
Faculty of Business and Economics

Dissertation

Explaining prediction models to address
ethical issues in business and society

Thesis submitted for the degree of Doctor of Applied Economics
at the University of Antwerp to be defended by

Sofie Goethals

Author:
Sofie Goethals

Supervisors:
Prof. dr. ir. David Martens

Prof. dr. Kenneth Sörensen
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Abstract

The field of artificial intelligence (AI) has experienced explosive growth in recent
years, with applications ranging from medical diagnosis to financial forecasting.
However, as these technologies become increasingly integrated into decision-making
processes, it is crucial that we also consider the ethical implications of their use. In
particular, the transparency, fairness and privacy of AI systems are major concerns, as
these systems can have far-reaching impacts on individuals and society. In this PhD
thesis, I focus on the ethics of explainable AI (XAI). XAI refers to the development
of techniques that are able to provide human-understandable explanations for AI
models. My research explores the importance of explainability in the context of
ethical decision-making and investigates both opportunities and challenges that arise
from the use of Explainable AI.

In this PhD thesis, I categorize my research contributions into three pillars: Trans-
parency, Fairness and Privacy. Within the transparency pillar, I study the trade-off
between transparency and performance of machine learning models, and investigate
the manipulation issues that Explainable AI techniques can induce. Next, within
the fairness pillar, I demonstrate how XAI techniques can be used to measure dis-
crimination in machine learning models, and I discuss the opaqueness surrounding
the impact of bias mitigation methods. Within the final pillar of privacy, I analyse
the privacy issues of XAI techniques, and conduct an applied study to show the
trade-off between privacy and personalization on a dataset of Facebook likes.





Dutch Abstract

Het domein van machine learning en data science heeft de afgelopen jaren een
explosieve groei doorgemaakt, met toepassingen variërend van medische diagnose
tot financiële voorspellingen. Echter, nu deze technologieën steeds meer geı̈ntegreerd
worden in besluitvormingsprocessen, is het cruciaal om de ethische implicaties
van hun gebruik te bestuderen. Met name de transparantie, rechtvaardigheid en
privacy van AI-systemen zijn essentiële kwesties, aangezien deze systemen vergaande
gevolgen kunnen hebben voor individuen en onze samenleving. In dit proefschrift
richt ik mij op de ethiek van begrijpbre AI (Explainable Artificial Intelligence in het
Engels). XAI verwijst naar de ontwikkeling van technieken die menselijk begrijpbare
verklaringen kunnen geven voor hun voorspellingen. Mijn onderzoek verkent het
belang van transparentie in de context van ethische besluitvorming en onderzoekt
zowel kansen als uitdagingen die voortvloeien uit het gebruik van XAI.

In dit proefschrift verdeel ik mijn onderzoeksbijdragen over drie pijlers: Transparantie,
Rechtvaardigheid en Privacy. Binnen het domein van transparantie onderzoek ik de
afweging tussen transparantie en performantie van machine learning modellen,
en onderzoek ik de manipulatiekwesties die XAI-technieken kunnen veroorzaken.
Vervolgens, binnen de pijler van rechtvaardigheid, toon ik aan hoe XAI-technieken
kunnen worden gebruikt om discriminatie in machine learning-modellen te meten, en
bespreek ik de onduidelijkheid rondom de impact van bias mitigatiemethodes. Bin-
nen de laatste pijler van privacy analyseer ik de privacykwesties van XAI-technieken
en voer ik een toegepaste studie uit om het conflict tussen privacy en personalisatie
te demonstreren op een dataset van Facebook-likes.





Dutch Preface

”Het grootste risico bij AI is niet kwaadwilligheid, maar competentie. Een superintelli-
gente AI is per definitie zeer bekwaam in het bereiken van zijn doelen, en als die doelen
niet overeenkomen met de onze, hebben we een probleem.” - Nick Bostrom, filosoof en
schrijver.

Het Cambridge Analytica-schandaal, dat in 2018 uitbrak, legde de mogelijke gevaren
bloot die gepaard gaan met het wijdverspreide verzamelen van gegevens en het
gebruik ervan in Machine Learning. Het incident draaide om het misbruik van
persoonlijke gegevens die zonder expliciete toestemming waren verkregen van
miljoenen Facebook-gebruikers. Cambridge Analytica gebruikte deze gegevens om
gedetailleerde psychologische profielen samen te stellen, wat de microtargeting
van politieke advertenties met ongekende precisie mogelijk maakte. Dit incident
diende als een scherpe herinnering aan de diepgaande invloed die technologie
en gegevens kunnen uitoefenen op de vormgeving van de samenleving. Hoewel
Kunstmatige Intelligentie (AI) de belofte inhoudt om innovatie te stimuleren en
complexe problemen op te lossen, kan het ook het risico met zich meebrengen van
privacyschending, discriminatie en de manipulatie van de publieke opinie.

Binnen deze context wordt de dringende noodzaak van ethische AI duidelijk. Dit
veelzijdige veld omvat essentiële principes zoals transparantie, rechtvaardigheid,
verantwoording en privacy, die allemaal van cruciaal belang zijn voor de bescherming
van individuele rechten en de bevordering van het welzijn van de samenleving.

Met deze scriptie beoog ik bij te dragen aan dit vakgebied door de ethische kwesties
rondom Explainable AI (XAI) te onderzoeken, met een specifieke focus op tegen-
feitverklaringen (in het Engels counterfactual explanations). Door de implicaties van
counterfactual explanations binnen de ethische domeinen van transparantie, recht-
vaardigheid en privacy te verkennen, streef ik ernaar de ontwikkeling van robuuste
en ethisch verantwoorde AI-systemen te ondersteunen die in lijn zijn met het belang
van de samenleving.

Deel I van deze scriptie legt de basis voor de rest van de scriptie. Het bevat een
inleiding, een hoofdstuk over Machine Learning en een hoofdstuk over Ethical
Machine Learning. Eerst introduceer ik het onderwerp van deze scriptie en geef
ik een overzicht van mijn onderzoek en bijdragen in Hoofdstuk 1. In Hoofdstuk 2

bespreek ik de terminologie die gedurende de scriptie zal worden gebruikt. Vervol-
gens bespreek ik de classificatietechnieken en performantie-indicatoren die zullen
worden toegepast om de prestaties van de Machine Learning modellen te meten. In



Hoofdstuk 3 wordt het veld van Ethical Machine Learning verkend door gebruik
te maken van het FAT-framework. Ik organiseer mijn onderzoekscontributies langs
drie pijlers van het FAT-framework: Transparantie, Rechtvaardigheid en Privacy. Het
is echter belangrijk op te merken dat deze drie gebieden niet onderling uitsluitend
zijn. Veel van mijn onderzoekscontributies hebben gevolgen voor meerdere gebieden,
maar ik zal ze sorteren volgens de meest passende dimensie.

Deel II van deze scriptie richt zich op de bijdragen die het meest verband houden
met het gebied van transparantie. In Hoofdstuk 4 analyseer ik de afweging tussen
transparantie en performantie van machine learning modellen. Op basis van een
analyse van 90 benchmark classificatiedatasets, maak ik de volgende bevindingen:

• Deze afweging bestaat voor de meeste (69%) van de datasets, maar in de meeste
gevallen is deze vrij klein, terwijl deze voor slechts enkele datasets zeer groot
is.

• De transparentie kan worden verbeterd door nog een andere algoritmische
stap toe te voegen, namelijk die van het gebruik van zogenaamde ’surrogaat
modellen’.

• Datasetkenmerken die verband houden met de complexiteit en het level van
noise deze afweging significant kunnen verklaren.

Dit artikel is gepubliceerd in:

Sofie Goethals, David Martens, and Theodoros Evgeniou. The Non-linear Nature of
the Cost of Comprehensibility. Journal of Big Data, 9(1):1–23, 2022.

In Hoofdstuk 5 analyseer ik de de risico’s van manipulatie rond Explainable AI, wat
een implicatie is van het disagreement problem. Dit probleem doet zich voor in het
veld van XAI (Explainable AI) wanneer er meerdere verklaringen mogelijk zijn voor
dezelfde AI-beslissing. Met dit onderzoek maak ik de volgende bijdragen:

• Een analyse van de verschillende strategieën die de aanbieders van een expla-
nation kunnen inzetten om de gegeven explanation aan te passen ten voordele
van henzelf.

• Een overzicht van verschillende doelstellingen en concrete scenario’s die de
aanbieders kunnen hebben om dit gedrag te vertonen.

Deze positie paper is gepresenteerd op de Workshop of Explainable Knowledge Dis-
covery and Data Mining bij ECML en opgenomen in de post-workshopverslagen:

Sofie Goethals, David Martens, and Theodoros Evgeniou. Manipulation Risks in
Explainable AI: The Implications of the Disagreement Problem. In Joint European
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Conference on Machine Learning and Knowledge Discovery in Databases (forthcoming).
Springer, 2024c.

Deel III omvat de studies die verband houden met het gebied van rechtvaardig-
heid. In Hoofdstuk 6 analyseer ik hoe counterfactual explanations gebruikt kunnen
worden om bias in machine learning modellen te beoordelen. Ik maak de volgende
contributies:

• De introductie van PreCoF, ofwel Predictive Counterfactual Fairness, een nieuwe
techniek om de counterfactual explanations samen te voegen.

• Aantonen dat PreCoF kan worden gebruikt om expliciete bias (wanneer het
model het sensitive attribuut rechtstreeks gebruikt) te detecteren door te zoeken
naar verklaringen die dit attribuut bevatten.

• Illustreren dat PreCoF ook kan worden gebruikt om impliciete bias te detec-
teren, wanneer het model het sensitieve attribuut niet direct gebruikt, maar
wel andere gecorreleerde attributen gebruikt die kunnen leiden tot aanzienlijk
nadeel voor de beschermde groep.

Dit artikel is gepubliceerd in een speciaal nummer over ’Fair and Safe Machine
Learning’ in:

Sofie Goethals, David Martens, and Toon Calders. PreCoF: Counterfactual Explanati-
ons for Fairness. Machine Learning, pages 1–32, 2023b.

In Hoofdstuk 7, breng ik transparantie naar het domein van bias mitigation methoden
(methoden die proberen machine learning modellen minder bevooroordeeld te
maken). De bijdragen van deze paper zijn als volgend:

• Inzichten in de operationele dynamiek van bias mitigation methoden en il-
lustreren hoe sommige methoden significant invloed zullen hebben op de
rangschikking binnen elke groep, terwijl anderen dat niet zullen hebben.

• Kritiek op de huidige benadering van het vergelijken van bias mitigation
methoden, aangezien het situaties vergelijkt die significant verschillend zijn en
niet toepasbaar in applicaties in de echte wereld.

In Deel IV bundel ik mijn bijdragen aan het gebied van privacy in Machine Learning.
In Hoofdstuk 8 onderzoek ik de privacy problemen die counterfactual explanations
kunnen veroorzaken. Dit leidt tot de volgende bijdragen:

• De introductie van een explanation linkage attack, die kan optreden wanneer
instantiegebaseerde strategieën worden ingezet om counterfactual explanations
te vinden.
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• Een mogelijke oplossing: een algoritme CF-K om k-anonieme counterfactual
explanations te creëren en de introductie van puurheid als een metriek om de
geldigheid van deze explanations te beoordelen.

• De evaluatie van k-anonieme counterfactual explanations met CF-K door deze
te vergelijken met een algoritme dat de hele dataset k-anonymiseert. Ik laat
zien dat alleen de explanations k-anoniem maken, voordelig is voor de kwaliteit
van de explanations.

Dit artikel is gepubliceerd in ACM Transactions on Intelligent Systems and Technol-
ogy:

Sofie Goethals, Kenneth Sörensen, and David Martens. The Privacy Issue of Counter-
factual Explanations: Explanation Linkage Attacks. ACM Transactions on Intelligent
Systems and Technology, 14(5):1–24, 2023c.

In Hoofdstuk 9 bestudeer ik het effect op zowel privacy als personalisatie wanneer
gebruikers een deel van hun digitale voetafdruk verbergen, ofwel cloaken, zoals ik
dit in het artikel noem. Ik lever drie bijdragen aan de bestaande literatuur:

• Beoordeling van de langetermijn-effectiviteit van het cloaken van digitale
voetafdrukken, waarbij het percentage van individuen die beschermd blijven
gedurende een bepaalde tijdspanne, gemeten wordt. De resultaten tonen
aan dat de effectiviteit van het cloaken van fijnmazige kenmerken gestaag en
aanzienlijk afneemt voor de meeste inferentietaken.

• De introductie van een nieuw type cloaking-strategie gebaseerd op metafea-
tures, waarbij aangetoond wordt dat dit de langetermijnbescherming van het
cloaken verbetert.

• Onderzoek naar de privacy-personalisatieafweging die inherent is aan het
gebruik van cloaking om ongewenste inferenties te voorkomen. Specifiek laat
ik zien dat cloaking voor één taak de voorspellende prestaties van andere per-
sonalisatietaken kan beı̈nvloeden. Bovendien wordt dit effect groter wanneer
de metafeature-based cloaking gebruikt wordt, en dit toont het conflict aan
tussen privacy en personalisatie waar users mee geconfronteerd worden.

Deze studie is momenteel onder review bij Big Data.

Deel V vat de conclusies van de thesis samen en lijst een aantal interessante mogeli-
jkheden op voor toekomstig onderzoek.
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Part I

B A C K G R O U N D





1
Introduction

”The greatest risk with AI is not malice but competence. A super intelligent AI is by
definition very good at attaining its goals, and if those goals aren’t aligned with ours, we’re
in trouble.” - Nick Bostrom, philosopher and writer.

The Cambridge Analytica scandal, which erupted in 2018, exposed the potential
dangers associated with the widespread harvesting of data and its deployment
in machine learning. The incident centered around the misuse of personal data
obtained from millions of Facebook users without their explicit consent. Cambridge
Analytica used this data to construct detailed psychological profiles, facilitating
the micro-targeting of political advertisements with unprecedented precision. This
unsettling incident served as a stark reminder of the profound influence technology
and data can wield in shaping society’s landscape. While Artificial Intelligence
(AI) holds the promise of driving innovation and solving complex problems, it also
harbors the potential to amplify privacy breaches, perpetuate biases and manipulate
the public opinion.

Within this context, the necessity of ethical AI becomes evident. This multifaceted
field encompasses essential principles such as transparency, fairness, accountability,
and privacy, all of which are paramount for protecting individual rights and pro-
moting societal well-being. With this thesis, I aim to contribute to this research field
by investigating the ethical issues surrounding Explainable AI (XAI), with a specific
focus on counterfactual explanations. By exploring the implications of counterfactual
explanations within the ethical domains of transparency, fairness, and privacy, I aim
to support the development or robust and ethically sound AI systems that align with
the best interests of individuals and society at large.



introduction

1.1 overview of research and contributions

Part I lays the foundation for the remainder of this thesis. It contains an introduc-
tion, a chapter on Machine Learning and a chapter on Ethical Machine Learning.
First, I introduce the topic of this thesis and give an overview of my research and
contributions in Chapter 1. In Chapter 2 , I discuss the terminology that will be used
throughout the thesis. Next, I discuss the classification techniques and performance
metrics that will be deployed to measure the performance of the machine learning
models. In Chapter 3, the field of Ethical Machine Learning is explored by utilizing
the FAT framework.1 I organize my research contributions along three pillars of the
FAT framework: Transparency, Fairness and Privacy. However, it is important to
acknowledge that these three areas are not mutually exclusive. Many of my research
contributions will have implications across multiple areas, but I will sort them across
the most appropriate dimension.

Part II of this thesis focuses on the contributions I make that are the most closely
related to the field of transparency. In Chapter 4, I analyse the trade-off between
accuracy and comprehensibility of machine learning models. Based on an analysis
of 90 benchmark classification datasets, I make the following contributions:

• I find that this trade-off exists for most (69%) of the datasets, but that for the
majority of cases it is rather small, while only for a few it is very large.

• I analyse how comprehensibility can be enhanced by adding yet another
algorithmic step, that of surrogate modelling.

• My results show that some datasets characteristics can significantly explain
this trade-off and thus the cost of comprehensibility.

This paper was published in the Journal of Big Data:

Sofie Goethals, David Martens, and Theodoros Evgeniou. The Non-linear Nature of
the Cost of Comprehensibility. Journal of Big Data, 9(1):1–23, 2022

In Chapter 5, I analyse the manipulation risks surrounding Explainable AI, which is
an implication from the disagreement problem. This problem arises when multiple
explanations are possible for the same AI decision or problem. In this study, I make
the following contributions:

• I provide an overview of the different strategies the explanation providers
could deploy to adapt the returned explanation to their benefit.

1 The FAT framework in AI stands for Fairness, Accountability, and Transparency, focusing on ensuring
algorithms are equitable, their decisions and operations are understandable and explainable, and their
processes are open and clear to users and stakeholders.
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• I analyse several objectives the providers could have to engage in this behavior.

This position paper was presented at the Workshop of Explainable Knowledge
Discovery and Data Mining at ECML, and included in the post-workshop proceed-
ings:

Sofie Goethals, David Martens, and Theodoros Evgeniou. Manipulation Risks in
Explainable AI: The Implications of the Disagreement Problem. In Joint European
Conference on Machine Learning and Knowledge Discovery in Databases (forthcoming).
Springer, 2024c

Part III encompasses the studies related to the field of fairness. In Chapter 6, I
analyse how I can use counterfactual explanations to assess bias in machine learning
models. The following contributions were made:

• I introduce PreCoF, or Predictive Counterfactual Fairness, a new technique to
aggregate the counterfactual explanations.

• I show how PreCoF can be used to detect explicit bias (when the model is
directly using the sensitive attribute) by searching for explanations that contain
the sensitive attribute.2

• I illustrate that PreCoF can also be used to detect implicit bias, when the model
does not use the sensitive attribute directly, but does use other correlated
attributes leading to a substantial disadvantage for the protected group.3

This paper was published in a special issue on ‘Fair and Safe Machine Learning’ in
the Machine Learning Journal:

Sofie Goethals, David Martens, and Toon Calders. PreCoF: Counterfactual Explana-
tions for Fairness. Machine Learning, pages 1–32, 2023b

In Chapter 7, I bring transparency to the domain of bias mitigation methods,
which are methods that attempt to make machine learning models less biased. The
contributions of this paper are:

• I provide insights into the operational dynamics of bias mitigation methods
and illustrate how some methods will significantly impact the ranking within
each group, while others will not.

2 Note that this scenario is often not legally allowed, which I also discuss in the paper.
3 The protected group is the group that typically has been historically disadvantaged, and for which

we have to ensure that the machine learning algorithm does not replicate or even worsen these biased
patterns.
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• I criticize the current approach to benchmark bias mitigation methods, as
it compares situations that are significantly distinct and not applicable in
real-world applications.

This paper is currently under review:

Sofie Goethals, Toon Calders, and David Martens. Beyond Accuracy-Fairness: Stop
evaluating bias mitigation methods solely on between-group metrics. Under review,
2024a

In Part IV, I bundle the contributions made to the field of privacy in Machine Learn-
ing. In Chapter 8, I investigate the privacy issues that counterfactual explanations
create. I make the following contributions:

• I introduce an explanation linkage attack, which can occur when deploying
instance-based strategies to find counterfactual explanations.

• As solution, I propose an algorithm CF-K to create k-anonymous counterfactual
explanations, and introduce pureness as a metric to evaluate the validity of these
counterfactual explanations.

• I evaluate the performance of creating k-anonymous counterfactual expla-
nations with CF-K by comparing it with the performance of an algorithm
that makes the whole dataset k-anonymous. I show that only making the
explanations k-anonymous is beneficial for the quality of the explanations.

This paper was published in ACM Transactions on Intelligent Systems and Technol-
ogy:

Sofie Goethals, Kenneth Sörensen, and David Martens. The Privacy Issue of Coun-
terfactual Explanations: Explanation Linkage Attacks. ACM Transactions on Intelligent
Systems and Technology, 14(5):1–24, 2023c

In Chapter 9, I study the effect on both privacy and personalization when users
hide, or cloak as I name it in the paper, part of their digital footprints. I offer three
contributions to the existing literature:

• I assess the longer-term effectiveness of cloaking digital footprints, measuring
the percentage of targeted individuals whose privacy remains protected over
time. The results show that the effectiveness of cloaking fine-grained features
decreases steadily and markedly over time for most inference tasks.

• I introduce a new type of cloaking strategy based on metafeatures, and show
that it enhances longer-term cloaking protection (as intended).
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• I examine the privacy-personalization trade-off inherent in using cloaking to
protect against unwanted inferences. Specifically, I show that cloaking for
one task can affect the predictive performance of other personalization tasks.
Moreover, the metafeature-based strategies affect other tasks more, highlighting
the trade-offs faced by users: better longer-term privacy protection indeed can
reduce desired personalization performance

This study is currently under review:

Sofie Goethals, Sandra Matz, Foster Provost, Yanou Ramon, and David Martens. The
Impact of Cloaking Digital Footprints on User Privacy and Personalization. Under
review, 2024d

Finally, in Part V, I conclude the thesis. I summarize my main findings, list some
general limitations of my research and point to some interesting avenues for future
research.
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Machine Learning

2.1 terminology

Figure 2.1: Terminology. Source: Dubovikov [2019]

In the latest years, it is easy to get confused about the difference between Arti-
ficial Intelligence (AI), Machine learning (ML), Data Science (DS) and many other
terms [Dubovikov, 2019]. AI refers to the development of computer systems that
would normally require human intelligence, and encompasses many subfields such
as natural language processing, visual perception, logic, robotics and many oth-
ers [Provost and Fawcett, 2013]. ML is one of the subfields of AI and involves
the development of algorithms and models that allow computers to learn from
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data. Deep learning is a subset of machine learning that involves the use of neural
networks with multiple layers (deep neural networks) to model and solve complex
problems [LeCun et al., 2015]. Also related is Data Science, an interdisciplinary
field that combines expertise from statistics, mathematics and computer science to
draw knowledge from the data and provide insights [Dubovikov, 2019]. A graphical
representation of this overview can be seen in Figure 2.1.

Within ML we focus on predictive modeling, which focuses on estimating an un-
known value of interest, and on supervised learning in specific [Berry et al., 2019].
Supervised learning is a type of predictive modeling where the learning algorithm
is trained using labeled data [Berry et al., 2019]. When the target variable is not
known, the term unsupervised learning is used. Techniques such as clustering can
be used, but this is out of the scope of this PhD thesis. Throughout the thesis, we
will use the following terminology: We will model the relationship between a set of
selected variables, which we call the attributes or features, and the variable we want
to predict, which we call the target variable [Provost and Fawcett, 2013].

We are interested in predicting the values of instances we have not yet observed;
we generalize the model to new data that was not used to build the model. When
a model does not generalize well beyond the data it has been trained on, it is too
tailored to the training data which we call overfitting [Provost and Fawcett, 2013]. To
examine overfitting, we should ‘hold out’ some labeled data that will not be used
during model building, which we name the test set. This set is used to measure the
generalization performance of the model, as accuracy on this data should not diverge
too much from the accuracy on the training data [Provost and Fawcett, 2013]. To
tune the parameters of our models, we can split the remaining data that can be
used for model building again in a training set and a validation set. The validation
set is used to test the performance of different parameter settings for each of the
classification models. This splitting process is depicted in Figure 2.2.

