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SUMMARY 

Cancer continues to be a significant global health concern, despite notable advancements in biomedical 

research. Where most cancers are easily treatable when detected early, finding correct therapies can become 

challenging in later stages. Timely screening plays thus a pivotal role in improving outcomes for cancer 

patients. However, traditional diagnostic methods such as physical exams, imaging, and tissue biopsies are 

often invasive, expensive, and not always precise. Although various innovative diagnostic techniques have 

emerged, the quest for both reliable biomarkers and sensitive technologies remains ongoing. Among the 

biomarkers, DNA methylation has emerged as a promising epigenetic factor with significant impact in cancer 

biomarker research. Hence, investigation into DNA methylation as a potential tool for early cancer detection is 

crucial. 

In response to growing interest, considerable advancements have been made in detecting DNA methylation, 

particularly in the context of liquid biopsies and cell-free DNA (cfDNA). Traditional methods focused on 

genomic DNA, but recent innovations have shifted towards enzymatic methods, especially for cfDNA analysis. 

This has led to a plethora of both classical and novel DNA methylation detection methods, including clinical 

applications certified by the European In Vitro Diagnostics regulations (CE-IVD). Additionally, future trends 

emerge, such as the potential transition to enzymatic conversions as the new standard and the integration of 

direct sequencing methods like ONT-sequencing into epigenetic research. Also, the integration of multi-omics 

technologies becomes more important, which hold promise for enhanced clinical applications by combining 

diverse biomarkers for improved diagnostic accuracy. 

In the second part of this PhD thesis, we focused on novel biomarker discovery, particularly in colorectal cancer 

(CRC). In a first study, we dived deeper into the CRC screening program and its problems. In particular, we 

looked at interval cancers (ICs), as they pose a significant challenge in CRC screening initiatives. Previous 

investigations by our collaborators already shed light on ICs detected by the fecal immunochemical test (FIT), 

highlighting their prevalence in specific demographic and tumor characteristic subsets. Building upon these 

insights, our study delved into stage IV CRC patients to elucidate factors associated with FIT-IC. Through 

analysis of clinicopathological and molecular characteristics of 500 CRCs, we identified associations between 

the clinicopathological and molecular characteristics and FIT-IC stage IV CRC. Specifically, FIT-IC CRCs 

exhibited significantly higher odds  of being neuroendocrine tumors (NETs) (OR= 5) and displaying 

lymphovascular invasion (OR= 2.5). Importantly, the significance of certain variables weakened upon 

considering tumor location, underscoring its pivotal role as a covariate in evaluating FIT-IC-related factors. 

Although these findings provide important new insights, we could not extrapolate these observations to early 

stage CRC. To focus more on early stage detection of CRC, we evaluated DNA methylation patterns in colorectal 
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normal, precursor and carcinoma tissue. With this investigation into methylation patterns in colorectal tissues, 

we aimed to fill a critical knowledge gap. On one hand, an epigenome-wide study for these three tissue types 

was never performed simultaneous. On the other hand, it is clinically very relevant to differentiate between 

adenomas and carcinomas, since treatment and follow-up varies. Starting from a comprehensive dataset 

sourced from both 450K and EPIC publicly available datasets, we “double-evidenced” differentially methylated 

sites. Using previously developed computational methods, we continued the analysis to discover potential 

biomarkers. We identified 13 double-evidenced target sites, which we further validated using our in-house 

clinical carcinoma and adenoma samples. Our final model yielded a sensitivity of 96% at 95% specificity for 

distinguishing between adenomas and carcinomas. This study highlighted the use of methylation as a source 

for cancer biomarkers and provided us with potential early detection biomarkers for CRC. 

In the third part of this thesis, we further explored the epigenomics field. Important in cancer diagnostics, is 

the observation that DNA methylation biomarkers hold promise for accurate detection across various tumor 

types. To harness this potential for multi-cancer detection, we developed a multiplex droplet digital PCR 

(ddPCR) assay. Drawing upon data from The Cancer Genome Atlas (TCGA), we selected differentially methylated 

targets for eight prevalent tumor types and validated them in tumor and normal adjacent samples. The resulting 

assay demonstrated high accuracy (AUC=0.948), albeit with varying sensitivities (53.8% - 100%) and specificities 

(80% -100%) across cancer types. Although we obtained promising results with ddPCR, we encountered the 

limitation that only a few targets can be simultaneously analyzed using this technology. Building upon the 

observation from our previous study, namely, 13 targets collectively capable of distinguishing adenomas from 

carcinomas, and considering the notion that multiple targets combined can enhance sensitivity, we have 

developed a novel technique called IMPRESS (Improved Methylation Profiling using Restriction Enzymes and 

smMIP Sequencing). By ingeniously combining methylation-sensitive restriction enzymes with single-molecule 

Molecular Inversion Probes, IMPRESS facilitates multiplex analysis without bisulfite conversion. Leveraging 

this technique, we successfully developed a multi-cancer detection assay for eight lethal cancer types, which 

we tested in 111 tumor and 114 normal fresh frozen samples. With our final classifier model, we achieved high 

sensitivity (95%) and specificity (91%) in distinguishing tumor from normal tissue. Lastly, our first preliminary 

results suggest that IMPRESS is very likely to perform well in cfDNA from liquid biopsies. 

In the final part of this thesis, we aimed to create screening assays for CRC and breast cancer (BRCA) using 

IMPRESS. Using a similar strategy as in part two, we leveraged publicly available 450K array datasets to find 

differentially methylated sites for BRCA. We compared whole blood, normal, in situ and invasive carcinoma 

tissue to identify potential methylation biomarkers. For CRC, we partially re-used the already performed EPIC 

array analysis to select sites that were compatible with IMPRESS and re-performed some analysis with whole 

blood. The latter was used in view of applicability in liquid biopsies. A total of 152 smMIPs were used to analyze 
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9 BRCA, 9 in situ, 9 normal breast samples and 180 smMIPs were used for evaluation of 25 CRC, 38 adenoma 

and 30 normal colon samples.  

For both CRC and BRCA, we created a two-step assay, where the first step assay aims to discriminate cancerous 

samples against normal samples (cancer detection panel), and the second step assay is used to distinguish 

precancerous lesions from invasive tumors (invasiveness detection panel). For CRC, cancer detection panel 

reached 100% sensitivity and 100% specificity. The invasiveness detection panel achieved 80% sensitivity at 

92% specificity, with an accuracy of 0.88. For BRCA, the cancer detection panel had a sensitivity of 94.4%  at 

100% specificity. The accuracy of the invasiveness detection panel was 0.77, with a sensitivity of 66.7% at 

88.9% specificity. Our preliminary results indicate high sensitivity and specificity for discriminating cancerous 

samples against normal samples and good accuracy for distinction between precancerous and invasive tumors. 

Further research will be needed to validate these panels. Lastly, provide a solid basis for examination of these 

panels in plasma-derived liquid biopsies. 

The integration of innovative technologies, such as multiplex ddPCR assays and IMPRESS, into cancer 

diagnostics underscores the significance of epigenetic research in cancer biomarker discovery and clinical 

implementation. These advancements offer promising avenues for enhancing the accuracy and efficiency of 

tumor detection across various cancer types. As we continue unraveling the nuances of DNA methylation 

patterns, the results of this thesis pave the way for improved clinical applications in cancer screening and 

detection. 
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SAMENVATTING 

Kanker blijft een belangrijk probleem in de wereldwijde gezondheidszorg, ondanks sterke vooruitgang in 

biomedisch onderzoek. Waar de meeste kankers gemakkelijk te behandelen zijn wanneer ze vroeg worden 

ontdekt, kan het vinden van de juiste therapieën uitdagend worden in latere stadia. Tijdige screening speelt 

dus een cruciale rol bij het verbeteren van de prognoses voor kankerpatiënten. Traditionele diagnostische 

methoden zoals lichamelijk onderzoek, beeldvorming en weefsel biopsieën zijn echter vaak invasief, duur en 

niet altijd nauwkeurig. Hoewel er verschillende innovatieve diagnostische technieken zijn ontwikkeld, blijft de 

zoektocht naar zowel betrouwbare biomerkers als gevoelige technologieën doorgaan. Binnen het biomerker 

onderzoek is DNA methylatie naar voren gekomen als een veelbelovende epigenetische factor met een 

significant impact in het kanker onderzoek. Daarom is onderzoek naar DNA methylatie als een potentieel 

hulpmiddel voor vroege detectie van kanker cruciaal.  

Als respons op de groeiende belangstelling, is er aanzienlijke vooruitgang geboekt in het detecteren van DNA 

methylatie, met name in de context van vloeibare biopsieën en celvrij DNA (cfDNA). Traditionele methoden 

richtten zich op genomisch DNA, maar recente innovaties hebben zich verdiept in enzymatische methoden, 

vooral voor cfDNA-analyse. Dit heeft geleid tot een heel arsenaal aan zowel klassieke als nieuwe methoden 

voor de detectie van DNA methylatie, inclusief enkele klinische toepassingen gecertificeerd door de Europese 

in vitro diagnostiek wetgeving (CE-IVD). Opkomende trends houden mogelijke overgang naar enzymatische 

conversies in als de nieuwe standaard, alsook de integratie van directe sequentiemethoden zoals ONT-

sequencing in epigenetisch onderzoek. Ten laatste is er de integratie van multi-omics technologieën, die 

beloftevol zijn voor verbeterde klinische toepassingen door diverse biomerkers te combineren voor verbeterde 

diagnostische nauwkeurigheid.  

In het tweede deel van dit proefschrift hebben we ons gericht op de ontdekking van nieuwe biomerkers, met 

name bij colorectale kanker (CRC). In een eerste studie bestudeerden we het CRC-screeningsprogramma en de 

problemen ervan. In het bijzonder keken we naar intervalkankers (IC's), omdat ze een grote uitdaging vormen 

in CRC-screeningsinitiatieven. Eerdere onderzoeken door onze samenwerkingspartners wierpen al licht op IC's 

gedetecteerd door de fecale immunochemische test (FIT), waarbij hun prevalentie in specifieke demografische 

en tumorkenmerkende subsets werd benadrukt. Voortbouwend op deze inzichten, heeft onze studie zich gericht 

op stadium IV CRC-patiënten om factoren geassocieerd met FIT-IC te verhelderen. Door analyse van klinisch-

pathologische en moleculaire kenmerken van 500 CRC's, hebben we associaties geïdentificeerd tussen de 

klinisch-pathologische en moleculaire kenmerken en FIT-IC stadium IV CRC. Specifiek vertoonden FIT-IC CRC's 

significant hogere kansen om neuro-endocriene tumoren (NET's) (OR= 5) te zijn en lymfovasculaire invasie te 

vertonen (OR= 2,5). Belangrijk is dat de significantie van bepaalde variabelen afnam bij het in rekening brengen 
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van de tumorlocatie, waarbij de essentiële rol ervan als covariabele bij de evaluatie van FIT-IC-gerelateerde 

factoren werd benadrukt. Hoewel deze bevindingen belangrijke nieuwe inzichten bieden, konden we deze 

observaties niet extrapoleren naar CRC in een vroeg stadium. Om ons meer te richten op de vroege detectie 

van CRC, hebben we DNA methylatiepatronen geëvalueerd in colorectaal normaal, precursor en 

carcinoomweefsel. Met dit onderzoek naar methylatiepatronen in colorectaal weefsel wilden we een 

belangrijke tekortkoming in het veld bekijken. Enerzijds werd een epigenoom-wijd onderzoek voor deze drie 

weefseltypes nog nooit simultaan uitgevoerd. Anderzijds is het klinisch zeer relevant om onderscheid te maken 

tussen adenomen en carcinomen, aangezien de behandeling en opvolging verschillen. Vertrekkend vanuit een 

uitgebreide dataset afkomstig van zowel 450K als EPIC openbaar beschikbare datasets, hebben we "dubbel-

bewijsmateriaal" voor verschillend gemethyleerde locaties geïdentificeerd. Met behulp van eerder ontwikkelde 

computationele methoden hebben we de analyse voortgezet om potentiële biomerkers te ontdekken. We 

identificeerden 13 biomerkers, die we verder valideerden met onze eigen klinische carcinoom- en adenoom 

stalen. Ons uiteindelijke model leverde een sensitiviteit van 96% bij 95% specificiteit voor het onderscheid te 

makken tussen adenomen en carcinomen. Deze studie benadrukte het gebruik van methylatie als een bron voor 

kanker biomerkers en leverde ons potentiële vroege detectie biomerkers op voor CRC.  

In het derde deel van dit proefschrift hebben we het epigenomisch veld verder verkend. Belangrijk in kanker 

diagnostiek, is de observatie dat DNA methylatie biomerkers beloftevol zijn voor nauwkeurige detectie over 

verschillende tumortypes. Om dit potentieel voor multi-kankerdetectie te benutten, hebben we een multiplex 

droplet-digital PCR (ddPCR) test ontwikkeld. Uit de gegevens van The Cancer Genome Atlas (TCGA), hebben we 

verschillend gemethyleerde doelwitten geselecteerd voor acht veelvoorkomende tumortypes en deze 

gevalideerd in tumor- en normale aangrenzende stalen. De resulterende test toonde een hoge nauwkeurigheid 

(AUC=0,948), zij het met variërende sensitiviteit (53,8% - 100%) en specificiteit (80% -100%) over tumortypes. 

Hoewel we veelbelovende resultaten behaalden met ddPCR, stootten we op de beperking dat slechts enkele 

doelwitten tegelijk kunnen worden geanalyseerd met deze technologie. Voortbouwend op de observatie uit 

ons vorige onderzoek, namelijk 13 CpGs gezamenlijk in staat tot het onderscheiden van adenomen van 

carcinomen, en rekening houdend met de hypothese dat meerdere biomerkers gecombineerd de gevoeligheid 

kunnen verbeteren, hebben we een nieuwe techniek ontwikkeld genaamd IMPRESS (Improved Methylation 

Profiling using Restriction Enzymes and smMIP Sequencing). Door methylatie-gevoelige restrictie-enzymen te 

combineren met single-molecule Molecular Inversion Probes, vergemakkelijkt IMPRESS multiplex analyse 

zonder bisulfiet conversie. Door deze techniek te benutten, hebben we succesvol een multi-kankerdetectie-test 

ontwikkeld voor acht dodelijke kankertypes, die we hebben getest in 111 tumor- en 114 normale vers 

ingevroren stalen. Met ons uiteindelijke classificatiemodel behaalden we een hoge sensitiviteit (95%) en 

specificiteit (91%) in het onderscheiden van tumorweefsel van normaal weefsel. Ten slotte suggereren onze 
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eerste voorlopige resultaten dat IMPRESS zeer waarschijnlijk goed zal presteren in cfDNA van vloeibare 

biopsieën.  

In het laatste deel van dit proefschrift richtten we ons op het creëren van screeningsassays voor CRC en borst 

kanker (BRCA) met behulp van IMPRESS. Met een vergelijkbare strategie als in deel twee, hebben we gebruik 

gemaakt van openbaar beschikbare 450K array datasets om verschillend gemethyleerde locaties voor BRCA te 

vinden. We vergeleken volbloed, normaal, in situ en invasief carcinoomweefsel om potentiële 

methyleringsbiomerkers te identificeren. Voor CRC hebben we gedeeltelijk de reeds uitgevoerde EPIC array-

analyse hergebruikt om locaties te selecteren die compatibel waren met IMPRESS, en hebben we enkele 

analyses opnieuw uitgevoerd met volbloed. Het laatste werd gebruikt met het oog op toepasbaarheid in 

vloeibare biopsieën. In totaal zijn 152 smMIPs gebruikt om 9 BRCA, 9 in situ en 9 normale borststalen te 

analyseren, en 180 smMIPs om 25 CRC, 38 adenoom en 30 normale colonstalen te evalueren. 

Voor zowel CRC als BRCA hebben we een twee-staps process gebruikt, waarbij de eerste stap erop gericht is 

om tumoren te onderscheiden van normale stalen (kanker detectie panel), en de tweede stap assay wordt 

gebruikt om precancereuze laesies van invasieve tumoren te onderscheiden (invasiviteit detectie panel). Voor 

CRC bereikte het kanker detectie panel een sensitiviteit van 100% en een specificiteit van 100%. Het invasiviteit 

detectie panel had een sensitiviteit van 80% bij 92% specificiteit, met een AUC van 0,88. Voor BRCA had het 

kanker detectie panel een sensitiviteit van 94.4% bij een specificiteit van 100%. De AUC van het invasiviteit 

detectie panel was 0,77, met een sensitiviteit van 66,7% en een specificiteit van 88,9%. Onze voorlopige 

resultaten geven aan dat er een hoge sensitiviteit en specificiteit is voor het onderscheiden van tumoren en 

normale stalen en een goede nauwkeurigheid voor het onderscheid tussen precancereuze en invasieve 

tumoren. Verder onderzoek zal nodig zijn om deze panels te valideren. Tot slot bieden we een mooie basis voor 

het onderzoeken van deze panels in plasma-afgeleide vloeistofbiopten 

De integratie van innovatieve technologieën, zoals multiplex ddPCR-testen en IMPRESS, in kanker diagnostiek 

benadrukt het belang van epigenetisch onderzoek in de ontdekking en klinische toepassing van 

kankerbiomerkers. Deze vooruitgang biedt veelbelovende mogelijkheden om de nauwkeurigheid en efficiëntie 

van tumordetectie over verschillende kankertypes te verbeteren. Terwijl we doorgaan met het ontrafelen van 

de nuances van DNA methylatie patronen, leggen de resultaten van dit proefschrift de weg vrij voor verbeterde 

klinische toepassingen in kankerscreening en - detectie. 
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ABSTRACT 

Background: DNA methylation is a well-studied epigenetic factor and has become a powerful player in the 

cancer biomarker research field. Together with the rising interest in methylation biomarkers, the technological 

advances for the detection of DNA methylation have been immense. This has led to a plethora of different 

methods. The first methods were established for DNA methylation detection in genomic DNA, while new 

methods have focused more on compatibility with the emerging interest of cell free DNA (cfDNA) from liquid 

biopsies. As DNA methylation detection in cfDNA brings its own challenges, a shift from the gold standard 

bisulfite conversion towards enzymatic conversion methods can be observed in recent years. 

Main body: In this review, we aim to summarize the classic and more recent DNA methylation detection 

methods. Importantly, the few existing European Certified in vitro diagnostics (CE-IVD) clinical applications for 

liquid biopsies are also described, underlining the potential of DNA methylation as a detection biomarker in 

cfDNA. Furthermore, we provide some insights into how the field might evolve in the future, where we believe 

enzymatic conversions might become a new gold standard and direct sequencing methods, such as ONT-

sequencing, will get an important place in the epigenetic research field. Lastly, we believe that multi-omics 

technologies, which can combine distinct types of biomarkers, will most likely become more important in future 

clinical applications. 

Conclusions: The few emerging CE-IVD assays indicate that methylation could become an important part of 

clinical diagnostics. Moreover, novel recent technologies are being developed and show promising clinical 

applications. Taken together, methylation biomarkers are becoming more important for clinical 

implementation. 
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INTRODUCTION 

One of the most studied epigenetic alterations is DNA methylation. It is the addition of a methyl group (-CH3) 

to the fifth position of a cytosine in a CpG dinucleotide context. CpG dinucleotides only represent about 1% of 

the mammalian genome but tend to cluster in so-called CpG islands (CGI). CGIs occur in the majority of human 

protein-coding genes near the transcription start site but can also occur in the gene body [1,2].  

Methylation is crucial for normal cell functioning and development, so abnormalities in the process can lead 

to various diseases. Not only does its absence or presence mediate its biological function, but also its location 

in the genome [3]. Methylation changes occur early in cancer development and typically, promotor regions of 

genes (e.g. tumor suppressor genes) are hypermethylated, while the gene body and repetitive elements are 

hypomethylated. This leads to genomic instability and dysregulation of normal cell function [2,4]. 

Initially, methylation studies focused on the promotor and transcription start site (TSS) hypermethylation of 

protein-coding genes. However, more recent genome-wide analyses revealed the role of methylation at CpG 

sites within introns, intergenic sequences and exons, which led to the identification of CpG shores (2kb from 

CGI), CG shelves (2-4kb from CGI) and open sea regions (rest of the genome) [1]. This shows the enormous 

potential of the epigenome as a source of methylation biomarkers which are already used for several diseases, 

including neurodegenerative disorders, cardiovascular diseases, and cancer [3]. The use of methylation markers 

for disease detection has several advantages over mutation-based detection. Methylation is an early event in 

disease development, so it is very interesting for early detection. Also, methylation signatures are more 

universal than mutation markers, which typically vary at a wide range of sites. Given that no prior knowledge 

is needed on the tumor molecular profile, methylation-based tests can be used off-the-shelf, making them 

much faster and cheaper to use [5,6]. Lastly, methylation  can be used to study the tissue of origin, which is of 

great importance when biomarkers are detected in tissue or fluids taken from another origin [7]. Methylation 

could potentially be used to monitor many common diseases with a simple cfDNA blood test by taking 

advantage of these tissue-specific differences [8]. With the increased interest in detecting methylation, 

technological advances have been enormous. Multiple methods are now available for methylation studies. 

However, most of the technologies have important issues such as high cost, inapplicability for some sample 

types, high DNA input requirements, complex (bioinformatic) analyses and low sensitivity and/or specificity. 

These issues are even more pronounced in a liquid biopsy context, where (cf)DNA is often already fragmented 

and available in limited amounts [9]. Nevertheless, several studies on cfDNA methylation detection have been 

performed.  

Over the years, many methylation detection techniques have been developed. This manuscript provides an 

overview of both classic and more recent techniques along with their (dis)advantages (see Table 1). We restrict 



DNA methylation detection methods 

 
 

19 

this review to the most used technologies (see Figure 1). Furthermore, the current use of methylation 

biomarkers in liquid biopsies in the clinic is described.  

Figure 1 | Overview of DNA methylation detection technologies. Methods in bold are the ones described in detail in this 
article. More information can also be found in Table 1. 

CLASSIC METHYLATION METHODS  

DNA methylation plays a crucial role in several biological processes. Methylated (5mC) and non-methylated (C) 

cytosine residues can be discriminated using various techniques. These can be grouped per methylation 

detection strategy: 1) bisulfite conversion-based methods, 2) restriction enzyme-based assays and 3) affinity 

enrichment-based approaches. In recent years, direct detection of methylation has gained a lot of interest (Fig. 

1). This review gives an overview of classic and novel methylation detection technologies and their 

implementation in the clinic. 

Bisulfite-based methods 

Bisulfite conversion can be used to determine the methylation status of a single, specific locus or a more 

general profile in a wider region. Therefore, techniques are divided into two categories: target or locus-specific 

methods and genome-wide approaches [10–20]. All bisulfite-based methods share limitations inherent to 

bisulfite treatment. Bisulfite conversion is a harsh chemical method (high pH and temperature) that degrades 

and fragments DNA, resulting in a poor-quality product and loss of input DNA. This is mostly a disadvantage in 

samples where a limited amount of DNA is available [12,13,16–18,20–22]. Related thereto, significant 

degradation of the bisulfite-treated DNA can occur upon storage, as the single-stranded DNA is unstable after 

conversion. Therefore, converted DNA must be analyzed shortly after conversion to not impair the sensitivity 
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of downstream applications [18,23]. Furthermore, incomplete conversion of cytosine to uracil, for example by 

re-annealing of ssDNA or by the presence of residual RNA or proteins, can introduce artifacts and lead to 

inconsistencies in results [11,12,17,18,21,23]. Although commercially available kits are highly efficient (>97% 

to 99%), the conversion rate can vary slightly between one another [17,19,20]. Moreover, bisulfite treatment 

cannot discriminate between 5mC and 5hmC, which could affect downstream analyses [12,17,19,23].  

Target-specific bisulfite-based methods 

(Targeted) bisulfite sequencing 

Since the development of bisulfite sequencing in 1992, many efforts have been invested to make the use of 

bisulfite more time and cost-effective and to lower the DNA input, which was a major problem in the original 

protocol [24]. For example, Masser et al. developed the Bisulfite Amplicon Sequencing (BSAS) method. It 

combines elements such as the bisulfite treatment and region-specific PCR amplification with transposome-

mediated NGS library construction and benchtop NGS. However, it is still bisulfite-based and expensive for 

multiplexing more than 20 genomic targets [22,25]. In other targeted bisulfite sequencing methods, enrichment 

of CpG-rich regions or specific regions of interest (ROIs) is performed based on hybridization probes, before or 

after bisulfite treatment and followed by NGS [23,26]. Capture of the DNA before bisulfite conversion ensures 

better enrichment since the genome is not yet converted but requires more DNA. Hybridization of the probes 

after bisulfite conversion produces more off-target reads but results in higher complexity of the sequencing 

library [23]. Several kits for specific targets (disease panels) or regulatory regions are commercially available. 

Examples include the Agilent Sure-Select Methyl-Seq and TruSeq Methyl Capture panels (capture before 

bisulfite conversion) and the Roche SeqCap Epi (hybridization after bisulfite treatment) [22,23,26].  

With the rise of interest in single cell analysis around 2010, the development of methylation-specific single-

cell analysis methods gained interest. Degradation due to bisulfite treatment and limited DNA input capacity 

is circumvented in single-cell BS with post bisulfite adaptor tagging (PBAT). This further allows PCR 

amplification and deep sequencing at the single-cell level, although PBAT comes with biases and the formation 

of chimeric reads [15,22]. Because of random fragmentation and random priming, a single-cell library covers 

only around 10-20% of the genome.  

An application of bisulfite (NGS) sequencing is the IvyGene Cancer Blood test (Laboratory for Advanced 

Medicine Inc., Irvine, CA, USA). This test can detect multiple cancer types, including breast, colon, lung and liver 

cancer, simultaneously. It is currently only available as laboratory developed test (LDT) and targets the 

methylation status of the MYO1G and TNFAIP8L2 genes in cfDNA. As preliminary results show that a positive 

result can still indicate another cancer type, the current IvyGene test must be used in combination with other 

diagnostic tests [27].  
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Methylation-specific (q)PCR and related technologies 

Methylation-Specific PCR (MSP) was described in 1999 but became somewhat obsolete with the introduction 

of qPCR. MSP and related technologies are described in supplementary table 1. To obtain quantitative 

information, real time MSP (qMSP) protocols were developed [13]. An intercalating dye such as SYBR green 

(MethylQuant), or methylation specific TaqMan probes can be used in the so-called MethyLight assay 

[11,18,20]. Furthermore, qMSP eliminated the use of gels, leading to its implementation in the clinic [17–19]. 

qMSP is ten times more sensitive than MSP and can detect low frequencies of hypermethylated CpGs (0.01%) 

[12,17,28]. In both MSP and qMSP (related) methods, two major disadvantages include the lack of multiplexing 

possibilities, reducing sensitivity in fragmented samples, and the lack of standardization amongst different labs 

[11,26]. Only the multiplex MethyLight assay can theoretically analyze multiple genes simultaneously [12], but 

in practice, no more than three targets are evaluated simultaneously [29–31]. More related technologies are 

described in Table 1 and Supplementary Table 1. Quite a few applications have been FDA approved, amongst 

them the Epi proColon 2.0 CE (Epigenomics AG, Berlin Germany). This blood-based test uses a MethyLight assay 

to detect methylated SEPT9 aiming to improve early diagnosis of colorectal cancer. Across several studies, this 

test has been shown to discriminate healthy controls and CRC patients with a sensitivity of 75-81% and a 

specificity of 96-99% [28]. Although it was approved in 2016, European guidelines still do not recommend this 

test to be used as a first choice in screening programs [27,32]. Cost-effectiveness analyses, further validation 

and regulatory approval will be needed to implement the EpiProcolon in programs across Europe. 

Pyrosequencing 

Despite being an older method, pyrosequencing remains an important commercial technology, for which 

several kits, platforms and software from different companies are available today [19,26,28]. The technique 

itself is described in detail elsewhere [11,12,17–20,28,33,34] and its (dis)advantages are listed in Table 1. 

One of its main commercial applications are the different kits for determining the methylation status of the 

MGMT gene, such as the Therascreen MGMT Pyro kit (Qiagen, Hilden, Germany). MGMT is a known biomarker 

for glioblastoma classification and treatment decision-making. Pyrosequencing was found to lead to the most 

reproducible results, hence the choice for this technology in the commercially available kits. All kits are 

commercialized by Qiagen, but different systems (e.g. the PyroMark Q24 for the Therascreen kit) are used with 

different kits, and the Therascreen is the only kit that obtained the CE-IVD mark. Using this kit, 4 CpG sites in 

the MGMT gene are analyzed in DNA obtained from either blood or FFPE samples [27,32]. 
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Droplet Digital PCR 

Droplet digital PCR (ddPCR) was developed to increase the analytical sensitivity of PCR for detecting rare 

events, for example methylation of a specific allele. Bisulfite converted DNA is fragmented into thousands of 

droplets, allowing as many simultaneous PCR reactions. In theory, each droplet contains only one DNA 

template, which is negative or positive for the rare event. The fraction of positive droplets represents the rare 

event. The enormous sample partitioning allows quick amplification, and screening of separate DNA molecules 

with a limit of detection up to 0.001% and absolute quantification. However, primer design is laborious and 

difficult [11,12,17]. Furthermore, the multiplex capacities for ddPCR are very limited, with at most five targets 

reported in one assay [35]. To further increase the sensitivity, Menschikowski et al. developed optimized bias-

based pre-amplification ddPCR (OBBPA ddPCR) where they reached analytical sensitivities of 0.0007%. 

However, the procedure cannot be performed in a close-tube system, increasing sample contamination risks. 

The technology is claimed to be especially suitable in liquid biopsies [36,37]. Although ddPCR is a very 

promising method, there are currently no ddPCR methylation-based applications FDA-approved for clinical use. 

2.1.1.5 MIMIC  

Schwalbe et al. developed the minimal methylation classifier (MIMIC) for the assessment of 17 CpG sites 

simultaneously. Bisulfite converted DNA is subjected to a single base extension of probe oligonucleotides, 

followed by MALDI-TOF MS. Although low input DNA (< 2ng) can be used and an accurate assessment of 

methylation level is made, this technology is expensive [38]. 

Genome-wide bisulfite-based methods 

WGBS 

Since the emergence of next-generation sequencing (NGS) technologies, combining bisulfite conversion with 

NGS has become the new gold standard for global methylation analysis. Using Whole Genome Bisulfite 

Sequencing (WGBS) analysis, information about the methylation status of every cytosine in the methylome can 

be obtained, including low-density regions. Relatively low coverage (5-10x) is often used for highly 

reproducible and accurate determination of methylomes. Although it is the most comprehensive methylation 

profiling technology, there are some disadvantages (see also Table 1). WGBS is relatively expensive and as 

most of the human methylome is not methylated, a lot of sequencing capacity and money is wasted 

[10,13,15,19,23,24,39]. However, sequencing costs have been decreasing over the years, potentially making 

WGBS economically more feasible in the future [13]. Furthermore, due to the reduction of genome complexity 

and the loss of sequence diversity after bisulfite conversion, bioinformatic analysis of the WGBS data is difficult 

[16,22,26,39]. Specific pipelines, such as Bismark, gemBS and Methylpy, have been designed to streamline the 
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pre-processing of this data and to facilitate the highly complex WGBS alignment. Novel ones, such as 

Methyldackel and MethylStar, are still emerging [40]. However, bioinformatic expertise and computational 

resources remain necessary [39].  

RRBS  

Before the introduction of WGBS, Reduced Representation Bisulfite Sequencing (RRBS) was already used in 

epigenetic DNA analysis. For this technology, methylated regions are enriched using MspI digestion (at CCGG 

sites) and bisulfite conversion before NGS. Digestion and size selection (40-220 bp) allow for the assessment 

of a smaller fraction of the genome while still allowing representative results [13,22,24]. Around 85% of CpG 

islands are evaluated with this technology, which only represents <3% of the genome [13,15,22,26]. As such, 

the cost is drastically decreased compared to WGBS, while the sample throughput is increased [13,18,24]. 

Despite RRBS being more reproducible than affinity-based methods for example, it still is less reproducible 

than WGBS and arrays due to its use of enzymes, targeted nature and lower sequencing depth [18,19,41]. 

Moreover, CpG-rich regions are enriched, while distal regulatory elements and intergenic regions have 

relatively low coverage in RRBS as the CpG-containing recognition sites for MspI are limited [13,18,23]. To 

sequence CpG island shores, longer restriction fragments can be sequenced in a technique known as enhanced 

RRBS [22]. In recent years, single-cell RRBS has been developed to enable the use of this technology in cfDNA. 

DNA loss is avoided by integrating all key steps in a single-tube reaction [13,42]. However, since adaptor 

hybridization takes place before bisulfite conversion, a fraction of well-ligated fragments is destroyed by the 

bisulfite and is therefore unavailable for amplification in library preparation [43]. Both RRBS and WGBS 

protocols have been adapted for use in single-cell BS [43]. 

cfRRBS 

Recently, RRBS was adapted for use in cfDNA by De Koker et al. [44]. They found an ingenious way to circumvent 

the problem cfDNA fragmentation, which hampers RRBS applicability. With their cfRRBS protocol, only MspI 

generated fragments are amplified, while “off-target” cfDNA fragments are degraded. This is possible due to 

the use of hairpin adaptors that specifically bind to the phosphorylated 5’-ends that are created at MspI cut 

sites. These circular fragments withstand the exonuclease treatment. Thereafter, classical RRBS libraries are 

generated using bisulfite conversion and PCR amplification [44]. Some interesting applications have already 

been published, where cfRRBS is used to develop a diagnostic test for Cancers of Unknown Primary (CUP)[45] 

and pediatric cancers [46–48]. It is a cost-effective, scalable method and thanks to the single-tube protocol, it 

allows the use of as little as 0.4 - 10 ng DNA input [44,45]. However, despite covering 3 million CpG sites, 

targets remain limited to MspI restriction sites, which might exclude interesting candidate-biomarkers. 
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Arrays 

Throughout the last decades, Illumina has brought several array types to the market. The first-generation assays 

were replaced by the HumanMethylation450 BeadChip in 2011 [49]. It was used for large projects such as The 

Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC). In 2016, the novel 

methylation EPIC array was released [50]. This assay interrogates over 850,000 preselected CpG sites, covering 

90% of 450K sites and more sites within enhancer regions [13,19]. As of 2023, the Infinium Methylation EPIC 

v2.0 has replaced the former version. Compared to the v1, poor-performing probes have been removed and an 

additional 186,000 CpG sites have been added. They target enhancers, CNV detection regions and additional 

CTCF-binding sites. Moreover, >450 cancer driver mutations were added. Importantly the v2.0 has been 

validated for use in FFPE material [51,52]. All arrays work with similar technology, described elsewhere [19,26]. 

Methylation arrays are relatively low-cost techniques, give accurate measurements and are suitable for large 

sample numbers [39,50]. However, cross-hybridization of probes, erroneous signals from SNPs and probe-

specific dye biases lead to some bioinformatic challenges. Moreover, batch effects can occur if not handled 

properly. Also, a large input amount is still required (500-1µg) [17,23,39].   

Based on the HumanMethylation450 BeadChip, the EPICUP™ test (Ferrer, Spain) was developed for the 

biological defining of tissue of origin in Cancer of Unknown Primary (CUP) in FFPE or fresh frozen samples. By 

comparing methylation patterns of known primary cancers with CUP, the origin can be predicted with high 

sensitivity and specificity. The 450K chips are no longer manufactured, but recent studies show identical results 

with the Infinium EPIC arrays. Despite the importance of a CUP test, the EPICUP™ test cannot be executed in 

all laboratories due to the technology behind it, which leads to rather long TATs of 2 weeks [27,32,53]. 

ELSA-seq  

Liang et al. recently described the ‘Enhanced Linear-Splinter Amplification Sequencing (ELSA-seq)’, an improved 

bisulfite-based method for cfDNA. With ELSA-seq, detection power is on the one hand improved by increasing 

the DNA template that can be effectively used. WGBS libraries are generated and a dual-index system is used 

for multiplexing samples. On the other hand, detection power is increased by the use of machine learning. This 

high-resolution technology allows for very low input DNA (500 pg) and has very effective noise suppression, 

but the adaptor tagging step may lead to incomplete duplicate removal. This method has only been validated 

in lung cancer up until now, but it is already a promising technology for cfDNA applications [54]. The OverC™ 

test for multi-cancer detection was developed based on this technology. It received the FDA breakthrough 

device designation, but it is not described as an LDT nor is there FDA approval or CE-IVD for this test [53]. 
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Hammer-Seq 

Among the most recent bisulfite-based methods, Ming et al. introduced “Hairpin-Assisted Mapping of 

Methylation of Replicated DNA Sequencing”, hammer-seq in short in 2021. This technology combines EdU 

labeling of replicated DNA, biotin-streptavidin-based purification and whole-genome hairpin bisulfite 

sequencing technologies. Their method’s most unique feature is the simultaneous measurement of methylation 

on both parent and daughter strands. The technique is ideal for determining maintenance kinetics and de novo 

methylation events occurring during methylation maintenance. However, there is no way to determine which 

strand is the parent strand and which one is the daughter strand. Moreover, it requires around 100 µg genomic 

DNA, which renders it unfeasible for applications with lower input DNA for the moment [55]. 

Enzyme-based methods 

Restriction enzymes 

The use of restriction enzymes was the first approach to assess locus-specific methylation [3,10,26]. Two types 

of enzymes are mostly used. Methylation-sensitive restriction enzymes (MSREs, e.g. HpaII) are inhibited by the 

presence of methylation at their recognition site, reflecting the distinct methylation status at a specific locus 

[10,13,24]. Methylation-insensitive restriction enzymes (e.g. MspI) cleave the DNA regardless of the methylation 

status at the recognition sites [13,42]. To distinguish methylated and unmethylated CpGs, pairs of both enzymes 

with the same restriction site but different sensitivity to methylation status (isoschizomers) can be used [12,14]. 

Depending on the application and technology, MSREs with recognition sites between 4 to 8bp have been used 

[56]. A great advantage is that the need for bisulfite conversion is eliminated using these enzymes, which in 

turn leads to lower DNA input and easier primer design [18,20]. It has also been described that restriction-

based methods are superior to other enrichment technologies as a conversion method prior to NGS [26]. They 

are fast, specific and easy to use [20]. However, only loci with the restriction site(s) of the enzyme(s) can be 

investigated, and upon incomplete digestion, false-positive results are a possibility [11,18] (see also Table 1).  

MSRE-(q)PCR 

MSRE-based methylation assays were traditionally used in combination with Southern blotting, but then 

switched to PCR and later qPCR. With this, DNA input drastically decreased, as well as the cost and simplicity.  

Combining MSREs with qPCR was first done in 2005. Primers flanking the region of interest are used to analyze 

methylation. Methylation percentages are counted from the Ct values that are measured for both digested and 

undigested control samples. Commercial kits have been developed to target multiple sites (e.g. OneStep 

qMethyl kit from Zymo Research). A difficulty with this approach is that at least two restriction sites are required 

to be inside the amplicon, so it is not possible to investigate one particular CpG site [11,18,20,26].  
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Based on MSRE-qPCR technology, the Bladder EpiCheck (Nucleix Ltd) is a CE-marked test available for the 

detection of non-muscle invasive bladder cancer (NMBIC) recurrence. 15 methylation biomarkers are 

investigated in DNA extracted from urine. Studies have shown that the Bladder EpiCheck can be combined with 

cytology to reduce the invasiveness of NMBIC follow-up [27,53]. 

DREAM 

Digital Restriction Enzyme Analysis of Methylation, DREAM in short makes use of SmaI and XmaI to create 

specific signatures at (un)methylated CpG sites. SmaI is used for digesting unmethylated CpG sites. XmaI has 

the same recognition site but cuts only at methylated sites. The two enzymes are used sequentially, so XmaI 

digests the remaining sites that have been protected from SmaI. Only fragments with these distinct signatures 

are sequenced and methylation levels are thus calculated. According to the authors, a total of 50,000 unique 

CpG sites are yielded with high coverage when sequencing 25 million reads per human DNA library. The 

background is reported to be less than 1%, making the technology suitable for low methylation level detection. 

However, 1µg of high-quality DNA is needed, hampering its applicability in liquid biopsy research [57,58]. 

MED-seq 

Methylated DNA sequencing, MED-seq in short, was published by Boers et al. in 2018. In this technique, the 

methylation-dependent restriction enzyme LpnPI is used. LpnPI cuts 16 bp downstream from 

(hydroxy)methylated CpGs, leading to fragments of ≥ 32 bp. This allows accurate identification of methylation. 

Although this method is relatively low-cost, simple and does not need much DNA input (10ng), only about 50% 

of methylated CpGs genome-wide can be detected. Unmethylated regions cannot be identified. Therefore, there 

is no possibility to completely quantify the methylation levels by a ratio or percentage, making this method 

only semi-quantitative [59]. Importantly, the technology has been successfully used in cfDNA samples, but only 

when 1) digestion with LpnPI was complete, and when 2) there was sufficient library-prepped DNA available. 

Starting concentrations were therefore 10ng. The MED-seq technology is described to be compatible with 

vacuum concentration, different blood collection tubes and cfDNA isolation methods [60]. 

EpiGScar 

In 2021, EpiGScar was published by Niemöller et al. EpiGScar stands for Epigenomics and Genomics of Single 

cells analyzed by restriction and allows simultaneous analysis of methylation and genetic variants of the same 

cell at base pair resolution. Because of its single-tube workflow, contamination risks and more importantly DNA 

loss are reduced. The method is described at length in the paper of Niemöller et al. They use the commonly 

described MSRE HhaI in combination with other enzymes, resulting in intact (methylated) or scar-tagged HhaI 
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(unmethylated) sites. The resulting PCR amplified library is sequenced using NGS. Despite its good genome 

coverage (1.69 million RE sites), this technique is quite expensive and laborious [61]. 

Improved Methylation Profiling using Restriction Enzymes and SmMIP Sequencing (IMPRESS) 

Very recently, a novel methylation detection method, called Improved Methylation Profiling using Restriction 

Enzymes and SmMIP Sequencing (IMPRESS) was developed [62]. For this technology, a specific combination of 

MSREs and single molecule Molecular Inversion Probes (smMIPs), followed by NGS, was derived. Four MSREs 

(HinP1I, AciI, HpaII and HpyCH4IV) are used to cover around 40% of the epigenome. The advantages of these 

MSREs include the reliability, simplicity and cost-effectiveness of the digestion reaction, while the smMIPs 

allow for highly accurate capturing of the DNA sequence of interest. However, IMPRESS cannot detect both 

unmethylated and methylated CpGs. Furthermore, it covers 40% of the (epi)genome, limiting the biomarkers 

that can be investigated using this technology. Due to its recent addition to the methylation detection field, its 

applicability in the clinic remains to be proven. 

Other enzymes 

TAPS 

In the past decade, novel enzymes for methylation detection have gained attention. For example, Liu et al. 

described the novel TAPS, short for TET-Assisted Pyridine borane Sequencing in 2019 [63]. The Tet 

methylcytosine dioxygenase 1 (TET1) enzyme oxidizes (hydroxy)methylated cytosines (5(h)mC) to carboxyl-

cytosines (5caC) or formyl-cytosines (5fC). The novelty of TAPS lies in the subsequent 5caC/5fC-to-T transition 

chemistry. Pyridine borane is used to reduce 5caC to dihydrouracil (DHU), which is in turn converted to thymine 

by PCR. As such, cytosine modifications can be detected. An advantage of the TAPS technology is the possibility 

to also detect hydroxy-methylated cytosines. For this, 5hmC is glucosylated to 5gmC before the TET1 oxidation 

[16,63,64]. Compared to whole genome bisulfite sequencing, TAPS has the advantage that the four-base 

genome is preserved, which allows efficient alignment and primer design. However, borane-mediated 

conversion requires long incubation times under acidic conditions, although it is less destructive than bisulfite 

deamination [64].  

EM-seq 

New England Biolabs commercialized Enzymatic Methyl sequencing (EM-seq) in 2020 [65]. The complete 

method is purely based on enzymatic conversions. In a first conversion step, two sets of enzymes are used.  

DNA is treated with TET2 and/or T4-BGT. T4-BGT protects 5hmC, TET2 protects 5mC. Subsequently, APOBEC3A 

is used for the deamination of cytosines, but not the protected ones. PCR amplification allows distinction 
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between unprotected C’s, that are converted to T’s, and protected C-derivates (read as C). EM-seq combines the 

oxidation and deamination reactions with NEBNext library preparation. It has been shown that inputs down to 

10 ng can be effectively used. Furthermore, EM-seq does not cause DNA damage or DNA fragmentation. EM-

seq can also be combined with long-read platforms such as Nanopore. However, EM-seq is still quite expensive 

[16,64–66]. It has also been demonstrated that the TET2-enzyme favors certain DNA motifs (e.g. A upstream of 

CG) due to its intrinsic sequence specificity. The CG flanking sequences affect the TET enzyme conformation, 

which influences the TET function [67,68]. This is an important issue that must be carefully evaluated, as it 

might hamper EM-seq’s clinical applications. 

Affinity-based methods 

Affinity-based methods make use of immunoprecipitation with antibodies specific for 5mC or affinity 

purification with methyl-CpG binding domain (MBD) proteins to enrich methylated regions for further analysis 

[11,13,18] (Figure 1, Table 1). Previously, combinations with array hybridization were mostly used, but a shift 

towards NGS is now observed [10]. Compared to bisulfite-based methods, the biggest advantages are the 

avoidance of cytosine conversion and the possibility to discriminate 5-hydroxymethylation from 5mC. Affinity-

based methods do not require high-quality DNA [26], but their accuracy suffers compared to RRBS and WGBS. 

Their resolution is only around 100-300 bp, which does not allow for single CpG site studies, and are biased 

towards hypermethylated regions [13,42]. Moreover, absolute quantification is not possible using an affinity-

based method [39]. Furthermore, the standard protocols require a large amount of DNA input, so optimization 

for cfDNA is necessary [13,42] (Table 1). 

(cf)MeDIP 

Methylated DNA immunoprecipitation or MeDIP uses, antibodies against 5mC to isolate the DNA fragment 

containing this modification, independently of the surrounding DNA sequence [24,69]. After shearing and 

immunoprecipitation, the isolated regions are further investigated by qPCR, array or NGS [24,70]. MeDIP works 

on single-stranded DNA (ssDNA), allowing the profiling of hemi-methylated sites [39]. In contrast to bisulfite 

sequencing, it is biased towards low-density CpG sites [69]. One of the most important limitations of this 

technology was the high DNA amount required. Recently, the protocol has been adapted by Shen et al. [71] for 

use in cell-free DNA. This cfMeDIP-seq technology makes use of exogenous lambda DNA as filler DNA to 

increase the initial DNA input. As such, cfDNA amounts of as little as 1ng can be used. However, the technology 

has not yet been validated with a sufficient number of independent clinical samples.  
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DIRECT DETECTION METHODS 

Around 2010, Third-Generation Sequencing (TGS) and Multi-Walled Carbon Nano Tubes (MWCNTs) entered the 

market. These methods allow for native DNA sequencing based on electrochemical signals. TGS focuses on 

current-based signals and kinetics [22], while MWCNTs detect the DNA nucleotides based on their unique 

oxidation signals [14,72]. These electrochemical technologies are base-specific and can be used for rapid 

detection of bases without using prior conversion steps [22,72]. The focus in recent research has mostly been 

on TGS, which will be discussed further below. 

