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1 Introduction

The contribution of Corrado Gini to the �eld of inequality measurement can

hardly be overestimated.1 In his path-breaking work, Gini (1914b) introduced

the concentration ratio as a new inequality measure and showed how it is linked

to the Lorenz curve and to the mean absolute di�erence between all income pairs.

This contribution spearheaded the statistical approach to inequality measure-

ment.2

The focus of Gini and his contemporaries was on the measurement of inequality

in a single characteristic. Often, the characteristic of interest was a monetary

variable such as income and wealth, but Gini (1921, p.124) stressed himself that

�the same methods are, on the other hand, not only applicable to incomes and

wealth, but to all other quantitative characteristics (economic, demographic,

anatomical or physiological)�. More recently, under the impetus of scholars like

Amartya Sen (1985; 1992), an interest has grown around measures of multidi-

mensional inequality that summarize the inequality in multiple characteristics

in a single measure.3

The main di�erence between a multidimensional approach to the measurement

of inequality and a dimension-by-dimension analysis of each characteristic sep-

arately, is that the latter is not sensitive to the dependence between the charac-

teristics (Decancq, 2014). Consider, for instance, a society where one individual

is top-ranked according to all characteristics, another individual second-ranked,

and so on. This society, reminiscent of a caste system, is arguably less equal

than another society with exactly the same distributional pro�le in each char-

acteristic separately, but where some individuals are performing relatively well

on some characteristics and other individuals on others. Despite the di�erence

in dependence between the dimensions, both societies will be judged to be at

the same level of inequality by all dimension-by-dimension approaches.

1See Giorgi (1990, 1993) for (bibliographic) overviews of Gini's contribution to the �eld of
inequality measurement.

2The statistical approach may be contrasted with the normative approach to the meas-
urement of inequality, developed in the wake of Dalton (1920) and Atkinson (1970). This
normative approach focuses on the social welfare cost of inequality, rather than on inequality
itself.

3For a non-exhaustive overview of the literature on multidimensional inequality measure-
ment, see Kolm (1977); Atkinson and Bourguignon (1982); Maasoumi (1986); Tsui (1995);
Weymark (2006); and Bosmans et al. (2015). Andreoli and Zoli (forthcoming) provide an re-
cent review and study how results about unidimensional stochastic dominance can be extended
to the multidimensional setting.
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In this paper, I discuss the measurement of a speci�c aspect of dependence

between dimensions of well-being, i.e., the cumulative deprivation and a�uence.

We say that there is more cumulative deprivation in a society when more persons

occupy bottom positions in all dimensions of well-being.4 Several observers

have argued that cumulative deprivation in itself is undesirable and unjust,

see Decancq and Schokkaert (2016) for an overview. Similarly, there is more

cumulative a�uence in a society when more persons occupy top positions in all

dimensions. While the notions of cumulative deprivation and a�uence focus on

di�erent parts of the distribution, they are both concerned with the question

of whether the positions in all characteristics are aligned. In other words, both

notions focus on the dependence around the main diagonal of the multivariate

distribution of positions.5

To quantify the dependence around the main diagonal, I follow an approach that

echoes the Gini approach to inequality measurement. First, I introduce the di-

agonal dependence diagram, which is a graphical representation that consists of

two curves: the downward and upward diagonal dependence curve. These curves

are obtained by taking a diagonal section of the underlying copula and survival

function, respectively. The downward diagonal dependence curve plays a role

comparable to the Lorenz curve in inequality measurement and the upward di-

agonal dependence curve can be compared to the Leimkhuler curve (Sarabia,

2008). While the downward diagonal dependence curve summarizes the relev-

ant information about cumulative deprivation, the upward diagonal dependence

curve is useful to summarize cumulative a�uence. Next, I study the elementary

rearrangements that are equivalent to dominance in terms of these curves. These

rearrangements play a role akin to that of Pigou-Dalton transfers in inequality

measurement. Finally, I derive indices of diagonal dependence based on the area

under the diagonal dependence curves. The average of the obtained indices of

diagonal dependence equals Spearman's footrule, a measure of rank association

that was proposed by Spearman in 1904. Interestingly, this measure is closely

related to the cograduation index, the �indice di cograduazione semplice�, which

was originally proposed by Gini (1914a, �98).6

4The notion of cumulative deprivation generalizes the intersection approach that is used
in the analysis of multidimensional poverty, see Atkinson (2003); Alkire and Foster (2011);
Aaberge et al. (2019).

5The main diagonal connects the position vector that consists of the bottom position in
all dimensions with the position vector that consists of the top position in all dimensions.