Figure 2.2: Process of splitting the dataset. Source: Chavan [2023]
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2.2 classification techniques

Two of the main tasks within supervised learning are classification and regres-
sion [Provost and Fawcett, 2013]. Classification tries to estimate to which class
an individual will belong. A popular example of a classification task is predicting
whether a bank customer will default on its loan or not (credit scoring). In this case,
there are only two possible classes and this kind of classification is also called binary
classification. When dealing with more than two potential classes, the task is referred
to as multiclass classification. Instead of a class prediction, classification algorithms
could also return the probability that the individual belongs to each class. On the
other hand, regression attempts to estimate a numerical target variable, such as
predicting the price of a house or the future price of a stock.

A distinction that will be important throughout the paper, is that of the prediction
model and the decision-making context. The decision threshold is not part of
the prediction model but part of the decision logic. As argued by Scantamburlo
et al. [2024], the ultimate decision of an automated system is informed by the
prediction model, but in nearly all cases is also influenced by additional parameters
such as quota, business rules and the costs and benefits of each decision. In the
studies conducted in this thesis, we will often use the default threshold of 0.5 for
the different prediction models, but this is not the procedure that will be used in
standard decision-making contexts.

In this thesis, our experiments are conducted on binary classification tasks, but all
our findings are applicable to multiclass classification and in most cases regression
as well. Many learning algorithms exist for these kinds of tasks, and we will discuss
the ones that will be used in later chapters for the experiments, which are Decision
Trees, Rule Induction, Logistic Regression, Random Forests, Support Vector Machines, and
Neural Networks. We will not discuss other popular supervised learning techniques
such as Naive Bayes and k-Nearest Neighbors.

2.2.1 Decision tree (DT)

A decision tree algorithm will segment the data in the form of a ‘tree’. The algorithm
will recursively split the training data until all instances belong to the same class
or a stopping criteria is reached [Quinlan, 1986, Song and Ying, 2015]. The tree is
made up of nodes, internal nodes and leaf nodes, and branches that connect them.
Each internal node represents a test on one of the attributes of the training data, and
each branch represent the outcome on that test. Each branch ultimately ends in a
terminal or leaf node, which represent a class label or probability estimation. The
most common splitting criterion is information gain, which measures the change in
entropy due to new information being gathered. Entropy is a purity measure that
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measures the disorder in a set, and in this case of predictive modeling it measures
how pure each of the resulting decision segments is [Provost and Fawcett, 2013].

Figure 2.3: Simple decision tree to predict the weather, where P signifies that the weather is
suitable and N that the weather is unsuitable. Source: Quinlan [1986].

An example of a simple decision tree to predict the weather can be seen in Figure 2.3.
To avoid overfitting, a stopping criterion a can be used to stop the growing of the
tree before it gets too complex, or the tree can be pruned to reduce its complexity.

2.2.2 Rule induction

Decision trees can also be interpreted as logical statements. If we would descend the
tree from to the root node to one of the leaf nodes, a rule would be generated. Each
rule contains all the attribute tests in the internal nodes along the path, connected
with AND. If we would follow the left path in the decision tree depicted in Figure 2.3,
we would get the rule: If the outlook is sunny AND the humidity is high, the weather is
predicted as not suitable.

2.2.3 Logistic regression (LR)

The learning algorithm will estimate a linear model and tune the parameters so
that the model fits the data as well as possible. The linear model can be written as
follows:

f (x) = wTx + b (2.1)

where x represents the feature vector, b the intercept and w the vector of weights.
This returns a numerical value, but we are interested in the probability of class
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membership, which is why we will use a logistic function (as shown in Figure 2.4)
to estimate this probability:

P(Y = 1|x) = 1

1 + e−(wTx+b)
(2.2)

Figure 2.4: The logistic function maps the outcome of a linear function f (x) to the range [0, 1].
Source: Provost and Fawcett [2013]

The unknown parameters w and b are estimated by maximizing the conditional
likelihood that the predicted class label equals the true label, which is done by
minimizing the loss function (the distance between the predicted and the true labels).
The loss function can be defined as (when using the notation yi ∈ {−1, 1}):

L =
n

∑
i=1

log(1 + e−yi(wTxi+b)) (2.3)

To avoid overfitting the data, regularization constraints should be added to control
the complexity of the model. We do this by adding a penalty for complexity to
the objective function with regularization weight λ, which determines how much
importance this penalty should get. This weight determines the trade-off between
limiting the complexity of the model, and minimizing the prediction error. Different
penalty functions can be used, and the most frequently used are ℓ1-regularization
(Lasso regression) and ℓ2-regularization (Ridge regression). Both functions penalize
the weights of the coefficients in the logistic regression model, but ℓ1-regularization
adds the sums of the absolute values of the coefficients as the penalty term, while
ℓ2-regularization adds the sum of the squared values of the coefficients as penalty
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term. ℓ1-regularization will zero out many coefficients, and perform an automatic
form of feature selection, while ℓ2-regularization will lead to small, non-zero weights.
The resulting objective functions for both types of regularization can be seen in 2.4
and 2.5:

ℓ1-regularization:

min
w,b

n

∑
i=1

log(1 + e−yi(wTxi+b)) + λ∥w∥ (2.4)

ℓ2-regularization:

min
w,b

n

∑
i=1

log(1 + e−yi(wTxi+b)) + λ∥w∥2 (2.5)

The optimal penalty function and the optimal value of λ are determined on the
validation set.

2.2.4 Random Forest (RF)

A key issue of decision trees is that they might exhibit high variance: small variations
in the training data, might result in very different decision trees. Combining
decision trees into one ‘super’ model reduces the variance and thus improves
the generalization performance [Provost and Fawcett, 2013]. Combining multiple
models into one overarching model is also called ensemble modelling, and a Random
Forest is a specific kind of ensemble model.

Random Forests insert randomness in two ways: each decision tree only uses a
random sub-sample of the data, and each split in the decision tree only uses a
random selection of features. The final RF model will average over the predictions
of all individual decision trees, and end up with a more robust final prediction of
the target class [Breiman, 2001a].

In Random Forest models, typical parameters that are tuned during the training
process include n estimators (the number of trees in the forest), max depth (the
maximum depth of the trees), min samples split (the minimum number of samples
required to split an internal node), min samples leaf (the minimum number of samples
required to be at a leaf node), and max features (the number of features to consider
when looking for the best split).

14



2.2 classification techniques

2.2.5 Support vector machine (SVM)

Support Vector Machines attempt to find the decision boundary that maximally
separates the margin (or distance) between the different classes. This process is
illustrated in Figure 2.5. One can make a distinction between linear SVM’s that are
used when the data is linearly separable by a straight line (2D), a plane (in 3d) or
a hyperplane (in higher dimensions). Non-linear SVM’s are used when the data is
not linearly separable, by mapping the data into a higher-dimensional feature space
using the ‘kernel trick’. This transformation makes it possible to find a hyperplane
that separates the data points in the higher-dimensional space, even though they
were not linearly separable in the original feature space.

For Support Vector Machines (SVM), common parameters to tune are C (the reg-
ularization parameter controlling the trade-off between achieving a low training
error and a low testing error), kernel (the kernel type, such as ’linear’, ’poly’, ’rbf’,
’sigmoid’) and gamma (the kernel coefficient for ’rbf’, ’poly’, and ’sigmoid’ kernels,
defining the influence of a single training example).

Figure 2.5: Example of a support vector machine. Source: Martens et al. [2007]
.

2.2.6 Neural networks (NN)

Neural networks, often referred to as artificial neural networks or simply ‘neural
nets’, are a class of machine learning models inspired by the structure and function
of the human brain. The core building block of a neural network is the artificial
neuron. The typical architecture of a neural network is depicted in Figure 2.6. It
consists of an input layer, hidden layers and an output layer. Each neutron takes
input from multiple sources, applies a weight to each input, and combines them
through a non-linear activation function to produce an output. The outputs of the
input layer are used as input to the next hidden layer. By adjusting the weights of
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these connections during the training process, the neural network learns to recognize
patterns and make accurate predictions.

Figure 2.6: Example of an artificial neural network. Source: Pyo et al. [2017].

The training of a neural network typically involves two main phases: forward
propagation and backpropagation. During forward propagation, the input data
flows through the network, and predictions are made. The output is then compared
to the ground truth to calculate the prediction error, also known as the loss or cost
function. Backpropagation is the process through which the neural network updates
its weights to minimize the prediction error. This is achieved by calculating the
gradient of the loss function with respect to the network’s parameters and using
optimization algorithms like stochastic gradient descent (SGD) to iteratively adjust
the weights.

In Neural Networks, typical parameters tuned include learning rate (the step size for
updating weights), the number of layers (total hidden layers in the network), number
of neurons per layer (neurons in each hidden layer), activation function (function intro-
ducing non-linearity, such as ’relu’, ’sigmoid’, ’tanh’), batch size (samples processed
before updating the model), and epochs (number of times the entire training dataset
is passed through the network).

Deep learning (DL) is a subset of machine learning that focuses on deep neural
networks with multiple hidden layers. These models have achieved exceptional
performance in areas such as computer vision, natural language processing and
speech recognition.
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2.3 performance metrics

To evaluate the performance of machine learning models, it is important to first
establish the difference between scores (probabilities) and classifications (decisions).
A classification model assigns a prediction score to each instance, and this score
is transformed into a classification by using the threshold of the model [Provost
and Fawcett, 2013]. As mentioned in Section 2.1, we use the hold-out or test data
(not used during model building) to evaluate the performance of a classifier. The
target labels of the test data are known, which allows us to compare the true
class membership of the instances in the test data with the predicted output of the
classification model.1

accuracy Accuracy is a popular metric as it is very intuitive to understand
[Provost and Fawcett, 2013].

Accuracy =
Number o f correct classi f ications made
Total number o f classi f ications made

(2.6)

Unfortunately, evaluating on accuracy has some well-known problems [Provost
et al., 1998]: when the class distribution becomes very skewed, always choosing the
most prevalent class can return a very high accuracy (equal to the imbalance in the
dataset), while the model is not actually predicting anything. Furthermore, it makes
no distinction between the different kinds of errors, but they can have different
costs.

confusion matrix A confusion matrix can help in showing how each class is
being confused for the other. A confusion matrix for a problem of n classes consists
out of n rows, where each row denotes the predicted class, and n columns, where
each column denotes the actual class. An example of a confusion matrix for a binary
classification problem can be seen in Table 2.1

Table 2.1: Confusion matrix

Actual positive Actual negative
Predicted
positive

True Positive (TP) False Positive (FP)

Predicted
negative

False Negative (FN) True Negative (TN)

1 The predicted output can be the scores or the decisions, depending on the evaluation metric that was
used.

17



machine learning

Based on the values in this matrix, various evaluation metrics can be described:

• Precision = TP/(TP + FP)

• Recall (or Sensitivity or TPR) = TP/(TP + FN)

• Specificity = TN/(FP + TN)

• F1-score (harmonic mean between precision and recall) = 2× precision×recall
precision+recall

We can also include cost-sensitive metrics, and explicitly take into account the cost
or weight of each type of prediction:

• Weighted accuracy = wTP ·TP+wTN ·TN
wTP ·TP+wTN ·TN+wFP ·FP+wFN ·FN

• Total Cost = C(0, 1) · FN + C(1, 0) · FP

auc A useful approach to show the entire space of performance possibilities is
the Receiver Operating Characteristics curve. This is a two-dimensional plot with
the false positive rate of the classifier on the x axis against true positive rate of
the classifier on the y-axis. The output of a discrete classifier will result in a point
in this space. However, we can also look at the output of the scoring function of
our classifier, ranking the scores in descending order and range over all possible
thresholds from high to low.
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Figure 2.7: An illustration of how each point in this space corresponds to a specific threshold
and confusion matrix. Source: Provost and Fawcett [2013]

An illustration of how each this curve is constructed can be seen in Figure 2.7.
Each point on the curve reflects a specific threshold, and therefore a different
confusion matrix and resulting TPR and FPR. TPR, also known as sensitivity or
recall, is the proportion of actual positive instances that are correctly identified by a
classification model. FPR is the proportion of instances that are actually negative but
are incorrectly classified as positive by a model. The dashed diagonal line represents
a random classifier, as here the true positive rate will be equal to the false positive
rate for each threshold. The Area Under the Curve (AUC) is a summary statistic
for the Receiver Operating Characteristics curve that ranges from 0 to 1. A perfect
model achieves an AUC of 100%, while a random model has an AUC of 50%. AUC
allows for an objective comparison across classifiers, as it is unaffected by the choice
of threshold or the frequency of classes [Hand, 2009].
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Artificial Intelligence (AI) and Machine Learning (ML) have witnessed an unprece-
dented surge in popularity in recent years, and consequently, they are revolutionizing
numerous aspects of our lives, from optimizing daily routines to driving decisions
in high-stakes scenarios. Machine learning models are now trusted to guide judge-
ments in domains with profound social consequences, such as medical diagnosis,
credit scoring, fraud detection, and criminal justice systems. The growing reliance on
these systems in high-stakes decisions emphasizes the need to ensure that the effect
on society is positive and aligned with our ethical objectives. In the past decades,
the focus of predictive modeling was mostly on ensuring that accurate predictions
were made. Yet, many cautionary tales exist, that show that a high test accuracy is
no longer sufficient. In HR Analytics, a well-known case is that of an automated
Amazon recruitment system. Based on historical data, a predictive model was built
to predict whether a candidate was suitable for an engineering position by analyzing
their resume. The model seemingly had a high accuracy. Yet, the model had learned
a bias against women: if the name of some all-female universities were included in
the resume, or the word ‘women’s’ (as in ‘president of the women’s soccer team or
chess club’), the candidate would automatically be down weighted. Upon revelation,
Amazon pulled the system [Dastin, 2022]. Apple faced a media storm on Twitter
about the potential sexist credit scoring of Apple Card, and its inability to explain the
used machine learning [Agrawal, November 12, 2019]. Lastly, Google was criticized
for using an image classifier that automatically tagged images of black peoples as
gorillas [Barr, 2015]. These cases demonstrate that major technology players (such
as Amazon, Google and Apple) with massive capabilities, are struggling with this
challenge with large reputational, ethical and legal implications.
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Figure 3.1: FAT Flow framework, using three dimensions: 1) role, (2) modeling stage, and (3)
evaluation criterion. Source: Martens [2020]

3.1 fat framework

We will use the FAT Flow framework to analyse the ethical aspects of machine
learning. This framework looks at three dimensions: (1) the role of the humans
involved in the project; (2) the stage of the data science project; and (3) the FAT
evaluation criteria: Fair, Accountable and Transparent.

In this PhD thesis, we mostly focus on the Evaluation stage, and the role of Data
Scientists to make the whole process more ethical. The criteria of Fair and Trans-
parent encompass ethical concepts such as privacy, discrimination and explainabil-
ity [Martens, 2022]. The criterion of Accountable is about the implementation of these
concepts into effective, demonstrable measures and will be out the scope of my
research. In my research I will focus on the criteria of Fair and Transparent, and how
they relate to Explainable AI. The first criterion Fair encompasses two guidelines in
the context of machine learning:

• Fair(a): Not discriminating against sensitive groups

• Fair(b): Without cheating or trying to achieve unjust advantage with respect
to privacy

The goal of machine learning is to discriminate between groups, and the first guide-
line states that this should be done in a way that treats people equally without
prioritizing or discriminating certain society groups. Beside the discrimination as-
pect, this criterion also takes into account the privacy aspect. The fair use of personal
data entails that the privacy of the data subjects should be respected [Martens, 2020].
This criterion leads to the pillars of fairness (a) and privacy (b).

The Transparent criterion also contains two components:

• Transparent(a): Clarity in the process
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• Transparent(b): Ability to explain decisions made by data science models

This means that all the stages of the model itself should be clear, but also that the
information provided should be sufficiently comprehensive for the data subject
to understand the reasons for the decision made by the model (as required by
GDPR) [Martens, 2022].

3.2 transparency

It is important to first shed some light on the used terminology regarding trans-
parency. We will use the terms transparency, comprehensibility and interpretability
interchangeably (as is done by literature) and define this as the degree to which a
human can understand the cause of a decision [Miller, 2019].

3.2.1 Why do we need it?

Within the field of Artificial Intelligence, providing insights into the decision-making
process is crucial for various reasons. Following Ramon [2022], we can group
the arguments for transparency in machine learning models into four categories:
trust and acceptance, improved insights, model improvement and protection of data
subjects.

trust & acceptance First, it establishes trust and compliance with stakehold-
ers, as they can understand and validate the reasoning behind the model’s output.
This is important as users who do not understand the inner workings of a machine
learning model, will be skeptical and reluctant to use it [Kayande et al., 2009].

protection of data subjects Machine learning models can pick up biases
from the training data. Interpretability methods can be a useful tool for detecting
bias, as we will show in Chapter 6. Lately, this has also been legally required. For ex-
ample, the General Data Protection Regulation (GDPR) notes the ‘right to explanation’
for individuals who are affected by AI decisions [Wachter et al., 2017b].

model debugging and improvement Machine learning models can only be
properly audited when they can be interpreted. Understanding the model can be an
important safety measure during model testing, as it can not only pick up mistakes
but also lead to to model improvements. For example, in Vermeire et al. [2022a],
explanations were computed to explain why certain lighthouse images were wrongly
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predicted. The explanations revealed that the model was not focusing on the shape
of the lighthouse, but on the presence of the clouds [Vermeire et al., 2022a].

domain insights It can lead to improved insights about the domain, allowing
practitioners and users to gain a deeper understanding of the problem space and
uncover valuable knowledge. This also allows experts to better interact with the
output of the model, and inform investigators what to (first) focus their attention
on [Martens, 2022]. For example, when we are predicting mental states such as
depression [Müller et al., 2020], insights in the machine learning model can help us
to design targeted interventions.

3.2.2 Taxonomy

To reach these goals, various methods to achieve comprehensibility in AI models have
been proposed. In general, there are two main approaches commonly used: inher-
ently transparent models and post-hoc explanations. Inherently transparent models,
such as small decision trees or sparse linear models, are comprehensible by nature
due to their simple structure, without the need for additional explanations [Molnar,
2020]. However, in many real-world scenarios, data is becoming increasingly com-
plex and black-box models are used due to their superior predictive performance.1

These models lack inherent interpretability, and post-hoc explanations are used to
provide insights into their decision-making process. Post-hoc interpretability refers
to the application of interpretation methods after the building of the model [Molnar,
2020]. This field of research is commonly known as Explainable Artificial Intelligence
(XAI).

Another distinction can be made between model-specific interpretation methods and
model-agnostic interpretation methods. The former can only be used for one specific
model, such as for example neural networks. On the other hand, model-agnostic
tools can be used on any machine learning model. By definition, these methods do
not need access to model internals such as weights or structural information [Molnar,
2020].

3.2.3 Explainable Artificial Intelligence (XAI)

Explainable AI (XAI) refers to the capability of an AI system to provide understand-
able explanations for its decisions, actions or predictions. An important remark
about this field is that there currently is not a clear definition of what an explanation

1 We discuss the difference in performance between interpretable models and black-box models in Chapter 4
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actually is. A lot of different methods exist that are all considered as explanations
but display very different things. I will study these methods together as they are
all considered as explanations by the research field. Generally, a distinction can be
made between global and local explanations.

global explanation methods Global explanations aim to provide an under-
standing of the model’s logic as a whole, allowing users to follow the reasoning that
leads to every possible outcome. Techniques such as surrogate modeling [Martens
et al., 2007], feature importance rankings and Partial Dependence plots [Friedman,
2001] fall under this category. A global surrogate model is an interpretable model
that is trained to approximate the predictions of a black box model. Any inter-
pretable model (linear model, decision tree, rules, ...) can be used and the closeness
between the surrogate model and the black box model is measured by the fidelity of
the surrogate model.

Figure 3.2: Surrogate decision tree to predict the value of a house. Source: Molnar [2020]

In Figure 3.2, we see how a simple decision tree can be used to mimic the behavior
of a black box, and still result in explainable rules.

Feature importance rankings are also a popular global explanation method. Several
implementations to calculate this exist, both model-specific and model-agnostic. For
example, random forest have a model-specific function to determine the feature
importance based on the Gini Impurity. Permutation feature importance rankings
are an alternative way to calculate this, which involves changing the value of a
feature and assessing the changes in the algorithm’s performance. An example of a
feature importance ranking can be seen in Figure 3.3

local explanation methods On the other hand, local post-hoc explanations
focus on explaining the logic behind a specific prediction or decision made by the
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Figure 3.3: Feature importance ranking of a machine learning model that predicts the in-
hospital mortality. Source: Al’Aref et al. [2019]

model. Methods like SHapley Additive exPlanations (SHAP) [Lundberg and Lee,
2017] and Local Interpretable Model-agnostic Explanations (LIME) [Ribeiro et al.,
2016] are examples of post-hoc explanations that measure the impact of each feature
for a given prediction score (feature importance methods). SHAP is based on
Shapley values, a game-theoretic concept to estimate the contribution of each feature
to a prediction [Shapley et al., 1953]. However, computing the theoretical Shapley
values is very computationally expensive, and this is why SHAP uses an efficient
approximation of this concept [Lundberg and Lee, 2017, Molnar, 2020]. LIME trains
a local surrogate model in the neighborhood of the instance to be explained, and
uses the weights of this surrogate model to explain the instance’s decision [Ribeiro
et al., 2016]. In Figure 3.4, we show an example of a SHAP waterfall plot for the
Boston Housing dataset. 2

However, both LIME and SHAP have some common drawbacks as they do not
consider feature dependence [Aas et al., 2021], and do not return sparse explanations
as they assign a value for ever input feature. Another local technique, known as
counterfactual explanations, describes a combination of feature changes required to
alter the predicted class [Martens and Provost, 2014, Wachter et al., 2017b, Guidotti,
2022]. An example of a counterfactual explanation in the context of credit scoring
can be seen in Figure 3.5.

Factual instance Model prediction
Name Age Gender City Salary Relationship status Credit decision
Lisa 21 F Brussels $50K Single Reject

Counterfactual explanation=
If you would be three years older, lived in Antwerp
and your income would be $10K higher, you would have
received a positive credit decision

2 https://github.com/shap/shap
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Figure 3.4: This SHAP plot shows how each feature contributes to the prediction score.
Source: Lundberg et al. [2020]

Counterfactual instance Model prediction
Name Age Gender City Salary Relationship status Credit decision
Fiona 24 F Antwerp $60K Single Accept

Figure 3.5: Example of a counterfactual explanation. Source: Goethals et al. [2023c]

The largest difference between SHAP and LIME on one side, and counterfactual explanations
on the other is that the former will focus on features impacting the prediction score, while the
latter focuses on the decision of the classification model [Fernandez et al., 2020].

It is important to note that no explanation method is perfect and that the preferred technique
will depend on the task and end user at hand. However, this plethora of explanation methods
and implementations will lead to a new problem, commonly known as the disagreement problem.
We discuss some possible implications in Chapter 5.

