain the same information, but are shown to yield different
results from statistical analyses since they lie in different metric spaces. In addition,
the classification accuracy is shown to vary greatly when distances between shapes
are given by the distances between their PDs, PLs or PIs in [2, Table 1].

point cloud filtration 1-dim PD 1-dim PL

Figure 3.3.: The image structure at scale r can be approximated with a cubical
complex, e.g., we can look only at pixels within distance r from the top
left pixel. 1-dimensional PH consists of one persistence interval that
reflects the one loop in the image, that is represented with the single PD
point, or a single triangle in PL.

point cloud filtration 1-dim PD 1-dim PI

Figure 3.4.: To approximate the structure of an image at scale r, we can consider it
as a point cloud, and approximate its structure by constructing an edge
between two points whenever they are within distance r. 1-dimensional
PH consists of one persistence interval that reflects the one loop in the
image, that is represented with the single PD point, or a single dark
region in PI.

In our experiments, we consider the PI grid of size 10 × 10, choose the weight
function α(b, l) = l2, and set the Gaussian function variance to 5% of the maximum
death value in PDs for the given filtration function and homological dimension. The
number of main connected components or holes in the MNIST data set is typically
0, 1 or 2. However, additional cycles might appear in noisy images, and we thus
consider the first 10 landscapes λj (j ∈ {1, 2, . . . , 10}) (Section 1.4.3); although we
immediately note that this means that PLs and PDs do not necessarily capture the
same information (e.g., if there are more than 10 cycles in this case). Obviously,
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this number should be higher if we expect a large number of important cycles that
discriminate between classes of data. We set the landscape resolution P = 100.

3.3 Stability theorems across filtrations and signatures

Stability theorems (Section 1.7) may be viewed as a precise statement about ro-
bustness to noise: stable representations of PH are not sensitive to noise in the
input. More precisely, recall that for persistence diagrams calculated with respect to
filtration functions ϕ and ψ, a stability theorem ensures that there exists a constant
c ∈ R such that:

Wp(PD(ϕ), PD(ψ)) ≤ c∥ϕ − ψ∥p.

A stability theorem for other persistence signatures PH states the following:

∥PH(ϕ)− PH(ψ)∥p ≤ cWp(PD(ϕ), PD(ψ)).

In this section, we discuss the importance of the choice of filtration, signature, and
data set in the interpretation of stability theorems, that is often overlooked in the
literature. This discussion then motivates our computational experiments in the next
section.

Stability theorems and the choice of filtration

The choice of filtration plays a crucial role in the existence and practical value
of stability theorems. First of all, in order for the stability theorem to hold for a
particular filtration, the filtration function must satisfy the underlying assumptions.

Second, note that the stability theorems ensure that PH is robust under minor
perturbations of its input - filtration, and not under minor perturbations in the data
space itself. Small changes in the space do not always imply small changes in the
filtration function, so that stability theorems provide no guarantee of robustness
in such a scenario. For instance, if Z′ is obtained by changing the image Z only
slightly, ∥δX(Z,z0)

− δX(Z′ ,z′0)
∥p can be large (and it corresponds to the Gromov-

Hausdorff distance between point clouds X(Z, z0) and X(Z′, z′0), for p = ∞ [69]).
Although PDs are theoretically stable with respect to the Rips filtration (with the
distance function δX(Z,z0)

: Rn → R as its filtration function), the upper bound for
Wp(PD(δX(Z,z0)

), PD(δX(Z′ ,z′0)
)) is so large that it makes little sense in practice: these

PDs are sensitive to outliers.

Finally, stability theorems are worst-case results, as they do not necessarily ensure
tightness of the upper bound provided for the distance between PH information.
This is true even if small perturbations in the data result only in small perturbations
of the filtration. Let us consider an image Z, and another image Z′ obtained with
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some transformation π : Z → Z′. If we apply the stability theorem to the space
Z and filtration functions ϕgrsc : K(Z) → R and ψgrsc = ϕgrsc ◦ π : K(Z) → R,
the right-hand side in the stability theorem ∥ϕgrsc − ψgrsc∥p (and this change in the
greyscale values precisely corresponds to the change in the image) is an upper bound
for the change in PDs.

If Z is the MNIST image of digit 6, and Z′ the same image but with one pixel changed
from black to white (Table 3.3), then ∥ϕgrsc − ψgrsc∥p = 255 is sufficiently large to
allow to change PD(ϕgrsc) with one hole to PD(ψgrsc) with no holes. However,
if Z is the MNIST image of a digit 0, and Z′ the same image but with one pixel
changed from white to black (Table 3.1), we again have ∥ϕgrsc − ψgrsc∥p = 255 but
PD remains unchanged. As another example, we can consider Z′ to be the translated
image Z, when ∥ϕ − ψ∥p is large for both the greyscale or radial filtration function.
However, Wp(PD(ϕ), PD(ψ)) is zero when ϕ is greyscale (as PDs then only register
the number and brightness of cycles), but it is large for the radial filtration function
(which also captures the position of cycles).

Stability theorems and the choice of persistence signature

It is clear from the formulation of stability theorems in Section 1.7 that these results
only hold for some signatures, and some metrics. As we discuss there, PLs and PIs
are shown not to be stable with respect to the l2 metric in [320], although this is the
standard choice in applications, when it is commonly assumed that these are stable
representations. This is one of the reasons why [320] recently emphasized that “the
stability theorems are one of the most misunderstood and miscited results within
the field of topological data analysis”. It is, however, interesting to see if the stability
holds in practice, and to which degree.

Stability theorems and the type of data set

If the stability theorem holds for a chosen filtration and persistence signature, it does
not imply the noise robustness of PH features in a classification task - this depends
on the application domain, i.e., the type of data set.

Let us go back to the example of Z being the MNIST image of digit 6, and Z′

being the same image but with one pixel changed from black to white (Table 3.1).
As already indicated, the upper bound for the greyscale filtration is large enough
to allow to change PD(ϕgrsc) with one hole to PD(ψgrsc) with no holes. This is
problematic for the classification of the MNIST data set using PDs, since any image
contains none, one or two holes, but it would pose less of an issue if there is a greater
variety in the number of holes across data classes.

64



3.4 results and discussion

3.4 Results and discussion

We start this section by describing the data set of greyscale images, and the dif-
ferent types of noise considered in our experiments. In the next subsection, we
investigate how sensitive the persistent homology information is to these types
of noise, by evaluating the distance between PH for noisy and non-noisy images.
This information, however, only paints a part of the picture, since in practical use
cases, the PH information must also vary sufficiently among data points in order
to form discriminative features in e.g., classification tasks. In the final subsection,
we thus investigate the noise robustness of persistent homology together with its
discriminative power, by evaluating the drop in classification accuracy when the test
data consists of noisy, compared to non-noisy images.

3.4.1 (Noisy) data sets

We consider the MNIST data set [201], as it is a well-defined benchmark of greyscale
images, and the shape of each of the digits is well understood. To reduce the
computation time, we restrict the study to the first 1000 images in the data set. We
investigate three types of affine transformations, changes in image brightness and
contrast, and three types of pure noisy transformations, each at two different levels,
and in different directions, if applicable (Table 3.3).1

For every (non-noisy and noisy) data set, i.e., for each image in each of the data
sets, we calculate the values of filtration functions on each pixel, and the 0- and
1-dimensional persistent homology2 information with respect to all considered
filtrations and persistence signatures (with the specified values of the parameters)
using the python GUDHI library [331].

3.4.2 Noise robustness

The goal of this section is to understand in what way, and to which degree, is the
persistent homology information sensitive to noise, across different filtrations and
persistence signatures. In order to address this question, we start by visualizing the
different filtration functions and persistent homology information for an example
MNIST image, under different data transformations (Figure 3.5 and Figure 3.6). We
can conclude the following.

affine transformations (rotation, translation, stretch-shear-re-
flect) PH on binary and greyscale filtration remains unchanged under any affine

1 The greyscale pixel values are clipped to the interval [0, 255].
2 For 0-dimensional homology, we truncate the death value of infinite intervals to the maximum finite

death value for the given filtration function, across all transformations.
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Transformation Definition of transformation

rotation Rotation by 45 degrees clockwise (rotation 45), or 90

degrees counterclockwise (rotation -90).
translation Translation by 1 pixel right and down (translation 1

1), or 2 pixels left and up (translation -2 -2).
stretch, shear and reflect Stretch, shear and flip respectively by a factor of 1.5

(i.e., an image is scaled down by factor of 1.5 in the
x direction, whereas it remains unchanged in the y
direction, so that the image is stretched), 10 degrees
and horizontal (stretch-shear-flip 1.5 10 h), or by a
factor 0.75, -20 degrees and vertical (stretch-shear-
flip 0.75 -20 v).

brightness -50 or 100 is added to the greyscale value of each
pixel (brightness -50 and brightness 100, respec-
tively).

contrast Greyscale value of each pixel is multiplied with 2 or
0.5 (contrast 2 and contrast 0.5, respectively).

gaussian noise Random noise drawn from normal distribution
N (0, 10) or N (0, 20) is added to the greyscale value
of each pixel (gaussian noise 10 and gaussian noise
20, respectively).

salt and pepper noise 5% or 10% of random pixels in an image are
changed, with equal probability, to either white (i.e.,
salt) or black (i.e., pepper) (salt and pepper noise 5

and salt and pepper noise 10 respectively).
shot noise Greyscale value of each pixel is replaced with a ran-

dom number drawn from the Poisson distribution,
with the distribution mean corresponding to the
original greyscale pixel value, scaled down with a
factor 50 (shot noise 50) or 100 (shot noise 100), as
Poisson distribution is spread out more for lower
means. Since the Poisson distribution with mean
zero is equal to zero, the shot noise only changes
non-white pixels.

Table 3.3.: Image noise.

transformations3, since it only registers the number and brightness of cycles (it
is a topological invariant). However, under stretch-shear-reflect the density along
and within a hole changes, which results in a change of birth and death values for
1-dimensional cycles with respect to the density filtration. Radial filtration function

3 In the computational experiments, the affine transformations sometimes slightly disturb the greyscale
values, so that, e.g., some cycles can appear or disappear in an image (see, for instance, the additional
one-pixel hole for the binary filtration under rotation 45 in Figure 3.6).
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captures the position of the cycles, so that the birth and death values of cycles can
also change significantly under any affine transformation. PH on Rips and DTM
filtration is robust under rotation and translation. However, PH with Rips and DTM
filtration captures the size of cycles, and is thus sensitive to affine transformations
that rescale the image. For instance, under stretch-shear-reflect that enlarges a digit,
the number of point cloud points increases, resulting in many additional short per-
sisting 0-dimensional cycles for these filtrations. The death value of 1-dimensional
cycles for Rips and DTM filtration also changes under stretch-shear-flip, as the PH
in this case reflects the size of the hole.

brightness PH on binary and radial filtration does not see important changes
if the brightness of an image is adjusted. However, a change in image brightness
does result in changes of the birth or death values in 1-dimensional PH on greyscale
or density filtration, and additional cycles can be captured with density filtration.
A change of thickness of a digit also results in additional 0-dimensional cycles for
Rips and DTM filtration, that are of short persistence, but there are many. For these
filtrations, there is also a minor change in the death value for 1-dimensional cycles,
as it captures the size of the hole that can change under a change in brightness.

contrast PH with respect to most of the considered filtrations is invariant under
changes in the contrast of an image. The only exception is 1-dimensional PH with
greyscale filtration, where the birth or death value of cycles can change.

salt and pepper noise Gaussian, salt and pepper, and shot noise change the
greyscale value of some random pixels. For each black pixel on a white background
in the salt and pepper noise, a new one-pixel connected component (a long persisting
0-dimensional cycle) appears for PH on binary, greyscale, and radial filtration. If
a pixel in a neighborhood of black pixels is changed to white, an additional long
persisting 1-dimensional cycle (one-pixel hole) can appear for PH on these filtrations.
Also, an existing hole in the non-noisy image may become disconnected in the noisy
image, and thus not registered. The additional 0-dimensional cycles are all born
at birth value 0 for PH on Rips filtration, but they die earlier (as soon as they are
connected to another point cloud point), so that Rips is more robust under this
transformation, but still severely impacted by the outliers. One-pixel or disconnected
holes are not an issue for PH on Rips filtration, but the death value of 1-dimensional
cycles can decrease due to the additional pixels within a hole (see also the image of
digit 0, and the same image with a single outlier in Table 3.1). PH on DTM filtration
is significantly more robust to salt and pepper noise, as the outliers are “washed
out”.
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gaussian noise The Gaussian noise produces similar types of perturbations
as the salt and pepper noise, but the change in the greyscale value is much less
prominent, so that no additional cycles are typically seen with the binary or radial
filtration (which take the binary image as input), and have a very low persistence for
the greyscale filtration.

shot noise Shot noise only changes the non-white pixels (to lighter or darker), so
that a digit might become disconnected into a few components, a hole might become
disconnected, and many one-pixel holes may appear. The additional 0-dimensional
cycles have a long lifespan for binary and radial filtration, but they are short for PH
on greyscale filtration (or more precisely, they are directly related to the strength
of the change of the greyscale pixel values) and density filtration. 1-dimensional
PH with these filtrations exhibits similar behavior. As already mentioned, PH with
Rips and DTM filtration is more robust under this type of noise, since disconnected
components or holes can still be captured, as the Rips and DTM filtration connect
non-neighboring pixels with a sufficiently large edge (resolution r in the filtration).

PDs, PLs and PIs reflect the same information about the cycles, and Figure 3.5 and
Figure 3.6 show that they change accordingly. However, without considering the
metric on these spaces of persistence signatures, we cannot derive any insights
regarding the difference in the noise robustness from these figures.

Furthermore, the major part of the discussion above is based only on a single
example data point. We therefore calculate the (l2 or W2) distance between each
image in the data set, and its noisy variant, when images are represented with their
filtration functions or persistent homology information (Table 3.4, Table 3.5). The
results on the complete data set align well with the findings discussed above for an
example image. In addition, the results clearly shows that, for any given filtration
and homological dimension, there is a relative difference between PDs, PLs and PIs
in robustness under various transformations. For instance, 0-dimensional PH on
Rips filtration is more sensitive to salt and pepper than shot noise for any persistence
signature, but this difference is much more pronounced for PLs, and in particular
for PIs, compared to PDs.
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Figure 3.5.: Noise robustness of 0-dimensional PH on an example image. Illustration
of the effect of various image transformations when the image is repre-
sented with its filtration function values (1st row of each filtration), or
0-dimensional PD (2nd row), PL (3rd row), or PI (4th row).
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signatures

filtration

homologicaldimension

persistencesignature

rotation45

rotation-90

translation11

translation-2-2

stretch-shear-flip1.510h

stretch-shear-flip0.75-20v

brightness-50

brightness100

contrast2

contrast0.5

gaussiannoise10

gaussiannoise20

saltandpeppernoise5

saltandpeppernoise10

shotnoise50

shotnoise100

R
ip

s

-
-

7
5
.7

1
9
5
.3

9
2
8
.7

5
5
5

.6
7

8
1

.1
4

8
4

.1
2

6
.5

5
1
4

.8
8

1
0

.9
2

0.
00

3
.3

4
.7

9
8
9

.4
1

1
0
6
.4

1
0
.2

7
1
2
.5

8

0

P
D

0
.8

2
0
.0

1
0
.0

1
0

.0
9

2
.8

8
2

.8
5

1
.3

9
2

.8
5

2
.1

8
0.
00

0
.5

0
0
.6

3
7

.7
2

8
.4

8
1
.9

5
3
.2

9

P
L

0
.2

1
0.
00

0.
00

0
.0

7
0

.3
7

0
.2

5
0

.2
4

0
.4

6
0

.3
1

0.
00

0
.1

1
0
.0

9
3
5

.4
5

3
0

.5
9

2
.1

1
4
.7

7

P
I

2
.9

6
0
.0

1
0
.0

2
0

.3
7

2
9

.1
0

2
9

.3
3

7
.0

4
2
8

.4
1

1
6

.8
3

0.
00

1
.4

0
1
.8

5
1
2
9

.8
3

1
6
3

.8
6

1
0
.1

9
2
2
.7

2

1

P
D

0
.5

1
0.
00

0.
00

0
.0

2
1

.2
1

1
.0

5
0

.6
4

1
.3

4
1

.0
1

0.
00

0
.2

5
0
.3

4
1

.1
5

1
.8

0
1
.2

1
1
.5

6

P
L

0
.8

3
0.
00

0.
00

0.
00

2
.1

1
1

.2
7

0
.6

9
1

.8
3

1
.2

2
0.
00

0
.2

5
0
.4

2
3

.1
6

5
.2

1
1
.8

5
2
.5

9

P
I

0
.6

8
0
.0

1
0.
00

0.
00

2
.1

2
1

.6
8

0
.6

8
2

.0
5

1
.2

8
0.
00

0
.2

4
0
.3

8
1

.7
1

2
.7

7
1
.5

6
2
.4

6

D
TM

-
-

6
6
.7

4
8
6
.4

5
2
5
.7

9
5
1

.2
4

7
0

.8
7
3
.5

6
4

.3
5

7
.6

5
.9

9
0.
00

2
.1

4
3
.0

8
2
2

.5
1

3
6

.6
4

6
.7

7
9
.2

2

0

P
D

1
.3

7
0
.0

1
0
.0

1
0

.1
0

3
.7

3
4

.0
6

1
.5

7
2

.9
7

2
.1

6
0.
00

0
.8

1
1
.0

5
4

.0
0

5
.8

8
2
.2

1
3
.3

0

P
L

1
.2

2
0.
00

0
.0

1
0

.0
8

5
.2

8
4

.7
8

1
.6

0
4

.1
9

2
.6

9
0.
00

0
.6

4
0
.8

7
6

.3
3

9
.9

4
2
.8

2
5
.5

2

P
I

1
.6

6
0.
00

0.
00

0
.1

2
1
4

.2
0

1
2

.0
1

3
.3

8
1
2

.0
0

7
.3

3
0.
00

0
.8

1
1
.0

8
6

.8
9

1
3

.8
1

4
.9

3
1
0
.5

8

1

P
D

0
.6

0
0.
00

0.
00

0
.0

2
1

.2
2

1
.2

3
0

.5
9

1
.0

8
0

.8
3

0.
00

0
.3

1
0
.4

1
0

.8
5

1
.1

6
0
.8

3
1
.0

8

P
L

0
.8

6
0.
00

0.
00

0
.0

2
2

.3
2

2
.2

6
0

.7
9

1
.3

2
1

.0
1

0.
00

0
.3

8
0
.5

5
1

.2
2

1
.9

2
1
.3

9
2
.0

5

P
I

0
.2

3
0.
00

0.
00

0.
00

0
.6

0
0

.5
6

0
.1

8
0

.3
6

0
.2

5
0.
00

0
.0

9
0
.1

4
0

.3
0

0
.5

2
0
.4

2
0
.6

5

Ta
bl

e
3
.5

.:
N

oi
se

ro
bu

st
ne

ss
of

p
er

si
st

en
t

ho
m

ol
og

y
on

1
0
0
0

M
N

IS
T

gr
ey

sc
al

e
im

ag
es

(c
on

t)
.

T
he

ta
bl

e
sh

ow
s

th
e

d
is

ta
nc

e
∥ϕ

−
ψ
∥ 2

be
tw

ee
n

th
e

fi
lt

ra
ti

on
fu

nc
ti

on
va

lu
es

on
th

e
no

n-
no

is
y

an
d

no
is

y
im

ag
e

(1
st

ro
w

of
ea

ch
fi

lt
ra

ti
on

),
th

e
W

as
se

rs
te

in
d

is
ta

nc
e

W
2(

P
D
(ϕ

),
P

D
(ψ

))
be

tw
ee

n
0
-

or
1
-d

im
en

si
on

al
p

er
si

st
en

ce
d

ia
gr

am
s

(2
nd

an
d

5
th

ro
w

),
th

e
di

st
an

ce
∥P

L(
ϕ
)
−

P
L(

ψ
)∥

2
be

tw
ee

n
pe

rs
is

te
nt

la
nd

sc
ap

es
(3

rd
an

d
6
th

ro
w

),
or

th
e

di
st

an
ce

∥P
I(

ϕ
)
−

P
I(

ψ
)∥

2
be

tw
ee

n
pe

rs
is

te
nt

im
ag

es
(4

th
an

d
7

th
ro

w
),

av
er

ag
ed

ac
ro

ss
1

0
0

0
im

ag
es

in
th

e
M

N
IS

T
da

ta
se

t.

72



3.4 results and discussion

Finally, Table 3.4 and Table 3.5 imply that stability theorems do not necessarily
provide useful information about the stability in practice. For example, under
rotation and Gaussian noise, the average value of ∥ϕgrsc − ψgrsc∥2 is respectively
equal to 2707.85 and 412.55. However, we see that the distance between PH on
noisy and non-noisy images is close to zero for rotation, but it is much larger under
Gaussian noise.

3.4.3 Noise robustness and discriminative power

In the previous section, we assess the distances between images and their noisy
version. In practical applications, however, these distances ought to be compared to
the distances between the images in (other classes of) the data set, which reflect the
discriminative power in a classification task. Therefore, in this section, we discuss
the noise robustness together with the discriminative power of persistent homology,
across different filtrations and persistence signatures, for non-noisy and noisy data
sets.

In order to do so, we investigate how much the performance of a classifier (more
specifically, a support vector machine (SVM)) drops when noise is added to the data
set. Since PDs are multi-sets, we use an SVM with a Gaussian kernel:

κ(Z, Z′) = e−
δ2(Z,Z′)

2σ2 .

For two images Z and Z′, δ(Z, Z′) corresponds to the Wasserstein W2 distance4

between their PDs, or the l2 distance between their filtration function values, PLs
or PIs. For each representation of the images, the SVM regularization parameter
(typically noted as C, which trades off correct classification of training examples
against maximization of the decision function’s margin) and the kernel parameter
σ2 are first tuned using 5-fold cross-validation on the training set of 70% non-noisy
images.5 As we are focused on noise robustness, we calculate the relative decrease
in accuracy for noisy compared to non-noisy test data (the remaining 30% of images
in the data set). The results are summarized in Figure 3.7.

We observe that there is at least 35% drop in SVM accuracy, when images are
represented with PH, in the following scenarios:

• affine transformations: PH on radial filtration under any affine transformation,
and PH on Rips and DTM for stretch-shear-flip.

• brightness: PH on greyscale, Rips and DTM filtration.

• contrast: PH on greyscale filtration.

4 The space of PDs with Wasserstein metric is not of negative type [340, Theorem 3.2], so that this kernel is
not an inner product [57].

5 We consider C ∈ {10−1, 100, 101, 102}, and γ = 1
2σ2 ∈ {10−7, 10−6, 10−5, 10−4, 10−3, 10−2}.
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Figure 3.7.: Noise robustness and discriminative power of PH on 1000 MNIST
greyscale images. The figure shows the drop in SVM classification
accuracy when the test data set is noisy, compared to the non-noisy test
set, averaged across 1000 images in the MNIST data set. Each image
is represented either with its filtration function values (1st row of each
filtration), or with its 0- or 1-dimensional PD (2nd and 5th row), PL (3rd
and 6th row) or PI (4th and 7th row). The size of the node reflects the ab-
solute accuracy on the non-noisy test data. The color of the node reflects
the accuracy drop, indicated in the color bar. In particular, the presence
of red nodes for PH information (2nd to 7th row) implies that PH is
not robust under any type of noise, for any filtration and persistence
signature.
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3.4 results and discussion

• Gaussian, salt and pepper, shot noise: There is a drop in SVM accuracy for all
filtrations under salt and pepper or shot noise. For Gaussian noise, the drop in
accuracy is negligible for PH on all but the greyscale filtration.

The drop in accuracy also varies for different persistence signatures. For example,
1-dimensional PLs on Rips filtration are more sensitive to salt and pepper noise than
PDs.

We note, however, that if the classification accuracy on the non-noisy data is low,
the loss in performance is limited. For instance, 0-dimensional PH with respect
to the binary filtration yields an accuracy of only 10% (not better than a random
guess), as it only counts the number of components (Table 3.1), and every digit
0-9 commonly consists of a single component. This is why there is no drop in
accuracy when SVM is tested on images under salt and pepper noise (Table 3.7),
although this transformation results in an image with many additional connected
components (Figure 3.5) and thus significantly changes PH on binary filtration. In
these cases, however, the drop in accuracy gives us no reliable information about
noise robustness.

When images are represented with their filtration function values on each pixel
(including thus the original representation of an image as a vector of greyscale
pixel values), the SVM performance is significantly worse for test data consisting of
images with affine transformations. However, the performance is relatively stable
under changes in image brightness or contrast, or under noisy transformations (with
some exceptions). This is an opposite trend compared to PH, which is often robust
under affine, but sensitive under noisy transformations (with a significant difference
across filtrations and persistence signatures). Even though PH is often reputed for
its robustness to noise [129], if data is expected to contain gaussian, salt and pepper
or shot noise, the raw representation of images with their greyscale pixel values
is robust to noise (there is no drop in SVM accuracy compared to non-noisy data),
while this is often not the case for PH features.

Moreover, the absolute SVM accuracy on non-noisy data, when images are summa-
rized with any persistence signature with respect to any filtration cannot compare
with the representation of an image with its filtration function values, which contains
more detailed geometric information about the image. Indeed, persistent homology
only captures information about cycles in an image, and for most of the filtrations, it
can only differentiate between two and three classes among the ten MNIST digits 0-9.
The classification accuracy can be significantly improved by concatenating PH across
different signatures, homological dimensions and/or filtrations (e.g., a combination
of PH on radial and Rips filtration captures both information about the position and
size of cycles, and can thus discriminate better across classes). For instance, a set
of only 28 features obtained from concatenated persistent homology information
is shown in [129] as sufficient to attain better classification accuracy than the set
of greyscale pixel values. An alternative approach to simultaneously exploit PH
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from multiple filtrations is multi-dimensional persistence [55]. Since our goal is to
gain insight into the noise robustness of individual PH representations, rather than
maximizing the performance of classifiers, such an analysis is out of the scope of this
work. However, under some types of transformations, the SVM accuracy is better
for some PH features (even without concatenation across filtrations or signatures)
compared to the raw representation with greyscale pixel values.

3.5 Conclusions

Persistent homology (PH), information about connected components, holes, and cy-
cles in higher dimensions, is commonly characterized in the literature as a topological
summary robust to noise. The main motivation behind this chapter is to illustrate how
misleading this description can be, particularly for practical applications. We show
that the validity of such a characterization, in theory, depends strongly on the choice
of filtration and persistence signature (input and output of PH), and in practice, also
on the particular application domain.

First of all, we emphasize that the type of information PH captures about cycles, is
determined by the choice of filtration. For some filtrations, this information is only
of topological nature, but for others, some geometric information can be captured as
well. Topological invariants are robust under affine transformations, but the same
does not necessarily hold for geometric invariants, so that the choice of filtration
directly influences the noise robustness of PH.

Moreover, we underline how stability theorems, which provide a theoretical guaran-
tee of the noise robustness of PH, depend on the choice of filtration and persistence
signature, as well as the distance metric between them. Firstly, stability theorems
make some assumptions about the filtration function, e.g., the function must be tame
(the corresponding persistence diagram has finitely many off-diagonal points [62]),
monotonic, continuous, Lipschitz or piecewise constant. Secondly, the robustness
of PH is only guaranteed under small changes of the input - the filtration, rather
than small changes in the space itself. For instance, if one background white pixel
in an image is changed to black, the distance between the filtration functions for
the common Vietoris-Rips filtration between these two images is large, and indeed,
PH with respect to the Rips filtration is sensitive to such outliers. Furthermore, the
statement of stability theorems is restricted to the particular choice of persistence
signature and metric. This is often overlooked in the literature: e.g., it is common
to employ persistence landscapes or persistence images and the Euclidean metric,
whereas the stability theorems do not hold in such scenarios.

Finally, even if a stability theorem holds for the particular choice of filtration and
persistence signature, it does not imply that PH yields noise-robust features in a
classification task - this is domain and application-specific. For instance, changing a
single pixel in an image from black to white can result in an additional one-pixel hole,
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which can be persistent for some filtrations. This change in PH is substantial if the
number of holes does not vary greatly across classes of data, when the presence of
such noise can be expected to deteriorate the classification accuracy. Reversely, even
if there is no theoretical guarantee of the stability of PH for the given filtration and
signature, it is interesting to evaluate the noise robustness in practice. To gain a better
understanding of the noise robustness of PH, we carry out some computational
experiments on the well-known MNIST data set of greyscale images, under some
common types of noise to be expected on such data. We conclude that there is a
considerable drop in accuracy of SVM trained on PH information of non-noisy and
tested on noisy data, for at least 0- or 1-dimensional PH, for at least one of the
considered signatures:

• rotation and translation: radial

• stretch-shear-flip: radial, Rips, DTM

• brightness: greyscale, Rips, DTM

• contrast: greyscale

• gaussian noise: greyscale

• salt and pepper, and shot noise: binary, greyscale, density, radial, Rips, DTM.

There is often also an important difference in the drop in accuracy across PDs, PLs
and PIs. Taking all the above into consideration, it is clear that one needs to be
more careful when referring to persistent homology as a noise-robust topological
invariant: this is only true for some filtrations and signatures, and even in such cases,
the stability of PH does not necessarily imply that the presence of noise will not
weaken the discriminative power of PH features.

The main findings of this chapter provide some guidelines on the choice of suitable
filtration(s) and persistence signature(s), and the corresponding metric, for the given
data set and expected types of noise. Some important questions that should be
addressed when using persistent homology are the following:

• choice of filtration: What information about cycles (number, brightness, posi-
tion, size) is different across classes of data, but does not change much for the
expected type of noise? Does the filtration function satisfy the assumptions in
the stability theorem? Do small changes in the data result in small changes in
the filtration function?

• choice of persistence signature: Is the signature stable? Are the cycles with
the longest persistence or lifespan the most important (i.e., should cycles
with short lifespans be considered as noise)? If this is not the case, it is
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a good idea to use a flexible signature that allows cycles of e.g., medium
persistence to be the most crucial (such as PIs with an appropriate weight
function, what is not immediately possible with PDs or PLs). How critical are
the important compared to unimportant cycles? Which statistical or machine
learning methods do we want to apply to PH? If PH does not need to be
summarized as a function or vector, it might be sufficient to use PDs. How
important is computational efficiency? If the computation time is limited, it
might be useful to avoid PDs and the expensive calculation of Wasserstein
distances.

• choice of metrics: Is the signature stable? How critical are the important
compared to unimportant cycles? The greater the p, the bigger is the difference
across cycles, for both Wasserstein Wp or lp metric, i.e., PH is less sensitive to
unimportant cycles.

In summary, the choice of filtration defines the persistence of different types of cycles
(e.g., for PH with Rips filtration, small cycles have short persistence), the choice of
signature defines which cycles are least important or noisy (e.g., these are typically
the cycles with short persistence), and together with the choice of metric determines
the level of sensitivity to noisy cycles.

Our findings are limited to the particular setting in our computational experiments:
the choice of filtrations and persistence signatures, and their parameters, the choice
of metric, data set, noise, and classifier. For future research, it would be interesting to
revisit similar research questions, but in a different context, e.g., for a different data
set. The MNIST images of digits 0-9 all typically have one connected component,
and none, one or two holes. Both noise robustness and classification accuracy are
expected to be better for data sets where the number (but also other properties such
as size) of cycles differ greatly across classes, such as images with complex structure
which come from materials science, astronomy, neuroscience, plant morphology
(e.g., images of cosmic web, protein networks, brain arteries, plant roots). Future
experiments thus need to examine different (types of) data, and the relevant types of
noise, filtrations and signatures for the given application.

To improve the ease of interpretation of stability theorems, for future theoretical
work it would be useful to further bound the upper bound of PH (the right-hand
side of stability theorems), ∥ϕ − ψ∥p = ∥ϕ − ϕ ◦ π∥p, with some reasonable distance
d(X, X′) between the data X and its noisy variant X′ = π(X), for some common
filtration functions ϕ and noise types π. For example, for the canonical Vietoris-Rips
filtration, we know that ∥ϕ − ψ∥p = dH(X, X′); however the Hausdorff distance can
be large if X′ is X under rotation. However, [63] show that distance between PDs
is actually upper-bounded by the Gromov-Hausdorff distance dGH(X, X′) that is a
more useful bound, e.g., dGH(X, X′) = 0 for rotation and indeed, PD with respect
to the Rips filtration remains unchanged under rotation. Comparing these bounds
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across filtrations can help guide the choice of filtration for the given problem and
expected type of noise.

Finally, as discussed in [69], while stability is crucial, we note that it might be an
overly stringent requirement for many data science problems. Indeed, stability
is only achievable if short persistent intervals are considered as less important,
whereas there is no inherent reason why this should be the case in practice (for
instance, short intervals are crucial for convexity detection in Section 2.4, and
medium-length intervals are the most useful in classifying the brain artery tree data
in Appendix B.5). For practical applications, it might therefore often be beneficial to
consider persistence signatures that have no theoretical guarantee of stability.
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4
THE HOW:
Topological data analysis of structure preservation via
hyperdimensional computing

In the last decades, a number of computational models have been introduced that
are founded on the mathematical properties of very high dimensionality, which

are often collectively known as Vector Symbolic Architecture. These include hyperdi-
mensional computing (HDC), a hardware-efficient and noise-robust computational
framework that enables on-chip learning, which is becoming more important going
toward Internet of Things domain. HDC relies on encoding the input data into a
very high dimensional HD space (typically, D = 10 000). In this chapter, we carry out
an experimental study on some well understood shapes, in addition to benchmark
real-world data, with the main goal of exploring the structure of input data in the
HD space. For instance, a simple question of interest is whether a (noisy) circle
remains a circle in the HD space? In general, what kind of topological and geometric
structure in the input space, described with persistent homology (PH), is preserved
in the HD space? What is the discriminative power of the HD representation? How
are different types of noise tolerated in the HD space?

This chapter is based on the following publication:

Renata Turkeš, Werner van Leekwijck, and Steven Latré, Topological data
analysis of structure preservation via hyperdimensional computing, under
review.
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4.1 Introduction

In the last decades, a number of computational models have been introduced that are
founded on the mathematical properties of very high dimensionality and random-
ness, such Holographic Reduced Representations, Spatter Code, Sparse-Distributed
Memory, Semantic Vectors, Latent Semantic Analysis, Context-Dependent Thinning,
which are often collectively known as Vector Symbolic Architecture [178]. These
include hyperdimensional computing (HDC) [177], a hardware-efficient and noise-
robust computational framework that enables on-chip learning, which is becoming
more important going toward Internet of Things domain. HDC relies on encoding
the input data into a hyperdimensional (HD) space (typically, D = 10 000), and
performs the classification based on the distance to the HD class representatives.

There are a few theoretical studies of the behavior of HDC, but which provide little
intuition on how and why it works. For example, recent work [333] proves that
the HD encoding approximately preserves l1 distance and cluster structure, but
with no insights on the tightness of the bounds in practice. On the other hand,
HDC has been applied in various domains, ranging from analogy-based reasoning,
language, speech and activity recognition, brain-computer interfaces, text or image
classification [131, 161] (see [285] for an overview). However, the focus of these
papers is the performance of HDC (accuracy of the HDC classifier), and the real-
world data in these applications is very complex, so that they provide little insight
into the workings of HDC, and in particular, of the HD data space.

research questions To close this gap, in this chapter we aim to provide some
intuition on why the HD encoding is reasonable, mainly by exploring the structure
of input data in the HD space. For instance, a simple question of interest is whether
a (noisy) circle remains a circle in the HD space? More precisely, we focus on the
similar questions that were posed in the recent review of theoretical foundations of
HDC [333]:

(RQ1) What kind of topological and geometric structure in the input space is pre-
served in the HD space?

(RQ2) What is the power of linear separators in the HD space, compared to the input
space?

(RQ3) To what extent is noise tolerated in the HD space?

methodology Our approach to addressing the questions, however, is different.
Firstly, we replace rigorous proofs with intuitive exposition of the HDC encoding,
where we focus on its distance preservation (Section 4.2). Secondly, we also carry out
some simple experiments to analyze the HDC encoding of some well understood
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Euclidean data. We consider a number of synthetic data sets that reflect mathematical
shapes with distinctive topological and geometric features (such as a circle, concen-
tric circles, lemniscate or a star), and complete the analysis with some real-world
data (UCI-HAR, CTG, and ISOLET, respectively benchmark activity recognition,
ardiotocography and speech recongition data) (Section 4.3). To address (RQ1), we
start by looking into the pairwise distances, distributions of distances and norms of
the input and HD space, and assess the correlations between them (Section 4.4). Next,
we rely on topological data analysis (TDA) and calculate persistent homology (PH)
of the data to compare their topology and geometry (Section 4.5). Data separability
in both the input and HD space is evaluated with the Dunn index, and we quantify
its linear separability (RQ2) with the classification accuracy of logistic regression
(Section 4.6). In each of the experimental sections, we investigate the behavior of the
input and HD data in presence of different types of noise (RQ3).

related work When it comes to the main goal of this chapter - studying the
structure preservation via the HDC encoding - the article that is most closely related
is [333]. This is one of the few papers that presents a unified treatment of the
theoretical foundations of HDC. In particular, Theorems 17 and 18 show that HDC
encodings preserves distances, which is a sufficient condition for preservation of
cluster structure, robustness to noise, and sometimes the preservation of linear
separability, which are also discussed in the paper. However, due to the heavy
theory, the work remains unapproachable to a wider community, and provides little
intuition on to what extent and why HD preserves distances, in particular since no
examples or experiments are carried out. Distance preservation has also been proved
earlier for sparse binary vectors [283].

Moreover, there are a number of other works that provide an empirical comparison
of the different HDC encodings, such as [189, 322, 323]. However, the focus of these
papers is to adjust the encoding to improve the classification performance, and not
to understand why it works (and in particular, what aspects of structure in the input
space are preserved in the HD space).

When it comes to employing PH to analyze structure preservation in general (not on
HDC), there are a few works in this direction. For example, PH has been used to
study dimensionality reduction techniques [265, 296], or used to define encodings
that will preserve the topology and/or geometry [105, 252]. Similarly (if one thinks
of the output layer of a neural network as an encoding of input data), PH has been
used to study how the structure in the input data manifold [251, 266, 357, 382] or
decision boundary [149, 287] is changed through the layers. However, to the best
of our knowledge, this is the first time PH has been used to understand (or, in any
combination with, for that matter) HDC.
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4.2 Background on HDC encoding

Let X ⊂ RN be our data. Hyperdimensional computing (HDC) relies on encoding
the input data X into some inner-product space H ⊂ RD via the HDC encoder,
a function ϕ : X → H which sends each data sample X ∈ X into an HD vector
H = ϕ(X) ∈ H. The dimension D is very large, D ≫ N, and one commonly assumes
D = 10 000. Note that we write X ⊂ RN and H ⊂ RD, but non-Euclidean distances
can be considered.1

The primary aim of this section is to provide some intuition on why such an encoding
approximately preserves distances. We illustrate this with the common Position-ID
encoding of Euclidean data2, and point to the properties and parameters of the HDC
encoding (construction of seed vectors, choice of bundle and bind operations, the
dimension D and alphabet size K) that influence to what extent are the distances
preserved. Theoretical guarantee that provides the bounds for this approximation of
distances is given in [333, Theorem 17], but rather than providing a formal proof,
here we focus on the clarity of exposition for a broader audience.

Let X = (x1, x2, . . . , xN) ∈ X ⊂ RN . Note that

X = x1e1 + x2e2 + . . . xNeN ,

where vectors ei = (0, 0, . . . , 0, 1, 0, . . . , 0) (with i-th coordinate being nonzero) form
an orthonormal basis, ∥ei∥2 = 1 and ⟨ei, ej⟩ = 0 whenever i ̸= j. For example,
X = (3, 7,−2) = 3e1 + 7e2 − 2e3. In a similar way, one starts by constructing HD
seed binary or bipolar vectors, which can be thought of as primitives or atoms
from which further representations are made [178]: approximately orthogonal basis
vectors F1, F2, . . . , FN that encode the features (Section 4.2.1), and V1, V2, . . . , VK that
encode their values (Section 4.2.2). To encode the data samples X ∈ X , these seed
vectors are combined using the so-called operations of binding and bundling:

H = ϕ(X) = (V(x1)⊙ F1)⊕ (V(x2)⊙ F2)⊕ · · · ⊕ (V(xN)⊙ FN).

For best clarity, here we assume that bundle ⊕ and bind ⊙ are respectively the
coordinate-wise sum and product3, and we thus write

H =
N

∑
i=1

V(xi)Fi.

The similarity of HD vectors is defined as their scalar product.

1 If H ⊂ {0, 1}D , it is reasonable to consider the Hamming distance that counts the number of coordinates
where two vectors differ.

2 For other type of data (e.g., vectors with categorical or ordinal values, sets, images, text or time series),
different choices are suitable, e.g., such as record-based encoding and N-gram-based encoding [284, 286,
322].

3 Finally, one could threshold these integer vectors into H ∈ {−1, 1}D , which would lead to another level
of approximation that depends on the input dimension or number of features N.
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4.2.1 Seed ID vectors F

Each feature, or its ID, is represented with a random bipolar HD vector F ∈
{−1, 1}D4. An important property of hyperdimensional spaces is that two ran-
dom vectors are nearly orthogonal:

⟨Fi, Fj⟩ ≈ 0 (F)

so that these ID vectors represent some approximately orthogonal basis.5 Coordi-
nates of a seed HD vector can be drawn at random according to different probability
distributions [178]. In this work, the coordinates are sampled from uniform dis-
tribution, yielding dense vectors with a balanced number of -1s and 1s, but other
distributions resulting possibly in sparse vectors is also possible.6

The quality of this approximation can be formalized with the notion of incoherence,
popularized in the sparse coding literature: the HDC encoding of seed ID vectors Fi
is µ-incoherent if |⟨Fi, Fj⟩| ≤ µ mini ∥Fi∥. The larger the encoding dimension D, the
more likely it is that µ = 0 (Figure 4.1).

D = 2 D = 10 D = 100

D = 1 000 D = 10 000 D = 100 000

Figure 4.1.: The approximation ⟨Fi, Fj⟩ ≈ 0 for two random vectors Fi, Fj ∈ {−1, 1}D

improves with an increase in dimension D.

4 Alternatively, it is also common to consider binary vectors F ∈ {0, 1}D .
5 In real-world data, features are often correlated, so that an orthogonal basis might not make the most

sense: better results can at times be achieved by RFF basis whose construction is guided by the input data.
6 Sub-Gaussian probability distribution are sufficient for the wanted behaviour of the distance between two

random vectors[333].
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4.2.2 Seed Position vectors V

Continuous ranges of feature values are mapped to Position HD vectors, efficiently
and in a hardware-friendly way [161]. Let us assume that the input data X is
normalized (for each data sample X = (x1, x2, . . . , xN) ∈ X , xi ∈ [0, 1] for every
i ∈ {1, 2, . . . , N}), and let the unit interval [0, 1] be split in K sub-intervals of equal
length. We construct HD vectors V1, V2, . . . , VK, one for each of the sub-intervals, or
their centroids v1, v2, . . . , vK ∈ R. This time, unlike for the construction of seed ID
vectors F1, F2, . . . , FN , we do not want the vectors to be orthogonal or unrelated, but
rather we aim that the distance between V and V′ reflects the distance |v − v′|.7

The construction is as follows. The first range of values, i.e., the first sub-interval
or its centroid v1 ∈ R is represented with a random bipolar vector V1 ∈ {−1, 1}D.
To represent each next centroid vi+1 with a vector Vi+1, we flip ⌈ 1

K−1
D
2 ⌉ random

coordinates of the previous HD vector Vi, making sure that each coordinate can be
flipped at most once. In this way, V1 and VK differ in D/2 coordinates. An x ∈ R is
then approximated with its centroid v, and encoded as V(x) = V(v).