Third-generation/long-read sequencing 

A few years after the introduction of TGS, also called long-read sequencing, applications for methylation 

detection with these platforms arose. Currently, two technologies are available: Oxford Nanopore Technologies 

(ONT) and Single Molecule Real-Time (SMRT) sequencing from Pacific Biosciences (PacBio). Although the first 

TGS analyses for methylation detection were performed after bisulfite conversion, the strength of these 

platforms lies in sequencing native DNA. Base modifications are derived based on raw signals that are 

generated. Despite the advantage of eliminating the conversion step, some limitations still need to be 

overcome before these technologies can be applied in the clinic. For example, DNA is not amplified and thus 

requires a large input amount (1µg for ONT, 5µg for PacBio). Such amounts of DNA are often not available 

namely in FFPE or cfDNA samples. Moreover, single-base pair calling is not very accurate in long-read 

sequencing. Also, long-read sequencing is even more expensive than NGS. Lastly, the cumbersome data output 

(‘big data’) of these technologies brings along bioinformatic challenges [22,70,73].  

ONT sequencing 

ONT-sequencing is based on measuring the ionic current changes of native single-stranded DNA that is passed 

through a nanopore. Every base and its modification gives a unique signal that is analyzed using a trained 

artificial neural network for base-calling, such as Guppy [27,39,73,74]. However, there is no standardized base 

calling pipeline and the error rate varies from 5%-20%, depending on sequencing context [18,39]. Nevertheless, 

software is quickly evolving and with time, the error rate will improve. 

SMRT sequencing 

Single molecule real-time or SMRT sequencing from PacBio detects methylation by monitoring the polymerase 

kinetics, at high (150-250x) coverage [75,76]. The kinetics of the polymerase are followed as it synthesizes 

circular DNA double strands using different fluorescently labeled nucleotides. As such, both the nucleotide 
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sequence and the major modifications such as 5(h)mC can be detected simultaneously [15,18,22,39]. Currently, 

basecalling is done in CCS [74]. However, 5mC signals are relatively subtle, leading to lower detection 

sensitivities compared to e.g. 6mA modifications of bacterial genomes. Therefore, SMRT has only been used 

extensively to study bacterial genomes and bacterial methylations [15,18,22,39]. 

FUTURE PERSPECTIVES 

The methylation detection field is rapidly evolving. Besides new methods, specifically designed for methylation 

analysis, some new applications have recently gained interest in epigenetic research after decades of genetic 

research. Well-established technologies such as liquid chromatography and mass-spectrometry, for example, 

can be used for methylation detection, but still require DNA conversion with one of the above-described 

methods, depending on downstream applications and the nature of the available sample [26,77–80] (Figure 1 

and Table 1). A newer example is the DNA biosensor, the surface of which contains specific complementary 

probes that capture DNA. Signal transducers are then used to convert the recognition event into either an 

optical or an electrochemical signal. For the detection of methylated DNA, a conversion method (discussed 

above) is used first. A biosensor system provides high sensitivity and specificity, and low cost [19]. Despite their 

advantages, biosensor application on clinical samples is currently lacking, making it difficult to evaluate their 

implementation prospects in the clinic [18]. 

Methylation detection strategies vary given the research question.  For now, bisulfite treatment remains the 

most used conversion method in methylation detection, either in a targeted (such as ddPCR) or a whole-genome 

method (including WGBS and arrays). However, a shift towards enzymatic methods has been observed in recent 

years. For example, MED-seq, TAPS and EM-seq have been developed and the latter was even commercialized. 

We believe enzymatic conversion for methylation detection will become more important in the future, as it is 

especially useful for analyzing liquid biopsies that have been gaining more attention. Due to their relatively 

low cost and ease of implementation, these methods can become useful in clinical diagnostics. One example 

is the newly developed and validated IMPRESS assay which targets multiple sites and is an inexpensive 

technique when combining many samples, but is pending further validation before being implemented in the 

clinic. Furthermore, direct detection methods such as ONT and SMRT-sequencing are relatively underexplored 

methods that could gain more interest in the future.  Despite their great advantage of sequencing native DNA, 

improving error rates [74] and potential for cfDNA sequencing [81], these technologies will remain challenging 

to implement in the clinic due to cost and logistics. Lastly, combining different ‘omics into one assay, for 

example genomics and epigenomics, has been gaining attention in recent years. These multi-omics strategies 

require their own methods and will become important for future applications. 
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Table 1 | Overview of most important and recently developed methylation detection technologies by conversion approach 

Approach Detection Technology Advantages Disadvantages FDA/CE-approved tests and LDTs References 
Bisulfite-based Targeted Bisulfite sequencing   - Gold standard 

- Quantitatively 
study locus-
specific 
methylation 

1. Linked to bisulfite 
treatment: 
- DNA degradation (also 
upon storage)→ loss of 
initial DNA input 
- Fragmentation 
- Loss of information 
- Incomplete conversion 
leading to false-positive 
results 
- No detection of 
hydroxymethylation 
 
Linked to sequencing 
technology 
- Biased PCR amplification 
- Very low detection limit 
(10-20%)  

- IvyGene Cancer Blood Test (targeted 
NGS; LDT) 
- Galleri test (targeted NGS, LDT) 
- PulmoSeek (targeted NGS) 
- EsoGuard (NGS) 

[10,21,27,28,4
2] 

qMSP (MethyLight) - Quantitative 
- Real-time 
- More sensitive 
than MSP 
- Multiplex 
possibilities 

- Disadvantages of bisulfite 
treatment  
- Not possible to screen a 
large number of CpGs 
- Generation of false-
positive and false-negative 
results  
- Bias towards the detection 
of fully methylated 
templates 

- EpiProcolon 2.0 
- EpiProLung (BL Reflex Assay) 
- Cervi-M assay 
- EarlyTect CRC  
- Cologuard 
- Therascreen PITX2 RGQ PCR kit 
- Real time mS9 CRC  
- HCCBloodTest 
- GynTect 
- QIAsure Methylation test kit 
- UriFind bladder cancer detection kit 
- Oral-M 
- COLVERA™ (LDT) 
- PredictMDx (LDT) 
- AssureMDx (LDT) 
- ConfirmMDx (LDT) 

[10,12,21,27,2
8,32,53] 
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Pyrosequencing - Cost and time-
effective 
- DNA methylation 
analysis of single 
gene locus 
- Quantitative 
- High throughput 
capacity 
- Small PCR 
amplicons 
- Quality control 
for conversion rate 

- Disadvantages bisulfite 
treatment   
- High cost of instrument 
- Low detection limit (5%) 
- Short length of sequence 
to be analyzed (100 bp) 

Therascreen MGMT Pyro kit  [12,21,32] 

ddPCR - Quantitative 
- High sensitivity 
- Analytical 
sensitivity up to 
0.0005% 
- Low noise 
- Single molecule 
DNA template 

- Disadvantages of bisulfite 
treatment 
- Expensive 
- Time-consuming 
optimization 

/ [12,17] 

Single cell BS - Cover high 
number of CpG 
sites 
- Low input 
through PBAT 

- Disadvantages of bisulfite 
treatment  
- Information on the DNA 
strand is lost due to 
multiple primer extension 
rounds 

/ [15,22,43] 

MIMIC - Multiplex (17 
CpG) 
- Flexible 
- Relative low 
input 

- Disadvantages of bisulfite 
treatment  
- Expensive 
 

/ [38] 

OBBPA ddPCR - Advantages 
ddPCR 
- More sensitive 
and specific 
- Analytical 
sensitivity of 
0.0007% 

- Disadvantages of ddPCR / [36,37] 
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Genome-wide (cf)RRBS - Extensive 
sequencing need is 
reduced 
- Quantitative 
- More cost-
effective than 
WGBS 
- Increased sample 
throughput vs 
WGBS 

- Disadvantages of bisulfite 
treatment  
- Bias towards high CpG 
density regions 
- Less reproducible than 
WGBS 

/ [18,19,39,42] 

Infinium methylation 
450K/EPIC (v2.0) 

- Relatively low 
cost 
- 450K to 850K 
CpGs 
- Standardized 
assay and analysis 

- Disadvantages of bisulfite 
treatment  
- Not flexible 
- Large amount of input 
DNA 
- Probe-type bias 

EPICUP™ [13,17,19,51,5
2] 

WGBS - Most powerful 
- All CpG sites can 
be studied 
- Quantitative 
- Highly 
reproducible 

- Disadvantages of bisulfite 
treatment 
- High sequencing cost 
- Complex computational 
skills and tools needed 
(data analysis, storage) 
- High input DNA 

/ [13–
15,26,39,42,50
] 

ELSA-seq - High resolution 
- Low input DNA 
(500 pg) 
- Improved library 
complexity 
through well-
preserved 
molecular diversity 
 

- Disadvantages of bisulfite 
treatment 
- Incomplete duplicate 
removal due to adaptor 
tagging 
- Risk of C→T and G→A 
artefacts 

/ [53,54] 

Hammer-Seq - Measure 
methylation of 
parent and 
daughter strands 
simultaneously 

- Disadvantages of bisulfite 
treatment  
- Large input amount (100 
µg DNA) 
- Time consuming 
- No distinction in parent-
daughter strand 

/ [55] 
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- High cytosine density 
regions are overrepresented 
due to hairpin  

Enzyme-based Restriction 
enzymes 

MSRE- (q)PCR - Reliable 
- Simple and cost-
effective 
- qPCR: 
quantitative 

- Time consuming 
- High input DNA (5µg) 
(southern blot PCR) 
- Low throughput and 
resolution 
- Potential false-positive 
results due to incomplete 
digestion (= inherent to all 
RE methods) 

- Bladder CARE (LDT) 
- EpiCheck 

[14,24,27] 

DREAM - Reproducible 
- Cost-effective 
- Quantitative 

- Restricted to CCCGGG sites 
in the genome 
- High DNA input (1µg) 
- High-quality DNA only 

/ [57,58] 

MED-seq - Relative low cost 
- Low DNA input 

- Unmethylated CpGs are 
not detected 
- Only 50% of genome-wide 
CpGs is covered 
 

/ [59,60] 

Epi-gSCAR - Low DNA input 
- Base pair 
resolution 
- Both genomic 
and epigenomic 
data 

- Need for specific 
equipment 
- Expensive 
- Time consuming 
(Laborious) 

/ [61] 

IMPRESS - Low DNA input 
- Low cost 
- Highly sensitive 
and specific 
- Simultaneous 
detection of 
mutations and 
CNVs possible 

- Restricted to CpG sites in 
genome (~40%) 
- Unmethylated CpGs are 
not detected 
- Underexplored  
 

/  

Other enzymes  TAPS - High sensitivity 
- Non-destructive 

- Time consuming 
- Multiple chemical and 
enzymatic steps that can 

/ [42,63,64] 
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- High mapping 
rates and more 
coverage 
- Lower 
sequencing cost 

adversely affect conversion 
efficacy 
- Difficult individual read 
mapping 

Em-Seq - Locus-specific 
amplification 
- High throughput 
- Low DNA input 

- Bias due to incomplete 
conversion 
- Underexplored 
- Expensive 

/ [16,64–66] 

Affinity-based  MeDIP(-seq) - Specific antibody 
to 5mC and 5hmC 
- Genome-wide 
coverage 
- ssDNA: hemi 
methylation can be 
verified 

- No individual CpG study 
- Enrichment of CpG dense 
regions (bias towards 
hypermethylated regions) 
- Lower accuracy compared 
to WGBS/RRBS 

/ [13,24,39,42] 

cfMeDIP-seq - Low input DNA 
- More cost-
effective 

- Time consuming 
- Not yet validated 
- Difficult to correct for 
CNVs 
- No ‘unmethylated’ signal  

/ [13,42,71] 

Either of 
above 

 Biosensors (optical 
and electrochemical) 

- High sensitivity 
and specificity 
- Low cost 
- Simple and fast 
- Low DNA input 

- Feasibility 
- Lack of clinical validation 
- Bisulfite, enzyme or 
antibody required (with 
associated disadvantages) 

/ [18,65,82] 

Direct 
detection 

 ONT (Nanopore) 

TMA-NP 

- Native DNA 
sequencing  
- Powerful and fast 
- Simultaneous 
detection of 
nucleotide 
sequence 
(including 
mutations and 
CNVs) and DNA 
methylation 
patterns 

- High DNA input (1µg) 
- High error rate (5-20%) 
- Expensive 
- No standardized calling 
pipeline 

/ [15,18,22,39,7
0] 
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SMRT (PacBio) - Native DNA 
sequencing 
- Simultaneous 
detection of 
nucleotide 
sequence 
(including 
mutations and 
CNVs) and DNA 
methylation 
patterns 

- High DNA input (5µg) 
- High error rate (13-15%) 
- Expensive 
- High coverage 
requirement 
- Mostly applied in bacteria  

/ [15,22,39,75] 
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SUPPLEMENTARY MATERIAL 

 

Supplemental Table 1 | Overview of other methylation detection technologies by conversion approach 

Approach Detection Technology 
Advantages Disadvantages 

References 

Bisulfite-based  

MSP 

- High analytical sensitivity (down to 0,1% 
of methylated alleles can be detected) 
- Cost-effective 

--Disadvantages of bisulfite treatment  
- Not quantitative  
- Cannot detect fragmented DNA 
- Bias towards the detection of fully 
methylated templates 
- Low throughput 

[1–9] 

 

MS-SnuPE 

- Multiplexing 
- semi-quantitative 
- Locus specific 

- Disadvantages bisulfite treatment  
- Limited access to certain CpG’s in the PCR 
product 
- Radioactivity 
- Labor-intensive (a.o. primer design, assay) 

[8,10–13] 

COBRA 

- Easy 
- Cost-effective 

- Disadvantages bisulfite treatment 
- Limited restriction sites → limited overview 
DNA methylation 
- False positives by incomplete digestion 
- Limited quantification 
- Underestimation of DNA methylation level 
- Labor-intensive 

[8,11–15] 

MS-DGGE - Cost-effective 
- Comprehensive analysis 

- Disadvantages bisulfite treatment  
- Low separation efficiency 

[5,11] 

Nested MSP  

(MN-MSP) 

- Simple method for quick validation 
- Fragmented DNA can be rescued 

- Disadvantages bisulfite treatment 
- Noisy sequencing results 
- Low sensitivity 
- Problematic primer design 
- Limit of 100-300 bp fragments 

[16–18] 
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MS-MCA 
- Easy interpretation in case of equal 
proportions (un)methylated fragments 
- Low input (< 10ng) 

- Disadvantages bisulfite treatment  
- Not accurate 
- Not quantitative 
- Difficult to multiplex 

[11,12,19,20] 

MS-DBA - Decreased FPR compared to MSP 
- Simple and cost-effective 

- Disadvantages bisulfite treatment  
- Semi quantitative 
- Time consuming 

[1,21] 

MS-HRM - Inexpensive and fast 
- High throughput 
- Detection limit up to 0,1% 

- Disadvantages bisulfite treatment  
- Not quantitative 
- Not locus-specific 

[3,7,8,22] 

Cold PCR 
- 10 to 100 more sensitive than PCR 
- Cost-effective 
- Easy to implement 
- Detection limit up to 0,1% 

- Disadvantages bisulfite treatment  
- Limit of 200 bp fragments 

[18,23,24] 

MassARRAY  

EpiTYPER 

- Length of sequence analyzed  
- Fast and accurate 
- Highly reproducible 
- Quantitative 
- High throughput 

- Disadvantages bisulfite treatment 
- High cost 
- Low detection limit (5%) 
- Restricted coverage of CpG’s within PCR 
product 
- Cleavage products with multiple CpG’s are 
unable to be resolved 

[3,8,12,13,17,25,26] 

BSPP - Flexibility and scalability 
- Highly specific 

- Disadvantages bisulfite treatment  [12,27,28] 

SMRT-BS - Quantitative 
- Multiplexing 
- Relatively low input (50ng) 

- Disadvantages of bisulfite treatment  
- Expensive 

[29,30] 

MCTA-seq - Reduced methylation background 
- Low input DNA 

- Disadvantages of bisulfite treatment  
- CGIs are enriched 
- Only CpG tandem regions can be detected 

[31–34] 

Enzyme-based 
Restriction 

enzymes 
RFLP/AFLP 

- Relatively low cost 
- Fast 
- Low DNA input 

- Ambiguous interpretation data 
- Only assess small % of global DNA 
methylation 
- Potential false-positive results due to 
incomplete digestion (= inherent to all RE 
methods) 

[12,18,35–37] 
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RLGS 
- Quantitative 
- No prior knowledge needed 

- Time consuming 
- High false-positive rate 
- Low reproducibility 
- High quality DNA only 

[38–41] 

HELP - Simple  
- Positive representation of 
hypomethylated CpGs 

- Not for complex genetic samples 
- Relative low resolution 
 

[12,42] 

LUMA 
- Quantitative 
- High throughput 

- High quality DNA only 
- Variability with different DNA extraction 
methods 
- DNA input can be high (up to 500 ng) 

[13,18,43,44] 

CHARM - Relative low cost 
- Locus level analysis 
- Quantitative 

- High DNA input 
- Hybridization-related bias 
- Relative low resolution 

[12,44,45] 

MSCC - Simple and fast 
- Accurate 

- High quality DNA required 
 

[18,28] 

MS-MLPA 

- High throughput screening 
- Relatively cost-effective 
- Flexible 
- Simple data analysis 
- Fragmented DNA  
- Low DNA input 

- Only semi-quantitative 
- CpG’s limited to HhaI restriction sites  
- False negatives due to polymorphisms  

[1,3,15,46] 

Methyl/MRE-seq - Cost-effective 
- Simple and fast 

- Lack of whole genome coverage 
- No absolute methylation levels 
- No single locus resolution 

[2,13,31,47,48] 

Affinity-based  

ELISA 
- Fast and simple protocol 
- High throughput 
- Relative low cost 

- Relative high input amount (100 ng) 
- Relative quantification 
- Cross-reactivity antibodies 
- Lower sensitivity 

[2,18,44,49,50] 

MBD-

seq/MethylCap 

- Genome wide coverage 
- Low input DNA 
- Reproducible 

- No individual CpG study 
- Enrichment of CpG dense regions (bias 
towards hypermethylated regions) 
- Areas with less dense 5mC are missed 
- Lower accuracy compared to WGBS/RRBS 
- Low recovery of methylated DNA 

[12,31,39,51,52] 
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MBD-ddPCR - Highly sensitive 
- Cost-effective 

- Only a limited amount of CpGs 
- Not validated 

[53] 

MIRA-seq  - High sensitivity and specificity 
- only 1ng DNA input 
- No denaturation of DNA 

- only 100 bp 
- minimally 2 methylated CpGs are required in 
the captured fragment 

[12,18,54] 

Other 
Conversion 

method 

HPLC-UV - Quantitative 
- Fast 

- High DNA input (2 µg) 
- Specialized equipment necessary 
- Relative high cost/sample 

[11,55–57] 

LC/MS-MS 
- Sensitive 
- Quantitative 
- Relative low input DNA (50 ng) 
- Not affected by poor quality DNA 

- Specialized equipment necessary 
- Time consuming sample prep 
- Relative high cost/sample 

[13,18,25,58] 

NalO4/LiBr - High efficiency 
- Easy 

- Non-selective for sequence 
- Low sensitivity 

[11,59] 

Mwcnts 

- No need for chemical/enzymatic 
modifications 
- High specificity and precision 
- Miniaturization 
- Easy production 

- Expensive 
- Difficult to work with due to size (extremely 
small) 
- Might become obsolete due to development 
of other technologies 

[11,60,61] 
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INTRODUCTION 

Colorectal cancer and breast cancer 

Colorectal cancer (CRC) is the third most common cancer in men and second most common cancer in women 

worldwide. In both genders, it is the third most deathly cancer type worldwide. In 2020, there were over 1.9 

million new cases of CRC worldwide and an estimated number of more than 935,000 deaths [1]. The 5-year 

survival rate is 91% in early stages but decreases drastically to 14%  when CRC is detected in advanced stages. 

Unfortunately, only 37% of patients are diagnosed in an early stage [2]. Increasing early diagnosis by screening 

for pre-cancerous lesions and early-stage cancer is crucial to reduce the incidence and mortality, as more 

effective therapies are available for early stages [3].  

Breast cancer (BRCA) is the most common and deadliest cancer type worldwide in women. An estimated number 

of almost 2.3 million new cases and 685,000 deaths have been reported in 2020 [1]. The 5-year survival rate is 

99% for stage I, but decreases to 30% for advanced stages, where still 1 out of 3 patients is diagnosed [6]. As 

for CRC, increasing early diagnosis of BRCA by screening for in situ carcinomas is essential. In this view, 

screening programs have been introduced in Europe. 

CRC and BRCA detection: current screening methods  

Screening and subsequent early detection of cancer is important to decrease the incidence and mortality of 

this disease. Especially in CRC, research shows that with a two-yearly faecal test, incidence and mortality have 

been reduced by 18% [9]. Therefore, the CRC population screening program has been established in Flanders 

since 2013, where people between 50 and 74 years old are invited to take a faecal immunochemical test (FIT). 

According to the latest data of 2022, the response rate1 was only 48.3% (45.7% for man, 51.1% for women), 

which is lower than the EU target participation rate of 65% [14]. Moreover, in 16% of deviating FIT results, 

patients do not undergo correct follow-up testing. 25.5% of the target population has never even participated 

in the screening program. Younger people tend to participate less. Although the FIT achieves high specificity 

(97.1%), the sensitivity, especially for early stages is quite low (67.5% for adenoma). Reported reasons not to 

participate include mostly psychosocial barriers such as discomfort, fear for a positive result, worrying about 

false positive results or the detection of CRC, complete ignorance and disgust for the FIT procedure [15–17]. 

Despite some reasons that are related to factors such as fear, some important reported reasons clearly indicate 

the need for improvement of the CRC screening program. There are some alternative screening modalities 

 
 

1 The response rate is the percentage of people that take up the invitation within 12 months after receiving it 
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recommended in the EU, such as a flexible sigmoidoscopy (FS) every 5 years or a colonoscopy every 10 years 

[9]. Despite the major advantage that polyps can be excised during such a screening endoscopy, the bowel 

preparation needed for these investigations are extensive, and a commonly known barrier for participation 

[9,16]. Moreover, it has been shown that FIT is more accepted than FS [16]. Other alternative screening 

modalities are thus needed to increase screening uptake. In this view, few studies have investigated patient 

preference for blood-based screening tests. In a German study, 97% of patients who refused to undergo a 

screening colonoscopy, accepted an alternative method. 83% of them selected the methylation SEPT9 blood 

test. Only 15% chose a stool test [18]. In a Dutch study, patient preference for either blood-based, stool-based 

or a combination of both was assessed. Screening was preferred to no screening, with the highest preference 

for a combination of both blood and stool, followed by blood only [19]. Both studies highlight the need for 

providing different assays to increase uptake, and for development of novel, blood-based assays. 

Even before the CRC screening program, Flanders introduced the BRCA population screening program in 2001. 

Since then, women between 50-69 years old are invited every two years to participate. Despite the advantages 

of the program, important limitations persist. For example, in 2022 the response rate was 54.1%, which is 

significantly lower than the recommended EU guidelines of 70-75% response rates [10,11]. Moreover, 14.4% 

of the eligible population has never participated in the program and 2.6% of women who do participate, are 

not followed-up correctly [10,12]. Also, the sensitivity (67.8%) and specificity (98%) of a mammography are not 

optimal. Reported reasons not to participate are, amongst others, lack of trust in mammographies, worrying 

about BRCA detection and fear for pain related to the mammography’s compression force [13]. Some reasons 

related to fear will never change with different screening assays, but in view of other reasons, these numbers 

still highlight the need for introducing alternative screening modalities. 

Existing assays and biomarkers for CRC and BRCA detection 

CRC 

[Adapted from Ferrari A, Neefs I, Hoeck S, Peeters M, Van Hal G, (2021). Towards Novel Non-Invasive Colorectal 

Cancer Screening Methods: A Comprehensive Review. Cancers. https://doi.org/10.3390/cancers 13081820 ] 

Protein Panels 

The number of protein molecules indicated by the literature as possible CRC markers in blood is wide. However, 

only two are currently the main blood-based biomarkers available to detect CRC patients: carcinoembryonic 

antigen (CEA) and carbohydrate antigen 19-9 (CA19-9). CEA is particularly useful when used as a prognostic 

factor (poor prognostic factor for resectable CRC, cancer progression and recurrence after surgery) but when 

used as a tool for early detection in a screening setting its sensitivity is low because its levels are strictly related 

to the tumor stage. Moreover, CEA is not specific for CRC, but a higher level can be caused by liver disease, 
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pancreatitis, inflammatory bowel disease (IBD), and other malignancies. On the other hand, CA19-9 antigen is 

even less sensitive and specific for CRC, while it represents a highly reliable marker for the detection of 

pancreatic and biliary malignancies [20,21]. 

Combination of Protein and Genes Panels 

In 2018, Cohen et al. developed CancerSEEK, a blood test that detects multiple types of cancer, including CRC, 

by combining the detection of circulating free DNA (cfDNA) and protein biomarkers (including CA-125 and CEA) 

that are released by tumors [22,23]. This test works with an algorithm that weighs the protein and DNA data 

collected from the blood in order to detect patients who are likely to have a tumor. 

Preliminary performance of the test was evaluated in a set of 1005 individuals with known cancers who were 

compared with 812 healthy controls. Tumor type and location influenced the accuracy of the prediction: the 

highest accuracy was achieved for colorectal cancer. In particular, specificity of the test was over 99% in eight 

cancer types: ovarian, liver, stomach, pancreatic, esophageal, colorectal, breast, and lung. Moreover, the tissue 

of origin was correctly identified in approximately 80% of patients. Although the false-positive rate was low in 

the trial, it would be expected to be higher in the real-world setting when the test is applied to a healthy 

population without known diagnosis of cancer. In fact, the authors weighted the results for the actual incidence 

in the United States and estimated a sensitivity of 55% among the eight cancer types. 

In conclusion, the authors stated that multi-analytic tests, such as this one, are not meant to replace other non-

blood-based screening tests—such as those for colorectal cancer—but are meant to provide additional 

information that could help identify and diagnose patients who are at higher risk of having a malignancy 

[23,24]. 

Multitarget Stool DNA (MT-sDNA) Test 

The American Cancer Society guidelines already recommend the Multitarget Stool DNA test as a feasible option 

to screen the average-risk population. An example is the FDA-approved MT-sDNA test, called Cologuard®. It is  

not widely utilized in common practice as other non-invasive tests of the same kind (e.g., FIT) and it is not yet 

recommended by the official European guidelines as a first line screening test. 

Cologuard® is a molecular assay for aberrantly methylated BMP3 and NDRG4 promoter regions, mutant KRAS, 

and β-actin, which is used as a reference gene for DNA quantity, combined with an immunochemical assay for 

human hemoglobin. The study that granted the FDA approval was a cross-sectional study conducted by 

Imperiale et al. It compared the MT-sDNA test with FIT only and the results were generated with the use of a 

logistic-regression algorithm, with a positive score threshold of 183 or more considered to be positive. 
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DNA testing showed 92.3% sensitivity for CRC and 42.4% for advanced adenomas. FIT showed 73.8% sensitivity 

for CRC (p = 0.002) and 23.8% for advanced adenomas (p < 0.001). However, DNA testing showed lower 

specificity than FIT: 86.6% compared to FIT’s 94.9% specificity among patients with nonadvanced or negative 

findings (p < 0.001) and 89.8% compared to FIT’s 96.4%, among those with a negative colonoscopy result (p < 

0.001).  

These results show that the MT-sDNA test, in asymptomatic persons at average risk for colorectal cancer, 

detects significantly more cancers than FIT. Therefore, as the authors suggested, being a noninvasive test with 

a high single-application sensitivity for curable-stage cancer, Cologuard® may provide a suitable option for 

persons who prefer noninvasive testing, although with lower specificity [25]. 

ctDNA Methylation—SEPT9 Methylation Assays 

One of the genes for which methylation has been linked to CRC development is SEPT9 [26,27]. Various SEPT9 

gene methylation assays have been developed based on the assumption that the risk of CRC development can 

be assessed by identifying the degree of DNA methylation of the promoter region of the SEPT9 gene in 

peripheral blood.  

At present, there is only one SEPT9 methylation assay kit already approved by the FDA as a valid alternative to 

CRC screening tests that have already been included in guidelines. This kit, called Epi proColon® 2.0, is to be 

used on adults, age 50 or above, at average risk for CRC. It uses a real-time polymerase chain reaction (PCR) 

with a fluorescent hydrolysis probe for the detection of specific methylation in the SEPT9 DNA target [28,29]. 

In 2016, the FDA approved the Epi proColon® 2.0, based on the data presented in the PRESEPT study with a 1/3 

algorithm [28]. Different studies found a variable sensitivity (ranging between 47–82%) and specificity (ranging 

between 81–95.9%). They also showed a good sensitivity range for early stage disease (stage I and stage II) 

around approximately 60% for stage I and 70% for stage II [28,30–32]. 

The sensitivity of Epi proColon® 2.0 and the commercialized mSEPT9 assay do not differ from the most widely 

used Fecal immunochemical tests (FIT) [33–36].  When taking into consideration the fact that FIT has a low 

compliance in terms of screening uptake [36] and many factors can lead to a false-positive result such as 

inflammation, infections, ulcers, and hemorrhoids, the mSEPT9 assay, which is not affected by those factors, 

could be considered superior, in terms of detection rate, to the fecal test. However, because of the higher cost-

effectiveness, FIT remains the first choice among diagnostic tests for CRC screening. It is also notable that 

different studies found that mSEPT9 assay sensitivity was further enhanced when it was combined with 

carcinoembryonic antigen (CEA) or FIT. Consequentially, a combined MS-9 DNA blood test and FIT/CEA may 

help to achieve a higher detection rate of CRC and may represent a valid option for screening. 
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BRCA 

There are currently no established biomarkers or FDA approved assays for BRCA screening. The only methods 

that are used and recommended in clinic, are imaging technologies such as  the mammography, ultrasound etc 

[37]. Nevertheless, there are some important molecular markers in use for diagnosing BRCA, as it is a very 

heterogeneous disease with various molecular aberrations. As such, molecular subtyping per case is of extreme 

importance in BRCA diagnostics, mostly for treatment and follow-up purposes [38]. 

Immunohistochemical (IHC) analysis for diagnostic purposes 

The European Society for Medical Oncology (ESMO) guidelines for BRCA recommend IHC to assess classical 

molecular markers such as the estrogen receptor (ER), progesterone receptor (PR) and oncogenic human 

epidermal growth factor receptor 2 (HER2). Protein staining of these markers on tumor tissues is nowadays 

used as gold standard methods for subtyping BRCA [38,39]. Apart from histological subtyping of BRCA into 

lobular and ductal carcinomas [37], there are four main groups into which BRCA can be divided based on the 

IHC staining: 1) Hormone receptor (HR) positive, HER2 negative patients, 2) HR positive, HER2 positive patients, 

3) HR negative, HER2 positive patients and 4) HR negative, HER2 negative patients. The latter are known as 

triple negative breast cancers (TNBC). Knowing the subtype is mostly important for treatment options, as there 

exist anti-hormonal and anti-HER2 therapies [38]. Furthermore, it is known that, for example HER2 positive 

carcinomas are aggressive and lead to a poor prognosis [37]. Beside receptors, also the Ki-67 proliferation index 

is used as a prognostic biomarker in BRCA [40,41]. 

Serological markers for diagnostic purposes 

There are very few serological markers described that are used in routine diagnostics. The previously mentioned 

Ki-67 is traditionally assessed in tumor tissue, but has potential as a serological biomarker. Furthermore, CA 

15-3 is used in diagnosis of BRCA. It is a protein component of MUC 1, which is found in epithelial cells. Besides 

its use in BRCA detection, it is also frequently used in monitoring BRCA. However, CA 15-3 levels can also be 

elevated in other conditions including gastrointestinal and lung neoplasm, which makes it a suboptimal 

biomarker [41]. 

Genetic alterations for diagnostic purposes 

There are a few genetic biomarkers and assays testing for them that are used in routine diagnostics. First of all, 

the PAM50 assay analyses the gene expression of 50 genes. Based on the mRNA expression that is measured 

with the RT-qPCR assay, BRCA can be classified into four ‘intrinsic’ or molecular subtypes: 1) Luminal A, 2) 

Luminal B, 3) HER2 enriched and 4) Basal-like BRCA. Knowing these subtypes enables tailoring the treatment 

of the patient [37,38]. Second, there exist multi-gene panels for screening high-risk patients with BRCA 
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predisposition. The best-known and most significant high-risk genes for predisposition to BRCA, are BRCA1 and 

BRCA2 [42]. Genetic counselling is used to follow-up these high-risk patients, using e.g. the TruRisk panel. This 

assay consists of different genes, including the BRCA1/2, CHEK2, RAD51C, PTEN and TP53 genes [37,42]. Another 

routinely used assay is the FDA-approved MammaPrint assay, which was validated for use in BRCA through the 

MINDACT trial [43]. With the MammaPrint, 70 genes are evaluated to determine the risk of distant metastasis 

in early stage breast cancer. The outcome is mostly interesting to inform decisions regarding therapy [43]. 

Lastly, the Oncotype DX assay is another option to analyse expression of multiple genes (n=21) in tumor tissue 

samples [41].  

Beside the assays, there are some important genes that are routinely tested for in the clinic. These include the 

PIK3CA, GATA3, MAP3K1, ATM, PALB2, BRIP1 and MCM4 genes [39,41]. All genes that are evaluated, are mostly 

important for therapy initiation decisions and follow-up, and to a lesser extent for detection of BRCA. 

Importantly, genes and proteins discussed are only in use for Luminal and HER2 carcinomas. For TNBC, 

biomarkers are currently being developed but not yet used in clinical diagnostics [41].  

Despite all advances, there is still room to improve screening of BRCA and CRC by using other biomarker types. 

Our research is tailored towards DNA methylation, as it has been demonstrated extensively that the methylome 

is a powerful source for biomarkers, and needs further investigation. 

DNA methylation and its role in CRC and BRCA 

Epigenetics plays a crucial role in cancer development. One of the most studied epigenetic alterations is DNA 

methylation. It occurs mostly on the fifth position of the cytosine of a CpG dinucleotide in so-called CpG islands, 

which are regions in the genome with a high density of CpG dinucleotides [44]. In healthy cells, DNA 

methylation ensures activity of required genes via hypomethylation of promotor regions of tumor suppressor 

genes as well as genome stability by hypermethylation of the gene body and repetitive elements [45]. In cancer, 

the methylation patterns are altered. These changes occur early in cancer development and typically silence 

the expression of tumor suppressor genes by hypermethylation of the promotor region. In addition, the gene 

body and repetitive elements are hypomethylated [46].  

In oncology, mutations are the most researched biomarkers. However, based on the involvement of methylation 

in carcinogenesis, methylation patterns are now also considered as potential biomarkers. It has been 

demonstrated for both CRC and BRCA that epigenetic alterations found in the primary tumor can also be 

detected in ctDNA extracted from plasma, underlining the potential of methylated ctDNA (MetctDNA) as a 

biomarker [47,48]. The use of DNA methylation biomarkers has some major advantages over using mutations. 

Methylation occurs very early, possibly before actual neoplastic transformation in cancer development, which 

renders it especially interesting for screening and early diagnosis. Given that no prior knowledge is needed on 
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the tumor molecular profile, methylation biomarkers are more universal than mutation markers. Since 

methylation-based tests can be used off the shelf, they are much faster and cheaper to use [49,50]. 

For both CRC and BRCA, several genes have already been examined for their biomarker potential in early 

diagnosis. Examples include methylation of APC for BRCA and SEPT9 for CRC [48,51]. SEPT9 promotor 

methylation for the detection of CRC has been commercialized as the Epi proColon® test (Epigenomics AG). It 

was the first blood-based screening test to be approved by the FDA in 2016. Its sensitivity ranges from 42 - 

96% and its specificity ranges from 79 - 99% in different studies performed by separate research groups [51]. 

More research is needed to improve the overall sensitivity of the test. Many more biomarkers have been 

described, but these merely consider a single cancer type or gene of interest. Simultaneously analyzing several 

genes or regions of interest could improve the overall sensitivity of biomarker tests drastically. 

Minimally-invasive cancer detection using liquid biopsies 

At present, tumor tissue sampling remains the gold standard for detection and diagnosis of any cancer. Due to 

several difficulties that arise when taking solid biopsies, liquid biopsies are a recent and popular alternative in 

oncology research. Liquid biopsies are defined as the assessment of circulating components in bodily fluids. It 

has already been demonstrated that alterations found in a tumor tissue sample can be found by surrogate 

markers in liquid biopsies [47,49]. Important advantages of liquid biopsies include minimal invasiveness, the 

ability to represent the whole (epi)genetic landscape of the tumor including that of metastases and its 

accessibility, allowing repeated sampling and close follow-up [46,49,52]. One of the most investigated 

surrogate markers is circulating tumor DNA (ctDNA), which is the tumor-specific fraction of all circulating cell-

free DNA (cfDNA). It is mostly shed passively into the bloodstream via apoptosis or necrosis of the tumor cells 

and a fraction also is excreted actively via extra cellular vesicles [53]. The amounts of ctDNA shed into the 

bloodstream vary from undetectable (<0.1%) up to >50% of total cfDNA [47]. As all tumoral regions are expected 

to release ctDNA, it reflects the cumulative tumor burden. Previous research has shown that both BRCA patients 

and CRC patients shed ctDNA into the bloodstream, even in early stages [47,48]. Lastly, studies indicate that 

current screening methods are considered unpleasant and therefore, blood-based testing could be a solution 

to increase screening uptake [54–57].  

The hurdles in methylated (ct)DNA analysis  

Nowadays, bisulfite sequencing is considered the gold standard for DNA methylation analysis. One of the major 

disadvantages of bisulfite sequencing is the significant amount of DNA degradation, which is especially 

important when using fragmented samples with low DNA concentration such as ctDNA. Alternatively, bisulfite-

free techniques including methylation-sensitive restriction enzymes (MSRE) are available. All technologies with 
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their (dis)advantages were already described  in more detail in chapter 1. Besides the problems inherent to the 

methylation detection techniques, another problem arises when detecting ctDNA. As mentioned before, ctDNA 

is fragmented and its concentration in blood is very low [44]. Consequently, only a fraction of the genome could 

be represented in liquid biopsies. Detection of methylation in one gene may generate false-negative results 

since the fraction may not contain the specific gene of interest, limiting the sensitivity. However, this limitation 

can be overcome by simultaneous detection of the methylation status of multiple genes or regions in a 

multiplex assay. Moreover, this increases the sensitivity of the test, since the chance of missing all genes or 

regions is significantly lower. Unfortunately, up to this moment, there is no cost-effective technique that allows 

multi-region methylation analysis. In conclusion, there is an urgent need for a bisulfite-free detection method 

for the simultaneous analysis of multiple methylated regions. 
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AIMS AND OUTLINE OF THE PHD THESIS 

In 2019, our research group demonstrated the potential of the GSDME gene as a universal methylation marker 

for differential detection of 14 types of cancer [23]. This study was later expanded to multi-cancer genome-

wide methylation profiling with a focus on the 14 most prevalent cancers, including BRCA and CRC [24]. Due 

to the large number of CpGs in the human genome, the ones that can be used in a biomarker setting were 

carefully selected based on having the largest differences in methylation between normal and tumor tissues. 

Consistently differentially methylated CpG sites (DMCs) in all studied cancer types were identified, in view of 

developing an assay for multi-cancer detection. For example, a total of 77,302 DMCs corresponding to 12,350 

different genes common for breast, CRC and lung cancer with calculated AUCs ranging from 0.84-0.99 were 

found [24]. This demonstrates that CpG methylation can reliably be used as both a detection (presence or 

absence) and differential (tumor type) biomarker for cancer. The prediction models were not influenced by 

tumor stage or patient age. Importantly, the large number of identified DMCs highlighted the need for a novel 

highly multiplexable targeted methylation detection method. The development of this method was a major 

part in this PhD thesis (see aim 2 and chapter 6). 

DNA methylation biomarkers are gaining attention in the oncological research field, but current detection 

methods leave much to be desired in view of sensitivity and cost. Therefore, in this PhD research, we have 

explored the epigenetic landscape of cancers, in particular colorectal cancer and breast cancer, with the general 

aims of identifying new DNA methylation cancer biomarkers and detecting them in tissue biopsies using newly 

developed assays.  

The following aims were formulated for this PhD thesis: 

Aim I. To explore conventional and new biomarkers, with a focus on CRC and DNA methylation 

In literature, there is little to no information concerning clinicopathological characteristics and molecular 

alterations in CRC interval cancers. Therefore, we investigated these features in stage IV screen-detected and 

FIT-interval CRCs. We focused on the currently reported, thus classical biomarkers. The results are described in 

chapter 3. With regard to previous epigenomic findings of our own, and the lack of comparison in the 

methylation levels between normal, adenoma and carcinoma tissue in CRC, we aimed to explored DNA 

methylation as a biomarker for early CRC detection. We aimed to investigate whether there is differential 

methylation between normal colorectal tissue, precancerous lesions (adenomas) and invasive carcinomas to 

unravel potential biomarkers that can discriminate between the three tissue types. The results are described in 

chapter 4. 
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Aim II. To create novel assays using both classic and novel technologies for the analysis of (ct)DNA methylation 

biomarkers 

As outlined in the introduction, DNA methylation detection is not optimal yet. Aiming to tackle this problem, 

one of the goals was to develop novel assays using multiplexing strategies. In one study, ddPCR was chosen as 

it is a well-known method, but only gained attention for DNA methylation detection recently. Moreover, ddPCR 

assays can be easily translated towards the clinic. However, only a limited number of targets can be 

investigated. This is also highlighted in the results of chapter 5. As there was no ideal method present, one of 

the objectives was to focus on the development of a new technology, termed IMPRESS, for the analysis of 

thousands of methylated CpGs simultaneously. This technology and all achieved results are described in detail 

in chapter 6.  

Aim III. To validate our newly developed DNA methylation biomarker assays 

As outlined in the rationale, screening for CRC and BRCA is not optimal yet. Therefore, the last goal of this 

thesis was to development a specific IMPRESS assay for CRC and BRCA. To achieve this goal, previously found 

biomarkers from chapter 4 and the technology from chapter 6 are used in combination to develop the assays. 

The aim was to validate the new assays in both fresh frozen tissue and liquid biopsies.  
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ABSTRACT 

Introduction: Interval cancer (IC) is an important quality indicator in colorectal cancer (CRC) screening. 

Previously, we found that fecal immunochemical test (FIT) ICs are more common in women, older age, right-

sided tumors, and advanced stage. Here, we extended our existing stage IV patient cohort with 

clinicopathological and molecular characteristics, to identify factors associated with FIT-IC. 

Methods: Logistic regression models were fit to identify variables associated with the odds of having a stage 

IV FIT-IC. Multivariate models were corrected for gender, age, and location. 

Results: A total of 292 screen-detected (SD) CRCs and 215 FIT-IC CRCs were included. FIT-IC CRC had 5 fold 

higher odds to be a neuroendocrine tumor (NET) and 2.5 fold higher odds to have lymphovascular invasion. 

Interestingly, some variables lost significance upon accounting for location. Thus, tumor location is a critical 

covariate that should always be included when evaluating factors related to FIT-IC. 

Conclusions: We identified NETs and lymphovascular invasion as factors associated with increased odds of 

having a stage IV FIT-IC. Moreover, we highlight the importance of tumor location as a covariate in evaluating 

FIT-IC related factors. More research across all stages is needed to clarify how these insights might help to 

optimize the Flemish CRC screening program. 
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INTRODUCTION 

Colorectal cancer (CRC) is one of the leading causes of cancer-related deaths worldwide. In Belgium, CRC is the 

third most common cancer in men and second most common in women [1]. In 2021, almost 8 000 persons were 

newly diagnosed with CRC in Belgium. In Flanders (58% of the Belgian population), the age-standardized 

incidence rates (world standard population) for CRC were 33.9 per 100,000 person-years for men and 24.2 per 

100,000 person-years for women in 2021 [2]. 

Most CRC tumors slowly develop through multiple steps starting from precancerous lesions. Over time, both 

morphologic, histologic and also molecular modifications can accumulate, leading to invasive tumors. As for 

most cancer types, prognosis of CRC depends on the tumour stage at diagnosis, and can be drastically improved 

by early detection [3]. This is clearly shown by the 5-year survival rates in Flanders, which are 96% for stage I 

and only 21% for stage IV in persons between 50 through 74 years old [4]. Moreover, in high-income countries, 

incidence rates of CRC have been decreasing as a result of the implementation of screening programs. If these 

screening programs are effective and in place in all European countries, an additional 80 000 CRC deaths could 

be prevented yearly [5]. It is clear that screening of CRC is an important tool to reduce incidence and mortality. 

In Flanders, CRC screening was introduced in October 2013 for all persons aged 56 through 74 years. The 

starting age was gradually lowered from 56 in 2013 to 50 in 2020. Currently, the program offers a biennial, 

free of charge fecal immunochemical test (FIT: FOB Gold, Sentinel Diagnostics, Milan, Italy) to individuals from 

50 through 74 years old [6]. More details about the program and the inclusion/exclusion criteria for screening 

have previously been described [7].  

One of the important quality indicators to consider in the CRC screening program is the occurrence of FIT 

interval cancers (FIT-ICs). FIT-IC are defined as CRC diagnosed after a negative FIT, but before the next FIT 

invitation (24 months). On the other hand, screen-detected (SD) cancers are defined as a CRC diagnosed after 

a positive FIT, within 6 months after the first follow-up colonoscopy and before the next recommended FIT 

invitation (24 months) [7,8]. Previous research by Tran et al. [7] about FIT-ICs already showed an overall FIT-IC 

proportion of 13%. Importantly, they also reported a significantly higher risk of having a FIT-IC versus an SD 

CRC for female gender, older age, right-sided location, high differentiation grade and stage IV compared to 

stage I participants in the in-study population, for which the latter showed the strongest association with the 

risk of having FIT-IC (OR= 7.15 [5.76 – 8.88]) When looking at stage IV alone, the FIT-IC proportion was 45% 

[7].  

In addition to these findings, it has been described that relative 5-year survival rates for FIT-IC are drastically 

lower compared to SD-ICs (67% vs 94% respectively). The larger proportion of stage IV cancers in the FIT-IC 

group lead to this lower relative survival chances [9]. Furthermore, FIT still has room for improvement in 
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sensitivity, which is currently 79% (ranging from 70% – 86% in different studies) for stage IV [9]. Specific and 

reliable markers for ICs can help here to increase the SD IV proportion. 