3.3 fairness

Fairness has become one of the most popular topics in machine learning in recent years. The
research community has been putting more and more emphasis on this field, which also led
to several new conferences and workshops on fairness such as ACM FAccT and the European
Workshop on Algorithmic Fairness. The sudden increase in papers around this topic can also
be seen in Figure 3.6.
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Figure 3.6: History of Fairness in machine learning. Source: Hardt and Barocas [2017]

Why should we care about fairness in machine learning? In today’s world, machine learning
has become increasingly pervasive, touching more and more domains of our lives. It is
used by employers for job applicant screening, by banks for mortgage approval, by courts
for predicting recidivism, and by online recommender systems like Netflix and Amazon to
personalize content recommendations. So as these systems are integrated in every part of our
personal life, it becomes crucial to ensure that their decision-making processes are fair and
just.

Although machine learning may appear objective; in reality they will only be as good as
the data they are trained on, giving rise to the often cited motto “garbage in, garbage
out” [Johnson, 2021]. There are already various examples of cases in real life where this
happened: A well-known use case is that of an automated Amazon recruitment system, that
we discussed at the beginning of this Chapter, where a machine learning model learned a
bias against women in a resume screening task [Dastin, 2022]. Another well-known case is
the Gender Shades study by Buolamwini and Gebru [2018]. The authors discovered that
commercial facial recognition systems had significant bias, performing poorly on darker
skinned women. Finally, in the realm of medicine, AI systems have used health costs as
a proxy for health needs and falsely concluded that patients of color are healthier than
equally sick white patients, as less money was spent on them in the past [Obermeyer et al.,
2019]. Consequently, these algorithms gave higher priority to white patients when treating
life-threatening conditions [Norori et al., 2021]. A wealth of such examples can be found, and
it is likely that many cases of unnoticed bias persist. These cases underscore the crucial need
for identifying and mitigating biases in machine learning models.

A growing awareness of these societal implications, has spurred the development of new
regulations that specifically target fairness in these technologies.These regulations seek to
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address issues of algorithmic bias, discrimination, and unequal treatment by requiring orga-
nizations to adopt measures that promote fairness. A recent example is the European Union’s
AI Act, which establishes a comprehensive framework for AI development and employment,
emphasizing fairness and non-discrimination as core principles.

Before we go further, it is important to define some of the key terminology that is often
used in the fairness literature. A sensitive attribute refers to a characteristic or feature of an
individual that is considered sensitive, often with respect to potential discrimination. This can
include attributes such as race, gender, age, religion, sexual orientation, or any other factor
that could be the basis for unfair treatment. Consequently, a protected group typically refers
to the demographic group that is at risk of being unfairly treated or discriminated against
based on their sensitive attribute, while the privileged group is the demographic category
that is typically not subject to unfair treatment based on that sensitive attribute. Fairness
metrics are quantitative measures used to assess the fairness of AI models, while fairness or
bias mitigation strategies are techniques and approaches used to modify AI models to reduce
discrimination.

3.3.1 What is algorithmic bias?

Bias can be a confusing term, and in Machine Learning it is used to point to any systematic
error made during model development. In our daily life, bias can be a prejudice toward or
against one person or group based on their characteristics. What are common sources of bias
that lead to unfairness in algorithmic systems? Algorithmic biases can emerge in various
ways. We discuss some of the most well-known types:

historical bias - Historical bias refers to situations when the target variable is de-
pendent on the sensitive attribute, but in principle no relationship should exist [Baumann
et al., 2023]. This is the consequence of certain groups being discriminated against in the
past. For example, the difference in average income between genders is generally perceived
as reflecting long-lasting social barriers and does not reflect any intrinsic differences among
genders [Baumann et al., 2023]. Another example is when past arrest records are used to
predict future crime, because minority neighborhoods often experience levels of policing,
leading to more arrests [Kleinberg et al., 2018].

measurement bias - Measurement bias occurs when a proxy of some variable is
used, because the real value cannot be properly measured, and that proxy is dependent on
a sensitive characteristic [Baumann et al., 2023]. For example, IQ is often used to measure
intelligence, but it has been shown that it could systematically favor or disfavor specific
groups.

representation bias - Representation bias occurs when the training data used to
build a model fails to adequately represent all relevant subgroups in the population. In
other words, certain groups or categories within the dataset may be underrepresented or over
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represented, leading to a lack of generalizability to those groups. This bias can result from
various factors, such as sampling methods, data collection processes, or historical inequalities.
For example, if a facial recognition system is trained primarily on images of individuals from
a particular demographic (e.g., a specific ethnicity or gender), it may not perform well for
individuals from underrepresented groups.

selection bias - Selection bias arises when the data used for training or evaluation
is not randomly sampled or is selectively chosen, leading to a skewed representation of
the overall population. This bias can result from non-random sampling methods, such as
convenience sampling, or from the intentional inclusion or exclusion of certain instances. For
instance, in a medical study, if only patients with mild symptoms are included, the model
may not generalize well to those with severe symptoms.

This list is in no way exhaustive, as there is an abundance of ways in which bias can seep into
the data.

3.3.2 Fairness definitions

Simply put, fairness is the absence of any prejudice towards an individual or group. How can
we define this in ML systems?

In this thesis, we focus on fairness in binary classification problems with a single sensitive
attribute. However, many of these concepts extend to other settings (regression, multiclass
classification, multiple sensitive attributes, etc.).

In the computer science community, a plethora of fairness metrics have been proposed [Corbett-
Davies et al., 2023]. We will focus on some of the most well-known: Fairness through
unawareness, group fairness metrics, individual fairness, and counterfactual fairness.

fairness through unawareness A common starting point for designing a fair
algorithm is simply to exclude the sensitive attributes from the model. The limitations of
fairness through unawareness have been commonly addressed, with the most fundamental
limitation being ‘the proxy problem’. The proxy problem states that the omission of sensitive
attributes can lead to the emergence of proxy variables that indirectly encode the information
contained in the sensitive attribute and hence still introduce bias into the model’s decision-
making process. A classic example of the proxy problem, is the use of zip codes in the
United States as a proxy for racial information, as these two attributes tend to be heavily
correlated. Furthermore, removing the sensitive attribute makes it more difficult to act on this
discrimination. However, some authors still note that while blinding can lead to sub-optimal
decisions, the legal, political, and social benefits of, for example, race-blind and gender-blind
algorithms may outweigh their costs in certain scenarios [Coots et al., 2023, Corbett-Davies
et al., 2023].
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group fairness metrics One of the most popular approaches are group fairness
metrics, which quantify the fairness of a machine learning model across different demographic
or sensitive groups, aiming to identify disparities in the outcome between these groups. The
most well-known metrics are presented in Table 3.1. Assume the following terminology:

• We have a sensitive attribute S with values {s,ns}, where the sensitive value is s and the
non-sensitive value is ns.

• We have a target variable Y with outcomes {0,1}

• We have a predicted target variable Ŷ with outcomes {0,1}

One of the simplest and most commonly used definitions is demographic parity (or statistical
parity), which states that the positive classification rate must be the same regardless of the
protected attributes. In our example of college admissions, this means that a model must
admit equal percentages of white and black applicants (if race is the sensitive attribute) or
of women and men. Equal opportunity states that the proportion of true positives must be
equal, while equalized odds examines whether both the proportion of true positives and trues
negatives is approximately equal across groups. Lastly, predictive parity examines the ratio of
true positives to predicted positives. Besides these, many other fairness metrics exist, and the
issue is that most of them are mutually incompatible [Kleinberg et al., 2016]. Deciding upon a
group fairness metric to enforce, thus means already imposing a certain world view. 3

Fairness Metric Formula Description

Demographic parity P(Ŷ = 1|S = s) ≈ P(Ŷ = 1|S = ns) Demographic parity examines whether the
probability of a positive outcome (Y = 1) is
approximately equal across groups.

Equal Opportunity P(Ŷ = 1|S = s, Y = 1) ≈ P(Ŷ = 1|S = ns, Y = 1) Equal opportunity assesses whether the true
positive rate is approximately equal for differ-
ent groups.

Equalized Odds P(Ŷ = 1|S = s, Y = 1) ≈ P(Ŷ = 1|S = ns, Y = 1) ,
P(Ŷ = 1|S = s, Y = 0) ≈ P(Ŷ = 1|S = ns, Y = 0)

Equalized odds examines whether the true pos-
itive rate and the true negative rate are approx-
imately equal for different groups.

Predictive parity P(Y = 1|S = s, Ŷ) ≈ P(Y = 1|S = ns, Ŷ) Predictive parity examines whether the positive
predictive value (the ratio of true positives to
predicted positives) is approximately equal for
different groups

Table 3.1: Overview of some of the most used group fairness metrics (but many more exist).

individual fairness Individual fairness, proposed by Dwork et al. [2012], emphasizes
the notion that similar individuals should be treated similarly. This perspective shifts the focus
from group-based fairness, which concerns itself with ensuring that different demographic
groups are treated equally, to an individual-centric approach. They argue that fairness is
inherently about how we treat each person rather than how we treat groups of people. In this
context, the idea is that if two individuals are alike in relevant aspects, they should receive
comparable outcomes from an algorithmic decision-making process. However, it hard to
determine an appropriate metric to measure the similarity between 2 inputs, and the choice of
similarity metric has a lot of influence on the outcome.

3 For an overview of true positives etc, we refer to the confusion matrix in Table 2.1
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counterfactual fairness Counterfactual fairness, proposed in Kusner et al. [2017],
takes a more causal approach. In line with Pearl’s causal model [Pearl et al., 2000], they deem
the prediction of a model for an individual as fair if it is the same in the real world as it would
be if the individual would belong to a different demographic group [Kusner et al., 2017, Wu
et al., 2019]. To measure this, they make explicit assumptions about the causal relationships
in the data. One way for a predictor to be counterfactually fair is if it is a function of only
non-descendants of the sensitive attribute, so the result of this metric will heavily depend on
the chosen causal model. This metric is further discussed in Chapter 6.

3.3.3 Overview of fairness mitigation strategies

There are many algorithms that claim to improve fairness. We can divide most of them into
three categories: preprocessing, inprocessing and post-processing.

preprocessing These methods will change the representation of the data before the
machine learning model is learned. The idea behind Learning Fair Representations introduced
by Zemel et al. [2013] is that a new representation Z is learned that removes the information
correlated with the sensitive attribute, but preserves the other information about X as much
as possible. This intermediate representation can be used for other downstream tasks such as
regression and classification, and produce results that satisfy demographic parity and indi-
vidual fairness. Another preprocessing technique is Reweighing, that aims to mitigate bias in
the training data by adjusting the weights of instances belonging to different groups [Kamiran
and Calders, 2012]. The idea is to assign higher weights to instances from underrepresented
groups and lower weights to instances from overrepresented groups. Sampling uses the same
reasoning, but involves creating a balanced dataset by either oversampling instances from
underrepresented groups or undersampling instances from overrepresented groups.

inprocessing In-processing methods improve fairness during the training process by
incorporating various strategies designed to ensure that the model learns to treat individuals
or groups more equitably. These methods often involve adding additional constraints or
modifying the objective function to balance accuracy with fairness considerations. A popular
technique is adversarial debiasing, which combines a classifier that predicts the class label
with an adversary that predicts the sensitive attribute [Zhang et al., 2018]. The goal is to
maximize the classifier’s performance while minimizing that of the adversary.

In-processing methods also include techniques such as constrained optimization and dual
learning frameworks, where dual variables or Lagrange multipliers are used to enforce fairness
constraints dynamically during training [Komiyama et al., 2018]. These methods allow for a
flexible trade-off between fairness and accuracy, as the model can adjust the importance of
fairness constraints based on the training data and the specific fairness goals.

post-processing These methods attempt to modify the posteriors in a way that satisfies
fairness constraints. The most straightforward option is to modify the classification thresholds
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per sensitive group to enforce a fairness metric. Hardt et al. [2016] demonstrates this for
equalized odds. Another option, introduced by Kamiran et al. [2012], is to use reject option
classification. This strategy enforces one of the fairness metric by imposing a confidence
threshold and flipping all predictions that fall below it.

3.4 privacy

In an era of increasing data availability and advanced machine learning technologies, the topic
of privacy has garnered significant attention and concern. Privacy is a fundamental human
right, and its preservation becomes a critical consideration when applying machine learning
techniques to personal or sensitive data. Personal data boils down to data that can be linked
to an individual [Martens, 2022]. More formally, personal data comprises “any information
related to an identified or identifiable natural person” (Art 4(1) European Parliament and
Council, 2016). Consequently, data that can be used to identify a person, either directly or
indirectly (such as by combining an individual data point with another piece of data enabling
identification), is classified as personal data [Van Dijck and Poell, 2013].

The privacy landscape is continually evolving with the introduction of regulations like the
General Data Protection Regulation (GDPR) in Europe and the California Consumer Privacy Act
(CCPA) in the United States [Zaeem and Barber, 2020]. These regulations emphasize individual
data rights and place responsibilities on organizations that collect and process data. The
European Union’s General Data Protection Regulation ( GDPR) lays down a legal framework
for data protection and privacy in organizations and research activities involving personal
data. Article 5 of the GDPR outlines principles for processing personal data (European
Parliament and Council, 2016). Significantly, data collection should be limited to what is
necessary, emphasizing the concept of ”data minimization” to ensure that organizations do
not retain more data than required for their intended purposes. Moreover, they are obligated
to be transparent about their reasons for collecting personal data and to align their data
processing with the expectations of the individuals concerned (”purpose limitation”). Even
when they collect and use personal data fairly and lawfully, organizations are prohibited from
retaining it longer than necessary (”storage limitation”).

3.4.1 The privacy paradox

The privacy paradox constitutes the apparent contradiction between individuals’ concerns
about their online privacy and their actual behavior when interacting with digital platforms
and services [Barth and De Jong, 2017]. Surveys and studies consistently show that people
value and prioritize the protection of their personal data. However, individuals still readily
share personal information on social media, use online services that collect extensive data,
and engage with apps and platforms that request broad permissions.
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3.4.2 Privacy risks in machine learning

We list some challenges with regard to data leakage that the field of machine learning is
currently facing. With data leakage, we mean the risk of unintentional disclosure of private
information during the training or use of machine learning models. Just as removing sensitive
information from a machine learning model is insufficient to guarantee fairness, the mere
removal of identifiers from a dataset falls short of ensuring privacy. Numerous instances
serve as cautionary tales, illustrating how ostensibly anonymous data can still be leveraged to
identify individuals and inadvertently result in data breaches.

One well-known case is Netflix’s release of movie ratings data in 2016 for a data mining
competition aimed at enhancing their movie recommendation algorithm. Although published
anonymously, some Netflix users could be identified by comparing the data with another
public data set from IMDB. Netflix was forced to cancel the competition following allegations
of divulging their customers’ movie preferences [Amatriain and Basilico, 2020, Martens,
2022].

Why do we even care about the ability to identify a person in the Netflix dataset? Your
movie-watching history might reveal movies you do not want to share publicly (as opposed
to the public ratings you share on IMDB), and can lead to the prediction of your political,
sexual, and religious preferences [Narayanan and Shmatikov, 2008, Kosinski et al., 2013].

We list some of the most discussed privacy attacks in Machine Learning below (this list is not
exhaustive). We will discuss these attacks in more detail in Chatper 8.

model extraction attack Techniques that attempt to reverse-engineer or replicate
the underlying machine learning model by making queries to the model [Rigaki and Garcia,
2023]. This can lead to theft of intellectual property and the model’s architecture and
parameters.

membership inference attacks Methods to determine whether the data of a
specific individual was part of a training dataset, revealing their participation in sensitive or
confidential activities [Shokri et al., 2017].

attribute inference attack This kind of attack aims to predict private attributes
of an individual based on the output of the machine learning model [Rigaki and Garcia,
2023].

3.4.3 Privacy-preserving machine learning

Addressing these challenges while still benefiting from the power of machine learning requires
the development of privacy-preserving techniques. These methods aim to strike a balance
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between predictive accuracy and safeguarding individual privacy. We discuss some common
privacy-preserving techniques:

k-anonymity A privacy-preserving technique that makes it difficult to distinguish one
individual’s data from at least k-1 other individuals, by suppressing or generalizing the
quasi-identifiers [Sweeney, 2002b]. It is defined by Sweeney [2002b] as: ‘A property of a dataset
where for each combination of quasi-identifiers in the dataset, there are at least k− 1 other instances
with the same value combination’. However, this property does not offer protection against
privacy attacks such as the homogeneity attack and the linkage attack. Therefore, more strict
properties such as l-diversity [Machanavajjhala et al., 2007] and t-closeness [Li et al., 2006]
were suggested.

differential privacy A mathematical framework that adds noise to the data to
make it more challenging to identify individual records while still allowing for useful analy-
sis [Dwork, 2006]. The definition of differential privacy by Dwork [2006] notes: ‘A property of
an algorithm where the outcome or result will remain essentially the same whether you participate or
not in the dataset’.

federated learning Federated learning is a distributed machine learning approach
that aims to train a centralized model while the training data remains distributed over the
local devices [Martens, 2022]. Models are trained locally on individual devices or servers,
and only model updates, not raw data, are shared [McMahan et al., 2017]. This approach
minimizes data exposure.

homomorphic encryption Homomorphic encryption offers a solution to protect
privacy while also allowing for cloud computing [Martens, 2022]. This technique allows data
to remain encrypted while computations are performed on it, preserving privacy during
processing [Yi et al., 2014].

3.5 conclusion

The ethical principles of fairness, transparency, and privacy within the realm of machine
learning are not isolated principles. Rather, they are interconnected, often both supporting
and hindering one another, creating a complex web of ethical considerations. In this thesis,
our aim is to shed light on these intricate relationships and the tensions they give rise to. An
example of these tensions can be found in the field of XAI. While XAI plays a pivotal role in
enhancing transparency and accountability in machine learning models, it also introduces
additional risks, both on the level of privacy as well as manipulation. In this thesis, we will
show how it can both benefit decision subjects (by offering transparency and the means to
spot discriminatory patterns) as hurt them by allowing for new forms of both manipulation
and privacy attacks.
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4
The Cost of Comprehensibility

A key challenge in Artificial Intelligence (AI) has been the potential trade-off between the
accuracy and comprehensibility of machine learning models, as this also relates to their safe
and trusted adoption. While there has been a lot of talk about this trade-off, there is no
systematic study that assesses to what extent it exists, how often it occurs, and for what types
of datasets. Based on the analysis of 90 benchmark classification datasets, we find that this
trade-off exists for most (69%) of the datasets, but that somewhat surprisingly for the majority
of cases it is rather small while for only a few it is very large. Comprehensibility can be
enhanced by adding yet another algorithmic step, that of surrogate modelling using so-called
‘explainable’ models. Such models can improve the accuracy-comprehensibility trade-off,
especially in cases where the black box was initially better. Finally, we find that dataset
characteristics related to the complexity required to model the dataset, and the level of noise,
can significantly explain this trade-off and thus the cost of comprehensibility. These insights
lead to specific guidelines on how and when to apply AI algorithms when comprehensibility
is required.



the cost of comprehensibility

4.1 introduction

In 2019, a series of tweets went viral where a tech entrepreneur was complaining about the fact
that Apple Card offered him twenty times the credit limit that it offered to his wife, although
they had shared assets. After complaining to Apple representatives, he got the reply: “I don’t
know why, but I swear we’re not discriminating, IT’S JUST THE ALGORITHM” [Agrawal,
November 12, 2019, Martens, 2022]. Apple co-founder Steve Wozniak replied that the same
thing happened to him and his wife and added [Wozniak, November 10, 2019]: “Hard to get
to a human for a correction though. It’s big tech in 2019.” These complaints led to a formal
investigation into the potential sexist credit scoring by Apple Card [Agrawal, November 12,
2019, Martens, 2022]. This example shows how predictive modelling is facing major challenges
due to its inability to explain its decisions, which often stems from the use of complicated
models. But why is everyone using these kinds of models? It is often claimed that they have a
higher performance than more simple models, but is this always true? How often is it the
case and to what extent?

Figure 4.1: Definitions of the Cost of Comprehensibility, the Cost of Explainability and the
Benefit of Explaining

This trade-off between accuracy and comprehensibility is arguably one of the important
debates in Artificial Intelligence (AI)1 [Breiman, 2001b, DAR, 2016]. This trade-off can either

1 We focus on prediction models trained on data using machine learning algorithms.
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limit the performance of AI , if accuracy is lost due to comprehensibility restrictions (for
example imposed by regulators) [Martens et al., 2007, Wachter et al., 2017a], or hurt AI
adoption, if user trust is lost due to opaqueness [Linardatos et al., 2021]. The Apple Card
example shows that companies may use black box models to achieve higher predictive
performance, but with the risk of being unable to explain their AI decisions to users or
regulators. However, while there has been a lot of research mentioning this trade-off, with
most claiming there is one [DAR, 2016, Linardatos et al., 2021, Freitas, 2014, Murdoch et al.,
2019] and others contradicting this [Rudin and Radin, 2019, Makridakis and Hibon, 2000],
there is no systematic study that assesses to what extent there indeed exists a trade-off and
for what types of datasets.

The goal of this paper is to provide such a systematic study. We focus on tabular datasets
as we believe that for these datasets the trade-off would be less clear - and possibly smaller
than expected. Deep learning models, which are models composed of multiple layers to learn
representations of data with multiple levels of abstraction [LeCun et al., 2015] and can thus be
considered as black box models, perform very well for classification on homogenous data such
as image, audio or text but they not necessarily outperform other machine learning techniques
on tabular datasets [Borisov et al., 2022, Popov et al., 2019, Arik and Pfister, 2021].

Based on the analysis of 90 benchmark datasets across different domains, we study the nature
of the differences between the accuracies among a number of widely used a) opaque (“black
box”) models, b) comprehensible (“white box”) models, and c) surrogate models used to
develop a comprehensible surrogate of the opaque ones. We call the difference between (a)
and (b) “Cost of Comprehensibility”, that between (a) and (c) “Cost of Explainability”, and
that between (b) and (c) the “Benefit of Explaining” (Figure 4.1).2 Our main findings are:
first, there is indeed a trade-off but somewhat surprisingly it appears to be highly non-linear
across datasets. Both costs are relatively small for most datasets, but very large for a few.
Second, there are datasets for which the comprehensible models perform as well or better
than the black box models, supporting that one should not forgo trying comprehensible
models [Zeng et al., 2017]. We call these datasets “comprehensible datasets”, as opposed to
datasets where the black box is strictly better which we call “opaque datasets”. Understanding
what makes a dataset “opaque” vs “comprehensible” and more so, given the non-linearities
observed, what makes the costs very high (positive or negative) is a challenging question as
it relates to understanding the data generation processes themselves (e.g., the “nature” of
the data and problem at hand). We discuss initial results indicating that some of the main
differences between opaque and comprehensible datasets are about their inherent complexity
as well as the level of noise in the data. The results indicate that reporting some simple
characteristics of a dataset can provide clues, for example to users or regulators, about the
potential accuracy and comprehensibility trade-off. To summarize, the contributions of our
paper are threefold:

• A benchmark study comparing state-of-the-art white box and black box algorithms on
90 tabular datasets, and assessing their difference in performance;

2 We note that the terms “interpretability”, “comprehensibility” and “explainability” have also been used
in different ways in the literature. We use one of the definitions of comprehensibility, but note that many
more exist. For example, comprehensibility can also be enforced in the training process, as was done by
Carrizosa et al. [2017].
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• An analysis of whether surrogate modelling could improve any trade-off between
comprehensibility and accuracy;

• Insights in how dataset properties could predict the nature/size of the trade-off we
study.