For example, for K = 5, we split the unit interval in the following way: [0, 1] =
[0, 0.2) ∪ [0.2, 0.4) ∪ [0.4, 0.6) ∪ [0.6, 0.8) ∪ [0.8, 1]. We would construct five Position
vectors V1 = V(v1), . . . , V5 = V(v5) that represent the sub-intervals, or e.g., their
centroids v1 = 0.1, v2 = 0.3, v3 = 0.5, v4 = 0.7, v5 = 0.9. V1 is random, V2 is
constructed from V1 by flipping 1

4 ∗ 10 000
2 = 1 250 random coordinates, V3 is con-

structed from V2 by flipping some other 1 250 random coordinates (so that V1 and
V3 differ in 2 500 coordinates), and so on. If we consider some arbitrary values,
x1 = 0.1, x2 = 0.15, x3 = 0.79, x4 = 0.81, we have that V(x1) = V(x2) = V(v1) = V1,
V(x3) = V(v4) = V4, V(x4) = V(v5) = V5.

We now show that the distance between values in x, x′ ∈ R is approximately
reflected by the distance between HD vectors V = V(x), V′ = V(x′) ∈ {−1, 1}D that
correspond to these values. Firstly, note that the above construction ensures that the
probability that coordinates of V and V′ differ is the following:

p(V ̸= V′) = |v − v′| · K
D

·
⌈ 1

K − 1
D
2

⌉
≈ |v − v′| · K

K − 1
· 1

2
≈ 1

2
|v − v′|.

These first approximations follow from removing the ceiling (in practice this has no
influence), and from K

K−1 ≈ 1, that depends on the how fine-grained is the split of
the unit interval [0, 1], i.e., how small is the length of the sub-interval or, equivalently,
how large is the number K of sub-intervals. Then, since HD vectors Vs are bipolar,
and by the definition of the scalar product:

7 If a feature represents a color, with values {red, green, blue}, such an encoding would not make sense,
since we have no clear understanding of the relationship between these colors, so that it would be best
that mutually orthogonal vectors correspond to the three colors.
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⟨V(x), V(x′)⟩ = D[1 ∗ p(V = V′) + (−1) ∗ p(V ̸= V′)]

≈ D[1 ∗ (1 − 1
2
|v − v′|) + (−1) ∗ 1

2
|v − v′|]

= D(1 − |v − v′|)
≈ D(1 − |x − x′|) (V)

The second approximation stems from |x − x′| ≈ |v − v′| which again decreases with
larger K, since values x ∈ R are more closely approximated with their centroids v
(Figure 4.2).

We illustrate the procedure with the toy example below.

K = 5 K = 10 K = 100 f (t) = D(1 − t)

Figure 4.2.: The approximation ⟨V(x), V(x′)⟩ ≈ D(1 − |x − x′|) improves with K,
approaching the ground truth. The plots show the relationship between
⟨V(x), V(x′)⟩ on the y-axis and |x − x′| on the x-axis, where x, x′ ∈ [0, 1]
are random.

4.2.3 Distance preservation

Let X, X′ ∈ X , and let H = ϕ(X) ∈ H and H′ = ϕ(X′) ∈ H. In this section, we
aim to show that ∥H − H′∥2

2 ≈ 2D∥X − X′∥1, meaning that the HDC encoding ϕ
approximately preserves distances. We will rely on the property (F) of the ID vectors,
property (V) of Position vectors (V), and property of the bundle and bind operations
(P1)-(P3) In addition, it is important to note that the randomness of ID vectors F
and the first Position vector V1 imply their independence, and since (F) ensures that
p(Fi = Fj) ≈ p(Fi ̸= Fj) ≈ 1

2 , the following holds:
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p(VFi ̸= V′Fj) = p(V ̸= V′)p(Fi = Fj|V ̸= V′) + p(Fi ̸= Fj)p(V = V′|Fi ̸= Fj)

= p(V ̸= V′)p(Fi = Fj) + p(Fi ̸= Fj)p(V = V′)

≈ 1
2

p(V ̸= V′) +
1
2
[1 − p(V ̸= V′)]

=
1
2

Therefore, since the seed ID and Position vectors are bipolar, the definition of the
scalar product implies that:

⟨VFi, V′Fj⟩ ≈ 0 (FV)

The quality of approximation is the same as in (F), improving with larger dimension
D of the HD space.

We now start the proof of distance preservation with the parallelogram law that
implies the following:

∥H − H′∥2
2 = ∥H∥2

2 + ∥H′∥2
2 − 2⟨H, H′⟩.

Firstly, note that, property (FV) immediately implies that:

∥H∥2
2 = ⟨H, H⟩

=
〈 N

∑
i=1

V(xi)Fi,
N

∑
j=1

V(xj)Fj

〉
=

N

∑
i=1

N

∑
j=1

⟨V(xi)Fi, V(xj)Fj⟩

=
N

∑
i=1

⟨V(xi)Fi, V(xi)Fi⟩+
N

∑
i=1

∑
j ̸=i

⟨V(xi)Fi, V(xj)Fj⟩

≈
N

∑
i=1

D + 0

= ND

Secondly, using the properties (FV) and (V), we have:
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⟨H, H′⟩ =
〈 N

∑
i=1

V(xi)Fi,
N

∑
j=1

V(x′j)Fj

〉
=

N

∑
i=1

N

∑
j=1

⟨V(xi)Fi, V(x′j)Fj⟩

=
N

∑
i=1

⟨V(xi)Fi, V(x′i)Fi⟩+
N

∑
i=1

∑
j ̸=i

⟨V(xi)Fi, V(x′j)Fj⟩

≈
N

∑
i=1

⟨V(xi), V(x′i)⟩+ 0

≈
N

∑
i=1

D(1 − |xi − x′i |)

= ND − D
N

∑
i=1

|xi − x′i |

= ND − D∥X − X′∥1

Putting the two together, we obtain:

∥H − H′∥2
2 ≈ ND + ND − 2ND + 2D∥X − X′∥1 = 2D∥X − X′∥1.

Note that the strength of the approximation depends on the dimension D that
influences the level of orthogonality of the ID vectors F, and on the number K
of sub-intervals that determines how fine-grained is the representation of feature
values.

4.3 (Noisy) Data sets

We aim to gain some understanding about the type of structures that are preserved
with the HDC encoding ϕ : X → H. To this end, we consider a number of well-
defined synthetic shapes in RN (Figure 4.4):

• Bumpy circle, Astroid, Apple in R2: A circle, with some bumps or singularities,
in order to asses to what extend HDC preserves loops and the level of detail.

• Lemniscate in R2: Two loops of the same size, with self-intersection.

• Concentric circles in R2: Two loops of different size, one within the other.

• Fish, Star in R2: A number of loops created with a number of self-intersections.
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• Olympics in R2: Five circles of the same size, with some interesections that
result in 9 loops.

• Orthogonal circles in R4 : Six orthogonal circles.

• Nine squares in R2: Nine connected components and loops of the same size.

• Cube vertices in R3: Nine vertices of a cube.

To generate a data set, we randomly sample 500 points (data samples) on the
shape. Each of data sets is normalized, so that each coordinate is in [0, 1]. Later in
the paper, we also look into the data separability, and we therefore label the data
sets. This can be done in arbitrarily many different ways, and we choose some
reasonable labels while ensuring that different data sets exhibit different levels of
(linear) separability.

Moreover, we also include the experiments on publicly available Human Activity
Recognition (UCI-HAR) [12], Cardiotocography (CTG) and ISOLET data [183] that
are commonly used in HDC-related research:

• UCI-HAR: This mobile sensor multivariate time series data was collected from
experiments with a group of 30 volunteers who performed 6 activities (walking,
walking upstairs, walking downstairs, sitting, standing, laying). UCI-HAR
is considered one of the popular data sets used for benchmarking activity
recognition [6]. It consists of 10 299 data points with 561 time and frequency
domain features, separated into 6 classes that correspond to the performed
activity.

• CTG: The data set consists of 21 fetal heart rate and uterine contraction fea-
tures on 2 126 cardiotocograms, classified into three fetal states by expert
obstetricians.

• ISOLET: 150 subjects spoke each of the 26 letters of the alphabet twice, resulting
in 7 797 time series data points with 617 features.

Each of the three data sets is also normalized to [0, 1], and we consider 500 randomly
chosen data points.

As already indicated, we focus on encoding Euclidean data, and therefore con-
sider (X , l2) in the analysis. Since we showed that ∥H − H′∥2

2 ≈ 2D∥X − X′∥1
(Section 4.2.3), we assume (H, l2), and also consider (X , l1) in our experiments.

HDC is often credited for its noise robustness, which motivates us to consider two
different types of noise:
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bumpy circle astroid apple lemniscate concentric circles

fish star olympics orthogonal circles nine squares

cube vertices UCI-HAR CTG ISOLET

Figure 4.3.: Samples from synthethic and benchmark data sets in RN . For N ≥ 3,
the first three coordinates are plotted.

• Gaussian noise on the input data (X ′,X ′′). HDC is supposed to handle this
noise well due to its low precision: an interval of values in R, or its centroid, is
encoded with a single Position HD vector V (Section 4.2.2). Indeed, for small
Gaussian noise, x and x + ε often lie in the same sub-interval, and will thus be
represented with the same vector, so that the noise will have no effect.

• Component failure on the HD data (H′,H′′). Because HD vector is a very
high-dimensional distributed representation (Section 4.2), no component is
more responsible to store any piece of information than another, so that it is
robust against errors in its components [161].

In the remainder of this chapter, we visualize the detailed experimental results
only for the bumpy circle; results for the additional data are listed in Appendix C.
For better clarity, the main table results in the following sections are color-coded,
where the darkest cells highlight the best values for the given data set (e.g., best
preservation of persistent homology - the minimum Wasserstein distance, or best
linear separability - maximum classification accuracy), and lighter cells indicate
poorer performance.
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4.4 distance preservation

4.4 Distance preservation

mds embedding For each of the data sets, we start by calculating its Multi-
Dimensional Scaling (MDS) embedding into R2. Figure 4.5 visualizes the embedding
for the bumpy circle, and visualization of the other data sets is given in Appendix C.
The different colors in these MDS plots represent the different data classes.

For (H, l2), this is a projection from D = 10 000 into 2 dimensions, so that it
is not possible to draw any reliable conclusions; these plots only serve as the
first visualization and some intuition behind structure preservation. We therefore
also study the distance matrices, the distributions of distances and norms in this
section, and primarily - the persistent homology (Section 4.5), in order to assess
the preservation of topological and geometric structure. To gain some insights in
data separability, we also calculate the Dunn index and logistic regression accuracy
(Section 4.6).

(X , l2) (X , l1) (H(X ), l2) (H(X ), l2)

(X ′, l2) (X ′, l1) (H(X ′), l2) (H′(X ), l2)

(X ′′, l2) (X ′′, l1) (H(X ′′), l2) (H′′(X ), l2)

Figure 4.4.: MDS embedding of bumpy circle into R2.

distance matrix To get an idea of the distance preservation with the HDC
encoding, we start by plotting the distance matrices. Figure 4.6 visualizes the distance
matrices for the bumpy circle (with results for the other data sets in Appendix C),
suggesting a strong preservation of structure. We quantify this with the Spearmann
correlation with the l2 and l1 distance matrix on the input data X .
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(X , l2) (X , l1) (H(X ′), l2) (H′(X ), l2)

(X ′, l2) (X ′, l1) (H(X ′), l2) (H′(X ), l2)

(X ′′, l2) (X ′′, l1) (H(X ′′), l2) (H′′(X ), l2)

Figure 4.5.: Distance matrices for the bumpy circle.

Table 4.1 shows the Spearmann correlation between the given matrix and the l2
distance matrix on the input data X . The correlations are very high, and we can see
that (H, l2) exhibits the same behaviour as (X , l1), with the correlation remaining the
same even if some random HD coordinates are corrupted. Moreover, the correlation
with the HD encoding of the input data under Gaussian noise mimics the correlation
of the l1 distance matrix on the noisy input data.

Table 4.2 shows the Spearmann correlation between the given matrix and the l1
distance matrix on the input data X . Spearmann correlation assesses the monotonoic
relationship, and it therefore comes as no surprise that the correlation between
the distance matrices (H, l2) and (X , l1) is equal to 1 for any data set. This means
that if ∥X − X′∥1 ≤ ∥X − X′′∥1, then ∥ϕ(X)− ϕ(X)′∥2 ≤ ∥ϕ(X)− ϕ(X′′)∥2. This
correlation mostly remains unchanged under random corruption of HD data. For
Gaussian noise, the correlation with l2 distance on the HD representation is greater
than the correlation with l1 on the noisy data, suggesting that the HD representation
can handle the Gaussian noise better than the input data.

distribution of distances The relationship between pairwise l2 distances in
the HD space and the l1 distances in the input space is monotonic (Table 4.2), and
it is approximately monotonic for l2 distances (Table 4.1). Moreover, the distance
matrices suggest preservation of structure, but the distance matrices in the HD
space are darker (Figure 4.6, with results for the other data sets in Appendix C).
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Data (X
,l

2)

(X
′ ,

l 2
)

(X
′′ ,

l 2
)

(X
,l

1)

(X
′ ,

l 1
)

(X
′′ ,

l 1
)

(H
(X

),
l 2
)

(H
(X

′ )
,l

2)

(H
(X

′′ )
,l

2)

(H
′ (
X
),

l 2
)

(H
′′ (
X
),

l 2
)

Bumpy circle 1.00 0.99 0.96 0.91 0.90 0.88 0.91 0.90 0.88 0.91 0.91
Astroid 1.00 0.98 0.95 0.93 0.91 0.88 0.93 0.91 0.87 0.93 0.93
Apple 1.00 0.99 0.97 0.96 0.95 0.93 0.96 0.95 0.94 0.96 0.96
Lemniscate 1.00 0.99 0.97 0.97 0.97 0.95 0.97 0.97 0.95 0.97 0.97
Concentric circles 1.00 0.98 0.95 0.97 0.96 0.93 0.97 0.96 0.93 0.97 0.97
Fish 1.00 0.99 0.98 0.98 0.98 0.96 0.98 0.97 0.96 0.98 0.98
Star 1.00 0.99 0.96 0.98 0.97 0.94 0.98 0.97 0.94 0.98 0.98
Olympics 1.00 0.99 0.96 0.98 0.97 0.94 0.98 0.97 0.94 0.98 0.98
Orthogonal circles 1.00 0.99 0.97 0.97 0.96 0.94 0.96 0.96 0.94 0.96 0.96
Nine squares 1.00 0.99 0.97 0.98 0.97 0.96 0.97 0.97 0.95 0.97 0.97
Cube vertices 1.00 0.99 0.96 0.99 0.97 0.96 0.99 0.97 0.95 0.98 0.98
UCI-HAR 1.00 1.00 1.00 0.98 0.99 0.99 0.98 0.99 0.99 0.98 0.98
CTG 1.00 0.99 0.98 0.97 0.96 0.95 0.96 0.95 0.94 0.96 0.96
ISOLET 1.00 1.00 1.00 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.97

Table 4.1.: Distance preservation: Spearmann correlation with the distance matrix
for (X , l2).

Data (X
,l

2)

(X
′ ,

l 2
)

(X
′′ ,

l 2
)

(X
,l

1)

(X
′ ,

l 1
)

(X
′′ ,

l 1
)

(H
(X

),
l 2
)

(H
(X

′ )
,l

2)

(H
(X

′′ )
,l

2)

(H
′ (
X
),

l 2
)

(H
′′ (
X
),

l 2
)

Bumpy circle 0.91 0.91 0.89 1.00 0.98 0.93 1.00 0.98 0.98 1.00 1.00
Astroid 0.93 0.91 0.88 1.00 0.97 0.91 1.00 0.96 0.96 1.00 1.00
Apple 0.96 0.95 0.93 1.00 0.99 0.97 1.00 0.99 0.99 1.00 1.00
Lemniscate 0.97 0.97 0.95 1.00 0.99 0.97 1.00 0.99 0.99 1.00 1.00
Concentric circles 0.97 0.96 0.93 1.00 0.99 0.94 1.00 0.99 0.99 1.00 1.00
Fish 0.98 0.97 0.96 1.00 0.99 0.98 1.00 0.99 0.99 1.00 1.00
Star 0.98 0.97 0.94 1.00 0.99 0.96 1.00 0.99 0.99 1.00 1.00
Olympics 0.98 0.97 0.94 1.00 0.99 0.95 1.00 0.99 0.99 1.00 1.00
Orthogonal circles 0.97 0.96 0.93 1.00 0.99 0.96 1.00 0.99 0.99 1.00 1.00
Nine squares 0.98 0.97 0.95 1.00 0.99 0.97 1.00 0.99 0.99 1.00 1.00
Cube vertices 0.99 0.97 0.95 1.00 0.98 0.96 1.00 0.98 0.98 1.00 1.00
UCI-HAR 0.98 0.98 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99
CTG 0.97 0.96 0.94 1.00 0.99 0.97 1.00 0.99 0.99 1.00 0.99
ISOLET 0.99 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.98

Table 4.2.: Distance preservation: Spearmann correlation with the distance matrix
for (X , l1).

To gain more insights into this behaviour, we plot the distribution of distances.
Figure 4.7 visualize these distributions for the bumpy circle (plots for other data sets
can be found in Appendix C), clearly showing that the distances in the HD space
are relatively larger. This comes as no surprise since we show in Section 4.2.3 that
∥H − H′∥2 ≈

√
2D∥X − X′∥1, implying that the small distances in the input space
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become relatively more pronounced in the HD space. This effect is pronounced even
more when a number of random HD coordinates is corrupted.

(X , l2) (X , l1) (H(X ), l2) (H(X ), l2)

(X ′, l2) (X ′, l1) (H(X ′), l2) (H′(X ), l2)

(X ′′, l2) (X ′′, l1) (H(X ′′), l2) (H′′(X ), l2)

Figure 4.6.: Distribution of distances for the bumpy circle.

norm distribution We also plot the distribution of norms. Figure 4.8, and
the plots for the remaining data in Appendix C, show that, while the norms of the
input data samples for the bumpy circle take different values, the norms of the
HD vectors concentrate around the same value. Indeed, we show in Section 4.2.3
that ∥H∥2 ≈

√
ND. This means that all points in the HD space lie approximately

on a sphere, i.e., in the space between two D-dimensional spheres. The thickness
of this space, i.e., of this annulus, is determined by the quality of approximation
(F) that ensures the near-otrhogonality of seed ID vectors F, which is influenced
by the dimension D (Figure 4.1). Note, however, that this says nothing about the
preservation of structure or separability, as the HD data samples may lie on arbitrary
regions of the sphere.
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(X , l2) (X , l1) (H(X ), l2) (H(X ), l2)

(X ′, l2) (X ′, l1) (H(X ′), l2) (H′(X ), l2)

(X ′′, l2) (X ′′, l1) (H(X ′′), l2) (H′′(X ), l2)

Figure 4.7.: Norm distribution for the bumpy circle.

4.5 Structure preservation

To evaluate the structure (preservation), we consider the 0- and 1-dimensional PH
(Chapter 1) that respectively reflects the connected components (or clusters) and
loops.

We start by visualizing the 0- and 1-dimensional persistence diagram (PD) and
the Betti curves (with filtration parameter and the number of persistence intervals
respectively on the x and y axis) for each of the data sets. Figure 4.9 clearly shows that
the bumpy circle sees one persistent connected component, and 499 other connected
components that live shortly in the filtration, reflecting each of the data samples
before they connect to the neighboring points. In the HD space, there is significantly
less connected components (which is the case for many other data sets, see detailed
results in Appendix C), since some data samples can overlap, as the intervals of
values are represented with their centroids (Section 4.2.2). This is, however, not the
case for real-world data, as these are higher-dimensional (unlike synthetic data that
mostly lie in R2) and therefore less likely to overlap. The components die relatively
much later in the HD space than in the input space (this being more pronounced for
corrupted HD data), what is a direct consequence of the relatively larger distances
(Section 4.4): two data samples in H, H′ ∈ H are relatively far away from each other,
and it thus takes more time for them to merge into a single connected component
within a filtration. 1-dimensional PH shows that each representation of the non-noisy
bumpy circle clearly sees the one persistent loop, and four loops that live shortly,

101



the how : topological data analysis of structure preservation via

hyperdimensional computing

reflecting the four bumps. In the presence of noise, additional loops are revelead at
times, but they have very short persistence. In general, the loops are born later in
the HD space, which is again the consequence of the relatively larger distances. The
other data sets exhibit similar behavior, see Appendix C.

To quantify the preservation of structure, in Table 4.3 and Table 4.4, we show the
Wasserstein W2 distance respectively to the 0- and 1-dimensional PD calculated on
(X , l2). To make these distances meaningful, the birth and death values in each PD
is normalized with respect to the maximum distance:

√
n, n and

√
2nD for (X , l2),

(X , l1), (H, l2)8. For 1-dimensional PH, these distances remain small (in comparison
to the distance for the PD of the input data in presence of Gaussian noise), indicating
that HDC encoding approximately preserves the loop structure. The distances are
much higher for 0-dimensional PH, and our detailed experimental results suggest
that this is primarily a consequence of the relatively larger distances in the HD space,
that increase the death value of the majority of connected components.

Data (X
,l

2)

(X
′ ,

l 2
)

(X
′′ ,

l 2
)

(X
,l

1)

(X
′ ,

l 1
)

(X
′′ ,

l 1
)

(H
(X

),
l 2
)

(H
(X

′ )
,l

2)

(H
(X

′′ )
,l

2)

(H
′ (
X
),

l 2
)

(H
′′ (
X
),

l 2
)

Bumpy circle 0.00 0.11 0.19 0.01 0.09 0.16 1.00 1.44 1.72 4.91 6.70
Astroid 0.00 0.11 0.18 0.01 0.09 0.15 0.99 1.42 1.65 4.91 6.70
Apple 0.00 0.13 0.19 0.02 0.11 0.16 1.06 1.54 1.72 4.92 6.70
Lemniscate 0.00 0.14 0.23 0.02 0.11 0.19 1.21 1.68 1.92 4.96 6.72
Concentric circles 0.00 0.15 0.26 0.08 0.16 0.23 1.14 1.58 1.78 4.93 6.72
Fish 0.00 0.13 0.20 0.03 0.10 0.16 1.22 1.67 1.83 4.96 6.74
Star 0.00 0.12 0.19 0.02 0.10 0.16 1.24 1.65 1.81 4.96 6.74
Olympics 0.00 0.12 0.19 0.04 0.09 0.14 1.59 1.84 1.96 5.07 6.81
Orthogonal circles 0.00 0.27 0.45 0.24 0.35 0.49 1.33 2.13 2.50 4.95 6.73
Nine squares 0.00 0.24 0.38 0.18 0.31 0.35 1.33 1.76 1.85 4.99 6.77
Cube vertices 0.00 0.15 0.33 0.42 0.46 0.54 2.01 2.07 2.22 5.15 6.84
UCI-HAR 0.00 0.14 0.49 0.95 0.75 0.38 3.90 4.29 4.67 6.08 7.44
CTG 0.00 0.18 0.52 0.69 0.53 0.37 3.35 3.97 4.33 5.83 7.32
ISOLET 0.00 0.07 0.28 1.25 1.13 0.90 6.05 6.01 6.04 7.38 8.35

Table 4.3.: Connectivity preservation: Wasserstein W2 distance to the 0-dimensional
persistence diagram of (X , l2).

8 Recall that the input data X ⊂ Rn is normalized to [0, 1], and that the coordinates of hyperdimensional
vectors in H ⊂ RD take integer values in [−n, n].
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Data (X
,l

2)

(X
′ ,

l 2
)

(X
′′ ,

l 2
)

(X
,l

1)

(X
′ ,

l 1
)

(X
′′ ,

l 1
)

(H
(X

),
l 2
)

(H
(X

′ )
,l

2)

(H
(X

′′ )
,l

2)

(H
′ (
X
),

l 2
)

(H
′′ (
X
),

l 2
)

Bumpy circle 0.00 0.05 0.13 0.09 0.13 0.18 0.43 0.35 0.31 0.35 0.31
Astroid 0.00 0.07 0.17 0.01 0.07 0.18 0.34 0.31 0.28 0.25 0.20
Apple 0.00 0.08 0.13 0.08 0.12 0.18 0.42 0.36 0.30 0.32 0.28
Lemniscate 0.00 0.06 0.14 0.08 0.11 0.19 0.37 0.35 0.33 0.28 0.24
Concentric circles 0.00 0.07 0.11 0.06 0.10 0.12 0.31 0.26 0.26 0.21 0.17
Fish 0.00 0.07 0.13 0.11 0.15 0.18 0.38 0.38 0.32 0.34 0.30
Star 0.00 0.07 0.12 0.03 0.10 0.12 0.28 0.25 0.24 0.19 0.15
Olympics 0.00 0.09 0.17 0.08 0.12 0.18 0.47 0.38 0.33 0.30 0.24
Orthogonal circles 0.00 0.08 0.16 0.18 0.18 0.20 0.37 0.31 0.26 0.24 0.21
Nine squares 0.00 0.16 0.17 0.14 0.21 0.18 0.41 0.30 0.27 0.26 0.21
Cube vertices 0.00 0.09 0.17 0.32 0.31 0.29 0.41 0.38 0.38 0.30 0.27
UCI-HAR 0.00 0.03 0.04 0.04 0.04 0.03 0.09 0.08 0.07 0.06 0.06
CTG 0.00 0.05 0.06 0.10 0.10 0.09 0.24 0.23 0.21 0.16 0.13
ISOLET 0.00 0.03 0.05 0.10 0.09 0.09 0.15 0.14 0.13 0.13 0.11

Table 4.4.: Loop preservation: Wasserstein W2 distance to the 1-dimensional persis-
tence diagram of (X , l2).
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(X , l2) (X , l1) (H(X ), l2) (H(X ), l2)

(X ′, l2) (X ′, l1) (H(X ′), l2) (H′(X ), l2)

(X ′′, l2) (X ′′, l1) (H(X ′′), l2) (H′′(X ), l2)

Figure 4.8.: 0- and 1-dimensional persistent homology for the bumpy circle.

104



4.6 data separability

4.6 Data separability

Even though an encoding preserves distances, it is of interest to analyze to what ex-
tent it preserves, or better, improves the separability of data into classes, simplifying
the classification problem. For instance, the kernel trick implicitly maps the input
data into a higher-dimensional feature space where the data may be more separable:
e.g., with ϕ : R2 → R3 : (x1, x2) → (x1, x2, x2

1 + x2
2), the inside and outside of a circle

are encoded into the bottom and top of a paraboloid that can be separated with a
plane, so that the input data that cannot be separated linearly can be studied with
a linearly separable representation. This enables using linear classifiers to solve
nonlinear problems.

Here we thus assume that the data is labelled (in the experimental results, the labels
are indicated by color in the MDS plots). A common measure of data separability
is the Dunn index, ratio between the minimum inter-class and the maximum intra-
class distance. Higher Dunn index thus indicates better clustering: data classes are
sufficiently far apart, in comparison to the within-class distances. Note that this is
different than the 0-dimensional PH that we study in Section 4.5, that reveals the
intrinsic connected components or clusters in the data, not considering the labels.
For example, 0-dimensional PH for the bumpy circle captures the single connected
component, whereas the defined labels split the data into two classes.

Table 4.5 shows that the HDC encoding does not change the Dunn index in a
consistent manner across data sets: for some data, the Dunn index in the HD space
is comparable to the Dunn index in the input space, but it often significantly increaes
or decreases. If the data classes “touch each other” (they are approximately as close
as two data samples in the same class), e.g., in the bumpy circle, the Dunn index is
close to 1. If the data classes are far from each other, as is the case for the orthogonal
circles or cube vertices, it is to be expected that the Dunn index decreases with
HDC encoding, since large distances are relatively larger than small distances in
the HD space in comparison to the input space (Figure 4.7). For some of the data
sets, Gaussian noise somwehat decreases the Dunn index for (X , l2), (X , l1) and/or
(H, l2), and the effect is stronger when the noise is added to HD data by corrupting
some random coordinates.

Linear separability is of particular interest. Under some conditions, distance preser-
vation is sufficient to preserve linear separability [333, Theorem 22]: if the input data
can be separated with a linear boundary, then the same holds for the HD encoding.
However, it remains an interesting question whether a linear separator on the HD
representation can capture a nonlinear decision boundary on the original data. To
address this question, we calculate the classification accuracy of logistic regression
on the different data representations (Table 4.6). For every data set, the classification
accuracy is at least as good on the HD encoding compared to the input data, and it
often improves greatly. It is particulary striking that some of the highly non-linearly
separable data become (approximately) linearly separable in the HD space: for
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Bumpy circle 1.01 1.00 0.99 1.05 1.03 1.01 1.04 1.03 1.03 1.02 1.02
Astroid 0.88 0.88 0.88 0.90 0.90 0.88 0.99 0.98 0.96 0.98 0.98
Apple 0.98 0.98 0.97 1.03 1.03 1.01 1.05 1.05 1.03 1.02 1.02
Lemniscate 1.65 1.62 1.61 1.75 1.72 1.71 1.37 1.35 1.34 1.25 1.18
Concentric circles 0.80 0.80 0.80 0.80 0.80 0.80 0.93 0.93 0.92 0.94 0.95
Fish 0.87 0.86 0.86 0.90 0.89 0.89 0.98 0.97 0.96 0.97 0.98
Star 1.16 1.15 1.13 1.09 1.09 1.07 1.10 1.10 1.08 1.06 1.04
Olympics 1.26 1.24 1.19 1.28 1.25 1.20 1.15 1.13 1.10 1.09 1.06
Orthogonal circles 3.98 3.66 3.46 4.79 3.98 3.52 2.27 2.03 1.92 1.61 1.36
Nine squares 0.94 0.94 0.93 0.93 0.93 0.92 0.99 0.98 0.98 0.98 0.98
Cube vertices 7.17 6.36 4.72 5.32 4.73 3.70 2.36 2.23 1.97 1.57 1.32
UCI-HAR 0.69 0.71 0.74 0.47 0.56 0.65 0.69 0.76 0.82 0.84 0.91
CTG 0.84 0.84 0.85 0.82 0.83 0.84 0.92 0.92 0.92 0.94 0.96
ISOLET 0.78 0.79 0.80 0.77 0.78 0.80 0.88 0.89 0.90 0.92 0.94

Table 4.5.: Data separability: Dunn index.

instance, the average accuracy of logistic regression on concentric circles, fish, and
apple increases from only 0.61 in (X , l2) and (X , l1) to 0.99 in (H, l2). However,
whereas the Gaussian noise typically does not change the classification accuracy on
X , the HD encoding of the noisy data often results in a decreased accuracy. The
deterioration of accuracy is commonly less pronounced for the noise on the HD
data.
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Bumpy circle 0.59 0.59 0.59 0.59 0.59 0.59 1.00 0.94 0.85 0.99 0.99
Astroid 0.73 0.73 0.73 0.73 0.73 0.73 0.99 0.92 0.89 0.99 0.99
Apple 0.53 0.55 0.55 0.53 0.55 0.55 0.99 0.99 0.93 1.00 0.99
Lemniscate 0.99 0.97 0.95 1.00 0.96 0.95 1.00 0.96 0.96 0.99 0.99
Concentric circles 0.62 0.59 0.67 0.62 0.59 0.64 0.99 0.98 0.99 0.89 0.86
Fish 0.69 0.69 0.69 0.69 0.69 0.69 0.99 0.97 0.97 0.98 0.97
Star 0.83 0.83 0.81 0.83 0.83 0.81 0.91 0.84 0.82 0.90 0.90
Olympics 0.47 0.45 0.42 0.47 0.43 0.42 0.82 0.67 0.59 0.78 0.74
Orthogonal circles 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Nine squares 0.53 0.53 0.53 0.53 0.53 0.53 0.71 0.69 0.73 0.66 0.67
Cube vertices 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
UCI-HAR 0.93 0.94 0.94 0.93 0.92 0.91 0.97 0.97 0.94 0.95 0.93
CTG 0.87 0.87 0.85 0.88 0.88 0.86 0.91 0.91 0.85 0.89 0.88
ISOLET 0.83 0.84 0.83 0.85 0.85 0.83 0.85 0.81 0.82 0.79 0.77

Table 4.6.: Data separability: Logistic regression accuracy.

106



4.7 conclusions

4.7 Conclusions

The goal of this chapter was to investigate to what extent are the properties of the
input data preserved with the HDC encoding into a 10 000-dimensional space. To this
end, we focus on the common ID-Position HDC encoding of Euclidean data. Earlier
work provides a theoretical guarantee of an approximate distance preservation for
this encoding [333]. We start this chapter with a less rigorous but more intuitive
proof of distance preservation, highlighting the influence of the HD dimension D
and alphabet size K on the quality of the approximation (Section 4.2). We carry out
experiments on a number of synthetic data sets with interesting structure: bumpy
circle, astroid, apple, lemniscate, concentric circles, fish, star, olympics, orthogonal
circles, nine squares and cube vertices, and HDC benchmark data UCI-HAR, CTG,
and ISOLET, under Gaussian noise on the input data, and HD noise on the encoded
data, that corrupts a given number of random coordinates.

main findings The experimental results provide a number of insights.

• Distances: We show empirically that the l2 metric on the HD data H correlates
well with both l2 and l1 metrics on the input data X , with the Spearmann corre-
lation in the latter case always being equal to 1, as the relationship between the
metrics is monotonous. The plots of distance matrices provide more intuition
about the preservation of distances, suggesting further the preservation of self-
intersections and singularities. We also see that the HD data approximately
lies on the D-dimensional sphere with radius

√
ND, relatively further away

from each other in comparison to the input data samples. Guassian and HD
noise do not change these behaviors.

• Connectivity and loops: 0- and 1-dimensional PH of the input and HD data re-
veal that the HDC encoding approximately preserves the number of connected
components and loops, with Gaussian and HD noise making these cycles less
prominent. For some data sets, the HD data contains a few additional or
less short persistence intervals, in comparison with (X , l2) but also (X , l1),
indicating that some local geometry information is lost.

• Separability: For each of the data sets, the logistic regression accuracy on the
HD data is greater than or equal to the accuracy on the input data. Some of
the highly non-linearly separable data are linearly separable in the HD space.
Gaussian noise on the input data does not significantly change the accuracy,
but both the Gaussian noise and the HD noise on the HD data often results in
a lower accuracy.

The data and code are publicly available at https://renata-turkes.github.io/,
including two Jupyter notebooks that can be used to replicate the computational
experiments on the synthetic and real-world data, but also to investigate the behavior

107

https://renata-turkes.github.io/


the how : topological data analysis of structure preservation via

hyperdimensional computing

of HDC as in Section 4.2. The code can also be slightly modified to analyze other
HD encodings and data sets.

future work This work can be extended to guide the choice of HDC parameters
(definition of encoding, including the bind and bundle operations, dimension D
and alphabet size K) that best preserve the structure, by minimizing the Wasserstein
distance between PH on the input and HD data. Furthermore, next to the Dunn
index and logistic regression accuracy, we can also study the separability in more
detail by looking into the PH of the decision boundaries, similarly to [346]. It would
be interesting to quantify and compare structure preservation and linear separability
across different encodings, and data sets.

sustainability HDC is low power, and offers an energy efficient alternative
to conventional realizations of general purpose ML algorithms like support vector
machines, multilayer perceptrons, and nearest-neighbor classifiers [333].
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5
THE WHEN:
Who is WithMe? EEG features for attention in a visual
task, with auditory and rhythmic support

The study of attention has been pivotal in advancing our comprehension of cogni-
tion. The goal of this study is to investigate which EEG data representations or

features are most closely linked to attention, and to what extent they can handle the
cross-subject variability. We explore the features obtained from the univariate time
series from a single EEG channel, such as time domain features and recurrence plots,
as well as representations obtained directly from the multivariate time series, such
as global field power or functional brain networks. To address the cross-subject vari-
ability in EEG data, we also investigate persistent homology features that are robust
to different types of noise. The performance of the different EEG representations
is evaluated with the Support Vector Machine (SVM) accuracy on the WithMe data
derived from a modified digit span experiment, and is benchmarked against baseline
EEG-specific models, including a deep learning architecture known for effectively
learning task-specific features.

This chapter is based on the following article:

Renata Turkeš, Steven Mortier, Jorg De Winne, Steven Latré and Tim
Verdonck, Who is WithMe? EEG features for attention in a visual task, with
auditory and rhythmic support, under review.

This research was funded by the Research Foundation-Flanders (FWO) under Grant
No. G0A0220N.
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5.1 Introduction

Understanding the human processing of multi-sensory stimuli in relation to attention
has been of great interest in the last decades [92]. Indeed, detecting cognitive states
and skills can help improve adaptive learning, in which the learning material and
pace are adjusted to match some collected data about learners during a learning
task [237]. Moreover, identifying biomarkers that can be used to monitor attention,
pleasure and reward, and understanding the relationship between these biomark-
ers and fine-tuning of stimuli (sound, image, rhythm) can enhance the interaction
between humans and artificial intelligence (AI) agents, which is still lacking the
degree of engagement and entrainment that characterizes interaction between hu-
mans. Such advances in human-centered AI approach open a wealth of applications
in public security, health, revalidation, communication and information sharing,
entertainment, etc. Some examples include driver fatigue detection [352], rhythmic
auditory stimulation to help Parkinson patients improve their gait characteristics
and reduce the risk for falling [236], or music systems for synchronization [235] and
gait retraining (to prevent running-related injuries) [342] which could be improved
by selecting the best rhythmic or music stimulus at the right moment.

A promising methodology for the automated collection of data during a mental task
includes the use of bio-sensors that could measure subjects’ emotions, attention, and
engagement in a non-invasive and non-intrusive way [237]. In this work, we focus
on capturing human attention from electroencephalography (EEG) biosignals. EEG
data measures oscillatory electrical brain activity at the macroscopic scale with high
time resolution [324, 371]. EEG has been shown to have a strong potential to provide
biomarkers for diagnoses in many neuropsychiatric disorders [316, 371], including
attention deficit hyperactivity disorder (ADHD) [167, 185, 215, 217, 219], but also
as indicators of attention during different visual and cognitive tasks [1, 50, 152, 169,
190, 214, 246, 289, 308].

It is commonly understood that a crucial step in EEG processing is to extract relevant
features for the considered application [367]. Moreover, the study of EEG data,
similarly to other neural data, is further complicated by the high degree of cross-
subject variability (due to differences in how the information is represented in the
brain, e.g., in terms of the representation of stimulus and activity in the brain),
and presence of noise (due to changes in machine calibration, spurious participant
movements, and environmental conditions) [297].

The goal of this work is to investigate which type of representations or features
of EEG data are the most associated with human attention. We will consider a
number of different representations of EEG data (Section 5.2.2, Appendix 5.5.2),
including both the features obtained from the univariate time series from a single
EEG channel (and then concatenated across channels), such as time domain fea-
tures and recurrence plots, as well as representations obtained directly from the
multivariate time series, such as global field power or functional brain networks.
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These two groups of methods are related to the two key principles that help in
understanding brain-behavior relationships: segregation, which assumes that the
cerebral cortex can be divided into distinct modules, each with its unique structure
and functionality; and integration, which assumes that no brain region functions in
isolation but rather requires interactions and information exchange between different
regions [237]. Since we aim to deal with the issue of person-to-person variability in
the EEG data, we found it particularly interesting to consider some topology-based
features. Indeed, persistent homology (PH), the main tool of topological data analy-
sis (TDA) (Chapter 1) can be made invariant under different type of transformations
(such as translation, rescaling, stretching, or even non-affine deformations), and
the stability theorems (Section 1.7) imply that the same is true for robustness to
noise. PH has been widely applied in neuroscience: we provide a review of relevant
literature in the background on TDA (Appendix 5.5.1), and in the description of the
PH-based pipelines on univariate (Section 5.2.2.4) and multivariate (Section 5.2.2.8)
time series.

We compare the performance of the different EEG representations on the WithMe
data (Section 5.2.1), obtained from a modified digit span experiment. The perfor-
mance is evaluated as the Support Vector Machine (SVM) accuracy on the features
(Section 5.2.4). As a baseline, we also include benchmark EEG-specific models which
are shown to work well for the WithMe data [245] (Appendix D), including a deep
learning architecture that learns the best features for the task at hand from the EEG
multivariate time series. In order to investigate the cross-subject variability, we
consider three different scenarios: the accuracy is evaluated on the model trained on
the same participant, on seen or on new participants. The results are summarized in
Section 5.3, and in Section 5.4 we position them relative to the literature, and discuss
the main take-aways and resulting directions for future work.

5.2 Materials & Methods

5.2.1 WithMe EEG data acquisition

The experiment includes 42 participants EP01-EP42 (with mean age of 23.71 ± 2.69
years, with no visual or hearing difficulties), who have 64 electrodes positioned
on their scalp according to the EEG 10/20 system (Figure 5.1, left panel). Each
participant is shown 30 sequences of 10 stimuli on a computer screen: 5 Targets

(black digit in a circle), and 5 Distractors (dark gray digit in a circle, or an empty
circle), with each digit presented with equal probability ((for an example sequence,
see Table 5.1)). Each of the sequences is shown under 4 different conditions C1,
C2, C3 or C4, in a pseudo-randomized manner (and with no special mention about
them made to the participants), that differ with respect to presence of audio and/or
rhythm (Figure 5.1, right panel). We note that, for conditions C2 and C4 where there
is rhythm, each participant is first shown 5 induction stimuli in each sequence to
induce the rhythm, but these are ignored in our analysis. Therefore, every participant
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sees in total 30 × 10 × 4 = 1 200 Target or Distractor stimuli. Every stimulus is
visible for 200ms, and the interstimulus interval is on average 1.25s. The task is to
remember the Targets, and the participants need to give their oral responses after
the complete sequence is presented. The participants do not know that there are
always 5 Targets, as they are told they will see “5-7 black numbers”.

The WithMe experiment is a novel working memory paradigm that is somewhat
inspired by the digit span, oddball and pip-and-pop tasks. The magical number
7 ± 2 is the average digit spanThe average digit span refers to the number of digits
that a person can repeat back in correct order immediately after a single auditory
presentation. of healthy adults [233], so that a sequence of five digits should be
fairly easy to remember for a young adult. The digit span memory task is modified
by including Distractors between Target stimuli. In the oddball attention task, a
series of repetitive standard stimuli are infrequently interrupted with a rare oddball
stimulus that the participant is instructed to focus on. In the WithMe experiment,
however, there is an equal number of Target and Distractor stimuli, so there are
no oddballs. The pip-and-pop attention paradigm makes the Targets immediately
noticeable among the surrounding items (they ”pop out”), but the difference between
the WithMe Target and Distractor stimuli is very subtle. In summary, the WithMe
experimental design complicates the three paradigms, in order to allow to observe
the effect of added support on attention more easily. Further details can be found in
the first paper that introduces the WithMe experiment, and discusses the behavioral
analysis of participant performance [92].