6See Genest et al. (2010) for a historical overview of the use of Spearman's footrule and
its link to Gini's cograduation index.
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The current work �ts into a literature that uses copula-based techniques to

measure dependence between dimensions of well-being in a scale-free manner.

Early contributions by Quinn (2007, 2009) and (Atkinson, 2011) focus on the

measurement of the dependence between health and income. Decancq (2014)

looks at the dependence between income, health, and education in Russia, us-

ing non-parametric estimates of Spearman's ρ and Kendall's τ , and �nds an

increase in dependence between 1995 and 2005. Tkach and Gigliarano (2018)

follow a parametric approach and derive Spearman's ρ and Kendall's τ for sev-

eral European countries. Pérez and Prieto (2015) re�ne the non-parametric

measures used by Decancq (2014) and look at the dependence between income,

material deprivation, and work intensity in Spain between 2009 and 2013. In a

follow-up paper, García-Gómez et al. (2019) extend the analysis for 28 European

countries between 2008 and 2014. Atkinson and Lakner (2017) consider the de-

pendence between top labour and capital incomes in the United States between

1962 and 2006, and Aaberge et al. (2018) look at the case of Norway between

1995 and 2005. The paper by Pérez and Prieto-Alaiz (2016) is arguably closest

to the current one in terms of dependence measures used. The authors look

at the dependence between the dimensions of the Human Development Index

using Spearman's footrule and Gini's cograduation index. They �nd that the

dependence structure between these three dimensions is rather stable over time.

The contribution of the paper is threefold. First, it introduces the diagonal

dependence diagram, which allows a parsimonious description of the depend-

ence structure of a multivariate distribution around the diagonal with a one-

dimensional representation. The diagram provides a speci�c (geometric) inter-

pretation of some existing abstract results from mathematical statistics and is

closely related to the notion of tail dependence. The curves in the diagonal

dependence diagram are useful to represent the cumulative deprivation and af-

�uence in a society, but may be relevant for other applications as well (such as

the measurement of multidimensional poverty). Second, the paper connects the

curves of the diagonal dependence diagram to recent developments in multivari-

ate stochastic dominance analysis, which provides additional insights into the

underlying elementary rearrangements. Third, two natural measures of diag-

onal dependence are derived in this paper. These measures are closely related

to Spearman's footrule and Gini's cograduation index.

The paper is structured as follows. Section 2 introduces the notation and

presents the copula and survival functions as central building blocks. Section

4



3 introduces the diagonal dependence diagram. Section 4 studies dominance in

terms of the diagonal dependence curves. In Section 5 the diagonal depend-

ence indices are derived and compared to other dependence measures. Section

6 concludes.

2 The copula

Let there be m relevant dimensions of well-being such as income, health, so-

cial interactions, education, and so on. The random vector X = (X1, . . . , Xm)

describes the distribution of the outcomes in these dimensions across the indi-

viduals in a society. The cumulative distribution function of the random vector

X is denoted FX . For all x = (x1, . . . , xm), we have:

FX (x1, . . . , xm) = Pr [X1 ≤ x1 and . . . and Xm ≤ xm] . (1)

For each realization of the random vector, the cumulative distribution function

returns the proportion of individuals in the society who have less or equal in

each dimension of well-being. Similarly, FX , the decumulative distribution

function or survival function, returns for each realization of the random vector

the proportion of individuals in the society who have strictly more in every

dimension. For all x = (x1, . . . , xm), we have:

FX (x1, . . . , xm) = Pr [X1 > x1 and . . . and Xm > xm] . (2)

In contrast to the univariate case, the equation FX = 1 − FX is generally not

true in the multivariate case.

The marginal distribution function of dimension j = 1, . . . ,m is denoted Fj .

In what follows, the position of the individual having xj in dimension j, will

be referred to as pj = Fj(xj). A position belongs to the set I ⊆ [0, 1] and

may be interpreted as the rank in the distribution of the individual having

xj . The position vector p = (p1, . . . , pm) of an individual lists their positions

in all dimensions of well-being. An individual with a position vector equal to

(1, . . . , 1) is top-ranked in all dimensions, whereas an individual with position

vector (0, . . . , 0) is bottom-ranked. One position vector is said to be outranked

by another if it has a lower or equal position in all dimensions. Conversely, one

position vector outranks another if it has a higher position in all dimensions.
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The random variable Pj = Fj (Xj) , describes the distribution of the positions in

the jth dimension of well-being and follows a standard uniform distribution. The

random vector P (X) = (F1 (X1) , . . . , Fm (Xm)) captures the distribution and

alignment of the positions in the society. The cumulative distribution function

of the positions FP (X) is a copula function, and will be denoted CX .7 A copula

function is an m-dimensional cumulative distribution function whose support is

Im and whose one-dimensional marginal distribution functions follow a standard

uniform distribution. The copula function of random vector X returns for every

position vector the proportion of individuals in the society who are outranked

by the position vector. Hence, for all p = (p1, . . . , pm) in Im, we have:

CX (p1, . . . , pm) = Pr [F1(X1) ≤ p1 and . . . and Fm(Xm) ≤ pm] . (3)

The more the position vectors are aligned, the larger the proportion of individu-

als in the society being outranked, and the larger the copula function for any

given position vector.

The survival function CX can be de�ned in an analogous way. It returns,

for every position vector, the proportion of individuals in the society who are

outranking the position vector. For all p = (p1, . . . , pm) in Im, we have:

CX (p1, . . . , pm) = Pr [F1(X1) > p1 and . . . and Fm(Xm) > pm] . (4)

In the multivariate case, the copula function CX and the survival function CX

o�er a complementary view on the alignment of the position vectors. While

the copula function looks �downwards� at the proportion of individuals who are

outranked, the survival function looks �upwards� at the proportion of individuals

who are outranking. The copula function will turn out to be a useful tool to

describe the phenomenon of cumulative deprivation, while the survival function

is useful to describe cumulative a�uence.

The popularity of the copula function can be largely attributed to the result by

Sklar (1959) that shows that every multivariate distribution function FX can be

written as a function of its m marginal distribution functions Fj and its copula

function CX :

FX (x1, . . . , xm) = CX (F1 (x1) , . . . , Fm (xm)) . (5)

7See Nelsen (2006) and Trivedi and Zimmer (2007) for a thorough discussion of the copula
function and its properties.
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Moreover, if F1, . . . , Fm are all continuous, CX is unique; otherwise CX is

uniquely determined on Im= Range F1×· · ·× Range Fm. Sklar's result permits

a decomposition of them-dimensional distribution function into its marginal dis-

tribution functions and its copula function. Standard (one-dimensional) inequal-

ity measures such as the Gini coe�cient can be used to quantify the inequality

in the marginal distributions, while copula-based measures of dependence allows

one to summarize the dependence structure.

The independence copula C⊥ (p1, . . . , pm) = p1×· · ·×pm is an intuitive example

of a copula function. By substituting pj = Fj(xj), the independence joint

distribution function can be retrieved as the product of its marginal distribution

functions. When the distribution of the position vectors in a society is given

by the independence copula, the dimensions of well-being are independent. The

political philosopher Michael Walzer (1983) describes such a society as a complex

equal society (see also Miller (1995)).

Every copula function is bounded by its Fréchet-Hoe�ding bounds, which are

de�ned by C− (p1, . . . , pm) = max (p1 + · · ·+ pm −m+ 1, 0) and C+ (p1, . . . , pm) =

min (p1, . . . , pm) respectively (Nelsen, 2006, p.11).8 Hence, for all p = (p1, . . . , pm)

in Im, we have:

C− (p1, . . . , pm) ≤ CX (p1, . . . , pm) ≤ C+ (p1, . . . , pm) . (6)

The Fréchet-Hoe�ding bounds C− and C+ will be referred to as the counter-

monotonic and comonotonic case. In the countermonotonic case C−, high ranks

in some dimensions come with low ranks in others, and none of the position vec-

tors outrank or is outranked by any other position vector. In the comonotonic

case C+, on the other hand, there is one individual who is top-ranked in all

dimensions of well-being, another individual second-ranked in all dimensions,

and so on.

Figure 1 shows contour diagrams of C−, C⊥, and C+ in the bivariate case.

Between two contour curves in the diagram, ten percent of the individuals in

the society can be found. While all individuals can be found on the antidiagonal

that connects the position vectors (0, 1) and (1, 0) in the �rst case, they are

evenly scattered around in the second case, and are all situated on the main

diagonal between the position vectors (0, 0) and (1, 1) in the latter case. The

8For m ≥ 3, the function C− is a lower bound for the copula function, but it is not a
distribution function and, hence, cannot be a copula function (Nelsen, 2006, p. 47).
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contour curves are linear for C−, are curved for C⊥, and kinked for C+. In all

three cases, the marginal distributions of the positions follow a standard uniform

distribution.