4.2 background and setup of the study

4.2.1 What is comprehensibility?

We refer to the discussion in Section 3.2 for an overview of comprehensibility in machine
learning. As mentioned, there are two main approaches commonly used: inherently com-
prehensible models and post-hoc explanations. We will focus on the former, and investigate
models that are comprehensible by nature. However, comprehensibility is very difficult to
measure due to its subjective nature. Some compare the comprehensibility of models using
user-based surveys [Huysmans et al., 2011, Allahyari and Lavesson, 2011] while others based
on mathematical heuristics [Freitas, 2014], typically the size of the model (e.g., number of
rules for a rule learner, number of nodes for a decision tree, or number of variables for a
linear model) [Askira-Gelman, 1998, Bibal and Frénay, 2016, Freitas, 2019, Rüping et al.,
2006]. Very deep decision trees, for example, can be considered as less comprehensible than
a compact neural network [Lipton, 2018]. We use the latter, heuristic approach to measure
comprehensibility due to its objectivity and scalability.

4.2.2 What are intrinsically comprehensible models?

In line with the literature, we consider small decision trees, rule sets and linear models as
comprehensible or “white box” models [Linardatos et al., 2021, Molnar, 2020, Guidotti et al.,
2018, Stiglic et al., 2020]. We limit the size of these models during training in order for them
to be comprehensible. We opted for seven as the size limit for comprehensibility, based on
cognitive load theory [Miller, 1956]. According to this theory, the span of absolute judgement
and the span of short-term memory pose severe limitations on the amount of information
that humans can receive and process correctly, with seven being the typically considered
maximum size in both cases [Miller, 1956]. We consider larger decision trees3, rule sets and
linear models as “black box” ones. We also consider three other machine learning methods in

3 A decision tree of eight nodes is arguably not a black box model, and may be in a “grey zone” of
comprehensibility. For this reason, in our experiments we focus on the very large and small trees,
rule sets and linear models, defined as those with size larger than 50 or smaller than 8 (in number of
nodes/rules/coefficients) as it is a general assumption in the literature that smaller decision trees are
more comprehensible than larger ones due to the cognitive size limit [Freitas, 2014, Huysmans et al., 2011,
Confalonieri et al., 2019, Ramon et al., 2021b]. This focus ensures that our findings are applicable to all
applications and end users, because of the arbitrariness to consider models with size between 8 and 50 as
black box, which actually depends on the application and end user.
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the list of black boxes we test: neural networks, random forests and nonlinear support vector
machines. It is generally agreed upon that these algorithms are not comprehensible as their
line of reasoning cannot be followed by human users. We base this choice of black box models
on the results of benchmark studies in the literature, where these often are among the best
performing ones, as can be seen in Table 4.1.4 Comparing all possible models available is of
course infeasible, which is a practical limitation of such a study. All the papers mentioned in
Table 4.1 compare different machine learning models but none investigate the difference in
performance between the best black box model and the best white box model, nor whether
this can be linked to any dataset properties. Many papers claim that black box models will
always have a better performance, or on the contrary that simpler models work equally
well [Rudin and Radin, 2019, Makridakis and Hibon, 2000], but a large-scale study about the
difference of performance is missing.5

ML algorithms Count
Olson
et al.
(2017)

Fernandez-Delgada
et al.
(2014)

Zhang
et al.
(2017)

Lessman
et al.
(2015)

Mayr
et al.
(2018)

Lorena
et al.
(2011)

Macia and Bernado-Mansilla
et al.
(2014)

Random Forest 7 ✓ ✓(1) ✓(1) ✓ ✓(3) ✓(1) ✓
Bayesian 7 ✓ ✓ ✓ ✓ ✓ ✓ ✓
SVM 7 ✓ ✓(2) ✓(2) ✓ ✓(2) ✓(2) ✓
LR 6 ✓ ✓ ✓ ✓ ✓ ✓
Nearest Neighbor 6 ✓ ✓ ✓ ✓ ✓ ✓
Neural networks 5 ✓(3) ✓(3) ✓ ✓(1) ✓
Decision tree 4 ✓ ✓(4) ✓ ✓
Boosting 3 ✓ ✓ ✓(1)
Discriminant analysis 2 ✓ ✓
Bagging 1 ✓
Rule-based 1 ✓

Table 4.1: Models that are used in other benchmark studies. Symbol ✓indicates that this kind
of model was used in the study, and the numbers between brackets indicate the
rank of the model (if this was included in the study).

4.2.3 Surrogate modelling

A common practice is to mimic the predictions of a black box with a global white box
surrogate model, in order to improve the accuracy while remaining comprehensible [Fung
et al., 2005, Martens et al., 2008b]. The typical process is to first build a black box model using
the available training data, and then build a comprehensible model by training a white box
model using the predictions of the black box instead of the original training data. This process

4 We do not include k-nearest neighbors and Bayesian networks, which are also used frequently in other
benchmark studies, as it is debatable whether they can be considered as comprehensible models. K-nearest
neighbors lacks global model comprehensibility as there are is no global model structure learned [Molnar,
2020] and in Bayesian networks, it is not easy to interpret the mapping implicit in the network or do other
data inference tasks, as the reasoning method is not necessarily aligned with human reasoning [Lacave
and Dı́ez, 2002, Chubarian and Turán, 2020].

5 Besides white box and black box models, some researchers also mention the existence of “grey box”
models, which are defined as aiming to develop an ensemble of black and white box models and acquire
the benefits of both by being nearly as accurate as black box models but more comprehensible [Pintelas
et al., 2020]. As the literature is not conclusive on whether grey boxes are always as comprehensible as
white box models [Pintelas et al., 2020, Freitas, 2019, Garcı́a, 2020], we will focus only on the trade-off
between black box and white box models in this study.
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is called surrogate modelling [Molnar, 2020], oracle coaching [Johansson et al., 2012, 2014],
or rule extraction in case the white box model is a decision tree or rule set [Martens et al.,
2007, Craven and Shavlik, 1995]. A key metric of the quality of the surrogate model is fidelity,
which measures how well the predictions of the surrogate model match those of the black
box [Zhou, 2004]. The most common goal of this kind of modelling is to use the surrogate
model to explain the black box model, while still using the black box to make predictions.
This requires of course that the surrogate model is (1) more comprehensible than the black
box model and (2) sufficiently explains the predictions made (high fidelity).

One can also use the surrogate model instead of the black box to make predictions, in order
to improve the performance one could achieve using only comprehensible models. A possible
reason why this approach can work, instead of just training a white box model directly using
the training data, can be that the black box model may filter out noise or anomalies that are
present in the original training data [Johansson et al., 2014, Martens et al., 2008a]. In this case,
a comprehensible model mimicking a black box may be more accurate than a comprehensible
model trained on the original data, as shown in some previous work [Martens et al., 2008b,
Johansson et al., 2012, 2014]. Therefore, we also investigate whether surrogate modelling can
lead to better performing comprehensible models and, as such, improve the trade-off we study.
Specifically, for each dataset we train a white box on the predictions of the best performing
black box for that dataset. We call this a surrogate white box model as opposed to a comprehensi-
ble model trained on the training dataset which we call a native white box model - see Figure 4.1.6

4.2.4 Dataset properties

Finally, we study whether there are simple (standard) properties of a dataset that may de-
termine whether it is opaque (the best black box model outperforms the best white box) or
comprehensible (the reverse happens). We use a standard toolbox [Alcobaça et al., 2020],
which automatically extracts numerous characteristics (“meta-features”) for any given dataset.
We consider four types of dataset characteristics from this toolbox: general ones, which
capture basic information such as the number of instances or the number of attributes [Rivolli
et al., 2018]; statistical ones, which capture information about the data distribution such as
the number of outliers, variance, skewness, etc. [Rivolli et al., 2018]; information-theoretic
ones, which capture characteristics such as the joint entropy, class entropy, class concentra-
tion, etc. [Rivolli et al., 2018]; and so-called complexity related ones, which, for example
in the case of a classification problem estimate the difficulty in separating the data into
their classes [Lorena et al., 2019].7 We opt for using a standard toolbox and set of dataset
characteristics to make this analysis general, easily reproducible and simple to use in practice.
A list of the used dataset properties and their meaning can be found in Table A.2.

6 In this study, we make a distinction between the surrogate models and the native white box models, but
surrogate models are in se just one type of white box models.

7 See Supplementary Information material.
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4.3 materials and methods

4.3.1 Materials

We use a large benchmark study to compare the algorithms on different tabular datasets.
Benchmark comparisons are usually developed over a few, typically standard data sets, as a
machine learning method might perform well on some of the datasets but not generalize to a
broader range of problems [Olson et al., 2017].
To perform our experiments, we use all the binary classification datasets from the Penn
Machine Learning Benchmark (PMLB) suite [Olson et al., 2017]. This is a dataset suite that is
publicly available on Github8, which consists both of real-world and simulated benchmark
datasets to evaluate supervised classification methods. It is compiled from a wide range
of existing ML benchmark suites such as KEEL, Kaggle, the UCI ML repository and the
meta-learning benchmark. At this moment, PMLB consists of 162 classification datasets and
122 regression datasets. We focus on the binary classification datasets which amount to 90

datasets in total.

Some preprocessing was already done by the compilers of this benchmark suite. All the
datasets were preprocessed to follow a standard row-column format and all the categorical
and features with non-numerical encodings were replaced with numerical equivalents. All
datasets with missing data were excluded, to avoid the impact of imposing a specific data
imputation method. The used datasets are shown in Table A.1.

4.3.2 Methods

Our methodology is shown in Figure 8.3. For each dataset we create a training and test set,
using 75% of the data for training and 25% for testing. Both the training and the test set are
scaled according to the parameters of the training set with Sklearn’s MinMaxScaler.9 This
estimator scales each feature individually so that it is between zero and one on the training
set. We also use a stratified split to make sure that enough labels are present for the training
phase. GridSearchCV from Sklearn10 is used with its default 5-fold cross validation to tune
the hyperparameters of every model. The dataset is divided in five folds, where each time
another fold is taken as the validation set. GridSearchCV then performs an exhaustive search
over a specified hyperparameter grid (which is reported in Section 4.3.2 and in Section 4.3.2
for each modelling technique) and then checks on the validation set which parameter settings
performed best. By doing this five times, instead of just using one validation set, we get
a more accurate representation of how the model behaves on unseen data, and we are not
reliant on the data we used as the validation set. We select the best hyperparameter values
for each modelling technique based on this tuning. Moreover, for each dataset we also select

8 https://github.com/EpistasisLab/pmlb
9 https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html

10 https://scikit-learn.org/stable/modules/generated/sklearn.model selection.GridSearchCV.html
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Figure 4.2: Methodology

the best surrogate model. We do this by creating a new training set, which is a copy of the
original training set but with as labels the predictions of the best black box model, based on
the cross-validation performance. The surrogate model is trained on this relabeled training
set and can be any of the original white box models, as well as Trepan or RuleFit. The final
performance of all the models (black box, white box and surrogate) is evaluated on the test
set based on two metrics: accuracy and f1-score. The difference in the test set performance
among the different models is shown in Figure 4.3. For each dataset we select the best black
box, the best white box and the best surrogate, based on their performance on the test set.11

In our aggregate analyses, we compare the test performances of these across all datasets.

11 Note that using the test data to select the best black and white boxes and then reusing the same data to
compare those two across all datasets adds some bias in the results. We opt for this approach (instead
of also using, for example, a validation set) as some datasets do not have many observations and we
only select among a few (in total six) black boxes and among a few (in total three) white ones, making
the bias small. We also verified whether our results are robust when using cross validation to select the
best model and note that our results indeed hold (e.g., still for 68.89% of the datasets, the best black box
model outperforms the best white box model).

46



4.3 materials and methods

Figure 4.3: Critical difference diagram of the comparison of classifiers. Models that are not
connected with a bold line have a significant difference in performance (at a 5%
level with the Nemenyi test).

Black Box Models

We use three state-of-the-art black box models: neural networks, random forests and nonlinear
support vector machines [Baesens et al., 2003, Singh et al., 2016]. The functioning of each
model is described in more detail in Section 2.2. As noted below, we also include in the list of
black boxes the three comprehensible models when their size - after training - is very large.

random forest We use the RandomForestClassifier12 from Sklearn and use a grid
search to tune the number of trees in the forest with several values between 10 and 2000 and
the number of features to consider when looking for the best split with (’sqrt’, ’none’).

support vector machine We use the SVC13 from Sklearn and use a grid search to
tune the regularization hyperparameter with values between 0.1 and 1000 and the kernel
coefficient with several values between 0.0001 and 1. We use the default kernel type of rbf.

neural network We use the MLPClassifier14 from Sklearn and use a grid search to
tune the size of the hidden layer. We only test neural networks with one hidden layer. We
tune the hidden layer with several sizes between 10 and 1000.

12 https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
13 https://scikit-learn.org/stable/modules/svm.html
14 https://scikit-learn.org/stable/modules/generated/sklearn.neural network.MLPClassifier.html
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Comprehensible Models

We use three models that are in general considered to be comprehensible, when their size is
constrained. As discussed in the main article, we limit the size of these models to 7 (maximum
number of nodes for trees, rules for rule based systems, coefficients for logistic regression).
We also train these models without constraining their size. In this case, when their size after
training is very large, with more than 50 elements,we consider them as part of the black boxes
in our analysis. The functioning of each model is described in Section 2.2.

decision tree We use the DecisionTreeClassifier15 from Sklearn. We use a grid search
to tune the function to measure the quality of the split (gini, entropy), tune the maximal depth
between 2 and 30 and tune the minimum number of samples in a leaf (2,4). We tune the
maximal amount of leaf nodes between 2 and 7 for the constrained cases (white boxes) and
between 2 and 1000 for the unconstrained ones (black boxes).

logistic regression We use the LogisticRegression16 from Sklearn. We use l2 regu-
larization and the liblinear solver. We use a grid search to tune the regularization parameter
values between 0.0001 and 1000.

ripper We use a rule learning algorithm, based on sequential covering. This method
repeatedly learns a single rule to create a rule list that covers the entire dataset rule by rule
[Molnar, 2020]. RIPPER (Repeated Incremental Pruning to produce Error Reduction), which
was introduced by Cohen in 1995 is a variant of this algorithm [Cohen, 1995]. We use the
Python implementation of Ripper hosted on Github.17

Surrogate Models

We use the three comprehensible models above but this time we train them on the predictions
of the best performing black box instead of using the training data. We also include Trepan
[Craven and Shavlik, 1995], which is used for rule extraction based surrogate modeling, and
RuleFit [Friedman and Popescu, 2008], which is based on an underlying Random Forest
model. Again, we limit the size of the comprehensible models to 7.

trepan We use the Python package Skater to implement TreeSurrogates18, which is based
on Craven and Shavlik [1995]. The base estimator (oracle) can be any supervised learning
model. The white box model has the form of a decision tree and can be trained on the decision
boundaries learned by the oracle. We use the same hyperparameter settings to tune the
decision trees from Trepan as for the DecisionTreeClassifier.

15 https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
16 https://scikit-learn.org/stable/modules/generated/sklearn.linear model.LogisticRegression.html
17 Imoscovitz. Ripper Python package. url: https://github.com/imoscovitz/wittgenstein
18 A. Kramer et al Skater Python package. url: https://github.com/oracle/Skater
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rulefit The RuleFit algorithm learns sparse linear models that include automatically
detected interaction effects in the form of decision rules [Friedman and Popescu, 2008]. The
interpretation is the same as for normal linear models but now some of the features are derived
from decision rules. We use the Python implementation of RuleFit hosted on Github.19

4.4 results

0 20 40 60 80
Datasets ranked according to increasing gap in performance

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

Re
la

tiv
e 

Di
ffe

re
nc

e 
in

 f1

(a) Non-linearity of the cost of comprehensibility

0 20 40 60 80
Datasets ranked according to increasing gap in performance

1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

Re
la

tiv
e 

Di
ffe

re
nc

e 
in

 f1

(b) Non-linearity of the cost of explainability

Figure 4.4: Comparing black box and white box models. For both plots, the datasets are
ordered according to the gap in f1-score between the best black box and the best
native (left figure) or surrogate (right) white box model (right). The y-axis measures
the relative difference in the f1-score, defined as the ratio of the difference between
the black and white box f1-scores divided by that of the best model.

First, we address the cost of comprehensibility, by testing whether native white and black
box models have a significant difference in performance. To assess this cost, we use both the
models’ f1-score and accuracy.20 The figures for the latter are reported in the Appendix. We first
compare all the classifiers using the Friedman test21 [Demšar, 2006] to identify whether there
are any significant differences between the different models, and then the post-hoc Nemenyi
test [Nemenyi, 1963] to identify significant pairwise differences.22 The null hypothesis of
the Friedman test is rejected with a p-value of 2.43 · e−25 (a value with the same order of
magnitude when using accuracy instead of f1-scores). This means that there are significant
differences among some groups of algorithms. We use the post-hoc Nemenyi test to perform
all possible pairwise comparisons [Trawiński et al., 2012]. The results are shown in the critical
difference diagram23 in Figure 4.3. The performance of the black box models (RF, MLP, SVM)
is significantly better than the performance of the white box models (DT, LR, Ripper), already
confirming that, overall, the cost of comprehensibility indeed exists.

19 Molnar. RuleFit Python package. url:https://github.com/christophM/rulefit
20 We include the results with f1-score to account for imbalance issues that could bias our results.
21 https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.friedmanchisquare.html
22 We cannot just use a pairwise comparison because this would inflate the probability of a type I error. The

Friedman test is the non-parametric equivalent to the repeated-measures ANOVA [Demšar, 2006].
23 These diagrams were created with the Orange Data Mining Library [Demšar et al., 2013].
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4.4.1 The Cost of Comprehensibility

Having established that the cost of comprehensibility exists, we study how large it is across
datasets. As discussed, for each dataset we select the best black and white box models and
measure their relative difference in performance - namely, the cost of comprehensibility.
Figure 4.4a shows the results across all datasets when we order them according to this cost.
This figure reveals a somewhat surprising result: this cost is highly non-linear (e.g., the
plot is a sigmoid instead of being closer to a straight line). For most datasets the accuracy-
comprehensibility trade-off is low, only for a few it is very high (right) and for a few it is very
“negative” indicating that comprehensible models largely outperform the black box ones for
these datasets (left). Yet, for 68.89% of the datasets the best black box model outperforms the
best white box model, reconfirming the overall existence of the cost of comprehensibility.

4.4.2 Can Surrogate Modeling Improve the Accuracy-Comprehensibility Trade-off?
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Figure 4.5: Comparison across datasets of best black box model for each dataset, surrogate
white box model mimicking this best black box, and best native white box model.
BB stands for black box and WB for white box. The line at 0 indicates the
performance of the best black box model. The y-axis indicates the absolute
difference in f1-score from the best black box model.

We next investigate whether surrogate modelling can improve the performance of the (native)
comprehensible models. For all datasets we generate the best black box and the best (native)
white box trained on the training data, and then we also train a surrogate model mimicking
the best black box one - what we previously called a surrogate white box. We compare the
performance of these three types of models across all datasets in Figure 4.5. As indicated in
Figure 4.5a, surrogate modelling does improve accuracy slightly relative to native white box
models, on average across all datasets. We term this improvement the “Benefit of Explaining”,
a benefit in terms of improved predictive accuracy. Based on the Wilcoxon Signed Rank
test24 [Demšar, 2006], used to compare classifiers across several datasets, we can reject the
hypothesis that the native and surrogate white boxes perform equally well (p-value 0.003) –

24 https://scikit-posthocs.readthedocs.io/en/latest/generated/scikit posthocs.posthoc wilcoxon/
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the latter performing on average better.

We perform the same analysis, but this time for two different types of datasets: those for
which the best performing model is a black box, what we termed opaque datasets, and
those for which white boxes perform at least as well as or better than black boxes, what
we called comprehensible datasets. The results are shown in Figure 4.5b and Figure 4.5c.
Interestingly, in this case the surrogate white box models outperform the native white box
models on average across the opaque datasets (Wilcoxon test p-value of 7.72 · e−5), while the
two are not significantly different for the comprehensible datasets (Wilcoxon test p-value of
0.20). For these datasets, there is no need to go through a black box if its performance is
not better than that of a native white box [Martens et al., 2008a, de Fortuny and Martens,
2015], as the latter would dominate both in terms of accuracy and comprehensibility. Hence,
if one considers only opaque datasets, the use of surrogate modeling can indeed improve the
accuracy-comprehensibility trade-off on average.

4.4.3 The Cost of Explainability

Next, we investigate the difference in performance between the best black box model for each
dataset and the best surrogate white box model from that black box - what we call the cost
of explainability. Figure 4.4b shows the results when we sort all datasets based on this cost.
The results are similar to what we observe for the cost of comprehensibility: the difference
is small for most datasets, but very large for a few. The results are also in agreement with
those in Figure 4.5, where we see that the cost of explainability is a bit lower than the cost of
comprehensibility.

4.4.4 Opaque vs Comprehensible Datasets

Finally, we study whether the cost of comprehensibility relates to some properties of the
dataset. To do so, for each dataset we generate a number of standard dataset properties as
discussed above (see also Table A.2), and use them to explain the cost of comprehensibility.
Specifically, we run a regression analysis using the generated dataset properties as independent
variables with the dependent variable being the difference between the performance of the
best black box model and the best native white box model. We used all 90 datasets, hence the
number of observations used for the regression was also 90. The variables that are significant
are shown in Table 4.2. Overall, these results indicate that properties related to the complexity
required to model a dataset and the level of noise in a dataset significantly explain the cost.
While this is a relatively simple analysis, the results suggest that one may be able to identify
or communicate whether there is a potential cost of comprehensibility by simply reporting
specific dataset properties.
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Table 4.2: The dataset properties that are significant when explaining the cost of comprehensi-
bility using a number of standard dataset properties as independent variables in a
regression model where the cost is the dependent variable.

Variable MSE P-value Coef

EqNumAttr 0.508 4.57 · e−10 -0.72

NsRatio 0.508 4.57 · e−10 -0.72

N3 0.148 0.00191 -0.23

F1v 0.139 0.00267 0.15

L1 0.089 0.0170 0.12

Specifically, the following five properties are found to be significant. F1v, which is the
directional-vector Maximum Fisher’s discriminant ratio that indicates whether a linear hy-
perplane can separate most of the data, where lower values means that more data can be
separated this way [Lorena et al., 2019]. L1, which is a linearity measure that quantifies
whether the classes can be linearly separated [Rivolli et al., 2018]. Higher values of this
attribute indicate more complex problems as they require a non-linear classifier [Lorena et al.,
2019]. These properties have a positive coefficient in the regression analysis, which means
that all these factors increase the gap between the best black box model and the best white
box model. The sign of these coefficients is as expected, namely that for datasets that are
more complex to separate linearly, the performance of black box models compared to simple
models is on average better.