Figure 5.1.: In the WithMe experiment, 64 EEG electrodes are considered, according
to the 10/20 system (left plot). Every sequence of numbers is shown to
each participant under four different conditions, C1, C2, C3 or C4, which
indicate the presence of auditory and/or rhythmic support (right plot).

The data is pre-processed according to standard techniques: the amplitude values
are referenced to the average of the both earlobes, bad channels are detected and

115



the when : who is withme? eeg features for attention in a visual task , with

auditory and rhythmic support

then interpolated with 3 neighbouring electrodes, notch filter is applied at 50Hz, and
bandpass filter between 0.2 and 100Hz. The data is then epoched from -0.2s to 1s, and
a visual inspection of ICA components is performed to remove artefacts. Finally, we
downsample the time series with the subsampling period of 50, resulting in 60 time
steps, so that each time step corresponds to 1200ms/59=20.34ms. In most situations,
downsampling the results to 40Hz or 50Hz (thus, one time point every 25 or 20ms)
maintains the advantages of downsampling with minimal loss of information [79].
Finally, the EEG amplitude values are cut off within range [−50µV, 50µV]. The
WithMe dataset can then be seen as a 42 × 1 200 × 64 × 60 matrix:

• 60 time steps (within 1.2s),

• 64 EEG channels,

• 1 200 epochs, i.e., EEG multivariate time series reflecting a single Target or
Distractor stimulus, across channels,

• 42 participants.

Some examples of the WithMe EEG multivariate time series across 64 electrodes,
for a single participant and a single stimulus, are visualized in Figure 5.5 and
Figure 5.8.

5.2.2 Multivariate time series analysis

In this section, we describe in detail the different approaches to multivariate time
series analysis that we will evaluate in the computational experiments. These
methods rely on the different types of features, or representations of multivariate time
series, that belong to two different groups. Firstly, one can consider the individual
univariate time series (for each EEG electrode), and concatenate the information
extracted from each of them separately (Sections 5.2.2.1-5.2.2.4). Alternatively, we
can focus on the relationship between the univariate time series (i.e., relationship
between different brain regions), which we summarize in a few different ways
(Section 5.2.2.5-5.2.2.10). The latter approaches include the baseline xDAWN-RG model
[84], the IEEE Neural Engineering Conference 2015 Brain Computer Interface (BCI)
challenge winner, and EEGNet [199], a benchmark deep learning architecture for
EEG signal processing and classification which learns the best representation for
the given task, that have both been shown to perform well on the WithMe data
[245] (Appendix D). A visual summary of all of the different approaches is given in
Figure 5.2.1

1 Figure 5.2 focuses on an example WithMe data point, but the pipelines can be applied to any data set of
multivariate time series.
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EEG data
64 × 60
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GFP
60 × 1
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. . .

. . .

. . .

Figure 5.2.: Multivariate time series analysis. A WithMe data observation, an EEG
multivariate time series across 64 electrodes and 60 time steps, can be
represented with different types of features. We can consider the 64

univariate time series (UTS), that each correspond to a single participant,
stimulus and electrode, extract features from each of them separately,
and concatenate the information (top branches). It is also possible to
calculate the features from the multivariate time series (MTS) itself, that
rely on the relationship between the 64 channels (bottom branches).

5.2.2.1 Univariate time series (UTS)

Probably the most straightforward way to transform a multivariate time series into a
vector is to concatenate the univariate time series across all features. For instance, a
WithMe multivariate time series across 64 electrodes and 60 time steps (matrix of
shape 64 × 60) can be represented as a vector of length 3 840 = 64 ∗ 60.

5.2.2.2 Recurrence plots of univariate time series (UTS-RP)

A recurrence is a time the trajectory returns to a location it has visited before. For
a univariate time series, the recurrence plot is a matrix of distances in the signal
between every pair of points in time. A WithMe multivariate time series across 64
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electrodes and 60 time steps (matrix of shape 64 × 60) can in this way be represented
with a vector of length 230 400 = 64 ∗ 60 ∗ 60, corresponding to the flattened 60 × 60
recurrence plots, concatenated across 64 EEG electrodes. Recurrence plots have
been employed in EEG analysis, for example for emotion recognition [17], or to
differentiate between seizure-free, pre-seizure and seizure states in genetic absence
epilepsy rats [260].

5.2.2.3 Time-domain features of univariate time series (UTS-TDF)

Instead of looking at the whole univariate time series for each channel (UTS pipeline,
Section 5.2.2.1), we can also only extract some statistics about the time series, such as
their maximum, minimum, mean and variance. Next to considering the largest peaks
in the time series, we will include the peaks from within certain intervals, as these
are related to the so-called event-related potentials (ERPs). An ERP is a stereotyped
brain response to a specific sensory, cognitive, or motor stimulus. ERP waveforms
consist of a series of positive and negative voltage deflections, which are related to a
set of underlying components. Most components are referred to by a letter (N/P)
indicating polarity (negative/positive), followed by a number indicating either the
latency in milliseconds or the component’s ordinal position in the waveform:

• N100 or N1: This is the first substantial peak in the univariate time series. It
is a negative-going peak typically occurring about 100 milliseconds after a
stimulus is presented, but may exhibit a peak anywhere between 80 ms and
120 ms (280 and 320 ms after the start of our time series, see Section 5.2.1). We
therefore calculate the minimum of the waveform within this range (between
time steps t = 13 and t = 16 in our time series).

• P100 or P1: This is a positive extreme occurring about 100 milliseconds after a
stimulus is presented, but may exhibit a peak anywhere between 80 ms and
120 ms. We therefore calculate the maximum of the time series within this
range (between time steps t = 13 and t = 16 in our time series).

• P200 or P2: This is the second substantial peak in the time series, which often
occurs about 200 milliseconds after the stimulus onset. We calculate it as the
maximum of the waveform between 150 and 275 ms, i.e., between time steps
t = 17 and t = 24 in our time series.

• P300 or P3: This is the third substantial positive-going peak in the waveform,
occurring about 300 milliseconds after a stimulus is presented. We calculate it
as the maximum of the waveform between 250 and 500 ms, i.e., between time
steps t = 22 and t = 35 in our time series.

A review of EEG/ERP applications can be found in [254]. In particular, multiple
ERPs were found to be associated with mind-wandering [169], or different stages of
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attention [1]. Note that the EEG reflects thousands of simultaneously ongoing brain
processes, making it challenging to see the brain response to the event of interest in
the EEG recording of a single trial [36]. To see the brain’s response to a stimulus,
the experimenter commonly conducts many trials and averages the results, causing
random brain activity to be averaged out and the relevant waveform to remain [79].
However, in this work we focus on applications that aim to predict the attention
from the given EEG time series corresponding to some stimulus, and we therefore
extract the given metrics for each EEG epoch. We represent each of the univariate
time series with 10 time-domain features: maximum, minimum, mean, variance,
skewness, kurtosis (similar to [237]) N1, P1, P2 and P3 peaks, and then concatenate
the information across EEG electrodes. In this way, a WithMe 64 × 60 multivariate
time series is represented with a vector of length 640 = 64 ∗ 10.

5.2.2.4 Persistent homology of univariate time series (UTS-PH)

The shape of the EEG wave has been shown to contain useful information about
the state of the brain [179]. For this reason, we represent EEG time series for each
channel with its persistent homology (PH) with respect to the lower-star filtration
(Appendix 5.5.1) directly on the signal, i.e., on the function f : {t1, . . . , tn} → R. Per-
sistent homology with respect to such a filtration measures the relative height of the
peaks of the EEG signal, but not their width, so that it is invariant to expansion and
contraction in the time axis direction (Appendix 5.5.1, Figure 5.10; Appendix 5.5.2,
Figure 5.12, row 5, columns 2 and 4). Moreover, addition of noise to the signal
results in minor changes of PH (Appendix 5.5.2, Figure 5.12, row 5, columns 2 and
5). This makes PH an interesting candidate for overcoming individual differences
across subjects [100].

A similar pipeline is employed for the epileptic seizure, autism and arrhythmia
detection from EEG or ECG in [100, 222, 355, 356]. In this work, we represent the
WithMe EEG univariate time series with their 0-dimensional 10 × 10 persistence
images (Appendix 5.5.1), so that an EEG epoch for 64 channels and 60 time steps
results in a vector of length 6 400 = 64 × 10 × 10.

Rather than computing PH directly on a univariate time series, one can first employ
the so-called sliding window embedding to transform it to a point cloud, and
then calculate PH. We do not use this approach here as it is most suitable for
distinguishing between the non-chaotic and chaotic time series, since the loops in the
embedded point cloud reflect cyclic behavior, see Section 5.5.1 for more details.
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5.2.2.5 Global field power (GFP)

The representations above (Sections 5.2.2.1-5.2.2.4) focus on the features from the
univariate time series. However, the interactions between the different time series
(i.e., different brain regions reflected by the EEG channels) might contain (more)
meaningful information. One of the simplest ways to summarize this relationship
between the time series is via the global field power (GFP). GFP is a measure of
the scalp field strength and corresponds to the standard deviation of the signal
across electrodes at each time point [321]. Thus, it is a one-dimensional time series
capturing the spatial variability of the signal across sensor locations. The WithMe
64 × 60 multivariate time series is thus represented as a vector of length 60. GFP has
found applications in studies of perceptual, attentional, cognitive and drug-related
aspects of information processing [230].

5.2.2.6 Functional brain network (FBN)

From a multivariate time series, one can construct a graph or network, with vertices
or nodes which reflect the different univariate time series, and the edges which
describe some relationship between between them. In the context of (WithMe) EEG
multivariate time series, the nodes correspond to the different EEG electrodes or brain
regions, and the weights of the edges correspond to some measure of connectivity
between them, with the resulting graph commonly referred to as a functional brain
network [327]. These functional brain networks provide a new understanding of the
characteristics of the brain, since different cognitive or perceptual tasks require a
coordinated flow of information within networks of functionally specialized brain
areas [27].

Indeed, changes in the topology of EEG functional brain networks appear to accom-
pany a series of neurological and psychiatric disorders, such as stroke damage [347],
schizophrenia [166, 231], amyotrophic lateral sclerosis (ALS) [125] or Alzheimer’s
[164, 326, 371], and can therefore be used as diagnostic markers for these conditions
[329]. Moreover, several studies have suggested that EEG interregional correlations
are associated with conscious cognitive processing and active perception [334, 347].

The correlation between time series (i.e., connectivity between brain regions) can
be calculated in many different ways, such as cross-correlation, coherence, and
synchronization likelihood. In our computational experiment, we will consider the
common Pearson product-moment correlation coefficients [165]. The distance dij
between the two univariate time series i and j is then calculated as dij = 1 − pij,
where pij is the Pearson correlation. As input for this FBN pipeline, we will consider
the distance matrix itself, above the diagonal and flattened into a vector, similarly to
[288]. The WithMe 64 × 60 multivariate time series thus results in a 64 × 64 distance
matrix, that is then flattened into a vector of length 2 016 = 63 ∗ 64/2.
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5.2.2.7 Graph theory of functional brain networks (FBN-GT)

Instead of feeding the complete correlation or distance matrix to a machine learning
algorithm (FBN pipeline, Section 5.2.2.6), it is common to analyze such a matrix (or
functional brain network in the neuroscience context) using graph theory. Typically,
the weighted graph, i.e. the correlation or distance matrix is thresholded at a
prespecified level to produce the binary adjacency matrix that only indicates if a
connection between vertices exists [202]. Then, the corresponding graph topology of
the binary matrix can be characterized by calculating the graph metrics of interest
that characterize the functional integration and segregation.

Indeed, significant differences across some graph theory metrics have been found
between EEG brain networks for control subjects and patients of a range of neurolog-
ical and psychiatric disorders [47, 125] (such as stroke, multiple sclerosis, Parkinson’s,
epilepsy or depression). Moreover, in the healthy brain, individual variability in
cognitive functions, learning a new task, or the predisposition to learn have been
correlated with specific patterns of network connectivity [184]. In our computational
experiments, we consider the assortativity degree, average path length, edge con-
nectivity, and for each node, its degree, betweenness, and eccentricity. To obtain
the graph adjacency matrix, the normalized distance matrix (see FBN pipeline in
Section 5.2.2.6) is thresholded at 0.1. For a WithMe EEG multivariate time series
across 64 channels, i.e., a 64 × 64 functional brain network (distance matrix), this
results in a vector of length 195 = 1 + 1 + 1 + 64 ∗ (1 + 1 + 1).

5.2.2.8 Persistent homology of the functional brain network (FBN-PH)

Studying the correlations using graph theory or network science (FBN-GT pipeline,
Section 5.2.2.7) suffers from methodological problems. Firstly, finding a proper
threshold is one of the crucial issues, since the graph structure drastically changes
depending on how to threshold a connectivity matrix. For example, most graph
characteristics depend on the number of edges in the graph, and the estimated
graph topology is therefore biased by the choice of the threshold. This hampers a
meaningful comparison of graph topology between individuals or groups. Some
of the proposed thresholding methods, such as the multiple comparisons correc-
tion and the sparsity control, assume that the strongly connected edges are only
important; however, it is suggested that the weakly connected edges may also have
discriminative information between networks [26, 203]. The choice of threshold
has a major influence on the resulting graph [141] and inevitably leads to a loss of
information. Determining the threshold can be based on the statistical significance
by the false discovery rate or by fixing the graph metrics such as number of ver-
tices and edges. However, these methods are fairly ad-hoc and everyone seem to
use different thresholding techniques. This arbitrariness is demonstrated in [202,
Figure 1], where it is shown that the number of edges, the number of connected
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components and smallworldness of a brain network substantially change depending
on the threshold: by varying the threshold, the topology changed to random-like,
small-world and clustered network. In addition, it was shown that the clustering
coefficient, modularity, efficiency, efficiency-cost show and assortativity of a brain
network change greatly across different thresholds (reflected by the network cost,
i.e., the total number of edges) [171, Figures 3-7], and the same was shown to be true
for efficiency, clustering coefficient, small-worldness, modularity, vertex and edge
betweenness centrality, variance of vertex degrees, assortativity and synchronizability
in [165, Figures 5-8]. Ideally, graphs should be characterized across a broad range of
thresholds [305].

Moreover, in many real systems, dyadic relationships between pairs of vertices fail
to accurately capture the rich nature of the system’s organization, e.g., cognitive
functions appear to be performed by a distributed set of brain regions and their
interactions [137]. Furthermore, another drawback of the common graph theory
approaches is that they require 2-dimensional embedding of structures that might
otherwise be of higher dimension [29].

Persistent homology (PH) of a graph goes beyond graph-theoretic analysis by describ-
ing the architecture of a graph in more flexible ways, that investigates the persistence
of relationships between graph vertices across multiple scales [11]. Instead of trying
to determine one fixed optimal threshold, persistent homology allows us to look
at the topological changes of graphs while increasing the threshold continuously.
Persistent homology represents the weighted graph with a finite number of nested bi-
nary graphs over every possible threshold. In contrast to standard methods of graph
or network analysis, persistent homology also encodes higher order connections and
thus allows to go beyond pairwise connections; this is helpful for gaining global
understanding of low-dimensional structures in graphs [327]. Indeed, experimental
results in [148] show that compared with the existing methods, persistent homology
can extract the topological features of brain networks more accurately and improves
the accuracy of diagnostic and classification.

The first papers that deal with PH of brain networks [202, 203] demonstrate dif-
ferences between the local connectivity structures in functional brain networks
for attention deficit hyperactivity disorder (ADHD) and autism spectrum disorder
(ASD), and later, in a depressed brain [184, 369]. Furthermore, PH metrics have
been employed to investigate how the topological architecture of brain networks is
related to cognitive function, behavior and personality [11, 213, 370]. In this chapter,
we employ PH with respect to the rank filtration (Section 5.5.1) on the functional
brain networks. This is useful in neuroscience applications, where correlations
cannot be assumed to give a precise definition of the distances between graph nodes,
and the PH defined in such a way remains unchanged under nonlinear monotonic
transformations of the distances (see Appendix 5.5.1, Figure 5.11). More precisely,
we concatenate both the 0- and 1-dimensional 10 × 10 persistence images (that re-
spectively reflect the connected components or clusters, and loops) for each graph,
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so that a WithMe 64 × 64 functional brain network is represented with a vector of
length 200 = 10 ∗ 10 + 10 ∗ 10.

5.2.2.9 xDAWN-RG (xDAWN-RG)

As one of the baselines, we consider xDAWN-RG, one of the benchmark techniques
for classification of multivariate bio-signals, like EEG, MEG or EMG. xDAWN-RG was
the winner of the IEEE Neural Engineering Conference Brain Computer Interface
(BCI) challenge [226], whose goal was to detect errors during a spelling task, given
subject’s EEG data. It consists of applying xDAWN spatial filters [299], calculating
covariance matrix between the EEG channels to encode their statistical dependencies
[23, 82], selecting the channels via Riemannian Geometry (RG) [18], and projecting
the reduced covariance matrices in the tangent space [19, 20]. A WithMe 64 × 60
multivariate time series is transformed into a 8 × 8 covariance matrix, which is then
projected into a vector of length 36 = (8 + 1) ∗ 8/2.

5.2.2.10 EEGNet (EEGNet)

As the main baseline, we consider EEGNet [199], a benchmark deep learning ar-
chitecture for EEG signal processing and classification. EEGNet is a convolutional
neural network (CNN) that learns the best representation for the given task directly
from the multivariate time series, with each data observation corresponding to the
matrix of univariate time series across channels. Therefore, the raw WithMe 64 × 60
multivariate time series is fed directly to the model.

5.2.3 Attention score

The focus of this chapter and the WithMe data acquisition (Section 5.2.1) is attention
recognition. Remember that each experimental participant is shown 30 sequences
of 10 Target or Distractor numbers on the screen, and is instructed to list the
Targets in the correct order of appearance. We are thus interested to what degree
the different pipelines (Section 5.2.2) can predict how well a participant was able to
remember the Targets and ignore the Distractors from the EEG data. To do so,
we define a simple scoring function, which reflects the digit recall accuracy, i.e., how
well a participant was paying attention to the given stimulus.

Note firstly that the attention performance is not always conclusive, since the Targets
and Distractors in a sequence are not necessarily unique: e.g., if a sequence
contains digit 5 both as a Target and as a Distractor, and a participant reports
5, we do not know if the participant correctly remembered the target, or did not
properly ignore the distractor. We assign such stimuli a value of -1.
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We define the scoring function for the remaining, well-behaved stimuli to take values
in [0, 1]. The score of 0 indicates perfect performance: Target stimulus is given in
the participant’s answer in the correct position, or the Distractor stimulus was
properly ignored. On the other extreme, the score of 1 means that the participant did
not remember the Target, or has listed the Distractor in their answer. The scores
of 0.2, 0.4, 0.6, or 0.8, that are only possible for the Targets, aim to capture that a
participant remembered the Target, but at the wrong position; the value of the score
indicates how wrong is the provided answer. Note, however, that e.g., a score of 0.2
for some Target stimulus does not necessarily imply that the subject was not paying
“perfect” attention, since it might rather be that they were not attentive during a
previous Target that they thus did not include in their answer. Since a stimulus
might appear multiple times in a sequence, note also that the scoring function does
not necessarily always correctly reflect the attention, and a participant might simply
“get lucky” and report the number correctly.

Therefore, our simple scoring function is defined as follows:

score(T) =



0 T ∈ answer, at the right position
0.2 T ∈ answer, wrong by one position
0.4 T ∈ answer, wrong by two positions
0.6 T ∈ answer, wrong by three positions
0.8 T ∈ answer, wrong by four positions
1 T /∈ answer
−1 T appears in answer less than in Targets

(5.1)

score(D) =


0 D appears in answer less than or same as in Targets

1 D appears in answer more than or same in Targets+Distractors
−1 D appears in answer less than in Targets+Distractors,

or D is empty
(5.2)

An example of a sequence, a participant’s answer and their score for each stimulus
is given in Table 5.1. Figure 5.3 shows that the large majority of the stimuli yield the
perfect score=0: the Target is remembered at the correct position, or the Distractor

is appropriately ignored. This is as expected since, as we discussed earlier, the
literature suggests that a sequence of five digits should be fairly easy to remember
for young adults.
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Sequence 8⃝ 6⃝ 6⃝ 6⃝ 9⃝ 0⃝ 9⃝ 7⃝ 5⃝ 4⃝

Targets 86974

Distractors 66 95

Answer 86694

Table 5.1.: An example of a sequence of stimuli shown to each experimental partici-
pant on a computer screen, with the digits appearing one by one, Targets
in black and Distractors in grey. For the given answer, the participant
obtains the following scores on the 10 shown Target and Distractor

stimuli: score(T1) = 0, score(T2) = 0, score(T3) = 0.2, score(T4) = 1, score(T5)
= 0, score(D1) = -1, score(D2) = -1, score(D3) = -1, score(D4) = 0, score(D5)
= 0.

5.2.4 Experimental set-up

The classification is done with a linear SVM on the features obtained in the pipelines,
except for EEGNet that classifies the multivariate time series directly. According to a
recent review [218], due to its good performance, SVM is among the most popular
types of classification algorithms for EEG. Moreover, we also want to evaluate to what
extent are the different pipelines able to deal with the person-to-person variability,
as this is an important challenge of EEG data (Section 5.1). To this end, we consider
three different experimental scenarios, that differ in the train and test data used for
classification:

• Classification per participant: We start with the simplest scenario, when the
model is trained on 70% of data (randomly chosen EEG epochs) for a single
participant, and the test data corresponds to the remaining 30% of multivariate
time series for that same participant.

• Classification on seen participants: Next, we train the models on 70% of
randomly chosen multivariate time series, and test on the remaining data.
In this case, the train and test data consists of all (and therefore, the same)
participants.

• Classification on new participants: Finally, we train the models on all the
EEG data from 70% of the experimental participants, and test on the complete
data for the remaining 30% participants. Here, the test data consists of new
participants compared to the train data.

For each of the three scenarios, we consider three different splits between train and
test data, which are the same across different pipelines. The drop in accuracy from
the test data consisting of seen and new participants (the last two scenarios above)
can give an idea of how well a pipeline is able to avoid the issue of cross-subject
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Figure 5.3.: Distribution of scores. The number of inconclusive stimuli with score=-1
is not negligible (left plot), but removing them does not lead to a major
data loss, in particular since it allows to focus on the EEG epochs with
a meaningful attention score. The number of EEG epochs with score
in {0.2, 0.4, 0.6, 0.8} is too small for a score prediction task (left plot), so
that this data is also removed. In this way, score prediction amounts
to classification between score=0 (attentive) and score=1 (inattentive)
stimuli or EEG epochs.

variability. Note that the size of data differs greatly between the first, and second
and third experimental scenario, since the former is limited to the EEG data from
a single participant. The data size for each experiment is explicitly mentioned in
Section 5.3.

Finally, since the pipelines UTS-RP, UTS-TD and UTS-PH that extract features from
the univariate time series yield a large number of features in comparison to the
number of data observations (e.g., 230 400 features for 1 200 data samples in the first
experimental scenario where we focus on an individual subject), these models in
general tend to overfit. For this reason, we limit these pipelines to the features from
5 most important EEG channels, identified by the UTS pipeline: we take these to be
the EEG channels with the largest values of the linear SVM coefficients trained on
the complete data. Removal of noisy of irrelevant channels in general makes the
model less prone to overfitting [240].

For some of the classification problems, the data is very unbalanced: for instance,
the number of EEG epochs with score=1 is quite small in comparison with score=0

(Figure 5.3), so that even a random guess yields a very high accuracy. For this reason,
we consider a balanced accuracy, which is calculated as the average between the true
positive rate or recall TP

TP+FN , and the true negative rate TN
TN+FP , where TP, TN, FP

and FN are respectively the number of true positives, true negatives, false positives
and false negatives. If the data is well balanced, the accuracy and balanced accuracy
tend to converge to the same value. We opt for an adjusted classification accuracy
in order to allow for a fair comparison across participants, which would not be the
case if we oversampled some epochs for some participants, simultaneously avoiding
data loss due to undersampling.
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5.3 Results

5.3.1 Score prediction

The goal of this subsection is to evaluate to what extent can EEG signals predict the
attention score (Section 5.2.3) that reflects how well a person has remembered the
given Target, or ignored the given Distractor stimulus, shown on the computer
screen. We limit the data to EEG multivariate series with score=0 (attentive) and
score=1 (inattentive), in order to focus only on the stimuli for which we are fairly
confident whether a participant was paying attention. Indeed, as we discuss in Sec-
tion 5.2.3, the data samples with score=-1 are inconclusive, and score ∈ {0.2, 0.4, 0.6,
or 0.8} might often be misleading. Moreover, there is only a limited number of
stimuli with a score of 0.2, 0.4, 0.6, or 0.8 (Figure 5.3, left panel) so that any classi-
fier would struggle to learn to recognize such signals. This results in a somewhat
different number of appropriate EEG epochs across participants (Figure 5.3, right
panel). To make the comparisons across participants fair, we randomly select 684

EEG epochs appropriate epochs for each participant (what is the minimum number
of epochs with a conclusive score for participant EP09).

Figure 5.4 shows the balanced accuracy for score=0 vs score=1 classification for
the different pipelines (Section 5.2.2), for the three different experimental scenarios,
i.e., train and test data (Section 5.2.4). In general, most of the pipelines perform
extremely poorly, and are not much better than a random guess with an accuracy of
0.5. It is only xDAWN-RG that is able to perform some classification (which does not
drop for the more difficult problem when the test data consists of EEG epochs for
unseen subjects), but it still only obtains the accuracy of around 0.6.

stimulus individual participants seen participants new participants

Target

Distractor

Figure 5.4.: Score 0 (attentive) vs 1 (inattentive) classification accuracy across the
pipelines.
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Figure 5.5.: An example of EEG signals across 64 EEG electrodes for participant
EP01, averaged across Target (left) and Distractor (right) stimulus.

5.3.2 Classification between Target and Distractor stimuli

In this section, we perform the classification between Target and Distractor stimuli,
since P300 ERP is expected to be observed when subjects see a Target stimulus,
and the amplitude of the P300 has shown to be proportional to the amount of
attentional resources engaged in processing a given stimulus [143]. Indeed, we show
in Figure D.1 that the evoked response for an example WithMe participant exhibits a
clear positive voltage deflection around 300ms post-stimulus in the parietal-occipital
electrodes. This can also be observed in Figure 5.5, which shows an example of
EEG multivariate time series for a participant, for the different type of stimuli.
Classification between Targets and Distractors investigates whether the brain
responds differently to the two different stimulus types, which is thus informative
of attention, but does not depend on the particular choice of the attention score.

Note that the subjects do not always correctly identify the Target or Distractor

stimulus, so that their EEG signals do not necessarily exhibit a behavior that might
be representative of the different type of stimuli. To avoid this issue, we limit the
classification only to stimuli that were perfectly remembered or ignored (score=0).
Restricting the data in such a way results in somewhat different number of appropri-
ate EEG epochs across participant, with the minimum number of 387epochs.

Figure 5.6 shows that a number of pipelines achieve a good classification accuracy
of 75% or more. What is probably the most surprising is that the simplest pipeline
UTS (Section 5.2.2.1), where the univariate time series across 64 EEG channels are
simply concatenated into a large vector, often even outperforms the benchmark
xDAWN-RG and deep learning EEGNet methods. However, this pipeline struggles
more to maintain good performance on new participants. Overall, in this case, the
pipelines that extract and then concatenate the features from each of the univariate
time series separately (UTS, UTS-RP, UTS-TDF, UTS-PH) outperform the pipelines that
focus on the relationship between the time series across EEG channels (GFP, FBN,
FBN-GT, FBN-PH).
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scenario individual participants seen participants new participants

C1

C2

C3

C4

Figure 5.6.: Target vs Distractor classification accuracy across the pipelines.

Remember that the WithMe experiment is performed under four experimental condi-
tions C1-C4, that indicate the presence of rhythmic or auditory support (Section 5.2.1).
Whenever present, the rhythm and audio accompany the Targets only (and not
the Distractors), so that one might wonder whether the classification above is a
detection of rhythm and auditory clues rather than a differentiation between the
Target and Distractor stimuli. To verify this, we could perform the classification
separately under each of the conditions. However, we opted to keep the experiments
simple and to exploit as much data as possible for learning, since similar WithMe
Target vs. Distractor accuracy has been shown across the different experimental
conditions (Table D.5). Moreover, we performed the Target vs. Distractor classifi-
cation for condition C1 (with neither rhythmic nor auditory support, and with only
25% of the original data) with UTS, obtaining a balanced accuracy of 0.72, that is not
significantly lower than the accuracy of 0.74 when the conditions are considered
together.

5.3.3 Classification between conditions C1, C2, C3 and C4

Next to attention recognition, one of the goals of the WithMe experiment (Sec-
tion 5.2.1) is to investigate to what extent can rhythmic and/or auditory clues
(Figure 5.1, right panel) improve attention. Figure 5.7 shows that for the majority of
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the participants, the presence of rhythm alone (C2) does not improve their attention
score during the modified digit span task, although there are some differences
across subjects. However, the presence of auditory support (C3) commonly helps to
achieve a better score, that is rarely improved further with the additional rhythmic
support (audio and rhythm together, C4). This is consistent with earlier findings
on the WithMe data [92], for three different scoring functions that look into the
performances across complete sequences of digits shown on the screen (rather than
for each of the 10 individual stimuli in a sequence).

Figure 5.7.: Average scores (lower is better) across participants and experimental con-
ditions indicate that the influence of rhythmic and/or auditory support
on the attention score is different across participants. Rhythm (C2) dete-
riorates the performance more often than improving attention. Auditory
support (C3), however, improves the attention score for the majority of
participants.

In this section, we classify between the experimental conditions C1, C2, C3 and C4, to
assess to what extent the EEG signals differ in the presence of rhythm and/or audio.
An example of an EEG multivariate time series for a participant, across different
conditions, is shown in Figure 5.8.
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Figure 5.8.: An example of EEG signals across 64 EEG electrodes for participant
EP01, averaged across experimental condition C1 (top left), C2 (top right),
C3 (bottom left), and C4 (bottom right).

The performance of the different pipelines is rather good for this task (Figure 5.9).
In particular, many different representations yield an accuracy above 60% (note that
a random guess amounts to 25%) when the classification is performed separately for
each participant. This time, the FBN pipeline that focuses on the correlation between
the different brain regions performs particularly well, although it fails on the test
data consisting of new, subjects that were not previously seen in the train data.

scenario individual participants seen participants new participants

Target

Distractor

Figure 5.9.: C1 vs C2 vs C3 vs C4 classification accuracy across the pipelines.

Remember, however, that the rhythmic and/or audio support only accompanies
the Target stimuli. To evaluate whether these rhythmic and auditory clues help
attention, it is therefore particularly interesting to perform the classification between
the conditions for the Distractor stimuli only. For the Distractor stimuli, there is
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no rhythm or audio that can change the EEG signal, but this support that is present
during the Target stimuli in the sequence might help a person to correctly ignore
the Distractor. However, the best performing pipeline for the classification of
conditions, UTS, only achieves an accuracy of 0.28 (although we note that there is
only 50% of data available in comparison to the previous experiment).

5.4 Discussion

5.4.1 Effectiveness of EEG representations in capturing attention

Attention can be captured with EEG, even for short visual stimulus. The performance
for Target vs. Distractor classification we obtained is similar to the results from
other comparable studies which obtain an accuracy between 56.5 and 84% [237,
Table 3]. For example, similar accuracy from EEG data of 76.82% is obtained
when classifying attentive and inattentive students in [214], and 84% and 81% for
respectively the focused attention and working memory in [237]. Therefore, EEG-
based BCI platforms have a good potential for utilization real-time classification
and neurofeedback tasks, aiding in the diagnosis and training of individuals with
attention deficits.

Overall, the representations of the EEG data that reflect the (features extracted from
the) univariate time series perform better than the representations that focus on
the relationship between these time series for different EEG channels. The former,
including the recurrences in the time series, the common time-domain features,
and the persistent homology (reflecting the local extrema) are thus all indicative
of the use of attentional resources. The latter representations do at times obtain a
superior performance on classification tasks for individual subjects, but they fail
to obtain a good performance on previously unseen subjects. The communication
between different regions in the brain is thus informative of processing visual stimuli
(with rhythmic and/or auditory support), but is more sensitive to the cross-subject
variability.

It is important to note that the insights might be strongly influenced by the particular
problem (task at hand and the experimental set-up) and hyperparameters within
the different pipelines. For instance, the WithMe experiment focuses on a novel
digit-span paradigm with young students, and different EEG features might be most
meaningful for other problems. The WithMe EEG time series reflect the brain signal
during only 1.2 seconds of a simple visual task; more meaningful relationships
between the different brain regions might be captured for longer resting-state time
series. For example, [vandecappelle2021eeg] show that the performance of the
state-of-the-art models for classifying auditory attention drops significantly when
shorter windows are used: the accuracy decreases by 17.6% going from 10s to 1s. In
the literature, most of the papers that focus on attention detection from EEG, aim to
classify e.g., between long(er) reading or arithmetic task versus resting or sleeping
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state. Moreover, functional brain networks are more common for diagnostic purposes
from long resting-state fMRI data, as EEG has less discriminating power due to its
limited spatial resolution [369]. Cross-task classification accuracies, where a classifier
is trained and tested on EEG features from different tasks, has been found to be
significantly lower (even than a random guess) compared to within-task condition
(44.8% and 87.1% respectively), since different tasks invoke highly dissimilar EEG
patterns [182]. In addition, relative contribution of different features of stress
classification model has been shown to change with the infant’s age [197]. Our
findings are also limited to our particular choice of the common Pearson correlation
used to obtain the functional brain networks, whereas other measures of correlation
might be more suitable in capturing attention from (raw) EEG. Furthermore, to
address the issue of cross-subject variability, it might be a good idea to perform
participant-based normalization. For example, [237] use decibel conversion to
normalize with respect to the baseline resting-state EEG data with open and closed
eyes. However, the WithMe data does not include such resting state baselines, and
we can thus recommend collecting such data during the experiment.

We should note that our goal is not to obtain the best possible performance. A
better performance can likely be achieved by combining some complementary
representations. For example, the correlation matrix and persistent homology (similar
to our FBN and FBN-PH pipelines) combined has been shown to outperform the
individual approaches for autism detection from fMRI data [288]. However, our
goal is to gain insights in how powerful the different representations are, so that we
evaluate the performance of each representation separately.

5.4.2 Good performance of raw time series

One of the most surprising insights from our experimental results is that the UTS

pipeline (Section 5.2.2.1), which simply concatenates the univariate time series
across EEG channels into a large vector, obtains a very good performance on each
classification task, often outperforming the very complex EEG-specific models,
although we have not observed its usage in the literature. It can therefore be
recommended as a good starting baseline, and in case of good performance can avoid
further intricate pre-processing and representation techniques (that require expertise
in the application domain). This is in contradiction to the common understanding
that extracting relevant features for the considered application is a crucial step in
EEG processing [367]. Moreover, we employ a simple SVM on the raw time series
(in order to have a good indication of the discriminative power of the features), but
better results can likely be achieved with more powerful learning models, such as
multilayer perceptrons (MLPs) or other deep neural networks. A review of deep
learning architectures in the analysis of EEG signals can be found in [86].

133



the when : who is withme? eeg features for attention in a visual task , with

auditory and rhythmic support

5.4.3 Poor performance of persistent homology

Although topological data analysis (TDA), and its main tool, PH, has found success-
ful applications in neuroscience (see Section 5.2.2.4, Section 5.2.2.8, Appendix 5.5.1
for references and details), a closer look into the literature often points to a low
effectiveness of these features, and a number of possible explanations.

The first TDA pipeline in this chapter, UTS-PH (Section 5.2.2.4), calculates 0-dimensional
PH on every univariate time series that reflects the EEG data for a single participant,
stimulus and EEG channel. This captures the local extrema of the time series, but in
case of the WithMe data these might contain a lot of noise, since e.g., a time series
corresponding to a Target stimulus might contain the EEG information about the
forthcoming Distractor(s). This might also explain why the UTS-TDF where the
extrema are taken from the interesting range in the time series, or the UTS repre-
sentation that considers the complete time series (and lets the classifier focus on
the important information) outperform the UTS-PH pipeline. Persistent homology
on univariate time series might be more likely effective in applications where the
important difference between data classes lies in some extreme values of the signal,
such as epileptic seizure, autism and arrhythmia detection from EEG or ECG in [100,
222, 355, 356].

The second TDA pipeline in this chapter, FBN-PH (Section 5.2.2.8), calculates 0- and
1-dimensional PH on a functional brain 64 × 64 network reflecting the relationship
between the time series across 64 EEG channels, for a single participant and stimulus.
The poor performance in this chapter is consistent with the experimental results
in [141, Figure 3], [288, Figure 4], [148], that point to limited or no success of PH
features for brain functional networks. It is also important to note that PH on
EEG-based functional brain networks has commonly been employed on correlations
between the frequency domains, rather than the correlations between the time series
themselves. In this work, we focus on the latter approach, since frequency-domains
for short time series provide poor frequency resolution.

Moreover, PH-based representations have previously been shown to be successful
on much longer, resting-state fMRI data (more informative than EEG), and for
diagnostic purposes (likely an easier task compared to detecting attention during
a 1.2-second long visual stimulus). And even in such applications, success is not
guaranteed: for instance, [141] note only minor differences and small odd ratios
between resting-state fMRI for diagnosing ADHD. There are only a few examples
where PH has been used for neurotypical development [140, 367], but these look into
the differences between PH on puberty and random MRI networks. In addition, it is
more common in the literature to show a statistically significant difference between
the patients and the control group, rather than on the more challenging classification
or prediction tasks. The potential of PH to reveal the underlying processes from
EEG during a short cognitive task might thus be limited.
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We again note that the performance might be improved by combining the differ-
ent representations. Indeed, a number of studies have suggested that persistent
homology can extract features that are hardly noticed by other methods, so that their
incorporation in deep learning models might yield better results. However, [288]
provides a cautionary tale in this regard, as they show that the additional persistent
homology features do not necessarily significantly improve the performance of
deep learning models. The authors speculate that the poor performance might be
attributed to the wide age group in their experiment, although persistent homology
also underperforms on the WithMe data in this chapter, where the participants are
within a narrow 5-year range.

A survey of some promises and pitfalls of TDA for brain connectivity analysis is
provided in [53]. The field of applying topological data analysis, including persistent
homology, to cognitive processes is an active area of research, and new studies
and methods are continuously emerging. We encourage future research in this
direction to help assess the effectiveness or added value of persistent homology in
neuroscience applications.

5.4.4 Auditory and rhythmic support

Using only the WithMe behavioural data and participants’ answers, [92] show the
effect of auditory support, but no difference was observed between rhythmic and
non-rhythmic sounds. These experiments focus on sequence-based scoring functions
(that evaluate attention during a sequence of 10 digits), and we obtain similar
findings for our stimulus-based attention score (Figure 5.7). To better understand
the underlying processes of attention, as future work the authors in [92] suggest to
also analyze the brain activation data such as EEG. Our results show that, although
many pipelines can easily differentiate between the EEG data across experimental
conditions C1-C4, there is little difference between EEG signals for the distractor
stimuli that are not accompanied with rhythmic and/or auditory clues.

There is indeed prior evidence in the literature about the benefit of auditory support
[49], but the results about rhythm are conflicting. On the one hand, theories of
dynamic attending and predictive coding suggest that rhythms generate expectations
that open up slots for attending, facilitating memorization and recall of targets. On
the other hand, the accuracy of task performance has been shown to not depend on
the synchronisation between the rhythm and target [116, 159]. A possible explanation
for the rhythm not providing additional support might lie in the model by [174],
which suggests that attentional resources are drawn from a general, but limited pool
of resources: memory requires the major part of available resources, so that not
enough resources can be assigned to process the rhythmic support. This explanation
is however less likely since healthy adults have on average a digit span between
5 and 9, so that memorizing 5 targets should not put too big of a demand on the
available cognitive resources.
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A more likely explanation can be found in a few methodological issues. Firstly,
in order not to draw attention to the support and following the directed attention
hypothesis, the conditions C1-C4 do not follow a block experimental design but
the order is pseudo-randomized (so that even two auditory or rhythmic conditions
would rarely appear consecutively), and participants were not made aware of the
sound or rhythm (whereas some research suggests that conscious attention to both
sensory modalities is essential for performance improvement [343]). Indeed, even
though the presence of rhythm did not improve attention in general, it did so for
the participants who reported experiencing the rhythm as supportive [92]; however,
it might be that these participants were more alert overall, what led to a better
performance. Secondly, the priming of the rhythm with only 5 induction stimuli
might have not been sufficient, and the induction with flashing empty circles might
also be improved with moving stimulus such as a bouncing ball [92].

We stress, however, a difference in the of auditory and/or rhythmic support across
participants. This added value has been shown to be influenced by the subject’s bias
for auditory or visual memory, and their previous task experience, both in earlier
studies as well as recently for the WithMe data [92].

data availability The WithMe questionnaire, the participants’ behavioural
data and recalled answers are available at the Open Science Framework (OSF) reposi-
tory: https://osf.io/ntmy8/?view_only=88d951C394c7481dba00a1497d64797f. The
complete raw, unepoched and unprocessed WithMe EEG will be released later as
part of a separate publication. The pre-processed unepoched data (42 .fif files,
one for each experimental participant) is available on the figshare repository:
https://figshare.com/s/f3a0727f6ec6de76fd4b. For easy reference, we also in-
clude the processed and epoched data (as a large .csv file), which also includes the
attention scores, as supplemental material. The code used for the experiments in this
chapter is publicly shared on https://github.com/renata-turkes. In particular,
Jupyter notebooks data exploration.ipynb and classification.ipynb provide
user-friendly tools to respectively explore the data (further), replicate or extend our
analyses.

5.5 Supplementary material

5.5.1 Topological data analysis and neuroscience

Topology has long been a central concept in neuroscience [120]. In particular,
persistent homology (PH), has found many applications.

One reason behind the application of PH to neuroscience is that a significant portion
of neuroscience research involves studying functions or graphs, that are particularly
amenable to topological tools [89]. The functions can, for instance, correspond to the
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functional magnetic resonance imaging (fMRI) time series, and graph vertices can
correspond to neurons, cell types, fMRI voxels, with the graph edges reflecting their
relationship (e.g., synaptic connections between neurons). A survey of applications
of topology in neuroscience can be found in [89]. Some examples of application of
PH in neuroscience are analysis of: spatial structure of afferent neuron terminals
in crickets [42], correlations of neurons in the hippocampus [138], neuron activity
(firing event time series, so-called spike trains) [325], branching neuronal trees
[176], brain artery trees [29, 35], morphological brain networks in deaf adults [186],
fluorodeoxyglucose-positron emission tomography (FDG-PET) based brain networks
in children with attention deficit hyperactivity disorder (ADHD) and autism [202,
203], functional magnetic resonance imaging (fMRI) volumes [297], fMRI brain
networks [117, 272, 327, 329] (respectively during learning, drug-induced states, in
patients with ADHD or schizophrenia), or structural covariance MRI (scMRI) or
fMRI networks of persons with autism [261, 288].