Figure 1: Contour diagrams of C−, C⊥, and C+

3 The diagonal dependence diagram

In this section, the diagonal dependence diagram is introduced. It consists of

two curves: the downward and upward diagonal dependence curve. These curves

are derived from the copula and survival function, respectively.

The contour diagrams of Figure 1 are useful to introduce the downward diagonal

dependence curve. In every panel the main diagonal is indicated with a dashed

line. The downward diagonal dependence curve is obtained by making a section

of the copula function along that diagonal.9

De�nition 1 (Downward Diagonal Dependence Curve). For all m-

dimensional random vectors X with copula function CX , we say that DX is

the downward diagonal dependence curve of X, if for all p in I:

DX(p) = CX (p, . . . , p) . (7)

For each position p, the downward diagonal dependence curve gives the propor-

tion of the society who have a lower or equal position than p in all dimensions

9In mathematical statistics, the downward diagonal dependence curve is known as the
diagonal section of a copula function, see Nelsen (2006, p.12). Fernández-Sánchez and Úbeda-
Flores (2018) give a recent review of the statistical literature that deals with the existence
and properties of the copula for a given diagonal section.
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of well-being. The proportion of the society which is below or equal to the me-

dian in all dimensions is given by DX(0.5), for instance. The curve represents

the local information about dependence around the main diagonal and takes

a �downward� perspective, by focusing on the position vectors with a lower or

equal position than the position vectors on the diagonal.

The left-hand panel of Figure 2 gives an example of a downward diagonal de-

pendence curve for a multivariate random vector X. The dashed line gives

the downward diagonal dependence curve of the comonotonic case and is de-

noted D+. The downward diagonal dependence curve of an independent m-

dimensional distribution equals (1/p)m and is denoted D⊥. Every downward

diagonal dependence curve starts at 0 (when p = 0) and ends at 1 (when p = 1).

Moreover, we have that DX(p) ≤ p for all random vectors X.

Figure 2: The downward diagonal dependence curve DX (left) and upward
diagonal dependence curve DX (right) of random vector X

Analogous to the derivation of the downward diagonal dependence curve DX

from the copula function CX , the upward diagonal dependence curve DX can

be derived from the survival function CX .

De�nition 2 (Upward Diagonal Dependence Curve). For allm-dimensional

random vectors X with survival function CX , we say that DX is the upward

diagonal dependence curve of X, if for all p in I:

DX(p) = CX (1− p, . . . , 1− p) . (8)

For each position p, the upward diagonal dependence curve gives the propor-

tion of the society who have a higher position than 1 − p in all dimensions of

9



well-being. The proportion of the society which belongs to the top decile in all

dimensions is given by DX(0.1), for instance. While the downward diagonal de-

pendence curve presents the �downward� perspective of the copula function, the

upward diagonal dependence curve presents the �upward� perspective of the sur-

vival function. In general, both diagonal dependence curves do not coincide.10

The right-hand panel of Figure 2 gives an example of an upward diagonal de-

pendence curve. The dashed line shows the upward diagonal dependence curve

of the comonotonic case C+.

Conveniently, both diagonal dependence curves can be plotted in one diagram,

the diagonal dependence diagram (see Figure 3), by rotating the upward diag-

onal dependence curve DX (the right-hand panel of Figure 2) 180° and super-

imposing it on the downward diagonal dependence curve DX (the left-hand

panel of Figure 2). The downward diagonal dependence curve uses the origin

in the south-west and the upward diagonal dependence curve uses the origin in

the north-east.

Figure 3: The diagonal dependence diagram

The diagonal dependence diagram contains information about the local depend-

ence around the main diagonal, both from an upward and downward perspective.

For some applications, such as the measurement of cumulative deprivation and

a�uence, the focus on the local dependence information around the diagonal

is warranted or even desired. For other applications, this may not be the case.

Compared to its underlying copula and survival functions, the diagonal depend-

10Both curves coincide for random vectors which exhibit radial symmetry about
(1/2, . . . , 1/2), so that CX (p, . . . , p) = CX (1− p, . . . , 1− p) for all p = (p1, . . . , pm) in
(Nelsen, 2006, p.36).
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ence diagram has the advantage of being one-dimensional and, hence, easier to

visualize and represent. This practical advantage comes at a price, however, as

information �o�� the main diagonal is not contained in the diagram. We will

return to this observation in the next section.