Two other features, EqNumAttr and NsRatio, capture information related to the minimum
number of attributes necessary to represent the target attribute and the proportion of data
that is irrelevant to the problem (level of noise) [Rivolli et al., 2018, Michie et al., 1994]. We see
that these dataset properties have a negative relationship with the size of the cost. Note that
when we analyze this result at the level of each individual prediction model, we see that these
properties negatively affect both the performance of the black box models and the white box
models, but more so for the black box ones. This could be because black box models may
pick up more of the noise or use a lot of irrelevant features. Perlich et al. [2003] also find that
when the signal-to-noise ratio is higher (so the opposite from these features as they measure
the amount of noise), complex models perform better. Finally, N3 [Lorena et al., 2019] is a
neighbor-based measure that refers to the error rate of the nearest neighbor classifier. Low
values of this dataset property indicate that there is a large gap in the class boundary [Luengo
and Herrera, 2015]. We see again that this property negatively affects both the performance
of the black box models and the white box models [Luengo and Herrera, 2015], and that the
effect on the gap depends on how much it affects the performance of each model.

4.5 discussion

Understanding the trade-off between comprehensibility and accuracy can have important
implications for regulators as well as companies [Adadi and Berrada, 2018]. Our results
indicate that most of the time the trade-off is relatively small, indicating that one should
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consider native white box algorithms as a key benchmark. Indeed, given the non-linearities
we observe, one would expect that black boxes are used relatively infrequently, even if for the
majority of cases they outperform white boxes, as our study indicates that this outperformance
is typically relatively small. Some papers in the literature also confirm that for certain datasets
simple models work as well as complex ones [Rudin and Radin, 2019, Makridakis and
Hibon, 2000] or that for most datasets the out-performance by black box models will be very
small [Schwartzenberg et al., 2020], despite the popular belief that more complex models are
always better. Of course it depends on the use case and application domain whether this
small difference in performance is worth the loss in comprehensibility. Due to social and
ethical pressure, awareness in when one should opt for a comprehensible model could be a
competitive differentiator and drive real business value [Adadi and Berrada, 2018]. Insights in
this trade-off could lead to specific guidelines from regulators on how and when to apply AI
algorithms when comprehensibility is required.

Our results also show that using surrogate modelling could reduce the cost of comprehensi-
bility, especially for opaque datasets. As we discussed, this may be the case because the black
box model in between can filter out noise and anomalies [Johansson et al., 2014, Martens et al.,
2008a]. We also see that simple properties of a dataset could provide insights (for example
to a third party such as a user or regulator) in the nature of the trade-off without requiring
knowledge of the algorithms tested or the data used. For example, attributes that measure
how difficult it is to linearly separate the data are significantly correlated with the size of the
gap. Indeed, one would expect that for these datasets black box models might be better in
capturing the non-linearities. This can lead to practical tests of the feasibility of using a native
white box – and the potential accuracy loss – in a given use case.

Our general findings suggest the following guidelines:

1. Start with white box models.

2. Train additional black box models if: (a) the application allows for a (possibly small)
increase in performance at a cost of comprehensibility, and, (b) the level of noise is high
and the data requires complex modeling, as indicated by the listed, easy to calculate
dataset metrics.

3. If there is a practically important cost of comprehensibility (hence you are dealing with
an opaque dataset), apply additional surrogate modeling algorithms.

Finally, we note that in this study we focused on tabular datasets. For other kinds of datasets,
the trade-off we study may be different.

There are also some limitations to this study. First, the results strongly depend on the choice
of datasets. To avoid any selection bias from our side, we used all the binary classification
datasets from the PMLB repository [Olson et al., 2017], but we do not know whether this
sample is representative of all binary classification datasets. Next, our results obviously
depend on the choice of models and the used preprocessing steps. We did not take into
account feature selection of feature engineering, which could also have an impact on the
results.
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5
Manipulation Risks in Explainable AI: The Implications
of the Disagreement Problem

Artificial Intelligence (AI) systems are increasingly used in high-stakes domains of our life,
increasing the need to explain these decisions and to make sure that they are aligned with
how we want the decision to be made. The field of Explainable AI (XAI) has emerged in
response. However, it faces a significant challenge known as the disagreement problem,
where multiple explanations are possible for the same AI decision or prediction. While the
existence of the disagreement problem is acknowledged, the potential implications associated
with this problem have not yet been widely studied. First, we provide an overview of the
different strategies explanation providers could deploy to adapt the returned explanation to
their benefit. We make a distinction between strategies that attack the machine learning model
or underlying data to influence the explanations, and strategies that leverage the explanation
phase directly. Next, we analyse several objectives and concrete scenarios the providers could
have to engage in this behavior, and the potential dangerous consequences this manipulative
behavior could have on society. We emphasize that it is crucial to investigate this issue now,
before these methods are widely implemented, and propose some mitigation strategies.



manipulation risks in explainable ai

5.1 introduction

Artificial Intelligence (AI) is used in more and more high-stakes domains of our life such
as justice [Berk, 2012], healthcare [Callahan and Shah, 2017], and finance [Lessmann et al.,
2015], increasing the need to explain these decisions and to make sure that they are aligned
with how we want the decision to be made. However, the complexity of many AI systems
makes them challenging to comprehend, posing a significant barrier to their implementation
and oversight [Arrieta et al., 2020, Samek et al., 2019]. Legislative initiatives, including the
EU General Data Protection Regulation (GDPR), have recognized the ‘right for explanation’
for individuals affected by algorithmic-decision making, emphasizing the legal necessity of
explainability [Goodman and Flaxman, 2017]. In response, the field of Explainable Artificial
Intelligence (XAI) has emerged, aimed at developing methods for explaining the decision-
making processes of AI models [Adadi and Berrada, 2018, Holzinger et al., 2022, Xu et al.,
2019].

Nevertheless, the landscape of post-hoc explanations is diverse, and each method can yield
a different explanation. Furthermore, even within a single explanation method, multiple
explanations can be generated for the same instance or decision. This phenomenon, known as
the disagreement problem, has been studied in literature [Brughmans et al., 2023b, Krishna et al.,
2022, Neely et al., 2021, Roy et al., 2022]. While the existence of the disagreement problem
is acknowledged, the potential implications of this problem have not yet been extensively
explored. Barocas et al. [2020] already mention that the power to choose which explanation to
return, leaves the providers with significant room to promote their own welfare. Aı̈vodji et al.
[2019] discuss the possibility of fairwashing, where discriminatory practices can be hidden
by selecting the right explanations, while Bordt et al. [2022] argue that post-hoc explanations
fail to achieve their purpose in adversarial contexts. Finally, Carli et al. [2022] highlight how
singular explanations can already be a source of manipulation as they can interfere with the
users’ natural decision-making process. However, an overview of potential misuses by the
explanation provider is still missing from the literature, and we believe it is imperative to
study the implications now, before explainability methods are implemented on a wide scale.
The main contributions of this paper are:

• Providing a comprehensive framework that outlines the different strategies that could
be employed by malicious entities to manipulate the explanations.

• An overview of the different objectives these actors could have to engage in this behavior,
and the potential implications.

This paper is structured as follows: We introduce the field of Explainable AI and the dis-
agreement problem in Sections 5.2 and 5.3. In Section 5.4, we explore various strategies that
providers could employ to manipulate the explanations according to their preferences. Addi-
tionally, in Section 5.5, we present specific objectives and scenarios that may drive providers
to engage in such behavior. Finally, in Section 5.6, we offer discussion and potential solutions
to address this.
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5.2 explainable ai

Sex Age
Residence

time
Home
status

Occupation
Job

status
Employment

time
Other

investments
Bank

account
Time

at bank
Liability

Account
reference

Housing
expense

Savings
account

Instance 2 16 22 1 2 6 7 0 0 0 0 1 1 125

CBR 2 16 0.25 1 2 6 7 0 1 0 0 1 1 125

DiCE 2 16 22 1 2 6 7 24 0 0 0 1 1 125

GeCo
NICE(none) 2 34 0 3 3 10 1 0 0 0 0 1 2 136

NICE(plaus) 2 34 0 3 3 6 1 0 0 0 0 1 2 136

NICE(prox) 2 34 0 1 2 10 1 0 0 0 0 1 1 136

NICE(sparse) 2 16 0 1 2 10 1 0 0 0 0 1 1 136

SEDC 2 16 22 1 2 6 7 0 1 0 0 1 1 125

WIT 1 278 8 2 1 5 1 6.5 1 1 6 0 0 102

Table 5.1: Illustration of the disagreement problem for an instance of the Australian Credit
dataset.

5.2 explainable ai

For an overview of why we need Explainable AI, and the various techniques at our disposal,
we refer to Section 3.2.3. Based on this overview, the first question we can ask ourselves is,
what actually is the definition of an explanation? How do we decide whether something
is an explanation? Can anything count ask an explanation? The fact that no real definition
for an explanation exists, leads to a plethora of explanation techniques, and consequently,
to the disagreement problem. However, this is not the entire issue, as even within one
clearly defined explanation technique, some randomness can exist which can lead to multiple
explanations (as we will discuss later). While this paper predominantly uses counterfactual
explanations as an example, the findings and discussion presented are applicable to other
post-hoc explanation techniques as well. At the moment, we do not see manipulation
issues for inherently transparent models but this would be an interesting avenue for future
research [Bordt et al., 2022].

In line with Greene et al. [Greene et al., 2023], we define an explanation recipient as a person
who requests an explanation for an automated decision, and an explanation provider as
the entity who provides the algorithmic explanations to the recipient. For example, in the
domain of finance, the explanation provider could be a bank, and the explanation recipient a
loan applicant; while in the domain of employment the explanation recipient would be the
job applicant, and the explanation provider the hiring agency [Greene et al., 2023]. Not all
scenarios described in Section 5.5 assume that there is one actual recipient; the explanation
provider can also provide explanations of the model to the public proactively or to comply
with regulatory requirements.

5.3 the disagreement problem

A known issue within Explainable AI is that the results of different explanation techniques
do not always agree with each other. Even one explanation technique can generate many
different explanations for one instance, which is known as the disagreement problem [Krishna
et al., 2022, Neely et al., 2021, Roy et al., 2022]. One of the reasons behind the disagreement
problem is that a ‘true internal reason’ why the machine learning model comes to a certain
decision, generally does not exist [Bordt et al., 2022]. For example, for feature importance
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methods such as SHAP and LIME, there is no mathematically unique way to determine
the importance of each feature to the decision of a black-box function [Bordt et al., 2022,
Sundararajan and Najmi, 2020]. As a consequence, all feature importance methods rely on
their own assumptions to approximate this [Bordt et al., 2022, Sundararajan and Najmi, 2020].
For counterfactual explanations, this issue also exists as the optimization problem to create
the explanations can be set up in different ways. Even a single counterfactual explanation
method could lead to a large number of explanations, as the choice of parameters (such as
the distance metric) has an influence on the explanations that are returned first [Goethals
et al., 2023b]. The diversity of multiple counterfactual explanations, generated by the same
counterfactual algorithm is also known as the Rashomon effect [Molnar, 2020].1

Other authors already showed the level of disagreement between different post-hoc explana-
tion techniques: Roy et al. [2022] show disagreement between LIME and SHAP explanations,
Brughmans et al. [2023b] illustrate this for different counterfactual explanation algorithms,
and Bordt et al. [2022] demonstrate the disagreement between SHAP, LIME, and counterfac-
tual explanations. We illustrate the disagreement problem between different counterfactual
explanation algorithms for one specific instance with an example in Table 5.1, in line with
Brughmans et al. [2023b]. This table demonstrates the disagreement problem for one instance
from the Australian credit dataset, where the target variable indicates whether a person
should be granted a loan or not. The depicted instance was not awarded credit and asks for
a counterfactual explanation to know which features to change to receive a positive credit
decision. Table 5.1 shows the explanations returned by 10 different counterfactual algorithms,
which vary widely. 2 This example illustrates that every feature can be included in the expla-
nation by switching between explanation algorithms. Brughmans et al. [2023b] verify this for
multiple datasets and classifiers, and establish the feasibility of both including and excluding
specific features across different scenarios. Note that the potential for manipulation of expla-
nations extends beyond switching between different counterfactual explanation algorithms.
In Section 5.4, alternative strategies that can be employed for manipulation are explored.
Currently, a consensus on how to resolve this ambiguity has not yet been reached. Research
indicates that most developers rely on arbitrary heuristics, such as personal preferences, to
choose the final explanation [Krishna et al., 2022].

This plurality is not necessarily a bad thing. Bordt et al. [2022] distinguish between a
cooperative and an adversarial context. In cooperative contexts, where stakeholders have
the same goal, this plurality can be beneficial as it is expected that the explanation provider
will choose the explanation that is in both parties’ best interest. For example, when data
scientists are debugging a model for their own company, this plurality of explanations can be
useful. Other researchers suggest combining multiple explanation techniques to provide a
more accurate meta explanation [Mollas et al., 2023]. However, in adversarial contexts, the
interests of the explanation provider and the data subject are not necessarily aligned, and the
explanation providers will be incentivized to choose the explanation that best fits their own
interests. An example of such an adversarial context is a loan application where the customer
was denied the loan and wants to flag the decision as being discriminatory [Bordt et al.,
2022]. In this case, the bank might want to conceal this discriminatory practice by returning a
different explanation. This phenomenon is known as fairwashing, and has received significant

1 The Rashomon effect means that an event can be explained by multiple causes, and is named after a
Japanese movie that tells multiple (contradictory) stories about the death of a samurai [Molnar, 2020].

2 The counterfactual algorithm GeCo was not able to find a counterfactual explanation for the given
instance.
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attention [Aı̈vodji et al., 2019]. While fairwashing is the most extensively studied objective, we
will explore additional scenarios for misuse in adversarial contexts in Section 5.5. However,
even in adversarial contexts, this plurality can be used in a positive way. For example, Bove
et al. [2023] do mention that in settings such as loan applications, the plurality of explanations
can benefit the user if they are provided with multiple explanations.

5.4 manipulation strategies : how can explanation providers exploit the

disagreement problem?

The manipulation of explanations by explanation providers is not limited to the mentioned
example of switching between explanation algorithms, but can occur at various stages through-
out the pipeline, as depicted in Figure 5.1. We specifically focus on the manipulation that
takes place in the post-processing stage, where the explanations are generated, as we imagine
that the explanation provider may not always possess the authority to modify the machine
learning model or underlying data (the explanation provider is not necessarily the same entity
as the model owner). Nevertheless, it is important to note that manipulations directly to
the data or model are still feasible, and we discuss some relevant literature exploring this
below.

TRAINING DATA MODEL TEST DATA

EXPLANATION 
TECHNIQUE 1

EXPLANATION 
TECHNIQUE 2

EXPLANATION 
TECHNIQUE N

𝐻𝑃𝑛

𝐻𝑃2

𝐻𝑃1

…

› EXPLANATION 1
› EXPLANATION 2
› EXPLANATION 3
› …
› EXPLANATION N

POST PROCESSING STAGE

STAGE 1 STAGE 2 STAGE 3

…

Figure 5.1: Strategies the explanation providers could deploy to manipulate the explanations

Manipulating the training data to result in different explanations, is related to the area of data
poisoning attacks. Data poisoning attacks usually involve injecting manipulated data into the
training set to compromise the performance of the machine learning model, and while the main
focus in literature is on model behavior, its goal might also be manipulating the explanations.
Baniecki et al. [2023] illustrate that it is possible to attack Partial Dependence plots by poisoning
the training data. Bordt et al. [2022] highlight the important role of the reference dataset,
and show how changing this set influences the resulting SHAP explanations. With regard
to changing the model, Slack et al. [2020] demonstrate the possibility of modifying biased
classifiers in such a way that they continue to yield biased predictions, while the explanations
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generated by LIME and SHAP will appear harmless. Other authors show the possibility of
fine-tuning a neural network to conceal discrimination in the model explanations [Dimanov
et al., 2020, Heo et al., 2019]. Finally, in the domain of images, Dombrowski et al. [2019]
present evidence showcasing the manipulation of explanations through the application of
nearly imperceptible perturbations to visual inputs. In this case, the test data, for which the
prediction needs to be explained, is altered. These perturbations would not change the output
of the machine learning model, but could result in drastic changes in the explanation map. 3

Additionally, Slack et al. [2021] focus on modifying both the model and the test data, such
that slight perturbations to the input data can lead to more cost-effective recourse for specific
subgroups, while giving the impression of fairness to auditors.

As mentioned, we focus on strategies to alter the explanation in the post-processing stage,
without making any alterations to the used data or the underlying machine learning model.
We foresee three main strategies the providers could deploy in this stage:

1. Change the explanation technique
Many different post-hoc explanation techniques exist, both local and global, as outlined
in Section 5.2. Consequently, a first evident strategy entails switching to a different
explanation technique. For example, when the surrogate model reveals patterns the
explanation provider wants to conceal, he might switch to using Partial Dependence
plots as an alternative if these patterns do not manifest clearly in those plots. However,
on a local level, using different explanation techniques between instances may attract
greater attention than the strategies described below, as the output could have a
significantly different format (e.g., feature importance plot versus a counterfactual
explanation).

2. Change the parameters or used implementation of an explanation technique
Even within a single explanation algorithm, significant leeway exists for manipulat-
ing the explanations, contingent upon the selected parameter configurations. For
example, LIME explanations depend on the number of perturbed instances and the
bandwidth [Bordt et al., 2022, Garreau and Luxburg, 2020], while for Shapley values,
there is a multitude of ways to implement them and each operationalization yields
significantly different results [Sundararajan and Najmi, 2020]. Global methods, such as
surrogate modeling, are heavily influenced by the choice of architectural design (e.g.,
linear models, decision trees, etc.) and the complexity of the surrogate model. In the
case of counterfactual explanations, as shown in Table 5.1, the used implementation
exerts a substantial influence on the returned explanations, with the number of po-
tential implementations proliferating at a rapid pace. Additionally, even within one
counterfactual algorithm, there often exist many modifiable parameters that influence
the results.

3. Exploit the non-deterministic component of some explanation algorithms
Some explanation algorithms such as DICE [Mothilal et al., 2020] inherently provide
multiple possible explanations for one instance. In such cases, the explanation provider
can simply select an explanation from the available options without requiring any
modifications. Furthermore, certain explanation algorithms are not designed in a

3 One could argue that altering the test data in an imperceptible way will be mostly applicable to image
data, as in tabular data these changes may be more noticeable.
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deterministic way and may return different explanations across runs. For example,
when using LIME, the randomness introduced during the sampling and perturbation
process can lead to variations in the generated explanations for each execution [Lee
et al., 2019, Zhang et al., 2019]. Additionally, de Oliveira and Martens [2021] show that
multiple counterfactual algorithms do not generate consistent results over multiple
runs, when the same model, input data and parameters are used. In this scenario, the
explanation providers can repeatedly execute the explanation algorithm with the same
parameters until an explanation that aligns with their preferences is returned.

In the scenario we describe, we assume explanation providers deliberately choose the expla-
nation out of all the possible explanations that best aligns with their interests. The returned
explanation will still be technically correct, it will just not necessarily be the explanation that
will be in the best interest of the user. It is important to note that we are not referring to
situations where explanations chosen by the explanation provider are not in the best interest
of the user ‘by accident’ due to differences in knowledge background or a lack of awareness
of the user’s preferences [Bove et al., 2023, Gilpin et al., 2022]. Instead, we are concerned with
cases where the explanation provider knowingly opts for an explanation that serves their
own agenda, despite knowing that it may not be the optimal explanation for the end user.
Note that in described strategies, the providers maintain a partial ethical stance by delivering
explanations that retain technical correctness. However, providers have the potential to further
exploit the situation by offering spam explanations, containing superfluous features [Greene
et al., 2023], or by deliberately presenting entirely false explanations that are fabricated. The
complexity of the pipeline depicted in Figure 5.1 demonstrates the extensive potential for
manipulation and, consequently, the fragility of explanations.

5.5 manipulation objectives : why would explanation providers want to

exploit the disagreement problem?

Which objectives could the providers have to engage in this behavior? We outline them in
Figure 5.2, and discuss various scenarios for each objective in the subsections below. At the
moment, we see mitigating liability, implementing their beliefs and maximizing their profits
as the main objectives. This list may not be exhaustive yet as the way that technology is used
in society is constantly evolving and new objectives may emerge.

LEVERAGING THE DISAGREEMENT PROBLEM

IMPLEMENT BELIEFSMITIGATE LIABILITY INCREASE PROFIT

› Computational propaganda

› Avoid undesired applicants

› Fairwashing

› Blame avoidance

› Advertising

› Highlight profit-maximizing explanations

› Engage users

Figure 5.2: Main objectives to leverage the disagreement problem
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5.5.1 Mitigate liability

The model could be unethical or suboptimal in several ways and model explanations could
reveal this. Explanation providers could manipulate the explanations to avoid these issues
coming to light.

5.5.1.1 Fairwashing

The first, and most studied, reason for explanation providers to engage in this behavior, is
fairwashing [Aı̈vodji et al., 2019, 2021, Shahin Shamsabadi et al., 2022]. Fairwashing is defined
as ‘promoting the false perception that a machine learning model used by the company is fair while this
might not be so’ [Aı̈vodji et al., 2019]. In a fairwashing attack, the explanation provider will
manipulate the explanations to under report the unfairness of the machine learning model.
This has a significant impact on the individuals that received a negative decision based on
unfair grounds, as this will deprive them of the possibility to contest it [Aı̈vodji et al., 2021].
The relative easiness with which fairwashing can be executed has already been shown in
the literature. [Aı̈vodji et al., 2021, Shahin Shamsabadi et al., 2022]. Imagine a bank that
decides it prefers people from a certain demographic group, and predominantly gives out
loans to this group (without a justified reason to do so). It could easily mask this behavior
by choosing a different explanation. For example, instead of returning the explanation ‘If
you would have belonged to a different demographic group, you would have received the loan’, it
could return as explanation ‘If your income would be double as high, you would have received the
loan’, even if the latter explanation is less plausible. Some counterfactual algorithms such as
DICE [Mothilal et al., 2020] even have as an input parameter the features that can be part
of the explanation, so if sensitive features such as demographic attributes are removed from
this list, counterfactual explanations will never flag discrimination. We use counterfactual
explanations as illustration here, but this objective extends to other explanation techniques
as well. All the mentioned techniques in Section 5.2 have the potential to reveal bias within
a model (for example a feature importance ranking where the sensitive attribute has a very
high score). This misleading practice undermines the core principles of algorithmic fairness
and hampers efforts towards achieving equitable and just outcomes.

5.5.1.2 Blame avoidance

Explanation providers can also take advantage of the plurality of explanations to shift
blame or evade responsibility for controversial or erroneous decisions made by Artificial
Intelligence (AI) systems. Nissenbaum [1996] already mention that placing accountability
in a computerized system can be a very obscure process due to the ‘problem of many hands’
(many actors and factors contribute to the process, and is not clear which factor ultimately
led to the decision). This issue is reflected in the explanations, where different explanations
can point to different actors or circumstances. For example, in the case of autonomous
vehicles, AI systems make critical decisions that impact passenger safety. Malicious model
owners, such as manufacturers or operators, may downplay system failures or accidents
caused by their vehicles. They could selectively present an explanation that attributes the fault

62



5.5 manipulation objectives : why would explanation providers want to

exploit the disagreement problem?

to external factors or human error, and as such divert attention from potential design flaws or
inadequate safety measures. Similarly, in the field of healthcare, this exploitative behavior can
manifest when mistakes by surgeons or flaws in operating machines are concealed to avoid
accountability. Explanation providers, which could include medical professionals, institutions,
or even the manufacturers of medical devices, may withhold or manipulate explanations
to protect their reputations or evade legal consequences. Such practices can have severe
consequences, as critical flaws in life-critical systems may go unnoticed, posing a threat to
the safety and well-being of future users. These actions not only endanger lives but also
run contrary to our ethical values. Placing the entire blame on parties that are only partially
responsible for an incident contradicts the principles of fairness and accountability. The
appropriate distribution of responsibility is crucial for ensuring that the errors are properly
addressed and the necessary improvements are made.