There are a few different ways that PH can be calculated from EEG data (or any
dataset of multivariate time series). For instance, one can compute PH on a point
cloud, a geometric object obtained from a time series via the so-called Takens’s
time delay embedding, which is circular if the time series is periodic, under certain
conditions [270]. Since 1-dimensional PH precisely describes the loops in the data,
it provides insights into periodic and repetitive patterns in the time series, and
promises to be beneficial in particular to distinguish periodic and chaotic time series
[312]. In such applications, time series belonging to the same class do not have
to have similar waveform and similar range, so that this PH-based model might
be more meaningful than the typical approaches for time series classification (e.g.,
temporal or frequency features, or CNNs that learn the best features for the given
task). It is possible to choose a summary of PH that is shape agnostic and resistant
to dampening [269], what might be useful in dealing with cross-subject variability.
This pipeline has been employed on EEG data for epileptic seizure [133] or cognitive
fatigue detection [90], classification between eyes-open and eyes-closed signals [34],
or between left and right-hand motor intentions for brain-computer interface (BCI)
applications [8, 9]. A recent review of TDA applications to EEG analysis can be
found in [367].

In this chapter, we apply PH both on univariate time series for a single EEG channel
(i.e., functions, UTS-PH, Section 5.2.2.4) and on the networks resulting from the EEG
multivariate time (i.e., graphs, FBN-PH, Section 5.2.2.8). In the remainder of this
section, we discuss our choice of filtration and persistence signature, the input
and output of PH, and illustrate their invariances under some transformations of
a function or network (that in our application correspond to univariate EEG time
series, or functional brain networks that reflect the relationships between them).

Next to the common Vietoris-Rips filtration, there is a number of different ways
one can build a filtration, the input for PH. PD always registers the number of
k-dimensional cycles (topological information), but the choice of filtration has crucial
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importance for the interpretation of birth and death values (additional geometric
information), and for the type of data transformations that the resulting PH is
invariant to. For example, the birth and death values with respect to the Vietoris-
Rips filtration reflect respectively the sparsity of the neighbouring point cloud points
and their radius or size, so that they are invariant under rotation or translation, but
not under rescaling or outliers (Chapter 3). In this section, we focus our attention on
the two filtrations that we will use in this work.

5.5.1.1 Lower-star filtration

Let f : R → R be a function. The lower-star filtration {Kr}r∈R considers the sublevel
sets

Kr = {x ∈ R | f (x) ≤ r}.

Every sublevel set Kr is either empty or a union of intervals, so the only non-trivial
topological information they carry is their 0-dimensional homology, i.e., the number
of connected components [69]. Since PH tracks how these connected components
evolve within the filtration, it will capture the information about the local minima
and maxima of f (Figure 5.10). Note that PH does not capture the width of the
minima and maxima peaks, so that it is invariant to expansion and contraction in
the x-axis direction.

5.5.1.2 Rank filtration

Let G = (V, E) be a weighted graph or a network. In general, an algebraic represen-
tation of a weighted graph G = (V, E) is a connectivity matrix D = [dij], where dij
is the weight of an edge eij ∈ E between vertices vi ∈ V and vj ∈ V, reflecting the
relationship between them, which is typically some measure of distance, dissimilarity
or inverse correlation. It is possible to build the standard Vietoris-Rips filtration of a
graph, since it never relies on the point cloud coordinates, but rather only on the
pairwise distances dij between the point cloud points (or graph vertices or nodes).

In applications, however, it is often the case that these graph distances are measured
in somewhat arbitrary units, where one can usually assume a larger weight means a
stronger interaction, but the precise values of the weights may not be meaningful
[89]. This is particularly true for neuroscience applications, where correlations are
believed to be given by an unknown monotonic function on an underlying distance
in the relevant stimulus space, i.e., distances are only known up to rescaling by an
unknown monotonic function [46, 138].

In such scenarios, it is useful to consider the rank filtration, which corresponds
to the Vietoris-Rips filtration, but after the scalar values in the distance matrix are

138



5.5 supplementary material

Figure 5.10.: Persistent homology of a function with respect to the lower-star fil-
tration captures the information about the local maxima and min-
ima of the function, and is invariant under expansion and contrac-
tion in the time axis direction. The figure shows four example func-
tions f : R → R (top panel) and their respective 0-dimensional PDs
(bottom panel). For the first example f1, PD1 = {[0, 100], [10, 50]},
reflecting the minimum values 0 and 10, and maximum values 100

and 50. Since the second function f2 has the same extrema, PD2 =
PD1, despite the width of the extrema being different. Function f3
is a noisy version of f1, resulting in a slightly different persistence
intervals PD3 = {[5.27, 104.17], [14.24, 56.32]}. Function f4 has addi-
tional extrema, so that the PD sees additional persistence interval,
PD4 = {[0, 100], [10, 60], [30, 50]}.

replaced by their ordinal numbers or ranks. In other words, the rank filtration is
a nested family of graphs (clique complexes of G), where each subsequent graph
includes an additional edge (i, j) ∈ E corresponding to the next-lowest distance dij.
PH with respect to the weight rank filtration is then a topological invariant, as it
remains unchanged under nonlinear transformations of the weights, provided that
the ordering of weights is preserved (Figure 5.11).

5.5.2 Different representations of an example multivariate time series

In this appendix, we consider two toy examples of 5 × 100 multivariate time series.
For the first example, the first univariate time series is a cosine signal with a few
minima and maxima. The remaining univariate time series in this example are
obtained by applying respectively the following transformations to the starting
signal: a shift in the y-axis direction, “stretching” a part of the time series in the
x-axis direction, and adding two different levels of noise. The second multivariate
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Figure 5.11.: Persistent homology of a graph with respect to the rank filtration cap-
tures the connectivity and holes, invariant under rescaling of distances
by a monotonic function. The 0- and 1-dimensional PDs with respect to
either the standard Vietoris-Rips or the rank filtration reveal respectively
the four connected components and one hole. However, the persistence
intervals (i.e., their birth and death values) with respect to the standard
Vietoris-Rips filtration differ for the three example graphs, since they
rely on the actual distances between graph nodes. The rank filtration
instead only considers the order of distances, so that the PDs are the
same for the three graph examples.

time series example consists of the same first univariate time series, with the last one
being replaced with a completely noisy signal. Figure 5.12 visualizes the different
representations of the multivariate time series considered in this work (Section 5.2.2),
and gives some insights about the noise robustness of different features.
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Figure 5.12.: Different representations of two example multivariate time series (MTS).
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6
Lessons learned on myths about persistent homology

The insights from this thesis help us to “bust some myths” about persistent homology
(PH), i.e., to point to some statements too often found in the literature that are at
times not true, not precise enough, or risk misinterpretation, as discussed below.

persistent homology is a topological summary. While PH is the main
tool of TDA and likely developed in order to capture the homology of data, and
while it indeed captures these topological features, it tracks how the features appear
and disappear within a filtration, a nested family of spaces that approximate the
data at different scales (Section 1.3). This additional information can reflect other
geometric aspects of shape, such as curvature (Section 2.3) or convexity (Section 2.4).
This is also highlighted with a sensitivity of PH to some affine transformations such
as translation, rotation, stretch or shear (Figure 2.2, Figure 3.5, Figure 3.6, Table 3.4,
Table 3.7, Figure B.8). Moreover, an intuitive discussion of the relationship between
geometry, topology, homology and PH is provided in Chapter 1, and revisited here
(see Figure 1.6 and Figure 6.1). See also Appendix A.6 where we discuss how PH
can be used to detect the topological or geometric signal in a number of synthetic
examples.

persistent homology is about holes (and therefore only suitable to

data sets with holes). Firstly, it is important to highlight that PH captures
cycles in any homological dimension (that are at times referred to holes), including 0-
dimensional PH which reveals the connected components or clusters, 1-dimensional
holes or loops, but also cycles in higher dimensions such as 2-dimensional voids.
Moreover, while PH can indeed reveal the number of holes (Section 2.2), as we
note above, PH captures additional information about these cycles, that can reflect
other geometric aspects of shape, such as curvature (Section 2.3) or convexity
(Section 2.4).
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persistent homology is calculated with respect to vietoris-rips

simplicial complex on euclidean distances . This canonical choice of the
filtration for PH is assumed and often not even mentioned in the largest portion
of the literature, which hinders our understanding of the potential and flexibility
of PH. What is more, many statements that have been shown to hold for such PH
are then assumed true for PH in general, which is often far from the truth. We
highlight this versatility by employing or explicitly acknowledging the Vietoris-Rips
simplicial complex with respect to geodesic (Appendix A.4.1 and Appendix A.5.1)
or ranked distances (Section 5.2.2.8), alpha and cubical complexes (Appendix A.4.1
and Appendix A.5.1), and the many different filtration functions throughout the
thesis, such as binary, greyscale, density, radial, Distance-to-Measure, height, or
tubular (see, for instance, Figure 1.9, Figure 3.1). We show the very different
behaviors exhibited by PH across different filtrations, e.g., the different topological
and geometric features that are captured (Chapter 2), or different sensitivity to
noise (Chapter 3). In particular, see Remark 2, Appendix A.6, Section 3.3 Table 3.1,
Figure 3.5, Figure 3.6, Table 3.4, Table 3.7, Appendix B.4.

persistent homology is represented with a persistence diagram .
Different signatures such as the common vectorized summaries PLs, PIs (Section 1.4,
and used in experiments throughout the thesis) are commonly used in applications,
since PDs are not amenable for statistical learning. These persistence signatures
capture the same or similar information 1 , but lie in different metric spaces and
therefore exhibit different behavior (Chapter 3). See in particular Table 3.2, Section 3.3
Figure 3.5, Figure 3.6, Table 3.4, Table 3.7, and also Appendix A.6. Moreover,
in practical applications where there is some understanding of the signal, some
simplified representation is sufficient, e.g., lifespans of 10 most persistent intervals
(for detection of number of holes in a data set with maximum 9 holes, in Section 2.3),
or the 2nd longest lifespan (for classification between convex and concave shapes in
Section 2.4).

persistent homology is stable . Stability theorems hold for filtration func-
tions that satisfy some assumptions, and make a statement about a particular
persistence signature and corresponding metric (Section 3.3). For example, it is a
common choice in the literature to consider PIs or PL with the Euclidean metric,
whereas these signatures are not stable with respect to Wasserstein W2 metric.

stability of persistent homology means that perturbation of persis-
tent homology under noise is small . The stability theorems guarantee that

1 The map that sends PDs to PLs is a bijection, so that we can recover the PD from its PL; in practice,
however, there may be some loss of information since we limit the number of landscape functions, that
are also further discretized. While PI typically captures similar information to PI, some information can
be lost due to smoothing and discretization (multiple closeby persistence pairs might blend into the same
grid cell), and the choice of the PI weight function can further highlight different parts of the PD.
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the perturbation of PH is upper bounded by perturbation in the filtration function,
which might be very large and thus of little use in cases where we think of the data
being perturbed only slightly (see, for example, Table 3.1). This is, for example, the
case for PH with respect to the Vietoris-Rips filtration, that is significantly perturbed
in the presence of even a single outlier.

stability of persistent homology implies noise robustness in a clas-
sification task . For some data, the perturbation of some PH under some
noise might be larger than the difference between PH across data classes, so that
the PH features are not robust to such noise for the given classification problem
(Section 3.4.3).

long persistence intervals are signal , short intervals are noise .
Studying a number of different problems with a variety of PH pipelines has helped
us explain how long intervals reveal topology, every interval can reveal geometry,
and any interval can encode the signal for the given problem. This is particularly
highlighted in Section 2.4, where we show that the persistence of one short interval
detects convexity, and discussed in a lot of detail in Section 2.5 and Appendix A.6.2.
Also, intervals of medium persistence are shown as most discriminative for an
example application (Appendix B.4, see in particular Figure B.14).

persistent homology is a feature extraction technique . In many
applications of PH, each data sample (e.g., a point cloud, graph or an image) is
summarized with its PH features that are further used in statistical analysis, classifi-
cation or regression, as we demonstrate in the application of PH in neuroscience in
Chapter 5 (and the same approach is used in Chapter 2, Chapter 3 and Appendix B
where we analyze some properties of PH). However, PH can also be employed as a
data exploration technique, and can therefore also be used to e.g., study the structure
of data before and after some encoding or transformation (Chapter 4), such as any
dimensionality reduction technique.

persistent homology faces important computational limitations .
While it is true that the computation of PH can be challenging for large data (the
theoretical computational complexity of PH is discussed in detail in Appendix A.1.4),
in Appendix A.2 we evaluate the computational resources in our experiments and
conclude that most often PH pipelines run faster and consume less memory than
the other baseline methods, namely SVM or MLP on distance matrices, or PointNet,
bechmark deep learning architecture for point clouds. Moreover, there are numerous
methods to tackle the computational issues: for example, Vietoris-Rips simplicial
complex can be calculated with the Rips-specific and efficient library Ripser, or
replaced with alpha or cubical complex (as in Section 2.2, Section 2.3, Section 2.4),
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and many PH libraries such as Gudhi or Ripser implement different techniques for
the sparsification of simplicial complexes, or optimized matrix reduction algorithm
to calculate PH.
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The main goal of the work in this thesis is to gain a better understanding of
the properties and behavior of persistent homology (PH), the main tool in

topological data analysis (TDA), and in particular how these translate to practical
applications. We start with a background on PH in Chapter 1, that provides an
intuitive exposition of PH for a broad audience of computational scientists. We
discuss how it relates to the notions of geometry, topology and homology, and
introduce different examples of filtrations and signatures, the input and output of
PH. This chapter ends with the stability theorems that guarantee the robustness
of PH under minor perturbations of the input. In the first part, Chapter 2 and
Chapter 3, we investigate what is seen with PH, and what the stability theorems
mean in practice, also looking into to what extent they guarantee noise robustness of
PH in a classification task. The second part, Chapter 4 and Chapter 5, focuses on
two applications of PH, both as a data exploration technique where PH is applied to
the data set, and as a feature extraction technique where each data sample in the
data set is described with its PH information.

The primary contributions of the thesis lie in Chapter 2 (“the what”), where we
look into the topological and geometric features that can be captured with PH, to
gain insights into the types of problems PH can effectively address. We focus on
the detection of the number of holes, curvature, and convexity. Theoretical evidence
for the first two classes of problems has been established in the literature, and we
prove a new result that guarantees that PH can detect convexity. To do so, we
introduce a new filtration that calculates the distance from a line, that we call tubular
filtration. We also demonstrate the practical utility of PH by showing that PH can
solve all three problems for synthetic point clouds in R2 and R3, outperforming a
few baselines, including PointNet, a deep learning architecture inspired precisely
by the properties of point clouds. This is true even when there is limited training
data and computational resources, and for noisy or out-of-distribution test data.
For convexity detection, we also show the effectiveness of PH in a real-world plant
morphology application.

Studying these three problems together also helps us to highlight how the choice of
filtration and persistence signature influences the information that is captured with
PH, and consequently, to formulate the guidelines for the use of PH in applications
(Appendix A.6). Indeed, for the detection of the number of holes, curvature and
convexity we respectively rely on: (i) lifespans of the 10 most persistent 1-dimensional
cycles with respect to the Vietoris-Rips filtration on Euclidean distances, (ii) 0- and
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1-dimensional persistence landscapes with respect to the Vietoris-Rips filtration on
geodesic distances, and the (iii) lifespan of the second most persistent 0-dimensional
cycle with respect to tubular filtration on a cubical complex, from nine different lines.
Moreover, we discuss how employing the persistence diagrams for any homological
dimension and the height filtration from any direction, it is possible to completely
describe the shape (Remark 3). A similar result holds for the tubular filtration which,
defined as a distance from a line, is more fine-grained than the height filtration that
considers distances from a hyperplane (see Remark 2).2 With these insights, we
can revisit the relationship between geometry, topology, homology and PH from
the Introduction, as PH has the potential to completely recover the geometry of the
space (Figure 6.1). Due to the crucial role of shape classification in understanding
and recognizing physical structures and objects, image processing and computer
vision, to a variety of applications [211], the list of potential applications of PH is
immense.

Homology

Topology

Geometry

Persistent
homology

Figure 6.1.: Persistent homology is shown to be able to completely recover the
geometry. Since it is possible to define arbitrary filtration function values
on the data, persistent homology can capture additional information
beyond geometry (such as color, temperature, intensity, etc.)

Furthermore, the results in this chapter advance the discussion about the importance
of long and short persistence intervals, and their relationship to topology and
geometry (Section 2.5, Appendix A.6.2). In the existing literature on PH, it is often
implied that long persistence intervals capture the topological signal, whereas short
intervals are noise. In recent years, however, it has been shown that the many
short persistence intervals, when considered together, hold significant distinguishing
power for specific applications. We highlight that all cycles can encode geometric

2 The proof of this results is a part of ongoing work with Adi Onus and Nina Otter, where we study the
properties of PH with respect to the new tubular filtration, which is another direct extension of this
chapter.
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information, such as the information about their size (with respect to the Vietoris-
Rips and related filtrations, as in Sections 2.2 and 2.3) or their position (with respect
to the height or tubular filtration, as in Section 2.4). This further implies that,
depending on the application, any number of short or intervals of any persistence can
be important, which was clearly demonstrated in Section 2.4, where we show that a
single interval detects convexity. We conclude that the topology is captured by the
long intervals, geometry is encoded in all persistence intervals, and any interval can
encode the signal in the particular application domain.

In Chapter 3 (“the why”), we study the implications of stability of PH, the main
theoretical result in TDA, for applications in practice. We carry out experiments
on the MNIST data set of images of handwritten digits, under different types of
image transformations or noise. These results help us highlight the importance of
the choice of (i) filtration, (ii) persistence signature, and (iii) data for the stability of
PH and its noise robustness in a classification task. Firstly, stability results ensure
that the distance between two PDs is upper bounded by the distance between the
filtration functions (and not on the input data), and impose some assumptions on
the filtration functions. The experimental results demonstrate that sensitivity to
noise differs greatly across filtrations, and that in the presence of any type of noise,
the performance of PH features for classification drops significantly for some of
these choices. Secondly, it is often neglected in the applications of PH that some
persistence signatures are proven not to be stable. Even when shown to be stable,
these persistence signatures lie in different metric spaces, influencing the type of
perturbations of PH that are emphasized. The experiments show a clear relative
difference in the extent to what different persistence signatures are sensitive to
various types of noise, and a difference in the noise robustness in a classification
task. And thirdly, even if the stability theorem holds for the given filtration and
signature, it might not yield noise-robust features in a classification task. Whether
the perturbation of PH under noise is small enough (to not disturb the classification
accuracy) depends on the distance between filtration functions across different data
classes.

In summary, in this chapter we quantify the sensitivity to various forms of noise PH
across different filtrations and persistence signatures, and help explain how the sta-
bility of PH to noise does not imply the noise robustness of PH features for any data
set, or classification problem. Understanding these variations informs the selection
of appropriate PH parameters for specific applications, improving the reliability and
performance of PH in real-world scenarios where noise or measurement errors are
present in the data.

The final two chapters explore some applications of PH. In Chapter 4 (“the how”), we
employ PH to better understand the hyperdimensional computing (HDC) encoding
that sends the input data into a hyperdimensional (HD) space, of dimension 10 000.
We compare the PH of the input data and the HD data across several synthetic and
real-world Euclidean data sets, and conclude that HDC approximately preserves the
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structure, with some local geometry that may be lost. In Chapter 5 (“the when”),
PH is employed for attention detection from electroencephalography (EEG) data.
Positioning the poor performance of PH features in the existing applications of PH
in neuroscience, points to the type of applications where PH may (not) have an
advantage. Firstly, our PH features calculated on univariate time series (functions)
capture the local extrema and are therefore more likely to be effective in applications
where the important difference between data classes lies in some extreme values
of the signal, such as epileptic seizure, autism and arrhythmia detection. Secondly,
due to the limited spatial resolution of EEG data, the PH features calculated on
the multivariate time series, i.e., on the functional brain networks that reflect the
relationship between different regions in the brain, are more suited to for diagnostic
purposes from long resting-state fMRI data.

The insights help us to “bust some myths” about PH, i.e., some statements too
often found in the literature that are at times not true, not precise enough, or risk
misinterpretation:

• PH is a topological summary.

• PH is about holes (and therefore only suitable to data sets with holes).

• PH is calculated with respect to Vietoris-Rips simplicial complex on Euclidean
distances.

• PH is represented with a PD.

• PH is stable.

• Stability of PH means that perturbation of PH under noise is small.

• Stability of PH implies noise robustness in a classification task.

• Long persistence intervals are signal, short intervals are noise.

• PH is a feature extraction technique.

• PH faces important computational limitations.

Chapter 6 discusses each of these statements in detail, where we point to the specific
results in the thesis that provide an understanding on how these statements can be
untrue or misleading (for the given problem, or the choice of input and output of
persistent homology).

In conclusion, in the thesis we move away from the dominant directions in the
literature, going beyond the canonical choices of filtrations and persistence signatures,
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to highlight how PH offers remarkable flexibility that makes it a versatile descriptor
of different aspects of shape, with different behaviors. The broad range of filtrations
and signatures is at the same time an important limitation, as it requires expertise and
makes it more difficult to effectively use in applications; what is more, experts too
still do not have a good understanding of the power and potential of PH. While we
provide some insights into these questions that consequently inform some guidelines
for applications, further research into the interpretability of PH is crucial.

Firstly, further work can be done to understand the other type of topological and
geometric features (e.g., orientability, singularities, eccentricity, relative position) that
can be captured with PH.

In this context, saliency maps that assign importance scores to each point in the
input point cloud, or each pixel in an image, are also an important tool that can
explain their significance in a PH-based analysis. In Appendix B.7.4, we visualize the
point saliency maps for a few example point clouds using the pull-back geometry
approach; more detailed studies on different data sets (including real-world data) is
a promising avenue for further work. The study of representative cycles is another
promising approach in this regard, as it provides an understanding of a given
persistence interval in terms of the underlying data. In the context of geometric
data, this takes the form of an “inverse problem”, constructing geometric structures
corresponding to each persistent interval in the original input data. However,
representative cycles are not unique, what causes ambiguity and can lead to many
different interpretations, prompting the need for further improvements. Moreover,
there is enormous potential in the more complex, but relatively unexplored scenario
of multiparameter persistence, that calculates PH with respect to multiple filtrations
at the same time. Since we highlight how different filtrations can capture different
aspects of shape, multi-parameter persistence offers further flexibility and more
nuanced and detailed information about the data.

To enhance the interpretability of stability results, future work should aim to refine
the upper bounds in PH stability theorems by relating them to relevant distance
d(X, X′) between data X and its noisy variant X′. A good example is the upper
bound for the distance between PDs with respect to the Vietoris-Rips filtration, as
it clearly guarantees that the PD remains unchanged under rigid transformations
(rotation, translation). Comparing these bounds across filtrations can help guide the
optimal filtration choice for specific problems and noise types.

The solid theoretical framework and the versatility of PH make it a promising
approach for many further applications. When used as a feature extraction technique,
it can be expected to work well when the the data classes differ in their topology
and/or geometry (such as their connected components or clusters, holes, curvature,
or convexity), which is not true for any application (Chapter 5). However, it is
of crucial importance to decide on a good choice of a filtration (or, filtrations)
and persistence signatures; we provide some guidelines throughout the thesis (see
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in particular Appendix A.6 and Chapter 3). Alternatively, as a data exploration
technique, PH can provide insights about the topology and/or geometry of the given
data (as in Chapter 4, when we analyze to what extent does the HDC encoding
preserves the structure), or any object of interest. For example, we can track PH
of the weights of a deep neural network during training, or PH of their decision
boundaries through the layers, to gain some understanding of the learning process
(i.e., to “unbox the black box”). Although there is some research in this direction in
recent years, we believe that the potential and flexibility of PH is yet to be realized.

To exploit the versatility and potential of persistent homology in practice, further
work is also needed in improving the persistent homology software. What is mainly
lacking in the existing libraries are the readily available implementations of different
filtrations, that are primarily responsible for the various aspects of shape that can
be captured with persistent homology. Furthermore, these libraries should also
be able to directly tune the choice of filtration and signature (that optimizes the
performance for the given problem), and ensure seamless integration with other
machine learning frameworks. Some good existing examples in the literature are
PersLay, a simple neural network layer [56], or ATOL, an unsupervised vectorization
method [304] that learn the best vector summary of persistence diagrams; further
extensions to learning the complete PH pipeline (i.e., including the best filtration)
would make significant contributions. Together with its improved interpretability
discussed above, topological data analysis can in this way be made into a technology
that is widely accessible to non-specialist practitioners.
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A
On the effectiveness of persistent homology:
Supplementary material

This appendix consists of the supplementary material that accompanies Chapter 2,
i.e., the corresponding publication:

Renata Turkeš, Guido Montúfar, and Nina Otter, On the effectiveness of
persistent homology, Advances in Neural Information Processing Systems
35 (NeurIPS 2022): 35432-35448.

The first part includes the detailed proof of our new result that guarantees that
0-dimensional persistent homology (PH) on the newly introduced tubular filtration
detects convexity (Theorem 2.2). It also lists the existing theoretical results about the
detection of the number of holes and curvature, and discusses the computational
complexity of the proposed PH pipelines. The second part provides additional
details about the experiments on synthethic 2D and 3D point clouds in Chapter 2

(such as the choice of parameters or computational resources). The findings inspire
some guidelines for the use of PH in applications, and the final part demonstrates
the detection of a concavity measure on a real-world FLAVIA data set of images of
plant leaves.
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a.1 Theoretical results

In this section, we provide the proof of our Theorem 2.2 that guarantees that PH
can be used to detect convexity. We then formulate Theorem A.1 and Theorem A.2
from the literature, that summarize known theoretical guarantees that PH can detect
the number of holes and curvature. At the end of the section, we also discuss some
known results about the theoretical computational complexity of PH.

a.1.1 Convexity

In our pipeline for the detection of convexity we consider tubular filtrations, akin to
the concept of tubular neighborhoods in differential topology. Given a subspace X
of Rd, and a line α ⊂ Rd, we consider all the points in X that are within a specific
distance r from the line. By varying r, we then obtain a filtration of X. We note that
while a tubular neighborhood is defined with respect to any curve, here instead we
focus on the special case of (closed) neighborhoods with respect to a line.

Definition 2.1 (Tubular filtration) Given a line α ⊂ Rd, we define the tubular
function with respect to α as follows:

τα : Rd → R

x 7→ d(x, α) ,

where d(x, α) is the distance of the point x from the line α. Given X ⊂ Rd and a line
α ⊂ Rd, we are interested in studying the sublevel sets of τα, i.e., the subsets of X
consisting of points within a specific distance from the line. We define

Xτα ,r = {x ∈ X | τα(x) ≤ r} = {x ∈ X | d(x, α) ≤ r} .

We call {Xτα ,r}r∈R≥0 the tubular filtration with respect to α.

We first formulate and prove our main theorem below, and then discuss the need for
tubular filtration in Remark 2.

Remark 1 (Different notions of components). In the proof of Theorem 2.2, we need
to work with path-connected components. We note that while in the main part of
this manuscript we always only use the term “components”, more precisely one
would need to distinguish between “connected components” and “path-connected
components”. For the purposes of the majority of the spaces that we consider in
this work, the two notions are equivalent. Thus, we often simply refer to these as
“components”.
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Theorem 2.2 (Convexity detection with PH) Let X ⊂ Rd be triangulable1. We have that
X is convex if and only if for every line α in Rd the persistence diagram in degree 0 with
respect to the tubular filtration {Xτα ,r}r∈R≥0 contains exactly one interval.

Proof. We first note that the persistence diagram in degree 0 of {Xτα ,r}r∈R≥0 exists,
since the singular homology in degree 0 (and with coefficients in a field) of Xτα ,r is
finite-dimensional for any r ∈ R≥0; the existence of the persistence diagram then
follows from [65, Theorem 2.8]2.

Assume that X is convex. By definition, we have that for all p1, p2 ∈ X the straight-
line segment between p1 and p2 is contained in X. Let α be any line in Rd and r ∈ R.
By elementary properties of Euclidean spaces (similarity of triangles, see Figure A.1),
we have that if d(p1, α) ≤ r and d(p2, α) ≤ r, then also d(q, α) ≤ r for any point q
on the line segment between p1 and p2. By the definition of tubular function, this
means that p1, p2 ∈ Xτα ,r implies that q ∈ Xτα ,r. Therefore the straight-line segment
between p1 and p2 is contained in Xτα ,r, which means that Xτα ,r is convex, and thus
path-connected. We therefore have that for any line α, the persistence diagram in
degree 0 of {Xτα ,r}r∈R contains a single interval.

Assume now that X is concave. Then by definition there exist p1, p2 ∈ X and a
point q on the straight-line segment between p1 and p2 such that q /∈ X. Since X
is closed, we have that there exists ϵ > 0 such that B(q, ϵ) ⊂ Rd \ X (Figure A.2).
Let α be the line passing through p1 and p2, and let 0 ≤ r ≤ ϵ. We then have that
d(p1, α) = d(p2, α) = 0 ≤ r, so that p1, p2 ∈ Xτα ,r. We claim that the subset Xτα ,r is
not path-connected.

Let us assume otherwise, i.e., that that Xτα ,r is path-connected. Equivalently, there is
a path connecting p1 and p2 and which is contained in Xτα ,r. Then such a path would
have to intersect the hyperplane β passing through q and orthogonal to line α. To see
why, we first note that the complement Rd \ β of the hyperplane is disconnected with
two connected components, each containing one of the two points p1 and p2. If the
path would not intersect the hyperplane, it would be contained in the complement
of the hyperplane, but not entirely contained in one of the connected components,
which yields a contradiction to the path being connected. By construction, this point
of intersection z ∈ X lies on the path between p1 and p2, and therefore z ∈ Xτα ,r,
or equivalently, τα(z) = d(z, α) ≤ r. Since z is also contained in the hyperplane β
orthogonal to the line α and passing through q, we have that d(z, q) = d(z, α) ≤ r,
i.e., z ∈ B(q, r) ⊂ Rd \ X, which is a contradiction to z ∈ X. Therefore, for any

1 Namely, there exists a simplicial complex K and a homeomorphism h : |K| → X from the geometric
realization of K to X.

2 We note that while in this proof we need to consider singular homology, when computing PH in practice
one works with either simplicial or cubical homology (Remark 4). For the types of spaces that we consider
in our work, all homology theories are equivalent. See [172] for a discussion of the equivalence between
simplicial and cubical homology, and [153, Chapter 2] for the equivalence of singular and simplicial
homology.
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Figure A.1.: The distance d(p, α) from a point p to a line α is defined as the distance
between p and the projection p′ of p to line α (denoted with dotted lines
in the figure). For any two points p1, p2 ∈ Rd, q ∈ Rd on a line segment
between p1 and p2, and a line α in Rd, we have that the line β passing
through p1 and p2 is either (a) parallel, or (b)-(c) intersects the line α
in a point z = β ∩ α. In the former case, per definition of parallel lines,
we have that d(p1, α) = d(q, α) = d(p2, α) = d(β, α). In the latter cases,
we have a similarity of triangles △p1 p′1z, △qq′z and △p2 p′2z, since they
all have a right angle, and share the angle ∠(β, α). Since d(q, z) lies
between d(p1, z) and d(p2, z), the triangle similarity implies that d(q, α)
lies between d(p1, α) and d(p2, α).

0 ≤ r ≤ ϵ, the set Xτα ,r is not path-connected, so that the 0-dimensional PD on the
tubular filtration with respect to α contains at least two intervals.

Remark 2 (Relationship with the height filtration). To illustrate the need for the
tubular filtration, we discuss how it compares to the height filtration that is well-
established in the literature. For a given shape X ∈ Rd and a unit vector v ∈ Sd−1,
the height function ηv : Rd → R is defined via the scalar product, ηv(x) = x · v. If
we consider the hyperplane that is orthogonal to the vector v and passes through the
origin (0, 0, . . . , 0) ∈ Rd, the sublevel set Xηv ,r corresponds to the area in X above or
in the hyperplane and below or at height r ∈ R, and the complete area of X below
the hyperplane (where the scalar product is negative) (Figure A.3, column 1). Note
that it is possible to recenter the shape at the origin, so that the hyperplane does not
need to pass through the origin.

We note that 0-dimensional PH with respect to the height filtration can help us detect
some concavities in Rd, what is the case for panel (a) in Figure A.3, where we clearly
see multiple path-connected components in green. However, for shapes in R2 where
a source of concavity is a hole within the shape, such as the annulus-like shape in
row 2 of Figure A.3, the sublevel sets with respect to the height filtration will only see
a single path-connected component, see panel (d) in Figure A.3. Indeed, there is no
unit vector v for which the sublevel set Xηv ,r = {x ∈ X | ηv(x) = x · v ≤ r} contains

161



on the effectiveness of persistent homology : supplementary material

X

B(q, ϵ). ..
p1 p2qα

β

.
z

Figure A.2.: For a concave shape X, there exists a tubular filtration line α so that the
resulting 0-dimensional PD sees multiple path-connected components
(in green). Note that the path in the figure can exist, but it cannot lie
completely in the particular sublevel set (in green).

more than one path-connected component. If we adjust the definition of the filtration
function and let η′

v(x) = |x · v|, the sublevel set Xη′v ,r corresponds to the area in X
above and below the hyperplane, and within height r ∈ R in both directions. In
other words, Xη′v ,r is the area of X within a given distance from the hyperplane.
0-dimensional PH with respect to the absolute height function η′

v enables us to detect
any concavity in R2, see (b) and (e) in Figure A.3, since the sublevel set consists
of multiple path-connected components (in green). In R2, the tubular filtration
corresponds to the absolute height filtration. However, neither the height nor the
absolute height filtration can detect concavity in higher dimensions. Indeed, consider
a sphere-like shape as an example concave shape in R3 (Figure A.3, row 3). The
sublevel sets Xηv ,r and Xη′v ,r will result in a single path-connected component, see
the green areas respectively in panels (g) and (h) in Figure A.3. On the other hand,
the area within a distance from some line (points in X that are within a given tube)
can result in two (disconnected) disks on polar opposites on the sphere, see panel (i)
in Figure A.3.

However, we note that there are likely alternative approaches that can rely on PH
with respect to the (absolute) height filtration to detect concavity. One possibility
would be to also consider homology in higher dimensions (although, we note that
0-dimensional PH is faster to compute, see Appendix A.1.4). For shapes in R2, it
is sufficient to consider the 0- and 1-dimensional PH with respect to the height
filtration. Indeed, although the annulus-like shape (Figure A.3, row 2) does not see
multiple path components with respect to any height filtration function, there is a
1-dimensional hole which points to a concavity. This, however, does not generalize
to higher dimensions: Indeed, a sublevel set of a sphere with respect to any height
filtration will result in a spherical cap which has trivial homology in dimensions
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0, 1 and 2, see panel (g) in Figure A.3. On the other hand, the sublevel set of the
absolute height function on the sphere will always consist of a single path-connected
component, but we can capture 1-dimensional holes, see panel (h) in Figure A.3.
Another interesting example of a concave surface in R3 is a ball with a dent on
the north pole, i.e., a crater. This concavity cannot be detected with 0-dimensional
PH with respect to any (absolute) height filtration. For the example surface, an
interesting direction would be looking at the surface ”from the top” (horizontal
hyperplane), but PH would start by seeing a circle, and then the crater itself — always
a single path-connected component. However, 1-dimensional PH with respect to this
filtration would capture a hole, implying that the surface is concave.

Another possibility could be to study (the computable) multiparameter 0-dimensional
PH by scanning shapes from multiple directions simultaneously. For the sphere,
0-dimensional PH would capture the two path-connected components with the bi-
filtration that looks at the shape with respect to the horizontal hyperplane denoted
in the panel (h) in Figure A.3, and the orthogonal hyperplane passing through the
shape. We note that while the theory and computations for multiparameter persis-
tence are hard, there have been some recent advances, see, e.g., [332]. This is similar
to slicing the shape with a hyperplane, and then studying the single-parameter
0-dimensional PH of the slice. The alternative approaches that we briefly discuss
here are an interesting avenue for further work.

Remark 3 (Relationship with the Persistent Homology Transform). There is a lot of
work done on studying the so-called Persistent Homology Transform (PHT), which
is given by considering the PH on the height filtration with respect to all unit vectors
[88, 136, 339]. Such a topological summary that has been shown to be a sufficient
statistic for probability densities on the space of triangulable subspaces of R2 and
R3 [339].

For practical purposes it would not be feasible to have to consider all unit vectors
in the PHT. Luckily, there are known results on the sufficient number of directions
[88]. In computational experiments in [339] on the MPEG-7 silhouette database of
simulated shapes in R2 [196, 315] and point clouds in R3 obtained from micro-CT
scans of heel bones [41], the PHT is approximated by looking respectively at 64 evenly
spaced directions and 162 directions constructed by subdividing an icosahedron.
Furthermore, 0- and/or 1-dimensional PH with respect to the height and/or related
radial filtration has also been used as a 3-dimensional shape descriptor in [58], for
analysis of brain artery trees [29], or classification of MNIST images of handwritten
digits [129].

We note that the theoretical results related to the Persistent Homology Transform
focus on a complete description of shapes, whereas here we are interested in investi-
gating to what extent PH can detect convexity and concavity.
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height absolute height tubular

scalar product distance from hyperplane distance from line
ηv(x) = x · v η′

v(x) = |x · v| = d(x, α) τα(x) = d(x, α)

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure A.3.: Sublevel sets of the height (column 1), absolute height (column 2) and
tubular function (column 3) for three example concave shapes in R2

and R3. Concavity is detected with multiple 0-dimensional persistence
intervals, which reflect the multiple path-connected components in
the filtration. The sublevel set (in green) has multiple path-connected
components for the height function only for the shape in row 1, for the
absolute height only for shapes in rows 1 and 2, whereas for the tubular
function this is the case for any concave shape in Rd.

Remark 4 (Detection of convexity with PH in practice). To calculate PH in practice,
the sublevel sets Kr need to be approximated with simplicial or cubical complexes
(see Section 1.2). The PH pipeline in our computational experiments for convexity
detection (Section 2.4) relies on cubical complexes, but it is possible to do so also
with the Vietoris-Rips complex relying on geodesic distances. For details, see
Appendix A.5.1, where we conclude that it is important to ensure that the singular
homology of each of the sublevel sets is properly reflected with the homology of the
complex. For convexity detection, this means that the complexes of concave shapes
should also see multiple connected components (that do not connect with a simplex).
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Furthermore, we note that, to simply differentiate between convex and concave
shapes (binary classification problem), it would be sufficient to only consider 0-
dimensional homology of the intersection of X with the line α, i.e.,

Xτα ,0 = {x ∈ X | τα(x) = d(x, α) ≤ 0} = X ∩ α,

which is easier to compute than the multi-scale PH. This intersection is a line segment
for convex shapes, and for concave shapes it is a union of disconnected segments on a
line. Therefore, convex shapes will have β0(X ∩ α) = 1, and concave shapes will have
β0(X ∩ α) > 0 (one could think of this as persistence intervals [0,+∞) that all have
the same lifespan). However, in practical applications, it is often useful to capture a
more detailed information about concavity. For example, for the plant morphology
application we consider in Appendix A.7, the goal is to capture a continuous measure
of concavity (regression problem). Then, the (different) lifespans of the second (or
also third, fourth, ...) most-persisting connected component can provide important
additional information. Moreover, in applications X is typically finite, e.g., a point
cloud, so that one would still need to approximate X ∩ α (points on a line segment)
with a complex in order to calculate the homology (see paragraph above). In other
words, we would need to choose an appropriate scale r ∈ R that would ensure that
the complex faithfully reflects the homology of X ∩ α, which is a non-trivial task.

a.1.2 Number of holes

In our pipeline to detect the number of holes, we use the alpha complex, for which
several theoretical guarantees have been proven.

The Nerve Lemma (see, e.g., [112]) guarantees that the alpha complex of a set of
points has the same homology-type as the space obtained by taking unions of balls
of a certain radius centered around the points. Whether this union of balls has the
same homology-type as the space from which the points are sampled depends on
properties of the sample. If the sample is dense enough, then it has been shown
that, for a suitable value of the scaling parameter, the alpha complex has the same
number of holes as the original space, for instance under the assumption on the
space being a smooth manifold [255]. For ease of reference, we reproduce here the
result from [255].

Theorem A.1 (Number of holes). Let M be a compact smooth manifold, and X a set
of points sampled uniformly at random from M. Then there exists r ∈ R such that the
homology of the alpha simplicial complex α(X, r) is isomorphic to the singular homology of
the underlying manifold M.

Proof. [255, Theorem 3.1] implies that there exists r ∈ R such that the singular
homology of the ∪x∈XB(x, r) is isomorphic to the singular homology of M. By the
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Nerve Lemma we then know that the simplicial homology of the alpha complex
α(X, r) is isomorphic to the singular homology of ∪x∈XB(x, r).

The alpha complex is known to approximate the Vietoris–Rips complex, in the sense
that the respective persistence modules are interleaved, see, e.g. [112].

a.1.3 Curvature

Here we reproduce the theoretical guarantee provided in [46].

Theorem A.2 (Curvature). Let M be a manifold with constant curvature κ, and Dκ be a
unit disk on M. Let further X be a point cloud sampled from X, according to the probability
measure proportional to the surface area measure. Then, PH of X recovers κ.

Proof. Given κ, [46, Theorem 14] establishes an analytic expression for the persistence
(p = d/b) of triangles to the curvature κ of the underlying manifold. This function is
continuous and increasing, so that persistence recovers curvature.

a.1.4 Computational complexity

In this section, we discuss how our pipelines are affected by the size n of the point
cloud and the dimension d of the embedding space (which are also related, since
typically exponentially more points are needed to properly sample a shape in higher
dimensions).

There exist several efficient algorithms for the computation of PH, many coming
with heuristic guarantees on speed-ups for the computation (see survey [258] for
an overview, and references therein). For the purposes of this discussion, we will
focus on the standard algorithm, which has a computational complexity which is
cubical in the number N of simplices contained in the filtered complex [384], i.e., the
computational complexity is O(N3). Thus, to better understand how our pipelines
generalize to higher-dimensional point clouds, in the following we explain how the
sizes N of the different types of complexes that we consider are affected by the size
n and dimension d of the point cloud.

number of holes For the detection of the number of holes, in our experiments
we relied on alpha simplicial complex. In the worst case, the size N of the alpha
complex is O

(
n⌈d/2⌉

)
.
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curvature We used the Vietoris-Rips simplicial complex for curvature detection.
The size N of the Vietoris–Rips complex is O

(
nk+2

)
, where k is the maximum PH

degree that we are interested in computing.

In general, the choice between the alpha and Vietoris-Rips simplicial complex there-
fore depends on the point cloud size n and dimension d, and the highest homological
dimension k that is of interest for the given problem at hand. For point clouds with
a given number n of points, the alpha complex is better suited in lower dimensions
(d = 2, 3), and provided that the point cloud is embedded in Euclidean space.

convexity To detect convexity, we relied on cubical complexes. For data sets that
have an inherently cubical structure, using cubical complexes may yield significant
improvements in both memory and runtime efficiency [351]. This is particularly
true for high dimensional data, since the ratio between the size of the Vietoris-Rips
simplicial complex compared to a cubical complex is exponential in dimension d
[71].