Finally, the curves in the diagonal dependence diagram are linked to the tail

dependence parameters, which focus on local dependence information around

the diagonal when p approaches 0 (Joe, 1997; Nelsen, 2006; Schmid and Schmidt,

2007a). In the bivariate case, the lower tail dependence parameter λL is the limit

of the conditional probability that an individual has a position in dimension j1
which is lower than or equal to p, given that she has a position in dimension j2
which is lower than or equal to p, as p approaches 0. The upper tail dependence

parameter λU , on the other hand, is the limit of the conditional probability that

an individual has a position in dimension j1 which is higher than p, given that she

has a position in dimension j2 which is higher than p, as p approaches 1. Nelsen

(2006, Theorem 5.4.2) shows in the bivariate case how both tail dependence

parameters are related to the diagonal dependence curves, respectively:

λL = lim
p→0+

DX (p)

p
and λU= lim

p→1−

DX (1− p)
1− p

= lim
q→0+

DX (q)

q
.

In other words, the tail dependence parameters capture how close the diagonal

dependence curves of a random vector X are to the diagonal when p approaches

0. The closer the limit is to the main diagonal, the more tail dependence the

random vector exhibits. Tail dependence parameters are useful to study cumu-

lative deprivation or a�uence at the very bottom or top of the distribution,

when the focus is either on the poorest or on the most a�uent in the society.

4 The diagonal dependence ordering

In this section, I de�ne �rst the downward and upward diagonal dependence

ordering based on dominance of the curves in the diagonal dependence dia-

gram. Second, the elementary multivariate rearrangements that underlie these

orderings are studied.

If the downward diagonal dependence curve of random vector Y is everywhere

above the downward diagonal dependence curve of X, i.e., when the curve of Y

is closer to the 45° line, we say that Y dominates X according to the downward

11



diagonal dependence ordering.

De�nition 3 (Downward Diagonal Dependence Ordering). For all m-

dimensional random vectors X and Y with downward diagonal dependence

curves DX and DY , we say that Y dominates X according to the downward

diagonal dependence ordering, if DY (p) ≥ DX(p) for all p in I.

In other words, the random vector Y dominates the random vector X according

to the downward diagonal dependence ordering if the copula function of Y is

above the copula function of X for all position vectors on the main diagonal.

The latter restriction on the considered position vectors makes the downward

diagonal dependence an ordering of local dependence around the main diagonal

and considerably weaker than the lower orthant dependence ordering, which

can be seen as an ordering of global dependence and requires that the copula

function of Y is above or equal to the copula function of X for all position

vectors.

In fact, the test of non-intersecting downward diagonal dependence curves,

which is required for the downward diagonal dependence ordering, looks form-

ally similar to the test for the univariate �rst order stochastic dominance or-

dering, which requires that the univariate cumulative distribution functions do

not intersect. Thanks to this similarity, statistical tests developed for �rst order

stochastic dominance can be used to test for the downward diagonal dependence

ordering as well, see Cowell and Flachaire (2015) for a recent overview.

Analogously, we say that Y dominates X according to the upward diagonal

dependence ordering, if the upward diagonal dependence curve of random vector

Y is everywhere above the upward diagonal dependence curve of X.

De�nition 4 (Upward Diagonal Dependence Ordering). For all m-

dimensional random vectors X and Y with upward diagonal dependence curves

DX and DY , we say that Y dominates X according to the upward diagonal

dependence ordering, if DY (p) ≥ DX(p) for all p in I.

The upward diagonal dependence ordering requires the survival function of Y

to be above the survival function of X for all position vectors on the main

diagonal. Thus, it is an ordering of local dependence around the diagonal. It

is a weakening of the upper orthant dependence ordering which requires the

survival function of Y to be everywhere above or equal to the survival function

of X.11

11Echoing the similarity between the downward diagonal dependence ordering and univari-
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In the bivariate case, both dependence orderings are equivalent.12 Yet, this equi-

valence does not hold when m > 2. While the downward diagonal dependence

ordering takes a downward perspective, the upward diagonal dependence order-

ing takes an upward perspective to diagonal dependence. Both perspectives are

combined in the following ordering.

De�nition 5 (Diagonal Dependence Ordering). For all m-dimensional

random vectors X and Y with downward diagonal dependence curves DX and

DY , and upward diagonal dependence curves DX and DY , we say that Y dom-

inates X according to the diagonal dependence ordering, if DY (p) ≥ DX(p) and

DY (p) ≥ DX(p) for all p in I.

The diagonal dependence ordering focuses on local dependence information

around the main diagonal, irrespective of the choice for an upward or down-

ward perspective. It is a weakening of the concordance ordering proposed by

Joe (1990), which combines the lower and upper orthant orders and requires

dominance in terms of the copula and survival functions.