5.5.2 Implement beliefs

Explanation providers may use the explanations to promote their belief system, either by
influencing people through propaganda or by excluding applicants that they deem unworthy,
despite the machine learning model not sharing this perspective.

5.5.2.1 Computational propaganda

The power to choose an explanation that best fits its interest, can be used to exert an influence
on the public opinion. Propaganda itself is defined as ‘the expression of opinion or action by
individuals or groups deliberately designed to influence opinion or actions of other individuals or
groups with reference to predetermined ends’, while computational propaganda is defined as
‘propaganda created or disseminated using computational (technical) means’ [Martino et al., 2020].
Note that propaganda does not necessarily have to lie; it could simply cherry-pick the facts,
which is exactly the option explanation providers have to their disposal [Martino et al.,
2020]. By selectively presenting explanations that align with their preferred ideology or
desired narrative, explanation providers can amplify certain perspectives while downplaying
or ignoring others. For example, in the realm of political campaigns, AI systems are used to
analyze public sentiment, create targeted messaging, and influence voter behavior. Imagine
an entity with access to an AI model that predicts the likelihood of successful integration for
immigrants based on various factors like employment, language proficiency, and government
support. The entity firmly believes in the principle of stricter requirements for immigrants, and
they could selectively highlight specific factors such as language proficiency or employment
history, while downplaying or omitting other important factors such as government support
and community involvement. By presenting the AI model’s predictions as mainly being driven
by these selected factors, they could frame the narrative that successful integration is mainly
due to language proficiency, and engaging in employment. The goal is to shape public opinion
regarding immigration policy and generate support for stricter language and employment
requirements for immigrants. Evidently, machine learning models cannot perfectly mimic
the actual world, so even if a machine learning model could be perfectly explained, such
an explanation would not constitute a perfect explanation of the real world. However, the
concern here lies in the fact that people may still perceive machine-generated explanations as
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accurate depictions of the actual world, and consequently, the cherry-picked explanations have
the potential to influence and shape their understanding of the world at large. Additionally, if
the power to generate the explanations would be in the hands of a few actors, they would
have the potential to wield significant influence over a large number of people. In this context,
the manipulation of explanations can have far-reaching consequences for public opinion and
democratic decision-making, and could promote the spread of misinformation.

5.5.2.2 Avoid undesired applicants

In this scenario, the explanation provider, who is using a machine learning model, has the
ability to engage in discriminatory practices without directly manipulating the model itself.
Instead, they alter the quality of the explanations given to certain population groups, thereby
introducing discrimination. In algorithmic decision-making, explanations are often provided
to users (the explanation recipients) to help them understand the factors that influenced
the decision and potentially take corrective actions (algorithmic recourse). Counterfactual
explanations are most often used here, as they guide users in modifying their input data to
achieve a desired outcome.

In this case, the explanation provider treats different population groups unequally by manip-
ulating the quality of the explanations provided to them. The preferred population group is
given explanations that are concise, actionable, and easily implementable. For example, they
might receive suggestions such as adjusting the loan amount slightly or making small changes
to their reported income. These explanations empower the preferred group to take specific
actions that could potentially improve their chances of receiving a positive outcome. On the
other hand, the disadvantaged demographic group is given explanations of lower quality.
These explanations are designed to be difficult or even impossible to act on. They might
involve suggesting large changes to their income or modifying their age, which are factors
that applicants typically have limited or no control over. By providing such explanations,
the explanation provider creates a significant imbalance in the recourse options available to
different society groups. These population groups are not solely confined to traditionally
protected characteristics such as race or gender. They can extend to any characteristic that
the explanation provider deems undesirable. For example, in the hiring domain, the hiring
company (and explanation provider) may deliberately offer lower-quality explanations to
older individuals or individuals with certain health conditions, as they perceive them as less
desirable for future employment. For some cases, this could also lead to an increase in profit
which shows that the multiple objectives can be pursued in parallel and may not always
require mutual exclusion. Note that the discriminatory practices described in this scenario
are not related to the machine learning model itself, but to the post-processing stage where
explanations are generated and shared with applicants. This issue is related to fairness in
algorithmic recourse, where fairness is assessed by measuring the distance between the factual
and the counterfactual instance [von Kügelgen et al., 2022, Sharma et al., 2020], and highlights
the need for fairness assessments not only during the modeling stage but throughout the
entire decision-making pipeline, including the provision of explanations.
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5.5.3 Increase profit

Explanation providers might feel incentivized to capitalize on the explanations. They could
return the explanation that would be the most profitable for them, and for this we envisage
several scenarios.

5.5.3.1 Advertising

One possibility discussed in previous work, is the integration of algorithmic explanations with
advertising opportunities, creating an ‘explanation platform’ where advertisements are served
alongside the explanation [Greene et al., 2023]. An example of this could be, that during a job
application you receive the following explanation: ‘If your CV would have included Python, you
would have been invited for the next round’. This explanation would then be accompanied by an
advertisement for an online Python course, which would be a convenient solution for users to
reach their goal [Greene et al., 2023]. This approach allows the explanation provider to select
the explanations that have the potential to generate the highest revenue in the advertising
market.

5.5.3.2 Highlight profit-maximizing explanations

However, monetization avenues can go beyond advertising. Explanation providers can also
exploit the plurality of explanations to direct users towards actions that would maximize
their own profits directly. This is related to the advertising scenario, but in this case the
actions of the decision subject would directly lead to an increase in profit for the provider.
For example, in the domain of healthcare diagnostics, AI systems are increasingly used
for the identification of diseases and treatment recommendations. Malicious explanation
providers, such as healthcare providers or insurance companies, may strategically choose
explanations that prioritize certain measures or specific treatments. In this context, the goals
of healthcare providers and insurance companies may diverge. Healthcare providers may
have incentives to promote more expensive treatments, while insurance companies may prefer
cost-saving measures and cheaper treatment options. However, by favoring explanations that
are not necessarily the best or most appropriate, these providers can exert influence over
medical decisions and potentially compromise patient care. This scenario could also happen
in other domains than healthcare: for example, in the realm of credit scoring, AI systems are
employed to evaluate an individual’s creditworthiness. Barocas et al. [2020] already mention
that decisions (and therefore explanations) in this scenario are not simply binary. The provider
gives the decision subject a counterfactual that results in a specific interest rate, and as such it
can choose the interest rate that is likely to maximize its profit [Barocas et al., 2020].
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5.5.3.3 Engage users

In line with Computational Propaganda, discussed in Section 5.5.2.1, providers could also choose
to return the explanations that reinforce the ideologies of the data subject itself. In this case, the
explanation provider would be a platform, and the goal would be to maximize the revenues
of the platform by keeping users as engaged and satisfied as possible (for many platforms
daily/monthly active users is an important objective in their financial reports). An example of
an explanation in this case, could be the same as in the scenario of propaganda, but in this case
different society groups would receive very different explanations, depending on their beliefs.
It is known that presenting them with content and information that is likely to resonate with
their interests is a way to achieve this (in line with filter bubbles in content recommendation
systems). However, this could lead to different groups in society receiving vastly different
explanations for the same phenomenon, and consequently to epistemic fragmentation [Milano
et al., 2021].4 . By reinforcing filter bubbles and echo chambers, these platforms exacerbate
polarization and hinder constructive dialogue between different groups in society.

Introducing a profit motive into the generation of explanations at all seems contradictory
to the initial goals of Explainable AI. An explanation recipient should not have to wonder
whether the selected explanation was chosen for its profit-making potential rather than for its
ability to accurately explain the situation [Greene et al., 2023].

5.6 discussion

The examples discussed in Section 5.5 shed light on potential ethical concerns, even though
they may not necessarily involve illegal activities. In these scenarios, the generated explana-
tions remain factually correct but are selectively hand-picked by the explanation provider to
serve their own interests. At the moment, this process is completely unregulated, but could
have very serious consequences, as outlined in the scenarios above. In scenarios listed in
Section 5.5, we assumed the explanation providers had malicious incentives, but obviously,
this will not always be the case. In fact, some providers may be motivated to manipulate
the explanations for the social good. For example, they might explicitly avoid providing
explanations that reinforce biased stereotypes, in an attempt to promote fairness and equity.
Nevertheless, even though their motives might be aligned with societal goals, it remains
questionable whether unregulated entities without the required authority should have the
power to make this call.

As we are at the forefront of the XAI revolution, it is crucial to address this issue now, before
these methodologies are implemented on an even wider scale. Currently, a substantial portion
of AI power is concentrated among a few tech giants. If we also grant them the authority to
control the explanations generated by AI models, they would possess yet another means to
exert significant influence over society. To mitigate this concentration and potential misuse
of power, it becomes imperative for government institutions to collaborate and establish
agreed-upon standards and tools for XAI. In particular, in adversarial contexts where interests

4 Epistemic fragmentation refers to the tendency for different people to have different sources of knowledge
and different, often conflicting, understandings
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may clash, it should not be left solely to the explanation providers to create and choose the
explanations. Instead, we argue that governments and policy makers should take the matter
into their own hands, and agree on a framework that should be used as soon as possible.
The key question here is “What should be the process to make this decision, and what tools are
needed to support this process?”. Similar to the no free lunch theorem, that indicates that there is
no algorithm that always outperforms all others, there likely will also not be an universally
superior explanation method. An agreement on which method to use in which scenario
should be established, and this should be done democratically by allowing those affected by
XAI to voice their opinion [Kuźba and Biecek, 2020, Vermeire et al., 2022b], in line with the
‘democratic principles of affected interests’ [Fung and Wright, 2001]. Another line of research
has also investigated the possibility of grouping the explanations [Carrizosa et al., 2024a]
which could also counter the issue of having multiple explanations.

To address the disagreement problem effectively, it is essential to first establish a clear and
precise definition of what constitutes an explanation Different objective functions naturally
lead to varying explanations, so first one should agree on what a desirable explanation
should entail. However, this does not constitute the entire problem, because even with a
clear definition, sources of randomness can lead to multiple explanations. We also want to
emphasize again that in many cases multiple explanations is not necessarily a bad thing. In
many cases, these explanations do not necessarily conflict but rather provide complementary
perspectives. The real issue arises when providers operate under the assumption that there is
only one true explanation.

It will take some time to reach a global consensus on the procedures that should be used, and
therefore as a short-term solution, regulation should demand full transparency in the used
explainability method, and settings. This would remove some flexibility for the explanation
provider to change the explanation technique continuously, but not remove all potential
for manipulation as the providers could still exploit the non-deterministic component of
some explanation algorithms or simply lie about the used parameters. Therefore, to ensure
adherence to ethical values, we also foresee that it would be mandatory to have external
auditors conducting audits of AI systems, explanations, and decision-making processes.
These auditors should be independent entities without a vested interest in the outcomes,
similar to how audits are conducted in other industries. We argue that it would be better
to create good ways to detect whether someone is gaming the system than to create yet
another explanation method. Furthermore, in high-stakes contexts, where transparency
is of paramount importance, we argue that the the use of white-box models needs more
attention [Goethals et al., 2022], given the manipulation risks surrounding explanations.
To conclude, we believe that implementing these measures can ensure that AI systems are
developed and deployed in a manner that aligns with societal values, and foster a more
transparent and ethical XAI ecosystem.
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6
Predictive Counterfactual Fairness

This study investigates how counterfactual explanations can be used to assess the fairness
of a model. Using machine learning for high-stakes decisions is a threat to fairness as these
models can amplify bias present in the dataset, and there is no consensus on a universal
metric to detect this. The appropriate metric and method to tackle the bias in a dataset will be
case-dependent, and it requires insight into the nature of the bias first. We aim to provide
this insight by integrating explainable AI (XAI) research with the fairness domain. More
specifically, apart from being able to use (Predictive) Counterfactual Explanations to detect
explicit bias when the model is directly using the sensitive attribute, we show that it can also
be used to detect implicit bias when the model does not use the sensitive attribute directly
but does use other correlated attributes leading to a substantial disadvantage for a protected
group. We call this metric PreCoF, or Predictive Counterfactual Fairness. Our experimental
results show that our metric succeeds in detecting occurrences of implicit bias in the model
by assessing which attributes are more present in the explanations of the protected group
compared to the privileged group. These results could help policymakers decide on whether
this discrimination is justified or not.



predictive counterfactual fairness

6.1 introduction

As the influence and scope of decisions made by AI models is increasing, there are growing
concerns that the models making these decisions might unintentionally encode and even
amplify human bias [Corbett-Davies et al., 2023]. This is why it is of huge importance to
understand the decisions models are making and to ensure they are fair. We focus on fairness
in classification, where the goal is to prevent discrimination against people based on their
membership of a sensitive group, without compromising the utility of the classifier [Caton
and Haas, 2020, Dwork et al., 2012].

Different automatic methods to deal with discrimination, however, make different implicit
assumptions about the nature of bias in the data and the right method to apply will be
case-dependent and often policy-related [Wachter et al., 2021]). Arguably, the data scientist
is not the right person to make this call. The necessity for the involvement of policymakers
and legal scholars enlarges the need for an automated, data-driven procedure that can detect
and assess the source of automated discrimination in predictive models to support decision
making [Wachter et al., 2021]. As other authors already argue [Rudin et al., 2020], it is
misguided to focus on fairness while not obtaining transparency first as it is not fair that
life-changing decisions would be made without entitlement to an explanation.

In this paper we answer the call for more transparency in the fairness domain [Rudin et al.,
2020, Wachter et al., 2021] by linking Explainable AI with fairness, using Counterfactual
Explanations. Counterfactual explanations form the basis of an important class of explainable
AI methods [Adadi and Berrada, 2018], and a counterfactual explanation of a data instance is
defined as the smallest change to the instance so that it ends up with a different classification
outcome. We name our metric PreCoF, which stands for Predictive Counterfactual Fairness.
PreCoF finds counterfactual explanations for all individuals in each sensitive group by
assessing for each of the attributes whether changing it to one of the default values would
result in a class change.1 It identifies the attributes that are proportionally more present in
the explanations of the protected group compared to the unprotected (or privileged) group.
This term is not to be confused with counterfactual fairness as we will explain in Section 6.2.3.1.
The goal of PreCoF will not be to provide yet another calculation on the output of a decision
making system but to shed light on underlying patterns for the discrimination in the model,
so that policymakers can decide how to handle this appropriately.

A first example of something our metric is able to detect can be seen in the Adult Income
dataset: the attribute marital status is the attribute that is proportionally the most present in
the explanations of women compared to men. This offers additional insights into the model
so that policymakers can decide whether this is a pattern that can be kept in the model or if
the model should be modified. The results of the other datasets are also in line with patterns
that we know to be present based on literature or through further analysis of the datasets.

It is important to highlight that our metric will make statements about the model but not
about the underlying data. We expect them to reflect underlying patterns in the data but it is
possible that two different machine learning models trained on the same data will give very
different results.

1 We will clarify the calculation of these default values in the methodology.
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6.2 background

We refer to Section 3.3 for a more general background about fairness in machine learning,
but we will discuss some aspects in more detail here. As mentioned, legislation is often
attempting to achieve fairness by using a ‘colorblind’ approach that ignores socially-sensitive
features, which is misguided to begin with [Johnson, 2021]. The idea here is that you remove
the bias from the dataset by removing the discriminatory attributes from it. However, in any
sufficiently rich dataset, proxy variables will likely exist that closely correlate with the sensitive
attributes [Kim, 2017] so just removing them will not work. Removing all the attributes that
are correlated with the sensitive attribute is not a good solution either [Kamiran and Žliobaitė,
2013]; in some cases, all attributes will be correlated with the sensitive attribute, or some of
the correlated attributes are too informative to remove (e.g., field of study is correlated with
gender but too important to remove in hiring decisions).

We make the distinction between explicit bias, when the model involves direct use of the
sensitive attribute, and implicit bias, when there is a neutral attribute that substantially
disadvantages the protected group. These are also called direct and indirect discrimination
respectively. Indirect discrimination is arguably the most likely type of discrimination to arise
from automated decision making due to the reliance of these system on inference and proxies
of target variables and protected attributes [Wachter et al., 2020].

Many scholars see value in judging discrimination with common sense [Doyle, 2007], how-
ever, this is often ineffective in cases of indirect discrimination, especially when the relation
between the protected attribute and the neutral attribute is not straightforward [Wachter
et al., 2021]. Intuition might fail us because it cannot be assumed that automated systems
will discriminate in ways similar to humans or follow their patterns of discrimination: new
and counterintuitive proxies for traditionally protected attributes can emerge but will not
necessarily be detected [Wachter et al., 2021]. If such an attribute is found that substantially
disadvantages the protected group, this is not necessarily a problem: some attributes can be
justified, depending on the context of the case and the relevant legislation. Justified indirect
discrimination occurs when the ‘proportionality test’ is passed, meaning that the attribute is
both legally necessary and proportionate [Wachter et al., 2020]. PreCoF is developed to fit
in this mindset: can we find the attributes that explain why some sensitive groups are more
often predicted with a negative outcome? This can then lead to a discussion about these
attributes being justified or not.

There are three main responses when such a bias is detected: First, one can do nothing and
allow the bias to be amplified; second, fix the technical bias but maintain the society status
quo and make sure that the machine learning does not make the society more biased which
is called a bias preserving approach [Wachter et al., 2020]. A third option is what are called
bias transforming metrics and these aim to actively account for historical inequalities [Wachter
et al., 2020]. The adequate response will depend on the situation at hand, but doing nothing
will in our opinion never be the right call.
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6.2.1 Fairness metrics

There is no universal definition of fairness, which greatly complicates our research question.
A more complete overview of the fairness field can be found in Section 3.3, but for clarity, we
will shortly discussed some of the used concepts again. Some define fairness as fairness through
unawareness [Pedreshi et al., 2008], which establishes fairness through removing the sensitive
attributes from the dataset. However, this is not always possible as sometimes sensitive
attributes are needed to make predictions. Even when the sensitive attribute is not directly
relevant to the prediction task, correlated variables (e.g., race from zip code in the United
States) make such a “blind” approach less efficient to counter discrimination [Fryer Jr et al.,
2008]. Other often-used fairness metrics include individual fairness [Dwork et al., 2012], which
states that similar individuals should be treated similarly, demographic parity [Calders et al.,
2009] (which is also called disparate impact [Feldman et al., 2015] or statistical parity [Dwork et al.,
2012]) which minimizes the absolute difference in outcome distributions of all groups, equalized
opportunities [Hardt et al., 2016], which optimizes towards equal positive rate conditional on
the target outcome and equalized odds [Hardt et al., 2016], which optimizes towards equal
positive and negative rate conditional on the target outcome.

Demographic parity, equalized odds and equal opportunity are all group-based criteria, which are
more suited to statistical analysis [Ritov et al., 2017] but can be very unfair from the point of
the individual [Dwork et al., 2012]: it provides protection for groups but not for specific indi-
viduals in those groups and we tend to care more about protection for individuals [Fleisher,
2021]. It also does not provide protection against phenomena like cherry-picking.2 Even more
problematic, many of the group fairness metrics are mutually incompatible, which means it is
impossible to satisfy all of them at the same time [Kleinberg et al., 2016, Verma and Rubin,
2018]. This has as a consequence that the detection of discrimination can be ‘gamed’ through
choosing the right fairness metric [Wachter et al., 2021]. It has been shown that all these
metrics suffer from deep statistical limitations and that they can even negatively impact the
well-being of the groups they are trying to protect [Corbett-Davies et al., 2023]. Individual
Fairness is more strict than any group-notion fairness as it imposes a restriction on the decision
for each pair of individuals. It also forbids a variety of discriminatory practices like explicit
discrimination, implicit discrimination, redlining and tokenism [Fleisher, 2021]. It can also
detect cases of discrimination that various group fairness criteria miss like cherry-picking.
However it is hard to define a metric function to measure the similarity of two inputs [Fleisher,
2021, Kim et al., 2018]. A last metric is Counterfactual Fairness [Kusner et al., 2017], which is
more related to our metric and will be discussed in Section 6.2.3.1.

All the metrics that are conditional on the target outcome such as equalized odds and equal
opportunity are bias preserving, which means that they will preserve historical biases and just
ensure that the machine learning model will not amplify these biases or insert new bias
into the system [Wachter et al., 2020]. They share the idea that the bias present in the target
labels is meant to be there [Wachter et al., 2020]. Demographic Parity, Individual Fairness and

2 Cherry picking refers to members of sensitive groups being randomly chosen, or chosen for malicious
reasons as a way to undermine members of those groups [Dwork et al., 2012, Fleisher, 2021]. An example
of this in college applications could be when the majority group is carefully screened, and the same
number of applicants is randomly selected from the minority group. This is not fair for hard-working
members of the minority group that will not get admitted, but would be compatible with a variety of
group fairness criteria [Fleisher, 2021].
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Counterfactual Fairness are bias transforming metrics. PreCoF is aimed to be a bias transforming
metric, but it offers the transparency and flexibility for policy makers to decide this for
each situation at hand. Choosing an appropriate metric can have political, legal and ethical
implications and should be subject to more consideration and justification than is currently
the case [Wachter et al., 2020]. The previously discussed fairness metrics are not well suited
to answer normative and legal questions on how the discrimination in the model should be
handled and might ultimately prove to be irrelevant in court [Wachter et al., 2021].

6.2.2 Conditional fairness metrics

In practice, there often exists a certain set of attributes on which we deem it fair to dis-
criminate [Xu et al., 2020]. An example of such an attribute is the department choice in the
Berkeley’s graduate admission problem, where there allegedly was a bias against female
applicants as they had a lower admission rate then male applicants [Xu et al., 2020, Pearl,
2009]. After conditioning on department choice, this was no longer the case [Pearl, 2009].
Conditional fairness is a more sound fairness metric where the outcome variables should
be independent of sensitive variables conditional on these fair attributes [Xu et al., 2020].
There exist various methods to implement conditional fairness such as explainable discrimina-
tion [Kamiran et al., 2013, Wachter et al., 2021] or conditional demographic disparity [Wachter
et al., 2021]. They have the point of view that some differences in decisions across sensitive
groups can be explainable and hence tolerable [Kamiran et al., 2013]. For example, in job
applications the education level of a candidate can be such an explainable attribute [Kamiran
et al., 2013].