In our construction, given a point cloud in Rd and a fixed c ∈ N, we bin the points
into cd cubes of the same volume. In the worst case, the size N of the cubical complex
of the resulting structure is O(3dcd) (and thus does not depend on the number n of
point cloud points).

In addition, it is important to note that our convexity detection pipelines only uses
the 0-dimensional persistent homology, which has a reduced complexity since one
only needs to construct the complex up to dimension 1. It is fairly easy to compute
0-dimensional PH in near-linear time with respect to the number N of simplices by
using union-find data structures [101, 112, 351]. For this reason, it is an important
advantage of our pipeline that it only relies on 0-dimensional PH, without needing
to calculate PH in higher homological dimensions.

Detecting convexity, however, poses additional challenges. Testing convexity is
fundamentally a hard problem in high dimensions, related to the hardness of
computing convex hulls in high dimensions, and unfortunately we cannot hope for
free lunch. In our PH convexity detection pipeline, unlike for the detection of the
number of holes or curvature, we calculate PH across multiple tubular-filtration lines,
whose number also grows with the dimension d since sufficiently many filtrations
need to be considered (and the same would be the case - we would have to consider
multiple tubular directions, if we considered simplicial instead of cubical complexes,
see Figure A.13). This could be circumvented by considering (quasi-)random lines.
To conclude, specifying a desired computation budget and number of filtrations in
advance (leading to a corresponding accuracy tradeoff), our PH pipeline can be used
to obtain fast estimates of convexity. It can also be used to compute a continuous
measure of convexity (as we demonstrate on the real-world FLAVIA data set of
leaf images in Appendix A.7), or convexity at a given resolution, depending on the
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resolution of the filtration, which in some cases may be more useful than the binary
label (convex or concave).

a.2 Experimental details

a.2.1 Reproducibility and computer infrastructure

The data and code developed for this research are made publicly available at
https://github.com/renata-turkes/turkevs2022on. All our computations were
conducted using a 2.7Ghz vCPU core from a DGX-1 + DGX-2 station.

a.2.2 Hyperparameter tuning and training procedure for the individual pipelines

In this section, we provide more details about the pipelines that were compared in
the computational experiments:

• SVM on persistent homology features (PH),

• simple machine learning (ML) baseline - SVM on distance matrices,

• fully connected neural network (NN) on distance matrices, and

• PointNet (PointNet) on raw point clouds.

For each pipeline, we list the hyperparameters that were tuned. To ensure a fair
comparison of the different approaches, we used the same train and test data across
all the pipelines. We used sklearn GridSearchCV based on cross validation with
3 folds and random splits, and returned the hyperparameter values that resulted
in the highest accuracy for classification problems (Section 2.2 and Section 2.4), or
the lowest mean squared error for regression problems (Section 2.3). We also list
relevant software and licenses.

ph The general steps to extract PH features are visualized in Figure 1.7. To
calculate PH in Section 2.2 and Section 2.4 we use GUDHI [331], and in Section 2.3 we
use Ripser [28, 335], which are persistent homology libraries in Python, available
under the MIT (GPL v3) license. For the DTM filtration (Section 1.3.2) in Section 2.2,
we choose m = 0.03, so that 0.03× 1 000 = 30 nearest neighbors are used to calculate
the filtration function. Grid search is performed to choose the best persistence
signature and classifier or regressor as described below.

• In Section 2.2 and Section 2.3, we select between:

– simple signature of 10 longest lifespans,
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– persistence images with resolution 10× 10, bandwidth σ ∈ {0.1, 0.5, 1, 10},
and weight function ω(x, y) ∈ {1, y, y2}, and

– persistence landscapes with resolution of 100, and considering the longest
1, 10 or all persistence intervals.

• We use SVM (sklearn SVC and SVR for classification and regression respec-
tively) on the PH signature, with the regularization parameter C ∈ {0.001, 1, 100}.
The latter tunes the trade off between correct classification of training data and
maximization of the decision function’s margin.

ml In our experiment, the input for the simple machine learning (ML) pipeline
is the normalized matrix of pairwise distances between point-cloud points. For
a given point cloud X = {x1, . . . , xn} ⊂ Rd, the corresponding distance matrix
is the n × n matrix D ∈ Rn×n, with entries Dij = d(xi, xj) corresponding to the
Euclidean distance for the detection of the number of holes (Section 2.2) or convexity
(Section 2.4), and hyperbolic, Euclidean or spherical distance for curvature detection
(Section 2.3). We take the entries above the diagonal flattened into a vector. Since the
dimension of distance matrices scales with the square of the number of points, we
work with subsamples of 100 distinct random points from each point cloud. Similarly
as above, we use cross validation to choose the SVM regularization parameter among
C ∈ {0.001, 1, 100}.

We note that while a distance matrix can be taken as input to a classifier, it depends
on the particular and arbitrary labeling of the points in the point cloud and hence it
does not account for the label symmetry of point clouds.

nn The normalized distance matrices are also fed to the multi-layer perceptrons
(MLPs). We consider the following hyperparameters:

• depth in {1, 2, 3, 4, 5} (only for NN deep),

• layer widths in {64, 256, 1 024, 4 096},

• learning rate in {0.01, 0.001},

that are selected through a grid search, with each parameter setting trained for 2

epochs. We use a soft-max activation function, and cross entropy and mean squared
error as loss functions for classification (Section 2.2 and Section 2.4) and regression
(Section 2.3) problems, respectively. Batch normalization (with zero momentum) and
a drop out (with a rate of 0.5) are applied after every (input or hidden) layer.
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pointnet PointNet [282] is a neural network that takes point clouds as inputs,
and is inspired by the invariance of point clouds to permutations and transformations.
It incorporates fully-connected MLPs to approximate classification functions, and
convolutional layers to capture geometric relationships between features.

In our experiments, we rely on the PointNet model from keras [145] under Apache
License 2.0. This model implements the architecture from the original PointNet
paper [282], which is supplemented with a publicly available code [281], licensed
under MIT. We use grid search to tune:

• number of filters in {32, 64},

• learning rate in {0.01, 0.001}.

For each of the problems we consider, the model is trained from scratch using the
training set described in the corresponding section. Unlike in the original paper, we
do not augment the data during training by randomly rotating the object or jittering
position of each point by a Gaussian noise, in order to ensure a fair comparison with
the other pipelines.

a.3 Additional experimental details for number of holes

a.3.1 Data transformations

To test the noise robustness of the different pipelines, in Section 2.2 we consider
the test data consisting of the original point clouds, or point clouds under different
transformations (Figure 2.2). A detailed description of the data transformations
is given in Table A.1, and the transformations are visualized on an example point
cloud in Figure A.4. To define reasonable values for the data transformations,
we took inspiration from the affNIST3 data set of MNIST images under affine
transformations.

original translation rotation stretch shear Gaussian outliers

Figure A.4.: Noise on an example point cloud.

3 https://www.cs.toronto.edu/~tijmen/affNIST/
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Transformation Definition of transformation

rotation Clockwise rotation by an angle chosen uniformly from [−20, 20]
degrees clockwise.

translation Translation by random numbers chosen from [−1, 1] for each
direction.

stretch Scale by a factor chosen uniformly from [0.8, 1.2] in the x-
direction. The other coordinates remain unchanged, so that
the point cloud is stretched. Stretching factor of 0.8 results in
shrinking the point cloud by 20%, and the factor of 1.2 makes
it 20% larger.

shear Shear by a factor chosen uniformly from [−0.2, 0.2]. A shearing
factor of 1 means that a horizontal line turns into a line at 45
degrees.

Gaussian noise Random noise drawn from normal distribution N (0, σ) with
the standard deviation σ uniformly chosen from [0, 0.1] is added
to the point cloud.

outliers A percentage, chosen uniformly from [0, 0.1], of point cloud
points are replaced with points sampled from a uniform distri-
bution within the range of the point cloud.

Table A.1.: Data transformations.

a.3.2 Pipeline

Figure A.5 visualizes the PH pipeline. To reduce the computation times, we approx-
imate point clouds at each scale with the alpha simplicial complex (Section 1.2.2,
Section A.1.4). The DTM filtration on the point-cloud points is defined as the average
distance from a number of nearest neighbors. Therefore, outliers appear only late
in the filtration, so that their influence is smoothed out to a great extent. For the
example point cloud in the figure, the 1-dimensional PD consists of four persistence
intervals with non-negligible persistence or lifespan (PD points far from diagonal)
which correspond to the four big holes, and many short persistence intervals that
correspond to holes that are seen at some scales due to noise. This is clearly reflected
in the vector of sorted lifespans of the 10 most persisting cycles.

a.3.3 Performance across multiple runs

Table A.2 provides a detailed overview of the results for the detection of the number
of holes, when the experiment is repeated multiple times. The accuracy for PointNet
varies for different runs, but in any case, we can clearly see that PH performs the
best for each individual run. Note also that the performance of ML, NN shallow and
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point cloud DTM filtration 1-dim PD

1-dim lifespans, PI or PLSVM

(0.36, 0.35, 0.33, 0.25, 0.05, 0.05, 0.02, 0.01, 0.01, 0.01)

Figure A.5.: Persistent homology pipeline to detect the number of holes.

NN deep does not drop under affine transformations, since they take the normalized
distance matrices as input.

a.3.4 Training curves

Figure A.6 shows the training curves for the NN and PointNet pipelines. The training
set performance of MLPs (shallow and deep) continues improving over epochs, but
the validation set performance quickly saturates and stops improving after a few
epochs. PointNet performs well on this task, already after a short number of training
epochs. We do not include training curves for the PH and ML pipelines, as these are
based on SVMs.

NN shallow NN deep PointNet

Figure A.6.: Training curves for the detection of the number of holes.

a.3.5 Learning curves

Figure A.7 shows the learning curves for every pipeline; i.e., the test accuracy of the
trained pipelines depending on the total amount of training data. This serves to
evaluate the data efficiency of the different methods. The PH-approaches perform
well even for a small number of training point clouds. PointNet also has good
performance, although it requires more training data. The other approaches (NN
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shallow, NN deep, and ML) have poor performance, which does not improve when
more training data is available. An explanation for this is that these methods
are based on distance matrices and hence cannot directly take advantage of the
permutation symmetry of point clouds.

PH simple PH ML

NN shallow NN deep PointNet

Figure A.7.: Learning curves for the detection of the number of holes.

a.3.6 Computational resources

Figure A.8 visualizes the computational efficiency and memory usage. We see that
PH pipeline also performs better with respect to these criteria in comparison to the
other methods. The hyperparameter tuning of the PH pipeline does take time (as
we consider a wide range of parameters for the different persistence signatures),
but Figure 2.2 shows that even PH simple, where the SVM is used directly on
the lifespans of the 10 most persisting cycles (without any tuning of PH-related
parameters) performs well.

We note that the difference in the memory usage for data comes from the different
types of input that are considered by different pipelines: PDs (lists of persistence
intervals) for PH simple and PH, 100 × 100 distance matrices for ML and NNs, and
1000 × 3 point clouds for PointNet (Appendix A.2.2).
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Figure A.8.: Computational resources for the detection of the number of holes.
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Transformation Run PH simple PH ML NN shallow NN deep PointNet

original

run 1 0.94 1.00 0.67 0.52 0.50 1.00
run 2 0.94 1.00 0.67 0.51 0.50 1.00
run 3 0.94 1.00 0.67 0.56 0.50 1.00
mean 0.94 1.00 0.67 0.53 0.50 1.00
std dev 0.00 0.00 0.00 0.03 0.00 0.00

translation

run 1 0.94 1.00 0.67 0.52 0.50 0.23

run 2 0.94 1.00 0.67 0.51 0.50 0.17

run 3 0.94 1.00 0.67 0.56 0.50 0.21

mean 0.94 1.00 0.67 0.53 0.50 0.20

std dev 0.00 0.00 0.00 0.03 0.00 0.03

rotation

run 1 0.94 1.00 0.67 0.52 0.50 0.86

run 2 0.94 1.00 0.67 0.51 0.50 0.57

run 3 0.94 1.00 0.67 0.56 0.50 0.78

mean 0.94 1.00 0.67 0.53 0.50 0.74

std dev 0.00 0.00 0.00 0.03 0.00 0.15

stretch

run 1 0.97 0.98 0.64 0.49 0.47 0.85

run 2 0.97 0.98 0.64 0.48 0.45 0.70

run 3 0.97 0.98 0.64 0.52 0.51 0.98
mean 0.94 0.98 0.64 0.50 0.48 0.84

std dev 0.00 0.00 0.00 0.02 0.03 0.14

shear

run 1 0.95 1.00 0.66 0.54 0.51 0.94

run 2 0.95 1.00 0.66 0.51 0.50 0.72

run 3 0.95 1.00 0.66 0.56 0.51 0.96

mean 0.95 1.00 0.66 0.54 0.51 0.87

std dev 0.00 0.00 0.00 0.02 0.01 0.13

Gaussian

run 1 0.94 1.00 0.68 0.54 0.50 1.00
run 2 0.94 1.00 0.68 0.51 0.50 1.00
run 3 0.94 1.00 0.68 0.56 0.51 1.00
mean 0.94 1.00 0.68 0.54 0.50 1.00
std dev 0.00 0.00 0.00 0.02 0.01 0.00

outliers

run 1 0.82 0.93 0.62 0.55 0.49 0.70

run 2 0.82 0.93 0.62 0.51 0.50 0.51

run 3 0.82 0.93 0.62 0.54 0.41 0.44

mean 0.82 0.93 0.62 0.53 0.47 0.55

std dev 0.00 0.00 0.00 0.02 0.05 0.13

Table A.2.: Accuracy across multiple runs for the detection of the number of holes.
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a.4 Additional experimental details for curvature

a.4.1 Pipeline

Before we visualize the PH pipeline, we give an illustrative figure that provides some
intuition on why PH can detect curvature (Figure A.9).

Figure A.9.: Intuition behind curvature detection with PH. For triangles embedded
on a manifold with constant negative (left, in red), zero (middle, in blue)
and positive (right, in green) curvature, the length of triangle edges
clearly reflect the underlying curvature. Since persistence captures
the length of these edges (when the triangle vertices merge into a
component), PH can be used to detect curvature.

The PH pipeline to detect curvature (Section 2.3) is visualized in Figure A.10. The
example point cloud shown in the figure is in the Euclidean plane. We start by
calculating the Euclidean distance matrix, and then construct the Vietoris-Rips
filtration from these distances, which approximates the point cloud at different scales.
0-dimensional PD registers one persisting cycle reflecting the single component of
the disk (which we ignore, since it is shared by every disk in the data and thus
does not contribute to the classification), and many other components which have a
short lifespan as they get connected to other point-cloud points early in the filtration.
There are no persistent 1-dimensional holes since disks are contractible, but there are
many holes with short persistence. PDs are then transformed to a vector summary
such as a PI.

point cloud Euclidean, spheric or hyperbolicdistance matrix Vietoris-Rips filtration

0- and 1-dim PD0- and 1-dim lifespans, PI or PLSVM

Figure A.10.: Persistent homology pipeline to detect curvature.
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run 1 0.06 0.21 0.08 0.34 0.29 0.18 0.34 0.42 0.46 12.28

run 2 0.06 0.21 0.08 0.34 0.29 0.18 0.34 0.43 0.46 0.25

run 3 0.06 0.21 0.08 0.34 0.29 0.18 0.34 0.66 0.43 578.28

mean 0.06 0.21 0.08 0.34 0.29 0.18 0.34 0.50 0.45 196.94

std dev 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.14 0.02 330.31

Table A.3.: Mean squared error across multiple runs for curvature detection.

a.4.2 Performance across multiple runs

Table A.3 shows that (0-dimensional) PH outperforms the other machine- and deep-
learning approaches for curvature detection, across multiple experimental runs. The
poor performance of PointNet is not surprising, as it takes raw point clouds as input,
i.e., their coordinates and Euclidean distances, and is therefore the only pipeline that
does not exploit the spherical and hyperbolic distances for point clouds lying on
manifolds with positive or negative curvature (for details, see Appendix A.2.2).

a.4.3 Computational resources

Figure A.11 visualizes the computational time and memory usage of the different
pipelines for this task. The superior performance of the PH pipelines in comparison
to other methods (Figure 2.4) can come at a high cost with respect to the usage
of computational resources. However, the simple 0-dim PH pipeline (that only
focuses on the lifespans of the PH cycles), which achieves the best predictive power
(Figure 2.4), is the most efficient.
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Figure A.11.: Computational resources for the detection of curvature.

a.5 Additional experimental details for convexity

a.5.1 Pipeline

A visual summary of the PH pipeline used for convexity detection (Section 2.4) is
given in Figure A.12. Every shape has at least one 0-dimensional cycle, i.e., connected
component. For the given example point cloud, PD on the cubical complexes
weighted by the tubular filtration from the line passing through the bottom of the
image will have a second persistent connected component. A positive persistence of
the second most persisting cycle for at least some line indicates concavity.

point cloud image tubular filtration, for 9 lines

0-dim PD, for 9 lines

maximum lifespan of the 2nd
most persisting cycle, across 9

lines
SVM

...

. . .
0.63 = max{0.63, 0.3, 0.21, . . . , 0.00, 0.00}

Figure A.12.: Persistent homology pipeline to detect convexity.

We note here that the convexity could also be detected with PH with respect to the
Vietoris-Rips filtration, with some important adjustments. Indeed, [68, Theorem
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2] provides a guarantee that PH of any function f and shape M can be estimated
using an algebraic construction based on Rips complexes from a point cloud X
which is a geodesic dense-enough sample of M (and Theorems 3 and 4 in this paper
obtain guarantees in scenarios where both function values and pairwise distances
are approximate, i.e., defined on the point cloud). To do so to detect convexity, we
cannot employ the standard (so-called vanilla) Vietoris-Rips simplicial complex that
relies on the distance function, since all point cloud points show immediately at
b = 0 in the filtration (that all soon get connected into a single component), so that
it never sees the two connected components in concave shapes, at any scale r ∈ R,
which are captured with cubical complexes. Filtering the point cloud points by their
height (yielding a so called weighted Rips filtration) might capture the multiple
connected components, but these components can get connected with an edge as
soon as they are born, if they are close to each other with respect to Euclidean
distance (Figure A.13). This can be resolved by considering the geodesic distance
(the length of the shortest path along the manifold, or a graph), which will allow
the multiple connected components to persist longer in the filtration. Indeed, the
geodesic distance between points in the “disconnected” regions in concave shapes
(the clusters) is larger than the Euclidean distance, so that these only get connected
later in the filtration.

Figure A.13.: Convexity detection with PH on simplicial and cubical complexes. The
concavity can be detected with the weighted Vietoris-Rips simplicial
complex, with the tubular filtration function on the vertices (top row).
In this figure, we consider the tubular function with respect to the
horizontal line at the top of the point cloud. The filtration function on
edges is defined according to the Euclidean distances, but in a way that
ensures that an edge can only appear in the filtration after both vertices
incident to this edge appear in the filtration (for details, see [10]).
However, these multiple connected components can still be connected
with an edge, if they are close in the Euclidean space. This could
be circumvented by considering the weighted Vietoris-Rips which
relies on the geodesic distances (which are expensive to compute), or
by considering cubical complexes instead (bottom row), where the
connected components remain separate until they merge with the rest
of the shape.
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Experimental
setting

Run PH ML NN shallow NN deep PointNet

train =
regular test
= regular

run 1 1.00 0.74 0.72 0.72 1.00
run 2 1.00 0.74 0.77 0.60 1.00
run 3 1.00 0.74 0.75 0.75 1.00
mean 1.00 0.74 0.75 0.69 1.00
std dev 0.00 0.00 0.02 0.08 0.00

train =
random test =
random

run 1 0.85 0.56 0.60 0.46 0.40

run 2 0.85 0.56 0.55 0.52 0.61

run 3 0.85 0.56 0.54 0.59 0.71

mean 0.85 0.56 0.56 0.52 0.57

std dev 0.00 0.00 0.03 0.06 0.16

train =
regular test
= random

run 1 0.78 0.59 0.59 0.59 0.51

run 2 0.78 0.59 0.56 0.60 0.47

run 3 0.78 0.59 0.57 0.57 0.57

mean 0.78 0.59 0.57 0.59 0.52

std dev 0.00 0.00 0.02 0.08 0.05

train =
random test =
regular

run 1 0.96 0.54 0.55 0.49 0.54

run 2 0.96 0.54 0.54 0.42 0.57

run 3 0.96 0.54 0.56 0.52 0.52

mean 0.96 0.54 0.55 0.48 0.54

std dev 0.00 0.00 0.01 0.05 0.02

Table A.4.: Accuracy across multiple runs for convexity detection.

The important thing to keep in mind is to choose a filtration that will see disconnected
components for concave shapes. We choose cubical complexes as they are more
straightforward and do not involve the calculation of geodesic distances. Indeed, as
the authors of [68] note, geodesic distances are not known in advance and have to be
estimated through some neighborhood graph distance, and computing full pairwise
geodesic distances is expensive [188, 234] (e.g., there are deep learning efforts to
estimate these geodesic distances on point clouds, such as [155, 280]).

Finally, we also note that the calculation of geodesic distances for curvature detection
(Section 2.3) was straightforward since the point clouds were sampled from unit
disks from manifolds with constant curvature, which enabled us to directly rely on
the analytical formulas for geodesic distance.

a.5.2 Performance across multiple runs

For any experimental run, PH is better able to distinguish between convex and
concave shapes than the other machine- and deep-learning pipelines (Table A.4).
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a.5.3 Computational resources

Results related to the computational efficiency of the different approaches (trained
on regular, and tested on regular shapes) are summarized in Figure A.14. In this case,
the PH pipeline significantly outperforms the other methods, since it relies on a scalar
summary of a point cloud (the maximum lifespan of the second most persisting
connected component, across 9 tubular filtration function lines, see Section 2.4 and
Figure A.12). On the other hand, PointNet relies on raw point clouds and therefore
has a very high memory consumption, since point clouds have 5 000 points for this
task (compared to 1 000 points for the detection of the number of holes, or 500 points
for curvature detection).

Figure A.14.: Computational resources for the detection of convexity.

a.5.4 Mislabeled point clouds

In order to gain a better understanding of the performance and limitations of our PH
pipeline, we look at some examples of mislabeled point clouds. Figure A.15 shows
a few point clouds sampled from concave shapes that are erroneously classified
as convex by PH pipeline (trained on regular, and tested on random shapes). The
figure also clearly suggests that considering additional lines for the tubular filtration
function would resolve these issues.

Figure A.15.: Examples of point clouds from concave shapes incorrectly classified as
convex.

a.6 Guidelines for persistent homology in applications

Our results demonstrate that PH can be successful in applications for which detecting
the number of holes, curvature and convexity is important. Based on our findings,
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we delineate guidelines for the choice of filtrations and signatures, the input and
output of PH pipelines, and draw a better understanding of the topology and
geometry properties that are captured by long and short persistence intervals (see
Figure A.16).

We again note here that we use the alpha simplicial complex for the detection of
number of holes in order to improve the computational efficiency, but that the same
can be done with the standard Vietoris-Rips filtration. In addition, we discuss
in Appendix A.5.1 that convexity can alternatively be detected with the weighted
Vietoris-Rips filtration, filtered by the tubular function, and relying on geodesic
distances.
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alpha simplicial
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Figure A.16.: Persistent homology can be useful in applications where k-dimensional
cycles, curvature or convexity are important features. The choice
of filtration and persistence signature, including the focus on the
long and/or short persistence intervals, depends on the signal of the
particular application.

a.6.1 Adjustments of persistent homology pipeline for related applications

Some obvious adjustments to the guidelines from Figure A.16 can be made for
applications related to the ones that we consider here. Some possible adjustments
include the following.

• If it is expected that the data set is noisy, the suggested filtration function should
be weighted by density to achieve robustness to noise (as in Section 2.2).

• In our experiments, we focused our attention on the PH information relevant
to the individual problem at hand, but for other related applications, one might
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need to consider a different type of information given by PH. For example, if
we do not only aim to distinguish between convex and concave shapes, but
rather to capture more information about the possibly many concavities, we
should not restrict our attention only to the second most persisting cycle, nor
consider the maximum across filtration function directions. Instead, it would
be useful to take all PH intervals into account for such an application.

• If there are multiple sources of differences in the data, it can be a good
idea to combine the different pipelines. For example, if two classes can be
differentiated with some concavities, 0-dimensional PH on the tubular filtration
will be useful, but if it is also the shape curvature that can help make a
distinction, this information can be concatenated with 0- and 1-dimensional
PH on Vietoris-Rips filtration.

a.6.2 Discussion of persistent homology pipeline for other applications

step 1 : signal Figure A.16 and the discussion above clearly indicate that, when
faced with a new problem, it is essential to first try to identify the important
information, the signal. To illustrate this more clearly, we list some examples of very
different types of signal in Appendix A.6.2.1, Appendix A.6.2.2, Appendix A.6.2.3.
Once there is some understanding of the signal, the next steps are to choose the
filtration and signature accordingly.

step 2 : filtration The aim is for the filtration to capture the signal. For
instance, the Vietoris-Rips filtration encodes the size of cycles, while the height or
tubular filtration encodes their position. The choice of filtration also influences which
type of geometric properties will be captured by long or short persistence intervals.
To illustrate the importance of the choice of filtration for the interpretation of long
and short intervals, we consider the example point cloud in Figure 1.7. PH with
respect to any meaningful filtration can detect the topology of the underlying shape,
i.e., the two holes. However, for the height filtration function from the top of the
image, the small circle would have a longer lifespan of the two (as it is born earlier
in the filtration), and the large circle can have a seemingly very short lifespan (as
it is only born at the bottom of the image). For the Vietoris-Rips filtration it is the
opposite (a small cycle has short persistence), and PD on the height filtration from
the bottom of the image would see cycles of comparable persistence.

step 3 : signature The choice of persistence signature and the corresponding
metric further influences the emphasis on long or short persistence intervals. The
Wasserstein distances [54] between PDs place more importance on long persistence,
and the same is true for Lp or lp distances between other common choices of
persistence signatures, with the standard choice of parameters. However, similarly to
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our discussion above in A.6.1, one might want to focus only on short intervals, e.g.,
by considering only the intervals with lifespan below a certain threshold (so that
the distances would be computed between this simplified PH information). Some
alternative ways to prioritize short intervals, or intervals of any persistence, or even
birth or death value, is via persistence images with the appropriate choice of the
weighing function [2], or stable ranks with appropriate densities [60]. Note, however,
that the stability results also depend on the choice of filtration, persistence signature
and metric [337]. Finally, we note that there has recently been a lot of effort in trying
to train neural networks to learn what the best PH signature is for specific types of
applications [56, 241, 304, 330].

In the remainder of this section, we consider a few hypothetical applications to
discuss the relevance of signal, filtration and signature that we hope will be useful
for practitioners. In particular, the examples highlight that the importance of long
and short persistence intervals depend on the particular application domain. In this
context, it is sensible to try to understand the nature of information that is captured
with PH (e.g., topological or geometric, any of which might or not be important).
The examples thus help us to refine an ongoing discussion in the field about the
information detected by intervals of a specific length in a PD:

• Long persistence intervals as signal. Indeed, this is true in examples from
Figure A.17 (when long intervals capture important topology) or Figure A.20

(where long intervals capture important geometry). However, an example in
Figure A.21 (together with results in Section 2.3 and Section 2.4) highlights
that important information can be encoded in short intervals.

• Short persistence intervals as noise. Figure A.21 is an example where impor-
tant information is captured by short intervals (or in this case, a short interval).
This can also be seen in the experimental results in Section 2.3 and Section 2.4.

• Long intervals capture topology. An example in Figure A.20 highlights that
long intervals, next to topology, also capture geometric information.

• Many short intervals capture geometry. An example in Figure A.21 (together
with results in Section 2.4) shows that even a single short interval can capture
(important) geometry.

a.6.2.1 Topology is important, geometry is irrelevant

In some applications, it might be useful to make no distinctions between a circle, a
circle with a dent, the circle under translation or scaling, or a square (Figure A.17).
In this case, “shape” is understood through the lens of topology — more precisely,
what we are interested in is what is called “homology-type” —, where one object
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can be deformed into another by bending, shrinking and expanding, but not tearing
or gluing. Indeed, to a topologist, a coffee mug and a donut have the same shape.

Figure A.17.: An example of an application where topology is the signal. We consider
all the shapes to be the same, i.e., to represent the same class of data,
as they all have one connected component and one hole.

It is possible to obtain the same PH summaries for all of the shapes from Figure A.17.
Indeed, 1-dimensional PDs with respect to the standard Vietoris-Rips filtration on a
unit circle and a unit square sampled with same density (reflected in the birth values)
could respectively be {(0.1, 1)} and {(0.1, 1.41)}, since the death value reflects the
size of the hole. However, we can focus on the cardinality |PD| of PDs, that here
only encodes topological information. Alternatively, we could rather consider PDs
calculated on cubical complexes filtered by the binary or grayscale filtration.

Let us further assume that point clouds with multiple holes might be present in
the data, but that the only relevant information is the presence of holes, and not
their number (Figure A.18). An example of such application could be classification
between chaotic and periodic (biological) time series, since the circularity of the
so-called Taken’s embedding point cloud reflect periodicity of the underlying time
series [269]. In this case, we can only focus on the maximum persistence max{l =
d − b | (b, d) ∈ PD}. Although PD captures a lot of topology and geometry, this
choice of summary obviously ignores a lot of this information.

Figure A.18.: An example of an application where the presence of holes is the signal.
The first three shapes in the left part of the figure belong to the same
class as there is at least one hole present, whereas the remaining three
shapes belong to another class with no holes.

a.6.2.2 Topology is irrelevant, geometry is important

For other type of applications, the shapes from Figure A.17 might be representatives
of different classes of objects (Figure A.19). Since they all have a single connected
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component and a single hole, the topological information has no use in discriminat-
ing between the classes. However, the geometric information about their size and
position is useful.

Figure A.19.: An example of an application where geometry is the signal. In this
case, every shape in the figure represents a different object, i.e., they
all belong to different data classes.

important geometry encoded in long intervals Consider an example
where every shape in the data set has only two holes (Figure A.20), and PH with
respect to the Vietoris-Rips filtration. The two longest intervals reflect these two
holes (topological information), but their lifespans reflect their size, and it is this
geometric signal that can help discriminate between the shapes.

Figure A.20.: An example of an application where the size of the holes is the signal.
The three shapes all have two holes, but their size is meaningful for
this application, so that they all belong to different data classes.

important geometry encoded in a single interval with the shortest

persistence We consider a hypothetical cancer-detection application. Let us
assume that the data set consists of medical images of some cells in the human body,
which look like a certain number of holes (e.g., a grid-like structure). Now imagine
that the only difference between the healthy and cancerous cells is the presence of
a tiny hole somewhere in the image (which might correspond to some developing
cancerous tissue) (Figure A.21). For PH with the Vietoris-Rips filtration, the lifespan
of each cycle registers its size, but it is the very short persistence of the tiniest holes
which would be the most important for this application, as it would be this local
geometry signal that would allow to discriminate between the two classes of data,
i.e., to detect the presence of cancer.

For example, PH for healthy and cancerous cells can respectively have lifespans
(20, 20, 20, 20, 0) and (20, 20, 20, 20, 0.05). The stability theorems imply that the differ-
ence between the PH on the healthy and cancerous cells is “small” (or more precisely,
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Figure A.21.: An example of an application where the presence of a tiny hole is the
signal. The first three shapes in the left part of the figure reflect the
images of healthy cells, whereas the remaining three shapes indicate
developing cancerous tissue.

it is limited by the difference in their filtrations), but this difference is important for
this problem and hence not “noise.”

PH can be successful for this task even if the number and size of holes varies across
images of healthy cells. In this case, the lifespans for PH of healthy cells could, e.g.,
be (20, 15, 12, 25, 0), (13, 21, 15, 17, 0), and (14, 15, 27, 20, 0.05), (19, 21, 15, 17, 0.05), for
cancerous cells. Here, the distance between the PH for healthy and cancerous cells
is overwhelmed by the distance between the long cycles, that reflect irrelevant
information for the problem. However, we could consider a PH signature that only
focuses on short intervals, or choose PIs that give a greater weight to short intervals.
Alternatively, if there is a number of labeled images available, the difference with
respect to the short persistence interval can be learned.

In the same way, it might be the case that images can only be distinguished with
a hole of medium persistence, and therefore the importance of different lifespans
depends on the application, i.e., data set. If we know this a priori, we can use PIs
and give the greatest weight to the intervals with the most distinctive persistence.

a.6.2.3 Topology and geometry are important

To conclude our guidelines, we consider an example of an application in which both
topological and geometric information are important. Let us consider a classification
problem where the shapes in Figure A.22 represent different objects, i.e., different
data classes. In this case, it is topology and geometry together that provide useful
information. The standard choice of PH on the Vietoris-Rips filtration can help to
distinguish between these objects. The PH signature should consider all persistence
intervals, since, as discussed in Section 2.5, geometry (reflecting the size of cycles) is
captured in every persistence interval, while the topology is reflected in the number
of long-enough intervals.
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Figure A.22.: An example of an application where topology and geometry are both
signal.

a.7 Persistent homology detects convexity in FLAVIA data set

In this section, we employ PH on the FLAVIA data set which consists of 1 907
1200 × 1600 images of plant leaves [364]. Figure A.23 shows a few examples of
images in this data set. The goal of these experiments is to show that PH can
be effective on real-world data, but also to illustrate the above guidelines about
the appropriate choice of filtration and signature for a given application, and the
importance of long and short intervals (Appendix A.6). We focus on convexity
detection, as this is the main contribution of our work.

We classify the leaves according to following measure of convexity:

c(X) =
area(X)

area(CH(X)))
, (A.1)

where CH(X) is the convex hull of image X. The convexity measure (A.1) is the
most widely used in the literature [385], and has been shown to be useful for plant
species recognition [175]. Note that we only use the above formula to properly label
the data set (Figure A.23), but that, deriving convexity information in such a way
involves employing a convex hull algorithm.

In the simpler scenario of a binary classification between convex or concave shapes
(i.e., signal is the simple: convex - yes or no), we could rely on the same pipeline
as in Section 2.4, where we consider the lifespan of the second most persisting
connected component, and then store the maximum such value across all 9 tubular
filtration lines (Figure A.12, Figure A.24). This is sufficient information, since we are
only interested in whether PH sees multiple connected components - source of a
concavity, for at least one line. However, the convexity measure (A.1), the signal in
our application, provides a more detailed level of information (regression problem),
so that we keep the lifespan of the second most persisting connected component
for all lines, in order to capture information about sources of concavities seen with
respect to any of the lines.

Moreover, since the convexity measure is calculated relative to the size of the leaf,
the tubular filtration directions remain the same, but 8 filtration lines pass through
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the corners of the leaf rather than the corners of the image (Figure A.12), and the
lifespans are normalized relative to the area of the leaf (total number of black pixels
in the binary image). In this way, PH depicts information about concavities for any
line and relative to the leaf size, and it is invariant under translation and scaling. We
use 30 × 30 cubical complexes (on binary images), to capture a higher level of detail
for the leaves of different convexity, in comparison with the 20 × 20 resolution for
the cruder differences in our synthetic data set in Section 2.4. Figure A.24 visualizes
the tubular filtration for the 9 different lines, and the resulting 0-dimensional PDs,
for an example leaf image (bottom image from Figure A.23).

Linear regression on the FLAVIA data set, trained on 70% of random images, with
each image represented with the 9-dimensional vector of lifespans of the second most
persisting component across all tubular filtration lines, obtains a mean square error
of 0.00065. The regression line in Figure A.25 shows that PH is effective in classifying
the FLAVIA leaves according to a measure of convexity. The convexity of some thin
leaves (such as the image in the third panel in Figure A.23) gets overestimated with
our PH pipeline, since concavity is not captured well with our crude resolution, that
could easily be improved.

Furthermore, even more detailed information can be captured if the lifespans of the
third, fourth, ... most persistent connected component would be kept, because some
leaves have more than two sources of concavity for a single line, that result in more
than two connected components. For example, the 0-dimensional PD of the image
in Figure A.24 has more than two persistence intervals for some tubular filtration
lines. The accuracy can thus be improved by considering the lifespans of all short
intervals (and across all lines), and again, by considering more tubular filtration lines
(Section 2.4). This clearly illustrates how the choice of filtration and signature, the
input and output of PH, should be guided by the signal in the given application.
Moreover, it shows that one short interval can be sufficient for some applications,
but that in other cases, many short intervals might store the needed additional level
of (geometric) information.
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raw image X CH(X) CH(X) \ X

Figure A.23.: A few example images from the FLAVIA leaf data set. The images
are shown, from top to bottom, with a decreasing label, i.e., convexity
measure c(X), 1.00, 0.98, 0.89, 0.71. Note that the second image from
the top is more convex than the third image, since the considered
convexity measure c(X) is given relative to the area of the leaf. The
PH lifespans on the tubular filtration with respect to 9 different lines
are respectively from top to bottom, [0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00], [0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00], [0.00,
0.00, 1.09, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00], [0.00, 2.52, 10.08, 3.78, 0.00,
1.26, 0.00, 0.00, 0.00].
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Figure A.24.: The tubular filtration for the 9 considered lines, and the resulting 0-
dimensional PDs for an example image. The concavity is detected with
multiple connected components that are seen for a few lines.
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Figure A.25.: Results on the FLAVIA data set. The first two plots show that there
is a good correspondence between the concavity measure (1 − c(X))
(left panel) and the simple PH signature that only considers the sum of
lifespans of the second most persisting connected component, across
the tubular filtration lines (middle panel). The regression line on
lifespans from all 9 tubular filtration lines shows good performance of
our PH pipeline.
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B
Pull-back geometry of persistent homology encodings

Empirical studies that investigate the properties of persistent homology (PH)
(Chapter 1), such as its sensitivity to perturbations or ability to detect a feature

of interest, commonly rely on training and testing an additional model on the basis
of the PH representation. To gain more intrinsic insights about PH, independently of
the choice of such a model, we propose a novel methodology based on the pull-back
geometry that a PH encoding induces on the data manifold. The spectrum and
eigenvectors of the induced metric help to identify the most and least significant
information captured by PH. Furthermore, the pull-back norm of tangent vectors
provides insights about the sensitivity of PH to a given perturbation, or its potential
to detect a given feature of interest, and in turn its ability to solve a given classification
or regression problem. Experimentally, the insights gained through our methodology
align well with the existing knowledge about PH. Moreover, we show that the pull-
back norm correlates with the performance on downstream tasks, and can therefore
guide the choice of a suitable PH encoding.

This appendix is based on the following publication:

Shuang Liang, Renata Turkeš, Jiayi Li, Nina Otter, and Guido Montúfar,
Pull-back geometry of persistent homology encodings, arXiv:2310.07073 (2023).

It is related to Chapter 2 and Chapter 3, as it investigates what kind of features or
perturbations can be detected with persistent homology. The project was supported
in part by NSF CAREER 2145630, NSF 2212520, DFG SPP 2298 grant 464109215, ERC
Starting Grant 757983, and BMBF in DAAD project 57616814.
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B.1 introduction

b.1 Introduction

In applications of PH to data classification or regression tasks, it is common to
employ a model, such as a support vector machine (SVM) or a neural network, on
the PH features. Such performance-based testing comes with two main drawbacks.
Firstly, additional time and effort are needed to choose the classifier or regression
model and tune their hyperparameters: this typically involves a grid search over all
PH parameters, but also over models (e.g., SVM and neural networks), and over the
model’s parameters (e.g. regularization parameter of SVM, and a much larger list of
hyperparameters for neural networks), which also requires training and testing for
each combination of the three groups of parameter values. Secondly, the conclusions
drawn regarding the effectiveness of PH are contingent upon the choice of the model
and its specific parameters.

In this work, we propose a novel methodology aimed at gaining a more intrinsic
understanding of PH encodings, irrespective of a particular classification or regres-
sion model. Here, a PH encoding denotes the mapping from data to a vectorized
PH representation. We use the pull-back geometry induced by the PH encoding
map to investigate its sensitivity to any particular data variation. A data variation
is represented by a vector field in the data space, and can therefore be understood
as an umbrella term that includes both perturbation vector fields reflecting data
perturbations (e.g., translation or dilation of a point cloud) and gradient vector fields
resulting from data features (e.g., a label indicating the presence of an anomaly or
disease).

The Jacobian of an encoding mapping characterizes the behavior of the encoding in
response to data variations. Specifically, the rank and eigenvectors of the Jacobian
characterize the number of independent data variations and the most significant
data variations captured by the encoding, respectively. The average pull-back norm
of a vector field quantifies the sensitivity of PH to the corresponding data variation,
and thus it helps assess to what extent PH is sensitive to a given perturbation or
how effective it is at detecting a given feature (which in turns translates to its ability
to solve a given problem). Furthermore, optimizing the average pull-back norm can
guide the choice of a suitable PH encoding (choice of filtration, PH representation,
and their parameters): one only needs to evaluate the pull-back norm over the
different choices of PH parameters. This approach eliminates the need to train
and select a classifier on top of PH features, at the same time providing insights
that are more intrinsic to the underlying problem. Indeed, if the performance of a
particular model on PH features is poor, one can hardly make any claims about the
PH representation itself (since the problem could be that the model is poor). On the
other hand, if the pull-back norm of the vector field is close to zero, we are more
confident that the representation cannot recognize the given perturbation or feature.
We provide a schematic diagram in Figure B.1 that illustrates the pipeline of our
proposed method and compares it with performance-based methods.
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We center our attention on a widely used PH representation known as the persistence
image (PI) (Section 1.4.2), which is an image-like representation of the input data
in terms of multiscale homological features. Our methodology, however, extends to
other PH representations and, more broadly, to any differentiable encoding whose
representation space can be endowed with a Riemannian manifold structure. In our
experiments, we illustrate this generality by applying our approach to the PointNet
encoding, a benchmark deep learning model for point clouds. We note that the
insights about the (PH) encodings obtained through our approach depend on the
specifics of the data set. Nonetheless, by evaluating different datasets one may
be able to draw certain conclusions that hold with some generality: for instance,
conclude that a particular encoding captures a particular feature in datasets of a
particular type. This is an interesting prospect that can be facilitated by our proposed
approach.

main contributions

• We present an approach that can be used to investigate persistence images and
their induced pull-back geometry on the manifold of input data sets in terms
of the rank, spectrum, and eigenvectors of the Jacobian, as well as the pull-back
norm of tangent vectors on the data manifold (Section B.3)1.

• We show how the above approach can be used to identify which data perturba-
tions are captured by the encodings and which are ignored on given data sets.
We also show how this facilitates an intrinsic comparison of PH encodings
built with different filtrations. We experimentally demonstrate the insights
gained via our approach align well with the existing knowledge about PH
(Section B.4).