Unfortunately, literature about clinicopathological and molecular features of FIT-IC cancers is rare, and large 

studies are still lacking. Therefore, we wanted to extend the previous study by Tran et al. [7], by exploring 

clinicopathological and molecular characteristics of FIT-IC versus FIT-SD CRC. Taking into account the results 

of Tran et al., suggesting that stage IV is the most interesting subgroup for further investigations, we expanded 

the existing data of all advanced stage (IV) patients with clinicopathological and molecular data. Since our 

stage IV patient group consists of n= 511 patients for which we manually extracted data, we chose to focus our 

study on this (most interesting) stage IV group. Our research objective was to model the associations between 

the risk of having an SD versus FIT-IC stage IV CRC and the identified (significantly) different characteristics, 

called variables hereafter. 

METHODS 

Study population and study design 

This retrospective population-based study is a follow-up study of Tran et al. [7]. In the current study, all eligible 

individuals (between 53 through -74 years old) who participated in the Flemish CRC screening program 

between October 2013 (start of the program) and December 2018 (last year with all required data complete) 

and who were diagnosed with either a stage IV SD or FIT-IC CRC in the same period were selected. All cases 

were screened using another FIT (OC Sensor, Eiken, Japan). We adopt the same definitions as those used in the 

previous study for SD and FIT-IC CRC, where SD CRC was defined as “a CRC that was diagnosed within 6 months 

after the first follow-up colonoscopy for a positive FIT and before the next recommended FIT invitation (24 

months)” [7]. A FIT-IC CRC was defined as “a CRC diagnosed after a negative FIT and before the next 

recommended FIT invitation (24 months)”. Staging was performed using the applicable TNM edition at the time 

of diagnosis (TNM 7th edition for incidence years 2013-2016, TNM 8th edition starting from incidence year 2017). 

Combined TNM stage was a compilation of pathological (pTNM) and clinical (cTNM) stage. pTNM prevails over 

cTNM, except when cTNM stage is IV [10]. All available clinical, clinicopathological and molecular data was 

extracted from the Belgian Cancer Registry (BCR). 

Data sources and studied variables 

Data from all patients (n=511) was obtained from several databases. First, the Flemish Centre for Cancer 

Detection provided data on participant’s screening history (FIT result and follow-up colonoscopy), which 

originates from linkage of data from the InterMutualistic Agency. Then, population-based data from the Belgian 
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Cancer Registry (BCR) was subsequently used to link these data to personal information (gender, age), tumor 

characteristics (location, adenocarcinoma type…), clinicopathological and molecular features (lymphovascular 

invasion, genetic mutations…). All variables are described in Table 1. For patients with multiple lesions (<5% 

of the total population), the lesions were considered independent. Tumor location was classified as right sided 

colon (from cecum to hepatic flexure), transverse colon or left sided colon (from splenic flexure to the sigmoid). 

In our population, there were no patients with stage IV rectal tumors. Tumor types were split in 

adenocarcinomas (‘no specific type (NST)’, mucinous and signet ring cell carcinomas) and neuroendocrine 

tumors (NET). Tumor sizes were grouped per 2 cm. Tumor descriptions were summarized as bulky (including 

polypoid, bourgeois and stenosing tumors), ulcerative (comprising flat, ulcerating and infiltrating tumors) or 

both (combinations of the former). The presence or absence of another primary tumor was reported as such. In 

case a significant result was found, additional analysis for the location of the other primary tumor was 

performed. Lymphovascular invasion (LVI) was subdivided in being absent (none), only lymphatic invasion, only 

vascular invasion and both lymphatic/vascular invasion. Depth of Invasion (Di) was subdivided in T0-2, T3 and 

T4. Microsatellite instability (MSI) was categorized as stable, low or high. DNA mismatch repair genes were 

documented in view of the protein staining and were described as positive when a loss of staining was found.  

Statistical analyses 

Sample size and missing data 

We included all 507 eligible stage IV CRCs diagnosed tumors in the Flemish CRC screening program between 

October 2013 and December 2018. For a few patients, there was no information about the tumour; these cases 

were removed. Data on gender, age and other primary tumors was complete (see Table 1). Data for location 

was complete for 97% and type of adenocarcinoma for 99% of all cases. Table 1 gives an overview of the 

number of cases for which data on the different characteristics were available.  

Table 1 | Study population characteristics 

Parameters Outcome – split IC/SD Total n 

Outcome 
IC, n (%) SD, n (%)  

215 (42.2%) 292 (57.6%) 507 
Gender, female 112 (52.1%) 103 (35.3%) 507 
Location 

Right 106 (51.2%) 66 (23.1%) 
493 Left 85 (41.1%) 210 (73.4%) 

Transverse 16 (7.7%) 10 (3.5%) 
Age (years) 

Median (IQR) 66 (62-71) 

507 
50-54 0 (0.0%) 3 (1.0%) 
55-59 31 (14.4%) 43 (14.7%) 

  60-64 45 (20.9%) 69 (23.6%) 
65-69 58 (27.0%) 82 (28.1%) 
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70-74 60 (27.9%) 92 (31.5%) 
75-79 21 (9.8%) 3 (1.0%) 

Type of adenocarcinoma* 
NST 161 (75.6%) 247 (84.9%) 

504 Mucinous  37 (17.4%) 33 (11.3%) 
Signet ring cell 15 (7.0%) 11 (3.8%) 

NET (presence)  12 (5.6%) 4 (1.4%) 505 
Tumor size (cm) 

Median (IQR) 3.75 (2.35 – 5.75) 

303 

0 – 2.0 12 (12.5%) 33 (16.4%) 
2.1 – 4.0 51 (53.1%) 101 (50.2%) 
4.1 – 6.0 26 (27.1%) 50 (24.9%) 
6.1 – 8.0 5 (5.2%) 12 (6.0%) 

8.1 – 10.0 3 (3.1%) 3 (1.5%) 
10.1 – 12.0 3 (3.1%) 2 (1.0%) 
12.1 – 14.0 1 (1.0%) 0 (0.0%) 
16.1 – 18.0 1 (1.0%) 0 (0.0%) 

Tumour description 
Bulky 21 (22.1%) 23 (14.2%) 

257 Ulcerative 61 (64.2%) 103 (63.6%) 
Both 13 (13.7%) 36 (22.2%) 

Lymph node metastasis (presence) 93 (77.5%) 151 (72.2%) 329 
Lymphovascular invasion 

None 30 (25.6%) 85 (42.9%) 

315 
Only lymphatic invasion 10 (8.5%) 18 (9.1%) 

Only vascular invasion 15 (12.8%) 19 (9.6%) 
Both lymphatic and vascular invasion 62 (53.0%) 76 (38.4%) 

Depth of invasion 
T0-2 9 (7.8%) 23 (11.3%) 

320 T3 55 (47.4%) 127 (62.3%) 
T4 52 (44.8%) 54 (26.5%) 

Perineural invasion (presence) 39 (39.8%) 62 (36.7%) 267 
Extra tumoral deposits (presence) 31 (60.8%) 41 (55.4%) 125 
MSI 

Stable 77 (95.1%) 101 (54.3%) 
186 Low 2 (2.5%) 1 (0.9%) 

High 2 (2.5%) 3 (2.8%) 
MLH1 (positive) 105 (99.1%) 146 (97.3%) 259 
PMS2 (positive) 104 (95.4%) 138 (97.2%) 251 
MSH2 (positive) 106 (99.1%) 149 (100%) 256 
MSH6 (positive) 106 (97.2%) 147 (100%) 256 
MLH1 methylation (presence) 1 (100.0%) 1 (100.0%) 2 
APC (positive) 11 (84.6%) 6 (85.7%) 20 
KRAS (positive) 57 (47.1%) 89 (48.6%) 304 
NRAS (positive) 8 (8.3%) 7 (5.2%) 230 
HRAS (positive) 0 (0.0%) 0 (0.0%) 78 
BRAF (positive) 16 (18.2%) 13 (13.1%) 187 
PIK3CA (positive) 12 (27.9%) 4 (8.3%) 91 
Other primary tumor (presence) 35 (16.8%) 35 (12.0%) 507 

IC= Interval cancer, SD= screen-detected, IQR= inter quartile range, NST= no specific type, NET= neuro-endocrine tumor, 
MSI= microsatellite instability  
* Adenosquamous and medullary adenocarcinoma were left out because there were too few cases. 
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Main analyses 

All categorical variables were described as counts and percentages. Continuous variables were described with 

their median and interquartile ranges. To evaluate whether significant differences were present between SD or 

IC CRC per characteristic, we performed either a Welch’s t-test for continuous variables or a chi-square/fisher 

exact test for categorical variables. P-values below 0.05 (two-sided) were considered to be statistically 

significant. For variables consisting of multiple levels (e.g. type of adenocarcinoma), a Benjamini-Hochberg 

correction for multiple testing was implemented. P-values less than the adjusted threshold based on a 0.1 false 

discovery rate (FDR) were considered to be statistically significant. A higher FDR of 0.1 was used because of 

the exploratory character of the analyses. The Benjamini-Hochberg correction is demonstrated in 

Supplementary table 1. 

To identify variables associated with the odds of having a stage IV SD or FIT-IC CRC, logistic regression was 

performed. All variables that were significantly different in the exploratory analyses, were first tested in a 

univariate model. Crude odds ratios with 95% confidence intervals were reported. A likelihood ratio test was 

performed with null hypothesis that all categories carry the same odds to have a FIT-IC. Benjamini-Hochberg 

correction was applied to correct for multiple testing. P-values below the adjusted threshold based on a 0.05 

false discovery rate (FDR) were considered to be statistically significant. In case the independent variable had 

more than two levels, post hoc analysis with Dunnett correction was performed. 

The previous study by Tran et al. [7] found significant associations between age, gender, and location and the 

risk of having FIT-IC vs SD-CRC, therefore we included these variables as covariates in multivariable analyses 

in the current study. Multicollinearity between the covariates and other independent variables was checked 

and only reported if present. Adjusted odds ratios with 95% confidence intervals were reported. P-values below 

the adjusted threshold based on a 0.05 false discovery rate (FDR) were considered to be statistically significant. 

Benjamini-Hochberg correction is demonstrated in Supplementary table 2. 

Privacy, ethical approval and consent to participate 

When participating in the Flemish CRC-SP, all participants filled out a written informed consent explaining that 

personal information can be used for scientific research and evaluation to improve the CRC screening program. 

In this study, data from the Flemish Centre for Cancer Detection and Belgian Cancer Registry was used, for 

which approval was given by the Belgian Privacy Commission (reference IVC/KSZG/19/236, number 13/091 

[11]). All data was pseudonymized. The study was conducted in accordance with the Declaration of Helsinki. 
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RESULTS 

Study population 

A total of 507 stage IV CRCs was included, 215 (42.2%) of which were diagnosed with a FIT-IC and 292 (57.6%) 

with an SD CRC. Most of the FIT-ICs were diagnosed among females (52.1%) with right sided tumors (51.2%) at 

older age (70-74; 27.9%), as reported before [7]. Overall, most of the tumors were adenocarcinomas with no 

specific type (NST, 81.0%). For 8 out of 27 variables, data was >90% complete. For 10 out of 27 variables, data 

was >50% complete. For 9 out of 27 variables, data was less than 50% complete. For 4 variables, data was less 

than 20% complete (see Table 1). 

Exploratory analyses of clinicopathological and molecular features in SD vs FIT-IC CRC 

Table 2 gives an overview of all statistical analyses and the corresponding P-values. For gender, location, NET 

and presence of a PIK3CA mutation a significant difference in SD vs FIT-IC was found. For gender and location, 

this is in line with the previous study [7]. NET and PIK3CA presence were more frequent for FIT-IC CRC. 

Adenocarcinoma type, depth of invasion and lymphovascular invasion also showed significant differences 

between SD and FIT-IC, and since these variables had multiple categories, further testing was performed. We 

found significant differences between T0-2 vs T4 and T3 vs T4 of SD vs FIT-IC CRC’s depth of invasion, where 

T4 was more frequent in FIT-ICs but T0-2 and T3 more frequent in SD CRC. Also, there was a significant 

difference found for (lympho)vascular invasion compared to no invasion for SD vs FIT-IC CRC. Here, 

lymphovascular invasion was more common in FIT-IC, while no invasion was more frequent in SD CRC. For type 

of adenocarcinoma, NST vs mucinous was significant for SD vs FIT-IC with mucinous adenocarcinoma being 

more frequent in FIT-ICs and adenocarcinomas of NST more frequent in SD CRC. Age, tumor size and MSH6 

mutations only show a trend towards significance (p-value < 0.1). 

Table 2 | Exploratory analyses of SD vs FIT-IC colon cancers 

Variable P-value P-value Post hoc1  
Gender2 0.000219 / 
Age3 0.0757 / 

Location 4.32E-12 Right vs Left: 3.48 E-12 
Left vs Transverse: 0.000572 

Adenoma type 0.0291 NST vs mucinous: 0.0355* 
NET 0.0152 / 
Tumor size 0.0790 / 
Tumor description 0.106 / 
LNM 0.359 / 

Depth of invasion 0.00352 
0-2 vs 4: 0.0367 

T3 vs T4: 0.00142 
Perineural invasion 0.708 / 
Lymphovascular invasion 0.0159 None vs only vascular: 0.0443 
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None vs both: 0.00192 
ETD 0.679 / 
MSI 0.847 / 
MLH1_meth NA / 
MLH1 0.731 / 
PMS2 0.494 / 
MSH2 0.411 / 
MSH6 0.0795 / 
APC 1 / 
KRAS 0.809 / 
NRAS 0.435 / 
HRAS NA / 
BRAF 0.426 / 
PIK3CA 0.0270 / 
Another primary tumor 0.196 / 

NST= no specific type, NET= neuro-endocrine tumor, LNM= lymph node metastasis, ETD= Extra Tumoral Deposits, MSI= 
microsatellite instability 
1 Multiple testing correction (Benjamini-Hochberg) was used. Only significant p-values are reported in this table in bold. 
More details of the adjusted p-values can be found in Supplementary Table 1. 
2 Gender was tested as one variable. Previous analyses already demonstrated that FIT-ICs are more common in women 
3 All ages were tested together. Previous analyses already demonstrated that older ages give increased odds for FIT-IC 

Clinicopathological and molecular features associated with the risk of having a FIT-IC vs SD CRC 

Univariable logistic regression 

For each variable that was found to be significant in the exploratory analyses, the odds of having a FIT-IC vs 

SD CRC was modeled using a univariable logistic regression. Table 3 gives an overview of all tested variables, 

with p-values and crude odds ratios. Within the univariate models, NET presence, lymphovascular invasion and 

PIK3CA mutation were significant. FIT-IC CRCs have a 4-fold increased odds to be a NET tumor (OR= 4.26 [1.46 

– 15.40]), a 2-fold increased odds to present with lymphovascular invasion (OR= 2.31 [1.36 – 3.98]) and a 4-

fold increased odds to have a PIK3CA mutation compared to SDCRC (OR= 4.25 [1.34 – 16.40]). The mucinous 

subtype of adenocarcinoma and depth of invasion T4 gave a close to significant result compared to NST and 

T0-2 respectively (p < 0.1). 

Table 3 | Logistic regression for variables with univariate associations. Univariate models are displayed, as well as 

multivariate models corrected for at least age, gender and location.  

Characteristic Category Crude OR (95% CI) P-value  aOR (95% CI) P-value1  

Type of adenocarcinoma 

NST ref 0.0303 ref 0.747 

Mucinous  1.72 [1.03 – 2.87] 0.0724 1.16 [0.66 – 2.04] / 

Signet ring cell 2.09 [0.94 – 4.78] 0.1377 1.28 [0.53 – 3.15] / 

NET  
Absence ref 0.00709 ref 0.00336 

Presence 4.26 [1.46 – 15.40] NA 5.29 [1.71 – 20.00] NA 

Depth of Invasion T0-2 Ref 0.00382 Ref 0.137 
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1 P-values next to the reference level refer to a likelihood ratio test, with null hypothesis that all categories carry the same 

odds to have a FIT-IC. P-values in bold survive the multiple hypothesis correction (Benjamimi-Hochberg, suppl Table 2). In 

case the independent variable has more than two levels, the P-values next to the non-reference levels refer to the Dunnett-

corrected P-values from the post hoc analysis, comparing the non-reference level to the reference.  

Multivariable logistic regression 

Since the previous work showed associations between 

gender, age and location and the risk of having a FIT-IC 

vs SD CRC, we included these variables as covariates in 

the multiple logistic regression models [7]. Table 3 

gives an overview of all tested variables, with p-values 

and adjusted odds ratios. Figure 1 gives an overview of 

the adjusted odds ratios for the tested variables. In the 

multivariate models, only NET presence and 

lymphovascular invasion showed significant results. In 

the corrected models, FIT-IC CRC have 5 times higher 

odds to be a NET tumor (OR= 5.29 [1.71 – 20.00]) and 

2.5 times higher odds to have lymphovascular invasion 

(OR= 2.50 [1.41 – 4.52]). All other variables completely 

lost significance when the models were corrected for 

age, gender and location. 

  

T3 1.10 [0.49 – 2.67] 0.939 1.00 [0.41 – 2.62] / 

T4 2.46 [1.07 – 6.07] 0.0616 1.66 [0.63 – 4.56] / 

Lymphovascular invasion 

No Ref 0.0144 Ref 0.0244 

Only lymphatic 1.57 [0.64 – 3.74] 0.645 1.42 [0.54 – 3.55] 0.949 

Only vascular 2.23 [1.00 – 4.96] 0.127 1.49 [0.60 – 3.61] 0.696 

Both 2.31 [1.36 – 3.98] 0.00623 2.50 [1.41 – 4.52] 0.0151 

PIK3CA  
Absence Ref 0.0130 Ref 0.163 

Presence 4.25 [1.34 – 16.40] NA 2.6 [0.68 – 11.20] NA 

Figure 1 | Adjusted Odds Ratio with 95% confidence 
intervals for variables associated with stage IV FIT-IC. LVI= 
lymphovascular invasion, NET = neuro-endocrine tumor, 
Ca= carcinoma. Figure created with Graphpad Prism 
v10.1.1 
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DISCUSSION 

In this study, we identified differences between clinicopathological and molecular characteristics of SD and 

FIT-IC and assessed their associations with the risk of having a FIT-IC vs SD CRC.  

In the exploratory analyses, we identified significant differences between SD versus FIT-IC for gender, presence 

of NET, depth of invasion (T3 vs T4), lymphovascular invasion (none vs both) and presence of a PIK3CA mutation. 

For ‘type of adenocarcinoma’, significant differences were found, but significance was lost when testing the 

different types separately, partly due to the Benjamini Hochberg correction. Regression analyses of FIT-IC 

versus SD stage IV CRC revealed new interesting insights about the significant parameters and their association 

with higher risk of having a FIT-IC. All relevant factors are discussed below. 

Previously found variables: gender, age and location 

Consistent with the previous study by Tran et al. [7], there is a significant difference in prevalence of SD versus 

FIT-IC CRC between genders, with FIT-ICs more likely to occur in women. Reasons reported for this are a lower 

blood hemoglobin concentration, a longer colonic transit time and a higher proportion of right-sided tumors 

[7]. It has been suggested that women are more likely to seek medical help when they experience symptoms, 

which may lead them to undergo diagnostic tests and, as a result, have their CRC diagnosed as FIT-IC [12,13].   

Furthermore, we replicated the very significant effect of location, especially right vs left. An in-depth discussion 

on these differences was given previously [7]. In short, a longer transit time from the right side and higher 

proportion of flat tumors are thought to play a role herein. For these reasons, the current study included gender 

and location as covariates in the multiple regression analysis. Contrary to the previous study, we did not find a 

significant association between age nor age categories and the odds of having a FIT-IC versus a SD stage IV 

CRC. However, in this study we have only included stage IV SD and IC CRCs, which could explain these 

differences[7]. Nevertheless, age was also taken into account as a covariate in later analyses (multiple logistic 

regression).  

Tumor Type 

Within our study, we made the distinction between adenocarcinoma and NET colon tumors because of their 

different origin (epithelial vs neuroendocrine cells) and the rarity of NETs [14]. Adenocarcinoma tumors were 

split by per histological type, as described by the WHO [15]. 

In literature, few studies have investigated adenocarcinoma type in SD vs FIT-ICs. Steel et al. [16] did report an 

association of aggressive histotypes (mucinous and signet ring cell adenocarcinoma) with higher risk of FIT-IC. 

However, in our exploratory analyses, we only found significant results for mucinous adenocarcinomas. Signet 
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ring cell carcinoma lost its significance after Benjamini Hochberg correction. Within the logistic regression 

analysis, mucinous adenocarcinoma was only found close to significant after correction for multiple testing. 

Importantly, the multiple logistic regression analysis revealed that, after adjusting the model for location, the 

type of adenocarcinoma was not significant anymore, indicating that location, especially right-sided tumor 

location, is an important variable that needs to be taken into account in the analysis of interval CRCs. It has 

been reported that mucinous adenocarcinomas occur in 10-20% of CRC patients, mostly women, in the proximal 

colon (right and transverse) [17]. This is concordant with our population, where 13.6% cases were mucinous 

adenocarcinomas (both SD and FIT-IC), 57% of mucinous tumors being observed in female patients and 60% 

located in the right colon. Signet ring cell carcinoma was also reported to be more common in the proximal 

colon [18], which we also observed in our cohort (88.4% for both SD and FIT-IC). In all, our results show that 

tumor location is an important confounder, that needs to be accounted for in the analysis of the association 

between adenocarcinoma type and the odds of having a FIT-IC versus a SD CRC.  

In both the exploratory and regression analyses, the presence of a NET tumor was found to be significantly 

different in FIT-IC vs SD CRC, with 5.3 times higher odds of presence of NET in FIT-ICs. A few reasons could 

explain this observation. First, NET tumors are completely different compared to adenocarcinoma tumors in 

origin and clinical presentation [19]. NETs tend to bleed less than adenocarcinomas [20], partly explaining the 

higher risk for FIT-IC, although 4 NETs were screen-detected in our cohort. However, we cannot be certain that 

for example, other lesions caused the bleeding and that the NET was accidently discovered during the 

colonoscopy This hypothesis was already described by others [21–23]. However, if this had been the case, the 

number of SD NET would have been smaller and the number of interval NET would have been larger than the 

numbers shown in this study, leading to a larger OR which indicates an even stronger association between NET 

and the odds of being a FIT IC versus a SD CRC. In our study, we found 1.4% of all SD cancers to be NETs. In 

literature, there are very few research papers describing NETs found after colonoscopy. Most of those papers 

describe its prevalence, which is ranging from 0.018% in the English bowel screening program [21], to 0.16% 

in the Taiwanese programme [24–27]. However, these studies almost exclusively focus on rectal NETs, which 

we do not have in our cohort. Moreover, other studies take into account all stages. Therefore, it is difficult to 

compare our results to the existing literature. There is one study by Kim et al. that focuses on colon 

subepithelial tumors discovered by chance. Here, of the 105 detected tumors, 2 were NETs (1.9%), which is 

close to our rate of 1.4%  [28].  Overall, it is important to keep in mind that colorectal NET tumors are difficult 

to find with FIT screening, and other options will need to be explored for NET detection in the colon.  

Clinicopathological variables 

Several clinicopathological variables were investigated in our study. They can be grouped by tumor-informed 

parameters (lymphovascular invasion (LVI), perineural invasion (PNI), depth of invasion (Di), lymph node 
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metastasis (LNM) and extra tumoral deposits (ETD)) and tumor-agnostic parameters (microsatellite instability 

(MSI) and DNA mismatch repair (MMR) markers for MSI).  

Regarding the tumor-informed parameters, only Di and LVI were found to be significant in our exploratory 

analysis. When further investigating these variables, we found associations between LVI and PNI, Di and LNM. 

Remarkably, Di was not associated with PNI. ETDs were not associated with LVI or Di. The associated variables 

were taken into account when performing the multiple regression analyses. In the final multivariable logistic 

regression analysis, only presence of LVI was found to be a significantly associated risk factor for FIT-IC vs SD, 

with almost 2 times higher odds of being a FIT IC versus a SD CRC. In literature, there is no information that 

describes the role of any of the clinicopathological variables in CRC FIT-ICs. The only relevant information is 

that LVI and PNI have been described as independent negative prognostic factors (i.e. poor outcome) in CRC 

development [29–31]. There is one group that also describes LVI as a risk factor for developing metastasis in 

CRC [32], which underlines the importance of reporting LVI at diagnosis. Interestingly, presence of LVI was also 

described as a significantly factor in a study about SD vs IC in breast cancers, with LVI more present in IC [33]. 

Together with our results, this shows an important role for LVI in several malignancies, but further research is 

needed to fully understand its role in (FIT-) ICs.  

Regarding the tumor-agnostic clinicopathological features, we did not find any significant difference in our 

analyses. Only in the exploratory analysis, a positive MSH6 result was found to be close to significantly different 

in SD vs FIT-IC cancers (p= 0.08). In literature, there are only a few papers describing MSI in ICs, and the findings 

are contradictory. Agreeing with our findings, Soong et al. did not find any difference in MMR expression 

between IC and SD CRC [34]. However, contrary to our research, their population was screened using 

colonoscopies and not FITs. The ICs were defined as “cancer detected in a diagnostic examination prior to the 

next recommended colonoscopy and at least 1 year after the last colonoscopy”. The gap between these 

screening tools might explain the differences found in the variables. A few other papers describe that, despite 

the insignificant results, MSI is observed to be more prevalent in ICs [35–37]. We did not observe this (Table 

1). Lastly, two research papers describe significant differences in MSI for SD vs IC, but they defined IC patients 

as “Subjects with 1 prior colonoscopy > 180 days before the diagnosis” and “individuals that had a complete 

colonoscopy performed within 5 years of the diagnosis of CRC” respectively, which is different from the 

definition in more recent literature [38,39]. Also, the sample size of the latter was small (n= 42) [39]. There is 

clearly still no consensus about the role of MSI in (FIT-)ICs and despite the predictive role of MSI in CRC 

outcome [40], we cannot conclude if there is a role of MSI in the development of FIT-ICs. 
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Genetic alterations 

The most commonly reported genes were investigated in our study. We found significant differences between 

SD and FIT-IC CRC for the presence of a PIK3CA mutation in the exploratory and close to significant results in 

the simple logistic regression analysis, with an OR of 4.25 in the latter.  

When performing the multiple logistic regression analysis, the significance for PIK3CA was lost. In literature, 

there are no papers describing PIK3CA mutations in FIT-ICs. There are few papers describing PIK3CA mutations 

in a colonoscopy-screened population, where in concordance to our multivariate regression results, no 

significant differences were found between SD and IC CRC. However, sample sizes might have been too small 

in both our (for PIK3CA: n=92) and these other studies to detect less frequent genetic differences [34,39,41]. 

Furthermore, several studies describe that PIK3CA mutations are more often present in right-sided colon tumors 

[42–45], which could explain why this variable lost significance after adjusting for tumor location. 

Nevertheless, the use of PIK3CA mutations as biomarkers remains a discussion point in literature. It has been 

described as a prognostic biomarker for aggressive tumor growth and increased risk of tumor recurrence [45]. 

Furthermore, associations between FIT-IC and other genetic alterations in e.g. KRAS have been reported [45], 

although we did not find this in our analyses. All other genes that were studied in our cohort, did not show any 

significant difference between SD and FIT-IC CRCs. This is in line with what is described in literature 

[34,39,41,46], although these studies do not involve FIT-screened patients but on colonoscopy-, flexible 

sigmoidoscopy- or gFOBT- screened patients.  

Missing data, difficulties and limitations of this study 

One of the difficulties of working with the pathology reports from different hospitals and different years (2013 

to 2018) is the inconsistent reporting of different features. For some variables, such as tumor type, location, 

age and gender, the reports were almost complete (>97%), while for example the tumor-informed 

clinicopathological parameters were only complete for ~50% of all cases. This means different (sub)datasets 

had to be used for the analysis of each variable. In this view, we also performed the analyses with the subset 

of data where all variables were complete (total n= 247). Despite the loss of statistical significance in this 

analysis, similar trends were observed for NET, LVI and PIK3CA. We cannot distinguish if missing data is coming 

from inconsistent reporting or inconsistent testing. Although guidelines for testing e.g. MSI and molecular 

alterations do exist, implementation is not perfect. Moreover, there is no standardization of the pathology 

reports between Belgian hospitals. Lastly, additional testing, especially for molecular markers, is often reported 

in additional reports rather than added to the original report, where we extracted the data from. All these 

hurdles made it difficult to obtain 100% complete datasets in this study. However, missing is at random, 

therefore it is highly unlikely that this missingness would affect our conclusions. 



Chapter 3 

 86 

For some parameters, e.g. APC and MLH1 methylation, there was a lack of sufficient data for statistical analysis, 

as such the relevance of these alterations in FIT-IC could not be assessed. Overall, it was difficult to perform 

reliable analyses for molecular markers, mainly because of a small sample size for molecular alterations (only 

18 - 60% data completeness). By the end of 2014, the European Society of Medical Oncology (ESMO) published 

evidence-based guidelines for molecular testing of specific genes of the EGFR pathway in metastatic CRC [47]. 

This pathway contains important actionable targets for selection of first-line therapy [48,49]. Furthermore, 

KRAS/NRAS and BRAF are considered important predictive and prognostic biomarkers for treatment decisions 

in metastatic CRC [48]. Our cohort data is partly coming from a period before this year, which can – to a certain 

extent - explain the lack of completeness in reporting of the mutations. However, this underlines the need to 

work towards more complete information. Up until today, there is still not enough evidence to use PIK3CA 

outside of clinical trials [49], which could explain why mutations in this gene are not frequently tested or 

reported. As a final remark on molecular alterations, the lack of significant findings in molecular alterations 

could also be because only stage IV patients were included. This lowered the number of cases and thus the 

chances to find significant associations with the study outcome, if there are any, for (less frequent) mutations. 

Future perspectives 

Despite the advantages of CRC screening there are still some important limitations in using FIT [50]. For 

example, in Flanders, participation rates are suboptimal compared to levels recommended by the European 

commission [51], fluctuating between 48.0% and 52.5%, with a lower participation rate in the younger age 

groups (50-54 years). Around 1 in 5 non-responders have reported their reason for non-participation being 

either fear of a FIT false positive result or a dislike for the procedure of fecal testing [52]. Therefore, other 

screening methods, including blood-based biomarkers, have gained more attention in recent years [53]. 

Very recently, the HUNT study of Brenne et al. showed that CRC can be detected up to 2 years prior to clinical 

diagnosis, based on methylated circulating tumor DNA (ctDNA) [54]. This research suggests that patients could 

receive their diagnosis up to 2 years earlier than the clinical diagnosis if ctDNA analysis would be part of the 

CRC screening program. This also leads us to believe that FIT-IC proportions - particularly in stage IV - could 

potentially be lowered using ctDNA analysis. However, studies show that existing ctDNA-based tests, e.g. 

EpiProColon® and Galleri®, are not cost-effective at their current cost ($192 and $950 respectively) and 

screening performance. Liquid biopsy testing for CRC could potentially become more cost-effective than FIT, 

but only if the cost is substantially lowered. Further clinical trials are needed to investigate also the uptake in 

large-scale population screening, as the current ctDNA tests are not yet suited for this purpose [45,46].  

In view of our results, liquid biopsy-based screening could for example indicate the presence of a NET tumor, 

based on NET-specific markers [55]. Although rare, colorectal NETs are a tumor type that is often missed by the 
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FIT and mostly detected by accident when performing a colonoscopy. In the future, larger analyses for 

molecular alterations could prove useful. Moreover, a trend towards epigenetic research could be followed by 

also investigating DNA methylation biomarkers for FIT-IC. In the future, more comprehensive reporting – albeit 

more consistent reporting or more consistent testing- should also be considered. Lastly, this research could be 

expanded towards all stages to find critical characteristics that could lead to diagnosis of earlier stage CRC.  

CONCLUSION 

In this study, we evaluated clinicopathological and molecular difference between SD vs FIT-IC stage IV CRC. 

Throughout all analyses, the presence of NET and lymphovascular invasion were newly identified as factors 

associated with higher odds of having a stage IV FIT-IC instead of a stage IV SD CRC. Further research will be 

needed to clarify how these insights might help in optimizing the Flemish CRC screening program. Besides 

these observations, we found that tumor location is a crucial covariate when analyzing clinicopathological and 

molecular factors in FIT-ICs. Therefore, tumor location should be taken into account (where applicable) in the 

analyses concerning FIT-ICs. Lastly, expanding the study to all stages and prospective validation of these and 

future results will be necessary before potentially implementing it into the program and as such, optimizing 

CRC screening.  
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SUPPLEMENTARY MATERIAL 

Supplementary Table 1 | Adjusted P-values from the Benjamini – Hochberg Post-hoc analysis of the exploratory analysis 

Characteristic P value  Rank (i) Tests performed (m) FDR (Q) (i/m)*Q 

Right vs Left 3.47E-12 1 15 0.1 0.0067 

Left vs Transverse 0.000572 2 15 0.1 0.0133 

T3 vs 4T  0.00142 3 15 0.1 0.0200 

No LVI vs LVI  0.00192 4 15 0.1 0.0267 

NST vs Mucinous Ca 0.0355 5 15 0.1 0.0333 

T0-2 vs T4  0.0366 6 15 0.1 0.0400 

No LVI vs only vascular  0.0443 7 15 0.1 0.0467 

NST Ca vs signet ring cell Ca  0.0664 8 15 0.1 0.0533 

No LVI vs only lymphatic  0.309 9 15 0.1 0.0600 

Only lymphatic vs LVI  0.370 10 15 0.1 0.0667 

Only llymphatic vs only vascular invasion 0.502 11 15 0.1 0.0733 

Mucinous Ca vs signet ring cell Ca 0.677 12 15 0.1 0.0800 

T0-2 vs T3  0.811 13 15 0.1 0.0867 

Vascular vs LVI 0.932 14 15 0.1 0.0933 

Right vs Transverse 0.993 15 15 0.1 0.1000 

M= number of comparisons performed (15). Q= False Discovery Rate (0.1). LVI= lymphovascular invasion. NST= no special type. Ca= 
Carcinoma 

Supplementary Table 2 | Adjusted P-values from the Benjamini – Hochberg correction of the logistic regression analyses 

Analysis Characteristic P value tests performed (m) Rank (i) FDR (Q) (i/m)*Q 
Multivariate NET 0.00336 10 1 0.05 0.0050 
Univariate Depth of Invasion 0.00382 10 2 0.05 0.01000 
Univariate NET 0.00709 10 3 0.05 0.01500 
Univariate PIK3CA mutation 0.0130 10 4 0.05 0.0200 
Univariate Lymphovascular invasion 0.0144 10 5 0.05 0.0250 
Multivariate Lymphovascular invasion 0.0244 10 6 0.05 0.0300 
Univariate Type 0.0303 10 7 0.05 0.0350 
Multivariate Depth of Invasion 0.137 10 8 0.05 0.0400 
Multivariate PIK3CA mutation 0.163 10 9 0.05 0.0450 
Multivariate Type 0.747 10 10 0.05 0.0500 

M= number of comparisons performed (30). Q= False Discovery Rate (0.05). LVI= lymphovascular invasion. NST= no special type. Ca= 
Carcinoma 
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ABSTRACT 

Background: Biomarker discovery in colorectal cancer has mostly focused on methylation patterns in normal 

and colorectal tumor tissue, but adenomas remain understudied. Therefore, we performed the first epigenome-

wide study to profile methylation of all three tissue types combined and to identify discriminatory biomarkers.  

Results: Public methylation array data (Illumina EPIC and 450K) were collected from a total of 1 892 colorectal 

samples. Pairwise differential methylation analyses between tissue types were performed for both array types 

to “double evidence” differentially methylated probes (DE DMPs). Subsequently, the identified DMPs were 

filtered on methylation level and used to build a binary logistic regression prediction model. Focusing on the 

clinically most interesting group (adenoma vs carcinoma), we identified 13 DE DMPs that could effectively 

discriminate between them (AUC = 0.996). We validated this model in an in-house experimental methylation 

dataset of 13 adenomas and 9 carcinomas. It reached a sensitivity and specificity of 96% and 95%, respectively, 

with an overall accuracy of 96%. Our findings raise the possibility that the 13 DE DMPs identified in this study 

can be used as molecular biomarkers in the clinic.  

Conclusions: Our analyses show that methylation biomarkers have the potential to discriminate between 

normal, precursor and carcinoma tissues of the colorectum. More importantly, we highlight the power of the 

methylome as a source of markers for discriminating between colorectal adenomas and carcinomas, which 

currently remains an unmet clinical need. 
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INTRODUCTION 

Colorectal cancer (CRC) is one of the leading causes of cancer-related deaths worldwide. More than 1.9 million 

incidence cases and over 935 000 deaths were observed worldwide in 2020 [1]. In early stages (I and II), 5-year 

overall survival chances are at least 90%. Detection of CRC in an advanced stage (IV) reduces survival chances 

to only 15% [2, 3]. Unfortunately, 75% of all CRC tumors are discovered in advanced stages. Therefore, early 

detection of colorectal tumors must clearly improve.  

CRC is a very heterogeneous disease that typically develops from pre-cancerous lesions, so-called adenomas. 

In 80% of cases, CRC develops through the adenoma-carcinoma sequence, a process that can take up to 10 

years since adenomas tend to progress slowly, with increasing size and dysplasia over time [4, 5]. It has already 

been demonstrated that both genetic and epigenetic alterations are acquired in the tumor genome during 

carcinogenesis [5]. Epigenetic alterations have been studied over the past years and have revealed the relation 

between specific gene expression patterns apart from genetic mutations [5, 6]. 

One of the most studied epigenetic modifications is DNA methylation. In CRC, widespread hypomethylation 

blocks have been observed, as well as hypermethylation of specific CpG islands in gene-specific promotors [5, 

7]. Despite many efforts, there is still a lot to discover at a molecular level for methylation in colorectal tissue. 

Particularly, methylation patterns in precancerous colorectal lesions, notably adenomas, are understudied. 

Online available datasets such as The Cancer Genome Atlas (TCGA) or Gene Expression Omnibus (GEO) mostly 

include methylation data of invasive tumor tissue. As methylation occurs in very early stages of carcinogenesis, 

DNA methylation biomarkers are the most compelling candidates for early detection of cancer [5]. Therefore, 

the DNA methylation data of adenomas are of extreme importance. 

In previous research [7], it was already demonstrated that normal tissue and colorectal cancer tissue can be 

discriminated based on differentially methylated CpG sites. The study was based on publicly available data, 

which lacks the information on methylation of precancerous lesions as described earlier. Other researchers [5] 

have investigated differential methylation in normal and low-grade versus high-grade adenomas. Although this 

study shows very promising results for early biomarker candidates, it lacks a comparison with colorectal cancer 

tissue. Up until this moment, there is no possibility to discriminate colorectal adenomas from adenocarcinomas 

with molecular biomarkers in the clinic. However, such biomarkers would be an interesting and important tool 

for earlier described reasons. 

To our knowledge, epigenome-wide analysis of normal, adenoma and colorectal tumor tissue has never been 

performed simultaneously. Therefore, the goals of this study were: to 1) explore and compare the epigenome 

of normal colorectal tissue, adenomas and colorectal tumor tissue in one experiment and 2) to identify 

molecular biomarkers that can discriminate especially between colorectal carcinoma and adenoma. Based on 
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currently available data, we hypothesized that each of the three tissue types would have a different methylation 

pattern. 

METHODS 

Study population, sample collection and pathologist review 

A total of 55 samples were requested at the Biobank and the pathology department of the Antwerp University 

Hospital. Three different types of samples were used: 19 normal adjacent, 17 adenoma and 19 colorectal tumor 

tissue samples. This included 10 pairs of colorectal cancer and normal samples and 1 pair of adenoma- normal 

samples of the same patient. Tissue specimens were formalin-fixed paraffin-embedded (FFPE). For each 

specimen, 10 sections of 6 µm were made of which one slide was stained with hematoxylin and eosin for 

histologic review. A pathologist verified the tissue type and estimated the percentage of tumor cells. To limit 

the contamination by non-tumor cells, macrodissection was performed where possible. All samples had at least 

50% tumor cells. 

DNA extraction and processing 

DNA was isolated using the QIAamp FFPE Tissue kit (Qiagen, Hilden, DE) according to the manufacturer’s 

instructions. It is known that FFPE samples generally perform poorly on array-based  applications  due  to the 

highly degenerated DNA. Therefore, the quality of the DNA was verified using the Infinium FFPE QC kit (Illumina 

Inc., San Diego, CA, USA) according to the manufacturer’s protocol. Only samples with good amplification for 

all replicates and a maximal ΔCq (difference in quantification cycles compared to the standard) below 5 were 

selected for use in the bisulfite conversion and restoration step. Bisulfite conversion was performed using the 

EZ DNA Methylation kit (Zymo Research, Freiburg im Breisgau, DE), according to the manufacturer’s instructions. 

The array-specific incubation program was used for all samples. After bisulfite conversion, DNA samples were 

restored using the Infinium HD FFPE Restoration kit (Illumina Inc.). 

In‑house experimental methylation dataset 

In total, 55 clinical samples were obtained and processed, the details of which are available in Additional Tables 

1 and 2. The Illumina Human MethylEPIC® v1.0 BeadChip (Illumina Inc.) [8] was used to interrogate more than 

850 000 CpG sites (probes) genome-wide at single-nucleotide resolution. Raw intensity array data were 

processed using the minfi (v 1.42.0) R package [9]. Methylation levels were reported as β-values ranging from 

0 for unmethylated probes to 1 for fully methylated probes. For quality control, the ratio of log2 median 

intensities (methylated and unmethylated) along with β-value densities was calculated. β-values were then 

further preprocessed using ChAMP (v 2.21.1) [10] where probes with a detection p-value > 0.01 in more than 
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50% of the samples were removed. Control probes, X-/Y chromosome probes, multihit probes, and probes with 

known single nucleotide polymorphisms (SNPs) were filtered out of the analyses. BMIQ normalization was used 

to reduce the technical variation of Type-I and Type-II Illumina probes [11]. Out of 55 samples, 28 samples 

failed quality check and were removed from downstream analyses. The final analyses included 27 samples with 

740 330 autosomal probes each (Additional Table 2). 

Public methylation datasets 

Array data from both Illumina Infinium HumanMethylation450 (more than 450 000 CpG sites) and Human 

MethylEPIC® BeadChips were downloaded from several public data repositories including GEO, TCGA and the 

Array Express databases. A total of 1 116 450K and 786 EPIC samples were acquired, the accession numbers 

and full details of which can be found in Additional Table 3. To ensure consistent data processing, we opted to 

use signal intensity or raw idat files. The datasets were then processed using the same steps described above 

for the in-house experimental methylation data. Out of the total 1 879 samples, 14 failed quality check and 

were removed from downstream analyses. 

Ethical approval 

The study was conducted under Good Clinical Practice guidelines and the Declaration of Helsinki. Samples used 

in this study were previously collected in the Biobank of the Antwerp University Hospital and retrospectively 

used in this study. Patients give consent for the use of their bodily material in research when consenting to an 

invasive procedure (according to article 20 of the Belgian Law on the procurement and use of human corporal 

material intended for human application or scientific research of 19 December 2008). Approval for the study 

protocol (and any modifications thereof) was obtained from the ethical committee of the Antwerp University 

Hospital (Ref. N°20/02/010). Other data used in this study are publicly available. As such, neither patient 

consent nor institutional review board approval was required. 

Definitions of genomic regions and differential methylation 

Genomic region annotations were based on Illumina 450K and EPIC array manifest files and were divided into 

two main groups. The first consists of genomic locations concerning genes. These included: 1st exon; 3′ UTR 

(3′ untranslated region), 5′ UTR (5′ untranslated region), Body (gene body), IGR (intergenic regions), TSS1500 

(200 to 1500 nucleotides, upstream of the transcription start site, TSS), TSS200 (up to 200 nucleotides upstream 

of TSS), and ExonBnd (exon boundaries). The second describes annotations of probe location relative to CpG 

islands. These included: Islands, North shelf (2–4 kb upstream of CpG island), North shore (0–2 kb upstream of 

CpG island), Open Sea (non-CpG island-related sites), South shelf (2–4 kb downstream of CpG island), and South 

shore (0–2 kb downstream of CpG island). 
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Genome-wide  DNA  methylation  was  investigated in the context of differentially methylated probes (DMPs), 

regions (DMRs) and blocks (DMBs). DMPs were defined as CpG sites with statistically significant differences in 

methylation levels between groups. In contrast, DMRs and DMBs are larger genomic regions— between ~ 10 

bp—10 kb and 10 kb—1 Mb, respectively— exhibiting a quantifiable difference in methylation between groups 

and containing hundreds of CpG sites. 

Differential methylation analyses 

Differential methylation analysis was carried out via ChAMP (v 2.21.1), which uses parametric linear mixed 

models to test differences in methylation between groups [10]. A two-level, three-way differential methylation 

analysis was performed in the public EPIC datasets; adenoma versus normal tissue, carcinoma versus normal 

tissue, and adenoma versus carcinoma (Fig. 1). DMP p-values were adjusted for multiple testing using the 

Benjamini– Hochberg correction. DMRs and DMBs were identified using an implemented extension of the 

Bumphunter algorithm in ChAMP, with minimum sizes of 50 and 500 bp, respectively. Gene set enrichment 

analysis (GSEA) was done using the ChAMP and methylGSA R packages [12]. Differential methylation analysis 

was carried out on the public methylation datasets which constituted the discovery cohort (Fig. 1). 

Double evidencing and biomarker selection 

DMPs that were first identified through the EPIC differential methylation analyses and that were later also 

found in the 450K analyses were termed double evidenced DMPs (DE DMPs). These DE DMPs represent 

important methylation markers that are identified through the analysis of two separate, large datasets. The 

criteria for assigning DE DMPs for use in the sub- sequent models were 1) a |Δβ|≥ 0.3 [13] and 2) a corrected p-

value ≤ 0.01 in both array types. After merging DMP lists and screening for DE DMPs, binary logistic regression 

models were fitted to predict tissue type (adenoma/carcinoma/normal tissue) using the specific DE DMPs for 

each of the three analyses (Fig. 1). To test over-fitting, all models were tenfold cross-validated. Prediction 

metrics were assessed by plotting receiver operating characteristic (ROC) curves, and confusion matrices were 

also generated to calculate overall sensitivity, sensitivity and accuracy. The final model was then validated in 

the in-house experimental methylation datasets which constituted the validation cohort. Prediction metrics 

were also calculated for the validation model.  
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Figure 1 | Study overview. DMP= differentially methylated probe, DMB= differentially methylated block, DMR= differentially 
methylated region, GSEA= gene set enrichment analysis, DE= double evidenced 

 
Statistical analyses 

The statistical software R (v 4.2.0) [14] was used for all analyses and visualizations. In all regression models, 

age was accounted for as a covariate, but was excluded from the final model if its effect on the outcome was 

not significant. Unless stated otherwise, all reported p-values are two-sided, and those ≤ 0.01 were considered 

statistically significant. All genomic annotations were based on the GRCh37/hg19 genome build. 