To evaluate whether the diagonal dependence orderings are attractive orderings

for our purpose of measuring cumulative deprivation and a�uence, it is useful

to consider the underlying elementary rearrangements. Elementary rearrange-

ments that lead to more global dependence have been studied in the bivariate

case by Tchen (1980) and Epstein and Tanny (1980), following a suggestion

by Hamada (1974). Atkinson and Bourguignon (1982) provide an application

for the measurement of multidimensional inequality. The considered rearrange-

ments shift probability mass ε on the four vertices of a two-dimensional rectangle

(see Figure 4). A positive probability mass ε is shifted from the two white ver-

tices with an odd number of `lows', that is, the vertices (low, high) and (high,

low) to the two black vertices with an even number of `lows', that is, (low,

low) and (high, high).13 After the rearrangement (the black situation on Figure

4), individuals at (low, low) are outranked by individuals at (high, high) and

similarly individuals at (high, high) outrank individuals at (low, low), whereas

in the initial (white) situation, the considered individuals do not outrank each

other. Hence, the copula and survival function have shifted upwards. Tchen

(1980) and Epstein and Tanny (1980) show that the converse is also true in the

ate �rst order stochastic dominance, the upward diagonal dependence ordering is formally
similar to the univariate �rst order decumulative stochastic dominance discussed by Bazen
and Moyes (2012).

12When m = 2, we have that CX (p, p) = 1− 2p+ CX (p, p).
13In the following, I adopt the convention that 0 is even.
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bivariate case: whenever the copula function (or survival function) of random

vector Y is everywhere above the one of random vector X, random vector Y

can be obtained from X by a sequence of rearrangements on the corners of a

two-dimensional rectangle.

Figure 4: A positive 2-rearrangement

Decancq (2012) presents a multivariate generalization of the results by Tchen

(1980) and Epstein and Tanny (1980). He considers elementary rearrangements

that shift probability mass ε on the 2k vertices of a k-dimensional hyperbox,

with 2 ≤ k ≤ m. The probability mass is shifted from the 2k−1 vertices with

an odd number of `lows' to the 2k−1 vertices with an even number of `lows'. He

de�nes positive k-rearrangements, for which a positive probability mass ε > 0 is

shifted, and alternating k-rearrangements, for which (−1)kε > 0 holds.14 The

two-dimensional example given in Figure 4 can be referred to as a positive 2-

rearrangement (or an alternating 2-rearrangement). When k is even, a positive

k-rearrangement is also an alternating k-rearrangement, and vice versa. This

equality does not hold when k is odd.

Table 1 gives an example of a positive 3-rearrangement (when ε > 0). While

this rearrangement shifts positive probability mass ε to the position vector

(high, high, high), probability mass ε is removed from the position vector (low, low, low).

After the rearrangement, more individuals outrank other individuals, while less

individuals are outranked. As the probability of outranking has increased after

the rearrangement, the survival function shifts upwards, while the copula func-

tion shifts downwards (since the probability of being outranked has decreased).

14Müller (2013) refers to these rearrangements as ∆-monotone transfers and ∆-antitone
transfers, respectively.
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In general, Decancq (2012) shows that alternating k-rearrangements underlie

the lower orthant dependence ordering (i.e., dominance in terms of the copula

function), while positive k-rearrangements underlie the upper orthant depend-

ence ordering (i.e., dominance in terms of the survival function), see Müller

(2013) and Decancq (2014) for further discussions.

−ε +ε
(low, high, high) (high, high, high)
(high, low, high) (high, low, low)
(high, high, low) (low, high, low)
(low, low, low) (low, low, high)

Table 1: A positive 3-rearrangement (when ε > 0)

The described elementary rearrangements on the corners of k-dimensional hy-

perbox a�ect (global) dependence as measured by the orthant orderings. They

may or may not a�ect the diagonal dependence curves, which only capture local

dependence information around the main diagonal. Only if the main diagonal

intersects the hyperbox, as on the highlighted segment of the main diagonal in

Figure 4, will the diagonal dependence curves be a�ected by the rearrangement.

Rearrangements that happen �o� the diagonal�, on the other hand, will not a�ect

the diagonal dependence curves. Conversely, when there is dominance between

the diagonal dependence curves, there exists a sequence of k-rearrangements

on the vertices of a k-dimensional hyperbox, which are intersected by the main

diagonal.

5 The diagonal dependence index

Based on the area below both curves in the diagonal dependence diagram (i.e.,

the shaded area of Figure 3), indices of diagonal dependence can be derived in

a natural way.