• We show how the above approach can be used to quantify to what extent a
PH encoding can recognize a data feature of interest on given a data set (sex
feature in a data set of brain artery trees). We also show how this quantitative
evaluation can guide the selection of hyperparameters for the encodings.
Finally, we show that the pull-back norm is predictive for the performance on
a downstream task (Section B.5).

related work Our discussion falls within the general subject of interpreting a
complex nonlinear map by investigating the effect that local input perturbations have
on the output. This is conceptually related to topics such as sensitivity analysis [306],
interpretable machine learning [307], sensitivity of outputs to input perturbations
[238], activation maximization [318], relevance propagation [239], adversarial robust-

1 Data and code developed in this research are available at https://anonymous.4open.science/r/

persistent-homology-0915
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B.1 introduction

Encoding map
f : M → N

Data variation
(tangent vector field on M)

V : M → ∪X∈MTXM

Perturbation
π : M → M

Perturbation
vector field

Vπ : X 7→ π(X)− X

Data feature
ρ : M → R

Gradient
vector field

∇ρ : X 7→ ∇ρ(X)

Rank of Jacobian
dim( f (TXM)) :

Amount of information
captured by f

Eigenvector of Jacobian :

The most/least significant
information captured by f

Jacobian mapping
J f
X : TXM → Tf (X)N

Pull-back norm
∥V(X)∥ f ≜ ∥J f

X(V(X))∥N :

Effectiveness of f in
capturing a data variation

Interpreting the most significant
information captured by f

(Section B.4)

Quantifying the sensitivity
of f to perturbations

(Section B.4)

Quantifying the ability of f
to detect data features

(Section B.5)

Selecting hyperparameters
for the encoding f

(Section B.5))

Train & test Model1 on f (M) : Performance1
Train & test Model2 on f (M) : Performance2

· · ·

Train & test ModelM on f (M) : PerformanceM

INPUT PULL-BACK GEOMETRY METHOD

Intrinsic insight

APPLICATION

PERFORMANCE-BASED METHOD

Depends on the choice of Models

Figure B.1.: Schematic pipeline of our proposed method (comparing it with
performance-based testing).

ness [118], interpretable controls in implicit generative models [151], or function
parametrizations in artificial neural networks [106, 191].

[154] investigated the Riemannian geometry on the data manifold that is induced by
representations learned using artificial neural networks and show, in particular, that
the metric tensor can be found by backpropagating the coordinate representations
learned by the network. This shares similarities with our approach, as the induced
geometry is essentially the pull-back geometry from representation space by the
Jacobian map. [228] proposed a graph representation for neural networks using
a singular value decomposition of the weight matrices. While they tackle the
nonlinearity by studying linear maps contained in the nonlinear map consecutively,
our emphasis lies in the local linear approximation of the nonlinear map.

There exist a few studies that investigate the sensitivity of PH representations to
perturbations and their ability to recognize specific features, as we do in this work.
For example, [337] study the sensitivity of a number of PH representations to
different types of transformations (such as rotation, translation, change of image
brightness or contrast, as well as Gaussian, salt and pepper noise). However, the
main method to assess sensitivity is the performance of an SVM trained on the
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representations of the original data and tested on the representations of data under
transformations, and thus requires training and testing, and depends on the choice
of a particular classifier. [46] showed in theory and experiments that persistence
landscapes can be used to detect curvature of an underlying set based on a sampled
point cloud. [338] conducted investigations towards identifying fundamental types
of tasks for which PH representations might be most useful. They showed that
beside curvature and number of holes, PH representations can be used for detecting
convexity. However, they focus on three specific tasks (detecting number of holes,
convexity, and curvature), whereas we study the alignment of the representations
with any given feature defined on the space of input data sets. Moreover, in that
work, the performance of PH is experimentally evaluated via the SVM accuracy,
whereas our approach does not require training and testing of any model.

More generally, in the context of inverse problems in persistence theory, there are
several lines of work that study conditions under which persistence diagram maps
are surjective or injective; see the survey of [259] and references therein. Within this
context, our work can be seen as providing a framework related to the study of the
injectivity of specific PH encodings. The work of [365] deals with local explainability
using topological representations. In contrast, we deal with the representations.
[227] measured the dissimilarity between representations learned by neural networks
trained on PH encodings and networks trained on raw data. They experimentally
demonstrate that networks learn considerably different representations when pro-
cessing PH encodings instead of raw data. [295] compared the expressivity of PH
against the Weisfeiler-Lehman hierarchy of graph isomorphism tests, and explored
the potential of PH to capture certain graph structures and characteristic proper-
ties. Finally, an important line of work in the study of PH encodings is concerned
with developing computable notions of optimal representative cycles for persistent
homology classes, see, e.g., the survey of [209].

b.2 Persistent homology encoding

In our work, we will focus on persistence images (PIs). Let PD be a k-dimensional
persistence diagram in birth-death coordinates. One converts this to a multiset
η(PD) in birth-lifespan coordinates by applying the linear map η(b, d) = (b, l) with
l = d − b to each birth-death pair (b, d). Given a kernel function g(b,l)(x, y) on R2

and a weighting function α(b, l), the persistent surface is the function ψ : R2 → R

defined by
ψ(x, y) = ∑

(b,l)∈η(PD)

α(b, l)g(b,l)(x, y).

A persistence image (PI) is a finite-dimensional representation of ψ obtained as
follows. One splits a subdomain of ψ by a P × P grid of regions. Then the PI of
resolution P is the matrix whose (i, j)-th entry or pixel is the integration value of ψ
over the (i, j)-th region. Note that, since the death time d cannot be smaller than
the birth time b, the birth-death pairs (b, d) always lie above the diagonal line, i.e.,
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PD ⊆ {(x, y) ∈ R2 : y ≥ x ≥ 0}. The transformed birth-lifespan pairs (b, l) lie in
the first quadrant, i.e., η(PD) ⊆ {(x, y) ∈ R2 : x ≥ 0, y ≥ 0} (see an illustration in
Figure B.2).

Figure B.2.: The pipeline for constructing a persistence image described in Section B.2.
From left to right: (a) input point cloud; (b) Vietoris-Rips filtration built
on the point cloud; (c) 1-dimensional persistence diagram; (d) birth-
lifespan pairs (transformed 1-dimensional persistence diagram); and (e)
persistence image.

For constructing PIs, one needs to choose 1) the resolution P, 2) the kernel function
g(b,l)(x, y) and its associated parameters and 3) the weighting function α(b, l). One
of the main difficulties in working with PIs is that there is no canonical way to
choose these hyperparameters [2]. [2] studied the effects of PI parameters on the
performance of certain classifiers (K-medoids classifiers) that take PIs as inputs.
However, we note this approach heavily depend on the choice of downstream
model. This motivates us to investigate what kind of information of the input data
is intrinsically captured by the PI under different choices of the hyperparameters.

A motivation for considering PIs is that they provide differentiable PH representa-
tions [see 206], and that, with an appropriate choice of metric, the space of PIs has a
Euclidean structure, which simplifies computations (see Section B.3.1). We will later
consider derivatives of the mapping from input data to PIs. These can be obtained
using existing automatic differentiation packages and libraries, such as topologylayer
[128] and Gudhi [331]. We provide further details about this in Appendix B.7.2.

b.3 Pull-back geometry methodology

We consider an encoding map f : M → N , where M is a space of point clouds
and N is the space of persistence images (Section B.3.1). We conceptualize input
data variations (Section B.3.2) and the resulting changes of the encoding output
(Section B.3.3).

b.3.1 Input and output space

We let M be the space of point clouds in RD that contain exactly N points,

M = {X ⊂ RD : |X| = N}.
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A point cloud X is finite subset in RD with cardinality |X| = N. A point cloud may
be regarded as an unordered list of points, determined only up to permutation. It
can also be regarded as a probability distribution on RD. Hence we can equip M
with the 2-Wasserstein distance [see, e.g. 274]:

dW(X, Y) = min
ω∈Ω(X,Y)

(
∑

x∈X
d2

E(x, ω(x))

) 1
2

.

Here Ω(X, Y) denotes the set of bijections ω : X → Y between the sets X and
Y, and dE denotes the Euclidean distance on RD. The 2-Wasserstein distance
induces a metric topology on M. Further, M can be endowed with a Riemannian
manifold structure with dim(M) ≜ m = D × N. For simplicity of presentation,
in the following we treat M as an Euclidean space. Nonetheless, our discussion
is consistent with the Riemannian manifold structure and applies in that level of
generality (see Appendix B.7.1 for details).

We let N be the space of persistence images of fixed resolution P. Thus we can
interpret N as a submanifold embedded in RP×P endowed with the canonical
Euclidean distance, with dim(N ) ≜ n = P2. 2 Here again, other choices of metric
on the space of PIs are possible 3.

b.3.2 Data variations

To characterize local variations of the input data, we consider tangent vectors on the
data manifold. We conceptualize the intuitive concepts of perturbations and feature
variations in terms of corresponding vector fields on the data manifold.

The tangent space at X ∈ M, denoted TXM, is the vector space of all vectors
emanating from X and tangential to the data manifold M. The dimension of TXM
is equal to the dimension of the data manifold, dim(TXM) = dim(M). Each tangent
vector v ∈ TXM characterizes a local variation of a single point cloud X. A vector
field specifies a variation for each point cloud in M. More specifically, a vector field
V on M is a smooth map V : M → ⊔XTXM, assigning to each X in M a tangent
vector V(X) ∈ TXM.

A perturbation is a modification of a point cloud in the data manifold, e.g., by rotation
or shearing. This can be described by a map π : M → M taking data X ∈ M to
a perturbed data π(X) ∈ M. The perturbation vector field Vπ associates to each

2 We note that if one considers the 1-wasserstein distance on the space of PDs, and any of the L1, L2 or L∞
norms on the space of PIs, then PIs are known to be stable, see [2, Theorem 5]. On the other hand, PIs,
together with the L2 norm, are unstable if one instead considers p-Wasserstein distances on the space of
PDs [2, Remark 6].

3 This can be of interest to try to establish more general stability results for PIs. An example would be a
Wasserstein distance between persistence images assigning an appropriate cost to b and l directions.
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Figure B.3.: The space of point clouds forms a manifold, which in this figure is
depicted as a torus; each point on this manifold is a point cloud. Left:
vector fields on the data manifold correspond to variations of the point
clouds; in this illustration, the red arrows correspond to “rotation” and
the blue arrows to “shearing”. Right: a continuous feature on the data
manifold induces a gradient vector field; the figure illustrates a binary
feature, where the dashed line is the class boundary, and the continuous
feature value represents the probability of the data point belonging to
the “red” class.

X ∈ M a tangent vector Vπ(X) capturing the difference between π(X) and X (see
Figure B.3, left).4

Definition B.1 (Perturbation vector field). Let M be a manifold, TXM the tangent
space at X ∈ M, and π : M → M a perturbation map. The perturbation vector
field induced by π is defined as

Vπ : M → ⊔XTXM; X 7→ Vπ(X) = π(X)− X.

A feature ρ is a real-valued smooth function defined on the data manifold, ρ : M → R,
assigning a feature value to each X. Discrete-valued (categorical) features can be
converted to continuous ones by considering probability distributions or logits of
the feature values. For instance, the “cat-or-dog” feature can be converted to a
continuous feature ρ(X) = Prob(X is cat) ∈ [0, 1].

The gradient of a feature introduces a vector field on the data manifold. The gradient
vectors point in the direction of steepest increase of the feature, with magnitude
indicating the rate (see Figure B.3, right).

4 Figure B.3 is a schematic illustration. It is not intended to imply that the kind of depicted point clouds
indeed form a torus.
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Definition B.2 (Gradient vector field). Let M be a manifold, TXM the tangent space
at X ∈ M, and ρ : M → R a real-valued feature. The gradient vector field of ρ is
the vector field on M defined as

∇ρ : M → ⊔XTXM; X 7→ ∇ρ(X),

such that ∇ρ(X)
∥∇ρ(X)∥ = argmaxv∈TXM:∥v∥=1|

∂
∂v ρ(X)| and ∥∇ρ(X)∥ = maxv∈TXM:∥v∥=1| ∂

∂v ρ(X)|.
Here ∂

∂v is the directional derivative along v.

Definition B.1 and Definition B.2 are given for the case that M is a Euclidean
space. We provide definitions of perturbation vector fields and gradient vector
fields for the case of general Riemannian manifolds in Appendix B.7.1.3. Further,
we provide details on how to estimate such vector fields using finite data sets in
Appendices B.7.5.3 and B.7.5.4.

b.3.3 Encoding variations

Figure B.4.: A visualization of the Jacobian map and the pull-back norm. Here f
denotes an encoding map from the input space M to the output space N .
Left: the Jacobian of the encoding sends tangent vectors in the tangent
space TXM of M to tangent vectors in the tangent space Tf (X)N of
N . Right: the pull-back norm of a tangent vector on M measures by
what amount the output of the encoding would change in response
to the variation of the input by that tangent vector. In this schematic
illustration, the pull-back norm of the red vector (“noising”) is larger
than the pull-back norm of the blue vector (“shearing”).

Having characterized data variations in terms of vector fields, the next step is
to describe the behavior of the encoding map f in response to these variations.
Specifically, we are going to introduce the average pull-back norm of a vector field to
quantify the sensitivity of the encoding map to the corresponding data variation. At
the outset of this subsection, we emphasize that whether or not it is desirable to have
an encoding that is sensitive to a particular data variation depends on the specific
practice scenario and whether this variation is perceived as valuable information or
as noise that one would like to filter out in the encoding.
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jacobian The Jacobian of an encoding map f , denoted by J f
X , is a linear transfor-

mation between tangent spaces that characterizes the local behavior of f . While a
tangent vector v ∈ TXM describes one type of data variation at X, the image tangent
vector J f

X(v) describes the resulting variation of the encoding f (X),

J f
X : TXM → Tf (X)N ; v 7→ J f

X(v).

We may write this linear transformation in terms of a Jacobian matrix J f
X ∈ Rn×m

with respect to a basis. If there is no risk of confusion, we will omit the super-
/subscripts f and X. We provide a visualization for the Jacobian map in the left
panel of Figure B.4.

The rank of the Jacobian is the dimension of the image of TXM under the Ja-
cobian map, rank(J f

X) = dim(J f
X(TXM)). It corresponds to the number of de-

grees of freedom of the data that are captured by the encoding. For instance,
rank(J f

X) = dim(TXM) indicates that f is sensitive to all local data variations,

whereas rank(J f
X) = 0 means that f is approximately invariant under all local

variations and thus approximately constant near X.

pull-back norm To measure the encoding’s effectiveness in capturing a data
variation, we introduce the average pull-back norm of a vector field. The pull-back
norm of a tangent vector V(X) at X is defined as5

∥V(X)∥ f = ∥J f
X(V(X))∥N =

√
V(X)T · G f

X · V(X).

Here ∥ · ∥N denotes the vector norm in output space N and G f
X = (J f

X)
T J f

X is the
Gram matrix of the encoding f at X. While in the above definition, we consider the
Euclidean metric for the output space of PIs, our approach can be applied for other
choices of metric as well. We present the definition of pull-back norm for any differ-
ential encoding mapping between Riemannian manifolds in Appendix B.7.1.4. We
also provide a visualization for the pull-back norm in the right panel of Figure B.4.

The pull-back norm of V(X) measures the sensitivity of f to the variation V(X) at X.
To measure the sensitivity across different inputs, we take the average with respect
to a distribution on M. In practice, we use the empirical distribution of a given data
set D = {Xi}i=1,...,|D|.

Definition B.3 (Average pull-back norm). The average pull-back norm of a vector
field V with respect to an encoding map f and a data set D = {Xi}i=1,...,|D| of
cardinality |D| is

∥V∥ f =
1
|D| ∑

X∈D
∥V(X)∥ f .

5 Strictly speaking this is a semi-norm, as it may vanish for non-zero tangent vectors.
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Please note that in Definition B.3, V(X) denotes a tangent vector at X in the space of
point clouds. Specifically, a vector V(X) ∈ TXM corresponds to a “vector field” on
X which assigns a vector to each point x ∈ X in the point cloud X. We say that an
encoding can detect a data variation characterized by a vector field V if the encoding
is sensitive to V, which alludes to the average pull-back norm of V.

singular value decomposition To gain a more fine-grained insight into the
properties of an encoding, we consider the singular value decomposition (SVD) of
the Jacobian matrix,

J = Q̃ΛQT .

Here Q̃ ∈ Rn×n, Q ∈ Rm×m are orthogonal matrices, and Λ ∈ Rn×m is a diagonal
matrix containing in its diagonal the singular values in decreasing order λ1 ≥
λ2 ≥ · · · ≥ λmin(m,n). This sequence of ordered singular value is the spectrum
of the Jacobian J. Accordingly, the Gram matrix has eigendecomposition G =
JT J = QΛ2QT . We denote the right singular vectors, i.e., the columns of Q, by
q1, . . . , qm. We will refer to these qi’s as the eigenvectors of the encoding. Any
tangent vector v ∈ TXM can be written as v = ∑⟨v, qi⟩qi, and its pull-back norm

as ∥v∥ f =
√

∑ λ2
i ⟨v, qi⟩2. With this, the pull-back norm is decomposed as two

parts: the spectrum of Jacobian and the alignment between v and eigenvectors,
which is described by the inner product. In particular, the pull-back norm is
large if v is aligned with qi’s that have large singular values. This also implies
that the eigenvectors with top largest eigenvalues can be regarded as the data
variations that the encoding considers most “important”. We offer a visualization in
Appendix B.7.3.

comparison between encodings Later we will compare different encodings
by examining their sensitivity to specific data variations. To place different encodings
on the same scaling level, we consider the normalized average pull-back norm
[∑ ∥V(X)∥ f /λ

f
1 ]/|D|. We provide details about this normalization technique in

Appendix B.7.5.2. Another way of comparing different encodings is via the Bures-
Wasserstein distance [33] between their Gram matrices. The Bures-Wasserstein
distance quantifies the alignment between the eigendecompositions of the Gram
matrices. For two positive definite matrices A and B, the Bures-Wasserstein distance
is computed as:

dBW(A, B) =
[
TrA + TrB − 2Tr(A1/2BA1/2)1/2

]1/2
.

For matrices that are not strictly positive definite we use the same definition after
adding a small multiple of the identity matrix.
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b.4 Identifying what is recognized

In this section, we seek to identify, for fixed PH encodings, which data variations are
recognized and which are ignored. Specifically, we investigate the total amount of
data variations that are captured by PH encodings (Section B.4.1), and among those
captured variations we interpret the most significant ones (Section B.4.2). Then, we
quantify the “importance” for any data variation (Section B.4.3), and measure the dis-
similarity of the captured information across different PH encodings (Section B.4.4).
It is important to notice that, even though our approach eliminates potential infer-
ence biases induced by downstream models, our results still significantly depend
on the data set under consideration. Therefore, we emphasize that this section is
dedicated to investigating “what is recognized” by PH encodings within specific data
sets.

synthetic data Throughout this section we consider a synthetic data set of
point clouds in R2 sampled from curves in the Radial Frequency Pattern (RFP) family.
A point cloud of this type is shown in Figure B.2. The curve RFP(a,w) is parametrized
by ρ(θ) = 1 + a cos(wθ), θ ∈ (0, 2π]. Loosely speaking it represents the shape of
a flower with w petals of size characterized by a. We take w in {3, 4, . . . , 10} and
10 values of a evenly distributed on the interval [0.5, 0.9]. For each curve RFP(a,w),
we evenly sample N = 150 points to obtain a point cloud, which is then scaled to
the unit square [0, 1]2 (see examples in Appendix B.7.5.3). Notably, each curve in
the RFP family has the same topology. This allows us to validate the ability of PH
to capture information beyond topology. The RFP data set has also been used in
studying the importance of specific shape features in shape recognition and object
perception [310].

ph encodings We investigate PH encodings constructed on 3 different filtrations:
Vietoris-Rips (Rips) filtration, DTM filtration, and Height filtration (with respect to
the hyperplane with normal vector [1, 0]T) (see Section 1.3 for definitions). For each
filtration we extract the 1-dimensional PDs, and convert them to PIs with the same
PI parameters. In the following discussion, we sometimes refer to these encodings
by the name of the filtration on which they are constructed, denoting for instance
the PH encoding constructed on Rips filtration simply as Rips. For reference we also
include a PointNet encoding. PointNet [282] is a deep neural network architecture
designed for processing point clouds directly. We train the network to predict the
number of petals w, achieving a test accuracy of 100%. We take the output of the
second-to-last layer of the trained PointNet as the output of the PointNet encoding.
More details concerning the filtration and PI parameters, and the PointNet encoding
are provided in Appendix B.7.5.3.
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b.4.1 Spectrum of the Jacobian

As explained in Section B.3.3, the rank of the Jacobian indicates the maximum amount
of information, in a dimension sense, that can be captured by the encoding. The
spectrum, i.e., the sequence of ordered singular values λ1 ≥ λ2 ≥ · · · ≥ λm, provides
a fuller picture, indicating to what extent different eigenvectors are highlighted.

Figure B.5.: Left: The normalized spectrum of the Jacobian for different encodings.
Shown is the mean and standard error of the ordered normalized sin-
gular values over different input point clouds. Right: The top two
eigenvectors of the Jacobian for the PH encoding constructed on the
Rips filtration at a particular input point cloud.

The left plot in Figure B.5 reports the normalized spectrum of the Jacobian for
different encodings, which is the sequence of ordered normalized singular values

1 ≥ λ2

λ1
≥ · · · ≥

λrank(J)

λ1
> 0.

The first observation is that the rank of the Jacobian is much smaller than the
dimension of the point cloud space and the PI space. Indeed, note that the dimension
of M is m = D × N = 2 × 150 = 300, and the dimension of N is n = P × P =
20 × 20 = 400. On the other hand, the normalized singular values decay to 10−5

before index 40. We conclude that the four encodings under consideration capture
only a small set of variations in the input data and discard many others. Secondly,
while Rips, DTM, and Height all have a similar number of singular values larger than
10−5, Rips and DTM exhibit a sharper initial decay than Height. This implies that
Height has a larger effective rank6, while Rips and DTM concentrate their attention
more specifically on a few variations. This difference in decay rates may stem from
the fact that the size of holes, which is captured by Rips and DTM, is influenced by
fewer variations compared to the position of holes, which is information retained by
Height.

The middle and right plots in Figure B.5, show the top two eigenvectors for Rips at
an example point cloud X. An eigenvector corresponds to a list of vectors attached

6 The effective rank is the number of singular values that have a similar order of magnitude as the top
singular value.
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to all individual points in the point cloud. These eigenvectors provide insight into
the nature of the “important” data variations. More technically, these variations
correspond to the most effective way to change the birth/death parameters of certain
homology classes.7 For instance, in the middle plot of Figure B.5, the vectors on
the petals depict variations that narrow/broaden the petals, which in turn change
the death parameter of the corresponding homology classes. The eigenvectors can
also be used to obtain point saliency maps, which we discuss in Appendix B.7.4.
However, we observe that the eigenvectors do not necessarily have an obvious
intuitive description. Hence, interpretations are needed to bridge the gap between
abstract eigenvectors and human-understandable concepts.

b.4.2 Alignment between eigenvectors and perturbation tangent vectors

To interpret the eigenvectors of the encoding, we consider their alignment with
different perturbation vector fields.

perturbations on the data manifold We consider eight types of perturba-
tions applied to the input data, illustrated in Figure B.6. The first two, rotation and
translation, are Euclidean motions, i.e., transformations that preserve the Euclidean
distances between the points in a point cloud. They are used to test the fact that
pointwise distance-based encodings, namely Rips and DTM, should remain invariant
under such variations. The dilation, strecth x, and shearing variations serve to test the
sensitivity of the encoding to invertible linear transformations of the point clouds.
The next two variations are used to test the robustness of PH encoding against noise:
the noising variation adds coordinate-wise Gaussian noise at each point in the point
cloud; the wiggly variation adds a sine-type noise at every point in the point cloud
along the normal direction. Lastly, the convex variation transforms the point cloud
towards the boundary of its convex hull through a linear interpolation. We present
a visualization of the effects of shearing and convex on the PH associated with Rips
filtration and Height filtration in Appendix B.7.5.3.

Figure B.6.: Eight types of perturbations on a RFP pointcloud.

We examine the angles between the top eigenvectors of the different encodings and
different perturbation tangent vectors. In Figure B.7, we record the average inner

7 This bears some resemblance to adversarial perturbations considered in neural networks.
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product between the perturbation tangent vectors and the top four eigenvectors of
each encoding method:

1
| DRFP | ∑

X∈DRFP

∣∣∣∣ 〈 Vπ(X)

∥Vπ(X)∥ , q f
i

〉 ∣∣∣∣, i = 1, 2, 3, 4.

The eigenvectors q f
i depend on X. Since each encoding map f induces a different

orthonormal basis {q f
1 , q f

2 , . . . , q f
m} on the tangent space of the data manifold, a fixed

tangent vector will have different coordinates with respect to the different encodings.
Figure B.7 serves as a sort of dictionary, showing how each perturbation (rotation,
translation, dilation, etc.) is expressed in the language of each encoding.

Figure B.7.: Absolute inner product between perturbation vectors and top four eigen-
vectors of different encodings. A higher value implies greater alignment,
i.e., greater sensitivity to a perturbation.

For the PH encoding constructed on Rips and DTM filtration, we find that the top
eigenvectors exhibit a relatively strong alignment with convex. The corresponding
average inner product is around 0.1. This indicates that the most “important” data
variation for Rips and DTM are closely related to convexity. This is consistent with
the fact that these encodings capture geometric properties, such as birth values of
holes in the filtration (that increase under the convex perturbation, see Figure B.6).
At the same time, the top eigenvectors of Rips and DTM are orthogonal to rotation
and translation. This indicates that Euclidean motion is not as relevant in the Rips
and DTM, as is to be expected from the definitions of these encodings.

For the PH encoding constructed on Height filtration, the top eigenvectors have a
significant alignment with Euclidean motions and stretch x. This makes sense, since
Height is designed to collect information on the position of holes. On the other
hand, we do not observe a strong alignment between top eigenvectors of Height and
convex. This might seem to be in contradiction with [338], who demonstrated that
PH on height filtration can be used for detecting convexity. Note, however, that they
use 0-dimensional PH on cubical complexes (or analogously, on Rips complexes on
geodesic distances), which recognizes concave shapes by their multiple connected
components (0-dimensional cycles) for at least some height filtration directions.
0-dimensional PH with respect to such a filtration would see two connected com-
ponents (two petals) for a while, that would then merge into one at some point.
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This would happen earlier under convex perturbation (i.e., one of the connected
components would die sooner), so that the alignment can be expected to be more
significant in that case.

For PointNet encoding, the top eigenvector has a relatively strong alignment with
translation. This is consistent with a previous observation by [338] where the PointNet
did not perform well in classification tasks when the test data was corrupted by
translations. Note akin to the approach adopted by [338], we do not use data
augmentation techniques during the training for PointNet. This might lead to the
sensitivity of the trained PointNet to translation. On the other side, PointNet is
robust under convex perturbations. This can be attributed to the nature of RPF data
set. Recall the RPF data set comprises point clouds defined by two independent
parameters, a and w, which characterize the size and the number of the petals,
respectively. While the PointNet is trained to identify the number of petals, it can
easily learn from the data set to ignore the size of petals. Notice increasing the petal
size bears strong resemblance to convex perturbation (see examples of RPF point
clouds in Appendix B.7.5.3). Therefore, one can loosely infer that the RPF data set
is “inherently” augmented by convex perturbation, and consequently the trained
PointNet might learn from the data to ignore convex information.

b.4.3 Pull-back norm of perturbation vector fields

In some scenarios, one is interested in the sensitivity of an encoding to certain types
of perturbations [292]. In Figure B.8 (left) we evaluate the average pull-back norm of
different perturbation vector fields with respect to different encodings. The pull-back
norm takes into account not only the alignment with the encoding eigenvectors but
also the magnitude of the corresponding singular values.

For DTM and Rips, we find that noising, wiggly, and convex, have a significantly larger
pull-back norm than the other data variations. This is consistent with the Jacobian
spectrum in Figure B.5 (which indicates DTM and Rips have faster-decaying spectrum
and therefore capture only few data variations), and the alignment information in
Figure B.7 (which indicates alignment of the top eigenvectors with these particular
variations). The PH encoding constructed on Height filtration has a relatively large
pull-back norm for many of the considered data variations, including dilation, stretch,
and shearing. Also the pull-back norm associated with convex perturbations with
respect to Height exhibits a moderate average value and a large variance. This implies
Height is sensitive to convex perturbations in certain point clouds, while being less
sensitive in others. This aligns with the alignment information in Figure B.7, which
indicates the most “important” data variations seen by Height, on average, are not
closely related with convex. Similar to Height, PointNet also leads to relatively large
pull-back norms, but with a different profile and with exception of convex, which
has a small pull-back norm under PointNet. Rips and DTM have a faster-decaying
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Jacobian spectrum than Height and PointNet, indicating that they are sensitive to
fewer data variations.

Figure B.8.: Left: Average pull-back norm of different perturbation vector fields with
respect different encodings. Right: Bures-Wasserstein distance between
Gram matrices JT J of different encodings.

b.4.4 Distance between Gram matrices

Along this thread, we can also investigate the relationship between encodings. The
right panel of Figure B.8 shows the average Bures-Wasserstein distance between the
Gram matrices of different encodings.

The average distance matrix shown in the right part of Figure B.8 indicates that
all encodings are different, whereby some are more similar and some are more
dissimilar (see also alignment pattern in Figure B.7). Rips and DTM are closest each
other, while PointNet and Height both differ significantly from Rips and DTM. This
indicates that Rips and DTM capture similar information which is different from the
information that is captured by Height and PointNet. This makes sense, since the
DTM filtration function is the average distance to neighbors, which approximates the
distance function that underlies the Rips filtration; moreover, the data we consider
does not contain outliers. We also find that although Height and PointNet give
relatively similar pull-back norms for rotation, translation, and dilation, overall these
two encodings are very different.

b.5 Selecting hyperparameters

In this section, we shift our focus to the problem: how do we select the hyperparam-
eters of the encoding in order to detect a data feature of interest. Recall that there
are three major hyperparameters to choose when constructig PIs: 1) the resolution P,
2) the kernel function g(b,l)(x, y) and its associated parameters and 3) the weighting
function α(b, l). We first focus on the first two PI parameters, namely the resolution
and the variance for the Gaussian kernels. We examine their impact on the rank
and spectrum of Jacobian (Section B.5.1.1) and on the pull-back norm of gradient
vector fields of data features of interest (Section B.5.1.2). We demonstrate there
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is a strong correlation between the pull-back norms of gradient vector fields and
the downstream task performance, where the task objective is to predict that data
feature (Section B.5.1.3). We then investigate the impact of weighting functions
on the pull-back geometry. We introduce the beta weighting function, which allows
highlighting persistence intervals with different length (persistence time). Then
we examine the effects of the mean parameter of beta weighting function on the
pull-back geometry (Section B.5.2.1). Finally, again we show a significant correlation
between the pull-back norm of gradient vector fields and the downstream task
performance (Section B.5.2.2).

real-world data In this section we utilize the brain artery tree data [29]. This
data set comprises 96 artery trees in R3 (see Figure B.9, left). These artery trees are
obtained by applying a tube-tracking algorithm to Magnetic Resonance Angiography
(MRA) images from 96 human subjects. We randomly subsample three point clouds
from the vertices of each artery tree, with each point cloud containing N = 500
points. Then we normalize the sampled point clouds to the unit cube [0, 1]3.

feature Each point cloud is labeled with a binary sex feature, based on the
corresponding human subjects’ medical information.

b.5.1 Resolution and variance of Gaussian kernel

ph encoding We focus on the 1-dimensional PIs on the Vietoris-Rips filtration.
We investigate two hyperparameters involved in the construction of PIs: 1) the
resolution P, and 2) the variance γ2 of the Gaussian kernel (see Figure B.9, right). We
set the baseline PI parameters as P = 20, γ2 = 10−4, and consider a linear weighting
function α(b, l) = l

max{l} [2].

Figure B.9.: Left: point cloud sampled from a brain artery tree, where the color
represents the z-coordinate. Right: the corresponding PI representation
with different parameter settings.
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b.5.1.1 Spectrum of the Jacobian

We begin by analyzing the effects of the resolution P and variance γ2 of the Gaussian
kernel on the spectrum of the Jacobian. In each plot of Figure B.10, we varied
one parameter while keeping the other fixed at the baseline setting, and present
the normalized spectrum. We again observe a low-rank phenomenon, since the
average rank is always below 160, while in the baseline setting the dimension of
the point cloud and PI spaces are respectively m = D × N = 3 × 500 = 1500 and
n = P × P = 20 × 20 = 400.

Figure B.10.: Spectrum of the Jacobian matrix resulting from the PH encoding on the
brain artery tree data set, across different values of the PI parameters:
resolution P (left plot), and Gaussian kernel variance γ2 (right plot).

In the left part of Figure B.10, we see that the spectrum decays slower as the resolution
increases, indicating an increase in rank. This implies that, as one would expect,
higher resolution allows the PI to capture more information.

Interestingly, we observe that, as the variance γ2 increases, the rank of the Jacobian
initially increases and then decreases. For fixed resolution, very small variance
results in sparse PIs (see the first column in the right panel of Figure B.9), where
multiple PD points (b, l) may fall into one pixel and can only highlight that pixel;
very large variance leads to blurred PIs (see the third column in the right panel of
Figure B.9), where it also becomes difficult to distinguish between PD points.

b.5.1.2 Pull-back norm of feature gradient vector fields

We now explore the effects of the resolution and variance on the pull-back norm of
gradient vector fields of the following data feature. Our goal is to locate the optimal
PI parameters of the PH encoding to effectively detect the sex feature in the brain
artery point clouds. We consider the domain (P, γ2) ∈ [15, 30]× [10−5, 10−4]. Here
the ranges for P and γ2 are selected based on the values where the spectra in Figure
B.10 exhibit the slowest decay.
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Figure B.11.: For the brain artery data set, shown is the effect of the resolution
(vertical axis) and variance of the Gaussian kernel (horizontal axis) of
the PI on the average rank of the Jacobian (upper left), average pull-
back norm of the gradient vector field of the sex feature (upper right),
as well as the test accuracy (lower left) and robust test accuracy (lower
right) of the logistic regression model predicting sex based on the PI.

In the upper right plot of Figure B.11, we present the average pull-back norm of the
gradient field of the sex feature under different PI parameter choices. The gradient
fields are estimated via numerical methods detailed in Appendix B.7.5.4. We observe
that the pull-back norm generally increases as the resolution P increases, whereas
the pull-back norm is not monotonic with γ2. Moreover, the optimal value for γ2

varies depending on the choice of resolution. Also, comparison with the upper
left part of Figure B.11 reveals that the maximum pull-back norm is not necessarily
attained for parameters where the rank of the Jacobian is maximal, i.e., when PIs
capture the most information about the point cloud.

b.5.1.3 Correlation with downstream task performance

We investigate the hypothesis that a high pull-back norm correlates with the perfor-
mance of a predictor trained on the encoding. To this end we feed PIs generated
with different choices of the parameters into logistic regression models and train
these to predict the sex feature. Here we use logistic regression as the downstream
model because of its simplicity, with the intention to minimize the impact of model
complexity and training techniques on the task performance. We provide results for
convolutional neural networks (CNN) in Appendix B.7.5.4.
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Figure B.12.: Gaussian kernel density estimation of the joint distribution of the
rank of the Jacobian or pull-back norm vs. logistic regression (robust)
validation accuracy.

We evaluate the performance in terms of validation accuracy and robust validation
accuracy8 using cross-validation, which are presented in the lower left and lower
right plots in Figure B.11. The validation accuracy and robust validation accuracy
exhibit a similar pattern to the pull-back norm. Notably, all three quantities reach
their maximum at around P = 30 and γ2 = 3.57 × 10−5, and their minimum at the
lower-left corner.

For a more quantitative comparison, Figure B.12 shows a kernel density estimate of
the joint distribution of four pairs of variables: Jacobian rank vs. validation accuracy,
Jacobian rank vs. robust validation accuracy, pull-back norm vs. validation accuracy,
and pull-back norm vs. robust validation accuracy. The plots clearly indicate a strong
correlation between the pull-back norm and the performance on the downstream
task. The Pearson’s correlation coefficient (PCC) between the four pairs of variables,
along with the p-value for a two-sided test, are presented in the lower right corner
of each plot in Figure B.12.

We conclude that for the considered task, there is a significant correlation between
the pull-back norm and the downstream task performance. It is also interesting to in-
terpret these results together with the rank of the Jacobian (upper left in Figure B.11).
The results demonstrate that the improvement in downstream performance is only
somewhat correlated with including more information, but it is strongly correlated
with including the most relevant information, which is precisely quantified by the
pull-back norm. Therefore, we suggest that the proposed framework can be used to
select appropriate PH encodings in practice. Note that the procedure is independent
of the downstream model architectures and training techniques.

b.5.2 Weighting function

ph encoding We maintain our focus on the 1-dimensional PIs with respect
to the Vietoris-Rips filtration. We set the baseline PI parameters as P = 20 and

8 Robust validation accuracy evaluates the accuracy on a test data set subject to additive Gaussian noise on
the inputs.
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γ2 = 3 × 10−5. For the weighting function, we consider the beta weighting function
induced by the probability density function of a beta distribution:

α(b, l) =
Γ(α + β)

Γ(α)Γ(β)
(κl)α−1(1 − κl)β−1

where Γ(·) is the Gamma function and κ is a scaling factor. We consider the
mean-variance parameterization for the beta weighting function: α = k

(
k(1−k)

s2 − 1
)

and β = (1 − k)
(

k(1−k)
s2 − 1

)
. Here k is the mean parameter, which controls the

concentration of the weighting function, and s2 is the variance parameter, which
controls the “degree” of concentration. We set s2 as 0.065 and κ as 1.

We consider beta weighting function for several reasons: 1) beta weighting function
is compactly supported, which is more suitable for PI; 2) it assigns zero weight to the
horizontal axis, which aligns with the stability criteria proposed by [2]; 3) by tuning
the mean parameter, one can highlight persistence intervals with different length
(see Figure B.13 for an illustration). This allows to investigate questions such as
“are short persistence intervals more crucial to this application than long persistence
intervals?”

Figure B.13.: As a weighting function for PIs for the brain artery data, we use the
beta weighting function with different values of mean parameter k.
Larger k assigns more importance to longer persistence intervals. The
top right corner of each panel shows the 1-dimensional PI derived from
the Rips filtration on one point cloud, illustrating the impact of the
weighting function depicted in the main plot.

b.5.2.1 Pull-back norm of feature gradient vector fields

We investigate the effects of the mean parameter k on the rank of Jacobian and pull-
back norm of the gradient vector field of the sex feature (see the left and middle panel
in Figure B.14). In the left panel of Figure B.14, we observe that as the weighting
function assigns more importance to longer persistence intervals, the rank of the
Jacobian monotonically decreases. This aligns with the fact that the number of longer
persistence intervals is generally smaller than the number of shorter persistence
intervals. However, the pull-back norm peaks when k is set to 0.1 and then decreases
as k increases further.
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Figure B.14.: The impact of the mean parameter for the beta weighting function on
the rank of Jacobian (left), pull-back norm of gradient field of feature
sex (middle), and the 7-folded validation classification accuracy (right).
The pull-back norms and validation accuracy are strongly correlated,
and they both indicate persistence intervals with medium length are
vital to classify the sex feature.

b.5.2.2 Correlation with downstream task performance

We again examine the correlation between the pull-back norm and the performance
of the logistic regression models trained on PIs. We present the validation accuracy
in the right panel of Figure B.14. Notably, we observe that the validation accuracy
demonstrates a similar pattern to the pull-back norm. Quantitatively, the Pearson’s
correlation coefficient (PCC) between pull-back norm and validation accuracy is
0.839, with a two-sided test p-value of 0.009. In contrast, the PCC between rank
and validation accuracy is 0.338, with a p-value as 0.413, which indicates once again
that including more information in the data representation does not necessarily
improve the downstream performance. These findings reinforce our conclusion that
the pull-back norm is highly predictive for the downstream task performance in this
task.

Interestingly, we observe that both the pull-back norm and the validation accuracy
reach their maximal at an intermediate value for the mean parameter. This implies
that persistence intervals of medium length are most crucial for classifying the sex
feature, which is consistent with the observation in the original paper [29]. We note
that this is an example of application for which medium length intervals in the
barcode contain the most information for the problem at hand. In Appendix B.7.6,
we complement this discussion by considering a real-world data set of point clouds
sampled from human body meshes, on which we compare long and short persistence
intervals from a different perspective: which part of the point clouds is the focus of
long intervals and which is the focus of short ones.
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b.6 Conclusions

The methods and observations presented in this work contribute to addressing
some of the main bottlenecks in the practical application of PH, namely how to
identify which data variations are captured by PH encodings, how to quantify the
effectiveness of these encodings in detecting particular data features, and how to
select the parameters of PH encodings in order to obtain data representations that
are suitable for solving a particular task.

We presented ways to analyze the most relevant features on the data manifold that are
captured by persistence images with different choices of the filtration and compared
the results with neural-network-based encodings. For example, in the RFP dataset
we found that while a pretrained PointNet had a relatively high alignment with
translation and dilation, the 1-dimensional persistence image encoding with Height
filtration had a high alignment with stretch, and the 1-dimensional persistence image
encoding with Rips filtration had a high alignment with a data variation that makes
the point clouds more convex. At the same time we observe that the response of the
encodings to these perturbations is less than 10% as strong as for other more abstract
data variations captured by the singular vectors of the Jacobian; for instance, the
maximal value taken by inner products between unit tangent vectors representing
perturbations and unit singular vectors is less than 0.1.

We demonstrated on the real-world brain artery tree data set that feature alignment
as measured by the Jacobian permits PH parameter tuning without the need to train
a classifier on top of the data representation in order to select the parameters based
on the test accuracy. Rather, one can select the parameters based on the pull-back
norm of the features of interest, and perform training using the data representation
with the highest pull-back norm. Meanwhile, we found that the persistence intervals
of medium length are crucial for classifying the sex feature on this data set. This
goes against the popular belief that long intervals are the most important, at the
same time confirming the findings from the original paper that employs PH on this
data set.

limitations and future work Our analysis is based on the structure of the
Jacobian of the data encoding, which by nature focuses only on local variations of
the input data. In future it will be interesting to further advance these methods in
regard to non-local data variations, where synthetic notions of derivatives such as
our empirical evaluation of the vector fields, and ideas such as the application of the
iterated closest point method could serve as a point of departure. The analysis of
non-linear transformations via Gram matrices has seen a number of recent advances
in the context of artificial neural networks. It will be interesting to explore possible
synergies between those investigations and PH data encodings.
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Another limitation of the proposed methodology is the assumption about the differ-
entiability of the encoding, and the need for a Riemannian manifold structure for the
representation space. For this reason, our methodology cannot be directly applied to
analyze PH representations such as the most common persistence diagrams, since
these cannot be endowed with a smooth structure [206]. We note, however, that a
Riemannian framework for approximated PDs has been introduced in [13].

The pull-back geometry approach also faces some computational challenges, since
calculating the average pull-back norm for either perturbation vector fields or gradi-
ent vector fields requires the computation of the Jacobian matrix JX , which is of size
(P × P, D × N), for each data point X, where P, D, N are respectively the resolution
for PI, the dimension of points in the point cloud and the number of points in the
point cloud. On the positive side, this enables insights that are more intrinsic to
the problem rather than being dependent on the choice of a classifier. Performance-
based methods can also involve computational challenges, due to the need to choose
the downstream models and tune their hyperparameters. We regard the proposed
methods not as a substitute but as complementary to performance-based methods.

b.7 Supplementary material

The appendix is organized into the following sections.