RESULTS 

Genome‑wide methylation profiling 

To comprehensively explore the difference in methylation patterns between normal, adenoma and carcinoma 

tissue, DNA methylation was profiled pairwise between the three tissue types. This genome-wide differential 

methylation profiling was carried out on public EPIC array datasets. The results of these analyses are 

summarized in Table 1. Sizeable genome-wide DNA methylation differences were observed between the three 

tissue types (Fig. 2). β-values in all three tissues exhibited characteristic bimodal distributions (Fig. 2A), while 
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on average normal tissues had the highest methylation levels followed by adenomas and lastly carcinomas 

(Fig. 2B). Based on the widespread differences in methylation, the three tissues clustered independently using 

both multidimensional scaling (MDS) and t-distributed stochastic neighbor embedding (tSNE) approaches (Fig. 

2C, D). MDS is used for the visualization of outliers, while tSNE rather shows how samples group together. In 

our analyses, both methods agreed. The tSNE plot shows four distinct clusters for normal tissue (N). The tissues 

formed mostly discernable clusters where (pre)malignant lesions (i.e., adenomas (A) and carcinomas (C)) could 

be clearly resolved from N. However, A and C clustered more closely together (Fig. 2C, D). 

Figure 2 | Landscape of DNA methylation of adenoma, carcinoma, and normal colorectal tissues in EPIC 
datasets. A. Density plot showing the characteristic bimodal distribution of methylation β-values in all 3 
tissues based on EPIC array data. B. Violin plot of the mean methylation in each of the tissues, shows overall 
methylation decreases with increase in malignancy. C. MDS plot highlighting the data structure and sample 
relationship among the tissue groups in EPIC array data. D. tSNE plot showing a defined cluster for each of 
the different tissues, highlighting the ability to resolve samples based on their methylation patterns, despite 
overlap between adenomas and carcinomas. MDS= multidimensional scaling, tSNE= t-distributed stochastic 
neighbor embedding, A= adenoma, C= carcinoma, N= normal tissue 
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Table 1 | Summary of DMPs, DMRs and DMBs in all three analyses 

 Comparison Adenoma versus normal Carcinoma versus normal Adenoma versus carcinoma 

DMB EPIC 703 582 1552 
DMR EPIC 3510 6756 5067 
DMP 450K 344,165 304,548 170,300 
 EPIC 620,643 693,813 558,897 
 Common DMP (450K and EPIC) 257,141 258,853 124,082 

 DE DMP with │Δβ│ ≥ 0.3 in EPIC AND 450K 62 56 13 

Bold value indicates p value ≤ 0.01 

DMPs 

When studying differences in DNA methylation at a single-base resolution, we identified 620 643 DMPs in A vs 

C. When C vs N was compared, 693 813 DMPs were observed while comparing A vs N resulted in 558 897 DMPs 

(see EPIC data in Table 1). The distribution and location of these DMPs in relation to genomic features and CpG 

islands are shown in Fig. 3A. In each com- parison, most DMPs were in the gene body (36.84% on average), 

which is expected based on the distribution of probes on the EPIC array [15]. This was followed by the 

intergenomic regions (28.16% on average) and TSS1500 (12.66% on average). We also found DMPs located in 

the 5’UTR (8.53% on average), in the TSS200 (7.64% on aver- age), the 1st exon (3.04% on average) and 3’UTR 

(2.44% on average). Lastly, the exon boundaries were studied, but they only represented 0.68% of DMPs (Fig. 

3A). Concerning DMP location in relation to CpG islands, the largest proportion of DMPs mapped to open-sea 

regions (55.66% on average) followed by CpG islands (19.13% on average). North shores contained ± 9.92% of 

DMPs, while south shores contained on average 8.47% of DMPs. North and south shelves contained the lowest 

average proportion of DMPs at 3.53% and 3.28%, respectively (Fig. 3A). Definitions of DMP locations can be 

found in the materials and methods section. 

The majority of DMPs were hypomethylated compared to hypermethylated (80.67% in A vs N, 94.21% in C vs N 

and 91.08% in A vs C, in Fig. 3B). When evaluating the tissue types, most DMPs were hypomethylated in tissue 

types with a higher degree of malignancy (given that the malignant potential increases from normal, to 

adenoma and eventually carcinoma) (Fig. 3B). To allow for a com- parison between the three tissue types, the 

DMP counts are normalized by dividing them through the total number of analyzed CpG sites in each category. 

DMRs and DMBs 

To study small regions with differential methylation that might be functionally involved in transcriptional 

regulation, DMRs between the three tissue types were studied. Most DMRs were identified when C vs N were 

compared, followed by the comparison of A vs C and the smallest number of DMRs were identified when A vs 

N were compared (6 756, 5 076 and 3 510 DMRs, respectively) (Fig. 3C). Since it has been reported that large 
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hypomethylated blocks are a universal feature of cancer tissue, methylation data was analyzed to identify DMBs 

for the comparison of the three tissue types. We identified 1 552 DMBs when comparing A vs C, 703 DMBs 

when comparing A vs N and lastly 582 DMBs for C vs N (Fig. 3C). Definitions of DMRs and DMBs can be found 

in the materials and methods section “Definitions of genomic regions and differential methylation”. 

 

Figure 3 | Differential methylation in adenoma, carcinoma, and normal colorectal tissues in both EPIC and 450K datasets.  
A. Barplot of DMP counts per genomic region for each of the 3 pairwise comparisons for both methylation platforms. 
Percentages are are fractions of the total DMPs for each comparison and platform. B. Barplot of hyper- (β ≥ 0.7) and 
hypomethylated (β ≤ 0.3) DMPs for each of the 3 comparisons for both methylation platforms. Percentages are fractions of 
the total DMPs for each comparison and platform. C. Barplot of DMB and DMR counts for all 3 comparisons for both 
methylation platforms. Annotations in regular font are with reference to genes, those in bold are with reference to CpG 
islands. UTR= untranslated region, IGR= intergenic region, TSS= transcription start site, N= north, i.e., upstream (5’) of CpG 
island, S= south, i.e., downstream (3’) of CpG island, ExonBnd=exon boundaries, DMB= differentially methylated block, DMR= 
differentially methylated region 
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Double evidenced differential methylation (DE DMPs) 

To double evidence the DMPs identified through the public MethylEPIC® dataset, analysis of additional Illumina 

450K data of 385 normal, 121 adenoma and 600 carcinoma samples from public datasets was performed (1 

106 450K samples mentioned in Fig. 1). The common DMPs that were detected in the datasets of both the EPIC 

and 450K methylation arrays and had an absolute delta beta value of > 0.3, were termed double evidenced 

DMPs (DE DMPs). Additional Fig. 1 represents an overview of the unique and common DMPs in the three 

different tissue groups. Sixty-two DE DMPs were identified when comparing adenoma and normal tissue, 56 

DE DMPs for carcinoma and normal tissue and 13 DE DMPs for adenoma and carcinoma tissue (shaded row in 

Table 1). More information regarding the location of the DE DMPs within the genome can be found in Additional 

Table 4. 

Methylation as a biomarker for adenomas and carcinomas  

To test the discriminatory power of methylation markers in classifying adenomas versus carcinomas, which are 

the most difficult to resolve clinically, a binary logistic regression model was built using the 13 DE DMPs 

reported above as predictors. Clustering both the public data (Fig. 4A–C) and the in-house data (Fig. 4D) using 

the 13 DE DMPs resulted in distinct clusters between adenomas and carcinomas and more unified groupings 

than using the array data as a whole. Hierarchical clustering revealed that these DMPs were more 

hypermethylated in adenomas and hypomethylated in carcinomas (Fig. 4A). Clustering the public data could 

clearly resolve the 2 tissue types, albeit some samples remained doubtful (Fig. 4B, C). Clustering the in-house 

data fared better, resulting in 2 separate clusters with only 2 of the carcinomas localizing in the adenoma 

cluster (Fig. 4D).  

The final model was trained on the public EPIC array data and validated in the in-house experimental 

methylation datasets (Fig. 1, methods). Importantly, the classifier model reached a cross-vali- dated area under 

the curve (AUC) of 0.996 and 0.855 in the discovery and validation datasets, respectively. Sensitivities and 

specificities at different cut-off values for the predicted probabilities are shown through a ROC plot (Fig. 4E). 

At optimal cut-off, a sensitivity of 96.33% and a specificity of 95.28% for the detection of carcinomas versus 

adenomas were reached, with an overall accuracy of 95.81% and a misclassification error rate of 4.19%. In the 

in-house data, the model successfully classified 13 out of 13 adenomas and 7 out of 9 carcinomas. In all, the 

model exhibited high predictive power and good generalizability across different datasets. The results of the 

validation of the DE DMPs for comparison of adenoma vs normal and carcinoma vs normal are reported in 

Additional Fig. 2 and Fig. 3. In addition, a circos plot representing the genome-wide differential methylation 

between adenoma and carcinoma tissue is provided in Fig. 5. This plot depicts the DMPs, DMRs and DMBs of A 

vs C in view of the epigenome and compared to known CRC biomarkers. 
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Figure 4 | The selected 13 DE DMP markers were effective at classifying adenomas and carcinomas. A. Heat map and 
hierarchical clustering analysis of the discovery EPIC dataset based on the 13 identified DE DMP markers shows a block like 
structure with almost half of the markers being hypermethylated in carcinoma and hypomethylated in adenomas and vice 
versa for the other half. B. MDS clustering of the discovery dataset using the 13 markers shows 2 distinct clusters. C. tSNE 
clustering of the discovery dataset using the 13 markers could also resolve the two tumor types. D. tSNE clustering of the 
validation dataset using the 13 markers shows a clear separation between adenomas and carcinomas, only 2 carcinomas 
are falsely classified. E. ROC curves for the final 13 DE DMP classifier model for both discovery and validation datasets from 
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EPIC arrays. Sensitivity and specificity, for distinguishing between adenomas and carcinomas, at various cut-off values for 
the datasets are plotted. The model yielded an AUC of 0.99 and reached a sensitivity and specificity of 96.33% and 95.28%, 
respectively, while overall model accuracy was 95.81% in the discovery dataset. In the validation dataset it had an AUC of 
0.85, and reached a sensitivity and specificity of 89.36% and 69.78%, respectively. The diagonal dotted line represents the 
line of no discrimination between the two tumor types. DE DMP double evidenced differentially methylated probes, ROC 
receiver operating characteristic, MDS multidimensional scaling, tSNE t-distributed stochastic neighbor embedding, TPR = 
true positive rate, FPR = false positive rate, A = adenoma, C= carcinoma 

Gene set enrichment analysis 

Reactome, gene ontology (GO) and KEGG functional enrichment analysis were performed to better understand 

the functional implication of differential methylation patterns in adenoma vs carcinoma samples. Pathways 

were selected based on p-values, with a cut- off at < 0.01. We identified 1 375, 111 and 32 pathways for GO, 

Reactome and KEGG analyses in A vs C, respectively (Additional Table 5). The top 10 most significantly enriched 

gene sets in each category are represented in Additional Fig. 4. Functional terms that were highly enriched 

included terms related to developmental pathways, cell organelles, metabolism, signaling and response 

mechanisms. Searching for overlapping pathways within the three analyses, the MAPK signaling, cell cycle, 

Figure 5 | Circular genome plot summarizing genome-wide differential 
methylation between colorectal adenoma and carcinoma tissue. The of DMPs 
represents their |Δβ| in carcinomas. DMBs= differentially methylated block, 
DMRs= differentially methylated regions, DMPs= differentially methylated 
probes, hyper= hypermethylated, hypo= hypomethylated 
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ubiquitin-mediated proteolysis, endocytosis and Wnt signaling pathway were found to be significantly enriched. 

Furthermore, genes within the enriched pathways were investigated in more detail. The NEU1 gene, which 

contained 3 DE DMPs for A vs C, was found in all three GSEAs. Pathways including the NEU1 gene are mentioned 

in Additional Table 6. All frequently mutated genes in cancer are registered in the Catalogue of Somatic 

Mutations in Cancer (COSMIC) database. This list of genes provides valuable insights into the genetic 

mechanisms underlying cancer. Within the COSMIC genes, 173 genes were found that were present in all three 

GSEAs (Additional Table 7). For example, BRAF, HRAS, MLH1 and EGFR were found to be enriched in the GSEA. 

DISCUSSION AND CONCLUSIONS 

Previous research has demonstrated the methylome’s potential for the discovery of biomarkers. In CRC, it has 

been shown that normal and colorectal cancer tissue, as well as low-grade and high-grade adenomas, can be 

discriminated based on methylation pattern [5–7]. Therefore, we performed the first study to explore and 

compare the epigenome of normal colorectal tissue, precancerous lesions (adenomas) and colorectal cancer 

tissue together and to identify biomarkers that can discriminate between these three tissue types. Based on the 

current available literature, we hypothesized that each of the three tissue types would be differentially 

methylated. 

Our results are consistent with this hypothesis. We identified numerous DMPs, DMBs and DMRs between the 

three tissue types (Table 1). The most interesting aspect is that when normal colorectal tissue is compared to 

adenoma or carcinoma tissue, most of the DMPs were hypomethylated in the tissue type with increasing 

malignant potential (Fig. 3A, B), which indicates an important role for hypomethylation in carcinogenesis. This 

is in accordance with previous studies that indicated widespread hypomethylation in cancer tissue compared 

to healthy tissue, which is observed across cancer types [16, 17]. It also corresponds to the findings of Fan et 

al., who observed increasing DNA hypomethylation starting from low-grade adenoma stage, leading to further 

hypomethylation at high-grade adenoma and CRC stage [5]. Likewise, Liu et al. found significantly more 

hypomethylated DMPs than hypermethylated DMPs in adenoma tissue compared to adjacent normal tissue. For 

DMRs, the same pattern was observed [18]. When focusing on the difference in methylation between the three 

tissue types, it is interesting to note that not all normal samples were alike. In the MDS and tSNE plots (Fig. 2C, 

D), two and four distinct subclusters for the normal samples can be observed, respectively. This indicates the 

possibility of several subtypes of normal colon tissue with different methylation patterns. We observed different 

clusters based on sample location (left vs right, data not shown), which has also been described in literature 

before [19–22]. However, healthy colon tissue adjacent to the tumor tissue was used instead of normal colon 

samples of healthy patients. In literature, the phenomenon of field cancerization has been described, where 

amongst others epigenetic changes have been reported in normal colon mucosa adjacent to the tumor [23–
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27]. Hawthorn et al. described chromosomal instability in regions surrounding the tumor as far as 10 cm distal 

[23]. Park et al. described the aberrant methylation of non-adjacent normal-appearing tissue [25]. 

Unfortunately, for most of the datasets, there is no information on the distance at which the normal-looking 

tissue was taken, making it difficult to estimate the field effect. However, this clinical information is also lacking 

in public data. Lastly, two distinct morphological pathways of CRC carcinogenesis exist, potentially explaining 

the two clusters found in the MDS plot (Fig. 2C). Both the conventional and the alternative/serrated pathways 

are characterized by specific epigenetic alterations. Different mechanisms lay behind these pathways, which 

are associated with MSI status and CpG island methylator phenotype (CIMP). A specific CRC classification of 

five molecular subtypes based on MSI and CIMP status has been described previously. The four distinct clusters 

found in the tSNE plot (Fig. 2D) could potentially be explained by these molecular subtypes, but this cannot be 

verified due to the lack of clinical data [28].  

When comparing our DMPs to those found in literature, we find many similarities. For example, CpGs in the 

ADHFE1 [5], SND1, OPLAH, TMEM240, NR5A2, TLX2, COL4A1, ZFP64 [13], MYO1G [29], CREB1 [18], NPY and PENK 

[30] genes were also identified in other studies comparing the methylation pattern of healthy colorectal tissue 

to adenoma and/or carcinoma tissue. Several of these methylation markers can also be appreciated from the 

circos plot (Fig. 5). 

From a clinical perspective, the difference between colorectal adenoma and carcinoma is the most relevant. 

Therefore, a more in-depth analysis was performed on the difference in methylation between those 2 tissues 

(Fig. 4). When comparing their methylation patterns, surprisingly 3 out of 13 DE DMPs were located on 

chromosome six. Chromosome six is a well-known chromosome in oncology. It contains several clinically 

important proto-oncogenes as well as the major histocompatibility complex. Several genes linked to CRC are 

located on this chromosome, including ROS1, VEGFA, CDKN1A and VIP. A total of 37 797 DMPs was found in the 

EPIC analysis. 7 810 thereof were in the major histocompatibility complex (MHC). The MHC contains more than 

100 genes implicated in the immune response, including HLA-A, HLA-B and HLA-C. These genes and the MHC 

class I molecules play an important role in the anti-cancer immune response [31]. Downregulation of MHC class 

I has been observed in 40–90% of cancer types and was often correlated with a worse prognosis [32]. 

The three DE DMPs on chromosome 6 were located in the TSS1500 (shore) region of the neuraminidase 1 

(NEU1) gene. This gene encodes a protein that functions as a lysosomal enzyme. It cleaves terminal sialic acid 

residues from its substrates including glycoproteins/glycolipids. It has no clear cancer-related function, but it 

is described to play a role in other pathways for the innate immune system, glycosphingolipid metabolism, 

diseases of glycosylation and synthesis of substrates in N-glycan biosynthesis [33], which were also found to 

be enriched in the GSEAs (see Additional Table 6). Furthermore, three publications have already described a 

link between NEU1 and CRC. In 2009, Uemura et al. reported the regulatory role of NEU1 in integrin β4-mediated 
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signaling, which led to the suppression of metastasis [34]. Almost a decade later, Forcella et al. found that 

human sialidases are severely dysregulated in several tumors and described their potential application in 

cancer diagnosis [35]. Jiao et al. further underlines the role of NEU1 in tumorigenesis regulation through several 

pathways, including immune-mediated tumorigenesis and regulation of vascularization [36]. In addition, two 

other DE DMPs reported in this study (Fig. 4), are reported in previous methylation studies in CRC. First, EREG 

methylation and subsequent low EREG gene expression were correlated with poor response to anti- EGFR 

therapy in colorectal cancer [19, 37, 38]. Further- more, SND1 methylation was identified as one of the top 14 

methylation markers for discriminating between CRC and normal tissue in a study by Naumov et al. [13].  

Later, the 13 DE DMPs detected through the comparison of the methylation pattern of colorectal adenoma and 

carcinoma were used to build a model that can discriminate between these two lesions (Fig. 4E). These 13 DE 

DMPs represent the most significant differences between these two tissue types. During the validation of the 

prediction model in the in-house experimental methylation dataset, an increased error rate was noted (from 

4.19% to 11.62%). This might be due to the smaller group of samples in the validation group and/ or due to a 

lower quality of methylation arrays run on FFPE tissue instead of fresh frozen tissue. 

When  comparing  the  performance  of  our  model to other methylation models, it is interesting to compare 

to SEPT9. This is the best-known example of DNA methylation as a biomarker in CRC and was commercialized 

as the EpiProColon® assay. Although the use of this assay has proven effective for CRC detection, it lacks 

sensitivity for the detection of adenomas. Sensitivities ranging from 11.2% to 31.8% for methylated SEPT9 in 

adenomas have been reported [39]. Combinations with other markers, for example ALX4, increased the 

sensitivity to 37%, which shows there is plenty of room for improvement [40]. Our model, combining 13 DE 

DMPs, yielded a sensitivity of 96% for discriminating adenomas and carcinomas. All 13 adenomas were correctly 

classified. This is already a major improvement compared to methylated SEPT9, although more research and 

external validation will be needed to prove the superiority of the 13 DE DMPs. 

An aspect of working with public data is the lack of quality control. When the data of publicly available 

methylation array data were analyzed for this study, certain samples included in these datasets were not able 

to pass quality control and had to be excluded. Therefore, it is advised to download the signal intensity or raw 

idat files and not β-values, to perform the quality control yourself to ensure adequate quality. 

One of the limitations of this study is the use of FFPE material for methylation arrays. A known problem when 

FFPE samples are used for methylation arrays is the fact that this often results in lower quality data. Previous 

studies showed that a restore method can result in reliable and high-quality epigenomic data, concordant to 

that of fresh frozen tissue [41–43]. Therefore, the Infinium HD FFPE Restoration kit was used in this study. 

However, in our analyses it was noticed that the results of the vali- dation of the 13 DE DMPs were sample 

dependent. The sample age did not affect the quality of FFPE-derived DNA, which is in concordance with the 
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study of Kling et al. [44]. When the model was tested with lower-quality samples (without the expected bimodal 

distribution of beta values and more beta values around 0.5), it per- formed worse (data not shown) [44]. High-

quality data are thus needed for reliable analyses. Even though different pretreatment processes were 

developed to reduce formalin artifacts [41], restoring FFPE samples was not found to be effective in our study. 

This resulted in a limited number of samples used in this study. 

Another restriction of this study is that only one out of 13 adenomas from the in-house experimental 

methylation dataset was high-grade, while all others were low-grade. It would be of interest to identify 

methylation markers to make a distinction between low-grade and high-grade adenomas, since this might allow 

for minimally invasive identification of high-grade adenomas, which are known to have a higher risk of 

developing into carcinoma. However, since only one of our adenoma samples was high-grade and that dysplasia 

grade was not reported for most adenomas in the public datasets, this analysis was not possible. However, this 

comparison has been reported by Fan et al. [5]. 

Due to the stability of DNA methylation and the fact that aberrant methylation occurs early in carcinogenesis, 

the methylome has been considered an ideal source for potential biomarkers. The findings of this study raise 

the possibility that the 13 DE DMPs identified in this study can be used as targets for a liquid biopsy assay to 

distinguish adenoma from carcinoma in a minimally invasive way. The non-invasive detection of colorectal 

adenoma and carcinoma and the distinction between these lesions is highly clinically relevant. Early detection 

and removal of these lesions in the colorectum can prevent the development and locoregional or metastatic 

spread of colorectal cancer. Most adenomas and carcinomas are detected through colorectal cancer screening 

with fecal occult blood tests and subsequent colonoscopy. However, for certain patient groups these tests are 

not ideal, and a minimally invasive test is preferred. For example, in patients with congestive heart disease the 

fluid load of bowel preparation should be avoided and in patients who are treated with anticoagulants an 

invasive colonoscopy with biopsy for histopathological analysis can cause bleeding. Since only a small 

proportion (± 5%) of adenomas will eventually progress  to  carcinoma and this process takes up to 5–10 years, 

the removal of an adenoma is less urgent than the removal of a carcinoma. Therefore, it is of clinical importance 

to not only detect these lesions minimally invasively, but also to discriminate between these two tissue types, 

since treatment and follow-up will be different. In addition, a minimally invasive method to do this (e.g., liquid 

biopsy or stool samples with the 13 DE DMP markers), would be an important added value. With this study, we 

demonstrate the strength of differentially methylated CpG sites to be used in the clinic as biomarkers. In 

conclusion, our analyses highlight the power of the methylome, showing that methylation biomarkers can be 

used to identify colorectal adenoma and carcinoma, but also have the potential to discriminate between these 

two tissue types. 
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SUPPLEMENTARY MATERIAL 

Supplementary Tables 

Supp. Table 1 | Sample characteristics 

 Normal (19) Adenoma (17) Carcinoma (19) 
Characteristic Number %from total Number %from total Number %from total 
Sex                  
     Male 13 68,5  9  53  12  63  
     Female 6 31,5  8  47  7  37  
Age                  
     Median 66,5   / 67,5    / 75,5    / 
     Interval 50 - 83  /  50 - 82   /  56-95   /  
Location                  
      Left 11 57,9  10  59  11  57,9  
      Right 5 26,3  6  35  5  26,3  
      Unknown 3 15,8  1  6  3  15,8  
Dysplasia               
       Low-grade / / 15  88  / / 
       High-grade / / 2  12  / / 
Type               
       Tubulo-villous / / 5  29  / / 
       Tubular / / 12  71  / / 

* This included paired samples from the same patient: 10 tumor-normal pairs and 1 adenoma-normal pair 

Supp Table 2 | Samples that passed quality control of the in-house generated methylation data 

Tissue type Concentration (ng/µL) Gender Age 
Nl 60,8 Male 83 

LGA (Tb) 33,6 Female 70 
CRC  187 Female 72 
CRC  155 Male 71 

HGA (Tv) 31,7 Male 64 
Nl 22,7 Male 63 

CRC 445 Male 76 
LGA (Tv) 21,5 Female 50 
LGA (Tv) 41,5 Male 70 

CRC 1 148 Female 62 
LGA (Tb) 41,4 Female 82 
LGA (Tb) 17,4 Female 68 

CRC  118 Female 71 
LGA (Tb) 23,2 Male 73 
LGA (Tv)  114 Male 66 
LGA (Tb) 31,8 Male 64 

Nl 1 63,2 Female 62 
LGA (Tb) 20 Male 73 
LGA (Tb) 23,4 Male 66 
LGA (Tb) 46,3 Female 77 

CRC 56,4 Female 72 
LGA (Tb) 29,8 Male 67 

CRC 29,1 Male 76 
CRC 2 298 Male 59 
CRC  155 Female 68 
Nl 2 46,2 Male 59 

(Nl = normal adjacent, CRC= colorectal cancer, LGA = low grade adenoma, HGA = high grade adenoma, Tb = tubular, Tv= 
tubulovillous, 1,2... = paired sample) 



Chapter 4 

 118 

Supp. Table 3 | Overview of the datasets used for discovery, double evidencing and validation.  

Dataset ID Adenoma Carcinoma Normal QC Passed Sum Cohort 

EMD_01 3 2 3 4 Validation 
EMD_02 3 2 3 3 Validation 
EMD_03 3 3 2 4 Validation 
EMD_04 3 3 2 4 Validation 
EMD_05 4 2 2 4 Validation 
EMD_06 1 1 1 2 Validation 
EMD_07 0 4 4 6 Validation 
EMD_08 0 2 2 0 Validation 
E-MTAB-6450 16 0 0 16 Discovery/DE 
E-MTAB-7854 80 0 0 78 Discovery/DE 
GSE132804 0 0 206 206 Discovery/DE 
GSE151732 0 0 256 256 Discovery/DE 
GSE166212 10 32 6 47 Discovery/DE 
GSE199057 0 77 80 156 Discovery/DE 
Sum 123 128 567 786  
GSE106556 0 0 10 10 DE 
GSE129364 69 0 3 72 DE 
GSE132804 0 0 128 128 DE 
GSE139404 40 0 20 60 DE 
GSE66555 0 0 43 34 DE 
GSE68060 0 82 36 118 DE 
GSE77718 0 96 96 191 DE 
GSE77955 12 13 14 39 DE 
TCGA_READ + COAD) 0 409 45 454 DE 
Sum 121 600 395 1106  

EMD = experimental methylation data, E-MTAB= data from array express, GSE= data from GEO. Green = EPIC array data, blue 
= 450K array data. 
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Supp Table 4 | Location of DE DMPs in different groups within the genome 

Group Cg position Chromosome Gene Feature-CGI COSMIC-Census Relevant references 

A_C 

cg02205193 13 / IGR-opensea / / 
cg03211173 20 MRGBP TSS200-island / / 
cg10059167 13 OR7E156P TSS200-opensea / / 
cg11691825 1 / IGR-opensea / / 
cg13822911 13 / IGR-opensea / / 
cg14804531 11 / IGR-shelf / / 

cg18363192 6 NEU1 TSS1500-shore / 
https://pubmed.ncbi.nlm.nih.gov/29278877/  AND 
https://pubmed.ncbi.nlm.nih.gov/29547645/ 

cg19308222 4 EREG TSS1500-opensea / https://pubmed.ncbi.nlm.nih.gov/34884633/  

cg20383155 6 NEU1 TSS1500-shore / 
https://pubmed.ncbi.nlm.nih.gov/29278877/  AND 
https://pubmed.ncbi.nlm.nih.gov/29547645/ 

cg22630733 11 / IGR-shelf / / 

cg22753340 6 NEU1 TSS1500-shore / 
https://pubmed.ncbi.nlm.nih.gov/29278877/  AND 
https://pubmed.ncbi.nlm.nih.gov/29547645/ 

cg26487157 2 PCBP1 TSS1500-island 
poly(rC) binding protein 1; CRC; missense 
mutations 

/ 

cg26642667 7 SND1 5'UTR-island 
staphylococcal nuclease and tudor domain 
containing 1; pancreas acinar carcinoma; 
oncogene fusion; translocation partner = BRAF 

/ 

A_N 

cg00733780 10 GAD2 TSS200-island / https://pubmed.ncbi.nlm.nih.gov/22552777/ 

cg00817367 12 GRASP Body-island / https://pubmed.ncbi.nlm.nih.gov/23096130/ 

cg01563031 11 NELL1 Body-island / https://pubmed.ncbi.nlm.nih.gov/35202405/ 

cg01588438 8 ADHFE1 TSS200-island / 
https://pubmed.ncbi.nlm.nih.gov/35054365/  AND  
https://pubmed.ncbi.nlm.nih.gov/32317010/ 

cg03807298 5 ? IGR-island / / 

cg04025964 1 NR5A2 Body-island / 
https://pubmed.ncbi.nlm.nih.gov/34253750/  AND  
https://pubmed.ncbi.nlm.nih.gov/30642095/ 

cg04763554 1 MIR137HG IGR-island / https://pubmed.ncbi.nlm.nih.gov/29730197/ 

cg04921989 2 GNAQP1 IGR-island / / 
cg04996873 1 KIAA1026 Body-island / / 
cg06428620 5 PCDHGA4 Body-shore / / 
cg06454760 19 ZNF135 TSS200-island / https://pubmed.ncbi.nlm.nih.gov/35202405/ 

cg06611358 19 ZNF568 IGR-island / https://pubmed.ncbi.nlm.nih.gov/28257124/ 

cg06952671 2 ITGA4 5'UTR-island / https://pubmed.ncbi.nlm.nih.gov/35284127/  

cg07559273 14 NOVA1 Body-island / https://pubmed.ncbi.nlm.nih.gov/34305406/  

cg07690181 5 EDIL3 Body-island / https://pubmed.ncbi.nlm.nih.gov/21859567/ 
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cg07914084 1 RYR2 Body-island / https://pubmed.ncbi.nlm.nih.gov/35587572/ 

cg07920503 13 FAM123A 1stExon-island / https://pubmed.ncbi.nlm.nih.gov/33396258/ 

cg07923233 1 SLC44A5 IGR-island / / 
cg08452658 15 TM6SF1 TSS200-island / / 
cg08684639 4 WDR17 5'UTR-island / https://pubmed.ncbi.nlm.nih.gov/33580586/ 

cg09100013 4 UNC5C Body-island / https://pubmed.ncbi.nlm.nih.gov/34922605/ 

cg09167553 1 LRRC7 IGR-island / https://pubmed.ncbi.nlm.nih.gov/33078631/ 

cg09296001 7 SND1 Body-island 

staphylococcal nuclease and tudor domain 
containing 1; pancreas acinar carcinoma; 
oncogenic fusion gene: translocation partner= 
BRAF 

/ 

cg10293925 7 AMPH 5'UTR-island / / 
cg10362542 17 HRNBP3 5'UTR-island / / 
cg10566121 11 MPPED2 5'UTR-island / https://pubmed.ncbi.nlm.nih.gov/30846004/ 

cg11017065 11 FLI1 Body-island 
Friend leukemia virus integration 1; Ewing 
sarcoma; oncogene, fusion; Translocation partner 
EWSR1 

/ 

cg11167100 15 TM6SF1 TSS200-island / / 
cg11767984 19 ZNF788 Body-island / / 
cg11855526 11 MPPED2 5'UTR-island / https://pubmed.ncbi.nlm.nih.gov/30846004/ 

cg12821278 9 DBC1 TSS200-island / https://pubmed.ncbi.nlm.nih.gov/35801925/ 

cg13267264 8 PRDM14 TSS200-island / https://pubmed.ncbi.nlm.nih.gov/35065650/ 

cg13823136 1 ST6GALNAC5 TSS200-island / https://pubmed.ncbi.nlm.nih.gov/21400501/ 

cg13895235 7 PRKAR1B 5'UTR-shore / https://pubmed.ncbi.nlm.nih.gov/8142263/ 

cg14520424 1 LRRC7 IGR-island / https://pubmed.ncbi.nlm.nih.gov/33078631/ 

cg14732324 5 ? IGR-island / / 
cg14817541 6 EYA4 5'UTR-island / https://pubmed.ncbi.nlm.nih.gov/32380793/ 

cg15603568 11 GRIA4 5'UTR-island / https://pubmed.ncbi.nlm.nih.gov/34719006/ 

cg15674193 2 LRRFIP1 TSS1500-island / https://pubmed.ncbi.nlm.nih.gov/22750095/ 

cg15779837 19 GRIN2D Body-island / https://pubmed.ncbi.nlm.nih.gov/33639954/  

cg16476975 7 ? IGR-island / / 
cg17301223 8 OPLAH Body-island / https://pubmed.ncbi.nlm.nih.gov/35054365/ 

cg17698295 8 OPLAH Body-island / https://pubmed.ncbi.nlm.nih.gov/35054365/ 

cg17872757 11 FLI1 Body-island 
Friend leukemia virus integration 1; Ewing 
sarcoma; oncogene, fusion; Translocation partner 
EWSR1 

/ 

cg17892556 19 ZNF625 1stExon-island / https://pubmed.ncbi.nlm.nih.gov/25472652/ 

cg18023283 12 SLC6A15 TSS1500-island / https://pubmed.ncbi.nlm.nih.gov/24485021/ 

cg18412834 20 FLJ16779 TSS200-island / / 
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cg18560328 11 SYT9 TSS200-island / / 
cg18601167 7 PRKAR1B 5'UTR-shore / https://pubmed.ncbi.nlm.nih.gov/8142263/ 

cg18672939 10 GFRA1 1stExon-island / 
https://pubmed.ncbi.nlm.nih.gov/31988584/  AND  
https://pubmed.ncbi.nlm.nih.gov/33175846/ 

cg21277995 6 IRF4 Body-island 
interferon regulatory factor 4; MM; oncogene, TSG, 
fusion; Translocation partner of IGH 

/ 

cg21583226 2 GALNT14 Body-island / https://pubmed.ncbi.nlm.nih.gov/33387936/ 

cg21995919 2 ITGA4 5'UTR-island / https://pubmed.ncbi.nlm.nih.gov/35284127/  

cg22834653 3 FGF12 Body-island / https://pubmed.ncbi.nlm.nih.gov/22552777/ 

cg24171907 2 CNRIP1 1stExon-island / https://pubmed.ncbi.nlm.nih.gov/31833403/ 

cg24446548 7 TWIST1 1stExon-island / https://pubmed.ncbi.nlm.nih.gov/35155261/ 

cg24553673 1 NR5A2 Body-shore / 
https://pubmed.ncbi.nlm.nih.gov/34253750/  AND  
https://pubmed.ncbi.nlm.nih.gov/30642095/ 

cg24857620 8 NPBWR1 TSS1500-island / / 
cg25570913 13 ? IGR-island / / 
cg26256223 8 OPLAH Body-island / https://pubmed.ncbi.nlm.nih.gov/35054365/ 

cg26560414 16 CMTM3 5'UTR-island / https://pubmed.ncbi.nlm.nih.gov/28782576/ 

cg27200446 6 MDFI 5'UTR-island / https://pubmed.ncbi.nlm.nih.gov/35114976/ 

C_N 

cg01612140 6 enhancer IGR-opensea / / 
cg02272851 10 enhancer IGR-opensea / / 
cg02420480 7 ? IGR-opensea / / 
cg03498081 16 ? IGR-opensea / / 
cg04456219 7 DMR IGR-opensea / / 
cg04742334 20 LOC339568 Body-opensea / / 
cg04786142 1 DMR IGR-opensea / / 
cg04810745 2 enhancer IGR-opensea / / 
cg05433391 6 DMR IGR-opensea / / 
cg05981038 5 CARD6 1stExon-opensea / https://pubmed.ncbi.nlm.nih.gov/20025480/ 

cg06114334 7 enhancer IGR-opensea / / 
cg06197966 10 SVIL 5'UTR-opensea / https://pubmed.ncbi.nlm.nih.gov/34213504/ 

cg06433467 5 DMR CTC537E7.3 IGR-opensea / / 
cg06545761 16 ZCCHC14 3'UTR-island / / 
cg07474842 6 MAP3K5 Body-opensea / https://pubmed.ncbi.nlm.nih.gov/31910865/ 

cg08550523 1 enhancer IGR-opensea / / 
cg08584947 8 enhancer IGR-opensea / / 
cg09129067 8 ? IGR-island / / 
cg09170112 12 ? IGR-opensea / / 
cg09287864 7 DMR, enhancer IGR-opensea / / 
cg09841889 2 enhancer IGR-opensea / / 
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cg10077746 12 DUSP6 Body-shore / https://pubmed.ncbi.nlm.nih.gov/34790577/ 

cg10344477 17 B3GNTL1 Body-shelf / / 
cg11838152 13 ITGBL1 Body-opensea / https://pubmed.ncbi.nlm.nih.gov/32211321/ 

cg12060422 10 KAZALD1 1stExon-island / / 
cg12619262 7 CHST12 IGR-opensea / / 
cg13324103 10 SVIL 5'UTR-opensea / https://pubmed.ncbi.nlm.nih.gov/34213504/ 

cg14094027 12 PXN 5'UTR-opensea / https://pubmed.ncbi.nlm.nih.gov/32705241/ 

cg14642259 11 MYBPC3 Body-shore / / 
cg15536663 5 EPB41L4A Body-opensea / https://pubmed.ncbi.nlm.nih.gov/30854042/ 

cg16172099 8 ? IGR-shore / / 
cg16499677 14 C14orf37 Body-opensea / / 
cg16616514 4 PPP2R2C 3'UTR-opensea / https://pubmed.ncbi.nlm.nih.gov/34768523/ 

cg17400812 7 Enhancer IGR-opensea / / 
cg17494199 13 ? IGR-opensea / / 
cg18376288 1 enhancer IGR-opensea / / 
cg19291696 13 ? IGR-opensea / / 
cg19945931 12 ? IGR-island / / 
cg20175702 15 ? IGR-opensea / / 
cg20873416 6 HCG20 IGR-opensea / / 
cg20979737 1 ? IGR-opensea / / 
cg21480725 15 ? IGR-opensea / / 
cg21536074 7 GLI3 Body-opensea / https://pubmed.ncbi.nlm.nih.gov/33506047/ 

cg21769093 7 VWC2 Body-shelf / / 
cg22304399 19 CACNA1A Body-island / https://pubmed.ncbi.nlm.nih.gov/35658861/ 

cg22365276 15 ANXA2 5'UTR-shore / https://pubmed.ncbi.nlm.nih.gov/35163852/ 

cg22743884 8 DEFB135 1stExon-opensea / / 
cg22963629 7 ? IGR-opensea / / 

cg24032190 15 SMAD3 Body-opensea 
SMAD family member 3; colorectal carcinoma, oral 
squamous cell carcinoma; TSG; missense 
mutations 

/ 

cg25714865 7 ? IGR-shore / / 
cg25969107 15 ? IGR-opensea / / 
cg26450106 20 CST7 TSS1500-opensea / / 
cg26680608 6 MAP3K5 Body-opensea / https://pubmed.ncbi.nlm.nih.gov/31910865/ 

cg26749518 19 KLK9 3'UTR-island / / 
cg27134730 7 Enhancer IGR-opensea / / 
cg27365701 12 DUSP6 Body-shore / https://pubmed.ncbi.nlm.nih.gov/34790577/ 
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Suppl. Table 5 | Pathways in GSEA that contain the NEU1 gene 

Description GSEA ID 

Lysosome KEGG 4142 

neutrophil activation involved in immune response GO GO:0002283 

neutrophil mediated immunity GO GO:0002446 

lysosomal membrane GO GO:0005765 

vacuolar membrane GO GO:0005774 

carbohydrate catabolic process GO GO:0016052 

granulocyte activation GO GO:0036230 

neutrophil activation GO GO:0042119 

neutrophil degranulation GO GO:0043312 

lytic vacuole membrane GO GO:0098852 

carbohydrate derivative catabolic process GO GO:1901136 

vacuolar lumen GO GO:0005775 

specific granule GO GO:0042581 

sphingolipid metabolic process GO GO:0006665 

secretory granule lumen GO GO:0034774 

Diseases of glycosylation Reactome R-HSA-3781865 

Asparagine N-linked glycosylation Reactome R-HSA-446203 

Neutrophil degranulation Reactome R-HSA-6798695 

 

Supplemental figures 
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Suppl. Figure 1 | Counts of unique and common DE-DMPs in the three different colorectal tissue types. The upset diagram 
shows the total number of DE DMPs found in the discovery analysis prior to filtering based on |Δβ|. Legend: A= adenoma, 
N= normal, C= carcinoma 

 

Suppl. Figure 2 | The top 10 selected DE DMP markers were effective at classifying adenomas and normal tissues. A. 
Heatmap and hierarchal clustering analysis of the discovery EPIC dataset based on the top 10 identified DE DMP markers 
shows a block like structure with most of the markers being hypermethylated in adenomas and hypomethylated in normal 
tissues. B. MDS clustering of the discovery dataset using the 10 markers shows 2 distinct clusters. C. tSNE clustering of the 
discovery dataset using the 10 markers could also resolve the two tissue types. D. tSNE clustering of the validation dataset 
using the 10 markers shows a clear separation between adenomas and normal tissues. E. ROC curves for the final top 10 
DE DMP classifier model for both discovery and validation datasets from EPIC arrays. Sensitivity and specificity, for 
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distinguishing between adenomas and normal tissues, at various cut-off values for the datasets are plotted. The diagonal 
dotted line represents the line of no discrimination between tumor and normal tissues. DE DMP: double evidenced 
differentially methylated probes, ROC: receiver operating characteristic, MDS: multidimensional scaling, tSNE: t-distributed 
stochastic neighbor embedding, TPR: true positive rate, FPR: false positive rate, A: adenoma, N: normal tissue. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

Suppl. Figure 3 |The top 10 selected DE DMP markers were effective at classifying carcinomas and normal tissues. A. 
Heatmap and hierarchal clustering analysis of the discovery EPIC dataset based on the top 10 identified DE DMP markers 
shows a block like structure with most of the markers being hypomethylated in carcinomas and hypermethylated in normal 
tissues. B. MDS clustering of the discovery dataset using the 10 markers shows 2 distinct clusters. C. tSNE clustering of the 
discovery dataset using the 10 markers could also resolve the two tissue types. D. tSNE clustering of the validation dataset 
using the 10 markers shows a clear separation between carcinomas and normal tissues. E. ROC curves for the final top 10 
DE DMP classifier model for both discovery and validation datasets from EPIC arrays. Sensitivity and specificity, for 
distinguishing between carcinomas and normal tissues, at various cut-off values for the datasets are plotted. The diagonal 
dotted line represents the line of no discrimination between tumor and normal tissues. DE DMP: double evidenced 
differentially methylated probes, ROC: receiver operating characteristic, MDS: multidimensional scaling, tSNE: t-distributed 
stochastic neighbor embedding, TPR: true positive rate, FPR: false positive rate, C: carcinoma, N: normal tissue. 
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ABSTRACT 

Introduction: DNA methylation biomarkers have emerged as promising tools for cancer detection. Common 

methylation patterns across tumor types allow multi-cancer detection. ddPCR has gained considerable 

attention for methylation detection. However, multi-cancer detection using multiple targets in ddPCR has never 

been performed before. Therefore, we developed a multiplex ddPCR assay for multi-cancer detection.  

Methods: Based on previous data analyses using TCGA, we selected differentially methylated targets for eight 

frequent tumor types. Three targets were validated using ddPCR in 103 tumor and 109 normal adjacent fresh 

frozen samples. Two distinct ddPCR assays were successfully developed. Output data from both assays is 

combined to obtain a read-out from the three targets together.  

Results: Our overall ddPCR assay has a cross-validated AUC of 0.948. Performance between distinct cancer 

types varies, with sensitivities ranging from 53.8% to 100% and specificities ranging from 80% to 100%. 

Compared to previously published single-target parameters, we show that combining targets can drastically 

increase sensitivity and specificity, while lowering DNA input.  

Conclusion: In conclusion, we are the first to report a multi-cancer methylation ddPCR assay, which allows for 

highly accurate tumor predictions. 

 

 

  



Chapter 5 

 132 

INTRODUCTION 

Cancer is one of the leading causes of death worldwide, with nearly 10 million deaths reported in 2020. The 

most common cancers are breast (2.26 million new cases), lung (2.21 million new cases), colorectal (1.93 million 

new cases) and prostate (1.41 million new cases) [1]. Many cancers can be cured when treated efficiently and, 

more importantly, detected early. However, patients are still frequently diagnosed in a late stage [2], despite 

efforts in screening programs and early detection methods. For example, 68% of lung cancer and 59% of 

colorectal cancer patients is diagnosed in stage IV [2], where 5-year survival rates are 7% and 14% respectively. 

There are currently only screening programs in place for colorectal, breast and cervical cancer in most western 

countries, and in some countries (e.g. the United States), screening for lung cancer is also recommended [3]. It 

is clear that there is much room to improve on cancer detection, especially in early stages. Therefore, early 

detection biomarkers have gained interest in recent years. DNA methylation is a very good candidate for such 

biomarkers. It occurs at the 5th position of cytosines in the context of CpG dinucleotides. Tumor-associated 

modifications of the methylation status of CpG sites appear already early in carcinogenesis, possibly even 

before actual neoplastic transformation [4,5]. This makes DNA methylation changes the ideal target for early 

cancer detection. Methylation patterns are extensively altered between normal cells and cancer cells and are 

a very consistent feature as opposed to mutations, which typically vary at a wide range of sites [6,7]. Therefore, 

DNA methylation assays can be used off-the shelf, making them faster and cheaper to use compared to other 

assays. Distinct methylation patterns per tumor type have been observed and allow detection of tissue of origin. 

In addition, common methylation patterns exist across tumor types, which allow multi-cancer detection [7,8]. 

This multi-cancer detection has gained more attention in the past few years. Different assays are being 

developed and tested in clinical trials for safety and effectiveness [9,10]. The advantage of such multi-cancer 

detection tests is that they could facilitate the early detection of many cancers for which currently, no site-

specific screening modality exists. Moreover, they could also detect cancers that are missed by the existing 

screening tests, as these assays are more sensitive than for example the existing imaging tests [10,11]. 

Just a decade ago, droplet digital PCR (ddPCR) was introduced as a highly sensitive method for detection and 

absolute quantification of targeted mutations in DNA [12,13]. The random partitioning of a clinical sample into 

thousands of droplets allows simultaneous PCR reactions in each individual droplet, drastically improving 

sensitivity [12,14,15]. In 2015, ddPCR was used for the first time to detect methylated alleles [16]. Since then, 

several studies have explored DNA methylation biomarkers in ddPCR assays for cancer detection and follow-

up, mostly in liquid biopsies [6,7,13,17–20]. Up until this moment, there are no methylation ddPCR assays FDA-

approved for use in clinical settings. None of the methylation ddPCR assays that are published, focused on 

multi-cancer detection using multiple (candidate) biomarkers. The multi-cancer tests that have been developed 

thus far, for example the Galleri® or PanSeer test usually make use of next-generation sequencing technologies 
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[21–23], although these technologies are inferior to ddPCR regarding detection sensitivity, more time-

consuming and costly [13,18].  