First, however, I present an intuitive interpretation of the area below the diag-

onal dependence curves. We have that:15

w

I

DX (p) dp =
w

Im
CX (p1, . . . , pm) dC+ (p1, . . . , pm)

15See Úbeda-Flores (2005, Lemma 4.1) for a formal proof.
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and

w

I

DX (p) dp =
w

Im
CX (p1, . . . , pm) dC+ (p1, . . . , pm) . (9)

In other words, the area under the downward diagonal dependence curve equals

the probability that a randomly selected individual in the society described by

random vectorX is outranked by a randomly selected individual from a perfectly

comonotonic society, described byX+. The more cumulative deprivation there is

in X (according to the downward diagonal dependence ordering), the larger this

probability becomes. The area under the upward diagonal dependence curve, on

the other hand, equals the probability that a randomly selected individual in X

outranks a randomly selected individual from a perfectly comonotonic society.

The sum of both areas equals the probability of concordance between the random

vector X and X+ (i.e., the probability that a realization of X is outranked by

or outranks a realization of X+).

We start by de�ning the downward diagonal dependence index, denoted δ−m,

based on the area below the downward diagonal dependence curve.

De�nition 6 (Downward Diagonal Dependence Index). For all m-

dimensional random vectors X with downward diagonal dependence curve DX ,

we say that δ−m(X) is the downward diagonal dependence index of X, if

δ−m(X) =
2 (m+ 1)

r
IDX (p) dp− 2

m− 1
. (10)

The downward diagonal dependence index is based on the area below the down-

ward diagonal dependence curve, normalized such that δ−m(X⊥) = 0 and δ−m(X+) =

1.16 As we have seen, the index can be interpreted as the normalized probability

that a randomly selected individual in X is outranked by a randomly selected

individual from X+. If X and Y are two random vectors with DY (p) ≥ DX(p)

for all p in I, then we have that δ−m(Y ) ≥ δ−m(X). Hence, the downward diag-

onal dependence index is consistent with the downward diagonal dependence

ordering (as well as with the lower orthant dependence ordering).

Similarly, the upward diagonal dependence index, δ+m, can be de�ned based on

the normalized area below the upward diagonal dependence curve.

16This can be checked by observing that
r
ID⊥ (p) dp = 1/ (m+ 1) and

r
ID+ (p) dp = 1/2 .
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De�nition 7 (Upward Diagonal Dependence Index). For allm-dimensional

random vectors X with upward diagonal dependence curve DX , we say that

δ+m(X) is the upward diagonal dependence index of X, if

δ+m(X) =
2 (m+ 1)

r
IDX (p) dp− 2

m− 1
. (11)

The upward diagonal dependence index δ+m equals the normalized probability

that a randomly selected individual in X outranks a randomly selected indi-

vidual from X+. Similar to the downward diagonal dependence index, we have

that δ+m(X⊥) = 0 and δ+m(X+) = 1. The upward diagonal dependence index

is consistent with the upward diagonal dependence ordering (and the upper

orthant dependence ordering).

While the downward diagonal dependence index has a �downward� perspective

that measures how often individuals are outranked by others, the upward di-

agonal dependence index has an �upward� perspective that measures how often

individuals outrank others. When the context at hand does not warrant a spe-

ci�c focus on either perspective, both deprivation indices can be combined by

averaging them.

De�nition 8 (Diagonal Dependence Index). For all m-dimensional ran-

dom vectors X with downward diagonal dependence curve DX and upward

diagonal dependence curve DX , we say that δm(X) is the diagonal dependence

index of X, if

δm(X) =
δ−m(X) + δ+m(X)

2
=

(m+ 1)
r
I
[
DX (p) +DX (p)

]
dp− 2

m− 1
. (12)

For the diagonal dependence index δm, we also have that δm(X⊥) = 0 and

δm(X+) = 1. The diagonal dependence index is consistent with the diagonal

dependence ordering as well as the concordance dependence ordering.

While, to the best of my knowledge, the downward and upward diagonal de-

pendence indices δ−m and δ+m are new to the literature, the diagonal dependence

index δm is not. It equals the multidimensional generalization of Spearman's

footrule which has been proposed by Úbeda-Flores (2005, Theorem 4.1) and

which is commonly denoted ϕm.17

17See Úbeda-Flores (2005), Genest et al. (2010), and Pérez and Prieto-Alaiz (2016) for more
extensive discussions of Spearman's footrule.
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The multidimensional generalization of Spearman's footrule proposed by Úbeda-

Flores (2005) belongs to the class of dependence measures that are based on the

probability of concordance between X, the random vector at hand, and a refer-

ence random vector. This class has been introduced by Nelsen (1991, 2002), and

Decancq (2014) interprets it in the context of measuring dependence between

dimensions of well-being. Speci�cally, Spearman's footrule is derived from the

probability of concordance between X and a comonotonic reference vector X+.