The underlying fairness metrics in explainable discrimination and conditional demographic
disparity are a bit different but they are based on the same principle [Kamiran et al., 2013,
Wachter et al., 2021]: Kamiran et al. [2013] measure the discrimination as the difference in
positive rates between two sensitive groups: the discrimination that remains after subtract-
ing the discrimination that can be explained by using the conditional attribute (explainable
discrimination) is the illegal discrimination. Wachter et al. [2021] define demographic disparity
as the difference in proportion of people from the protected group with a favorable and an
unfavorable outcome. Conditional demographic disparity (CDD) follows the same principle but
adds a conditional attribute: a decision-making system has no conditional discrimination if,
after conditioning on this attribute, the decisions are statistically independent of the sensitive
attribute [Wachter et al., 2021]. However, in both methods, it is not clear how the attributes
on which conditional fairness is calculated are chosen: searching over all combinations of
attributes would be prone to finding false positives [Wachter et al., 2021]. Developers can
be inclined to choose favorable conditions [Wachter et al., 2020] and it should not be up
to them to choose these variables, but this should be fixed externally by law or domain
experts [Kamiran et al., 2013]. The selection of these conditional attributes becomes confusing
and debatable as people might not agree about which combinations are reasonable [Kamiran
et al., 2013]. Furthermore, the conditional attributes are not necessarily the attributes that
are used by the model. In large datasets, conditional variables might exist such that the data
can be stratified in groups in such a way that there is no conditional demographic disparity,
while that conditional variable is not even a factor used in the model. We will show this in
Section 6.4.3.1.
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We agree with the point of view that part of the discrimination can be explainable by other
attributes, but our goal is to shed light on which attributes are making up the discrimination
in the model so that policymakers can decide whether these are justified or not. Is it fair to
use GPA in law admissions schools even though it is often biased against ethnic minorities? Is
it desired to trade accuracy for fairness in crime recidivism prediction as this can result in a
higher crime rate overall? Which biases are socially acceptable and can be maintained? Which
actions are appropriate for a specific case? These are all questions that should be answered
case by case in an open and transparent debate.

6.2.3 Related metrics

6.2.3.1 Counterfactual fairness

In recent years, fairness-aware machine learning has been studied from the causal perspective
using causal modelling [Pearl et al., 2000]. In line with this research, Kusner et al. [2017] define
counterfactual fairness as a notion of fairness derived from Pearl’s causal model [Pearl et al.,
2000] where for an individual the prediction of the model is considered as fair if it is the same
in the real world as it would be if the individual would belong to a different demographic
group [Kusner et al., 2017, Wu et al., 2019]. To measure this, they make explicit assumptions
about the causal relationships in the data. One way for a predictor to be counterfactually
fair is if it is a function of only non-descendants of the sensitive attribute, so this will be
different depending on the chosen causal model. The biggest drawbacks of this methodology
are that you need to make some untestable assumptions for such a causal model and that it
is not scalable [Xu et al., 2020]. It assumes that the causal relations between variables in a
dataset are known, while in reality this is not the case. Furthermore, the legal frameworks
that govern discrimination in multiple countries do not require a causal relationship with
the protected attribute, so counterfactual fairness may fail to identify occurrences of legally
actionable discrimination [Black et al., 2020]. Several other authors also propose a causal
approach to detect various forms of discrimination in a dataset [Bonchi et al., 2017, Kilbertus
et al., 2017] but they suffer from the same drawbacks.

6.2.3.2 Counterfactual fairness (bis)

Sokol et al. [2019] already showed how counterfactual explanations can be used to check
individual fairness. They consider an instance to be treated unfairly if that instance received
the undesirable label and there exists a counterfactual explanation for that instance that
includes at least one protected attribute change [Sokol et al., 2019]. We follow this approach
when we use counterfactual explanations to identify explicit bias for an individual. On top of
that, we also show that aggregating these counterfactual explanations can give more insights
about the patterns of explicit bias in the algorithm.
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6.2.3.3 CERTIFAI

CERTIFAI [Sharma et al., 2020] is a tool that can be applied to any black-box model to assess
its fairness. It uses a custom genetic algorithm to generate counterfactuals and examines the
explanations to assess the model’s fairness, both on an individual and on a group level. The
fitness of an individual is defined as the inverse distance between the input instance and
its counterfactual. For an individual, if we allow the sensitive attributes to change, and the
fitness goes up (distance to the counterfactual becomes smaller: desired outcome is more
easily achieved), then the individual could claim the model is treating them unfairly. This tool
can also be used to audit fairness on a group level: if the average fitness values of generated
counterfactuals are lower for women than for men, this could be used as evidence that the
model is not treating women fairly [Sharma et al., 2020]. This tool is different from how we
use counterfactual explanations as we will focus on the specific attributes and attribute values
that occur in the explanations of both groups and not on the distance to the counterfactual
instance.

6.2.3.4 Fairness in algorithmic recourse

The literature on algorithmic recourse has focused on finding “an actionable set of changes
a person can undertake in order to improve their outcome” [Joshi et al., 2019, Karimi et al.,
2021]. Algorithmic recourse poses its own fairness criteria, where the effort to reach the
required outcome is taken into account. If individuals from the protected group have to
work harder than similar individuals from another group to achieve the desired outcome,
then the concept of equal opportunity is violated [von Kügelgen et al., 2022]. This notion of
unfairness is not captured by predictive notions and is in line with CERTIFAI, as they both
focus on the difference in effort different individuals have to make. To be able to find an
‘actionable’ set of changes, most authors assume, at least partial, causal knowledge. However,
as in Section 6.2.3.1, the reliance on causal information creates practical issues that may
limit its applicability [Black et al., 2020]. As we are not necessarily interested in actionable
counterfactuals, our method will not rely on causal assumptions about the data-generating
process. We explain this further in Section 6.4.5.

6.2.3.5 FlipTest

FlipTest is a fairness testing approach, that also does not rely on causal information, but
instead uses an optimal transport mapping to detect whether a model’s behavior is sensitive
to changes in the protected status [Black et al., 2020]. Simply changing the protected attribute
is not sufficient due to correlations in the data. Therefore, a transport map transports one
probability distribution into another, for example women into men, in order to have a pair of
inputs with which to query the model. An optimal transport map is used to minimize the
sum of distances between a woman and the man she is mapped to (her counterpart), where
the distance quantifies the difference between them. FlipTest analyzes the cases where the
classifiers’ output is different between the woman and her counterpart, as these are individuals
that might be harmed because of their group membership. Like FlipTest, PreCoF also aims to
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shed light on why the model is treating a certain subgroup differently but it uses a different
method: it does not require to approximate an optimal transport mapping and does not
depend on the distance function that is used to construct the mapping.

6.3 counterfactual explanations as the solution

PreCoF aims to explain the discrimination in a predictive classification model, and create
transparency regarding which attributes are the most discriminatory between different sen-
sitive groups. This insight can then be used for subsequent discussions and decisions by
law or domain experts on which attributes are justified and which attributes will just behave
as proxies for the sensitive attribute. An example of Wachter et al. [2021] shows how some
attributes can be valid in one case but not in another: when reviewing résumés for a firemen
position, height can be deemed a valid discriminator but it seems highly unlikely that this
will be the case when reviewing résumés for a CEO position (there it will just serve as a proxy
for gender).

We agree with Wachter et al. [2021] that fairness is contextual: it is not possible to create a
system that automatically detects and corrects discriminatory models as each case should be
handled differently. What is needed is an ‘early warning system’ that provides transparency
in automated discrimination [Wachter et al., 2021] which is what we aim to supply.

As Rudin et al. [2020] also state: it is arguably unfair to have life-changing decisions being
made by a system without having any insights into the decisions, which brings us to the
field of Explainable AI (XAI). XAI research aims at explaining how an AI system reached its
decision [Gohel et al., 2021]. XAI can enhance transparency as well as fairness as it provides
explanations that can be understood and as such show bias that is present [Gohel et al., 2021,
Sokol and Flach, 2021]. There exist different sorts of explanation procedures for understanding
predictive models, both on the global level as on the instance-level. For an overview of these
methods, we refer you to Section 3.2.3. We want to assess fairness on the individual level so
we will look at instance-based explanation methods, and we will focus on Counterfactual
Explanations as they are better suited for our task than LIME or SHAP: the latter explain a
prediction score rather than a decision so if we talk about unfair decisions, Counterfactual
Explanations are better suited as they focus on the treatment an individual received [Fernandez
et al., 2020]. We focus on fair decision making, but in the case we want to assess fair scoring,
SHAP values can be used in the same set-up. We present the results when using SHAP values
instead of counterfactual explanations in Section B.1. Our main argument that more insight is
needed in the nature of the bias before deciding on a method to handle it, remains valid for
both XAI techniques.

Assume we have a dataset D that consists of n instances and m attributes, where the attribute
value of attribute j of an instance i is denoted by xij with i ∈ {1, 2, ..., n}, j ∈ {1, 2, ..., m}. The
model M will make a decision, which is either a favorable (+, e.g. hired, credit granted) or a
unfavorable (-, e.g. not hired, credit rejected) outcome.

M(xi) ∈ {+,−}
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A counterfactual c of a factual instance xi is an instance for which:

M(xi) ̸= M(c)

and
d(xi, c) is minimal

So the counterfactual is another instance, while the counterfactual explanation is the difference
between the two: |c− xi|. As mentioned in Section 6.2.3, other metrics also use counterfactual
explanations to assess fairness. However, our metric will be different as it does not need to
assume a causal graph [Kusner et al., 2017], and does not use the distance to the counterfactual
like Sharma et al. [2020], but will look at the actual explanations of decisions instead.
Furthermore, we will use counterfactual explanations not only to show explicit bias, as done
by Sokol et al. [2019], but also to get insights into the implicit bias, which is arguably the more
challenging problem.

An advantage of also looking at implicit bias over explicit bias is that it deals with rules or
patterns of behaviour, and as such can reveal underlying social inequalities and uncover
structural unfairness in an algorithm [Wachter et al., 2021]. Direct discrimination is simpler
to detect: the action that is alleged to be discriminatory must explicitly refer to a protected
characteristic while for indirect discrimination it is more difficult: a neutral attribute or
criterion must be shown to substantially disadvantage the protected group, despite not
explicitly addressing it [Wachter et al., 2021, Zliobaite, 2015].

6.4 methodology

6.4.1 Materials

In this study, we focus on tabular datasets, mostly used in fairness-aware machine learning
research [Le Quy et al., 2022]. We use datasets from the financial (Adult Income dataset),
criminological (Catalonia Juvenile dataset, Crimes and Communities dataset) and the educa-
tional (Student performance dataset, Law admission dataset) domain. All the datasets in this
study are publicly available.

6.4.1.1 UCI Adult dataset

The Adult Income dataset3, or ’Census Income’ dataset contains information extracted from
the 1994 census data with as target variable whether the income of a person exceeds $50,000

a year or not. We use it to assess whether there are gender or race inequalities present in
people’s annual incomes [Asuncion and Newman, 2007]. The Adult dataset contains 48,842

instances with 14 features. As is common in literature, we drop the features Fnlwgt as it does
not convey a meaning to its values, EducationNum as it has the same meaning as Education and

3 https://github.com/EpistasisLab/pmlb/tree/master/datasets/adult
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NativeCountry as it has a lot of missing values. We use the features Age, Workclass, Education,
Marital-status, Occupation, Relationship, Race, Sex, CapitalGain, CapitalLoss and HoursPerWeek.
The sensitive attributes in this dataset are Race and Sex. For our experiments we use Sex as the
protected attribute. The favorable outcome in this dataset is having an income that exceeds
$50,000 a year, the unfavorable outcome is having a yearly income below $50,000 .

6.4.1.2 Catalonian Juvenile Dataset

This dataset4 consists of juvenile offenders who were incarcerated in the juvenile justice
system of Catalonia and who were released in 2010 [Miron et al., 2021]. Their recidivism
behavior was observed between 2010 and 2015. SAVRY is a tool developed in 2003 which
predicts recidivism [Miron et al., 2021]. We build a model on most of the individual and
criminological variables as in Miron et al. [2021] 5, but we also include the variables that are
used in the SAVRY risk scores such as History of self harm, Delinquent peer group,.. . Our dataset
contains 855 instances with 22 attributes. The target variable in this dataset is Recid, which is
whether the offender has re-offended or not. The favorable outcome here is that there is no
recidivism, the unfavorable outcome that there is. The sensitive attributes in this dataset are
Foreigner, Sex and National Group of the offenders, but for our experiments we use Foreigner as
protected attribute.

6.4.1.3 Crime and communities dataset

This dataset6 contains 1994 samples of socio-economic data from the United States. There
are 127 attributes in this dataset, but we delete all attributes related to state, race or crime,
except for the target variable, so that 91 attributes remain. The target variable is whether
the attribute ViolentCrimesPerPop is above a certain treshold, which then constitutes a violent
community. In line with literature, we also add the attribute Black in order to divide the
communities in black and non-black communities when the attribute racepctblack is above a
certain threshold [Kamiran et al., 2013, Le Quy et al., 2022]. The protected attribute here is
Black.

6.4.1.4 Student performance dataset

This dataset7 consists of 649 students and 30 attributes from a Portuguese high school [Cortez
and Silva, 2008]. The attributes of the dataset contain information about the background of the
students and their social activities. As commonly done [Hamoud, 2016], we delete the results
from the first and the second grade (G1,G2) as they are very heavily correlated with the final
grade (G3). The target variable is scoring above average on their final exam of Portuguese,

4 https://github.com/nkundiushuti/savry/blob/master/dat/reincidenciaJusticiaMenors.csv
5 https://github.com/nkundiushuti/savry/blob/master/Savry Fair.ipynb
6 https://github.com/tailequy/fairness dataset/blob/main/experiments/data/communities crime.csv
7 https://archive.ics.uci.edu/ml/datasets/student+performance
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where the favorable outcome is that you score above average and the unfavorable outcome
that you score below average. The protected attribute in this dataset is Sex.

6.4.1.5 Law admission dataset

This dataset8 contains a Law School Admission Council (LSAC) survey conducted across 163

law schools in the United States in 1991 [Wightman, 1998]. The dataset consists of 20,798

students and the following attributes: decile1b,decile3b, lsat, ugpa, zfygpa, zgpa, fulltime, fam inc,
male, tier, race and pass bar. The target variable is whether the student will pass the bar exam
or not. The protected attribute in this dataset is Race: 92.1% of white students pass the bar
exam, while this ratio in non-white students is only 72.3%.

6.4.2 Explicit bias

As already highlighted by Sokol et al. [2019], counterfactual explanations can be used to
highlight explicit bias in a decision-making model, by searching for explanations that contain
the sensitive attribute. We detect explicit bias by searching for counterfactual explanations that
consist only of the sensitive attribute.

Assume we have a dataset D with sensitive attribute S, where the sensitive value is s, and
the non sensitive value is ns. The group with sensitive value s is also called the protected
group and the group with sensitive value ns is also called the privileged group or unprotected
group. The dataset consists of n instances xi, with m attributes, where the attribute value of
attribute j for instance i is denoted by xij with i ∈ {1, 2, ..., n}, j ∈ {1, 2, ..., m}. The index of
the sensitive attribute is z. The model M will make a decision, where we denote + as the
favorable outcome and − as the unfavorable outcome.

A decision for the factual instance xi that has a negative predicted outcome: M(xi) = −, is
deemed to be unfair (explicit bias) if there exists a counterfactual instance c, for the instance xi
that satisfies:

xiz ̸= cz
(the counterfactual instance has a different value for the sensitive
attribute)

xij = cj ∀j ∈ {1, 2, ..., m} \ z
(except for the sensitive attribute, the factual
and counterfactual instance are identical)

This means that the instance c that only differs from x with respect to the sensitive attribute
receives a different classification from our prediction model M. An example of such an unfair
explanation could be: “If you would not have been a woman, you would have received the loan.”

This analysis on the individual level could also be aggregated and as such, show patterns in
the model. We aggregate the explanations by calculating how many people of each group

8 https://github.com/tailequy/fairness dataset/blob/main/experiments/data/law school clean.csv
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receive such an explanation. How many negatively predicted persons from each sensitive
group would have received a positive outcome, simply by changing their sensitive attribute?
Which categories of the sensitive group experience explicit bias the most?

Machine learning models can also suffer from fairness gerrymandering; when there are different
sensitive groups, the classifier can be fair for each individual group but can discriminate
against structured subgroups [Kearns et al., 2018]. Imagine we have two sensitive attributes:
race and gender. When analyzing the explicit bias in the model, it is possible that no explana-
tions are found with gender or race, but only with a combination of the two attributes (e.g., ”If
you would not have been a black woman, you would have received the loan.”). Our method can take
this into account by searching for all explanations that contain a combination of the sensitive
attributes.

6.4.3 Implicit bias

We will use the same terminology as in Section 6.4.2, but now we will remove the sensitive
attribute from the dataset before training the model. We will name this new dataset D′.
This dataset will consist of n instances x’i with m− 1 attributes, where the attribute value of
attribute j for instance i is denoted by x′ ij with i ∈ {1, 2, ..., n}, j ∈ {1, 2, ..., m} \ z. We also
have access to the original dataset D, where the sensitive attribute for each instance is still
available under index z.

What our metric aims to measure, is how much more often a certain attribute is responsible
(part of the counterfactual explanation) for a negative outcome decision for members of the
protected group, compared to members of the privileged group. So if changing height from
short to tall is 100 times part of the counterfactual explanation for a non-hire decision for 100

women (‘if your height would have been tall instead of short, you would have been hired’)
(100%), and only 10 times of the counterfactual explanation for a non-hire decision for 100

men (10%), PreCoF will output 90% for the attribute height. We then show the features (and
feature values) with the highest PreCoF.9

More formally, we test for every instance xi with an unfavorable outcome for every attribute j
whether changing them to one of the default values results in a counterfactual explanation E.
We use a set of default values as we will not test every possible attribute value: for numerical
attributes or very sparse categorical attributes, this will not be feasible. We select a set of
default values, which for numerical attributes are the values of each decile. For categorical
attributes, we take the most frequent (max 10) values that are at least present in 1 percent of
the training set. If no attribute value is present in more than 1 percent of the training set, we
will just take the 10 most occurring values.

Afterwards, we look at all negatively affected members of the protected group, and see how
relatively often we can find a counterfactual explanation that consists only of attribute j. This
relative number, we call CoF(j, s). Similarly, we measure how often this attribute is part of the

9 Like explained in Section 6.4.2, the protected group can also be a combination of multiple sensitive
attributes. PreCoF can take this into account by comparing the explanations of this subgroup (e.g., black
women) with the rest of the population.
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explanation for the privileged members with negative outcome: CoF(j, ns). Our final metric
PreCoF(j) simply calculates the difference between these two.

The mathematical definition for PreCoF is thus as follows (where the counterfactual explana-
tion that leads to counterfactual instance c can only consist of a single attribute j 10):

CoF(j, s) =
| {i | ∃c : xiz = s, M(x’i) = −, M(c) = +c, x′ij ̸= cj, ∀h ∈ {1, 2, ..., m} \ [j, z] : x′ih = ch} |

| {i | xiz = s, M(x’i) = −} |

CoF(j, ns) =
| {i | ∃c : xiz = ns, M(x’i) = −, M(c) = +c, x′ij ̸= cj, ∀h ∈ {1, 2, ..., m} \ [j, z] : x′ih = ch} |

| {i | xiz = ns, M(x’i) = −} |
PreCoF(j) =CoF(j, s) − CoF(j, ns)

PreCoF1 = Attribute j such that j ∈ argmax
∀j∈{1,2,...,m}\z

PreCoF(j)

Our metric also allows us to look at the exact feature values of the factual and counterfactual
instances. A difference here is that we only compare the categorical values as the numerical
values are often too sparse to give us insights about the patterns in values. We define PreCoFf
and PreCoFc:

These are calculated in the same way as CoF, but CoFf will output how often each attribute
value is present as part of the factual instance and CoFc will output how often each attribute
value is present as part of the counterfactual instance. PreCoFf and PreCoFc again calculate the
difference for CoFf and CoFc between the protected and the privileged group, and PreCoFf 1
and PreCoFc1 will be the attribute values for which respectively PreCoFf and PreCoFc are
maximal out of all possible attribute values.

By also looking at the specific feature values in the factual and counterfactual instances, we
can get more insights into the social patterns in the model. Examples of this can be seen in
the results in Sections 6.5.1, 6.5.2, and 6.5.4. Our metric is thus able to give us insights into the
implicit bias of a prediction model, without the prediction model even having access to the
sensitive attribute.

6.4.3.1 Toy example

We will illustrate the use of this metric with a simple toy example.

A machine learning model is trained on this toy dataset in Table 6.1 after removing the
sensitive attribute (gender). Assume the following simple rule-based model:

10 More formally, a counterfactual explanation e that only consists of attribute j means that the counterfactual
explanation c satisfies:

M(c) = +

x′ij ̸= cj

∀h ∈ {1, 2, ..., m} \ [j, z] : x′ih = ch
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Row Gender School Hobby IQ
True
Grade

Predicted
Grade

1 M School1 Basket High Pass Pass
2 M School1 Football High Pass Pass
3 M School1 Football Low Fail Fail
4 M School2 Football High Fail Fail
5 M School2 Basket Low Fail Fail
6 F School2 Dance High Fail Fail
7 F School2 Dance High Fail Fail
8 F School2 Music High Pass Fail
9 F School2 Dance High Pass Fail
10 F School1 Music High Pass Pass

Table 6.1: A toy example

If School = School2 or IQ = low, predict Fail; else predict Pass

The predicted outcome by this model can be seen in the last column of the table. This model
scores an accuracy of 80 % but predicts more girls to fail than boys, even though in the dataset
there are less girls that fail than boys.

We calculate the demographic disparity of our simple rule-based classifier:

Demographic disparity = P(ŷ = + | M)− P(ŷ = + | F) = 2/5− 1/5 = 1/5

This metric just tells us that there is a difference in predicted outcome between boys and girls,
but tells us nothing about why discrimination occurs and gives policymakers no clues on how
to handle this. If the reason for this difference in predicted outcome is that the rejected girls
have on average a lower IQ, and this is used by the model to predict that they will fail more
often, then this could be a justified reason for a difference in positive rate, while for other
attributes this will not be the case. This shows that group fairness metrics in general are not
well suited to answer legal or normative questions as they will not provide any reasoning
behind the metric.

In this small example, inspired by the Student Performance dataset, it is straightforward to
see which attribute is inducing this bias. The model has learned that School2 is associated with
bad grades which disproportionally affects the female students. We will use this toy example
to show that the PreCoF metric is able to detect this variable and as such give insights into
why the discrimination occurred.

When using the PreCoF metric, we get the following results:

CoF(School, F) = 4/4, CoF(IQ, F) = 0, CoF(Hobby, F) = 0,
CoF(School, M) = 1/3, CoF(IQ, M) = 1/3, CoF(Hobby, M) = 0
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We calculate the attribute for which the difference between the protected (F) and the privileged
group (M) is the largest:

PreCoF1 = School (CoF(School, F)− CoF(School, M) = 2/3,

which is larger than 1/3 and 0)

We then use the PreCoF metric to also detect the feature values causing the differences:

PreCoF1 f = School2
PreCoF1c = School1

PreCoF1 will be School as this is the attribute that is proportionally the most present in the
explanations of the protected group (girls), compared to the privileged group (boys). As will
be discussed in Section 6.5.4, this will also be the case in the real dataset and could have
implications in various areas such as college admissions, where girls could be incorrectly
rejected because of the school they went to.

This toy example also shows that this metric will not necessarily point to the variables that
are the most correlated with the sensitive attribute. Hobby is the most correlated with gender
here, but it will not come out of the PreCoF metric as the model is not using this variable.