Previous research from our group has demonstrated the possibility of using DNA methylation biomarkers to 

discriminate eight different tumor tissues from each other and from normal tissue. The analyses were performed 

in silico, and our validated prediction model with 20 CpGs, common for the different cancer types, achieved 

85% sensitivity at 91% specificity for stage one cancers [8]. However, efforts to design multiplex methylation 

assays often result in high-cost tests that are not affordable for routine diagnostics. Therefore, we aimed to 

develop and validate a triplex and duplex ddPCR assay for the detection of eight cancer types in fresh frozen 

tissue based on three differentially methylated targets.  

METHODS 

An overview of the methods is given in Figure 1. 

Figure 1 | Overview of the material and methods of the study. In the data analysis, clusters in grey indicate the double (or 
triple) positive clusters. Droplets of these clusters are excluded from the data  

Sample collection and characteristics 

Control samples 

Whole blood samples (n= 20) were previously collected from healthy volunteers. They were used as negative 

controls and for determination of the limit of blank (LOB) and limit of detection (LOD) (see 2.5.1 Assay 
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characteristic measures for explanation). In addition, the HCT116 (CRC) and Cal27 (Head and neck) cancer cell 

lines were used as positive controls. They were cultured according to the standard protocols from the American 

Type Culture Collection (ATCC).  

 Fresh frozen tissue 

Tumor tissue samples and normal adjacent tissue samples for eight cancer types were obtained from the 

Antwerp University Hospital biobank (UZA, Belgium). In total, 103 tumor and 109 normal adjacent tissue 

samples (Table 1) were collected and stored at -80°C. For all specimens, a hematoxylin and eosin-stained slide 

was made for microscopic analysis by the pathologist. Tissue type, presence of invasive tumor and overall tumor 

cell percentage (TcP) were verified. The average TcP was 40%, ranging from 5% to 95%. Samples from all 

invasive cancer stages (I-IV) were included in the study. The sample size calculation was performed as described 

in [24]. To determine the sample size, we used the target with the smallest effect size. A sample size with 7 

cases and an equal number of controls holds 80% power to detect any difference between the tumor group 

(methylation level = 0.54 ± 0.23) and the normal group (methylation level = 0.18 ± 0.10), corrected for multiple 

testing (3 CpG sites) with a one-sided test. More details are given in supplementary table 2. 

Table 1 | Tissue type and sample numbers used for ddPCR assays 

Tissue type Histological subtype # Tumor # Normal adjacent 
Lung Adenocarcinoma and squamous cell carcinoma 20 22 
Breast Invasive carcinoma 10 7 
Colorectal Adenocarcinoma 7 10 
Pancreas Adenocarcinoma 17 23 
Liver Hepatocellular carcinoma 12 10 
Esophagus Squamous cell carcinoma 10 5 
Head and neck Squamous cell carcinoma 13 8 
Prostate Adenocarcinoma 14 24 

Total 103 109 

DNA extraction and bisulfite conversion 

For whole blood samples, genomic DNA (gDNA) was extracted from 50ml blood using a standard salting-out 

process. The DNA was eluted in 1.5 ml TE buffer and stored at 4°C until further use. Genomic DNA from the cell 

lines was extracted from 106 cells using the Blood & Cell Culture DNA Maxi Kit (Qiagen, Hilden, Germany). DNA 

was eluted in 500 µL TE buffer and was stored at -20°C until further use. From fresh frozen tissue, genomic 

DNA was extracted from 1-10mg tissue using the QIAamp DNA Micro kit (Qiagen, Hilden, Germany). DNA was 

eluted in 70 µL TE buffer and stored at -20°C until further use. DNA concentrations were measured using the 

Qubit Fluorometer 2.0, DNA broad range assay (Invitrogen, MA, USA). Bisulfite conversion (20 ng per sample 

and per assay) was performed using the EZ DNA Methylation kit (Zymo Research) according to the 

manufacturer’s instructions. The elution volume was set to 2µL x n + 1 µL, where n was the number of assays 
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(usually 2), and 1µl was added as a margin for technical errors. Bisulfite converted DNA was stored at -20°C 

and used within 10 days after conversion. We used 20 ng to have sufficient material for optimization and 

validation of the assays, in view of addressing potential issues e.g. rain in the assay. 

Assay development  

Target selection process 

Targets were discovered through statistical analysis (pairwise comparison of cancer vs normal adjacent 

samples) of large datasets from The Cancer Genome Atlas. In total, 1 792 differentially methylated CpG sites 

were found. A total of 40 targets with a p-value of <0.01 and an absolute difference of 20% in tumor vs control 

methylation level were selected for primer design. This selection was based on 1) targets with the lowest p-

value, 2) targets with the largest difference in methylation level and 3) targets for which primers could be 

designed. Of these 40 targets, the 27 best performing primer sets in silico were ordered from Integrated DNA 

technologies (IDT, Leuven, Belgium). Primers were evaluated using qPCR (384 CFX, Bio-Rad) on bisulfite 

converted gDNA from whole blood samples and cell lines. The targets with the largest differences in Cq values 

and the best matching melting temperatures were selected, which ultimately led to the retention of 3 targets 

for ddPCR assay development. Compared to the previous study [8], different targets were used due to technical 

reasons. For two of the probes that were previously described, primers could not be designed. For one of the 

probes, a SNP was present. For the last probe, the in silico primer conditions (melting temperature, %CG content, 

self-ligation...) were less optimal.  

Primer and probe design for targets 

Primers for target 1 were designed using in silico bisulfite conversion through the serial cloner software (version 

2.6.1) and Primer3Plus (bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi). Primers for targets 2 and 3 

were designed using Meth Primer (urogene.org/cgibin/meth-primer/methprimer.cgi). Primers were ordered 

from Integrated DNA technologies (IDT, Leuven, Belgium). Probes were manually designed based on in silico 

bisulfite converted sequences. Non-fluorescent quencher, minor groove binder (NFQ-MGB) probes were used 

(IDT, Coralville, IA, USA). An overview of the newly designed primer and probe sequences can be found in Table 

2. For albumin, primers were previously designed by Boeckx et al. [20]. The fluorophore from the published 

albumin probe was adapted from FAM to SUN, an equivalent for the VIC dye.  
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Table 2 | Newly developed primer and probe sequences for the triplex ddPCR assays 

Target 1 2 3 
Target 
name EMX1 Chr5q14.1 NXPH1 

Amplicon 
location 2:73147755-73147844+ 5:76923876-76923965+ 

 
7:8482030-8482119+ 

 

Amplicon 
length 100 bp 87 bp 82 bp 

Forward 
primer 5’CGAACGAAAAGGAATATGTTTG’3 5’GATACGTTTTTTTTGGAGAAGCGC‘3 5’GAAGCGAAGGATTTTAGTTGTCG‘3 

Reverse 
primer 5’CTTCCAACGCCTCGATTAAC‘3 5’CTTCATATCCCCAAACCCGAA‘3 5’GAATACCCTCTCCTTCCGATATAACGA‘3 

Probe(s) FAM-CGGCGCGGTTTCGGCG-N* 

FAM- 
TGGGAGGTTTCGGGTATTTGAAGCG-N* 

SUN-
TGGGAGGTTTCGGGTATTTGAAGCG-N* 

FAM-CGTAGGGGGAGGTCGCGCG-N* 

N*, NFQ-MGB = non-fluorescent quencher – minor groove binder 

Optimization of the assays (temperature & concentration) 

The assays were first assessed using a temperature gradient between 52°C and 62°C. The optimal temperature 

was chosen to further optimize the probe concentrations. Primer concentrations were adopted from Boeckx et 

al. [20]. In the triplex assay, target 1 was detected based on 6-FAM-fluorescence and target two was detected 

based on both 6-FAM and 6-SUN fluorescence. By combining the two different fluorophores on the same probe, 

a third color was artificially created for detection. By adjusting (increasing/decreasing) the ratio between 6-

FAM and 6-SUN for the target that is detected in both channels, the clusters could be separated more (see also 

supplemental figure 3). In the duplex assay, target 3 was detected based on 6-FAM fluorescence. In both assays, 

albumin was used as a reference to determine the total amount of DNA present. Albumin detection was based 

on 6-SUN fluorescence, for which the probe concentration was adopted from Boeckx et al. [20]. After complete 

concentration optimization, a final temperature gradient around the previously chosen temperature was used 

to determine the optimal temperature for both assays. 

ddPCR workflow 

Assay composition 

First, the assay mix containing primers, probes and Tris-HCl (pH 8) was made. Assay mixes were optimized as 

described above. Subsequently, the detection mix was composed of 11 µL 2x Bio-Rad ddPCR™ Supermix for 

probes (no dUTP), 1.1 µL of the assay mix, 2 µL DNA and 7.9 µL Milli-Q H2O to a final volume of 22 µL. For both 

assays, the target and reference primer concentrations as well as the reference probe concentration were 900 

nM in the final detection mix. Optimized concentrations for the target probes are given in the results section. 

Approximately 20,000 nanoliter sized droplets were generated according to the manufacturer’s protocol using 
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the automated QX200™ Droplet generator (Bio-Rad). The resulting droplets were transferred to a 96-well plate 

and sealed. Target sequences were amplified using a Veriti™ thermal cycler (Applied Biosystems). 

Temperatures and times for the activation and inactivation steps were based on the recommended protocol 

from Bio-Rad for the ddPCR™ Supermix for Probes (no dUTP) (see Supplementary Table 1). Ramp rates of 

2.5°C/sec were used based on Bio-Rad guidelines. The amplification temperature was set at the optimized 

temperature, given in the results section. An additional incubation step at 12°C for (at least) 15 minutes was 

added to the recommended Bio-Rad cycling protocol. Samples were immediately analyzed post amplification 

in the QX200™ Droplet Reader (Bio-Rad).  

Sample analysis 

After read-out, the data was analyzed using the QuantaSoft™ Analysis Pro software (version 1.0.596, Bio-Rad). 

This software was used to visualize the dispersion graphs. The positive control was used to set clusters based 

on fluorescence detection in the 6-FAM and/or 6-SUN channel. Four different clusters were manually assigned 

for the triplex assay (see Figure 2A). The different clusters are 1) empty droplets (shown in gray in Figure 2), 2) 

droplets containing the reference sequence albumin (shown in purple in Figure 2A), 3) droplets with the first 

target sequence (shown in red in Figure 2A) and 4) droplets containing the second target sequence (shown in 

yellow on Figure 2A). Similarly, three distinct clusters for the duplex assay were manually assigned (Figure 2B). 

Here, the reference sequence is given in green (Figure 2B) and target 3 is shown as blue droplets (Figure 2B). 

Droplets from double and triple positive clusters are excluded from all analyses, as the number of copies per 

target cannot be distinguished in these. A cut-off of at least 10,000 accepted droplets and at least 1,000 

droplets for albumin (~4 ng as the lower limit of DNA input we accept) was set for analyzing all ddPCR 

experiments. The range of DNA varied from 4 ng to 19.72 ng, with an average of 9.47 ng. For samples in which 

the number of droplets was lower, the ddPCR protocol was repeated. Examples of a negative sample for both 

the triplex and the duplex assay is given in Supplementary Figure 1. 

Assay characteristic measures 

The limit of blank (LOB) is described as the number of false positive droplets that is detected in the negative 

controls (human genomic DNA) [25]. The LOB was used to discriminate the positive droplets (i.e. droplets 

containing the methylated target) from noise by subtraction of the LOB from detected positive droplets. The 

LOB was calculated as described in [20] and in Supplementary Table 2 . For both assays, the LOB was defined 

by the number of positive droplets measured in gDNA from whole blood samples that are not hypermethylated 

(n= 19 for the triplex assay, n=20 for the duplex assay). All data given in the results is normalized and corrected 

with the LOB (see also 2.5.1 normalization and methylation level). The limit of detection (LOD) is defined as 

‘the minimum concentration of the rare sequence that can be reliably differentiated from a negative control’ 
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(see also Supplementary Table 2) [25]. To measure this minimal detectable methylation level, a DNA titration 

experiment using human methylated and non-methylated (WGA) DNA (Zymo Research, CA, USA) was performed. 

Five replicates of concentrations between 0% and 5% were measured with the assays to determine the LODs. 

They were calculated as described in [26] (see also supplementary Table 2). To determine the corresponding 

methylation level, linear regression was used. The minimally detectable levels, thus LODs, and are given in 

Table 3. The intra-assay coefficient of variability (%CV) demonstrates the variance between sample replicates 

within the assays and is a measure of repeatability. The copies per µL of four positive controls was used to 

calculate the %CV as described in Supplementary Table 2. The LOB, LOD and %CV of the targets is given in 

Table 3. The analytical detection sensitivity is a measure of the number of DNA copies that can be reliably 

detected. It was calculated by dividing the number of haploid genome equivalents (3) by the number of copies 

detected per well (in percentage, Supplementary Table 2) [25,27]. 

Normalization and methylation level  

The number of positive and negative droplets was normalized to 20,000, the theoretical number of droplets 

that can be obtained using the QX200™ system. As shown in Supplementary Table 2, the number of accepted 

droplets was used for normalization.  

The normalized number of droplets and the LOB were used to calculate the methylation percentage. This was 

calculated based on the number of droplets for the target sequences minus the LOB, and the reference 

sequence. After multiplying by 100, a percentage was obtained (see supplementary table 2). This represents 

the relative abundance of the methylated target sequence. The ideal marker would show a methylation level 

of 100% for the positive control and 0% for the negative control. The methylation level can vary according to 

the number of droplets for the target sequence or reference sequence that are assigned in the clusters. In 

exceptional cases, the methylation level can exceed 100%, for example when copy number variants are present 

in a sample.  

Specificity and sensitivity 

To calculate the specificity and sensitivity of the targets, first a receiver-operator characteristic (ROC) model 

was constructed and then validated using five-fold cross validation with the “ROCR” package in R (version 

4.0.2). The cross-validated area under the ROC curve (cvAUC) was calculated to assess the predictive accuracy. 

Samples were considered methylated when the number of positive droplets for the target was higher than the 

LOB of that target. Samples were considered negative when (1) the number of positive droplets for the target 

was lower than the LOB and (2) no clear cluster for the target was observed. The sensitivities and specificities 

that were obtained per target and per cancer type are described in Table 4. For the combination of different 

targets, first the cutoff per target was determined based on the highest overall accuracy, dichotomizing the 
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results per target. Then, the separate predictions were combined by using the 'prediction’ function of “ROCR”, 

merged ROC curves were constructed and cvAUC values were calculated. When combining several targets, 

sensitivities and specificities can be calculated in different ways. For the triplex assay, a sample was considered 

positive if one target out of the two was methylated, which will further be described as the ‘1/2 threshold' (see 

also Fig. 4A). For the total ddPCR, which combines the three targets, two distinct thresholds were used. To 

achieve the highest sensitivity, a sample was considered positive based on methylation of one target out of 

three (further referred to as the ‘1/3 threshold’). For the highest specificity, a sample was only considered 

positive if the majority of the targets was methylated, i.e. two out of three (referred to as the ‘2/3 threshold’). 

Statistical analysis 

The GraphPad prism (version 9.5.1) software was used to perform statistical tests along with the generation of 

figures. To determine whether the difference that was observed between the methylation levels of DNA from 

normal adjacent samples and tumor samples was significant, the Mann-Whitney U test was used. To analyze 

whether there are differences in methylation levels between cancer stages, the Kruskal-Wallis test was used. 

Post-hoc analyses were performed using the Mann-Whitney U test. 

RESULTS  

Target selection and assay development 

Previous bioinformatic analyses from TCGA by our group [8] demonstrated the use of differentially methylated 

CpG sites for discrimination between controls and different tumor types. From this study, several CpG targets 

were further investigated for their application as biomarkers. A total of three targets was retained. Primers and 

probes for the selected targets were first analyzed using qPCR (CFX384, Bio-Rad) to determine their ability to 

discriminate hypermethylated samples (cancer cell lines) from hypomethylated samples (healthy blood 

samples). Two cell lines (HCT116 and Cal27) and two blood samples were analyzed in duplicate. The average 

Cq was used to determine the ΔCq. The qPCR results of these targets are displayed in Supplementary Table 3. 

The minimal ΔCq was 4.6, while the maximal ΔCq was 11.3. Based on the three targets, two ddPCR assays were 

developed. ddPCR was the chosen method, because its detection sensitivity is crucial for the future application 

of the assays in liquid biopsies. Also, around 13% of samples have a low TcP (<10%), for which we believe 

higher analytical sensitivity is beneficial. The ddPCR assays were optimized through temperature gradients and 

concentration gradients of probes. The first assay combines targets 1 and 2. For this assay, the optimal 

temperature was 55°C. The optimal concentrations for probes were 450 nM for target 1, 680 nM for target 2 – 

FAM and 1,4 µM for target 2 – SUN in the final detection mix. The positive control (HCT116) had an LOB- 

corrected methylation percentage of 64.30% for target 1 and 71.62% for target 2 (Figure 2A). The second assay 
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consists of target 3. For this assay, the optimal temperature was 58°C. The optimal concentration for the probe 

was 2.93 µM in the final detection mix. HCT116 has an LOB corrected methylation percentage of 73.79% (Figure 

2B). 

Figure 2 | Dispersion graphs of the triplex and duplex assay. The graphs show the dispersion of droplets for a positive 
control (HCT116, CRC cell line). A) Triplex assay consisting of target 1, 2 and reference Albumin. B) Duplex assay consisting 
of target 3 and reference albumin.  

Characteristics of the assays 

For the different targets, several measures (LOB, LOD and others) were calculated as described in section 2.5.1 

and Supplementary Table 2. An overview of the parameters is given in Table 3. The %CV indicates great 

repeatability for targets 1 and 2 and good repeatability for target 3. In both assays, the average analytical 

detection sensitivity for the reference target was calculated over all samples (Supplementary Table 2). For the 

triplex assay, the average detection sensitivity was 0.11% ± 0.04%. For the duplex assay, a very similar average 

detection sensitivity of 0.10% ± 0.05% was found, indicating an equally good performance for both assays. 

Finally, the number of accepted droplets and copies per droplet measured for the assays was evaluated. In the 

triplex assay, an average of 14,251 ± 1,932 accepted droplets were found, with an average of 147 ± 86 albumin 
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copies per droplet (Poisson-corrected minimum) per run. For the duplex assay, the average of accepted droplets 

was 13,315 ± 1,772 with on average 180 ± 121 albumin copies per droplets (Poisson-corrected minimum) per 

run. 

Table 3 | Limit of blank, Limit of detection and inter-assay coefficient of variability for the targets 

Target LOB (droplets) LOB (meth %) LOD (droplets) LOD (meth %) %CV 
1. EMX1 2.8 0.31 7.2 0.84 4.3 
2. Chr5q14.1 10.5 0.84 17.3 1.45 2.2 
3. NXPH1 6.0 0.94 11.6 1.75 8.6 

Methylation analysis of the targets in fresh frozen tumor and normal adjacent tissue 

The methylation levels of 103 tumor and 109 normal adjacent fresh frozen tissues were analyzed using both 

the triplex and the duplex assay. Methylation levels are summarized in Figure 3. For target 1, all tissue types 

except colorectal tissue (p= 0.541) show a significant difference in methylation percentages between normal 

and tumor tissue. Lung, prostate and pancreatic tissue give the most significant results with p-values below 

0.0001. For target 2, all tissues have a significant difference in methylation levels. As for target 1, lung, prostate 

and pancreatic cancer give the most significant results again. For target 3, all tissues give significant differences 

in methylation levels for tumor samples compared to normal adjacent samples as well. Here, lung and 

pancreatic cancer have the most significant results, followed by colorectal and esophageal cancer. 

Figure 3 | Overview of methylation levels in tumor and normal adjacent fresh frozen samples. A) Overview for target 1. B) 
Overview for target 2. C) Overview for target 3. P-values are indicated with asterisks, where *= p < 0.05, **= p < 0.01, ***= p 
< 0.001 and ****= p < 0.0001. Tc= Tumor, N= normal adjacent. Mann-Whitney U tests were performed using GraphPad Prism. 
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Methylation levels in tumor tissue show a wide range from 0% to 72.2% for target 1, 0% to 58.7% for target 2 

and 0% - 115% for target 3. In contrast, the normal adjacent tissue’s range is limited from 0% to 5.7% for both 

targets 1 and 2 and 0% to 16.7% for target 3, excluding one outlier in the prostate group (22.7% for target 1, 

8.9% for target 2 and 21.8% for target 3) and one in the colorectal group for target 3 (25%).  

There is no strong correlation of the methylation levels between the different triplex targets for the same 

sample (r= 0.59 for tumor samples and r= 0.71 for normal samples, Supplementary Figure 2A-B). Furthermore, 

there is no correlation between the tumor cell percentage and the methylation levels of the tumor samples (r= 

0.22 for target 1, r= 0.14 for target 2 and r= 0.12 for target 3, Supplementary Figure 2C-E). Last, there is no 

significant difference in methylation levels between different cancer stages for target 1 and target 3. For target 

2, there is only a significant difference found in methylation levels between stages 1 and 3 (p= 0.03) 

(Supplementary Figure 2F-H). The diagnostic performance of the targets per cancer stage was evaluated by 

calculating the sensitivity from ROC analyses and is given in Supplementary Table 5. 

Sensitivity and specificity of the targets for multi cancer detection 

To evaluate sensitivities and specificities for the targets, cross-validated ROC plots were generated per tissue 

type, per target and for the combination of targets. Data from the separate targets is shown in Table 4 and ROC 

plots for the combination of the targets are shown in Figure 4. They were used to determine the best threshold 

for sensitivity and specificity. For the combination of targets, samples were analyzed based on a 1/2, 1/3 and 

2/3 threshold, as explained in the methods. A summary of the parameters can be found in Table 4. 

 
Figure 4 | Receiver Operator Characteristic (ROC) curves. A) ROC plot for the two targets of the triplex assay. B) ROC plot 
combining all targets. AUC = (cross-validated) area under the curve. For each target, the 5-fold cross validation ROC curves 
(black) and the mean ROC curve (red) is plotted. Breakpoints reflect the number of targets agreeing in the classification. 
Depending on the numbers of targets (i.e. breakpoints) that classify tumor and normal samples correctly, the sensitivity and 
specificity varies. Arrows indicate the breakpoints (i.e. thresholds) that were used for calculations of the sensitivities and 
specificities. 
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In the multi-cancer context, numbers indicate that, although targets perform well separately (see Table 4), 

combining targets can increase the sensitivity and specificity. For example, the overall sensitivity of target one 

is 82.5%, and for target 2, it is 76.6%. However, a sensitivity of 93.2% is reached when looking at both targets 

together. The cvAUC for the triplex is 0.949. The same is true for the overall sensitivity of target three, which 

is 74.3% but in the combination of all three targets, the overall sensitivity reaches 94.1% (1/3 threshold). The 

changes in specificity are less drastic, but also underline the strength of combining targets to improve the 

diagnostic value (see Table 4). Adding the third candidate-biomarker target to the model, the total cvAUC 

reaches 0.948. Depending on the use of the 1/3 or 2/3 threshold, the model performs better for sensitivity or 

specificity respectively (see Table 4). Compared to the previously described in silico analyses by Ibrahim et al. 

[8], all three targets, the triplex and overall assay perform similarly (supplementary table 4).  

Looking at the cancer types separately, there are several cancer types for which the targets reach 100% 

sensitivity and 100% specificity. In contrast, some targets do not perform well in specific cancer types (see 

Table 4). However, as is also described above, combining at least two targets increases the sensitivity and 

specificity drastically (see Table 4). 

Table 4 | Cross-validated AUC and sensitivity-specificity based on ROC analyses 

    
Overall Breast Colorectal Lung Prostate Pancreas Liver Oesophagus 

Head and 
neck 

Target 1 
Sens 82.5% 100% 28.6% 

100
% 

100% 82.4% 66.7% 100% 53.8% 

Spec 98.2% 100% 100% 
100
% 

91.7% 100% 100% 100% 100% 

Target 2 

Sens 76.6% 60% 100% 85% 78.6% 76.5% 66.7% 80% 69.2% 

Spec 93.6% 100% 70% 
100
% 

91.7% 91.3% 100% 100% 100% 

Triplex 
 

Sens 93.2% 100% 100% 
100
% 

100% 88.2% 83.3% 100% 76.9% 

Spec 92.7% 100% 70% 
100
% 

87.5% 91.3% 100% 100% 100% 

cvAUC 0.949 1 0.893 1 0.966 0.928 0.917 1 0.885 

Target 3 

Sens 74.3% 80% 100% 85% 57.1% 81.3% 41.7% 100% 61.5% 

Spec 91% 100% 40% 
100
% 

91.7% 91.3% 100% 100% 100% 

Total, 
1/3  

Sens 94.1% 100% 100% 
100
% 

100% 87.5% 83.3% 100% 84.6% 

Spec 87.3% 100% 30% 
100
% 

83.3% 87.0% 100% 100% 100% 

Total, 
2/3  

Sens 80.2% 80% 100% 90% 85.7% 81.3% 58.3% 100% 53.8% 

Spec 96.4% 100% 80% 
100
% 

95.8% 95.7% 100% 100% 100% 

Total cvAUC 0.948 1 0.93 1 0.96 0.921 0.917 1 0.923 

1/3 = sample is classified as tumor if there is a positive signal for one of the three targets, 2/3 = sample is classified as tumor if there is a 
positive signal for the majority of the targets (two out of three), sens= sensitivity, spec= specificity, cvAUC= cross-validated Area Under the 
Curve. 
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DISCUSSION 

In this study, we successfully established two multi-cancer detection ddPCR assays. Previous bioinformatic 

analyses by our group [8] have already demonstrated the use of differentially methylated CpG sites for 

discrimination between controls and multiple tumor types. From the analyses, multiple differentially 

methylated CpG sites were investigated. Selecting the sites based on the p-value and discriminatory power (at 

least 20% difference in methylation level between tumor and normal samples) was an unbiased approach that 

left us with several candidate-biomarkers. As ddPCR was the preferred method in view of future applications 

in liquid biopsies, several attempts in primer and probe design and testing have led to the ultimate retention 

of three targets. 

Although the biomarkers used in our assays were selected purely on differential methylation, we investigated 

in which genes they are located. The first target covers a total of 17 differentially methylated CpGs in its 

amplified product. These sites are in the EMX1 (Empty Spiracles-Like Protein 1) gene [28]. Although this gene 

has no clear role in any carcinogenic processes, it has been reported to be differentially methylated in both 

gastric and hepatocellular carcinomas (HCC) [29–32]. The second target covers 6 differentially methylated CpGs 

in total, in an intergenic region located on the short arm of chromosome 5 (Chr5q14.1). Loss of the chr5q arm 

has been described in myelodysplastic syndrome and several cancers [33–36], but methylation at this specific 

location has not yet been described. In the third target region, a total of 9 differentially methylated CpGs were 

found. The gene at this location is the Neurexophilin 1 (NXPH1) gene. It is known to be involved in acute 

myeloid lymphoma [28]. Furthermore, it was described as a potential methylation biomarker in breast cancer 

[37] and intraductal papillary mucinous neoplasms (IPMNs) of the pancreas [38].  

For the ddPCR analyses, two different types of assays were developed. In the triplex assay, target 1 has an LOB 

of 3, which is comparable with published ddPCR assays [39]. The %CV is low (4.3), indicating limited variability 

within the assay. Target 2 has a higher LOB and lower %CV (11 and 2.2 respectively). Target 2 and 3 have a 

rather high LOD (methylation level of 1.45% – 1.75%), meaning that sufficient methylated DNA is needed for 

reliable detection of this target. Although all measures are within acceptable limits, the rather high LOB and 

LOD might hamper the application potential of this target in samples with very low tumor fractions (e.g. early 

stage liquid biopsies). Target 3 has an intermediate LOB of 6 and a %CV of 8.6, which again indicates good 

agreement within the assay. All targets have a standard error of the mean of approximately 1.5, indicating good 

repeatability. Last, the analytical detection sensitivity of the triplex assay and duplex assay is very similar 

(0.10% and 0.11%), indicating that both assays perform equally well. In the analyses, clusters were assigned 

manually for both assays. This remains standard practice for multiplex assays and the characterization 

parameters did not implicate this is as a problem. The manual assignment of the clusters can slightly affect the 

absolute quantification. However, for this assays’ purpose, the relative quantification (i.e. methylation level) is 
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of importance. Using manual assignment of clusters to have positive droplets only in the designated cluster, 

allowed us to minimize the LOB of the targets and as such minimize the number of false positive droplets. This 

is more important for the clinical implementation than the absolute quantification, in this specific assay 

context. Nevertheless, manual assignment could make standardization among different laboratories more 

difficult, and standardized methylation analyses are necessary for implementation in the clinic. In this view, 

Jeanmougin et al. described PoDcall, an R package for automated calling of positive droplets, quantification 

and normalization of methylation levels [40]. However, the paper was only published in 2022, so it might need 

more testing and validation before it can be implemented in other studies as a standard tool. Furthermore, in 

these analyses, we only verify positive clusters. This might lead to a minor decrease in sensitivity, which might 

be unfavorable for cfDNA analysis. However, Whale et al. previously described that unbiased estimates can be 

achieved by using either all partitions or a subset of partitions, as long as no linkage between the targets occurs 

[41].  Since our targets are located on different chromosomes, they are not linked and we can expect unbiased 

results by using only positive clusters.  

The optimized triplex and duplex ddPCR assays were used to assess fresh frozen tissue samples. For all tissue 

types and targets, except target 1 in colorectal tissue, a significant difference between tumor and normal 

adjacent samples was found. Lung tissue and pancreatic tissue had the most significant results in all targets. 

As the tumor cell percentages and cancer stages were in the same range for all tissue types, this is most likely 

due to their larger sample size (n= ~20) compared to other tissue types (n= ~10). In most of the normal tissue 

groups, the methylation levels are not 0% but vary. Normal adjacent tissue was used, which was taken at a 

certain (unknown) distance from the tumor. Field cancerization could be a possible explanation for higher 

methylation levels in normal adjacent tissue [42]. This is most likely for target 3 in colorectal normal tissue, 

where methylation levels vary from 2.5% to 25%. Nonetheless, for this target, the colorectal tumor samples 

also show high methylation levels, making it possible to perfectly distinguish between tumor and normal 

samples. Head and neck tissue remains the most difficult tissue type with the lowest sensitivity (see Table 4) 

compared to other tissue types. DNA methylation is tissue type specific, and head and neck cancers comprise 

several tissues (mouth, sinuses, nose and throat). Importantly, the etiology of the different sub-groups in head 

and neck cancer varies. These reasons could possibly explain why the targets are not as sensitive in head and 

neck cancers as in other tissue types. Finally, for esophagus cancer the number of normal adjacent tissues (n=5) 

does not meet the criteria from the sample size calculation (n= at least 7). Further analyses with more samples 

are warranted to draw robust conclusions for this subgroup. 

Although we expected to find a correlation between the estimated TcP and the methylation level per target, 

there was none. As outlined in the material and methods section, HE-slides were reviewed by a pathologist 

(D.P.) to verify the tissue type and estimate the percentage of tumor cells. Since this material is precious, only 

one slide was used for verification. Unfortunately, estimating the tumor cell percentage stays a bit arbitrary 
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and subjective. Moreover, the presence of other cells within the tumor samples, such as normal cells and 

immune cells (originating from inflammatory processes), dilute the number of tumor cells which affects the 

estimated TcP to an uncertain extent. Lastly, this correlation was made between the methylation level of one 

location in the epigenome and the overall TcP of the tumor sample, which might hamper the potential to find 

a correlation. 

In literature, methylation specific ddPCR assays typically involve the detection of one target gene in one cancer 

type. Almost all papers describe the use of ddPCR assays in both tissue and liquid biopsies (cfDNA) [6, 7,14,17]. 

In more recent research, the combination of several targets in separate ddPCR duplex assays is often described 

[17]. However, by creating separate assays, more DNA input is needed compared to our triplex assay. Our triplex 

assay could be beneficial for low DNA input samples or samples with limited tumor fractions such as cfDNA, as 

two targets can be investigated using the same amount of DNA. Compared to qPCR, ddPCR has a better 

analytical detection sensitivity (1% vs 0.001%) which is important for cfDNA or FFPE samples and early 

detection. As observed in our experiments (see supplementary text), the LODs of ddPCR were far better than 

those of the qPCR (~1% versus ~6% respectively). In view of future clinical applications, which can be both FFPE 

and liquid biopsy related, we designed ddPCR assays and optimized them using fresh frozen material. The 

advantage is that both ddPCR assays are now readily available and validated. 

Furthermore, combining targets in one assay increases the sensitivity as can be appreciated by comparing data 

from Table 4 (targets 1 and 2 versus triplex). Table 4 shows that not all targets perform equally well in all 

cancer types. However, we use this as a strength of our overall assay. By combining all three targets from two 

ddPCR assays, we were able to achieve high sensitivities and specificities for all cancer types. To allow for 

different applications, both the 1/3 and 2/3 thresholds were used to calculate diagnostic parameters. As seen 

in Table 4, the sensitivity is higher when using the 1/3 threshold approach. In contrast, the 2/3 threshold 

approach allows for higher specificity.  

The use of multiplex ddPCR assays in cancer has been described for microsatellite instability, mutation and 

copy number alteration detection [43 - 48]. Methylation detection has been used more in other fields such as 

detection of fetal fraction in blood samples and detection of SARS-CoV-2 [49,50]. There is one cancer multiplex 

methylation ddPCR assay described in literature, which was used to detect differences in methylation before 

and after neoadjuvant therapy in breast cancer [51]. Here, they used different concentrations of the FAM probe 

for the detection of two target genes in one assay. In addition, there is only one more assay described very 

recently by Zhao et al. for lung cancer screening [52]. Despite their capability of combining four targets into 

one assay, the use of their own microfluidics device limits broad applications in the clinic.  

Regarding multi-cancer applications, we are the first to describe a multi-cancer ddPCR assay using 

multiplexing. There is one recent paper by Manoochehri et al. that describes the use of the SST gene as an 
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interesting marker for several cancer types, including all types described in our study [53]. However, only 

pancreatic cancer tissue was evaluated in vitro with a ddPCR assay. The AUC for this was 1. The combination of 

our three targets reached an AUC of 0.957 for pancreatic tissue and is thus comparable to the SST biomarker 

performance. The other cancer types have only been described in an in-silico test for which no AUCs were 

calculated, so we cannot compare the SST gene to our targets for multi-cancer detection [53]. Other multi-

cancer detection assays described in literature, e.g. the Galleri test from GRAIL, are NGS based [21]. However, 

in view of implementation in the clinic, ddPCR is less labor intensive and more cost-efficient than NGS [18]. 

Multi-cancer assays often also incorporate the detection of tissue of origin (TOO), which our assay does not 

specify.  

In conclusion, we are the first to report a multi-cancer multiplex methylation ddPCR assay. The overall assay 

with three methylation biomarkers reached an AUC of 0.948 in 8 different tumor types. In the future, more 

multiplexing is likely to be achieved with the novel QX600 system of Bio-Rad, where 6 fluorescent channels 

will allow multiplexing of approximately 10 targets, which could greatly enhance sensitivity. Furthermore, the 

assays need to be evaluated in FFPE material and liquid biopsies to assess their performance in (poor quality) 

DNA from FFPE samples and cfDNA, as this will be of more interest to be implemented in the clinic. The results 

of this study can serve as a solid basis for further MCED-ddPCR cfDNA applications. 
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Supplementary information 

Supplementary Tables 

Supplemental Table 1 | Amplification protocol.  

Step Temperature Time   

Enzyme activation 95°C 10 min   

Denaturation 94°C 15s 
| 45X 

 

Amplification Optimal T 1 min  

Inactivation step 98°C 10 min   

Hold 12°C At least 15 min   

     

Supplemental Table 2 | Calculations 

Sample size calculation*: Effect Size 
d=

(M2-M1)

)(SD1
2+	SD22)
2

 

Normalization of the number of droplets 
Number	of	positive	or	negative	droplets

Number	of	accepted	droplets ∗ 20	000 

Calculation of the methylation percentage 
Normalized	number	of	droplets	target	sequence

Normalized	number	of	droplets	reference	sequence ∗ 100 

Limit of blank (LOB) Mean	number	positive	droplets"#$%& + 1.645	(SD"#$%&) 

Limit of Detection (LoD) LOB + 1.645	(SD#'(	*$+,#-	.'%.-%/0$/1'%) 

Calculation of the normalized number of 
droplets corrected with the LOB 

(Number	of	positive	or	negative	droplets − LOB)
Number	of	accepted	droplets ∗ 20	000 

Calculation of the methylation percentage 
corrected with the LOB 

LOB	corrected	number	of	normalized	droplets	target	sequence
Normalized	number	of	droplets	reference	sequence ∗ 100 

Inter-assay variability coefficient (%CV) 
Average𝑛𝑔µ𝐿 of	triplicates

Standard	deviation concµL of	triplicates
∗ 100 

Detection sensitivity (%) 
𝐻𝑎𝑝𝑙𝑜𝑖𝑑	𝑔𝑒𝑛𝑜𝑚𝑒	𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡𝑠	(3)

𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓𝑐𝑜𝑝𝑖𝑒𝑠	𝑝𝑒𝑟	𝑤𝑒𝑙𝑙 ∗ 100 

* The sample size calculation is performed as described in Rosner B. Fundamentals of Biostatistics. 7th ed. Boston, MA: Brooks/Cole; 2011. 
For this, we need power, effect size and significance level. The power was set to 80%. The formula for the effect size is given in this table 
(M= mean, SD= standard deviation, 1= tumor group, 2= normal adjacent group). We chose the target with the smallest effect size (target 3, 
with an effect size of 2.21 in comparison to target 1 (2.31) and target 2 (2.8)). The significance level was 0.05. As there are three targets, 
we corrected for multiple testing using a one-sided test, since the targets are chosen to be hypermethylated in tumor, so we already know 
one group will have higher methylation levels.  

 



Chapter 5 

 154 

Supplemental Table 3 | Overview of qPCR results 

Target Fluorophore Sample AvCq ΔCq 
1 FAM Cell line 23,21 11,31 

1 FAM Blood 34,52  

2 FAM Cell line 16,38 4,6 

2 FAM Blood 20,98  

2 SUN Cell line 21,56 6,4 

2 SUN Blood 27,97  

3 FAM Cell line 20,47 9,31 

3 FAM Blood 29,77  

Supplemental Table 4 | Comparison of the targets to in silico analyses of Ibrahim et al. 

Target In silico (cvAUC) Wetlab (cvAUC) 

1 0.855 0.909 

2 0.894 0.876 

1+2 0.933 0.949 

3 0.870 0.847 

1+2+3 0.947 0.948 
cvAUC= cross-validated Area Under the Curve 

Supplementary Table 5| Sensitivity of targets per cancer stage (ROC analysis) 

 Cancer Stage   
Target 1 (n=16) 2 (n= 28) 3 (n= 27) 4 (n= 9) 

1 87,5% 89,9% 77,1% 88,9% 

2 68,8% 77,8% 82,9% 66,7% 

3 68,8% 77,8% 88,6% 88,9% 

Total, 1/3  93,8% 100% 94,3% 88,9% 

Total, 2/3  75,0% 74,1% 91,4% 88,9% 
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Supplementary Figures  

 

Supplemental figure 1 | Dispersion graphs of negative samples in the triplex and duplex assay. The graphs show the 

dispersion of droplets for a negative control (gDNA from a whole blood sample) A) Triplex assay consisting of target 1, 2 
and reference Albumin. B) Duplex assay consisting of target 3 and reference albumin.  

 
Supplemental figure 2 | Correlations of methylation levels per target. A-B) Methylation levels in the triplex assay. C-E) 
Methylation levels of samples and tumor cell percentage (TcP). F-H) Methylation levels per cancer stage. Kruskal-Wallis 
tests and post-hoc Mann-Whitney U tests were used. Ns = not significant, *= p-value < 0.05. Analyses and plotting were 
performed using GraphPad Prism. 
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Supplemental figure 3 | Different probe concentrations for cluster separation. This figure illustrates the increased cluster 
separation at different probe concentrations for the triplex and the duplex assay. Probe concentrations are given in the 
figure. 
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ABSTRACT 

Background: Despite the worldwide progress in cancer diagnostics, more sensitive diagnostic biomarkers are 

needed. The methylome has been extensively investigated in the last decades, but a low-cost, bisulfite-free 

detection method for multiplex analysis is still lacking. 

Methods: We developed a methylation detection technique called IMPRESS, which combines methylation-

sensitive restriction enzymes and single-molecule Molecular Inversion Probes. We used this technique for the 

development of a multi-cancer detection assay for eight of the most lethal cancer types worldwide. We selected 

1,791 CpG sites that can distinguish tumor from normal tissue based on DNA methylation. These sites were 

analyzed with IMPRESS in 35 blood, 111 tumor and 114 normal samples. Finally, a classifier model was built.  

Results: We present the successful development of IMPRESS. The final classifier model discriminating tumor 

from normal samples was built with 358 CpG target sites and reached a sensitivity of 0.95 and a specificity of 

0.91. Moreover, we provide data that highlights IMPRESS’s potential for liquid biopsies.  

Conclusions: We successfully created an innovative DNA methylation detection technique. By combining this 

method with a new multi-cancer biomarker panel, we developed a sensitive and specific multi-cancer assay, 

with potential use in liquid biopsies. 
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INTRODUCTION 

Cancer remains one of the most lethal diseases worldwide. Breast, lung, colorectal, and prostate cancer are 

amongst the most common cancers, with each over 1.4 million cases per year [1]. Diagnosis typically occurs in 

an advanced disease stage due to the lack of clear symptoms and the absence of effective screening programs 

for most cancer types [2]. This is reflected in the percentages of late-stage diagnoses, for example, 68% and 

59% in lung and colorectal cancer respectively [3]. Clearly, there is an unfulfilled need for effective diagnostic 

biomarkers.  

An interesting biomarker candidate for cancer detection is DNA methylation. Genome wide epigenetic 

reprogramming of tumors occurs early in carcinogenesis. Methylation patterns of many tumor types are widely 

dysregulated compared to those of healthy cells, but the tumor type specific patterns are very distinctive [4–

6]. Many studies have investigated the potential of the methylome in recent years but, to date, there are only a 

few successful methylation biomarkers for cancer in a clinical setting. Our research group has already shown 

the promise of methylation as a diagnostic biomarker [6]. We demonstrated the capability to discriminate 14 

different cancer types from normal tissue and from each other using methylation biomarkers in silico, with high 

sensitivity and specificity. 

It is important to detect biomarkers in a sensitive and specific manner. Currently, bisulfite sequencing is still 

considered the gold standard for DNA methylation analysis. However, bisulfite is a harsh chemical that degrades 

DNA, limiting the sensitivity of downstream applications [7]. Alternative bisulfite-free techniques, such as 

affinity-based methods (e.g. MeDIP-seq, Methyl Cap), are shown to have a lower accuracy compared to bisulfite 

sequencing [8,9]. Other bisulfite-free methods include restriction enzymes, which can either be methylation-

dependent, digesting only methylated CpGs, (e.g. MspJI) or methylation-sensitive restriction enzymes, digesting 

only unmethylated CpGs (e.g. HpaII) [10].  

Recently, two enzymatic technologies for DNA methylation detection were launched, called TET-assisted 

pyridine borane sequencing (TAPS) and enzymatic methyl sequencing (EM-Seq) [11,12]. In TAPS, ten-eleven 

translocation (TET) oxidation is combined with pyridine borane reduction [12]. EM-seq consists of two 

conversion steps as well, using TET2 and APOBEC3A [11,13] The enzymatic treatment in these techniques is a 

first step towards eliminating the need for bisulfite  [11,13,14]. However, genome-wide methylation detection 

techniques come at a high cost which hampers their implementation in routine diagnostics [15]. Clearly, there 

is an urgent need for a low-cost, bisulfite-free detection method for the simultaneous analysis of multiple 

methylation regions that allows accurate prediction of disease. 

In this paper, we describe a novel high-multiplex methylation detection technique called IMPRESS (Improved 

Methylation Profiling using Restriction Enzymes and smMIP sequencing). Methylation-sensitive restriction 
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enzymes (MSREs) have already been used for a very long time for the analysis of methylation in specific regions 

of the genome [9]. Single-molecule Molecular Inversion Probes (smMIPs) are very efficient for capturing and 

enriching carefully chosen informative regions of the genome. They are extremely suitable for multiplex 

analysis of thousands of genomic regions [16]. smMIPs have been used for mutation detection and CNV analyses 

in different research fields [17,18] but have never been described for DNA methylation detection. We used this 

technique for the development of a diagnostic biomarker assay discriminating tumor samples from normal 

samples. For the selection of the biomarker targets, methylation data of tissue samples from eight of the most 

lethal cancer types worldwide and normal adjacent tissue were used. Furthermore, methylation patterns of 

normal blood samples were included for the target selection, ensuring the development of a biomarker panel 

that is also suitable for use in plasma derived liquid biopsies in the future. In this study, the proof-of-principle 

of the biomarker assay combining the new IMPRESS technique and the biomarker panel, is described.  

MATERIALS AND METHODS 

Development of new DNA methylation detection technique 

The IMPRESS technique is a novel combination of MSRE digestion and smMIP sequencing. An overview of the 

technique is given in Fig. 1 and the molecular details are shown in Suppl. Fig. 1. Details of the protocol are 

described in the Suppl. Methods.  

IMPRESS protocol 

In brief, the first step was a combined digestion of 50ng DNA with four MSREs. The MSREs cleave unmethylated 

DNA at their recognition sites, while methylated CpG sites block the restriction enzymes, which results in 

unaffected CpG regions. The methylated CpG regions were captured by the smMIPs through hybridization of 

the smMIP binding arms. Elongation and ligation of the smMIP created a circular DNA fragment. All remaining 

linear fragments were degraded by an exonuclease reaction. Thereafter, the circular fragments were amplified 

by PCR. Finally, all samples were pooled, purified, and sequenced by Next Generation Sequencing. In each 

sample, lambda phage DNA was spiked in as an internal digestion control. 
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Figure 1 | Overview of the IMPRESS technology. During combined digestion with four MSREs, unmethylated recognition 
sites are digested, whereas methylated CpG sites, blocking the MSREs, remain intact. Subsequently, methylated CpG sites 
are captured by hybridization of the smMIP binding arms. Both the selected CpG sites and reference sites are targeted by 
specifically designed smMIPs, referred to as CpG smMIPs and reference smMIPs, respectively. The insert gap is extended 
and ligated to form a circular fragment. All linear fragments are degraded by an exonuclease treatment and the circular 
fragments are amplified by PCR with universal primers binding the common smMIP backbone. Eventually, PCR products are 
pooled, purified and sequenced simultaneously. Created with BioRender.com 

 



Novel DNA methylation detection method: IMPRESS 
 

 163 

Data analysis pipeline 

For the analysis of the NGS output, a bioinformatic pipeline was built using Snakemake [19]. Configuration was 

done in a json file, where all pipeline parts can be configured separately. Both MiSeq and NextSeq output can 

be handled, and as the pipeline has a modular structure, parts can be added or removed very easily. 