In a similar way, other popular dependence measures can be obtained from the

probability of concordance between X and other reference random vectors, such

as Spearman's ρm (when the reference random vectors equals X⊥) or Kendall's

τm (when the reference random vector equals X itself), see Nelsen (2002, 2006)

and Decancq (2014).

In the bivariate case, the three diagonal dependence indices are equal (i.e.,

δ2 = δ−2 = δ+2 ). When m > 2, however, this is not the case. Some societies

may exhibit more downward diagonal dependence (or cumulative deprivation)

and little upward diagonal dependence (or cumulative a�uence), or vice versa.

Consider, for instance, the two four-person societies described by the position

vectors which are listed in the two columns of Table 1. While there is more cu-

mulative deprivation in the society described by the left-hand column, there is

more cumulative a�uence in the society described by the right-hand column. A

decomposition of Spearman's footrule in the downward and upward diagonal de-

pendence indices with their complementary upward and downward perspectives

can therefore lead to additional new insights.18

In view of empirical applications, it is useful to note that Úbeda-Flores (2005,

p. 786) has suggested an easy-to-implement multivariate sample version of

Spearman's footrule ϕm (and, hence, of the diagonal dependence index δm).

Let rij be the rank of outcome xij of individual i = 1, . . . , n in dimension

j = 1, . . . ,m. Spearman's footrule can be estimated by

ϕ̂m(X) = 1− m+ 1

m− 1

∑n
i=1 [maxj (rij)−minj (rij)]

n2 − 1
. (13)

Genest et al. (2010) show that ϕ̂m is an asymptotically unbiased estimator of

ϕm, with an asymptotic normal distribution. The bivariate version of expression

(13) was originally proposed in the work of Spearman (1904), who discussed the

18Pérez and Prieto (2015) advocate the use of an analogous decomposition of Spearman's
ρ in a �downward� measure ρ− and an �upward� measure ρ+, which have been discussed by
Joe (1990), Nelsen (1996), and Schmid and Schmidt (2007b).
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following measure of rank association:

ϕ̂2(X1, X2) = 1−
3
∑n

i=1 |ri1 − ri2|
n2 − 1

. (14)

Spearman himself noted that one of the disadvantages of the proposed index is

that it is not symmetric under the reversal of one dimension.19 To remedy this

asymmetry, Salama and Quade (2001) have proposed a symmetric version of the

index by considering the average of the footrule index and the footrule index

that is obtained by reversing the ranking of one variable. Interestingly, Nelsen

and Úbeda-Flores (2004) have remarked that the proposed symmetric version

of the footrule index coincides with Gini's cograduation index γm (Gini, 1914a,

�98). The bivariate sample version of Gini's cograduation index, γ̂2, equals

γ̂2(X1, X2) =

∑n
i=1 [|n+ 1− ri1 − ri2| − |ri1 − ri2|]

bn2/2c
. (15)

where bdc denotes the integer part of d with d > 0. Behboodian et al. (2007) have

proposed a multivariate extension of Gini's cograduation index γ that belongs

to the class of dependence measures that are derived from the probability of

concordance, by choosing the reference random vector equal to the average of

the countermonotonic X− and comonotonic case X+.

6 Conclusion

In the wake of Gini's path-breaking work on inequality measurement more than a

century ago, a plethora of inequality measures have been developed, which leaves

researchers with a di�cult task when choosing the most appropriate measure.

A rigorous axiomatic study of the properties that uniquely characterize these

inequality measures helps to make this choice. A similar problem arises for re-

searchers who have to select the most appropriate dependence measure. The

answer depends largely on the application and research question at hand. When

a global perspective on dependence is required, dependence measures such as

Kendall's τm and Spearman's ρm seem most appropriate. When a local perspect-

ive focusing on the dependence around the main diagonal is required, however,

Spearman's footrule and the diagonal dependence indices that are introduced

19More recently, Dolati and Úbeda-Flores (2006) and Taylor (2007) discuss this symmetry
as a desirable property of a multivariate measure of concordance.
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in this paper are useful. When a local but symmetric perspective with respect

to both diagonals is required, Gini's cograduation index γm appears to be a

good choice. In general, however, there seems to be ample room for additional

axiomatic work on the question of which properties uniquely characterize these

dependence measures. Studying how the dependence measures react to speci�c

elementary rearrangements could be a point of departure for this endeavour.
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