Appendix B.7.1 Riemannian manifold structure of the space of point clouds
Appendix B.7.2 Differentiability of the mapping from point clouds to PIs
Appendix B.7.3 Visualizing the Jacobian of the encoding over the data manifold
Apeendix B.7.4 Point saliency maps for PH encodings
Appendix B.7.5 Details on the experiments
Appendix B.7.6 Investigating which part of the data is highlighted by PH encodings

b.7.1 Riemannian manifold structure of the space of point clouds

Let M denote the collection of all point clouds in RD that contain exactly N points,

M = {X ⊂ RD : |X| = N}.

Recall that the 2-Wasserstein distance dW between two point clouds of the same size
in RD is defined as

dW(X, Y) = min
ω∈Ω(X,Y)

(
∑

x∈X
d2

E(x, ω(x))

) 1
2

where ω is an bijection between X and Y, Ω(X, Y) contains all bijections, and dE
denotes the Euclidean metric on RD. The 2-Wasserstein distance defined above
induces a metric topology on M.
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Compared to other distances in the space of point clouds, for instance the Gromov-
Hausdorff distance which is commonly used in the study of stability theory of
persistent homology [see, e.g., 37], the 2-Wasserstein distance endows the space of
point clouds with a favorable manifold structure. This manifold structure ensures
that every small neighborhood is isometric to an Euclidean open set.

We discuss the topological manifold structure (Appendix B.7.1.1) and Riemannian
manifold structure (Appendix B.7.1.2) on the space of point clouds. Then we
introduce the Riemannian style definition for perturbation vector fields and gradient
vector fields (Appendix B.7.1.3).

b.7.1.1 Manifold structure

We proceed to establish a manifold structure on M.

Proposition B.4. Let M be the set containing all point clouds in RD with N distinct
points, and dW be the 2-Wasserstein distance on M. For any point cloud X ∈ M, there
exists a Wasserstein ball BW(X, εX) and an injective mapping ξX : BW(X, εX) → RD×N

such that

dW(Y, Z) = dE(ξX(Y), ξX(Z)), ∀Y, Z ∈ BW(X, εX).

Proof. Consider a point cloud X = {xi}N
i=1 in M. For arbitrary ε > 0, we construct

an injective mapping ξX from BW(X, ε) to RD×N , then choose a radius ξX such
that the above equation holds. Denote [N] = {1, 2, . . . , N}. The map ξX(X) can be
characterized by a total order in X, τ : [N] → X, where

ξX(X) = [τ(1), τ(2), . . . , τ(N)] ∈ RD×N .

τ reorders X by assigning [N] = {1, 2, . . . , N} to {xi}N
i=1. For any other point cloud

Y ∈ BW(X, ε), there exists an optimal transport plan between X and Y, denoted by
ωXY : X → Y, satisfying

ωXY = arg min
ω∈Ω(X,Y)

(
∑

x∈X
d2

E(x, ω(x))

) 1
2

.

This maps assigns each element in X to a distinct element in Y. We define an
embedding ξX from Y to RD×N as follows:

ξX(Y) = [ωXY ◦ τ(1), ωXY ◦ τ(2), . . . , ωXY ◦ τ(N)] ∈ RD×N .

We proceed to show that ξX is an injective embedding. For any Y, Z ∈ BW(X, ε)
with ξX(Y) = ξX(Z), consider optimal transport plans ωXY between X and Y, and
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ωXZ between X and Z. Since ξX(Y) = ξX(Z), we have ωXY(x) = ωXZ(x), ∀x ∈ X.
Hence, for any y ∈ Y,

y = ωXY ◦ (ωXY)
−1(y) = ωXZ ◦ (ωXY)

−1(y) ∈ Z.

Notice ωXZ ◦ (ωXY)
−1 is a bijection between Y and Z. Therefore, Y = Z and ξX is

injective.

Next we calculate the radius ξX that preserves the distance between any two point
clouds. The goal is to find a radius ε such that for any Y, Z ∈ BW(X, ε), the
Wasserstein distance between the point clouds Y and Z,

dW(Y, Z) =

(
∑
y∈Y

d2
E(y, ωYZ(y))

) 1
2

,

is equal to the Euclidean distance between the embedding ξX(Y) and ξX(Z),

dE(ξX(Y), ξX(Z)) =

(
N

∑
i=1

d2
E(ωXY ◦ τ(i), ωXZ ◦ τ(i))

) 1
2

=

(
∑

x∈X
d2

E(ωXY(x), ωXZ(x)

) 1
2

=

(
∑
y∈Y

d2
E(y, ωXZ ◦ (ωXY)

−1(y)

) 1
2

.

Notice it suffices to find a radius ε such that for any Y, Z ∈ BW(X, ε), ωYZ =
ωXZ ◦ (ωXY)

−1. Equivalently, the optimal bijection between Y and Z is given by the
composition ωXZ ◦ (ωXY)

−1 : Y → X → Z. The key idea is that if Y and Z are both
sufficiently close to X in the sense of the Wasserstein distance, then the distance
between y ∈ Y and (ωXY)

−1(y) and the distance between z ∈ Z and (ωXZ)
−1(z)

will be small. Hence, each point y ∈ Y will be close to ωXZ ◦ (ωXY)
−1(y) and thus

we will have ωYZ = ωXZ ◦ (ωXY)
−1. The situation is illustrated in Figure B.15.

Denote ωXZ ◦ (ωXY)
−1 as ω̃YZ. For any point cloud Y ∈ BW(X, ε), we have

dW(X, Y) =

(
∑

x∈X
d2

E(x, ωXY(x))

) 1
2

< ε.

Hence,
max
x∈X

dE(x, ωXY(x)) < ε.

This suggests for any two point clouds Y, Z ∈ BW(X, ε),

max
x∈X

dE(ωXY(x), ωXZ(x)) < 2ε.
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Figure B.15.: Point clouds Y (orange triangles) and Z (green squares) in a Wasserstein
neighborhood of point cloud X (blue circles). Right: both ωXY(x) ∈ Y
and ωXZ(x) ∈ Z are close to x ∈ X, and hence they are close to each
other. Left: the distance between y and z ̸= ω̃YZ(y) ∈ Z is lower
bounded.

Equivalently,
max
y∈Y

dE(y, ω̃YZ(y)) < 2ε.

Let δ denote the minimal pairwise distance of points in X:

δ = min
x1,x2∈X

dE(x1, x2).

Note δ is strictly greater than zero since points in X are mutually different. For a
fixed point y ∈ Y, any point z in Z other than ω̃YZ(y) has a lower-bounded distance
from y:

min
z∈Z\{ω̃YZ(y)}

dE(y, z) ≥ δ − 2ε, ∀y ∈ Y.

Now consider εX = δ
8 . We have

dE(y, ω̃YZ(y)) < 2εX =
1
4

δ <
3
4

δ = δ − 2εX ≤ min
z∈Z\{ω̃YZ(y)}

dE(y, z), ∀y ∈ Y.

Equivalently,
ω̃YZ(y) = arg min

z∈Z
dE(y, z), ∀y ∈ Y.

This means ωYZ = ω̃YZ, which completes the proof.

Let M be the set containing all point clouds in RD with N distinct points. M,
together with the metric topology induced by 2-Wasserstein distance, forms a
manifold of dimension D × N.

Proof. By Proposition B.4, for every X ∈ M one can find a neighborhood BW(X, εX)
and an injective mapping ξX : BW(X, εX) → RD×N satisfying

dW(Y, Z) = dE(ξX(Y), ξX(Z)), ∀Y, Z ∈ BW(X, εX).
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Notice ξX is a bijective isometry between (BW(X, εX), dW) and (ξX(BW(X, εX)), dE).
Hence, ξX is open and continuous. Consequently, ξX is a homeomorphism, and
{ξX : BW(X, εX) → RD×N}X∈M, serving as an atlas, endows M with the manifold
structure.

b.7.1.2 Riemannian metric structure

Next we introduce the Riemannian metric structure for the manifold of point clouds,
and show the distance induced by the Riemannian metric coincides with the Wasser-
stein distance. To this end, consider an alternative definition for the space of point
clouds:

M′ = {X : [N] → RD | X is injective}/ ∼SN .

The equivalence relation is defined by:

X1 ∼SN X2 ⇔ ∃ν ∈ SN : X1 ◦ ν = X2 ⇔ Im(X1) = Im(X2).

Here SN denotes the N-symmetric group and Im(X) denotes the image of mapping
X. Two mappings are deemed equivalent when their images are identical. Note
the image of each mapping X : [N] → RD is a point cloud in RD as we defined
earlier, i.e. Im(X) ∈ M. In fact, the mapping M′ → M : [X] 7→ Im(X) gives the
identification between the original and new definitions for the space of point clouds.
For simplicity, we use one representative X to denote the equivalence class [X] and
also refer to X’s as point clouds.

This definition allows defining smooth curves in the point clouds space. Specifically,
a smooth curves in M′ is an element of the following set:

C = {γ : [N]× I → RD | γ(·, t) is injective, ∀t ∈ I; γ(k, ·) ∈ C∞(I), ∀k ∈ [N]}/ ∼SN .

Here I denote the closed unit interval [0, 1] and the equivalence relation is defined
by

γ1 ∼SN γ2 ⇔ ∃ν ∈ SN : γ1(ν(·), ·)) = γ2(·, ·)) ⇔ Im(γ1(·, t)) = Im(γ2(·, t)), ∀t.

A curve in point cloud space [γ] ∈ C is essentially a collection of N curves in RD such
that at each time t the N points on those curves form a point cloud (see Figure B.16).
For simplicity we use γ to denote the equivalence class [γ].

The tangent space at point cloud X is defined as

TXM′ = {V |Im(X) : Im(X) → RD | V a vector field on RD}.
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Figure B.16.: A curve in the point cloud space [γ] ∈ C, which maps the set {1, 2, 3}×
[0, 1] (left) to the plane R2 (right). In the right plot, the collection of
black dots represent the image of γ at a specific time t ∈ [0, 1], which
forms a point cloud in R2; the collection of orange arrows represents
the velocity tangent vector at γt along the curve γ.

A Riemannian metric is a manifold structure that smoothly assigns a positive-definite
inner product gX(·, ·) on the tangent space TXM at each X ∈ M. We introduce a
Riemannian metric for M as follows: TXM′:

gX(V, W) = ∑
x∈Im(X)

⟨V(x), W(x)⟩.

Endowed with this Riemannian metric, M′ is a Riemannian manifold, denoted by
(M′, g). We now discuss the distance induced by this Riemannian metric. For a
curve in point cloud space γ ∈ C, the velocity tangent vector at γt along curve γ is
defined as (see an example in the right panel in Figure B.16):

γ̇t : Im(γt) → RD; x → ∂tγ(kx, t).

Here kx ∈ [N] is the preimage of point x under γt, i.e., γt(kx) = x. The length of
curve is given by the length functional L:

L : C → R; γ 7→
∫

I

√
gγt(γ̇t, γ̇t)dt.

The distance induced by the Riemannian metric is the minimal length of curves
between two points on the manifold.

Definition B.5 (Riemannian distance). Let (M, g) be a Riemannian manifold. The
Riemannian distance between two points X, Y ∈ M is defined as

dg(X, Y) = inf{L(γ) : γ a smooth curve in M connecting X and Y}.

We point out the Riemannian distance coincides with the Wasserstein distance. To
see this, we need the following result by [Lemma 2.3, Chap. 9, 103].
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Lemma B.1 ([103]). Let X0, X1 be two points in Riemannian manifold M, and γ a curve
joining X0 to X1. Then γ minimizes the length functional if and only if γ minimizes the
energy functional defined as follows:

E : C → R; γ 7→
∫

I
gγt(γ̇t, γ̇t)dt.

Moreover, when γ is the minimizer, L(γ) =
√

E(γ).

Now we proceed to introduce the main statement of this subsection.

Proposition B.6. Let (M′, g) be the Riemannian manifold of point clouds. Then the
Riemannian distance is equivalent to Wasserstein distance, dg = dW .

Proof. Consider two point clouds X0, X1 ∈ M′. Let L be the length functional, and E
be the energy functional of all curves connecting X0 and X1. For any curve γ joining
X0 to X1, we have

E(γ) =
∫

I
gγt (γ̇t, γ̇t) dt

=
∫

I
∑

x∈Im(γt)

⟨γ̇t(x), γ̇t(x)⟩dt

=
∫

I
∑

x∈Im(γt)

∥∂tγ(kx, t)∥2dt

=
∫

I

N

∑
k=1

∥∂tγ(k, t)∥2dt

=
N

∑
k=1

∫
I
∥∂tγ(k, t)∥2dt

=
N

∑
k=1

E[γ(k, ·)].

The above equations along with Lemma B.1 indicate the minimizer of the length
functional L coincides with the minimizer of ∑N

k=1 E(γ(k, ·)). Recall for each k,
γ(k, ·) is a curve in RD joining X0(k) to X1(k). In Euclidean spaces, it is known
that straight lines minimize the length functional, which implies, by Lemma B.1,
they also minimize E(γ(k, ·)). Specifically for fixed end points X0(k) and X1(k),
E(γ(k, ·)) has minimal value d2

E(X0(k), X1(k)). Therefore, finding the minimizer of
∑N

k=1 E(γ(k, ·)) is equivalent to finding the bijection between Im(X0) and Im(X1)
that produces the minimal value of the sum of squared distances between points
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paired by the bijection. This exactly coincides with the optimal transport problem.
In conclusion, we have

dg(X0, X1) = min
γ

L(γ)

= min
γ

√
E(γ)

= min

(
N

∑
k=1

E[γ(k, ·)]
) 1

2

= min
ω∈Ω(Im(X0),Im(X1))

 ∑
x∈Im(X0)

d2(x, ω(x))

 1
2

= dW(Im(X0), Im(X1))

This is what was claimed.

b.7.1.3 Vector fields

In this section, we provide definitions for perturbation vector fields and gradient
vector fields for the manifold of point clouds.

Assume π : M → M is a perturbation mapping. As introduced in Section B.3.2, the
perturbation vector fields Vπ in the Euclidean space is defined as:

Vπ(X) = π(X)− X, ∀X ∈ M.

The main idea behind this definition is that each tangent vector Vπ(X) specifies
the direction of the straight line connecting X and π(X). For general Riemannian
manifolds, the notion of straight lines is generalized by minimizing geodesics.
Formally, the curve between two points on manifold that minimizes the length
functional is a minimizing geodesic. Then the question arises whether there exists a
minimizing geodesic between any two points on the manifold. To address this, we
introduce the concepts of geodesically completeness and the Hopf-Rinow theorem.

As introduced in Appendix B.7.1.2, the Riemannian metric induces a distance dg
on the manifold M. A sequence {Xi}i∈Z+ of points on (M, dg) is a dg-Cauchy
sequence if for any positive number ε there exists a positive integer N such that
dg(Xi, Xj) < ε, ∀i, j > N.
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Definition B.7 (Geodesically complete manifold). The Riemannian manifold (M, g)
is geodesically complete if any dg-Cauchy sequence {Xi}i∈Z+ converges in M:
∃Y ∈ M such that limi→∞ dg(Xi, Y) = 0.

Since the Euclidean space RD is a complete metric space, automatically the Rieman-
nian manifold of point clouds is geodesically complete. Also notice this manifold
is connected, since there exists a path connecting any two point clouds. The Hopf-
Rinow theorem ensures the existence of minimizing geodesics between any two
point clouds.

Theorem B.8 (Hopf-Rinow theorem). Let (M, g) be a connected Riemannian manifold.
If (M, dg) is geodesically complete, there exists a minimizing geodesic between any two
points on M.

Now we formally define the perturbation vector fields.

Definition B.9 (Perturbation vector field). Let (M, g) be a geodesically complete
manifold, and π : M → M be a perturbation mapping. The perturbation vector
field Vπ is defined as

Vπ : M → ⊔XTXM; X 7→ Vπ(X) = γ̇X,π(X)(0),

where γX,π(X) is a minimizing geodesic γX,π(X) : I → M with γX,π(X)(0) = X and
γX,π(X)(1) = π(X).

We proceed to define the Riemannian gradient vector field. Assume ρ is a real-valued
smooth function on M. In the cases of Euclidean spaces, the gradient vector can be
characeterized by the following property:

⟨∇ρ(X), v⟩ = ∂

∂v
ρ, ∀X ∈ Rm, v ∈ TXRm = Rm.

For general Riemannian manifolds, the notion of directional derivatives is generalized
by derivations.

Definition B.10 (Derivative). Let M be a manifold, and C∞(M) be the space of
smooth functions on M. A derivative at X ∈ M is a linear map ∂ : C∞(M) → R

satisfying the Leibniz identity:

∂( f g) = ∂( f ) · g(X) + ∂(g) · f (X).
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For a fixed point X ∈ M, it turns out that each tangent vector v ∈ TXM can
be uniquely associated with a derivative, denoted by ∂v, in the sense that ∂v(ρ)
measures the rate of change of the function value ρ(X), moving through X with
the velocity specified by v. Detailed discussion regarding the equivalence between
tangent vectors and derivations can be found in [Chap. 8, 336]. Now we provide the
definition of the Riemannian gradient.

Definition B.11 (Gradient vector field). Let (M, g) be a Riemannian manifold, and
ρ : M → R a smooth function. The gradient vector field of ρ, denoted by ∇ρ, is
defined as the vector field

∇ρ : M → ⊔XTXM; X 7→ ∇ρ(X)

satisfying the property:

gX(∇ρ(X), v) = ∂v(ρ), ∀X ∈ M, v ∈ TXM.

Note that Definition B.9 and Definition B.11 are applicable to other types of data, pro-
vided that the data space can be equipped with a geodesically complete Riemannian
manifold structure.

b.7.1.4 Pull-back metric

In this section, we provide definitions for pull-back metric for general encoding
mappings between Riemannian manifolds.

Let (M, gM) be the Riemannian manifold for input data, (N , gN ) be the Riemannian
manifold for output data, and f : M → N be a differential encoding mapping
between the input space and output space. Recall that for any X in M the Jacobian
of f at X, denoted by J f

X , is a linear mapping between TXM and Tf (X)N . The pull-
back metric induced by f , denoted by g f , is the structure that assigns the following
inner-product on the tangent space TXM for each X ∈ M:

g f (V, W) = gN (J f
X(V), J f

X(W)).

Then the pull-back norm for any tangent vector V at X is defined as

∥V∥ f =
√

g f (V, V).

Please note that when one considers N as a vector space and gN as the Euclidean
metric, the above definition for pull-back metric reduces to the one that we introduced
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in Section B.3.3. Meanwhile, we point out that, while the Riemannian metric on
M does not affect the pull-back metric, it is still necessary in our approach since
it’s essential in defining the perturbation vector field and gradient vector field (see
Definition B.9 and Definition B.11).

b.7.2 Differentiability of the mapping from point clouds to PIs

We provide details for the differentiability of the mapping from point cloud data to
PIs and computation the Jacobian. We start with a brief review of the PI computation
pipeline. Let X be a point cloud and Cl(X, R) be the clique complex of the R-
neighborhood graph. The pipeline for computing k-dimensional PH and constructing
PI involves the following steps (Chapter 1):

• Determine a filtration map: ϕ : Cl(X, R) → R. This induces a filtration.

• Pair simplices such that every non-trivial k-dimensional homology class in
the filtration is associated to a pair of simplices (σb, σd). Roughly, one can
think of σb as the k-simplex that creates the homology class and σb as the
(k + 1)-simplex that trivializes the homology class.

• Obtain the persistence diagram PD, as a multiset of birth-death values (ϕ(σb), ϕ(σd))
and transform PD into a multiset η(PD) of birth-lifespan pairs (ϕ(σb), ϕ(σd)−
ϕ(σb)).

• Choose a smooth kernel g(b,l), e.g., Gaussian kernel, and a smooth weighting
function α(b, l), e.g., linear function of l, and construct the persistence surface
ψ:

ψ(x, y) = ∑
(b,l)∈η(PD)

α(b, l)g(b,l)(x, y).

• Obtain the PI in the form of a P × P matrix whose (i, j)-th entry is:

PIij =
∫

pixelij
ψ(x, y).

Here ∪ijpixelij forms a grid subdivision of a subdomain of ψ. In our ex-
periments, we consider a rectangle subdomain [xmin, xmax]× [ymin, ymax] and
evenly-spaced rectangle pixels. Specifically, consider grid points xk = xmin +
k∆x for k = 0, 1, · · · , P, where ∆x = xmax−xmin

P , and yl = ymin + l∆y for
l = 0, 1, · · · , P, where ∆y = ymax−ymin

P . Set pixelij = [xi, xi+1] × [yj, yj+1] for
i = 0, 1, · · · , P − 1 and j = 0, 1, · · · , P − 1. We then estimate the integral value
by

PIij = s · ψ(xi, yi),

where s is the area of pixelij, i.e., s = ∆x∆y.
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Notice ψ, as a sum of Gaussian kernels, is differentiable with respect to the coordi-
nates of the kernel centers (b, l). Meanwhile, the filtration mapping is differentiable
with respect to the coordinate of every point in X. For example, the filtration value in
Vietoris-Rips filtration, ϕ(σ) = Diam(σ) = maxx,y∈σ dE(x, y), is differentiable with
respect to the coordinate of any point in X. Hence, the mapping from point cloud
data to PI is differentiable.

More technically, as discussed in Appendix B.7.1.1, for every point cloud X ∈ M,
there exists a neighborhood U of X and a coordinate map ξ : U → RD×N . We claim
that the mapping from point clouds to PIs f : M → RP×P is smooth in the sense
that the following composition map is smooth:

f ◦ ξ−1 : ξ(U) → RP×P.

Here we omit the manifold notation for the output space N , given that N is a
submanifold in RP×P. Specifically, assume τ : [N] → X is the total order that
characterizes ξ(X), i.e., ξ(X) = [τ(1), τ(2), . . . , τ(N)]. For any (i, j) ∈ [P] × [P],

k ∈ [N], the partial derivative
∂PIij
∂τ(k) can be formulated as follows:

∂PIij

∂τ(k)
= ∑

σ

∂PIij

∂ϕ(σ)

∂ϕ(σ)

∂τ(k)

= ∑
σ

∂s · ψ(xij, yij)

∂ϕ(σ)

∂ϕ(σ)

∂τ(k)
.

For computing the Jacobian in our experiments, we use the Gudhi library [331]
version 3.8.0 and Tensorflow version 2.12.0. Specifically, we use Gudhi library
to collect PDs, especially Gudhi.tensorflow.RipsLayer class to collect PDs with
respect to the Rips filtration. We then manually compute PIs as described above
using Tensorflow. Finally, we collect the Jacobian for the whole pipeline with
tensorflow.GradientTape.jacobian function.

b.7.3 Visualizing the Jacobian of the encoding over the data manifold

In this section we visualize the singular value decomposition (SVD) of Jacobian on a
toy data set, aiming at providing further intuition for the eigenvectors of Jacobian
mappings. We consider point clouds that are uniformly sampled from axis-aligned
ellipses of width w and height h. These are illustrated in the left panel of Figure B.17.
To visualize the Jacobian at an input point cloud X, we plot the pull-back unit ball
around X in the data manifold,

B∗(X, 1) = {v ∈ TXM : ∥v∥ f = 1}.

This corresponds to the preimage of a unit ball in Tf (X)N . Notably, the equation
1 = ∥v∥ f = ∑ λi⟨v, qi⟩2 indicates that the pull-back unit ball forms an m-dimensional
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ellipsoid with semi-axes q1, q2, . . . , qm, and the lengths of these semi-axes are given
by 1√

λ1
, 1√

λ2
, . . . , 1√

λm
.

Figure B.17.: Pull-back unit balls (right) on a toy data set of point clouds sampled
from ellipses of width w and height h (left). Shorter semi-axes of the
pull-back unit ball correspond to larger eigenvalues of the Jacobian.

In the right panel of Figure B.17 we plot the pull-back unit balls for the encoding f
given by the 1-dimensional PI with respect to the Vietoris-Rips filtration. The plot
reveals that the eigenvectors of the encoding associated with the larger eigenvalue
consistently align with the direction of increasing min{w, h}. This alignment is
in accordance with what we would expect the Vietoris-Rips filtration to capture
on this specific data set, since the death value depends on the radius of the inner
circumcircle of a hole. Consequently, variations in the length of the major axis have
minimal impact on PI. Conversely, altering the length of the minor axis directly
affects the death parameter and changes the PI.

b.7.4 Point saliency maps for PH encodings

Figure B.18.: Point saliency score with respect to 1-dimensional PIs on Vietoris-Rips
filtration for synthetic 2D point clouds.

In the context of interpretability, point saliency maps are commonly used tools
to explain the decisions made by trained models [239, 380]. These maps assign
importance scores to each point in an input point cloud (or to each pixel in an input
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image), indicating their significance in relation to the model’s prediction. In our
study, we employ a similar strategy to visualize the importance of each point in an
input point cloud with respect to the PH encoding.

Given a point cloud X and an encoding map f , we define the encoding saliency
score for each point xi ∈ X as

s f (xi) =

∥∥∥∥ ∂ f
∂xi

∥∥∥∥
F

,

where ∥ · ∥F denotes the Frobenius norm, which is the generalized Euclidean norm
for matrices. Here, ∂ f

∂x represents the Jacobian matrix of the encoding, which is a
matrix of format P2 × D obtained by flattening the PI into a vector in RP2

and taking
the partial derivative of each output pixel with respect to each coordinate of each
point in the input point cloud. Similarly, ∂ f

∂xi
is the vector of partial derivatives of the

encoding with respect to the coordinates of the i-th point xi in the point cloud. This
score quantifies the sensitivity of the representation to variations on the coordinates
of x.

In Figure B.18, we plot the point saliency score with respect to the Rips used
in Section B.5 for point clouds sampled from eight synthetic curves in R2. For
each point cloud we highlight individual points according to their saliency scores.
We observe that endpoints and points related to the inner circumcycle are often
highlighted. These points correspond to the simplices that create/destroy certain
homology classes in the filtration. For instance, in the curved rhombus in the first-row,
second-column panel, the endpoints (yellow) on the upper right side are highlighted.
Note that the edge between these two endpoints will connect the gap and create a
homology class. Therefore, variations on these two points can significantly change
the birth parameter of the corresponding homology class. Meanwhile, the two points
(green) on the upper left and lower right sides are highlighted. They are related to
the inner circumcycle of the rhombus, and are vertices of the triangle that destroys
the homology class. Therefore variations on these two points can change the death
parameter of the homology class significantly.

Before concluding this section, it’s important to note that the saliency scores shown
in Figure B.18 are heavily influenced by the sampling process. For example, many
of the highlighted endpoints shown in Figure B.18 are a result of sparse sampling.
Consequently, the resulting saliency scores might be more indicative of the sampling
rather than the underlying shape itself. To better comprehend the shape, one
potential approach is to compute the average saliency score across multiple different
samplings.
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b.7.5 Details on the experiments

b.7.5.1 Reproducibility

The data and code developed for this research are made available at https://

anonymous.4open.science/r/persistent-homology-0915.

b.7.5.2 Jacobian normalization

Throughout our work, we use pull-back norm to quantify the sensitivity of the
encoding method to data variations. One needs to be careful when comparing the
pull-back norms induced by different encodings, since encodings may have different
scaling levels. For example, consider Euclidean data space M = R2, and two
encoding mappings f1 = x + 0.1y, f2 = x + 10y. The pull-back norms of a tangent
vector v = [1, 0]T with respect to f1 and f2 are:

∥v∥ f1 = ∥J f1 v∥ =

∥∥∥∥(1 0
0 0.1

)
· [1, 0]T

∥∥∥∥ = 1,

∥v∥ f2 = ∥J f2 v∥ =

∥∥∥∥(1 0
0 10

)
· [1, 0]T

∥∥∥∥ = 1.

In terms of “absolute sensitivity”, f1 and f2 has the same level of sensitivity to
variation v. More specifically, when variation v is applied to a data point X, both
f1(X) and f2(X) would change with distance approximately 1 in the representation
space. However, in terms of “relative sensitivity”, f1 is more sensitive to v. The reason
is that for f1, the vector v is the eigenvector of the Jacobian with the largest eigenvalue;
while for f2, v is the eigenvector with the smallest eigenvalue. Equivalently, for f1, v
has the largest pull-back norm among all tangent vectors with the same norm as v,
whereas for f2, v has the smallest pull-back norm.

In Section B.4.3, our goal is to study and compare the focus of different encodings.
In Section B.5.1.2 we search for the encoding whose primary focus is on the data
variations of interest. Hence, in both sections we remove the scaling factor by
considering the normalized Jacobian. Specifically, we divide the Jacobian matrix by
its largest singular value, J̃ f = J f /λ

f
1 . For vector fields V we consider the normalized

average pull-back norm:
1
|D| ∑

X∈D
∥ J̃ f · V(X)∥.
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Returning to the previous example, the normalized pull-back norm for vector v with

respect to f1 and f2 are ∥J f1 v∥
λ

f1
1

= 1
1 = 1 and ∥J f2 v∥

λ
f2
1

= 1
10 = 0.1, respectively.

b.7.5.3 Identifying what is recognized

We provide details for the experiments in Section B.4.

radial frequency pattern data set Figure B.19 shows some examples in
the Radial Frequency Patterns (RFP) data set DRFP.

Figure B.19.: Radial Frequency Pattern data.

ph parameters For the Vietoris-Rips filtration, we set maximal edge length as 1.
For the DTM filtration, we set maximal edge length as 0.5 and parameter m as 0.02. For
the Height filtration, we set maximal edge length as 0.1. We note that we need to set
the maximum edge length to a small value to be able to capture topological features
of interest (for instance, one wants to avoid connecting different outer regions of
petals); alternatively, one could use geodesic distances or cubical complexes, see
also [338, Fig.20] for a detailed discussion. Notice there’s no need to set a small
maximum edge length for Rips and DTM filtrations since the filtration value of an
edge in Rips and DTM filtrations takes the distance between its two vertices into
account. In contrast, in Height filtration the filtration value of an edge is defined
by the maximal filtration value of its vertices, which implies any two points will be
immediately connected by an edge between them, if exists, after they appear in the
filtration. For the construction of PI, we set the resolution P as 20, variance γ2 of the
Gaussian kernel as 10−4, and the range of the image as [0, 1]× [0, 1]. The weighting
function is set as α(b, l) = l. The implementation utilized Tensorflow version 2.12.0
and Gudhi [331] version 3.8.0.

visualization of the effects of perturbation on ph We visualizes the
effects of shearing perturbation and convex perturbation on the persistent homology
with respect to Rips filtration (see the upper panel in Figure B.20) and Height
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filtration (see the lower panel in Figure B.20). We omit plots associated with DTM
filtration as they closely resemble those associated with Rips filtration. Please note
that while these visualizations provide insights into the effects of perturbations on
PH, they are highly dependent on the specific point clouds under consideration. In
fact, the effects of perturbations on PH can vary significantly across different point
clouds.

As shown in the upper penal in Figure B.20, the shearing changes the sparsity of
points in the point clouds and hence changes the birth values (x coordinates) of
certain points in PD with respect to Rips filtration. Meanwhile, shearing changes the
size of petals and hence changes the death values (y coordinates) of certain PD points
with respect to Rips filtration. On the other hand, convex has the effect of “opening
up” the central region of the point clouds. Consequently, some loops appear later in
the filtration, notably the five loops that already exist in the second column of the
first row but do not show up in the second column of the third row. Consequently,
convex also induces changes in the birth values of PD points associated with these
loops. We note that, in comparison to shearing, the convex perturbation has a more
significant impact on PI. This is consistent with the findings illustrated in Figure B.8,
where Rips is more sensitive to convex compared to shearing.

In the lower panel of Figure B.20, we can observe distinct effects of these two pertur-
bations on the PH associated with the Height filtration. The shearing perturbation
directly changes the x coordinates of the points in the original points clouds, which
correspond to their filtration values, and consequently changes the PI noticeably. On
the other hand, the convex perturbation changes the PH in a more significant way.
Specifically, certain small loops that initially appeared in the filtration (as seen in the
first row of the lower panel in Figure B.20) no longer appear in the entire filtration
after perturbation (as seen in the third row of the lower panel in Figure B.20). This
observation arises from the small value we assigned to the maximal edge length param-
eter for Height filtration. In fact, for some point clouds, the central points originally
have a distance smaller than maximal edge length. Then convex perturbation can pull
these central points apart, causing their distance to exceed the maximal edge length
threshold. Consequently, edges connecting these central points vanish from the
filtration, resulting in the disappearance of certain small loops. In such cases, as
shown in Figure B.20, the convex can significantly change the PI associated with
Height filtration. However, for other point clouds where the central points initially
have a distance greater than maximal edge length, the corresponding PI may remain
relatively unchanged after the convex perturbation. This is again consistent with the
results shown in Figure B.8, where the pull-back norms of the convex perturbation
associated with Height filtration exhibit a significant range of variation.

pointnet architecture and training details In our experiments, we
labeled each point cloud data X ∈ DRFP with the number of petals, i.e. the parameter
w of the curve RFPa,w from which X is sampled. This produces 8 classes in total and
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Figure B.20.: Figure (a) visualizes the effects of different perturbations on persistent
homology with respect to Rips filtration. The first four columns illus-
trate the simplicial complex Kr in the Rips filtration with parameter r
ranging from 0.0 to 0.25. The fifth and sixth columns show the corre-
sponding PDs and PIs, respectively. The first row is associated with the
original point cloud; while the second and third rows are associated
with the point cloud perturbed by shearing and convex, respectively.
Figure (b) visualizes the effects of perturbations on persistent homol-
ogy with respect to Height filtration, following the same row-column
arrangement as in Figure (a).

we train the PointNet model to classify each point cloud in the data set. The PointNet
model consists of a 1-dimensional convolutional layer with 64 filters and kernel size
1, followed by batch normalization and rectified linear unit (ReLU) activation. Then
global max pooling is applied to obtain a permutation-invariant representation. This
is followed by two fully connected layers with 128 and 64 hidden units, respectively,
with ReLU activation. The final output layer uses softmax activation to produce
theprobability distribution over the output classes. We trained the model with a
batch size of 32 for 100 epochs, using a learning rate of 0.001. The optimization
algorithm used was Adam, and the model was trained using the cross-entropy loss
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function. We note data augmentation techniques are used for training PointNet in
literatures [see, e.g., 282]. However, we do not augment the data during training,
in order to ensure a fair comparison with other encodings. The implementation
utilized Tensorflow version 2.12.0.

perturbation vector field estimation Let D = {Xi}i∈I be a finite data
set of point clouds, and π : M → M a perturbation mapping defined on the data
manifold. In the case where the data lies in Euclidean space, i.e. M = Rm, one can
compute the perturbation vectors as following:

Vπ(X) = π(X)− X, ∀X ∈ D.

However, in the case of general Riemannian data manifold, the subtraction between
any two points on the manifold may not be well-defined. To address this, we control
the perturbation mapping such that for every X ∈ D the perturbed point cloud
π(X) lies in a small neighborhood of X and calculate the perturbation vector via the
local coordinate system. Specifically, as shown in Appendix B.7.1.1, for each point
cloud X ∈ D, one can find a neighborhood X ∈ UX ⊂ M and an injective isometry
ξX : UX → Rm. We control the perturbation mapping sends every point X to UX,
i.e.

π(X) ∈ UX , ∀X ∈ D.

Then the perturbation vectors can computed with the subtraction on the Euclidean
domain ξX(UX) as follows:

Vπ(X) = ξX(π(X))− ξX(X), ∀X ∈ D.

unnormalized pull-back norms As discussed in Appendix B.7.5.2, we
consider the normalized average pull-back norms for perturbation tangent vector
fields in Section B.4.3. We present the results of unnormalized average pull-back
norms in Figure B.21. Note that one could conclude from Figure B.21 that, on average,
Height is more sensitive to convex than Rips in terms of “absolute sensitivity”.
However, we reach the opposite conclusion from Figure B.8 in terms of “relative
sensitivity”.

b.7.5.4 Selecting hyperparameters

We provide further details on Section B.5.

ph parameters In this section, we focus on PH encoding constructed on Vietoris-
Rips filtration. We set the parameter maximal edge legnth as 0.25, and the range of PI
as [0.0, 0.25]× [0.0, 0.25]. The implementation utilized Gudhi [331] version 3.8.0 and
Tensorflow version 2.12.0.

238



B.7 supplementary material

Figure B.21.: Unnormalized average pull-back norm of different perturbation vector
fields with respect different encodings.

gradient vector field estimation bLet D = {Xi}i∈I be a finite data set of
point clouds, and ρ(Xi) be the corresponding feature values of point clouds in D. In
the case when the data lies in Euclidean space, we can estimate the gradient vectors
with the finite difference method (FDM) as follows:

∇ρ(X) = X′ − X, X′ = argmax
Y∈D

| ρ(Y)− ρ(X) |
dE(X, X′)

, ∀X ∈ D.

For binary categorical feature, i.e. ρ(X) ∈ {0, 1}, the formula can be modified as

∇ρ(X) = X′ − X, X′ = argmin
Y∈{Z∈D:ρ(Z) ̸=ρ(X)}

dE(X, Y), ∀X ∈ D.

Figure B.22.: The grey vectors (right) represent the difference vector between the
blue point cloud and the transformed orange point cloud (left).

However, in the case of general Riemannian data manifold, the subtraction between
any two points on M may not be well-defined. To address this, when estimating
gradient vector located at X, we send other point clouds in the data set to a neigh-
borhood of X via transformation that preserves the feature value. In our experiment,
we use Euclidean transformation since the sex feature is irrelevant to the position or
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orientation of the brain artery trees. Then FDM can be applied to the transformed
data set, via the coordinate system on that neighborhood.

Specifically, we utilize the iterated closest point (ICP) method [32, 74]. Let E(RD) be
the collection of all Euclidean transformations in RD

E(RD) = {ι : RD → RD : dE(x, y) = dE(ι(x), ι(x)), ∀x, y ∈ RD}.

Note each ι can be naturally extended to a transformation on point clouds: ι(X) ≜
{ι(x) : x ∈ X}. Let ζ be a error function in the sense that ζ(X, Y) measures the
“difference” between X and Y. Given two point clouds X and Y, the ICP algorithm
searches the Euclidean transformation that gives the minimal error value:

ιX,Y = argmin
ι∈E(RD)

ζ(X, ι(Y)).

Here ιX,Y is Euclidean transformation found by ICP algorithm for point clouds X
and Y. Define the ICP discrepancy between point clouds X and Y (not necessarily a
distance) as

dICP(X, Y) = dW(X, ιX,Y(Y)),

where dW is Wasserstein distance between point clouds. Let UX be a neighborhood
of X and ξX a coordinate map ξX : UX → Rm. Estimate the gradient vector field for
binary categorical feature ρ as follows (see an illustration in Figure B.22):

∇ρ(X) = ξX(ιX,X′(X′))− ξX(X), X′ = argmin
Y∈{Z∈D:ρ(Z) ̸=ρ(X)}

dICP(X, Y), ∀X ∈ D,

The implementation utilized python library Open3D [381] version 0.17.0 and POT
[124] version 0.9.0.

downstream tasks and performance In Section B.5, we fed PIs produced
by different parameter settings to logistic regression models to predict the sex feature.
Specifically, we normalize the PIs such that the pixel values range within [0, 1].
We implemented logistic regression models using Scikit-learn [267] version 1.2.2
with default hyperparameters. When evaluating the model, we use a 7-fold cross
validation. And for robust evaluation in Section B.5.1.3, we add identically and
independent distributed Gaussian noise with variance 10−2 to each coordinate of
each point in input point clouds.

Here, we also investigate the effects of resolution and variance of Gaussian kernel
on the downstream performance of convolutional neural network (CNN). The CNN
model takes PIs as inputs, then begins with a convolutional layer with 32 filters and
a 3 × 3 kernel, followed by a ReLU activation function. Then max pooling with a
pool size of 2× 2 is applied. Subsequently, another convolutional layer with 64 filters
and a 3 × 3 kernel is added, also followed by a ReLU activation and max pooling.
The resulting outputs are then flattened and passed through a fully connected layer
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Figure B.23.: Standard (left) and robust (right) test accuracy of the convolutional
neural network (CNN) trained on PIs, across different produced by
different parameter.

Figure B.24.: Gaussian kernel density estimation of the joint distribution of the rank
of the Jacobian or pull-back norm vs. CNN (robust) validation accuracy.

with 64 neurons and ReLU activation. Finally, a single neuron with a sigmoid
activation function is used for binary classification. To train the model, we employ
Adam optimizer with the cross-entropy loss function. The implementation utilized
Tensorflow version 2.12.0.

We represent the downstream performance of the CNN model in Figure B.23. Shown
in Figure B.24 is the kernel density estimation of the joint distribution of four pairs of
variables: Jacobian rank vs. validation accuracy, Jacobian rank vs. robust validation
accuracy, pull-back norm vs. validation accuracy, and pull-back norm vs. robust
validation accuracy. Additionally, the Pearson correlation coefficient and p-value of a
two-sided test are presented at the lower right corner of each point in Figure B.24. We
observe that the correlation between pull-back norms and downstream performances
remains significant.

We conjecture that complex models, such as CNNs, are able to obtain good down-
stream performance even if the average pull-back norm is low, so long as it is not
zero. Intuitively, when the feature information is indeed contained in the encoded
representation but is not significantly pronounced, a simple model may not be able
to extract this information, but a complex model, along with appropriate training
techniques, can still learn to extract and utilize this information.
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b.7.6 Investigating which part of the data is highlighted by PH encodings

In this section, we demonstrate how our method facilitates investigating which part
of the data is the focus of PH encodings. To this end, we will introduce noising
perturbation on different parts of the point clouds and examine the average pull-
back norm of these perturbation vector fields. Moreover, we also consider the beta
weighting function for PIs and investigate the effects of the beta mean parameter
on the pull-back geometry, which allows comparing the focus of long and short
persistence intervals.

human body data We utilize the benchmark mesh segmentation data [73]. This
data set consists of meshes representing 19 different types of 3-dimensional shapes,
each annotated with manually added segmentation labels. For our analysis, we
focus on the subset of meshes representing the human body, which encompasses
various gestures such as standing, walking, and sitting. We randomly subsample
three point clouds from the vertices of each human body mesh, with each point
cloud containing N = 500 points.

ph encoding We focus on the PH encoding that sends each point cloud to its 2-
dimensional PI with respect to the Vietoris-Rips filtration. We choose 2-dimensional
PH because we note that the underlying geometric objects of human body meshes
are 2−dimensional surfaces whose 1-dimensional homology is typically zero, and
whose reduced 0-dimensional homology is zero as well. For the construction of PIs,
we set the PI hyperparameters as P = 20, γ = 1 × 10−4, maximal edge legnth= 0.3,
and the range of PI as [0.0, 0.3]× [0.0, 0.3]. For the weighting function, we again
employ the beta weighting function that we introduced in Section B.5.2. We set the
variance parameter for the beta weighting function s2 as 0.04 and consider the mean
parameter k ranging from 0.1 to 0.5. We present a visualization of the impact of the
mean parameter on the PIs in Figure B.25.