Computational parallelization was achieved per sample for both MiSeq and NextSeq data. 

First, the reads were split per sample by using the two sample barcode reads (Suppl. Fig. 1), allowing for one 

base error per barcode. Reads were then quality trimmed and subsequently mapped to either the human (hg19) 

or lambda phage genome using the bwamem algorithm with default parameters [20]. Next, Picard 

MarkDuplicates was used for duplicate removal, based on the single molecule tags of ten nucleotides in total 

[21]. Then, reads were filtered out based on mapping quality and mapping flags, keeping only properly paired 

reads with quality above 15. Finally, reads were counted per smMIP location, only retaining a pair when both 

reads match the target location within an error margin of 5 base pairs. This way, a dataset with counts for all 

smMIP. 

Code availability 

Code, including all version information, is available upon request as a code ocean capsule, where the code can 

be run in an online environment or downloaded (https://doi.org/10.24433/CO.5112387.v1).s for each sample 

was obtained. 

Internal control for digestion 

To check whether each sample was sufficiently digested, we used the read counts of the smMIPs targeting 

spiked-in lambda phage DNA. Two types of lambda phage DNA smMIPs were included: (a) smMIPs targeting a 

CpG with one of the MSRE recognition sites, and (b) smMIPs targeting a reference site, without recognition site 

or without CpG site. The percentage of non-digested DNA of each sample was calculated as described below. 

A threshold of 5% non-digested fragments was set. 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑜𝑓 𝑛𝑜𝑛 − 𝑑𝑖𝑔𝑒𝑠𝑡𝑖𝑜𝑛!"#$%&$! %()*+$ =	 

	

2
∑ 𝐶𝑝𝐺   𝑠𝑚𝑀𝐼𝑃 𝑐𝑜𝑢𝑛𝑡!"#$%&$! %()*+$

∑ 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒   𝑠𝑚𝑀𝐼𝑃 𝑐𝑜𝑢𝑛𝑡!"#$%&$! %()*+$
<

𝐴𝑣𝑒𝑟𝑎𝑔𝑒(++	-.!"#$%&$!	%()*+$% 2
∑ 𝐶𝑝𝐺    𝑠𝑚𝑀𝐼𝑃 𝑐𝑜𝑢𝑛𝑡-.!"#$%&$! %()*+$

∑ 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒   𝑠𝑚𝑀𝐼𝑃 𝑐𝑜𝑢𝑛𝑡-.!"#$%&$! %()*+$
<
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Development of multi-cancer biomarker panel 

Target sites selection 

For the development of the multi-cancer detection assay, a panel with candidate methylation biomarkers was 

built using online available 450K methylation array data (Table 1). Methylation data processing and analysis 

were performed based on the methods previously described by Ibrahim et al.[6].  

smMIP design 

Using the MIPGEN software [22], smMIPs were designed for both DNA strands (i.e. double-tiled) for each 

selected target site. smMIPs in our design contain (a) a common smMIP backbone of 30nt, (b) single molecule 

tags of 5nt on each side, and (c) two binding arms of circa 20nt that were specifically designed for each target 

to have an insert size of 50nt (Fig. 1). The single molecule tags differ per smMIP copy and allow filtering for 

PCR duplicates. Next, smMIPs covering SNPs and/or repeats were removed, and a final selection was made. 

Sample collection and processing 

Control samples 

Lambda phage DNA was purchased from Thermo Fisher Scientific (USA). Human methylated and non-

methylated (WGA) DNA was purchased from Zymo Research (USA). Four cancer cell lines were provided by the 

Centre for Oncological Research (CORE, Antwerp), and one line was purchased from the German Collection of 

Microorganism and Cell cultures (DSMZ, Germany) (Suppl. Table 1). All cell lines were cultured according to 

standard protocols from the American Type Culture Collection (ATCC).  The cell lines were authenticated at the 

start of the study and routinely tested for mycoplasma contamination, which was negative. Genomic DNA was 

extracted using the Blood & Cell culture DNA Maxi kit (Qiagen, Germany). DNA was stored at -20°C until further 

use. For the liquid biopsy experiments, cfDNA material was provided by the diagnostics department of the 

Center of Medical Genetics. This cfDNA was anonymized residual material obtained from NIPT plasma samples. 

cfDNA was stored at -20°C until further use. For limited research use of this type of residual material, no 

additional ethical approval is required.  

Blood samples 

A total of 35 whole blood samples were collected from healthy volunteers. Genomic DNA (gDNA) was extracted 

using a standard salting-out process. The DNA was stored at 4°C until further use.  
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Fresh frozen tissue 

Tumor tissue and normal adjacent tissue samples were routinely collected by the biobank of the Antwerp 

University Hospital (UZA, Belgium). All normal tissue cited throughout this manuscript is normal tissue adjacent 

to tumor tissue, except for the normal breast samples, which originate from breast reductions of healthy 

women.  A total of 225 fresh frozen tissues stored at -80°C were used (Table 1). Tissue type, presence of invasive 

tumor, and overall tumor cell percentage (TcP) were verified by a pathologist (D.P.) through microscopic 

examination of hematoxylin-eosin-stained sections. Samples with a minimum of 5% TcP were retained for 

analysis. DNA was extracted using the QIAamp DNA Micro Kit (Qiagen, Hilden, Germany) according to the 

manufacturer’s protocol. The DNA was stored at -20°C until further use.  

Table 1 | Amount of samples used for target selection and sequencing experiments. 

 Repeatability Selection of CpG sites* Multi-cancer assay° 

(Tumor) tissue type   Mortality 
rank 

# Tumor # Normal # Tumor # Normal # Tumor # Normal 

Lung cancer (LUAD + LUSC)  1 3 2 370 + 473 42 + 32 9 + 13 11 + 11 
Colorectal adenocarcinoma 
(CRC)  2 3 2 411 45 7 10 

Liver hepatocellular 
carcinoma (LIHC)  4 2 2 377 50 13 11 

Breast invasive carcinoma 
(BRCA)  5 2 0 791 96 10 9 

Pancreatic adenocarcinoma 
(PAAD)  6 2 2 184 10 21 24 

Head & neck squamous cell 
carcinoma (HNSC)  

7 2 1 528 50 13 8 

Esophageal carcinoma 
(ESCA)  8 2 1 185 16 10 5 

Prostate adenocarcinoma 
(PRAD)  9 2 1 502 50 15 25 

Blood - - - - 140 - 35 

Total  18 11 3,821 531 111 149 
Stomach cancer ranks 3rd in mortality but was left out of the analysis due to a lack of normal samples in the public dataset at the time of 
analysis. LUAD: lung adenocarcinoma; LUSC: lung squamous cell carcinoma.  

*CpG sites were selected from online available 450K methylation array datasets. Tumor and normal tissue sample data were retrieved from 
The Cancer Genome Atlas (TCGA). Blood datasets, retrieved from the Gene Expression Omnibus (GEO), originate from 18 peripheral blood 
mononuclear cells (PBMC) (GSE111942), 4 left atrium (GSE62727), 30 erythrocyte progenitors from bone marrow (GSE63409), 6 whole 
blood, 6 PBMCs, 6 granulocytes, 6 CD4+ T cells, 6 CD8+ T cells, 6 CD56+ NK cells, 6 CD19+ B cells, 6 CD14+ monocytes, 6 neutrophils and 
6 eosinophils (GSE35069) and 28 peripheral blood (GSE113012). 

°For the multi-cancer assay, we used both matched and unmatched tissue samples. Matched samples are tumor and adjacant normal tissue 
samples from the same patient. We used 8 matched samples for LUAD, 10 for LUSC, 6 for CRC, 7 for LIHC, 4 for BRCA, 7 for PAAD, 5 for 
HNSC, 2 for ESCA, and 10 for PRAD. Fot the ddPCR assay, we used most of these samples again. 
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Classifier model construction based on NGS data 

For each smMIP, linear discriminant analysis was carried out using the lda function from the MASS package in 

the software package R (version 4.0.2) [23]. A model was first constructed and then validated using the ROCR 

package [24]. Five-fold cross validation was carried out with a randomization restriction to proportionally 

represent the tumor types across the five folds. Predictive accuracy of the LDA models was expressed using the 

Area under the ROC curve (AUC).  

Finally, the least efficient smMIPs were removed with a cutoff of 1,000 cumulative counts in all undigested 

samples, since a minimal number of counts is needed to make a robust classifier. All smMIP models with a 

cross-validated AUC below 0.8 were removed for the final model. In case of double-tiled smMIPs, the best 

performing smMIP was selected. All remaining single smMIP models were combined into the final model. The 

prediction cutoff for each single smMIP model was determined by the lowest sum of false positives and false 

negatives. The combination of all single predictions was then assessed by a ROC curve and the prediction cutoff 

was determined based on the highest overall accuracy to produce the final classifier model. 

Statistics and calculations 

For the power calculations, we used online datasets to obtain the mean and the standard deviation of the 

methylation level of the selected targets for the tumor and the normal group. We used the target with the 

smallest Cohen’s D effect size. A sample size with 67 cases and an equal number of controls holds 80% power 

to detect any difference between the tumor group (methylation level = 0.50 ± 0.24) and the normal group 

(methylation level = 0.30 ± 0.20), corrected for multiple testing (1791 CpG sites) with a two-sided test. We were 

able to collect 111 tumor samples and 149 normal samples. This holds a power of 99%. 

For the statistical analyses, differences in average methylation levels between tumor and normal adjacent 

samples within one tissue type were tested using the Mann-Whitney U test (two-sided). The performance of 

the IMPRESS was expressed in terms of specificity and sensitivity. To measure the repeatability of our 

technique, the Pearson correlation between normalized counts from two separate sequencing runs calculated. 

In addition, a Bland-Altman analysis was performed using the normalized counts of two independent runs.  

For all analyses, p-values lower than 0.05 were considered significant. All statistical tests were performed in R 

(version 4.0.2) or GraphPad Prism (version 10.0.0) for macOS, GraphPad Software, Boston, Massachusetts USA, 

www.graphpad.com. 

Normalized counts for each smMIP were calculated as follows: 
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𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑	𝑐𝑜𝑢𝑛𝑡	𝑠𝑚𝑀𝐼𝑃	𝑖	𝑖𝑛	𝑠𝑎𝑚𝑝𝑙𝑒	𝐴 =
𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒	𝑐𝑜𝑢𝑛𝑡	𝑖	𝑖𝑛	𝐴

∑ 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒	𝑠𝑚𝑀𝐼𝑃	𝑐𝑜𝑢𝑛𝑡𝑠 	𝑖𝑛	𝐴 

Sensitivity, specificity, accuracy and balanced accuracy are calculated as follows with the following 

abbreviations: true positives (TP), true negatives (TN), false positives (FP) and false negatives (FN). 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 	
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 	
𝑇𝑁

𝑇𝑁 + 𝐹𝑃 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 	
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑	𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 	
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦

2  

Ethical approval 

This study was conducted in accordance with Good Clinical Practice guidelines and the Declaration of Helsinki. 

Fresh frozen tissue samples used in this study were previously collected in the Biobank of the Antwerp 

University Hospital and retrospectively used in this study. According to Article 20 of the Belgian Law on the 

procurement and use of human corporal material intended for human application or scientific research of 19 

December 2008, patients provide consent for the use of their bodily material in research when consenting to 

an invasive procedure. As such, no additional consent was needed for the use of these retrospective samples. 

For prospectively collected blood samples, informed consent was given by each subject. The study protocol and 

any modifications thereof were approved by the UZA ethical committee (Ref. N°20/02/056 and Ref. 

N°41/14/426) before experimental analyses were performed. 
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RESULTS 

Development of novel DNA methylation detection technique 

IMPRESS technique 

The first part of this study was the development and optimization of the IMPRESS technique, which combines 

MSREs and smMIPs [16,25,26]. This unique combination allows the use of smMIPs for DNA methylation 

detection, which has never been described before. An overview of the technique is given in Fig. 1.  

The first step was a combined digestion of the DNA with four MSREs (HpaII, HpyCH4IV, AciI and HinP1I). Each 

MSRE recognition site has a CpG site in the middle (C^CGG, A^CGT, C^CGC and G^CGC). The efficiency of the 

four MSREs is optimal in the same buffer and at the same temperature, and together they cover 39% of all CpG 

sites in the human genome [9]. During digestion, unmethylated recognition sites were cleaved. Methylated CpG 

sites blocked the restriction enzymes which resulted in uncut CpG sites. As a control, undigested samples were 

also included and treated similarly, except for the omission of MSREs. As a control for digestion, lambda phage 

DNA was spiked into each sample. After the combined digest, all recognition sites in the lambda DNA were 

expected to be cleaved, as lambda DNA is not methylated.  

In the next step, CpG sites of interest were targeted by a pool of phosphorylated smMIPs. A smMIP is a DNA 

fragment containing a common backbone of 30nt, single molecule tags of 5nt on each side, and two binding 

arms of circa 20nt (Fig. 1). Unmethylated CpG regions were cleaved by the MSREs and therefore smMIP 

capturing was not possible in these regions. Methylated CpG regions remained intact and were captured by the 

hybridization of the binding arms of the smMIPs. In addition, regions without enzyme recognition sites were 

targeted as a reference. Elongation and ligation of the smMIP created a circular DNA fragment. In all capture 

reactions, some smMIPs were ligated without a 50nt insert. These so-called empty smMIPs were eventually 

removed through purification and through filtering during data analysis. 

After the capture reaction, an exonuclease treatment was performed, in which all linear fragments such as 

unbound smMIPs or original DNA strands were degraded, and only circular fragments remained intact. These 

fragments were amplified by PCR. Finally, all fragments were purified and sequenced by NGS. 

In addition to our wet lab protocol, an accompanying bioinformatics analysis pipeline was developed to process 

the NGS data. Using a Snakemake workflow, all sequencing reads were deconvoluted per sample and mapped 

to the genome. Next, all duplicates were removed. After quality filtering, reads per smMIP location were 

counted for each sample and a counts table was obtained. 
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Efficiency of the methylation-sensitive restriction enzymes 

To test the cutting efficiency of the combination of the four selected MSREs, both a methylated and an 

unmethylated lambda DNA sample were digested by the MSREs. Subsequently, the digested samples were 

amplified in triplicate with primer pairs hybridizing around one of the MSRE recognition sites in a qPCR 

experiment. Undigested, (un)methylated lambda DNA samples were also included as positive controls. 

According to the Lightcycler software (Roche), the undigested samples had an average Ct value of 5.0 and the 

unmethylated digested sample had an average Ct value of 22.0 (ΔCt=17) (Fig. 2). This means that merely 1 in 

217=~131,000 DNA molecules were not digested. Thus, the remaining fraction of undigested DNA in 

unmethylated samples is negligible. The methylated digested sample had an average Ct value of 5.7, indicating 

that methylation effectively blocks digestion by the MSREs. 

Figure 2 | Efficiency of the methylation-sensitive restriction enzymes. Amplification curve of qPCR of (un)methylated and 
(un)digested lambda DNA. This is an example of one primer pair hybridizing around a MSRE recognition site. Two types of 
control samples were used, unmethylated lambda DNA and artificially methylated lambda DNA by CpG methyltransferase 
M.SssI (New England Biolabs). Each sample was amplified in triplicate. Methylated digested (blue), unmethylated digested 
(purple), methylated undigested (red) and unmethylated undigested (orange) samples have an average Ct value of 5.7, 22.0, 
5.0 and 5.0, respectively.  

Repeatability 

To evaluate the repeatability of the IMPRESS technique, two independent experiments were performed on a 

set of 29 fresh frozen tissue samples (Table 1). We used the smMIPs designed for the multi-cancer biomarker 
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panel (see Development of a multi-cancer biomarker panel). The two libraries were sequenced together, and 

data processing was performed. The normalized counts (calculation in Statistics and calculations) of the same 

samples for both experiments were compared, and a Pearson correlation coefficient of r=0.99 was obtained 

(Fig. 3a). In the Bland-Altman analysis, the bias was 0.007502 ± 0.03066 with 95% limits of agreement of -

0.05259 and 0.06759 (Fig. 3b). These results prove the high repeatability of the IMPRESS technique. 

Figure 3 | Repeatability of novel IMPRESS technology. Repeatability of the technique by comparing two independent 

experiments with the same samples. (a)  The normalized counts of the samples have a correlation coefficient of r=0.99. (b) 

Bland-Altman comparison for the repeatability. Bias is 0.007502 ± 0.03066 with 95% limits of agreement [-0.05259; 

0.06759]. Plotting was performed using GraphPad Prism. 

Development of a multi-cancer biomarker panel 

The second part of this study was the development of a multi-cancer diagnostic biomarker panel, which could 

subsequently be validated by the IMPRESS technique to develop a multi-cancer detection assay. For the 

selection of potential biomarkers, online available methylation data of eight of the most lethal cancer types 

worldwide and healthy blood samples were used (Table 1). In total, 1,791 hypermethylated CpG sites (Fig. 4) 

were selected based on the following parameters: (a) a minimum average methylation level of 0.5 in the tumor 

tissue samples of eight cancer types, (b) a maximum average methylation level of 0.3 for the normal adjacent 

tissue and blood, and (c) the presence of at least one restriction site for one of the four used MSREs. On average, 

four sites were interrogated per region. Normal blood datasets were included for biomarker selection, resulting 

in a biomarker panel that is suitable for liquid biopsies as well. Secondly, a total of 2,739 reference sites were 

selected from the human genome. These reference sites were included to estimate the effective total amount 

of input DNA and allow normalization of the results per sample. Reference sites were chosen to (a) not contain 

a recognition site of the selected MSREs (1,000 sites), or (b) not contain a CpG site (1,739 sites). These regions 

are never cleaved by the enzymes and are therefore always captured by the smMIPs. Lastly, both CpG (10 per 

MSRE site) and reference sites (15 without recognition site, 15 without CpG site) were selected in lambda phage 
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DNA. Lambda phage DNA is never methylated and is used as an internal control for the enzymatic digestion 

reaction.  

For these 1,791 hypermethylated CpG sites, 2,739 reference sites, and 70 lambda phage DNA sites, smMIPs 

were designed for both DNA strands (Fig. 4). After the removal of smMIPs covering SNPs and/or repeats, 2,331 

CpG smMIPs and 600 reference smMIPs (300 without recognition site and 300 without CpG site) were selected 

for human targets. For lambda phage DNA, 12 CpG smMIPs (3 per restriction site) and 10 reference smMIPs (5 

without recognition site and 5 without CpG site) were selected. 

Figure 4 | Overview of the main analyses for the multi-cancer detection assay. The main experiment is shown: The 

experiment is used for the determination of the final classifier model. Created with BioRender.com. 

Multi-cancer detection assay 

Data exploration 

To evaluate the biomarker panel and the IMPRESS technique, we performed an experiment on fresh frozen 

tissue and blood samples (Fig. 4). First, we prepared a sequencing library with 111 tumor samples, 114 normal 

adjacent tissue samples and 35 whole blood samples (Table 1) targeted by a total of 2,953 smMIPs (2,331 CpG 

smMIPs, 600 reference smMIPs and 22 lambda smMIPs). Capillary electrophoresis analysis of this library is 

shown in Suppl. Fig. 2. Sequencing was performed on the Illumina NextSeq system and NGS parameters are 

shown in Suppl. Table 2. After the first analysis of the raw data, read counts for all smMIPs for each sample 

were obtained. Based on the characterization experiments, a minimum read count threshold of 5000 counts 

per sample was determined, and all samples met this requirement. 

The efficiency of the MSRE digest was verified in each sample by the spiked-in lambda phage DNA as an internal 

control (calculations in part 2.1.3). A threshold of 5% non-digested fragments was set. One out of 260 samples 

exceeded this threshold (9.7%) and was removed from further analyses. On average, only 1.3% of the DNA in 

each sample was not properly digested (Suppl. Fig. 3). In total, 19 underperforming CpG smMIPs with no counts 

in any sample were removed from the analysis. Finally, normalization was executed per sample to correct for 
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the amount of input DNA. Hereto, we divided the counts of every CpG smMIP by the sum of all reference smMIP 

counts, resulting in a final dataset with counts of 2,312 CpG targeting smMIPs for 259 samples. The normalized 

count is assumed to be higher in samples methylated for our targets (i.e. tumor samples) and lower in samples 

unmethylated for our targets (i.e. normal samples). An overview of the sample distribution of the sum of the 

normalized CpG smMIP counts is given in Fig. 5. Tumor samples showed higher and more spread normalized 

counts, while normal samples showed lower and more similar normalized counts. However, the normalized 

counts for normal colorectal tissue are higher than all other normal tissues and overlap with some of cancer 

types. The blood samples had the lowest normalized counts compared to all other tissue types. Within each 

tissue type, the average normalized counts of tumor and normal samples were significantly different.  

 

Figure 5 | Sample distribution of normalized counts for all target sites. All nine different tissue types are displayed in distinct 
colors in the Tukey boxplot. For every tissue type, the sample distribution of the sum of the normalized counts for tumor 
(T) and normal adjacent tissue (N) are shown. This value is the ratio of the sum of the counts of the CpG smMIPs and the 
sum of the counts of the reference smMIPs. Significance is indicated with asterisks: * = p-value ≤ 0.05, ** = p-value ≤ 0.01, 
*** = p-value ≤ 0.001 and **** = p-value ≤ 0.0001. Mann-Whitney U test was performed using GraphPad Prism. 
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Selection of the most efficient and discriminating smMIPs 

To determine the final biomarker panel for the classifier model, the most efficient and discriminating smMIPs 

were selected. Using the final dataset with counts of 2,312 CpG targeting smMIPs for 259 samples, a single 

smMIP linear discriminant analysis (LDA) model was constructed using 5-fold cross validation and the mean 

cross validated AUC (cvAUC) was calculated for each smMIP. ROC curves for three selected smMIPs are shown 

in Fig. 6. The distribution of cvAUC is shown in Suppl. Fig. 4. We used a cvAUC cutoff of 0.8 for selecting the 

best differentiating smMIPs, and a cutoff of 1,000 cumulative counts per smMIP in all undigested samples as a 

measure for smMIP efficiency. This resulted in a set of 511 CpG smMIPs. Additionally, for CpG sites targeted by 

multiple smMIPs (i.e. double-tiled), the best performing one was selected. The 511 remaining CpG smMIPs 

targeted 358 CpG sites. Of these sites, 153 were targeted double-tiled. The difference in cvAUC between 

smMIPs targeting the same CpG site was less than 0.05 for 84.3% of the multi-targeted CpG sites. The 

correlation coefficient of these cvAUC values is r=0.668 (Suppl. Fig. 5). Finally, 358 single-tiled CpG smMIPs 

remained for further analyses. For the reference smMIPs, only the efficient smMIPs were selected, with the 

same count cutoff of 1,000 cumulative counts in all undigested samples. As a result, 529 reference smMIPs 

were selected.  

Figure 6 | ROC curves of the three selected target sites for the IMPRESS assay. For each model, the 5-fold cross validation 

ROC curves (black) and the mean ROC curve (red) are plotted. AUC values are shown for each ROC curve. False positive rate 

= 1-Specificity, True positive rate = Sensitivity 

Classifier model 

The remaining 358 CpG smMIP models were then combined into a single model by first selecting the cutoff for 

every single model for which the sum of false positives and false negatives was the lowest. Then all predictions 

were combined, and the cutoff was selected based on the highest overall accuracy, which was achieved when 

114 single smMIP models agreed on a tumor classification. This final model has a sensitivity of 0.95, a specificity 

of 0.91, and an accuracy of 0.92 (Table 2). 
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In addition, we investigated the results per cancer type (Table 2). Accuracy per cancer type ranged from 0.88 to 

1, with the exception of colorectal cancer, which performed significantly worse than all other types (accuracy 

of 0.47). Sensitivity was very high overall, with only 6 false negatives among liver, pancreas and head and neck 

tumors. False positives are attributed to five tumor types, with colorectal tumors among the highest (specificity 

0.10), which skews the overall specificity. However, when exclusively investigating colorectal samples, the 

cutoff can be adjusted to 282 single smMIP models to obtain a classification accuracy of 1. Interestingly, healthy 

blood samples never showed up as false positives. 

Table 2 | Metrics of our classifier model. 

 Multi-
cancer  

Lung  Colorectal  Liver  Breast  Pancreas  Head and neck  Esophagus  Prostate  Blood  

True positives  104 21  7  11  10  19  11  10  15  -  

True negatives  135  22  1  10  8  22  5  5  24  35  

False positives  14  0  9  1  1  2  0  0  1  0  

False negatives  6  1  0  2  0  1  2  0  0  -  

Sensitivity  0.945  0.955 1.000 0.846 1.000  0.950  0.846  1.000  1.000  -  

Specificity  0.906  1.000 0.100 0.909 0.889  0.917  1.000  1.000  0.960  1.000  

Accuracy  0.923 0.977 0.471 0.875 0.947 0.932  0.889  1.000 0.975 -  

Balanced 
accuracy  

0.926  0.977 0.550 0.878 0.945  0.934  0.923  1.000 0.980 - 

The multi-cancer column combines the results of all tumor types. 

Potential for liquid biopsies 

To test whether the technique holds potential for use as a multiplex tool for methylation detection in liquid 

biopsy samples, several characterization experiments were performed. The results are described below and are 

shown in Fig. 7. 

Determination of the amount of input DNA 

To test the possibility of lowering the DNA input amount of the IMPRESS technique, we tested different reaction 

conditions for the MSRE digestion and the smMIP sequencing. The results indicate the feasibility of lowering 

input amount to 5ng and 10ng DNA for the digest and the smMIP sequencing, respectively (lowest amounts 

tested) (Suppl. Methods and Suppl. Fig. 6). 

Cell free DNA 

To further explore the lower limits of input DNA and the feasibility of the technique to study liquid biopsies, 

four cell-free DNA (cfDNA) samples were tested with 5ng of input. Besides MSRE digested samples, undigested 

samples were also included as positive controls. The samples were captured by smMIPs and sequenced 
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according to our protocol. The sequencing results were analyzed using our in-house developed pipeline and 

read counts were obtained for the 2,331 CpG smMIPs and 600 reference smMIPs. To normalize for the DNA 

input, the sum of CpG smMIP counts was divided by the sum of reference smMIP counts for each sample. Results 

showed that digested samples had an average normalized count of 0.24 while the undigested samples had an 

average normalized count of 2.24 (Fig. 7a). This indicates that the samples were effectively digested by the 

MSREs as well as efficiently captured by the smMIPs and sequenced.  

To mimic the presence of circulating tumor DNA (ctDNA) in cfDNA, DNA from three tumor cell lines was sheared 

into fragments of 150-500bp and spiked into cfDNA samples in different percentages between 0% and 100%. 

The calculated percentages based on the normalized counts (see Suppl. methods) were closely correlated to 

their expected value, with a correlation coefficient r of 0.97, 0.99 and 0.98 for the three different cell lines (Fig. 

7b). This indicates the applicability of the technique for the quantification of methylation. The calculated 

percentage of 20% spiked-in DNA (lowest percentage tested) ranged from 21% to 30%, while those of 0% 

spiked-in DNA (only cfDNA) ranged from 6% to 13%. This means samples with 20% spike-in of cell line DNA 

had on average a threefold higher percentage of normalized counts than cfDNA samples without spike-in.  

Limit of methylation detection 

To determine the limit of methylation detection, we spiked human fully methylated DNA into non-methylated 

DNA in different percentages between 0% and 12.5% in triplicate. All samples were digested, captured by 

smMIPs and sequenced following our protocol. The samples with a low methylation level only resulted in 

background signal. We calculated the limit of blank (LOB) and limit of detection (LOD) following the formulas 

described by Armbruster et al. [27] to determine the lowest detectable methylation level. The LOD corresponds 

to a methylation level of 4.04% (Fig. 7c). For samples with methylation levels above 4.04%, the measurements 

will exceed the background signal. 
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Figure 7 | Potential for liquid biopsies. a) Normalized counts of digested and undigested cfDNA samples. Four cfDNA samples 
were used to verify that the protocol works in liquid biopsies. On the left side, digested samples are shown. On the right 
side, undigested samples are shown as positive controls. The DNA input amount is 5ng. b) Calculated percentages based on 
normalized counts for all target sites of normal cfDNA with spiked-in cell line DNA. Sheared cell line DNA was spiked into 
normal cfDNA at 0-20-40-60-80-100%. The percentages are calculated by the linear regression through the normalized 
counts for each sample. The expected value ranges from 0% to 100%, although it is known that normal samples are not 0% 
methylated in all our targets. The correlation of the calculated and expected percentages is given by r for each cell line. 
See Suppl. methods for calculations. c) Limit of methylation detection calculated by the normalized counts for all target 
sites. Fully methylated human DNA was spiked into unmethylated human DNA at 0-0.10-0.20-0.39-0.78-1.56-3.13-6.25-
12.5% in triplicate. The linear regression through the normalized counts for each sample has a Pearson correlation 
coefficient of r=0.97. The limit of blank (LOB) is 0.060 and the limit of detection (LOD) is 0.067. The methylation percentage 
corresponding to the LOD is 4.04%. Linear regression and plotting were performed using GraphPad Prism. 
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DISCUSSION 

In this study, we successfully created a novel methylation detection technique by combining MSRE digestion 

with smMIPs. Although digestion of DNA with MSREs has been described since 1978 [28] and has been standard 

practice for the past decades, smMIPs were only described less than ten years ago [16]. To date, the use of 

smMIPs was limited to the detection of DNA mutations, microsatellite instability, gene amplifications and 

differential expression (cDNA) [17,25,29]. In this regard, smMIPs have frequently been proposed for use in 

routine diagnostics for cancer detection in recent years. In concordance with our results, several studies have 

demonstrated the high sensitivity of smMIP-sequencing, as well as the possibility to use limited amounts of 

material [17,18,29–32]. smMIPs have also demonstrated their utility in other research fields [33,34]. smMIP 

panels can be easily adapted towards their intended application, which is extremely useful with the rapid 

expansion of molecular markers in all fields [17]. Taken together, this places our novel technique as a promising 

and widely applicable epigenetic tool for the detection and follow-up of many diseases. 

We developed a multi-cancer methylation biomarker panel, and we validated this panel by combining it with 

the IMPRESS technique, resulting in a robust multi-cancer detection assay. With an overall cross-validated 

accuracy of 0.92, this final model performed very well in classifying samples. The overview of the sample 

distribution (Fig. 5) shows a spread of tumor samples for most of the tumor types, while normal tissues are 

grouped closer together. There was no correlation between tumor cell percentage and normalized counts (data 

not shown). The spread of tumor samples is most noticeable for head and neck, and liver tumors. The former is 

a heterogeneous group of locations and cell types, which can account for this spread. For liver tumors, there is 

only one cell type, but there was a lot of variety in the patient group. Clinical records show that some of the 

samples originated from patients with alcohol abuse and/or patients with hepatitis. This could potentially have 

affected the methylation levels in the liver. 

Most false positive predictions are the result of normal adjacent colorectal tissue samples having a higher 

methylation for our targets than the other normal tissue groups (Fig. 5). This could be due to field cancerization, 

which causes (epi)genetic alterations in histologically normal-looking tissue adjacent to cancerous lesions [35]. 

Although this phenomenon has also been described in other cancer types, this is not clearly seen in our 

analyses. In Figure 5, colorectal samples have the highest methylation rate, both for normal samples and tumor 

samples. As a result, perfect separation of tumor and normal samples is observed when taking only colorectal 

samples into account, while many normal colorectal samples are false positives in the overall model. This 

suggests that colorectal cancer might not be a suitable addition to a multi-cancer assay utilizing this biomarker 

panel, despite its potential differentiating ability within colorectal samples.  



Chapter 6 

 178 

While the final model does not make a correct prediction for all samples (0.95 sensitivity and 0.91 specificity), 

for every sample there are single-smMIP models that do. This emphasizes the exceptional performance of our 

biomarker panel and confirms the presence of significant methylation differences across all samples.  

This model was specifically constructed to include many CpG sites because we intend to use this assay in liquid 

biopsies in the future. There, only a limited amount of ctDNA is available in the cfDNA, especially in early tumor 

stages. This ctDNA is fragmented and chances are small that the whole tumoral genome is covered in a liquid 

biopsy sample. 

With respect to liquid biopsies, we performed some additional characterization experiments to thoroughly test 

the amount of input DNA for the IMPRESS technique. For the digestion reaction, the performance of the MSREs 

remained equal when lowering the input amount to 5ng. We also showed that an input of 10ng can discriminate 

between tumor cell lines and healthy blood samples equally well as 20ng and 100ng (Suppl. Fig. 6). Moreover, 

the use of 5ng cfDNA has been successfully tested in our lab (Fig. 7a). This is extremely important in a liquid 

biopsies context, where often even less than 5ng is available. To mimic cfDNA, we experimented with sheared 

tumor cell line DNA that was spiked into normal cfDNA samples. The results demonstrated the possibility to 

discriminate 20% spiked-in tumor DNA from normal cfDNA. The high correlation coefficients indicated the 

quantification potential of the technique. However, the counts value is always a relative number and not an 

exact methylation percentage, as the majority of the targeted regions contain several CpG sites. In theory, we 

only sequence targets in which all the CpG sites are methylated and as such, we measure the count of all fully 

methylated fragments. Finally, we did a limit of detection experiment. As there was some background signal, 

we determined the methylation value for which the measurement exceeded the background signal. This limit 

of methylation detection was 4.04%. A potential explanation for the background signal is incomplete MSRE 

digestion. We know that a small percentage of the DNA is not properly digested. This is estimated to be 1.3% 

by the internal control. In addition, commercially purchased 0% methylated DNA was used, from which previous 

data (not shown) indicate that a small degree of methylation is still present.  

In recent years, multi-cancer detection (MCD) has gained more interest. The IMPRESS technique combined with 

the multi-cancer biomarker panel shows great potential in this field. Most MCD tests are described for liquid 

biopsies, which is yet to be done for IMPRESS. Nevertheless, preliminary results show that IMPRESS could 

become an important and novel addition to the liquid biopsy field.  

Cohen et al. described their CancerSEEK test in 2018. They detected both circulating proteins and mutations in 

cfDNA of eight different cancer types [36]. Although mutations and proteins have often been the first choice 

when developing biomarker assays, it has become clear that methylation signatures possess some major 

advantages compared to the former. Methylation occurs very early in cancer development, possibly before 

actual neoplastic transformation, which renders it especially interesting for early diagnosis. Given that no prior 
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knowledge is needed of the tumor molecular profile, methylation biomarkers are more universal than mutation 

markers. Since methylation-based tests can be used off the shelf, they are much faster and cheaper to use [37] 

. The utility of methylation signatures was for example demonstrated by Chen et al., who published the PanSeer 

test in 2020. The results obtained with their blood-based test show that cancer is detected in 95% of 

asymptomatic patients for five cancer types. Although further investigation is needed to confirm the results, 

they claim that several cancers can already be detected four years prior to diagnosis, based on methylation 

biomarkers [38], which is very promising for early cancer detection. Others have worked on the use of 

methylation signatures for screening and early detection as well. The biotechnology company GRAIL finances 

several clinical trials where the use of their Galleri® test is evaluated. These trials were started based on 

publications by Liu et al. and Klein et al., who first tested and independently validated the performance of 

targeted methylation analysis of cfDNA for multiple cancer types [37,39] . Both for the PanSeer as well as for 

the first experiments with the Galleri® test, bisulfite-based technologies were used [37–39]. We believe that 

the sensitivity in cfDNA could be increased with our novel technique using MSREs, as we avoid bisulfite 

conversion, which is a harsh chemical treatment of DNA.  

The use of enzymes has recently been gaining more attention. A prime example is the recent development of 

the Enzymatic Methyl sequencing (EM-seq) technology. This EM-seq technology is for example used for 

targeted methyl-seq in combination with the Twist Human Methylome Panel (Twist Bioscience). In a limited 

number of publications, EM-seq is described to be superior to WGBS for sensitivity, repeatability and base 

composition [11,13,14]. However, EM-seq requires a large investment  for library preparation[11] . TAPS was 

also recently described in a few papers [12,40,41]. However, there are no external publications comparing TAPS 

to other state of the art technologies in literature. Considering smMIPs, Arts et al. already described the low 

cost of smMIP-sequencing, which does not drastically increase with MSRE treatment. Therefore, our novel 

technique is more cost-effective compared to current bisulfite-free alternatives on the market [25].  

The application of the IMPRESS technique lies in targeted biomarker sequencing. This type of targeted 

sequencing technology is becoming more popular, and our technique can become an important new platform 

to be used in this area. IMPRESS enables the multiplexing of a considerable number of target sites, extending 

to thousands, in contrast to methodologies like droplet digital PCR (ddPCR), which offer limited multiplexing 

capabilities. Additionally, compared to genome-wide techniques, our approach presents a distinct advantage in 

terms of cost-effectiveness. By selectively analyzing predefined sites of interest, we substantially decrease 

sequencing costs. The technique is easily implementable in standard equipped laboratories. We use widely 

available reagents, and the protocols are straightforward, making the technique easily applicable for research 

groups with access to NGS infrastructure. The hands-on time from DNA extraction to sequencing is 

approximately 4.5 hours, which is comparable with EM-seq [42]. Moreover, by sequencing the insert fragment 

of interest, we can detect and correct for nonspecific hybridization. Notably, our technique boasts high 
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throughput, facilitating the simultaneous analysis of 9x384 samples within a single sequencing run. Depending 

on the desired coverage per sample, a larger sequencing kit may be required. Furthermore, this technique has 

the potential for integrating different genetic information into one assay, for example, mutation and CNV 

analysis. smMIPs could be designed for any target type, taking the MSRE recognition sites into account, and 

combined into a single assay. As such, one single experiment could provide the information that is now only 

obtained after several analyses. 

There are a few limitations in this study. The most important one is that we have not yet tested liquid biopsies 

from cancer patients. However, our results show that blood samples register very low normalized counts by the 

IMPRESS technique for our biomarker panel. In addition, we can efficiently use 5 ng of cfDNA as input, and 

there is a limit of methylation detection of 4.04%. In the future, more optimization steps will be executed, and 

liquid biopsy samples from cancer patients will be tested. 

Another limitation is that only 39% of the CpG sites of the methylome are located in recognition sites of the 

enzymes used in our assay[9]. This could easily be solved by using other or additional restriction enzymes, 

through which a large majority of CpG sites in the genome can be made available for analysis. 

Furthermore, we could not include tissue from fully healthy persons, instead, we used normal tissue collected 

at a distance from the tumor. Clinical records do not show the exact distance. In the literature, it has been 

described that tissue samples adjacent to a tumor might have molecular alterations (e.g. field cancerization) 

but look microscopically like normal tissue [43,44]. This might result in a more difficult discrimination between 

normal and cancer tissue by our classifier model.  

Lastly, we did not yet include cancer type-specific smMIPs for the detection of tissue-of-origin. Classification 

of cancers of unknown primary is an important aspect of cancer diagnostics and is increasingly described in the 

literature. It can already be determined based on in silico analyses [45] and therefore, including TOO 

determination in our assay is an important step for the future. Analyses have been performed in our research 

group to determine tissue-specific methylation patterns, for which smMIPs will be designed and included in 

the future. This will not cause any problems as we have already demonstrated the very high multiplex capacity 

of our technique.  

 In conclusion, we developed a novel method for sensitive detection of DNA methylation, we developed a multi-

cancer methylation biomarker panel, and we combined those two into a multi-cancer detection assay. Our 

characterization experiments already demonstrate the application of this technique and the biomarker panel 

for low amounts of fragmented DNA. The combination of multiple markers covered by the smMIPs allows for 

the high sensitivity that is essential in liquid biopsies and early cancer detection applications.   
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SUPPLEMENTARY MATERIAL 

Supplementary methods: IMPRESS protocol 

MSRE digest 

The first step was a combined digestion of the DNA with four MSREs (HpaII, HpyCH4IV, AciI and HinP1I). The 

MSREs digest unmethylated DNA at their recognition sites (C^CGG, A^CGT, C^CGC and G^CGC, respectively). 

Methylated CpG sites block the restriction enzymes which results in unaffected CpG regions. 

In a total digestion volume of 10µL, an input of 50ng DNA of each sample was diluted in 8.1µL H2O (on ice). 

Per sample, a mastermix was added containing 1µL CutSmart Buffer (New England Biolabs), 0.5µL EcoRI 

digested lambda DNA (0.75pg/µL) (Thermo Fisher Scientific), and 0.1µL of each restriction enzyme HpaII, 

HpyCH4IV, AciI and HinP1I (10U/µL) (New England Biolabs). Lambda DNA was digested by FastDigest EcoRI 

(Thermo Fisher Scientific) according to the manufacturer’s protocol to remove concatemers and spiked-in as an 

internal control. The reaction was incubated for 16 hours at 37°C, followed by a heat inactivation step for 30 

min at 65°C and stored at 4°C until continuation. To enable downstream calculation of the efficiency of our 

smMIP-pool and the percentage of non-digestion, undigested samples were also included. A modified version 

of the protocol was executed for all these samples, where the 4 MSREs were replaced by H2O. All undigested 

doubles were incubated as described above. 

Pooling and phosphorylation 

One smMIP pool was made by adding the 2953 smMIPs equimolarly (100µM per smMIP). smMIPs were produced 

by Integrated DNA technologies (IDT, Coralville, USA). Because the DNA ligase in the capture reaction needs a 

5’ phosphorylated end, the smMIPs were first phosphorylated. The pool was phosphorylated in the following 

35µL reaction composition: 29.53µL smMIP pool (100µM), 1.18µL T4 Polynucleotide Kinase (10U/µl) (New 

England Biolabs), 3.5µL 10X T4 DNA ligase buffer with 10mM ATP (New England Biolabs), and 0.79µL H2O. This 

reaction was incubated for 45 min at 37°C, followed by an inactivation step at 65°C for 20 min, and storage at 

-20°C until further use. The final concentration of each smMIP in this pool was 0.0286µM (100µM x 0.01µL / 

35µL). 

Capture 

After MSRE digest, methylated CpG regions remained intact and were captured by the smMIPs through 

hybridization of the smMIP binding arms to the complementary genomic sequence. Elongation and ligation of 

the smMIP created a circular DNA fragment. In all capture reactions, some smMIPs were ligated without a 50nt 

insert. These so-called empty smMIPs were filtered out later. 
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For the capture reaction, a ratio of 800 smMIP copies per DNA target copy was chosen based on previously 

published research and optimization experiments. The volume of the phosphorylated smMIP pool to add was 

calculated as described by Arts et al. (19) and resulted in a volume of 0.000766µL. The phosphorylated pool 

was diluted using EB buffer (Qiagen, Hilden, Germany) for practical reasons.  

To each 10µL digestion reaction, a 15µL capture mastermix was added (on ice), containing 7.66µL of the 

1/10,000 smMIP pool dilution, 2.5µL 10X Ampligase DNA Ligase buffer (Lucigen), 0.032µL dNTPs (0.25nM) 

(Invitrogen), 0.32 Hemo Klentaq (10U/µL) (New England Biolabs), 0.01µL Ampligase DNA Ligase (100U/µL) 

(Lucigen), and 4.48µL H2O. This reaction was incubated for 10 min at 95°C and for 21.5 hours at 60°C. After 

incubation, the reaction was cooled down on ice for a few minutes and the exonuclease treatment was 

performed immediately. 

Exonuclease treatment 

Subsequently, an exonuclease treatment was performed. In this manner, all linear fragments such as unbound 

smMIPs or original DNA strands were degraded, and only circular fragments stayed intact. Removal of these 

linear fragments was important to specifically amplify the ligated smMIPs in the subsequent PCR reaction. 

For this reaction, 2µL of EXO treatment mastermix was added to each capture reaction (on ice), containing 

0.5µL EXO I (20U/µL) (New England Biolabs), 0.5µL EXO III (100U/µL) (New England Biolabs), 0.2µL 10X 

Ampligase DNA Ligase buffer (Lucigen), and 0.8µL H2O. Incubation was performed for 45 min at 37°C, followed 

by a heat inactivation step of 2 min at 95°C. The reaction was stored at 4°C until further use. 

qPCR and PCR amplification 

Before PCR amplification was initiated, a qPCR experiment was executed to determine the number of PCR 

cycles needed for a specific smMIP pool. For this one-time qPCR, 20µL of a mastermix containing 12.5µL iProof 

(Bio-Rad), 0.125µL forward primer (100µM), 0.125µL reverse primer (100µM), 0.125µL SYBR Green (Invitrogen) 

and 7.125µL H2O was added to 5µL of each exonuclease treated sample. The following PCR protocol was used: 

30s at 98°C, 35 cycles of [10s at 98°C, 30s at 60°C, 30s at 72°C], and 2 min at 72°C. 

Thereafter, the circular fragments were amplified by PCR using primers complementary to the universal PCR 

primer sites in the common smMIP backbone. The primers contained a unique barcode for each sample so many 

samples could be combined into a single library. The primers also contain a P5 or P7 oligo to allow binding to 

the Illumina flow cell (suppl figure 1). 

The protocol was optimized by executing multiple PCRs reactions. Performing four replicate PCRs allows the 

effective use of all input DNA. As such, the number of PCR cycles was reduced, leading to less PCR duplicates 

and increasing the percentage of unique sequencing reads. 
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For the PCR, a mastermix was made per 192 samples. Each mastermix contained a forward primer identical per 

192 samples. In total, 4 different forward primers were combined with 192 unique reverse primers. Firstly, a 

total of 18.75µL mastermix containing 12.5µL 2X iProof (Bio-Rad), 0.125µL forward Primer (100µM) and 

6.125µL H2O was added to 6.5µL of the exonuclease treated samples. Secondly, 1.25µL of a unique reverse 

primer (10µM) was added to each sample. The PCR reaction was repeated four times, to use all exonuclease 

treated product. As such, less PCR cycles were needed to still obtain enough input DNA for sequencing, resulting 

in less PCR duplicates. The following PCR protocol was used: 30s at 98°C, 19 cycles of [10s at 98°C, 30s at 

60°C, 30s at 72°C], and 2 min at 72°C. The products were stored at 4°C until further use. 

Forward primer:  

AATGATACGGCGACCACCGAGATCTACACNNNNNNNNATACGAGATCCGTAATCGGGAAGCTGAAG 

Reverse primer:  

CAAGCAGAAGACGGCATACGAGATNNNNNNNNACACGCACGATCCGACGGTAGTGT 

Pooling, bead purification and sequencing 

Finally, all samples were pooled and purified. The bead purification aims to remove superfluous enzymes, 

buffers, dNTPs and unnecessary fragments. Low amounts of DNA at the start of the protocol, result in increased 

amounts of empty smMIPs formed during the capture reaction. These empty smMIPs are formed by ligation 

without insert elongation. To make optimal use of the sequencing capacity, the empty smMIP fragments are 

removed before sequencing. 

The total of 26.5µL PCR product from each sample was pooled per 24 samples. AMPure XP beads (Beckman 

Coulter) were added in 1:1 volume ratio, and the reaction was washed twice with 70% ethanol. Subsequently, 

the DNA of 96 samples was eluted in the same 100µL of TE buffer (0.01M Tris-HCl, 0.001M EDTA). A second 

purification step was executed to concentrate the pool and to lower the amount of smMIPs that did not capture 

any target (empty smMIPs), increasing sequencing capacity for correctly captured smMIPs. This is especially 

important for low DNA input amounts, as empty smMIPs are more prominent here. In the second purification 

step, 25µL of four 1x-purified pools with the same samples from four replicate PCRs were pooled, and beads 

were added in a 1:1 volume ratio. This reaction was washed twice with 70% ethanol and eluted in 40µL TE 

buffer. Optionally, more purification steps could be executed in case there is still an excess in amount of empty 

smMIPs. Finally, all individual pools were combined into the final NGS library. 

Subsequently, concentrations and fragment lengths of the purified pools were determined by a High Sensitivity 

D1000 Kit on the TapeStation (Agilent). The concentrations of the region between 100bp and 1000bp were 

used. The final NGS library was sequenced on a High Output Kit on an Illumina NextSeq 550 system. 1.2pM of 
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the NGS library was loaded and 5% of PhiX DNA was spiked into the library. Libraries were paired-end 

sequenced (2x75nt) using custom MIPs primers (suppl figure 1). For the validation experiment to evaluate the 

repeatability, the final library was sequenced using a Nano v2 kit on the Illumina MiSeq System. 

Supplementary methods: Determination of the amount of input DNA 

For digestion 

The standard protocol for an MSRE digest requires 1µg of input DNA in a final reaction volume of 50µL with 10 

units of each enzyme. To test the possibility to lower the input amount, we tested different reaction conditions 

(suppl Figure 6a). The digested samples were amplified by qPCR with primer pairs hybridizing around the MSRE 

recognition sites. The results show that all tested reaction conditions performed similarly, as the Ct values 

ranged from 20.4 to 25.1 for primer pair 1, from 22.8 to 25.1 for primer pair 2 and from 28.0 to 30.8 for primer 

pair 3, while the undigested samples reached the threshold in the range of 11.0 to 12.7 cycles. The results also 

indicate the feasibility of lowering input DNA to 5ng. 

For capturing and sequencing 

To test the possibility of the smMIP capturing and sequencing with varying quantities of input DNA, the 

performance of a reaction starting from 10ng and 20ng was compared to the standard 100ng for smMIP-

sequencing (15). gDNA from two blood samples and two cell lines was MSRE digested, captured by smMIPs and 

sequenced following our protocol. The sequencing results were analyzed using our in-house developed pipeline 

and read counts were obtained for the 2,331 CpG smMIPs and 600 reference smMIPs. To normalize the DNA 

input, the sum of CpG smMIP counts was divided by the sum of reference smMIP counts for each sample. This 

value is assumed to be higher in samples methylated for our targets (i.e. tumor samples) and lower in samples 

unmethylated for our targets (i.e. normal samples). Blood samples had an average of 0.18, 0.19 and 0.19 

normalized counts for 100ng, 20ng and 10ng respectively, while cell lines had an average of 1.10, 1.23 and 

1.26 counts respectively (suppl Figure 6b). This demonstrates that the results of our technique are consistent 

between an input amount of 10ng, 20ng and 100ng.    
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Supplementary methods: Calculated percentage after spike-in 

To mimic the presence of circulating tumor DNA (ctDNA) in cfDNA, DNA from three tumor cell lines was sheared 

into fragments of 150-500bp using the Covaris. They were spiked into cfDNA samples in different percentages 

(different conditions): 0% (only cfDNA), 20%, 40%, 60%, 80% and 100% (only sheared cell line DNA). A total of 

5ng DNA was used for each condition. 

These mock ctDNA-cfDNA mixes were used for the IMPRESS protocol. After data quality control and mapping, 

read counts were obtained for CpG smMIPs and reference smMIPs in each sample. Normalized counts were 

calculated by dividing the sum of CpG smMIPs by the sum of reference smMIPs in each sample. For each cell 

line, a linear regression was plotted through the mock ctDNA-cfDNA samples. The following linear regression 

equations were obtained, with x being the theoretical percentage spike-in and y being the normalized count: 

HCT116  y = -0.6297x + 4.3038  

SKHEP1  y = -0.44x + 2.9083 

Cal27  y = -0.5934 + 3.6367 

These functions were used to predict  the normalized counts value (y) for the 100% cell line samples (x = 100) 

corresponding to the linear regression line. This was necessary because in this way, not only the 100% cell line 

sample was determinative for the normalized counts value, but all the samples used for the linear regression 

line were.  

Subsequently, for each sample, the normalized count was divided by the calculated 100% normalized counts 

value obtained from the linear regression from the corresponding cell line, to calculate the ratio (calculated 

percentage). This was done because the normalized counts differed per cell line and by calculation of the ratio, 

comparison of the cell lines was made possible. 

Lastly, the Pearson’s correlation coefficient of the calculated percentage (i.e. observed spike-in percentage) and 

the expected percentage (i.e. theoretical spike-in percentage) was calculated. 

References 
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Supplementary Figures 

 

Suppl. Figure 1 | Molecular overview of IMPRESS. Numbers represent the nucleotide length of each fragment. Each smMIP 
contains a common smMIP backbone of 30nt (pink), single molecule tags of 5nt (green), and two binding arms of circa 20nt 
(yellow). During capture, the smMIP hybridizes to the target site, in order to have an insert length of 50nt. During PCR, MIP 
primers bind to the common smMIP backbone (pink). These primers additionally contain a sample barcode (red), a P5 or P7 
oligo to bind the flowcell (purple) and supporting fragments (grey). During sequencing, the read 1 and 2 primers are used 
for the sequencing of the single molecule tag (green), the binding arm (yellow) and the insert fragment (blue), 75nt in each 
direction. The index primers are used for sequencing of the sample barcodes (red). Created with BioRender.com 
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Suppl. Figure 2 | Capillary electrophoresis analysis of the final NGS library using the Tapestation (Agilent). The target peak 
is seen around 214bp (length of smMIP with insert = 222nt). 50bp to the left, the empty smMIPs are shown. For sequencing, 
the concentration of the pool is estimated based on the range from 100bp to 1000bp to avoid overclustering. 

 

Suppl. Figure 3 | Percentage of non-digestion in digested samples based on spiked-in lambda phage DNA.  
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Suppl. Figure 4 | Density plot of the mean cross validated AUC (cvAUC) values for each single smMIP model.  The distribution 
of cvAUC values is centered around 0.8 and is left-skewed. It is clear that the majority of smMIP models can make an 
accurate prediction. 

 

Suppl. Figure 5 | Correlation of cvAUC values of all double-tiled smMIPs. Selection of all CpG sites targeted by two smMIPs. 
For those CpG sites, cvAUC of one smMIP is in the X axis and the other in the Y axis. The pearson correlation coefficient is 
r = 0.668. 
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Suppl. Figure 6 | Determination of the amount of input DNA. a) Results of the qPCR with lambda DNA digested in different 
reaction conditions. Lambda DNA was digested in different sample conditions. These conditions are provided in the x-axis: 
the input amount of lambda DNA, the reaction volume of the digestion reaction, and the amount of enzyme units of each 
of the enzymes. The undigested samples were treated the same as the digested samples, except for the addition of the 
restriction enzymes. 1ng of all samples was amplified with four primer pairs, each hybridizing around one of the MSRE 
restriction sites. One primer pair failed and was excluded from the graph. The bars represent the average Ct value of two 
duplicate samples. b) Normalized counts for different amounts of input DNA. 100ng, 20ng and 10ng of genomic DNA from 
two blood samples and two cell lines (Cal27 and MiaPaca) was used as input for IMPRESS. Plotting was performed using 
GraphPad Prism. 
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Supplementary Tables 

Suppl. Table 1 | Overview of the used cell lines. 

Name Cancer type 

HT29 Colorectal 

HCT 116 Colorectal 

SK-HEP-1 Liver 

Miapaca Pancreas 

Cal27 Head and neck 

 

Suppl. Table 2 | NGS quality parameters of NextSeq run. 

Read Cycles 
(Projected) 

Yield (Gbp) 

Aligned 

PhiX (%) 

Error Rate 

(%) 

Intensity 

cycle 1 

%> Q30  

(Quality) 
Lane Cluster PF (%) Density 

Read 1 75 35.20 3.40 0.19 7274.73 91.87 1 86.71 ± 0,67 212 ± 5 

Read 2 8 3.33 0 0 6699.25 93.87 2 86.50 ± 0.63 211 ± 8 

Read 3 8 3.33 0 0 4527.20 90.02 3 86.74 ± 0.61 211 ± 9 

Read 4 75 35.20 3.33 0.28 6833.01 91.86 4 86.40 ± 0,77 210 ± 10 

Non-index 

reads total 
150 70.41 3.36 0.24 7053.87 91.86       

Totals 166 77.07 3.36 0.24 6333.55 91.87      
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ABSTRACT 

Introduction 

Early detection of colorectal cancer (CRC) and breast cancer (BRCA) remains challenging, with current screening 

methods like the fecal immunohistochemical test (FIT) and mammography having limitations in sensitivity and 

participation rates. DNA methylation has emerged as a promising biomarker for early cancer detection due to 

its role in gene regulation and cancer-related aberrations. Methylated circulating tumor DNA (ctDNA) shows 

potential as a non-invasive biomarker, but analysis faces challenges such as DNA degradation and low 

concentration in blood. We previously developed IMPRESS, a method that allows simultaneous analysis of 

multiple methylated regions. Using this technology, we now aimed to create screening assays for CRC and 

BRCA. 

Methods 

We leveraged publicly available 450K array datasets to find differentially methylated sites for BRCA. We 

compared whole blood, normal, in situ and invasive carcinoma tissue to identify potential methylation 

biomarkers. For CRC, we partially re-used already performed EPIC array analysis to select sites that were 

compatible with IMPRESS and re-performed some analysis with whole blood. The latter was used in view of 

applicability in liquid biopsies. For both CRC and BRCA, we created a two-step assay including a ‘cancer 

detection’ and an ‘invasiveness detection’ panel, where the first panel aims to discriminate cancerous samples 

against normal samples, and the second panel is used to distinguish precancerous/in situ lesions from invasive 

tumors. 

Results 

The CRC assay consists of 180 smMIPs and was used for evaluation of 25 CRC, 38 adenoma and 30 normal 

colon samples. The cancer detection panel reached 100% sensitivity and 100% specificity. The invasiveness 

detection panel achieved 80% sensitivity at 92% specificity, with an accuracy of 0.88. For BRCA, a total of 152 

smMIPs was used to analyze 9 BRCA, 9 in situ, 9 normal breast samples. The cancer detection panel has a 

sensitivity of 88.9% for invasive tumors and 100% for in situ carcinomas compared to normal samples. The 

accuracy of the invasiveness detection panel was 0.77, with a sensitivity of 66.7% at 88.9% specificity. 

Conclusion 

Our preliminary results indicate high sensitivity and specificity for discriminating cancerous samples against 

normal samples and good accuracy for distinction between precancerous and invasive tumors. Further research 

will be needed to validate these panels in external datasets. Lastly, these results provide a solid basis for 

evaluation of these panels in plasma-derived liquid biopsies.  
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INTRODUCTION 

Cancer remains one of the most common causes of death. Colorectal cancer (CRC) and breast cancer (BRCA) are 

amongst the most common and deadly cancers world-wide. Early detection is crucial to improve survival rates, 

yet both cancers often progress undetected until advanced stages [1–3]. Therefore, screening programs have 

been implemented in the EU [4,5]. Especially for CRC, screening has proven to reduce its incidence and 

mortality. The fecal immunohistochemical test (FIT) is mostly used, as it is a simple, non-invasive test. It detects 

occult blood in feces and reaches sensitivities around 69.2% for the detection of invasive carcinomas, at 96.8% 

specificity. Moreover, the detection sensitivity for precursor lesions (adenomas) is suboptimal (71% at 97% 

specificity) and participation rates are less than desired [4,6,7]. For BRCA, a mammography is mostly used for 

screening purposes. This minimally invasive method reaches high specificities (98%), but sensitivity varies 

depending on breast density. Moreover, participation rates are, like in CRC screening, suboptimal [5,8]. This 

highlights the need for novel screening modalities. 

In recent years, epigenetic alterations, and particularly DNA methylation, has gained attention for its pivotal 

role in cancer. In healthy cells, DNA methylation regulates gene activity and maintains genomic stability. 

However, in cancer, aberrant methylation patterns occur, silencing tumor suppressor genes and promoting 

oncogenesis. Given its early occurrence and universality across cancers, DNA methylation emerges as a 

promising biomarker for early cancer detection [9]. 

In view of novel screening methods, methylated circulating tumor DNA (ctDNA) shows promise as a non-

invasive biomarker for cancer detection. Studies indicate that methylation patterns detected in primary tumors 

can also be found in ctDNA extracted from plasma, offering a potential avenue for early diagnosis [10–12]. 

However, challenges exist in methylated (ct)DNA analysis. Bisulfite sequencing, the gold standard method, 

leads to DNA degradation, which is particularly a problem in fragmented samples like ctDNA. Additionally, the 

low concentration of ctDNA in blood poses a limitation, as only a fraction of the genome may be represented. 

When analyzing only a few genes, which has been done in previous studies with multiplex MSP/qMSP, false-

negative results are likely to occur [12]. This highlights the need for the simultaneous analysis of multiple 

methylated regions to improve sensitivity. 

Our research group previously developed a highly multiplexable targeted methylation detection method, 

addressing the need for improved sensitivity and specificity in cancer detection. This method, called IMPRESS 

(Improved Methylation Profiling using Restriction Enzymes and smMIP Sequencing), can combine thousands of 

biomarkers into a single assay. In this study, we aimed to design two assays, for CRC and BRCA, using the 

IMPRESS technology, and to validate it on both fresh frozen and liquid biopsies. With this, we aimed to create 



IMPRESS for CRC and BRCA screening 
 

 203 

a novel, minimally invasive screening assay for CRC and BRCA, that can be easily implemented in clinical 

routine diagnostics. 

MATERIAL AND METHODS 

Sample collection and processing 

Control samples 

As a negative control, we used previously collected whole blood samples (n=7) from healthy volunteers. 

Genomic DNA (gDNA) was extracted using a standard salting-out procedure. DNA was stored at 4°C until further 

use. As a positive control, four cancer cell lines were used. For CRC, the HT29 and HCT116 cell lines were 

provided by the Centre for Oncological Research (CORE, Antwerp). For BRCA, the SKBR3 cell line was provided 

by CORE and the MCF-7 cell line was already stored in-house. All cell lines were cultured according to the 

American Type Culture Collection (ATCC) standard protocols. gDNA was extracted using the Blood & Cell 

culture DNA Maxi Kit (Qiagen, Germany). DNA was stored at -20°C until further use. As an internal control, 

unmethylated lambda phage DNA was used (Thermo Fisher Scientific, USA).  

Fresh frozen tissue 

CRC and BRCA tumor tissue and matched normal adjacent tissue samples were retrospectively collected from 

the Antwerp University Hospital (UZA, Belgium). A total of 57 colorectal (27 tumor and 30 normal adjacent) and 

27 breast (9 tumor, 9 in situ and 9 normal adjacent) tissues were obtained and stored at -80°C. Colorectal 

adenoma fresh frozen tissues were collected through the Belgian Virtual Tumor bank network. A total of 38 

samples were collected from 7 biobanks (see acknowledgements). Haematoxylin-eosin-stained sections per 

specimen were microscopically examined by a pathologist (D.P) to verify tissue type, presence of invasive tumor 

and overall tumor cell percentage (TcP). A minimum of 25% TcP was used for all analyses, with a median TcP 

of 40% and a range from 25% to 70%. Samples from all invasive cancer stages (I-IV) were used. DNA was 

extracted using the QIAamp DNA Micro Kit (Qiagen, Germany) according to the manufacturer’s protocol. The 

DNA was stored at -20°C until further use. An overview of all samples is given in Table 1. 

Table 1| Overview of collected samples 

Tissue Type Group Number FF 

Colorectal 

Normal 30 

Adenoma 38 

Invasive carcinoma 25 
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Breast 

Normal 9 

In situ 9 

Invasive carcinoma 9 

FF= fresh frozen 

Ethical Approval 

Fresh frozen tissue samples were retrospectively collected from the Antwerp University Hospital Biobank. 

According to Article 20 of the Belgian Law on the procurement and use of human corporal material intended 

for human application or scientific research of 19 December 2008, patients provide consent for the use of their 

bodily material in research when consenting to an invasive procedure. As such, no additional consent was asked 

for the use of these retrospective samples. Prospectively collected blood samples were only collected after 

written informed consent was given by the subject. The study protocol and any modifications were approved 

by the UZA ethical committee (Ref. N°20/02/056 and Ref. N°41/14/426) before experimental analyses were 

performed. 

Biomarker assay development 

Target site discovery 

For the discovery of potential DNA methylation biomarkers, publicly available methylation datasets were used. 

For CRC, a large part of the analyses was previously described [13]. For this study, the EPIC array datasets of 

carcinoma and adenoma were additionally compared to EPIC whole blood datasets as normal controls (Suppl. 

Table 1). Pairwise comparisons between β-values from different groups, being carcinoma, adenoma and whole 

blood were performed to find differentially methylated probes that overlap between normal adjacent samples 

and whole blood as compared to adenomas and carcinomas. (DMPs, see Table 2). For BRCA, 450K methylation 

data of invasive, in situ, normal and whole blood samples were used (Suppl. Table 1). Processing of the datasets 

was done as described before by Ibrahim et al. [14,15]. Pairwise comparisons between β-values of the different 

groups were performed to obtain DMPs (Table 2). Lastly, targets described in epithelial-mesenchymal transition 

(EMT) were searched in literature as EMT is known to play an important role in the in situ to invasive transition 

in BRCA [16–28]. 

Biomarker selection and assay development 

After filtering DMPs on p-value (0.05) and restriction sites for at least one enzyme, several other criteria were 

set to find the most optimal biomarkers. For both CRC and BRCA, a two-step approach for building the biomarker 

assay was used. First, a panel for discriminating between normal and cancerous tissue was made. This is referred 

to as the ‘cancer detection panel’ Then, a panel for pre-cancer vs invasive carcinoma was constructed. This is 
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referred to as the ‘invasiveness detection panel’. Figure 1 gives an overview of the experimental set-up. Table 

2 gives an overview of the number of selected biomarkers per panel. 

Figure 1 | Overview of the study. DMP= Differentially methylated probe 

For CRC, the targets in the cancer detection panel were selected using following criteria: a) a minimal Δβ of 

0.10 b) a maximal β-value of 0.35 in blood and normal adjacent samples and C) a minimal β-value of 0.45 in 

tumor. A total of 42 DMPs was selected. For the invasiveness detection panel, targets were selected based on 

following conditions: a) a minimal Δβ of 0.25 with maximally β= 0.27 in carcinomas and minimally 0.5 in 

adenomas or b) a minimal Δβ of 0.15 with β= 0.3 maximally in adenomas and β= 0.40 minimally in carcinomas. 

This led to 452 and 53 DMPs respectively. In our previous study [13], we also compared adenoma data to 

carcinoma data. The 13 DMPs that were found, were also used as targets for the subsequent smMIP design. 

For BRCA, the targets in the cancer detection panel were selected as following: a) a minimal Δβ of 0.16 b) a 

maximal β-value of 0.54 in blood and normal samples and C) a minimal β-value of 0.2 in tumor. A total of 25 

DMPs was selected. For the EMT targets, the conditions were the following: a) a minimal Δβ of 0.16 b) a maximal 

β-value of 0.20 in blood and normal samples and C) a minimal β-value of 0.22 in tumor. A total of 8 DMPs was 

selected. 

For the invasiveness detection panel, targets were selected based on following criteria: a) a minimal Δβ of 0.16 

with maximally β= 0.51 in invasive tumors and minimally β= 0.60 in in situ tumors or b) a minimal Δβ of 0.16 

with β= 0.34 maximally in in situ tumors and minimally β= 0.37 in invasive tumors. This led to 143 and 20 DMPs 

respectively. For the EMT targets, we selected as following: a) a minimal Δβ of 0.15 with maximally β= 0.57 in 
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invasive tumors and minimally β= 0.57 in in situ tumors or b) a minimal Δβ of 0.11 with β= 0.48 maximally in 

in situ tumors and minimally β= 0.52 in invasive tumors. This led to 4 and 2 DMPs respectively. 

smMIP design and selection 

CpG smMIPs for CRC and BRCA were designed using the MIPGEN software [29]. smMIPs were designed for both 

DNA strands (i.e., double-tiled) for all selected targets. smMIPs in our design contain a) a common backbone of 

30 nt b) a single molecule tag of 5 nt on both sides of this backbone c) two binding arms of circa 20 nt, 

specifically designed per target with an insert size of 50 nt. Single molecule tags were different per smMIP 

copy, allowing filtering for PCR duplicates. To maximize the number of target regions in the selection, only the 

smMIP with the highest theoretical performance score was retained. As such, a single-tiled smMIP selection 

was obtained. Also, smMIPs covering SNPs and repeats were removed. Table 2 illustrates the number of smMIPs 

per group. Reference smMIPs and lambda phage smMIPs were used as previously designed (Chapter 6). To 

balance the number of reference smMIPs towards the panels, we used only 50 smMIPs (>< 600 in Chapter 6). 

Table 2| Overview of (selected) DMPs 

Tissue Step Adenoma versus normal Carcinoma versus normal Adenoma versus carcinoma 

Colorectal 

DMPs 292 200 268 253 237 909 
Selected targets 42 518 

Final smMIP selection 19 89 

  In situ versus normal Invasive versus normal In situ versus Invasive 

Breast 

DMPs 186 040 178 867 120 219 

Selected targets 54 163 

Final smMIP selection 33 47 

DMP= differentially methylated probe 

IMPRESS technology 

We previously described our newly developed IMPRESS technology, its protocol and sample analysis in detail 

(chapter 6).  

For the statistical analyses, differences in average methylation levels between invasive, non-invasive, and 

normal adjacent samples within one tissue type were tested using the Mann-Whitney U test (two-sided). For all 

analyses, p-values lower than 0.05 were considered significant. ROC curves were generated to determine the 

sensitivity and specificity of our panel. All statistical tests were performed in R (version 4.0.2) or GraphPad 

Prism (version 10.0.0) for macOS, GraphPad Software, Boston, Massachusetts USA, www.graphpad.com. 
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RESULTS 

Colorectal cancer 

Initial observations and panel evaluation 

For the first analysis, a subset of tumor (n=5), adenoma (n=5) and normal adjacent (n=5) samples was used. The 

library was prepared as described in chapter 6. In this analysis, 19 smMIPs were used for the cancer detection 

panel and 89 smMIPs were included in the invasiveness detection panel. Results for the panels are shown in 

Figure 2. 

 

Figure 2 | CRC assay using n=5 per tissue type. A) Cancer detection assay B) Invasiveness detection assay with 
hypermethylated targets in adenoma C) Invasiveness detection assay with hypermethylated targets in carcinoma. Asterisks 
indicate p values where **= p < 0.01. 

These results demonstrate that our selection for the cancer detection panel can effectively discriminate both 

cancerous and precancerous samples from normal samples (Fig. 2A). The results for the invasiveness detection 

panel show that targets for hypermethylation in adenomas (n=68) do not give a significant difference between 

precancerous and cancerous samples (Fig. 2B). However, looking at hypermethylated targets in tumors (n=21), 

thus different targets, in the same samples, a significant difference is observed (Fig. 2C).  

Final CRC assay: diagnostic accuracy 

Using the final CRC panels as described above, 25 tumor, 30 normal adjacent and 38 adenoma samples were 

analyzed with IMPRESS. Results of the cancer and invasiveness detection panels are summarized in Figure 3 

and Table 3. To evaluate the diagnostic accuracy of both panels, ROC curves were built. The AUCs as well as 
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the sensitivity and specificity are reported in Table 3. ROC curves can be found in the supplementary material 

(Suppl. Fig. 1). 

 

Figure 3 | CRC assay A) Cancer detection assay for each tissue type separate B) Cancer detection assay summary C) 
Invasiveness detection assay with hypermethylated targets in adenoma D) Invasiveness detection assay with 
hypermethylated targets in carcinoma. Asterisks indicate p values where *= p < 0.05 and ****= p < 0.0001 
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Table 3 | Summary of results and diagnostic accuracy for CRC panels 

Panel Difference in mean methylation level Sensitivity Specificity AUC 

Cancer detection panel: Tumor v 
Normal **** 100% 100% 1.00 

Cancer detection panel: Adenoma v 
Normal **** 100% 100% 1.00 

Cancer detection panel 
(Tumor + Adenoma v Normal) **** 100% 100% 1 

Invasiveness detection panel: Tumor v 
Adenoma  **** 80% 92% 0.88 

Invasiveness detection panel: 
Adenoma v Tumor * 47.3% 85% 0.69 

Invasiveness detection panel  
(Tumor v Adenoma) **** 80% 92% 0.88 

Hypermethylation is selected for the target group that is mentioned first. For example, in Tumor v Adenoma, targets are hypermethylated 
in tumor samples as compared to adenoma samples. P-values are indicated with asterisks, where *= p < 0.05 and ****= p < 0.0001. 
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Breast cancer 

Initial observations and panel evaluation 

A subset of invasive tumor (n=5), in situ tumor (n=5) and normal adjacent (n=5) samples was used in the first 

analysis. IMPRESS was used for library preparation and sequencing as described chapter 6. 33 smMIPs for the 

cancer detection panel and 47 smMIPs for the invasiveness detection panel were used. Results for the panels 

are shown in Figure 4. 

 

Figure 4 | BRCA assay using n=5 per tissue type. A) Cancer detection assay B) Invasiveness detection assay with 
hypermethylated targets in in situ. Asterisks indicate p values where **= p < 0.01. 

These results show that the selected targets for the cancer detection panel can effectively discriminate 

(pre)cancerous samples from normal samples (Fig. 4A). The results for the invasiveness detection panel (Fig. 

4B) show that no significant difference can be found between in situ and invasive samples (Figure 8, p-value = 

0.09). smMIPs designed for hypermethylation in invasive samples compared to in situ samples, all failed. 

Final BRCA assay: diagnostic accuracy 

With the final BRCA panels, 9 samples of each group were analyzed. Results of the cancer detection and 

invasiveness detection panels are summarized in Figure 5 and Table 4. Assessment of the diagnostic accuracy 
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for both panels was done through ROC analysis. The AUCs, sensitivity and specificity are reported in Table 4. 

ROC curves can be found in the supplementary material (Suppl. Fig. 2). 

 

Figure 5 | BRCA assay A) Cancer detection assay for each tissue type separate B) Cancer detection assay summary C) 
Invasiveness detection assay with hypermethylated targets in in situ Asterisks indicate p values where ***= p < 0.001 and 
****= p < 0.0001 

Table 4 | Summary of results and diagnostic accuracy for BRCA panels 

Panel Difference in mean methylation level Sensitivity Specificity AUC 

Cancer detection panel: Tumor v 
Normal *** 88.9% 100% 0.98 

Cancer detection panel: In Situ v 
Normal **** 100% 100% 1 

Cancer detection panel 
(Tumor + In Situ v Normal) **** 94.4% 100% 0.99 

Invasiveness detection panel : In situ 
v Invasive p= 0.06 66.7% 88.9% 0.77 

Invasiveness detection panel  
(In situ v Invasive) 

p= 0.06 66.7% 88.9% 0.77 

Hypermethylation is selected for the target group that is mentioned first. For example, in In Situ v Invasive, targets are hypermethylated 
in in situ carcinoma samples as compared to invasive carcinoma samples. P-values are indicated with asterisks, where ***= p < 0.001 and 
****= p < 0.0001  
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DISCUSSION 

In recent years, DNA methylation research has focused more on early detection and screening. These are very 

important parameters in cancer management, as early detection leads to better patient outcomes and higher 

survival chances. Therefore, population-based screening programs have been introduced. Despite this, 

disadvantages remain. We aimed to build novel DNA-methylation based assays using our IMPRESS technology, 

to create new sensitive and specific tests that can be easily implemented in the clinic. To this end, we have 

performed wetlab analyses to identify the most optimal biomarkers for our assay. In our in silico analysis, we 

included whole blood as a control in view of future liquid biopsy applications.  

Although we are mostly interested in differentially methylated CpGs that make good potential biomarkers, it is 

interesting to retrospectively assess in which genes our selected sites are located (see Suppl Table 2 and 3). 

Regarding the CRC cancer detection panel, almost half of the genes we retrospectively found, are reported in 

literature (Suppl Table 2). Examples include ADHFE1 and OPLAH, which we also reported in our previous study 

(chapter 4) [13]. Almost all targets have also been reported in the COSMIC database. For the invasiveness 

detection CRC panel, RUNX3 has previously been reported by multiple research groups as an interesting target 

for adenoma detection through DNA methylation (see Suppl. Table 3). For example, Pasha et al. describe its 

potential as a serum biomarker for early CRC detection combined with SFRP1 and CEA using MSP [30]. 

Remarkably, it has to our best knowledge not been further investigated in plasma samples, which are better 

suited for liquid biopsy purposes than serum samples. Looking at the hypermethylation targets in carcinomas, 

SMAD4 and UHRF1 overlap between our analyses and literature (Suppl. Table 4). The latter is involved in DNA 

methylation maintenance in CRC, making it potentially suited as a therapeutic target [31]. SMAD4 is a known 

CRC gene, where previously mostly mutations have been described (see also Suppl Table 4 – Cosmic database) 

[32]. However, more recently, methylation of SMAD4 has been described to play a role in metastasis in CRC 

[33]. Furthermore, it was described as a predictive biomarker [34]. These results once again underline the 

importance of DNA methylation as early detection targets in colorectal cancer.  

Interestingly, from the 13 DE DMPs that we describe in our previous study (chapter 4) [13], only two could be 

included in the final assay. Starting from these 13 DE DMPS, six out of 13 targets were retained for the smMIP 

design due to the need for restriction sites for the MSREs. For these 6 targets, 5 smMIPs could be successfully 

designed. After analysis, ultimately two smMIPs performed well enough to be kept in the final (invasiveness 

detection) panel. The sensitivity and specificity for these two targets combined was 77% and 74% respectively, 

with an AUC of 0.81, which is lower compared to that of the 13 DE DMPs in chapter 4 and compared to our 

final invasiveness detection panel (see Table 3).  
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As opposed to CRC, far less research has been performed on DNA methylation in BRCA (Suppl. Table 6-7). From 

the targets we selected for the cancer detection panel, only three have been reported in literature before. 

Contrary, most targets have been reported to the COSMIC database. PITX2 has been reported on a few times a 

decade ago, where it has been described as a prognostic biomarker for BRCA. It was found both in primary 

tissue and blood serum samples [35,36]. The other two genes, FAT4 and SFRP2, were selected in the analyses 

as EMT-specific targets as described in the method section. EMT is known to play a role in the carcinogenesis 

and metastatic potential of tumors. The process is modulated through various molecular pathways that can 

involve epigenetics [17,27]. In literature, methylation of FAT4 and SFRP2 were described in EMT-related 

research, although here only cell lines were used [20,24]. With our results, we preliminarily demonstrate that 

the methylation of these targets potentially plays an important role in BRCA-related EMT. Importantly, both 

genes have also previously been described to play a role in other cancer types such as ovarian cancer and CRC 

[37–40]. Interestingly, the only gene that has been previously described in literature that we also had in our 

target selection for the BRCA invasiveness detection panel, is the EMT-related CDH1 gene. Loss of CDH1 

expression has been associated with progression from in situ to invasive BRCA [17]. Hypermethylation of this 

gene was reported as a prognostic biomarker [36,41]. Despite its presence in our panel, we must admit it is not 

our most ideal biomarker as the discrimination between in situ and invasive samples based solely on this target, 

reaches only a limited sensitivity of 33%. Further research on EMT–only targets and DNA methylation will be 

needed to obtain better performing biomarkers. 

The diagnostic accuracy of the CRC cancer detection panel was evaluated using 25 tumor, 38 adenoma and 30 

normal adjacent samples and a combination of 19 targets. With this set of samples, 100% sensitivity and 100% 

specificity could be found for both tumor and adenoma samples compared to normal adjacent samples. A 

similar sensitivity and better specificity were found compared to the results of our multi-cancer smMIP set of 

358 smMIPs (chapter 6). For the tumor samples, a weak correlation (r= 0.5) could be found for the normalized 

count and tumor cell percentages. This is in line with results obtained using the multi-cancer smMIP set 

(chapter 6). In the future, cross-validation, analyses with larger sample sizes and validation in external datasets 

will be needed to estimate the performance of this biomarker panel more accurately. Nevertheless, these results 

are very promising. 

For the invasiveness detection panel, the 25 tumor and 38 adenomas were analyzed using 68 targets with 

hypermethylation in adenomas and 21 targets with hypermethylation in tumors. The latter had the best 

performing diagnostic values with a sensitivity of 80% at 92% specificity, and an accuracy of 0.88. These results 

are a little worse than the accuracy we obtained in our previous study (chapter 4), however we used more 

samples in the current approach. Also, as mentioned before, we tried to include as many targets from the 

previous study in this experiment to validate them as biomarkers.  
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Despite the slightly worse performance, the CRC invasiveness detection panel gives quite promising results as 

compared to e.g. the SEPT9 test, where 68-95% sensitivity at 80-90% specificity is reached for discriminating 

tumors from adenomas [42]. Further research will reveal if this performance holds when using cross-validation, 

external validation and liquid biopsies. Interestingly, targets with hypermethylation in tumors were better 

performing than targets with hypermethylation in adenoma, although these are more limited in numbers. In 

Fig. 3C, the difference between adenomas and carcinomas becomes significant as opposed to the first results 

(Fig. 2B). This could be due to the larger sample size, or due to the fact that a Mann-Whitney test is less strict 

than other statistical testing. More research is needed to discover whether this panel can be useful in the future. 

Lastly, in the current invasiveness detection panel, there is currently no distinction possible between adenoma-

grade (low/high) nor adenoma type (e.g. tubulovillous, tubular, serrated…).  

The diagnostic accuracy of the BRCA cancer detection panel was evaluated using 9 samples per subtype 

(invasive carcinoma, in situ carcinoma and normal adjacent samples) and a set of 33 smMIPs. Since literature 

suggests an important role for EMT in BRCA, we also verified the samples with the EMT smMIP set of 6 targets. 

Comparing in situ versus normal samples, there is no difference in performance of the overall BRCA cancer 

detection panel versus the EMT-only panel. However, comparing tumor versus normal samples, 88.9% and 

77.9% sensitivity was found for the overall and EMT-only smMIPs respectively, at 100% specificity. Comparing 

these results to the multi-cancer smMIP set (chapter 6), we achieve comparable results with a slightly higher 

accuracy with this smMIP set. Interestingly, we achieve far better results with our overall panel compared to 

previous work by our group by Croes et al., who investigated 4 CpG sites in DFNA5 [43]. There, a sensitivity of 

61.8% at 100% specificity was found with an AUC of 0.83. This highlights the importance of combining multiple 

targets to increase sensitivity.  

Contrary to the results of chapter 6 and CRC, a good correlation is found between normalized counts and TcP 

with our BRCA specific panel (r = 0.82). This could be due to the limited range of TcP (40% -70%) that was used 

in these samples. Samples with lower TcP will be tested in the future, and results will unveil if the correlation 

will persist. Furthermore, cross-validation, analyses using larger and external datasets will be needed to 

estimate the performance of this biomarker panel more accurately. Nevertheless, these results are very 

promising. 

In the invasiveness detection panel, the samples were compared using a subset of 47 smMIPs, all 

hypermethylated in in situ samples. In our analyses, no significant difference in methylation level was found. 

Nevertheless, a trend is observed (p= 0.06). This result could already be expected from the in silico analyses 

that were performed (see Suppl. Fig. 3), where the MDS plot indicates invasive and in situ samples have a strong 

overlap in beta values. Since in situ carcinomas often hold an invasive component and vice versa, it is quite 

difficult to reach high accuracy in this step.  
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Nonetheless, the AUC of 0.77 indicates that DNA methylation holds potential for discrimination of the two 

states. An important reason to make this distinction, is that not all in situ carcinomas will develop into an 

invasive carcinoma. More research will be needed to finetune our panel. Remarkably, all targets with 

hypermethylation in invasive carcinomas failed. In our CRC analysis, targets with hypermethylation in tumors 

give a better distinction, so this is potentially also the case for invasive v in situ BRCA samples. More research 

will be needed to verify whether more hypermethylation targets in invasive carcinomas can be found and 

whether they are indeed better performing than our current panel. 

This study is a work in progress. A current restriction of this study is that we did not yet verify whether our 

targets are CRC or BRCA specific. For this, a more elaborate analysis against other cancer types will be needed. 

Also, it would be very important to check the targets for aberrant DNA methylation in e.g. inflammatory diseases 

such as IBD, Crohn and IBC. This can be done in silico using publicly available data or in vitro using clinical 

samples. For CRC, we already collected around 30 inflammatory colon liquid biopsy samples for future research. 

In the future, the most important follow-up of this research is the validation of our panels in an external tissue 

dataset and ultimately in liquid biopsies. To this end, we already started collecting liquid biopsy samples (See 

suppl. Table 7). However, IMPRESS must first be optimized and validated for its use in liquid biopsies. To rapidly 

increase sample size, previously collected blood samples from the PANIB trial [44] and the lead-in FOLICOLOR 

trial [45] will be added. Moreover, samples collected in the COLIPAN (Collection of Liquid biopsies in Pan-

cancer patients) project will also be included to increase sample size. Furthermore, an interesting future 

addition to our panels will be known mutations (e.g. KRAS, BRAF, RASSF1 and BRCA) for CRC and BRCA.  

In conclusion, we have created new biomarker panels for detection of CRC and BRCA, potentially in early stages. 

Our first results indicate high sensitivity and specificity for discriminating cancerous samples against normal 

samples and good accuracy for distinction between precancerous and invasive tumors. Further research will be 

needed to validate these panels. Lastly, we provide a solid basis for examination of these panels in plasma-

derived liquid biopsies. 
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SUPPLEMENTARY MATERIAL 

Supplemental Figures 

Colorectal Cancer 

 

Supplemental Figure 1 | ROC plots of CRC assay. A) Cancer detection panel B) Invasiveness detection panel: 
hypermethylation in carcinoma C) Invasiveness detection panel: hypermethylation in adenoma. AUC= Area Under the Curve 

 

 

 
Breast Cancer 

 

Supplemental Figure 2 | ROC plots of step I and step II panel. A) First step panel (Invasive v Normal) B) First step panel (In 
Situ v Normal) C) Second step panel: In Situ v Invasive D) First step panel (Invasive v Normal), EMT only F) First step panel 
(In Situ v Normal), EMT only . AUC= Area Under the Curve 
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Supplemental Figure 3 | Multidimensional scaling plot of in situ v invasive breast cancer in silico analysis. The 1000 most 
variable positions are plotted. Publicly available 450K array data was used. Green dots = in situ samples (n= 155), orange 
dots = invasive samples (n= 1024). 

 

Supplemental Tables 

Supplemental Table 1 | Overview of datasets used for target discovery 

Dataset ID - Colorectal Adenoma Carcinoma Normal 

E-MTAB-6450 16 0 0 

E-MTAB-7854 80 0 0 
GSE166212 10 32 0 
GSE199057 0 77 0 
GSE110554 0 0 12 

GSE112618 0 0 6 
GSE112905 0 0 10 
GSE149412 0 0 292 
GSE167998 0 0 12 
GSE180119 0 0 16 
GSE197331 0 0 17 
GSE200376 0 0 19 
GSE217633 0 0 44 
GSE218186 0 0 55 
GSE219293 0 0 18 
GSE220622 0 0 136 

Sum 106 109 637 
Dataset ID - Breast In situ Invasive Normal 
GSE66313 40 0 0 
GSE60185 115 93 0 
GSE226569 0 694 0 
GSE52865 0 183 0 
GSE72308 0 54 0 
GSE40279 0 0 0 
Sum 155 1 024 656 

Green: EPIC datasets, blue: 450K datasets 
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Supplemental Table 2 | Overview of first step panel’s targets for CRC 

Step I panel Target COSMIC? Pubmed? 

1:44873004-44873093 ADHFE1 yes 
https://pubmed.ncbi.nlm.nih.gov/?term=ADHFE1+ 
AND+CRC+AND+METHYLATION 

1:101004882-101004971 OPLAH yes 
https://pubmed.ncbi.nlm.nih.gov/?term=OPLAH+ 
AND+CRC+AND+methylation&sort=date 

2:139537130-139537219 NXPH2 yes / 

2:61372147-61372236 / / / 

2:182322224-182322313 MDFI yes 
https://pubmed.ncbi.nlm.nih.gov/?term=MDFI+AND 
+CRC+AND+METHYLATION 

2:68546563-68546652 COL4A1/COL4A2 Yes – yes https://pubmed.ncbi.nlm.nih.gov/24485021/ 

4:110223945-110224034 CHST2 yes / 

5:22853102-22853191 TRBJ2-6/7 No – no / 

6:73331049-73331138 PREX2 yes / 

6:41606401-41606490 CNRIP1 yes 
https://pubmed.ncbi.nlm.nih.gov/?term=CNRIP1+AND 
+CRC+AND+METHYLATION 

8:67344491-67344580 PPP1R16B yes 
https://pubmed.ncbi.nlm.nih.gov/?term=PPP1R16B+AND 
+CRC+AND+METHYLATION  

8:53852627-53852716 KCNQ5 yes 
https://pubmed.ncbi.nlm.nih.gov/?term=KCNQ5AND+ 
CRC+AND+METHYLATION 

8:72756098-72756187 DMRTA2 yes / 

8:145106519-145106608 EDNRB yes 
https://pubmed.ncbi.nlm.nih.gov/?term=EDNRB+CRC+ 
AND+METHYLATION 

8:68864463-68864552 TRH no / 

10:100993555-100993644 TM6SF1 yes / 

10:13933953-13934042 GPR88 yes / 

11:128564082-128564171 KCNA3 yes https://pubmed.ncbi.nlm.nih.gov/32407802/ 

13:50706751-50706840 TTYH1 yes / 

13:78493142-78493231 c2orf74 yes / 

 

Supplemental Table 3 | Overview of second step panel’s targets (hypermethylated in adenomas) 

Step II panel: hyper adenoma Target COSMIC? Pubmed? 

1:161695589-161695678 FCRLB yes / 

1:180203108-180203197 LHX4 yes / 

1:217309141-217309230 ESRRG yes https://pubmed.ncbi.nlm.nih.gov/31566019/ 

1:235814317-235814406 /     

1:25255774-25255863 RUNX3 yes 
https://pubmed.ncbi.nlm.nih.gov/?term=RUNX3+CRC 
+AND+METHYLATION 

1:26372424-26372513 SLC30A2 yes / 

1:26551726-26551815 /     

1:32930480-32930569 /     

1:45083138-45083227 RNF220 yes / 

1:47691116-47691205 TAL1 yes / 

1:4771132-4771221 AJAP1 yes / 

1:85359068-85359157 /     

10:118429608-118429697 C10orf82 yes / 
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10:119302826-119302915 EMX2 yes / 

10:119303779-119303868 EMX2 yes / 

10:119304561-119304650 EMX2 yes / 

10:43725098-43725187 RASGEF1A yes / 

10:8094049-8094138 GATA3-AS1 no / 

11:31832846-31832935 PAX6 yes / 

11:35441759-35441848 /     

12:45270305-45270394 NELL2 yes / 

12:48398235-48398324 COL2A1 yes https://pubmed.ncbi.nlm.nih.gov/33858326/ 

12:49484129-49484218 DHH no / 

12:54378766-54378855 /     

12:62583916-62584005 TAFA2 yes / 

15:60289515-60289604 /     

15:65669504-65669593 IGDCC3 yes https://pubmed.ncbi.nlm.nih.gov/27049830/ 

15:68117531-68117620 SKOR1 yes / 

15:93631885-93631974 RGMA yes https://pubmed.ncbi.nlm.nih.gov/19303019/ 

16:85063720-85063809 KIAA0513 yes / 

17:47653260-47653349 /     

17:48046800-48046889 DLX4 yes / 

17:59476264-59476353 /     

18:5629004-5629093 EPB41L3 yes / 

19:15619264-15619353 /     

19:36347964-36348053 KIRREL2 yes / 

2:170218620-170218709 LRP2 yes / 

2:172952973-172953062 DLX1 yes / 

2:177027863-177027952 /     

2:237477117-237477206 ACKR3 yes https://pubmed.ncbi.nlm.nih.gov/30337690/ 

2:241759348-241759437 KIF1A yes https://pubmed.ncbi.nlm.nih.gov/34373442/ 

2:27070719-27070808 /     

2:289354-289443 /     

2:5506198-5506287 /     

2:69240058-69240147 /     

20:52790006-52790095 CYP24A1 yes https://pubmed.ncbi.nlm.nih.gov/23463632/ 

22:46366799-46366888 WNT7B yes / 

3:179169522-179169611 /     

3:96532840-96532929 /     

4:30722210-30722299 PCDH7 yes / 

4:37245464-37245553 /     

4:42399338-42399427 /     

4:57397099-57397188 THEGL yes / 

4:996024-996113 IDUA yes / 

5:153857758-153857847 HAND1 yes https://pubmed.ncbi.nlm.nih.gov/38689296/ 
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6:148663566-148663655 /     

6:70576991-70577080 COL19A1 yes / 

6:7728818-7728907 BMP6 yes https://pubmed.ncbi.nlm.nih.gov/25227796/ 

6:90121298-90121387 RRAGD yes / 

7:126891257-126891346 GRM8 yes / 

7:155249873-155249962 /     

7:155252143-155252232 EN2 yes https://pubmed.ncbi.nlm.nih.gov/35169223/ 

7:28893582-28893671 /     

7:39454095-39454184 POU6F2 yes / 

7:8473218-8473307 /     

1:178030188-178030277 /     

6:31831420-31831509 SLC44A4 yes / 

 
Supplemental Table 4 | Overview of second step panel’s targets (hypermethylated in tumors) 

Step II panel: hyper carcinoma Target COSMIC? Pubmed? 

1:109133165-109133254 FAM102B yes / 

1:33219200-33219289 KIAA1522 yes / 

1:52017727-52017816 /     

1:66799355-66799444 PDE4B yes / 

10:118652771-118652860 SHTN1 yes / 

10:126412214-126412303 FAM53B yes / 

11:128389383-128389472 ETS1 yes https://pubmed.ncbi.nlm.nih.gov/22735571/ 

12:88969413-88969502 KITLG yes https://pubmed.ncbi.nlm.nih.gov/26674205/ 

13:100310911-100311000 CLYBL yes / 

14:21731575-21731664 KNRNPC no / 

14:52778453-52778542 /     

14:62164724-62164813 KIF1A yes https://pubmed.ncbi.nlm.nih.gov/34373442/ 

15:59543647-59543736 MYO1E yes / 

18:48609211-48609300 SMAD4 yes 
https://pubmed.ncbi.nlm.nih.gov/?term=SMAD4+ 
CRC+AND+METHYLATION 

19:4912177-4912266 UHRF1 yes 
https://pubmed.ncbi.nlm.nih.gov/?term=UHRF1+ 
CRC+AND+METHYLATION 

22:40575548-40575637 TNRC6B yes / 

3:125230719-125230808 SNX4 yes / 

3:186733780-186733869 ST6GAL1 yes / 

4:108797414-108797503 SGMS2 yes / 

4:140778351-140778440 MAML3 yes / 

4:38806030-38806119 TLR1 yes / 

 

Supplemental Table 5 | Overview of first step panel’s targets for BRCA 

Step I panel Target COSMIC? Pubmed? 