Figure B.25.: An example point cloud from the human body data set, with segmen-
tation of body parts (a), its 2-dimensional persistence diagram with
respect to the Vietoris-Rips filtration (b), and persistence images with
beta weight function, with the beta mean parameter 0.1, 0.4 and 0.7
(c)-(e).
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perturbation We merge the segmentation labels for the sampled human body
point clouds into 6 categories: head, torso, arms, hands, legs and feet (see panel (a)
in Figure B.25 for an illustration). Accordingly, we consider 6 types of perturbations,
each adding independent Gaussian noise to points in one body part. We provide
visualizations of some of the perturbations in Figure B.26.

Figure B.26.: Sensitivity of the 2-dimensional PH encoding on the Vietoris-Rips
filtration on an example point cloud from human body data set, to
perturbations of the Head, Torso, and Arms on the point cloud, across
different paramters of the PI beta weight function.

pull-back norm We evaluate the average pull-back norms of the noising per-
turbation on 6 body parts and present the results in Figure B.27.

It is noticeable in Figure B.27 that persistence intervals of varying lengths capture
distinct aspects of the data. Specifically, when the mean parameter is set to 0.1, the
encoding exhibits significant sensitivity to perturbations on legs, when k = 0.2, the
focus of the encoding switches to headF. For larger mean parameters, the encoding
becomes most sensitive to perturbations on torso. This could be explained by
observing that shorter persistence intervals in 2-dimensional PDs on Rips filtration
are more related to smaller hollow shapes in the data, such as arms and head, while
longer intervals relate more to larger hollow shapes, such as the torso.

These findings can also guide the selection of hyperparameters for PH encodings.
For instance, in a face recognition task, we know from above that shorter persistence
intervals are sensitive to data variations on head. Hence, one should choose a value
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around 0.2 for the beta mean parameter in order to obtain a data presentation that is
most suitable for this task. At the same time, we note once again that long persistence
intervals do not always contain the most important information and that the optimal
choice of the weighting function (and other hyperparameters) depend on the specific
task at hand.

Figure B.27.: Average pull-back of the 2-dimensional PH encoding on the human
body data set, across perturbations of different body parts, and different
paramters of the PI beta weight function.
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C
Topological data analysis of structure preservation via
hyperdimensional computing: Additional experimental
results

This appendix consists of the supplementary material that accompanies Chapter 4,
i.e., the corresponding publication:

Renata Turkeš, Steven Mortier, Jorg De Winne, Dick Botteldooren, Paul
Devos, Steven Latré and Tim Verdonck, Who is WithMe? EEG features for
attention in a visual task, with auditory and rhythmic support, under review.

In Chapter 4, the detailed experimental results are only shown for an example data
set lying on the bumpy circle, and the appendix shows the results for the remaining
data.
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c.1 Distance preservation

c.1.1 MDS embedding
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Figure C.1.: MDS embedding of astroid into R2.
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Figure C.2.: MDS embedding of apple into R2.
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Figure C.3.: MDS embedding of lemniscate into R2.
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Figure C.4.: MDS embedding of concentric circles into R2.
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Figure C.5.: MDS embedding of fish into R2.
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Figure C.6.: MDS embedding of star into R2.
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Figure C.7.: MDS embedding of olympics into R2.
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Figure C.8.: MDS embedding of orthogonal circles into R2.
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Figure C.9.: MDS embedding of nine squares into R2.
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Figure C.10.: MDS embedding of cube vertices into R2.
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Figure C.11.: MDS embedding of UCI-HAR into R2.
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Figure C.12.: MDS embedding of CTG into R2.
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Figure C.13.: MDS embedding of ISOLET into R2.
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c.1.2 Distance matrix
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Figure C.14.: Distance matrices for the astroid.
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(X ′′, l2) (X ′′, l1) (H(X ′′), l2) (H′′(X ), l2)

Figure C.15.: Distance matrices for the apple.
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Figure C.16.: Distance matrices for the lemniscate.
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Figure C.17.: Distance matrices for the concentric circles.
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Figure C.18.: Distance matrices for the fish.
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Figure C.19.: Distance matrices for the star.

258



C.1 distance preservation

(X , l2) (X , l1) (H(X ), l2) (H(X ), l2)

(X ′, l2) (X ′, l1) (H(X ′), l2) (H′(X ), l2)

(X ′′, l2) (X ′′, l1) (H(X ′′), l2) (H′′(X ), l2)

Figure C.20.: Distance matrices for the olympics.
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Figure C.21.: Distance matrices for the orthogonal circles.
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Figure C.22.: Distance matrices for the nine squares.
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Figure C.23.: Distance matrices for the cube vertices.
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Figure C.24.: Distance matrices for UCI-HAR.
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Figure C.25.: Distance matrices for CTG.
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Figure C.26.: Distance matrices for ISOLET.
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c.1.3 Distribution of distances
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Figure C.27.: Distribution of distances for the astroid.

(X , l2) (X , l1) (H(X ), l2) (H(X ), l2)

(X ′, l2) (X ′, l1) (H(X ′), l2) (H′(X ), l2)

(X ′′, l2) (X ′′, l1) (H(X ′′), l2) (H′′(X ), l2)

Figure C.28.: Distribution of distances for the apple.
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Figure C.29.: Distribution of distances for the lemniscaste.
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Figure C.30.: Distribution of distances for the concentric circles.
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Figure C.31.: Distribution of distances for the fish.
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Figure C.32.: Distribution of distances for the star.
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Figure C.33.: Distribution of distances for the olympics.
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Figure C.34.: Distribution of distances for the orthogonal circles.
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Figure C.35.: Distribution of distances for the nine squares.
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Figure C.36.: Distribution of distances for the cube vertices.
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Figure C.37.: Distribution of distances for UCI-HAR.
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Figure C.38.: Distribution of distances for CTG.
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Figure C.39.: Distribution of distances for ISOLET.
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Figure C.40.: Norm distribution for the astroid.
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Figure C.41.: Norm distribution for the apple.
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Figure C.42.: Norm distribution for the lemniscate.
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Figure C.43.: Norm distribution for the concentric circles.
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Figure C.44.: Norm distribution for the fish.
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Figure C.45.: Norm distribution for the star.
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Figure C.46.: Norm distribution for the olympics.
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Figure C.47.: Norm distribution for the orthogonal circles.
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Figure C.48.: Norm distribution for the nine squares.
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Figure C.49.: Norm distribution for the cube vertices.
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Figure C.50.: Norm distribution for UCI-HAR.
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Figure C.51.: Norm distribution for CTG.
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Figure C.52.: Norm distribution for ISOLET.
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Figure C.53.: 0- and 1-dimensional persistent homology for the astroid.
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Figure C.54.: 0- and 1-dimensional persistent homology for the apple.
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Figure C.55.: 0- and 1-dimensional persistent homology for the lemniscate.
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Figure C.56.: 0- and 1-dimensional persistent homology for the concentric circles.

280



C.2 structure preservation, or preservation of persistent homology

(X , l2) (X , l1) (H(X ), l2) (H(X ), l2)

(X ′, l2) (X ′, l1) (H(X ′), l2) (H′(X ), l2)

(X ′′, l2) (X ′′, l1) (H(X ′′), l2) (H′′(X ), l2)

Figure C.57.: 0- and 1-dimensional persistent homology for the fish.
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Figure C.58.: 0- and 1-dimensional persistent homology for the star.

282



C.2 structure preservation, or preservation of persistent homology

(X , l2) (X , l1) (H(X ), l2) (H(X ), l2)

(X ′, l2) (X ′, l1) (H(X ′), l2) (H′(X ), l2)

(X ′′, l2) (X ′′, l1) (H(X ′′), l2) (H′′(X ), l2)

Figure C.59.: 0- and 1-dimensional persistent homology for the olympics.
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Figure C.60.: 0- and 1-dimensional persistent homology for the orthogonal circles.
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Figure C.61.: 0- and 1-dimensional persistent homology for the nine squares.
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Figure C.62.: 0- and 1-dimensional persistent homology for the cube vertices.
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Figure C.63.: 0- and 1-dimensional persistent homology for UCI-HAR.
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Figure C.64.: 0- and 1-dimensional persistent homology for CTG.
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Figure C.65.: 0- and 1-dimensional persistent homology for ISOLET.
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D
Classification of targets and distractors in an audiovisual
attention task based on EEG

This appendix can be seen as a predecessor to Chapter 5, as it involves preliminary
investigation of the same WithMe project that aims to improve interaction

between humans and artificial intelligence. In the WithMe experiment, participants
are shown sequences of Target and Distractor digits, and are instructed to recall
the Targets. The goal here is to validate the experimental paradigm and data set:
we show that the benchmark EEG models perform well in classifying between EEG
signals for the Target and Distractor stimuli, and therefore, the WithMe paradigm is
appropriate for eliciting attention and related P300 event related potentials (ERPs).

The appendix is based on the following publication:

Steven Mortier, Renata Turkeš, Jorg De Winne, Wannes Van Ransbeeck,
Dick Botteldooren, Paul Devos, Steven Latré, Marc Leman, and Tim
Verdonck, Classification of targets and distractors in an audiovisual attention
task based on EEG, Sensors (2023).

This research was funded by the Research Foundation-Flanders (FWO) under Grant
No. G0A0220N.
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D.1 introduction

d.1 Introduction

The interaction between humans and artificial intelligence (AI) still lacks the level of
engagement and synchronization that symbolizes the interaction between humans.
The primary goal of the WithMe project1 is to thoroughly study the processes that
occur in the human brain during joint activities with another individual, such as
working towards shared objectives [93]. The brain signals collected in this study
are primarily indicative of attention, but also of emotion and reward. The purpose
of this research is to determine relevant EEG features indicative of attention using
machine learning (ML).

To this end, a specific experiment was designed. Temporal audiovisual integration
and support of visual attention by sound is well demonstrated in the pip-and-pop
experiment [48]. The pip-and-pop experiment is based on a visual search, which
does not lead to a strong visually evoked potential. Moreover, as we expected that
rhythmic presentation of target stimuli also affects working memory, the task was
replaced by a modified digit-span task where five target digits had to be remembered
and reported in our experiment [93]. This task involves visual attention, working
memory, and sequence recall. To investigate the role of attention, we measured the
brain activation directly by means of EEG.

Specifically, event-related potentials (ERPs) have been shown to be excellent tools for
studying attention [220, 361]. Risto Näätänen was a pioneer in this domain, as he
studied the connection between ERPs and attention, which led to his discovery of
the (auditory) mismatch negativity ERP [107, 247–249]. Additionally, research has
shown that the amplitude of the P300 is directly related to the amount of attentional
resources available for stimulus processing [107, 144, 170, 294]. The P300 ERP is
observed to be elicited for deviant stimuli in a sequence of standard stimuli, where
the deviant stimuli are in some way more relevant to the presented task [275, 309].
In our experiment, we thus expect that the targets elicit a P300 ERP. Research has
shown that the P300 actually consists of two subcomponents: the P3a and P3b [277].
The P3a generally reaches its peak around 250ms to 280ms post-stimulus and is
associated with attention-related brain activity [276]. On the other hand, the P3b
peak can vary in latency, lying between 300ms and 500ms post-stimulus [277]. The
P3b is elicited by improbable events, provided that the improbable event is somehow
relevant to the task at hand [104]. In our experimental setting, we expect to elicit a
P3a, as the target stimuli are not scarce (there are approximately 50% targets and 50%
distractors) and our experiment is designed to evoke attention. We do not expect to
elicit a P3a for distractors, as subjects should not pay attention to them.

The goal of this work is to accurately classify whether a target or distractor stimulus
was presented to the subject, based on the subject’s EEG data. For this purpose, we

1 The WithMe project is a research project funded by the Research Foundation Flan-
ders (FWO). More information can be found at https://researchportal.be/en/project/

withme-making-human-artificial-intelligence-interactions-more-entraining-and-engaging.
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applied different existing ML methods to classify EEG data and investigate which
method performs best on our specific use case. As we expect to elicit attention
when a target is shown (and not when a distractor is shown), the trained ML will
effectively be an attention detector. We expect the attention to manifest itself in the
form of a P3a ERP, and therefore expect that the model will base its predictions
on the presence of a P3a peak. Detecting P3a signals, and, more broadly, P300

signals, has a wide range of applications [224, 253], particularly in P300-based
brain computer interfaces (BCIs) [223], for example in spellers [150, 181, 256] and
intelligent home control systems [16, 225]. These applications can be of great help
for patients suffering from amyotrophic lateral sclerosis (ALS) or spinocerebellar
ataxia, as it can enable them to communicate in a daily environment [147, 150, 160,
256]. In the literature, a wide array of techniques are used to classify and detect
P300 [5]. Some techniques rely on a data transformation and subsequently use
logistic regression to classify the transformed data, for example xDAWN+RG [21,
22, 85, 298]. Recently, deep learning approaches, primarily based on convolutional
neural networks (CNNs), for example EEGNet [198, 271, 374], have also gained in
popularity [192, 229, 313]. Finally, as EEG data are essentially heavily correlated
multivariate time series, it is possible to apply standard time series classification
techniques as well [95, 96, 108].

Building BCIs that are trained on multiple subjects and generalize well to previously
unseen subjects holds significant value [139]. Indeed, BCIs often need to be re-trained
or at least calibrated for the end-user [362], which is a costly and user unfriendly
process [221, 363]. However, due to inter-subject variability of EEG data, training
models that generalize to multiple subjects (cross-subject (CS) models) is a harder
task than training models for one subject (individual subject (IS) models) [221, 242,
363]. For this reason, we also investigate the hypothesized drop in performance when
transitioning from IS to CS models. Additionally, the ML models should be able to
make predictions in real-time, as this is essential in real-world BCI applications.

Finally, we analyze which EEG channels and time points are used by our models to
make its predictions, and check whether these align with the expected P3a attention
signature. However, ML models such as CNNs are considered “black boxes”, as
no clear explanation for the decisions made by these models exists [212]. The
rapidly emerging and improving field of explainable AI (xAI) aims to tackle these
issues by providing insights into ML models’ decision-making processes. Some xAI
techniques that are often used to gain insights into EEG classification models are
Local Interpretable Model-Agnostic Explanations (LIME) [162, 293], DeepLIFT [127,
198, 314] and saliency maps [15, 121, 317], among others.

In summary, we aim to enhance the interaction between humans and AI and have
designed a novel experiment for this purpose. Specifically, this work considers
building a ML model to recognize targets shown to a subject, which equates to
creating an attention detector. These models should ideally generalize well to
previously unseen subjects. The primary contributions of this work are:
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• Training of state-of-the-art classification methods to accurately predict target
and distractor stimuli based on EEG data.

• Analysis of the performance difference between IS and CS models.

• Investigation into which EEG channels and time points were important for the
model predictions, using xAI.

Ultimately, the contributions of this research collectively advance our understanding
of human-AI interaction and will aid in the development of more effective BCIs and
their associated applications.

The remainder of this paper is structured as follows: Section D.2 illustrates the clas-
sification problems and provides a description of the classification methods used in
this work. Section Section D.3 presents the results and provides an in-depth analysis
of the best performing model. This section also contains an extensive discussion
of the achieved results. Finally, in Section Section D.4, we draw conclusions and
provide possible directions for future research.

d.2 Classification problem

The WithMe EEG data of multivariate time series is described in detail in Section 5.2.1.
As mentioned in Section D.1, we expect to observe a P3a ERP when subjects see
a target stimulus. The P3a ERP is characterized by a positive voltage deflection
between 250ms and 280ms post-stimulus, although the exact timing can vary [94,
263, 276]. As our experiment uses visual stimuli, we expect the P3a ERP to be the
most pronounced in the parietal-occipital region of the brain [80]. Figure D.1 shows
the evoked response for one subject, averaged over all parietal-occipital electrodes,
as indicated in the figure inset. We observe a clear positive deflection between 200ms
and 300ms post-stimulus, which is in line with our expectations.

The models trained in this study consider a two-class classification problem (target
versus distractor) and take single-trial EEG epochs as input to predict a binary label.
As the data is downsampled to 50 Hz, one epoch contains 60 time steps, for 64

electrodes. This means that the input is of shape (N, 64, 60) with N the number of
epochs. It is important to note that it is impossible to obtain 100% accuracy for this
model. Indeed, the model makes a prediction based on the subject’s assessment of
a stimulus, and it is possible that a subject did not correctly recognize all targets
and distractors. As the ground truth labels are based on the predefined labels of the
experiment, it is possible that there is a slight mismatch between the labels and the
subject’s perceived class. Nevertheless, we assume that this problem is rare, meaning
that commonly used metrics, for example accuracy, have a valid interpretation.
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Figure D.1.: The evoked response for targets and distractors for one subject. The
data is averaged over all electrodes of the parietal-occipital region in the
brain, as indicated in the figure inset.

Ideally, the models should be able to generalize to previously unseen subjects. To
investigate this, we train the models in two ways: models trained on IS and models
trained on (nearly) all subjects, also called CS models. The former will be evaluated
using a randomly sampled test set with a standard 80% train and 20% test set
split, while the latter are evaluated using a leave-one-out (LOO) methodology. In
general, models perform better when trained and tested on individual subjects [132].
This can be attributed to the variability in subject’s EEG data elicited by the same
stimuli. However, in practice, EEG classification models should ideally extrapolate
to previously unseen subjects. For example, BCIs often need to be calibrated for
new end-users, which usually takes 20 to 30 minutes [123, 134, 194]. Therefore,
it is interesting to investigate which model architectures are best suited to build
subject-independent classifiers.

d.2.1 Classifiers

To solve this classification problem, we train and evaluate different existing ML
models. Different methodologies for classifying EEG data exist. For example, we
can extract features from the EEG data and use these extracted features as input
to the classifier. These features can, among others, be extracted from the time
domain, frequency domain or the time-frequency domain, or through methods
such as principal component analysis [279, 359]. Such methods are referred to
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as feature-based methods. Another common approach uses raw or preprocessed
EEG data as input to the classifier. In this approach, commonly referred to as an
end-to-end method, the classifier itself will extract relevant features from the data
during training, and use these features to classify a sample. As both methodologies
are interesting approaches, we will use methods belonging to both approaches. In
this study, we apply four distinct classifiers and compare the results on a novel
data set. An overview of the classifiers and their methodologies is presented in
Table D.1. First, we will apply the xDAWN pipeline, which has demonstrated
significant success in several EEG classification tasks [85, 298]. For example, the
BCI challenge organized as part of the IEEE Neural Engineering Conference 2015

was won by an xDAWN-based approach [85]. In this study, we employ a similar
approach, consisting of first estimating two sets of xDAWN spatial filters, one for
each class (target and distractor) [298]. Subsequently, the grand average evoked
potential of each class is filtered using the corresponding filters, after which they
are concatenated to each of the trials. Then, the covariance matrix of each resulting
trial is used as a feature for the next steps in the pipeline [24, 83]. The next step is
to project the covariance matrices on the tangent space using a Riemannian metric,
as described in [21, 22]. After these feature extraction steps, a classifier is used
to make the final predictions. Based on [85] and [25], we used logistic regression
[268]. For the remainder of this study, we will refer to this method as xDAWN+RG
(xDAWN+Riemannian Geometry). Calculating the xDAWN covariance matrices and
projection to the tangent space were done using the PyRiemann package [25].

The second method we consider is EEGNet [198]. EEGNet exhibits strong perfor-
mance on a variety of EEG-based classification tasks, such as P300 ERP classification
[121, 198] and motor imagery classification [372]. Whereas the previous method
used extracted features as input to the classifier, EEGNet performs both the feature
extraction and classification. EEGNet is a deep learning model, more specifically
a CNN. As its name suggests, EEGNet is optimized for classifying EEG data by
employing a set of specific design choices. Firstly, it uses temporal convolutions
to learn frequency filters [198]. As suggested by the authors, the length of the
temporal kernel used in these convolutions is set to half the sampling rate, which
allows the model to capture frequency information at frequencies of 2 Hz and higher
[198]. Second, depthwise convolutions are used to learn frequency-specific spatial
filters. In this context, depthwise convolutions have two main advantages. First, they
noticeably reduce the number of trainable parameters, since these convolutions are
not fully connected to the previous layer; instead, they are connected to each feature
map individually. This induces the second, EEG-specific advantage: the model
learns spatial filters for each temporal filter, which enables the efficient extraction
of frequency-specific spatial filters [198]. The last convolutional part consists of
a separable convolution, which is a combination of a depthwise convolution and
pointwise convolution. The former learns how to summarize individual feature
maps in time, while the latter learns how to optimally combine the feature maps
[198]. Finally, all features are passed to a dense layer for classification. More details
on the EEGNet architecture can be found in [198]. We use the standard EEGNet-8,2
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layout, which means that the model learns 8 temporal filters and 2 spatial filters per
temporal filter.

The first two methods are designed for EEG specifically. However, since EEG data
is essentially a heavily correlated multivariate time series, it is interesting to study
the results of a more general method designed to classify such time series. To this
end, we applied Rocket (RandOm Convolutional KErnel Transform) [95]. Based on
the success of CNNs for time series classification, Rocket uses random convolutional
kernels combined with simple linear classifiers. This novel combination achieves
state-of-the-art performance on the UCR time series archive using only a fraction
of the computational cost of existing methods [91, 95]. As a follow-up to Rocket,
the authors also designed MiniRocket [96]. They claim MiniRocket can be trained
up to 75 times faster than Rocket, while achieving nearly the same performance.
MiniRocket distinguishes itself from Rocket primarily by reducing the degree of ran-
domness that Rocket generates, resulting in MiniRocket being almost deterministic
[96]. Since methods to classify EEG data, such as EEGNet, can be very computa-
tionally expensive, it is worth exploring the effectiveness of less computationally
expensive methods. We used the Rocket and MiniRocket implementations in the
sktime package and combined them with the ridge regression classifier implemented
in scikit-learn, as suggested by the authors [95, 96, 216, 268].

d.2.2 Metrics

To allow the comparison of various approaches, it is essential to have predetermined
performance metrics. We will focus on three metrics that are widely used in EEG
classification literature: accuracy, F1-score, and area under the receiver operating
characteristic curve (ROC AUC) [303]. First, the accuracy states the number of
correctly classified samples across both classes. Second, the F1-score assesses the
predictive performance of a model by calculating the harmonic mean of the precision
and recall metrics. The equations used to calculate the accuracy and F1-score are
given in D.1 and D.4 respectively, where we use the following abbreviations: true
positives (TP), false positives (FP), true negatives (TN) and false negatives (FN).
Third, by plotting the true positive rate against the false positive rate for different
classification thresholds, we obtain the ROC curve. The ROC AUC is defined as
the area under this curve and provides a measure for how well a classifier can
distinguish between true and false samples, or in our case, targets and distractors
respectively. Finally, we also assess the required training time and model complexity
of all models.

accuracy =
TP + TN

TP + TN + FP + FN
(D.1)
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precision =
TP

TP + FP
(D.2)

recall =
TP

TP + FN
(D.3)

F1-score = 2 · precision · recall
precision + recall

=
2TP

2TP + FP + FN
(D.4)

d.3 Experimental results

d.3.1 Individual subject models

The performance of the models, assessed using the metrics introduced in Sec-
tion D.2.2, can be seen in Table D.2 and Figure D.2. Evidently, using an EEG-specific
model architecture benefits the performance of IS models. While xDAWN+RG and
EEGNet perform equally well, they demonstrate superior accuracy, F1-score and
area under the curve (AUC) in comparison to MiniRocket and Rocket. As expected,
MiniRocket achieves slightly inferior performance compared to Rocket. However,
MiniRocket’s training time was 15 times faster on our dataset. Notably, while
xDAWN+RG and EEGNet exhibit equal performance, xDAWN+RG is significantly
less computationally expensive than EEGNet. On central processing units (CPUs)
alone, EEGNet’s training time is 9 times longer. Although training times can be
accelerated for EEGNet using (expensive) graphics processing units (GPUs), even
when using an NVIDIA GTX 1080 GPU, EEGNet still requires 2.5 times as long to
train as xDAWN+RG.

d.3.2 Cross-subject models

Similar results are obtained for CS models, where EEG-specific approaches perform
better than Rocket and MiniRocket, as shown in Table D.3 and Figure D.3. However,
in this scenario, EEGNet outperforms xDAWN+RG. We hypothesize that this can
be attributed to EEGNet’s added complexity and a greater number of parameters
compared to xDAWN+RG. This additional capacity is more likely to be able to learn
features that extrapolate well to previously unseen data points.

d.3.3 Individual subject models vs. cross-subject models

As we discussed in D.2, we expect that the performance of the IS models is better
than that of the CS models. Despite having access to a significantly larger amount
of data, constructing a CS model is a considerably more challenging task. To
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Model Target domain Methodology

xDAWN+RG [298] EEG feature-based
MiniRocket [96] time series feature-based
Rocket [95] time series feature-based
EEGNet [198] EEG end-to-end

Table D.1.: Overview of the methods that were used in this study, together with their
original target domain and methodology.

Model Accuracy F1-score AUC

xDAWN+RG 0.76 ± 0.04 0.76 ± 0.04 0.84 ± 0.05
MiniRocket 0.69 ± 0.05 0.70 ± 0.05 0.76 ± 0.06
Rocket 0.72 ± 0.05 0.72 ± 0.05 0.79 ± 0.06
EEGNet 0.76 ± 0.04 0.76 ± 0.04 0.83 ± 0.04

Table D.2.: Classifier test performance for individual subject models, averaged across
the 42 subjects. The best performances are indicated in boldface.
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Figure D.2.: Violin plots of the test accuracy, F1-score and AUC for models trained
on individual subjects.

Model Accuracy F1-score AUC

xDAWN+RG 0.73 ± 0.04 0.72 ± 0.06 0.81 ± 0.05
MiniRocket 0.69 ± 0.04 0.69 ± 0.05 0.76 ± 0.05
Rocket 0.72 ± 0.05 0.71 ± 0.06 0.79 ± 0.05
EEGNet 0.76 ± 0.04 0.76 ± 0.05 0.84 ± 0.05

Table D.3.: Classifier performance for cross-subject models. Every subject was used
as a test subject once, we report the average across all test sets. The best
performances are indicated in boldface.
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illustrate the performance disparity between the two, we refer to Table D.4 and
Figure D.4, which showcase the performance difference by subtracting the CS
model’s performance from that of the IS model. EEGNet, MiniRocket and Rocket
exhibit similar performance for both IS and CS models. However, the xDAWN+RG
model demonstrates a noticeable decrease in performance. Given the lower absolute
performance of the (Mini)Rocket models compared to EEGNet and xDAWN+RG, we
will focus on the latter for the remainder of this discussion. We hypothesize that the
inferior performance on CS models when using xDAWN+RG can be attributed to its
simpler and lightweight nature. Furthermore, xDAWN+RG works by first calculating
the evoked responses for all classes. These can differ significantly from subject to
subject, both in P3a peak height and in time [147, 207, 290]. The convolutional
nature of EEGNet likely enabled it to capture the temporal dynamics of the elicited
responses more effectively across different subjects. It is important to note that the
CS models had access to a significantly larger corpus of training data than the IS
models, which is part of the reason that they kept up reasonably well with the IS
models.

d.3.4 Analysis of the EEGNet cross-subject model

This section aims to conduct a further investigation into the CS EEGNet model. We
conduct this analysis for the EEGNet model, as it performed the best in both the IS
and CS scenario. Furthermore, we include this analysis only for the CS models, as
they are the most useful in practice, due to their generalization capabilities. However,
the conclusions are similar for the IS models.

d.3.4.1 Confusion matrices

First, we investigate whether the model focuses on the correct features to make a
prediction. For example, it is possible that we trained a sound detector instead of a
target/distractor model. Indeed, conditions Con3 and Con4 contain auditory clues
for the target. Theoretically, the model could rely solely on the activation in the
auditory stimuli processing region of the brain and achieve acceptable performance.
For example, if the model performs perfectly on Con3 and Con4, while predicting all
trials belonging to Con1 and Con2 to be distractors (due to the absence of auditory
stimuli), it would achieve an accuracy of approximately 75%.

The confusion matrices in Figure D.5 negate this assumption. The model performs
comparably in detecting distractors under all conditions. However, the model
performs slightly better at identifying targets correctly for Con3 and Con4. The
accuracies for specific conditions, shown in Table D.5, also reflect this. Indeed, the
accuracies for conditions Con3 and Con4 are higher than the accuracies for Con1 and
Con2. We hypothesize that the inclusion of auditory support causes an additional
signature in the EEG data, making it easier for the model to recognize targets.
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Figure D.3.: Violin plots of the test accuracy, F1-score and AUC for cross-subject
models.

Model Accuracy F1-score AUC

xDAWN+RG 0.03 ± 0.02 0.04 ± 0.04 0.03 ± 0.02

MiniRocket 0.00 ± 0.03 0.01 ± 0.03 -0.00 ± 0.03

Rocket 0.00 ± 0.02 0.01 ± 0.04 -0.00 ± 0.03

EEGNet 0.00 ± 0.02 0.00 ± 0.02 -0.01 ± 0.03

Table D.4.: Drop in performance, calculated by subtracting the test performance of
cross-subject models from that of individual subject models. The best
performances are indicated in boldface.
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Figure D.4.: Violin plots of the drop in performance, calculated by subtracting the
test performance of cross-subject models from that of individual subject
models.
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Figure D.5.: Confusion matrices for the cross-subject EEGNet model, split across
experimental conditions. The confusion matrices are obtained by aggre-
gating all the test predictions of the CS models.

Additionally, it was already confirmed by a previous analysis that the subjects are
able to recall the targets better in conditions with auditory support [93].

d.3.4.2 Saliency maps

Next, we explore the electrodes and timings that are predominantly used by our
models for making predictions. Trivially, we expect that the model does not use
the pre-stimulus (t < 0) EEG data. As deep learning methods such as EEGNet
are inherently black box models, we resort to xAI methods to obtain (interpretable)
insights into the model. A possible technique is a saliency map, which is a visual
representation that highlights the degree of importance of regions or features in
an input sample on the model prediction [317]. To generate a saliency map, the
gradient of the model output with respect to the input sample is computed using
backpropagation [121]. More specifically, this process involves fixing the weights of
the trained model and propagating the gradient with respect to the layer’s inputs
back to the first layer that receives the input data.
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Figure D.6 shows such a saliency map. This saliency map illustrates the electrodes
and timings that had the greatest average impact on the model prediction when
identifying a sample as a target. It is computed by first calculating the average
saliency map for each test subject individually, then normalizing these saliency
maps, and ultimately taking the average across all 42 subjects. In Figure D.7, the
same information is repeated, displayed as a topographic map at five time points.
From Figure D.6 and Figure D.7, we can see that our model predominantly used the
parietal-occipital electrodes and time points between 200ms and 300ms post-stimulus
to make its prediction, which is what we expected. We also investigated the saliency
maps under different conditions, but noticed no significant difference between the
conditions.

d.4 Conclusions

The WithMe project has led to the collection of a large, novel EEG dataset that can
be used to create ML methods to automatically detect attention using P3a ERPs in
single trial data. This is of great importance to BCIs, as they often rely on the P3a,
or, more broadly, the P300 ERP and have a wide range of applications.

We successfully achieved the goal of this work, which was to classify target and
distractor stimuli based on the subject’s EEG data. To achieve this goal, we studied
four classification methods that differed significantly in origin and complexity. We
investigated the performance of these methods both as IS and CS models, with the
latter the most practically relevant due to its generalization capabilities. For the IS
models, xDAWN+RG and EEGNet obtained an accuracy of 76%, outperforming
MiniRocket and Rocket. While EEGNet was able to obtain the same accuracy of 76%
in the CS case, the accuracy of xDAWN+RG dropped to 0.73%. We attribute this
difference to the larger complexity of EEGNet, which likely enables it to generalize
better to previously unseen subjects. The drop in performance between IS and CS
models is not as pronounced as we expected it to be, and even nonexistent for
EEGNet. We attribute this to the fact that the CS models had approximately 42 times
more training data available. The EEGNet CS model performed slightly better on
samples recorded under conditions Con3 and Con4, which are the conditions that
include auditory support. While EEGNet achieved the best performance overall, it
also has the highest model complexity (highest number of trainable parameters) and
takes the longest time and most compute to train. However, all four models are able
to make predictions in real time. This property is essential for real-world human-AI
interaction experiments and applications.

Finally, the application of xAI enabled us to investigate which EEG channels and
time points were used by the otherwise black-box EEGNet CS model to make its
predictions. Indeed, using saliency maps, we conclude that the model primarily
based its prediction on the values of the electrodes in the parietal-occipital region
between 200ms and 300ms post-stimulus. This is in line with our hypotheses, as we
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Con1 Con1 Con1 Con1

Accuracy 0.74 0.71 0.81 0.77

Table D.5.: The test accuracies of the CS EEGNet model for the different conditions.
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Figure D.6.: Saliency map for epochs labeled as targets by the cross-subject EEGNet
model. We averaged normalized saliency maps over all 42 test subjects
for the CS model.

-200ms 200ms 300ms 400ms 700ms

Figure D.7.: The saliency map from Figure D.6 is shown as a topographic map
at five different timings. A deeper shade of red indicates a larger
gradient. At t = −0.200ms and t = 0.700ms, the gradients are near
zero, indicating that the model does not use these timings. Contrary,
for t ∈ {0.200, 0.300, 0.400}ms, there is a large gradient in the parietal-
occipital region of the brain.
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expected to elicit an attention-related P3a ERP in the parietal-occipital region of the
brain when the subject saw a target digit.

In conclusion, we achieved the goal of accurately classifying targets and distractors
based on a subject’s EEG data. At the same time, our work contributes to the
development of more effective BCIs and their applications. Finally, we validated the
EEG data collected in the WithMe experiment.

While this study provides valuable insights into attention detection using EEG data,
it is important to acknowledge some limitations. For example, as mentioned in D.2,
part of the data used to train the model was labeled incorrectly, as the ground truth
labels are based on the predefined labels of the experiment rather than the subject’s
perceived class. A possible solution is to limit the data to samples where the entire
sequence was reported correctly. However, this would mean that we lose a lot of
data, which would in turn decrease the performance of the models. Alternatively,
we could remove all “bad sequences”, where a bad sequence would be defined as
a sequence in which none of the targets were remembered correctly. This could be
caused by either incorrectly identifying the stimuli, or by bad memory management,
despite correctly identifying the targets and distractors. However, the number of
answers that did not include at least one of the target digits (regardless of its place
in the sequence) is negligible.

In future work, an experiment dedicated to attention should be used to circumvent
the limitations regarding bad labels, as described in Section D.4. This would allow
for labels that exactly correspond to the subject’s perception of a stimulus, which
would in turn lead to more accurate attention detectors. The ultimate goal could then
be to use this attention detector in a BCI, to detect whether a subject paid attention.
In case they did not, the BCI could repeat the sequence or stimulus, to make sure
that the subject can act accordingly. This could also improve learning systems, that
is, systems that know whether a student actually paid attention to the provided
information [7, 157]. Regarding the training and optimization of ML models, it
would be interesting to include an exhaustive feature selection procedure to allow
the ML model to focus on the (most) relevant features. Additionally, we want to
explore other ways to enable CS generalization, for example using transfer learning
[130, 208]. This could further increase the generalization performance of all methods.
In particular, this has the potential to elevate the performance of lightweight models
such as xDAWN+RG to that of the computationally expensive EEGNet. While this
work focuses on the detection of attention using epoched EEG data, the experiment
can also be used to study working memory [93]. Indeed, the complete sequence
EEG data should permit an investigation regarding working memory and whether
it is influenced by auditory and/or rhythmic support.

data availability Publicly available datasets were analyzed in this study. The
behavioral data can be found here:
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https://osf.io/ntmy8/?view_only=88d951c394c7481dba00a1497d64797f.

The preprocessed EEG data are openly available on Figshare at https://doi.org/
10.6084/m9.figshare.24278887 [244]. The raw EEG data will be released later as
part of a separate publication.

package versions Table D.6 lists the Python libraries used in the computational
experiments.

Package Version Reference

python 3.9.13 [344]
MNE 1.2.1 [142]
pyriemann 0.3 [25]
torch 1.13.1 [262]
sktime 0.17.1 [216]
scikit-learn 1.1.3 [268]

Table D.6.: The versions of the Python packages used in the project.

309

https://osf.io/ntmy8/?view_only=88d951c394c7481dba00a1497d64797f
https://doi.org/10.6084/m9.figshare.24278887
https://doi.org/10.6084/m9.figshare.24278887




Bibliography

[1] Reza Abiri, Soheil Borhani, Yang Jiang, and Xiaopeng Zhao. “Decoding
attentional state to faces and scenes using EEG brainwaves.” In: Complexity
2019 (2019).

[2] Henry Adams, Tegan Emerson, Michael Kirby, Rachel Neville, Chris Peterson,
Patrick Shipman, Sofya Chepushtanova, Eric Hanson, Francis Motta, and Lori
Ziegelmeier. “Persistence images: A stable vector representation of persistent
homology.” In: The Journal of Machine Learning Research 18.1 (2017), pp. 218–
252.

[3] Henry Adams and Michael Moy. “Topology applied to machine learning:
From global to local.” In: Frontiers in Artificial Intelligence 4 (2021), p. 54.

[4] Aaron Adcock, Erik Carlsson, and Gunnar Carlsson. “The ring of algebraic
functions on persistence bar codes.” In: arXiv preprint arXiv:1304.0530 (2013).

[5] Swati Aggarwal and Nupur Chugh. “Review of Machine Learning Tech-
niques for EEG Based Brain Computer Interface.” In: Archives of Computa-
tional Methods in Engineering 1 (Jan. 2022), pp. 1–20. issn: 18861784. doi:
10.1007/S11831-021-09684-6/FIGURES/8. url: https://link.springer.
com/article/10.1007/s11831-021-09684-6.

[6] Morsheda Akter, Shafew Ansary, Md Al-Masrur Khan, and Dongwan Kim.
“Human activity recognition using attention-mechanism-based deep learning
feature combination.” In: Sensors 23.12 (2023), p. 5715.

[7] Abeer Al-Nafjan and Mashael Aldayel. “Predict Students’ Attention in Online
Learning Using EEG Data.” In: Sustainability 2022, Vol. 14, Page 6553 14.11

(May 2022), p. 6553. issn: 2071-1050. doi: 10.3390/SU14116553. url: https:
//www.mdpi.com/2071-1050/14/11/6553/htmhttps://www.mdpi.com/

2071-1050/14/11/6553.

[8] Fatih Altindis, Bulent Yilmaz, Sergey Borisenok, and Kutay Icoz. “Use of
topological data analysis in motor intention based brain-computer interfaces.”
In: 2018 26th European Signal Processing Conference (EUSIPCO). IEEE. 2018,
pp. 1695–1699.
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[21] Alexandre Barachant, Stéphane Bonnet, Marco Congedo, and Christian Jutten.
“Multiclass brain-computer interface classification by Riemannian geometry.”
In: IEEE Transactions on Biomedical Engineering 59.4 (Apr. 2012), pp. 920–928.
issn: 00189294. doi: 10.1109/TBME.2011.2172210.

312

https://doi.org/10.1007/S13246-021-01083-2/TABLES/4
https://link.springer.com/article/10.1007/s13246-021-01083-2
https://link.springer.com/article/10.1007/s13246-021-01083-2
https://doi.org/10.1109/JBHI.2017.2690801
https://doi.org/10.1109/TBME.2011.2172210


bibliography
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Notation

Tables D.7-D.9 summarize the notation respectively for the input data, filtration and
persistence signatures. For the purpose of clarity, throughout the manuscript we aim
for the following typographic convention:

uppercase set, e.g., S, X, Z, K
lowercase scalar, e.g., n, m, k, r
boldface lowercase vector, e.g., x, y
Greek alphabet lowercase function, e.g., ϕ, ψ, τ, λ, γ, ω

with the exception of persistent homology encoding f which sends the input data to
a persistence signature, and standard notation in the literature, such as d for distance
function and Wp, lp and Lp for Wasserstein and Euclidean distances, N for number
of simplices, or C for the SVM regularization parameter.



notation

Notation Interpretation

S topological space
[N] set {1, 2, . . . , N}
X point cloud, X = {x1, x2, . . . , xn} ⊂ RD

x point cloud point, x ∈ X
n number of point cloud points, n = |X|
D point cloud dimension

Z image as a two-dimensional matrix, Z = [zuv]
zuv greyscale value of pixel (u, v)
z0 threshold greyscale value (to obtain binary image)
n number of pixels
nx number of pixels in x direction
ny number of pixels in y direction

X data set, X = {X1, X2, . . . , Xm}
m number of data samples or observations, m = |X |
∥ · ∥p Euclidean distance between vectors
ω : X → Y bijection between X and Y
Ω(X, Y) set of bijections between X and Y
Wp Wasserstein distance between point clouds or images

π : X → X perturbation
ρ : X → R feature
TXX tangent space at X on X
V : X → ⊔XTXX vector field
v = V(X) tangent vector at X assigned by V
Vπ vector field induced by perturbation π
∇ρ gradient vector field of function ρ

Table D.7.: Notation about the input data (space).
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notation

Notation Interpretation

σ simplex (e.g., point, edge, triangle)
K simplicial or cubical complex
r filtration scale, resolution or time, r ∈ R

Kr simplicial or cubical complex describing the data at
scale r ∈ R

VR(X, r) Vietoris-Rips simplicial complex with resolution r
{Kr}r∈R filtration

ϕ or ψ : K → R filtration function
δX : RD → R distance (filtration) function, i.e., distance from X
δX,m : RD → R distance-to-a-measure (DTM) (filtration) function with

parameter m (reflecting the number of nearest neigh-
bors)

ϕz0 : K → R binary filtration function with parameter z0
ϕz : K → R greyscale filtration function
ϕd0,z0 : K → R density filtration function with parameters d0 and z0
ϕ(u0,v0),z0

: K → R radial filtration function with parameters (u0, v0) and
z0

Table D.8.: Notation about the filtration, input for persistent homology.
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notation

Notation Interpretation

PH persistent homology, multi-set of persistence inter-
vals

(bi, di) persistence interval, i.e., pair of birth and death
values for cycle i

li = di − bi lifespan or persistence of a cycle i
k homological dimension

βk Betti number, i.e., the number of idependent k-
dimensional cycles

PD persistence diagram
Wp Wasserstein distance (referred to as bottleneck dis-

tance for p = +∞)

PI persistence image
γ(x0,y0),σ2 : R × R → R Guassian kernel centered around (x0, y0) and with

variance σ2

α : R × R → R weight function
η : R × R → R persistence surface
p PI resolution, number of PI pixels in x and y direc-

tion

PL vectorized persistence landscape
λ : N × R → R persistence landscape function
λi : R → R persistence landscape function for the i-th most per-

sistent cycle, λi(r) = λ(i, r)

P data set of persistence signatures
f : X → P PH map or encoding
J f
X , J f , JX , J Jacobian mapping (matrix) of map f at X

G f
X , G f , GX , G Gram matrix of map f at X

q f
i , qi i-th eigenvector of map f

λ
f
i , λi i-th largest singular value of the Jacobian mapping

∥ · ∥ f pull-back norm induced by map f
BW Bures-Wasserstein distance between positive-

definite matrices

Table D.9.: Notation about the signature, output for persistent homology.
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