1:151811332-151811421 C2D4D no / 
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1:44031802-44031891 PTPRF yes / 

1:119527570-119527659 TBX15 yes / 

2:66666991-66667080 BARHL2 yes / 

2:19561444-19561533 MEIS1 yes / 

3:181441502-181441591 /     

4:111550651-111550740 SOX2OT no / 

4:154710722-154710811 PITX2 yes https://pubmed.ncbi.nlm.nih.gov/32005275/ 

4:126238769-126238858 SFRP2 yes https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6164039/ 

4:126238894-126238983 FAT4 yes https://pubmed.ncbi.nlm.nih.gov/34762262/ 

4:154709822-154709911 FAT4 yes / 

4:154710334-154710423 SFRP2 yes / 

4:126238402-126238491 SFRP2 yes / 

4:154710484-154710573 FAT4 yes / 

5:3607033-3607122 SFRP2 yes / 

5:141931150-141931239 SFRP2 yes / 

5:87440227-87440316 /     

6:148689043-148689132 /     

6:10391396-10391485 /     

6:105400946-105401035 SASH1 yes / 

6:85482543-85482632 /     

6:1389301-1389390 /     

7:117119540-117119629 /     

8:145698608-145698697 FOXF2 yes / 

12:54446011-54446100 CFTR yes / 

12:32292929-32293018 KIFC2 yes   

12:52401468-52401557 HOXC4 yes / 

12:54321278-54321367 IFFO1 yes / 

14:38092046-38092135 IFFO1 yes / 

14:61118691-61118780 BICD1 yes / 

14:57276199-57276288 GRASP yes / 

16:12183915-12184004 /     

17:59530036-59530125 /     

19:12978296-12978385 /     

1:151811332-151811421 OTX2 yes / 

1:44031802-44031891 SNX29 yes / 

1:119527570-119527659 /     

2:66666991-66667080 MAST1 yes / 
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Supplemental Table 6 | Overview of second step panel’s targets (hypermethylated in in situ samples) 

In situ BRCA Target COSMIC? Pubmed? 

11:46342299-46342388 CREB3L1 yes / 

16:68823665-68823754 CDH1 yes 
https://pubmed.ncbi.nlm.nih.gov/?term=CDH1+AND+ 
BRCA+AND+METHYLATION 

1:169866260-169866349 /     

1:209980146-209980235 /     

1:28416463-28416552 /     

1:34088550-34088639 CSMD2 yes / 

1:44466541-44466630 SLC6A9 yes / 

1:53809674-53809763 /     

10:114116638-114116727 /     

11:116955819-116955908 SIK3 yes / 

11:623734-623823 CDHR5 yes / 

11:62528216-62528305 /     

11:65090801-65090890 /     

11:73661160-73661249 /     

13:113365425-113365514 ATP11A yes / 

13:34411571-34411660 RFC3 yes / 

15:96886768-96886857 /     

16:1339765-1339854 /     

16:1465340-1465429 /     

16:31270803-31270892 /     

16:83967295-83967384 /     

17:43976742-43976831 MAPT yes / 

17:7258003-7258092 /     

18:29170539-29170628 /     

19:12253855-12253944 ZNF20 yes / 

19:17621009-17621098 /     

19:24184894-24184983 /     

19:41168291-41168380 /     

19:49455282-49455371 /     

2:163139656-163139745 IFIH1 yes / 

21:40751062-40751151 /     

22:30789988-30790077 /     

3:128779436-128779525 /     

3:152327458-152327547 /     

3:36806148-36806237 /     

3:53036887-53036976 SFMBT1 yes / 

3:73159890-73159979 /     

4:78431944-78432033 /     

5:600768-600857 /     
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6:11112053-11112142 SMIM13 yes / 

6:31862434-31862523 EHMT2 yes / 

6:33033107-33033196 HLA-DPA1 yes / 

6:4286259-4286348 /     

7:66370263-66370352 /     

7:93535685-93535774 GNGT1 yes / 

8:125053098-125053187 FER1L6 yes / 

8:28610735-28610824 EXTL3 yes / 
 
 
Supplemental Table 7 | Overview of liquid biopsy collection 

Tissue Type Group Number LB 

Colorectal Normal 134 

 Adenoma 16* + 114 

 Invasive carcinoma 7 

   

Breast Normal 100 

 In situ 6 

 Invasive carcinoma 73 

* For these samples, a matched fresh frozen sample has also been collected.  LB= Liquid biopsy  

 
 

Supplementary methods 

Liquid biopsies 

For colorectum analysis, blood samples were collected from people between 50 and 74 years old undergoing 

a colonoscopy for both diagnostic (+FIT) and other purposes. People were considered healthy when no other 

cancer-related co-morbidities were described in the medical history, nor inflammatory colon diseases were 

found during the colonoscopy (or previously). A total of 134 healthy people and 114 people with colon 

adenomas were included. To evaluate concordance between tissue and liquid biopsies, especially in our 

invasiveness detection panel, matched tissue and blood samples were collected from 20 patients with 

adenomas. For CRC, a total of 7 early stage cancer patients were included. Blood samples were collected before 

resection of the tumor.  

For breast analysis, blood samples were collected at the UZA and the AZ Maria Middelares. Blood was collected 

before therapy, including resection, chemo, radio and targeted therapy. A total of 6 patients with an in situ 

carcinoma and 73 patients with an invasive carcinoma were included. For CRC and BRCA, blood was sampled 

using Cell-free DNA collection tubes (Roche Diagnostics, Switzerland). Blood was handled within 72h using a 
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2-step centrifugation protocol (low-speed, high-speed) as described by Sorber et al. [1]. Plasma was stored at -

80°C until cfDNA extraction.  

For the controls of BRCA, a subset (n=100) of a larger collection of healthy volunteers is used. In collaboration 

with the SGS Clinical Pharmacology Unit (Edegem, Belgium), blood samples from healthy volunteers (>18y) 

have been collected. People were considered healthy when no cancer-related nor inflammatory comorbidities 

were described in medical history. Blood samples were collected in EDTA tubes and handled within 4-6 h 

according to the centrifugation protocol as described by Sorber et al. [1]. Plasma was stored at -80°C until 

cfDNA extraction. cfDNA was extracted using the QiaSymphony (Qiagen, Germany) according to the 

manufacturer’s protocol. The DNA was stored at -20°C until further use.  
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GENERAL DISCUSSION 

Colorectal cancer (CRC) and breast cancer (BRCA) remain leading causes of cancer-related morbidity and 

mortality worldwide despite established screening programs. Early diagnosis remains challenging due to 

limitations in existing techniques such as fecal immunochemical test (FIT) and mammographies. In recent years, 

DNA methylation has emerged as a promising biomarker for early detection in many cancer types, including 

CRC and BRCA. Together with this, a move towards liquid biopsies for cancer detection is observed. However, 

DNA methylation remains technically challenging. Moreover, the ideal biomarkers are yet to be found. Aiming 

to address these problems, we focused on exploring the methylome for novel biomarkers and implementing 

them in novel assays, using both conventional and novel technologies. 

Methylation: The ideal biomarker? 

As already extensively highlighted throughout this PhD thesis, DNA methylation has several advantages which 

makes it a very promising biomarker. This is further underlined in the numerous studies that have been and are 

being performed. For CRC screening, several FDA-approved assays exist (aforementioned SEPT9 and Cologuard), 

highlighting the potential of DNA methylation as clinical biomarkers. However, they still need to find their way 

into the clinic, especially in the EU. One of the major hurdles here, is the lack of sensitivity for detection of 

advanced adenomas compared to colorectal carcinomas. The mSEPT9 assay for example, only reaches a 

detection sensitivity ranging from 7.9% - 38.7% for adenomas [1–3]. Other blood-based assays for CRC 

detection are being developed, where a trend is seen towards combining multiple methylated biomarkers. For 

example, the ColoDefense assay combines SEPT9 with Syndecan 2 (SDC2), leading to an increased sensitivity 

of 47.8% for adenomas [1]. Although sensitivity remains quite low, it is clear that combining biomarkers is 

important for enhanced detection of adenomas [3].  

Moving towards the ideal biomarkers for CRC screening and early detection, we have investigated DNA 

methylation targets in chapter 4. The results of this study are in line with the general idea that DNA methylation 

biomarkers are powerful targets for cancer detection, especially when several biomarkers are combined. Our 

most promising results were the 13 DMCs that can accurately discriminate adenomas from carcinomas, as this 

remains an important clinical issue. Future validation of these biomarkers, in both tissue and liquid biopsies 

will confirm if the promising in silico diagnostic accuracy can be maintained. 

For BRCA, the best example regarding DNA methylation in diagnostics, is the TCGA analysis for triple negative 

breast cancer (TNBC). The profiling of the methylome of these carcinomas in the TCGA project has revealed 

specific DMRs associated to TNBC, which may serve as potential biomarkers for subtyping [4]. Again, combining 

different regions or sites was key to reach higher sensitivities. 
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Most published studies discussed above, investigated (multiple) methylation biomarkers using MSP or qMSP 

[5]. However, as discussed in chapter 1, these approaches only have limited multiplex capacities. For example, 

to validate our own results from chapter 5, we would need to use another technology as we have more markers 

than can be multiplexed in MSP/qMSP. Recent advances in methylation detection technologies have brought 

forward mostly targeted NGS approaches, but at high cost. Therefore, we have proposed a new method in 

chapter 6, which will be discussed below. 

Towards improved assays for DNA methylation detection  

DNA methylation is clearly an ideal biomarker candidate for early detection. As comprehensively highlighted 

in chapter 1, there exist many technologies for methylation detection. However, some of them are more suitable 

for development of a cancer screening assay compared to others. Ideally, screening must be performed in a 

non-invasive or minimally invasive manner, by using liquid biopsies. A liquid-biopsy based screening assay 

must be low-cost, highly sensitive (can be achieved e.g. by high multiplex capacity), high throughput, and have 

a low analytical detection sensitivity. The latter is especially important when using for example cfDNA, as the 

ctDNA fraction will be very low in early stages. As also described in chapter 1, most of the CE-IVD approved 

tests, are PCR-based. However, PCR-methods have some important disadvantages (see Table 1). Other 

techniques with better detection sensitivities, such as ddPCR and NGS are nowadays becoming more popular. 

Nevertheless, these also come with important limitations (see Table 1). For example, recent technologies such 

as TAPS and EM-seq have advantages in multiplex capacities and detection sensitivity but remain quite 

expensive. In that view, we have developed IMPRESS, as described in detail in chapter 6. 

Table 1 | Overview of performance of different technologies in various aspects 

Aspect PCR methods ddPCR Other NGS-based techniques IMPRESS 

Cost € € €€€ €€ 

Detection sensitivity ++ +++ + + 

Throughput +/- +/- + + 

Turn-around time (TAT) ++ ++ +/- + 

Multiplexing capacity for high diagnostic accuracy - - + + 

With IMPRESS, we strived for developing a technology with all ideal assets. We have created a low-cost method 

(~ €20/sample), with a reasonable detection sensitivity that is currently still being optimized. Moreover, it is 

high throughput and with the smMIPs, many targets can be combined (>2000), leading to increased sensitivity. 

It is especially interesting to compare this with the results from chapter 5, where we used ddPCR. The cost for 

ddPCR is comparable (~ €15/sample) to IMPRESS, but only 96 samples can be analyzed together. One of the 

biggest technical differences, is that the ddPCR analyses were done using bisulfite conversion. This remains up 
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until now the gold standard approach in ddPCR. However, in view of liquid biopsies, it might be important to 

switch to another approach, e.g. an enzymatic approach, to avoid DNA loss. NGS has a bigger multiplex capacity 

than ddPCR, which can drastically increase sensitivity. Contrary, ddPCR has the major advantage that its 

detection sensitivity is extremely low. Theoretically, it can reach 0.001% detection sensitivity, but we observed 

sensitivities down to 0.8% in our study. This is still quite low compared to NGS technologies (1%-2%) [6,7]. With 

IMPRESS, the limit for methylation detection (LOD) is 4% but is currently being optimized to reach a lower LOD, 

which is necessary for low ctDNA values in early detection.  

In view of performance, IMPRESS and ddPCR are very alike when it comes to biomarker analysis on fresh frozen 

tissue. In chapter 5, we developed 2 ddPCR assays encompassing a total of three targets, which were also 

analyzed using IMPRESS in chapter 6. Therefore, we can directly compare these two technologies. To be able 

to compare, a single model evaluating sensitivity and specificity was built for all different targets. For IMPRESS, 

ROC-curves were made based on the normalized counts. For ddPCR, the ROCs were built using the methylation 

levels. The sensitivity and specificity of the single ddPCR models were compared with those from the single 

smMIP models for the three targets. Table 2 shows that only minimal differences between both technologies 

are found. These results indicate that the IMPRESS technique performs at least equally well as the gold standard 

ddPCR.  

Table 2 | Overview of target performance in ddPCR versus IMPRESS  

Target 
Sensitivity Specificity AUC 

ddPCR IMPRESS ddPCR IMPRESS ddPCR IMPRESS 

chr2:73147755-73147844 83.5% 81.1% 98.2% 97.4% 0.916 0.898 

chr5:76923876-76923965 81.6% 79.0% 88.2% 94.7% 0.861 0.913 

chr7:8482030-8482119 72.3% 87.2% 91.8% 83.3% 0.842 0.892 

Single versus multi cancer detection 

From our results, we believe IMPRESS could become an important player in the DNA methylation detection 

field. Taken together with methylation as a rising biomarker in the clinic, our goal is to implement IMPRESS 

assays as early detection tools for cancer. In chapter 6, we have addressed this by building a biomarker panel 

covering eight of the most frequent cancer types, a so-called multi-cancer detection (MCD) assay. However, in 

chapter 7, we focused on single-cancer assays for CRC and BRCA. For this study, we used a different methylation 

signature than the one for our multi-cancer study. Several reasons explain this difference. First, our multi-

cancer methylation signature was based on TCGA data, which only has 450K methylation array data. However, 

with the introduction of the novel EPIC methylation array, large EPIC datasets were built for some cancer types. 

As described in chapter 4, such EPIC datasets were publicly available for CRC. Moreover, we also built our own 
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in-house dataset using EPIC arrays. As such, a novel methylation signature for CRC was made. For BRCA, there 

were ample EPIC datasets, so we initially chose to expand the TCGA analysis with additional public datasets as 

we also wanted to investigate in situ carcinomas that are not present in the TCGA. After this search, we ended 

up with a large dataset, in which combining TCGA with this dataset would lead to a big imbalance for invasive 

carcinomas. Therefore, we focused only on the novel datasets that also included in situ carcinomas. 

In Flanders, screening programs are only implemented for three cancer types (BRCA, CRC and cervical cancer). 

In this view, it is much more feasible to create a single cancer assay that can be directly compared to the current 

gold standard screening method. We did not focus on cervical cancer in this PhD thesis, as in the initial TCGA 

analyses, there were too little controls to allow for robust analyses [8]. Lastly, screening has only been proven 

effective in CRC, as both mortality and incidence have been reduced [9,10]. In other cancer types, for example 

breast cancer, benefits of screening remain debated [10–12]. Therefore, the introduction of the MCD in clinic 

is much more complex than a single-cancer assay. 

Of course, there are also some disadvantages when using single-cancer assays. For example, many patients 

present with vague symptoms, such as weight loss, pain, tiredness… [13]. Screening for cancer with multiple 

single cancer tests requires performing these tests sequentially. However, as the false-positive rates (FPR) of 

the separate tests are cumulative, this approach is prone to high FPRs, which in turn can lead to an increased 

number of unnecessary, invasive follow-up procedures and stress for the patient. In that light, MCDs have 

gained much more attention in recent years. 

The holy grail: Multi-cancer early detection 

Given the challenges that exist for current screening methods, a blood-based test for simultaneous detection 

of multiple cancer types in an early stage (multi-cancer early detection, MCED) has become an important goal 

in oncological research [14]. There are some important advantages why MCED could prove very useful in clinic 

[15,16]. As mentioned before, using single cancer tests sequentially leads to high FPR. In contrast, the reported 

false-positive rate for most MCEDs is <1% [16]. Furthermore, in the discussions about cancer screening, there 

has been suggested that broad coverage of cancer by screening, in particular blood-based screening, could 

potentially deliver the greatest benefit in patients. Especially for cancers that are considered curable and can 

progress quickly, such as BRCA, CRC but also lung, esophagus and head & neck cancer, early detection is 

considered beneficial [10]. Also, current screening programs only cover 30% of all cancer-related deaths among 

the eligible screening population. MCEDs can become a screening option for 70% of lethal cancers that have 

currently no effective tests. And for the cancers that do have screening options, MCEDs could be used to find 

cancers in people that are ineligible for - or missed by standard screening [17]. This has been described in the 

study of Hathaway et al. They found that an additional 11% of women could have been screened should an 
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MCED be present during a routine examination[18]. Lastly, an MCED would be a more cost-effective approach 

than single-cancer assays, especially for low prevalent cancers [14,16,19]. 

Next to all health-related advantages of MCEDs, a crucial aspect to consider is patient preference regarding 

such tests. In that view, Myers et al. conducted a study in older adult primary care patients, to assess their 

receptivity to an MCED test [20]. A total of 159 patients were included. They found that the interest in MCED 

testing was high (79%) and was not influenced by amongst others: age, gender, ethnicity and education level. 

Another study by Gelhorn et al. showed comparable results, where 72% of respondents (n=1700) preferred 

MCED screening to no cancer screening [21]. However, both studies were done in the USA, so European studies 

are needed to verify whether patient preference might differ in this different demographic background. 

A widely debated disadvantage of cancer screening, which will be particularly important in MCED, is 

overdiagnosis and subsequent overtreatment. This occurs upon detection of a cancer that would not have 

progressed to impact life expectancy nor quality of life. Intuitively, this is more challenging in MCED than in 

single cancer assays, as multiple cancers ranging in aggressiveness are detected with an MCED. In the 

Hippocratic Oath, health providers swear to ‘do no harm;’ However, overdiagnosis can lead to either physical 

harm and/or psychological harm. It is of extreme importance that MCEDs will be evaluated in further studies 

to understand the implications of MCED screening compared to standard (single cancer) screening methods 

and to determine the ideal MCED testing interval to balance cancer detection and overdiagnosis [17,22,23]. An 

important trial in this aspect will be the Vanguard study, discussed below. 

Most MCEDs that have been developed, focus on the analysis of circulating molecules in blood and cfDNA. It 

was already outlined in the discussion of chapter 6 that there exist multiple MCEDs (CancerSEEK, PanSeer, 

Galleri), each focusing on distinct types of modifications, different circulating molecules and using different 

technologies [22]. Nevertheless, many of the described assays and studies focus on DNA methylation, which is 

in line with our research regarding an MCED IMPRESS assay. To outline the importance of DNA methylation 

MCEDs and potential clinical impact, a few clinical studies will be discussed below. 

One of the biggest companies focusing on MCED through DNA methylation is GRAIL. They have developed the 

aforementioned Galleri test, which can detect 50 cancer types through liquid biopsy. GRAIL has funded many 

large-scale clinical studies, amongst others the Circulating Cell-free Genome Atlas (CCGA, NCT02889978) [14]. 

The CCGA study included over 15 000 participants with and without cancer for longitudinal follow-up. The 

study was divided in three subparts: 1) to evaluate three different sequencing assays [16] 2) Chosen assay 

development, training and validation for simultaneous detection of 50 cancer types and tissue of origin (TOO) 

[24] and 3) Independent validation of the assay, specific for screening purposes [25]. In the first sub-study, 

methylation analysis (whole genome bisulfite sequencing) outperformed genomic technologies (WGS and 

targeted mutation analysis), emphasizing once again that DNA methylation analysis is the most promising 
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approach for early cancer detection [14,16]. In the second study, a targeted methylation assay was developed, 

trained and validated in over 6 500 participants. The goal here was to simultaneously detect over 50 cancer 

types and discriminate in TOO. Prediction accuracy for the latter was 93%, while a sensitivity of 43.9% for early 

detection was found at 99.3% specificity [14,24]. In the independent validation sub study, TOO prediction 

accuracy decreased to 88.7%, while sensitivity and specificity increased to 51.5% and 99.5% respectively 

[14,25,26]. Besides the CCGA study, GRAIL is conducting other trials to improve the test’s potential as a 

screening tool, a.o. the PATHFINDER (NCT04241796) and NHS-Galleri trial (ISRCTN91431511). The 

PATHFINDER trial already enrolled over 6 500 asymptomatic participants in the USA for assessment of the 

Galleri test in clinical practice. Unique for this trial, is that test results are returned to health care providers and 

patients for medical intervention [14,17,26,27]. The NHS-Galleri trial is conducted in the UK. For this trial, 

asymptomatic individuals are being recruited to evaluate whether the MCED can reduce the incidence rate of 

late-stage cancer in the intervention compared to the control arm [27]. An important trial that is being launched, 

is the Vanguard trial from the National Cancer Institute (NCI). In this trial, MCED blood tests will be selected 

and assessed to determine their efficacy and also safety in 1) detecting cancer and 2) preventing cancer-related 

deaths [20,28]. To check for safety is an important goal because, in addition to how a test performs, harms 

associated with cancer screening (described above) must be evaluated. We can learn from these studies, as they 

might highlight both improvements and challenges to overcome in designing future large-scale studies that 

we aim to perform with IMPRESS. 

Although GRAIL has done some remarkable work, there is still important added value of other MCED, such as 

the IMPRESS assay that we are currently developing for liquid biopsies. As already touched upon in table 1, 

IMPRESS has the advantage of being a low-cost technology with low-cost assays. Furthermore, IMPRESS has 

the advantage of being bisulfite-free, contrary to the Galleri test. In that view, we expect to achieve even better 

diagnostic accuracy. Of course, several important steps will first need to be taken before we can fully compare 

our IMPRESS MCED to GRAIL’s. In this view, an essential and ongoing aspect of our research is the TOO 

prediction with IMPRESS. Our current assay is not able to distinguish cancer signals, which is of utmost 

importance for clinical use. Lastly, IMPRESS must be further optimized for use in liquid biopsies (currently 

ongoing) and later also validated in independent cohorts and large clinical trials. 

Applications of IMPRESS beyond cancer detection 

Although we developed IMPRESS with a biomarker panel intended for use in early cancer diagnosis, there are 

far more options for this technology. One very important future application in cancer, is minimal residual 

disease (MRD) detection in liquid biopsies. For this, the LOD of IMPRESS must be optimized to reach very low 

sensitivities. As IMPRESS is a low-cost technology with a relative short TAT, patients could be easily followed-

up throughout their remission. Another potential application is therapy follow-up. Researchers within our group 



                                                                                                            General Discussion & Future Perspectives 

 237 

are focusing on DNA methylation biomarkers for both intrinsic and acquired resistance to therapy. These 

patterns could then be analyzed using specific IMPRESS panels.  

Besides applications in cancer, IMPRESS could be useful for implementation in any DNA methylation-related 

research field and disease. An important example would be detection of viral infections, such as SARS-CoV-2. 

Research throughout the pandemic has made clear that DNA methylation patterns are important predictors for 

COVID-19 severity in affected individuals and can discriminate patients from uninfected persons [29]. 

Furthermore, it became clear that cost-effective high-throughput methods were lacking. In this view, IMPRESS 

panels designed for detection of either viral methylation or host methylation due to viral infection could 

become an important added value in the infection disease field. Furthermore, IMPRESS could become an 

important asset in the neuroscience field. Especially for use of early detection of DNA methylation biomarkers 

related to aging, and thus disease in elderly such as dementia or other cognitive impairment conditions. Recent 

research has highlighted the role of DNA methylation in these diseases and the potential of early detection 

methylation biomarkers [30,31]. Lastly, epigenetic research beyond biomedical applications, for example 

biological or biosocial research topics, can also benefit from our technology [32]. In all, IMPRESS has many 

potential applications, both in a research setting as well as in future clinical implementation.  

Liquid biopsies: current contributions and challenges  

One of the main reasons we developed IMPRESS, is to have a low-cost, highly sensitive and bisulfite-free 

technology for cancer detection in cfDNA. Throughout this PhD, IMPRESS was developed and optimized for use 

in fresh frozen tissue (Chapter 6). We have included a few preliminary results of liquid biopsies in this chapter, 

where we already highlight the feasibility of using IMPRESS for cancer detection in liquid biopsies. Besides 

these results, we have continued to optimize IMPRESS for use in cfDNA. Currently, one of our main challenges 

is the low amount of cfDNA – and thus ctDNA that is present in samples, which is a known problem in the field. 

We have successfully sequenced down to 5ng of cfDNA, but some samples are not reaching this input amount. 

A reason for this might be that we use leftovers from the NIPT samples. To take up the challenge of sequencing 

lower input amounts, we have already tried several approaches. We started with sequencing lower input 

amounts of 1-3ng cfDNA, but we noticed that too many so-called ‘empty smMIPs’ are created. We already 

established that changing the smMIP-to-DNA ratio does not affect this. It will be further investigated by other 

researchers of our group. Furthermore, we looked into ways of increasing the input amount of the already 

extracted samples. A first strategy we used, was vacuum centrifugation of the cfDNA samples that were already 

extracted. Unfortunately, this increased the salt concentration too much for the restriction enzymes to digest 

the samples properly. We also used bead purification, to lower the volume of sample and as such increase the 

concentration. Regrettably, too much DNA is lost with this procedure. Lastly, we looked into changing the 

elution volume upon cfDNA extraction. This is of course only an option for plasma samples where cfDNA has 
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not been extracted yet. This is currently ongoing, and up until now the most promising method to increase the 

cfDNA input amount. In literature, plasmapheresis has been suggested as a potential strategy to obtain more 

cfDNA [33]. However, this could only be used in e.g. minimal-residual disease detection and is less favorable 

for screening purposes.  

Throughout this PhD, several blood sample collections were started. Colorectal and breast samples were 

specifically collected for this PhD (see chapter 7). In view of future validation of IMPRESS, the COLIPAN 

(Collection Of Liquid biopsies in PANcancer patients) study was initiated. In this study, adults (>18 y/o) with a 

new cancer diagnosis are asked to participate by donating three blood samples before treatment. Included 

cancer types are colorectal, breast, lung, esophageal, head & neck, liver, pancreatic and prostate cancer. In this 

study, over 60 patients have been included. Furthermore, we also looked into collecting blood samples from 

people with other conditions where plasma cfDNA levels are elevated, e.g. auto-immune diseases (n=20) and 

inflammatory diseases (n=53). This is important to make sure we have a cancer-specific assay. Lastly, blood 

samples from healthy volunteers are being collected in collaboration with SGS, a company focusing on clinical 

trials. Here, over 300 people have been included, with a total of more than 150 persons aged older than 50. As 

such, we have age-matched controls for our cancer patient samples. 

One of the main difficulties in liquid biopsy research, is the implementation of pre-analytical standards. Efforts 

of large consortia (e.g. BLOODPAC) and societies (e.g. European Liquid Biopsy Society) have resulted in pre-

analytical standards provided by the International Standards Organization (ISO). The ISO 20186-3:2019 is an 

international guideline for cfDNA examination, published in September 2019. The ISO guidelines are available 

upon payment of around €100 and provide requirements and recommendations on the handling, storage, 

processing and documentation of cfDNA examination from venous blood samples in a controlled environment. 

Despite this great initiative, wide-spread implementation of the ISO standard is limited. A recent preprint by 

Bonstingl et al. [34] evaluates the implementation of the standards in an actual research project. Despite the 

advantages of standardized workflows, one particularly important hurdle is the personnel required for 

managing and processing liquid biopsies. According to their study, it takes two full time biomedical scientists 

to fulfill the requirements of the ISO standards. Furthermore, as is also the case in our studies, blood samples 

for research purposes are often taken during clinical routine and forwarded to the lab. This makes it difficult to 

adhere to standards such temperature variations, tube inversions, identity of the person drawing blood… Of 

course, ISO standards should be implemented in a diagnostic setting where accredited tests are performed, but 

for research purposes, the most cumbersome recommendations are omitted. 

Within CMG, we work with Standard Operation Procedures for our blood sample collections. We aim to use 

these SOPs for all our collections, to assure uniformity. As mentioned before, for research purposes the ISO 

standards are not fully implemented. However, we do aim to use the same blood collection tubes within studies, 
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the same centrifugation protocols, storage conditions and cfDNA extraction protocols. We have documents to 

report time of blood drawing, time of processing etc. Within one study, we adhere to one SOP. Nevertheless, 

our SOPs still might deviate between studies as research is always evolving, and unexpected changes may 

influence ongoing blood collections. Also, our SOPs might deviate from other research centers, which further 

complicates validation of biomarkers and assays. These are all very important aspects that will need evaluation 

in future studies. 
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FUTURE PERSPECTIVES 

The era of liquid biopsies  

Colorectal Cancer  

Throughout the introduction and general discussion of this thesis, it has already become clear that much work 

has been performed on the subject of ctDNA methylation for CRC [35]. This has led to the first methylation 

blood-based test, the EpiProColon. However, as discussed, this test is still not optimal in view of sensitivity and 

specificity. It has been shown that combining more targets, increases the test sensitivity, which is important for 

early detection. This is exactly where IMPRESS could prove very useful. As discussed above, challenges must 

be overcome in the (near) future to be able to introduce a CRC-specific IMPRESS assay, but the fundaments for 

such assay are already provided in this thesis (Chapter 7). 

Another liquid biopsy that has been gaining considerable attention in recent years, is urine. Whereas ctDNA has 

been extensively studied in blood, only few studies focus on the use of urine for CRC diagnosis [36,37]. The 

results of these studies indicate that total ctDNA from urine is a very promising diagnostic tool for future 

evaluation and implementation in the clinic. Here, IMPRESS might become an important new approach for 

urine-based ctDNA assays.  

Studies for other liquid biopsy types are scarce. There is one study of Van ‘t Erve et al. [38] that describes the 

detection of ctDNA in peritoneal fluid. Furthermore, in other cancer types, breath condensates and saliva have 

been described as liquid biopsy. However, for CRC there are currently no studies on ctDNA in these fluid types. 

Within one of our ongoing studies, we have ethical approval for sampling breath condensates from CRC 

patients, so it might be a very interesting future project to analyze such samples for the presence of ctDNA 

(methylation). 

Breast Cancer 

Blood-based testing in BRCA has been less studied compared to CRC. cfDNA methylation analyses are mostly 

described in literature as discovery studies, with few methylation targets analyzed [39–41]. The most studied 

(hyper)methylated genes in BRCA include BRCA1, RASSF1A and GSTP1 [40,41]. Once again, these studies show 

that combining targets increases assay sensitivity. The CCGA study from GRAIL included BRCA and has already 

been described in the discussion before. Specific for BRCA, TOO detection and specificity were high (93% and 

99.3% respectively), but sensitivity for the validated cohort was only 30.5% across all stages [25,39]. Despite 

the low sensitivity, these results still highlight the potential of DNA methylation analysis of cfDNA for early 

BRCA detection. Besides DNA methylation, mutation detection of amongst others PIK3CA and ESR1 in cfDNA 
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also gives promising results [41,42]. In the future, combining both mutation and methylation detection 

strategies might further enhance the sensitivity for early detection assays.  

As opposed to CRC, there are no cfDNA methylation studies for BRCA in other fluids. A few studies describe the 

use of mutation detection in cfDNA extracted from urine [43–45]. Larger cohorts will be needed for validation 

of these findings towards clinical applications, but the use of urine for cancer detection includes important 

advantages in view of frequent and non-invasive testing. Furthermore, a few studies have investigated the use 

of nipple aspirate fluid (NAF) and saliva as liquid biopsies, but focused on miRNAs and proteomics instead of 

cfDNA [40,41]. 

Reflecting on this, early diagnosis whilst minimizing patient stress and discomfort is gradually becoming more 

feasible. The addition of IMPRESS to the DNA methylation detection research field, also contributes to the 

possibilities of developing affordable tests for cancer diagnosis. This can in turn lead to more options for 

screening in the population-based screening program. Of course, cost-effectiveness is a crucial part of an 

optimal screening program. Therefore, further research is necessary to determine the efficacy and economical 

value of alternative screening modalities, especially compared to current gold standard methods. 

An important aspect of any novel assay or technology is its implementation in clinical settings. For IMPRESS, 

implementation in diagnostics is feasible, as sequencers are now routinely available in any diagnostic 

laboratory. IMPRESS does not require any other specific laboratory equipment, facilitating quick 

implementation in any lab. Another crucial step for clinical implementation is the use of IMPRESS in future 

clinical trials. For this, we have already established several research connections through previous clinical trials, 

with various hospitals in Europe. In this context, a therapy follow-up or minimal residual disease assay can be 

more easily implemented in the short term. Additionally, our screening assays for CRC and BRCA, which we are 

currently developing (Chapter 7), could complement current screening programs in the future to evaluate their 

accuracy and potentially replace them in the long term. Also, to ensure its valorization, we have already 

prioritized intellectual property by filing for a patent for the IMPRESS technology. Lastly, our biomarkers must 

be carefully evaluated in different populations to account for potential confounding effects of ethnicity. DNA 

methylation has been reported to vary among distinct populations, based on ancestry [46–48]. Furthermore, 

our previous studies have shown that this variation depends on the specific biomarker. For instance, Ibrahim et 

al. did not observe a confounding effect of ethnicity on GSDME methylation [49]. Therefore, the evaluation of 

future biomarker panels must be conducted in diverse populations to ensure smooth implementation. 

All the efforts that are highlighted throughout this thesis prove that a shift towards the use of liquid biopsies  

in the clinic will take place in the future. There are a few important directions where liquid biopsies will become 

important medical tools. As previously mentioned, early detection through liquid biopsies is the most 

challenging problem that many researchers aim to tackle in the approaching years. Upcoming technological 
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advancements along with cost reductions will allow the screening of cancer via liquid biopsies. These will likely 

be blood samples at first, but will be expanded to urine and even other fluids in the long-term future. As single-

cancer assays are easier to develop, these are expected to be implemented in a reasonable amount of time. 

However, once TOO prediction is more efficient and specific, it is more likely that multi-cancer screening tests 

will enter the market. Besides screening, liquid biopsies will also play an important role in monitoring of cancer 

such as MRD, therapy follow-up and treatment decisions. And lastly, an essential issue that might be solved 

using liquid biopsies, is the molecular subtyping of cancers. For both CRC and BRCA, but also for other cancer 

types, tumor heterogeneity affects treatment. By uncovering novel molecular markers such as DNA methylation 

and others and implementing analysis of these targets in liquid biopsy samples, personalized medicine for 

almost all patients will become more feasible. 

The era of (multi) omics  

In the past few years, novel omics strategies have gained attention for liquid biopsy applications in cancer. One 

of the most important examples is fragmentomics. This strategy is based upon multiple observations that cfDNA 

fragment length differs between healthy people and cancer patients. These differences include a more variable 

fragment size pattern in cancer patients, with a higher number of fragments below 150 bp and a lower number 

of fragments between 151-218 bp. In healthy persons, the average size is 167bp, whereas in cancer patients, 

this is 143 bp. Fragmentation is related to the TOO and leads to specific signatures of fragment size, nucleotide 

end motifs and break point motifs that can be researched [50–52]. In 2019, Cristiano et al. described the first 

test using fragmentomics with their technique called ‘DELFI’ (DNA evaluation of fragments for early 

interception). DELFI uses WGS to profile fragment size. In their study, 7 cancer types, including CRC and BRCA, 

were evaluated. A sensitivity ranging from 57% to 99% was reached at a specificity of 98%, with accurate TOO 

prediction of 75%. Upon combining with genomic strategies (mutations), 91% of cancers could be detected 

[23,50,53]. More recently, Bao et al. also described a fragmentomics-based MCED, where they use multiple 

cfDNA fragmentomic features stacked in a machine learning model. Even with only 1X coverage, they reached 

a sensitivity of 91.5% at 95% specificity, with 91.6% TOO prediction accuracy [54]. Fragmentomics is a very 

promising new field, and many studies provide proof of concept for limited sample sizes and limited cancer 

types. Larger validation studies are needed to prove its value in clinical applications.  

As already extensively addressed in this thesis, DNA methylation plays different roles in cancer. The molecular 

alterations driving carcinogenesis can also affect noncoding RNAs and mRNA [55]. In this field of 

transcriptomics, most research has focused on microRNAs (miRNAs) which are small, non-protein coding RNAs 

that regulate gene expression. miRNA expression profiles have diagnostic value. Some miRNA levels are indeed 

altered in cancer, e.g. CRC, and regulate the RAS gene involved in tumorigenesis [56,57]. For example, several 

studies describe miR-92a and mi-R29a as potential plasma biomarkers for detection of colon adenomas and 
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carcinomas. Sensitivities of 73% and 83% respectively were reported at specificities around 80% [58]. 

Furthermore, long noncoding RNAs (lncRNAs) have also been reported to be useful for diagnostic purposes 

[57]. Gene expression analysis has already been implemented in clinical practice (e.g. Oncotype DX and 

MammaPrint), but only for prognostic purposes [57]. Only a short time ago, Stanley et al. published a diagnostic 

strategy based on single cell RNA-sequencing of cfDNA. Within their study, the classification models for CRC 

and BRCA could differentiate patients from matched controls with 84.7% and 90% accuracy respectively. This 

study once again highlights the future potential of transcriptomics for liquid biopsies [59]. Converting this 

towards our research, smMIPs have been described to be used for RNA sequencing by Arts et al [60]. Although 

outside of our current research scope, it could be very interesting to look into combining IMPRESS and smMIP-

RNA-seq for increased sensitivity in the future.  

Integrating multimodal information to improve assay performance has become more attractive and is one of 

the general future directions of the cancer detection research field. In view of this PhD thesis, combinations of 

epigenomics with other omics strategies is the most interesting approach. For single cancer assays, it has been 

reported that integrating multiple omics methods increases sensitivity compared to single modalities, if at least 

two different types of data are combined [61]. This is for example shown by Putcha et al. who combine 

genomics, epigenomics and proteomics through machine learning. Their combination of signals can detect 

early stage CRC with high sensitivity and specificity (92% and 90% respectively) [62]. Besides for single cancer 

assays, multi-omics are also increasingly used for MCED assay development. For one thing, studies show the 

potential of combining epigenomic and fragmentomic signals from cfDNA [23]. A recent example hereof is the 

GutSeer assay, commercially available through Singlera. It leverages fragment coverage, end-motif and cfDNA 

methylation features to detect and localize five deadly gastro-intestinal cancers. At specificities of 97%, this 

test reaches 86% sensitivity and 82% TOO accuracy [23,63]. Furthermore, Tomeva et al. describe the 

combination of cfDNA epigenomic (methylation), genomic (mutations) and transcriptomic (miRNA) analytes for 

increasing assay sensitivity. Via qPCR, they achieve high accuracy (95%) and very high sensitivity (97.9%) at 

specificity of 80% [64]. Looking at IMPRESS, we could easily combine genomic targets such as mutations and 

CNVs with epigenomic targets to improve diagnostic yield of our assays. Despite the recent research, it is too 

early to determine which combinations of molecular components will provide the highest diagnostic accuracy. 

Further research is needed to determine the optimal multi-omics strategy for clinical applications. 

In the rapidly evolving multi-omics field, technologies that implement different omics, such long-read 

sequencing (epigenomics and genomics), will become the most important tools for clinical implementation. 

While long read sequencing is nowadays not feasible in a clinical setting due to its high cost, it is plausible 

that the cost will drop drastically in the coming years, allowing its implementation in a diagnostic context. 

Together with future innovations, it might become possible to create a ‘molecular passport’ for a patient, that 
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can be coupled to their medical file. Combining multi-omics with liquid biopsies will allow fast and 

personalized approaches for many patients. 

Lastly, throughout all studies, it also becomes clear that computational methods are becoming of enormous 

importance in cancer research. In this view, artificial intelligence (AI) is rapidly growing and shaping the future. 

New applications are emerging, for example in pathology analysis, where AI-powered digital platforms assist 

pathologists in analyzing tissue samples more efficiently. In omics research, AI could become useful for 

analyzing large-scale data and identifying potential biomarkers. However, it will be crucial to carefully evaluate 

the use of such technology in future clinic applications. 
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CONCLUSION 

Cancer remains a world-wide problem. Despite many efforts, non-invasive, early detection is still difficult. 

Addressing this challenge relies upon the refinement of robust biomarkers and innovative diagnostic 

methodologies. This thesis explored the examination of aberrant DNA methylation profiling in cancer and the 

consequent development of diagnostic biomarkers and assays. Through comprehensive analysis, we have 

investigated novel biomarkers to augment cancer detection, using both conventional and state-of-the-art 

technologies. We contributed to the increasing interest in early cancer detection of multiple cancers, while also 

paving the way for future applications in CRC and BRCA detection. Our assays hold promise as non-invasive tools 

for early cancer diagnosis. While concluding this Ph.D. study, further research is crucial to translate findings 

into clinical practice. Looking ahead, insights from this work offer potential for developing liquid biopsy assays 

and multi-omics strategies in cancer research and beyond. 
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LIST OF ABBREVIATIONS 

 

%CV Intra-class coefficient of variability 
(q)MSP (quantitative) Methylation-Specific PCR 
5caC 5' carboxyl-cytosine 
5fC 5'formyl-cytosine 
5hmC 5' hydroxymethylated cytosine 
5mC 5' methylated cytosine 
A-C-N Adenoma-Carcinoma-Normal 
ATCC American Type Culture Collection 
AUC Area under the curve 
BRCA Breast  cancer 
BSAS Bisulfite Amplicon Sequencing 
BSPP Bisulfite padlock probes 
CA19-9 Carbohydrate antigen 19-9 
CCGA Circulating cell free genome atlas 
CEA Carcinoembrionic antigen 
CE-IVD European certified in vitro diagnostics 
cfDNA Cell free DNA 
CGI CpG Island  
CHARM Comprehensive High-throughput Arrays for Relative Methylation 
CIMP CpG island methylator phenotype 
CNV Copy number variation 
COBRA Combined Bisulfite Restriction Analysis 
COLIPAN Collection of liquid biopsies in pancancer patients 
COSMIC Catalogue of Somatic Mutations in Cancer 
CRC Colorectal cancer 
CUP Cancer of Unknown Primary 
cvAUC Cross-validated area under the curve 
ddPCR Droplet digital PCR 
DE DMPs Double evidence” differentially methylated probes 
DHU Dihydrouracil 
Di Depth of invasion 
DMB Differentially Methylated Blocks 
DMP Differentially Methylated Probes 
DMR Differentially Methylated Regions 
DREAM Digital Restriction Enzyme Analysis of Methylation 
DSZM German Collection of Microorganism and Cell cultures 
ELISA Enzyme-Linked Immune-Sorbent Assay 
ELSA-Seq Enhanced Linear-Splinter Amplification Sequencing 
EM-seq Enzymatic Methyl sequencing 
EMT Epithelial to mesenchymal transition 
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EMX1 Empty Spiracles-Like Protein 1 
EpiGScar  Epigenomics and Genomics of Single cells analyzed by restriction 
ER Estrogen receptor 
ESMO European Society of Medical Oncology 
ETD Extra tumoral Deposit 
FDR False Discovery Rate 
FFPE Formalin-fixed paraffin-embedded 
FIT Fecal Immunohistochemic Test 
FRET Förster Resonance Energy Transfer 
FS Flexible sigmoidoscopy 
GEO Gene Expression Omnibus 
GO Gene Ontology 
GSEA Gene Set Enrichment Analysis 
Hammer-Seq Hairpin-Assisted Mapping of Methylation of Replicated DNA Sequencing 
HCC Hepatocellular carcinoma 
HELP HpaII-tiny fragment Enrichment by Ligation-mediated PCR 
HR Hormone Receptor 
IBD Inflammatory bowel disease 
IC Interval Cancer 
ICGC International Cancer Genome Consortium  
IHC Immunohistochemistry 
IMPRESS Improved Methylation Profiling using Restriction Enzymes and smMIP Sequencing 
ISO International standards organisation 
LDA Linear discriminant analysis 
LDT Laboratory developed test 
LNM Lymph node metastasis 
LOB Limit of blank 
LOD Limit of detection 
LUMA Luminometric Methylation Assay 
LVI Lymphovascular invasion 
MBD Methyl-CpG binding domain 
MCD Multi-cancer detection 
MCED Multi-cancer early detection 
MCTA-Seq Methylated CpG Tandem Amplification and Sequencing 
MDS Multidimensional scaling 
MeDIP Methylated DNA immunoprecipitation 
MED-seq Methylated DNA sequencing 
MHC Major histocompatibility complex 
MIMIC Minimal methylation classifier 
MMR Mismatch repair 
MRD Minimal residual disease 
MSI Microsattelite instability 
MS-MLPA Methylation-Specific Multiplex Ligation Probe Amplification 
MSRE Methylation-sensitive restriction enzymes 
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MT-sDNA Multitarget stool DNA 
Mwcnt Multi-Walled Carbon Nano Tubes 
NAF Nipple aspirate fluid 
NCI National cancer institute 
NET Neuroendocrine tumor 
NFQ-MGB Non-fluorescent quencher minor groove binder 
NGS Next-generation Sequencing 
NMBIC Non-muscle invasive bladder cancer 
NST No specific Type 
NXPH1 Neurexophilin 1 
OBBPA-ddPCR Optimized bias-based pre-amplification ddPCR 
ONT Oxford Nanopore Technologies 
OR Odds Ratio 
PBAT Post bisulfite adaptor tagging 
PR Progesteron receptor 
ROC Receiver operating characteristic (curve) 
ROI Region of Interest 
RRBS Reduced Representation Bisulfite Sequencing 
SDC2 Syndecan 2 
SD Screen Detected 
SERS  Surface-Enhanced Raman Spectrophotometry 
smMIP Single molecule Molecular Inversion Probes  
SMRT Single Molecule Real-Time 
TAPS TET-Assisted Pyridine borane Sequencing  
TAT Turn around time 
TCGA The Cancer Genome Atlas 
TcP Tumor cell percentage 
TET Ten-eleven translocation  
TGS Third Generation Sequencing 
TNBC Triple negative breast cancer 
TNM Tumor, Node, Metastasis 
TOO Tissue of origin 
t-SNE T-distributed stochastic neighbor embedding  
TSS Transcription start site 
UMI Unique molecular identifier 
UTR Untranslated region 
WGA Whole genome amplified 
WGBS Whole Genome Bisulfite Sequencing 
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