This toy example also allows us to highlight the difference of our metric with conditional
fairness metrics; we show the difference by using the formulas of discrimination of Kamiran
et al. [2013]. For an explainable attribute E, which could in theory be any attribute from the
dataset, Kamiran et al. [2013] consider dividing the database according to the possible values
e1, . . . , ek of E. For each of the values ei they compute a theoretical probability P∗(ŷ = + | ei)

of being in the positive class by taking the mean P(ŷ=+ | ei ,s)+P(ŷ=+ | ei ,ns)
2 , assuming that if

this probability of being in the positive class differs between the protected and privileged
group, the truth must be in the middle. Based on this per-group estimate, they compute
what would be the unbiased positive class probability for the protected group as follows:
∑k

i=1 P(ei | s)P∗(ŷ = + | ei). The formula for the privileged group is the same. Hence, the
explainable difference between the two communities then becomes:

Dexplainable(E) =
k

∑
i=1

P(ei | s)P∗(ŷ = + | ei)−
k

∑
i=1

P(ei | ns)P∗(ŷ = + | ei)

=
k

∑
i=1

(P(ei | s)− P(ei | ns)) P∗(ŷ = + | ei)

The illegal discrimination then becomes the part of the discrimination that cannot be explained
by the attribute E:

Dillegal(E) = Dall − Dexplainable(E) ,

where Dall is equal to the demographic disparity:

Dall = P(ŷ = + | ns)− P(ŷ = + | s) ,

which is 1/5 for our toy dataset as calculated above.
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With these formulas we get:

Dexplainable(Hobby) =(2/5− 0)× 1/2 + (3/5− 0)× 1/3 + (0− 3/5)× 0

+ (0− 2/5)× 1/2

=1/5 , giving Dillegal(Hobby) = 0.

Similarly we can compute Dillegal(School) = −2/15, and Dillegal(IQ) = 28/75.

This example shows that according to the explainable discrimination measure of Kamiran
et al. [2013], variable (Hobby) could justify the discrimination, while the model is not even
using this attribute. This shows the key difference with conditional fairness and our metric:
we look at the factors that could change the decision of the model and where these factors
differ the most between sensitive groups, while conditional fairness will search for a way to
create stratified groups that satisfy a fairness metric.

6.4.4 Machine learning model

The machine learning model used for our experiments is a Random Forest model, tuned
through five-fold cross-validation. We use a OneHotEncoder to handle the categorical features.
The parameter grid that is used is {10, 50, 100, 500, 1000, 5000} for the number of trees and
[10, 100, 500, n] for the maximum number of leaf nodes.

To measure the explicit and implicit bias we split each dataset in a training and test set, train the
machine learning model on the training set, and then assess the accuracy and fairness on the
test set. We generate all the counterfactuals to assess the explicit bias as well as the implicit bias
on the test set. For each dataset we compare three situations: the accuracy and fairness of the
model trained with the sensitive attribute (1), the accuracy and fairness of the model trained
without the sensitive attribute (2) and the accuracy and fairness of the model without the
sensitive attribute and PreCoF1 (3). We expect the accuracy to go down and the fairness to go
up going from situation 1 to situation 3 but the trade-off may be different for each dataset. We
calculate the fairness by measuring the demographic disparity, which is also equal to Dall .

6.4.5 Counterfactual methodology

As described in Sections 6.4.2 and 6.4.3, we do not use an existing counterfactual explanation
method but develop one ourselves to check for every attribute whether it results in a class
change. We use this approach instead of an existing counterfactual explanation method
to constrain our method to check every attribute, and hence we have a guarantee that any
attribute that more often results in a class change for one group than for another is found.

There exist plenty of counterfactual explanation methods already, and they can lead to different
explanations as the optimization problem is set up in a different way [Bordt et al., 2022]. Even
a single counterfactual explanation method could lead to a large number of explanations,
where the choice of parameters (e.g., the distance metric) could determine which explanations
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are returned first. This abundance of explanations is not desirable in an adversarial context,
as the adversary (in this case the model developer) has considerable freedom to choose which
explanation it would return and as such hide bias [Barocas et al., 2020, Bordt et al., 2022].
This is why we use our own counterfactual explanation method: it will not rely on any input
parameter that can be manipulated, and neither it will depend on which explanations are
returned first as it will check all the attributes, even after several possible explanations are
already found. This approach is needed to make tangible statements about whether there is
explicit bias, or whether attributes are more often present in the explanations of one group
than the other. A drawback of our method is that we limit ourselves to explanations with one
feature only, as we do a complete search.

Note that in spite of this reasoning, we did also compare the results found with our coun-
terfactual explanation method with the results when using NICE [Brughmans et al., 2023a]
as counterfactual explanation method. We see that in general the same patterns are found,
i.e. the same direction of explicit bias and the same PreCoF attributes, but that our method is
better to detect all cases of explicit bias and is better suited to make robust statements about
the occurrence of each attribute.

Several works list actionability and plausibility (adherence to data manifold) as desirable
properties of counterfactual explanations [Guidotti, 2022, Karimi et al., 2021, Verma et al.,
2020, 2021]. These are two distinct concepts where the former restricts actions to those that
are possible to do, and the latter requires that the resulting counterfactual instance is realistic or
in line with the data manifold [Karimi et al., 2021]. We will not take these two properties into
account, which is out of line with the algorithmic recourse literature: focusing on actionability
and plausibility can actually decrease the ability of our metric to detect bias. After all, our
goal is not to look for realistic and actionable advice but to show how the model might be
discriminating. For example, the counterfactual explanations to change your race or gender
are not actionable, however, they are valuable to show explicit bias in the model. Wachter
[2022] shows that when immutable characteristics form the basis for decision-making, the
decision is likely to be based on undue stereotyping and protection should be offered. That
is exactly what we seek to find, while allowing both actionable and immutable features to
occur in the explanations. Likewise, imagine a dataset for hiring decisions where all the men
are tall and all the women are small: if we want plausible counterfactual explanations, women
cannot receive the explanation that they should be taller because this will be out of the data
manifold. However, in our case, this is, once more, exactly what we are interested in to detect
implicit bias. 11

6.5 results

6.5.1 Adult Income dataset

When looking at the positive rate of both men and women in Table 6.2, we see that men
have a higher positive rate both before and after removing the sensitive attribute. When we

11 The Python implementation of the proposed metric is available through: https://github.com/
ADMAntwerp/PreCoF.
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investigate the explicit bias of the model (and train the model with the sensitive attribute),
we see that the explanation: ‘If you would have been a man, you would have been predicted to
have a high income’ is present 13 times, while the reverse explanation (‘If you would have been a
woman, you would have been predicted to have a high income’) is only present once. Afterwards,
we investigate the implicit bias of the model trained without the sensitive attribute. When
we compare the explanations between men and women in Figure 6.1a, we see that women
more often receive the explanation marital-status. When we look at the exact feature values of
the explanations received in Figure 6.1b, so the value of that feature they should change to
in order to receive a favorable outcome, we see that the explanations Marital status: Married
to a civilian spouse and Relationship status: Husband are much more prevalent for women than
for men. The latter clearly is a proxy, as we see in Figure 6.2b, that this value is only present
for men. As we see in Figure 6.2a, the value Marital status: Married to a civilian spouse is also
present more often for men than for women. Whether marital status is a reasonable attribute
to explain the difference in income between men and women, is not for us to decide, but it is
valuable to show this pattern so this can be evaluated.

(a) PreCoF: attributes in the counterfactual expla-
nations

(b) PreCoFc: attribute values in the counterfactual
explanations

Figure 6.1: Difference in PreCoF for men and women in the Adult Income dataset

(a) 0 = Divorced, 1 = Married to AF, 2= Married
to Civ. Spouse, 3= Married to Abs. Spouse, 4

= Never married, 5 = Separated, 6 = Widowed
(b) 0 = Husband, 1 = Not in a family, 2 = Other rela-

tives, 3 = Own children, 4= Unmarried, 5 = Wife

Figure 6.2: Relationship between sex and the attributes marital status/relationship

We see in Table 6.2 that the demographic disparity becomes even larger when we remove
the sensitive attribute, which is an example of one of the cases where removing the sensitive
attribute hurts the protected group. When we also remove PreCoF1 (marital status) it decreases
slightly but still remains very large.
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Situation 1
Model with
sensitive attribute

Situation 2
Model without

sensitive attribute

Situation 3
Model without
sensitive attribute
and PreCoF1

Demographic disparity
(Positive rate privileged group
- positive rate protected group)

0.170 (0.242-0.073) 0.171 (0.242-0.071)
0.168 (0.236-0.068)

Accuracy of the model 86.28% 86.23% 86.30%

Table 6.2: Accuracy and fairness metrics for the model trained on on the Adult Income dataset

6.5.2 Catalonia Juvenile dataset

We first use our metric to detect explicit bias in the model trained with the sensitive attribute.
There are 7 foreigners (out of 28) that receive the explanation: ’If you would have been a local,
you would have been predicted to not reoffend’ and the reverse case never happens. We also see in
Table 6.3, that there is a large demographic disparity in Situation 1 (the model trained with the
sensitive attribute). When we remove the sensitive attribute, the demographic disparity goes
down but foreigners (Estrangers) are still disadvantaged as they are more likely to be predicted
to reoffend by our model, compared to locals (Espagnols). When we look at the explanations in
Figure 6.3a, we see that national group is much more present in the explanations of foreigners
than in the explanations of locals. As can be seen in Figure 6.4b, this is a clear proxy for
foreign status and should also be deleted when race attributes are not allowed. When we
zoom in on the feature values in the explanations in Figure 6.3b, we also see which values
of national group occur most in the explanations. We see that foreigners are proportionally
most likely to receive the explanation to change to national group: Spanish in comparison with
locals, as it is a proxy for being local. Other national groups that often occur are Altres and
Europa. When we look at the values occurring most often in the factual instances that receive
such a class change in Figure 6.4a, the national groups Central and South America and Magrib
are among the most present. Hence, in this case, PreCoF succeeds in flagging proxy attributes
which could be very helpful for deciding which attributes should be omitted from models.

(a) PreCoF: attributes in the counterfactual expla-
nations

(b) PreCoFc: attribute values in the counterfactual ex-
planations

Figure 6.3: Difference in PreCoF for foreigners and locals in the Catalonia Juvenile dataset

We see in Table 6.3 that the demographic disparity goes down when removing the sensitive
attribute, but nevertheless still remains quite large. When we also remove PreCoF1 (national
group), the demographic disparity almost disappears. The accuracy also goes down when
removing this attribute but only slightly.
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(a) PreCoFf : attribute values of the factual instances
(b) Relationship national group - foreign

status

Figure 6.4: Catalonia Juvenile dataset: analysis

Situation 1
Model with
sensitive attribute

Situation 2
Model without

sensitive attribute

Situation 3
Model without
sensitive attribute
and PreCoF1

Demographic disparity
(Positive rate privileged group
- positive rate protected group)

0.175 (0.897 - 0.723) 0.119 (0.812-0.752) 0.010 (0.782-0.772)

Accuracy of the model 71.98% 72.37% 70.82%

Table 6.3: Accuracy and fairness metrics for the model trained on the Catalonia juvenile
dataset

6.5.3 Crime and communities dataset

We find no cases of explicit bias in the model trained with the sensitive attributes. Next, we
train a model without the sensitive attribute and assess the implicit bias. We see in Table 6.4
that the not-black communities in the test set are never predicted to be a violent community
so their positive rate is 100 %. Black communities are predicted to be violent in around
4.5% of the cases. We hence have only explanations for the protected group, so we will just
see which explanations were the most present for this group. In Figure 6.5a, we observe
that the attribute PctIlleg, which is the percentage of kids born to people who were never
married, is the most present. When we look at the distribution of this attribute for black and
non-black communities in Figure 6.5b, we indeed see that this percentage tends to be higher
for black communities. Research on other models trained on this dataset also find this to be
an important predictor of both the target value (violent community) as well as the sensitive
attribute (black community) [Le Quy et al., 2022]. When we assess the other top attributes in
PreCoF, we notice that the four first are related to families with both parents being present,
or being married. Earlier research already argued that marriage is linked to a reduction in
crime [Sampson et al., 2006].

We also see in Table 6.4 that the demographic disparity goes down when we remove the
sensitive attribute. It does not go down when we remove PreCoF1, which makes sense as the
PreCoF1 attribute here (PctIlleg) is very correlated with other attributes of the dataset such as
NumIlleg.
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(a) PreCoF: attributes in the counterfactual explanations
(all the attributes in this dataset are numerical so no
need to investigate PreCoFc)

(b) Relationship between PctIlleg and Black
in the Crime and Communities dataset

Figure 6.5: Crime and Communities dataset: analysis

Situation 1
Model with
sensitive attribute

Situation 2
Model without

sensitive attribute

Situation 3
Model without
sensitive attribute
and PreCoF1

Demographic disparity
(Positive rate privileged group
- positive rate protected group)

0.045 (1-0.955) 0.035 (1-0.965) 0.035 (1-0.965)

Accuracy of the model 84.97% 85.14% 84.81%

Table 6.4: Accuracy and fairness metrics for the model trained on the Crime and Communities
dataset

6.5.4 Student performance dataset

We see in Table 6.5 that our classifier predicts girls to be less likely to have a positive label
compared to boys. Although they have on average a higher score than boys, they are more
often predicted to fail in every situation. We might get some insights into this phenomenon
by looking at how the explanations differ for both groups. We see in Figure 6.6a that the
attribute school is present more often in the explanations for girls and in Figure 6.6b that they
receive the explanation to change to school GP more often. Depending on what the machine
learning model is used for, this kind of analysis could give very important insights. If this
model would be used, for example, to determine whether the students would be successful
in university and should be admitted, this analysis shows that girls could be disadvantaged
compared to boys because of the school they went to. When we look at the explicit bias in the
model trained with the sensitive attribute, boys are biased against: there are three boys that
receive the explanation: ’If you would have been a girl, you would have been predicted as scoring
above average instead of below’ and the reverse does not happen. This example shows that
explicit bias and implicit bias can work in opposite ways.

We analyse the relations of the attribute school. We see in Figure 6.7b that for both boys and
girls, their average score is higher if they went to school GP: for girls their average score on
school GP is 13 and on school MS 11.03, while for boys the average score on school GP is 12.03
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(a) PreCoF: attributes in the counterfactual expla-
nations

(b) PreCoFc: attribute values in the counterfactual
explanations

Figure 6.6: Difference in explanations for boys and girls in the Student performance dataset

(a) Relationship between school and sex in the
Student Performance dataset: percentage of
this sex that goes to this school

(b) Relationship between school and sex in the Stu-
dent Performance dataset: average grade

Figure 6.7: Student performance dataset: analysis

and on school MS 9.95. The average score of girls is also higher independent of school: on
average girls have a score of 12.25 and boys of 11.41. When researching this attribute, we see
in Figure 6.7a that girls more often go to school MS which has a lower average score, so they
receive the explanation to change to school GP, which has a higher average score, more often.
So due to the importance of the attribute school in the machine learning model, they are
predicted to fail more often than boys while their true outcome is to fail less. The importance
of the school you go to in a machine learning model to predict grades reminds of a recent
case in England in 2020, where an algorithm designed to predict grades for A-level exams
amidst COVID-19 increased the predicted grades at small private schools but lowered the
grades at larger, state-run schools that have a larger proportion of minority students [Wachter
et al., 2020]. In terms of accuracy, this model performed well but as a result high performing
students from ‘good schools’ received high marks, whereas highly performing students from
‘bad schools’ had their marks capped by the lower performance of classmates and got a lower
mark than deserved [Wachter et al., 2020]. This system was not biased on purpose: it was the
ignorance of the social bias that led to the technical bias in this system [Wachter et al., 2020].

We compare the accuracy and fairness of the three situations in Table 6.5: We see that the
accuracy of the model goes down after removing attributes, however only slightly. We see that
the demographic disparity increases after removing the gender attribute, which makes sense
as girls on average scored better but are disadvantaged by the school they go to: this effect
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6.5 results

Situation 1
Model with
sensitive attribute

Situation 2
Model without

sensitive attribute

Situation 3
Model without
sensitive attribute
and PreCoF1

Demographic disparity
(Positive rate privileged group
- positive rate protected group)

0.043 (0.610-0.566) 0.115 (0.646-0.531) 0.066 (0.659-0.593)

Accuracy of the model 73.85% 71.28% 70.26%

Table 6.5: Accuracy and fairness metrics for the model trained on the Student Performance
Dataset

will become even larger if gender information is removed. There is explicit bias against boys,
but implicit bias against girls through the neutral attribute school. If we remove PreCoF1 School,
the demographic disparity will decrease again but not until the first level. This situation
shows that as mentioned in literature already [Corbett-Davies et al., 2023] and as seen in other
datasets, removing the sensitive attribute can increase the discrimination in the dataset.

6.5.5 Law admission dataset

(a) PreCoF: attributes in the counterfactual explanations

(b) Relationship between Race and
LSAT in Law Admission Dataset.
The bars represent the percentage
of individuals in the dataset with
that race category and in that bar of
LSAT scores.

Figure 6.8: Law Admission dataset: analysis

When we look at the explicit bias, we see that there are 45 instances in the test set that receive
the explanation: ‘If you would have been white, you would have been predicted as admitted to pass
the bar’ and only 3 the other way around, which shows that the model that is trained with
the sensitive attribute exhibits explicit bias. This also shows that the model is non-linear and
both parties can receive such explanations. When we train the model without the sensitive
attribute here, we see in Figure 6.8a that the only attribute that is relatively more present in
the explanations of Non-Whites compared to Whites, is the lsat score. The fact that almost all
the attributes are relatively more present in the explanations of the privileged group means
that the rejected individuals in this group are closer to the decision boundary: Changing
only one attribute more often leads to a change in outcome, while for the protected group
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more attribute changes are necessary. It is not surprising that lsat scores pop up as PreCoF1 as
it is often said that test scores such as GPA and LSAT are racially biased: white test-takers
consistently score higher than minority test-takers [White, 2000] and there have been calls for
law school admission committees to deemphasize reliance on LSAT scores and to develop
new methodologies to assess the skills of each applicant [Hill, 2019]. When we look at
Figure 6.8b, we indeed see that the average score of the LSAT is higher for Whites compared
to Non-Whites.

Situation 1
Model with
sensitive attribute

Situation 2
Model without

sensitive attribute

Situation 3
Model without
sensitive attribute
and PreCoF1

Demographic disparity
(Positive rate privileged group
- positive rate protected group)

0.159 (0.994-0.835)
0.143 (0.990-0.847)

0.075 (0.987-0.912)

Accuracy of the model 89.94% 89.82% 89.63%

Table 6.6: Accuracy and fairness metrics of the model trained on the Law Admission dataset

When we compare the accuracy and fairness of the three situations in Table 6.6, we see that
the accuracy decreases very slightly when removing the sensitive attribute and PreCoF1 .
When removing the sensitive attribute, the demographic disparity decreases slightly but after
removing PreCoF1, it decreases substantially. The question can be asked here whether we
deem it fair that there is a difference in positive rate based on LSAT scores: are these objective
scores or are they already biased in se?

6.6 discussion

In this study, we use counterfactual explanations to shed light on which discrimination
occurred in models trained on some well-known datasets, both in terms of explicit and implicit
bias. Our experiments reveal that removing PreCoF1, will decrease the demographic disparity
in a model, but we want to highlight that this is not the main purpose of our metric. It is
possible that removing other attributes will decrease the demographic disparity even more as
it is not the goal of the PreCoF metric to find that variable that would make the demographic
disparity the smallest. Our purpose is not to give members of a protected group an advantage
by giving them a better outcome [Wachter et al., 2020], but rather to shed light on which
attributes resulted in a different outcome and jump-start a discussion on whether they are
based on historical inequalities or are justified discriminators. The fairness results (i.e., the
decrease in demographic disparity) simply show that removing the PreCoF1 variable will
result in a smaller difference in positive rate between the protected and the privileged group,
which can be a desirable outcome in some cases.

What does our technique add compared to other fairness metrics?
Fairness will depend on context-dependent judgements, so it is dangerous to treat the
quantitative fairness metrics discussed in Section 6.2.1 as black-box fairness measures [Corbett-
Davies et al., 2023]. Using group metrics for fairness can abstract away more subtle issues
that are too difficult to operationalize or to decide upon algorithmically [Yeom and Tschantz,
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2021]. There is not one criterion that can ensure fairness in all cases, and when a model fails
on a fairness metric, this should lead to an investigation as to why this happens [Yeom and
Tschantz, 2021]. We also confirmed that just removing the sensitive attribute is not a viable
approach as it can even amplify the discrimination of the model, and thus harm the group it
was supposed to protect [Corbett-Davies et al., 2023]. Demographic Parity can detect whether
the model is treating the sensitive groups differently when the model does not directly use the
protected attribute but correlated one(s), but it does not consider whether there is sufficient
justification for a disparity of outcomes [Yeom and Tschantz, 2021]. Other tests that do take
the ground truth into account such as equalized odds also just examine the disparities but not
how they were reached [Yeom and Tschantz, 2021].

We do not state that removing PreCoF1 to decrease the demographic disparity will be a universal
solution to tackle the discrimination in a dataset. We just showcased that it is a possible
approach. Our point of view is that this should be decided case by case: is this attribute a
justified discriminator? Does it just behave as a proxy? Is it warranted to sacrifice accuracy
for extra fairness? Is a difference in positive rate a problem when the true outcomes also
differ per sensitive group or an accepted consequence? Do the observed outcomes accurately
reflect the real world? This last question is related to the two worldviews that Friedler et al.
[2021] suggested, namely the ‘We are all equal’ worldview and the ‘What you see is what you get’
worldviews. These are all questions that should be answered for each case individually, and
our metric can help to decide upon them. The benefits of building more fair models could
be very large, as fair machine learning models could dramatically improve the equality of
consequential decisions [Corbett-Davies et al., 2023].

6.7 future research and limitations

There are limitations to our metric, which at the same time pose opportunities for future
research. The patterns detected by this metric will only be trustworthy if both groups in the
test set are large enough. Therefore, we do not include the German Credit dataset into our
experiments, as this is a very small dataset. The number of individuals with a bad outcome in
each sensitive group in the test set will be so small that it is not possible to draw conclusions
from them.

Another limitation is that we do not take into account the type of bias that is present in the
dataset. If we assume the labels are biased, and that that is why fairness corrections are
needed, measuring the performance of the machine learning model on those biased labels
also leads to incorrect estimates.

Furthermore, in the COMPAS Juvenile dataset we detect an interesting pattern; every attribute
is relatively more present in the explanations of the not African-American group than in the
African-American group. This pattern occurs because the ‘rejected’ individuals (individuals
which are predicted the unfavorable outcome by the machine learning model) in the former
group are on average closer to the decision boundary than the individuals in the latter group:
for the latter, one attribute change will less often be enough to result in a class change. This is
related to the fairness notion of CERTIFAI [Sharma et al., 2020] and algorithmic recourse [von
Kügelgen et al., 2022], where the effort of both groups to reach the desired target outcome is
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taken into account. Our metric only looks at univariate changes for now but this could be
expanded to changes of two or more attributes in future research.

In our experiments, we focus on the rejected individuals. Another interesting research avenue
would be to focus on the misclassified rejected individuals and see what are the most occurring
explanations for both sensitive groups. This could be a possible avenue to improve the model
and reduce misclassifications.

Lastly, this study only takes tabular datasets into account but it will be valuable to analyze
this on text and behavioral datasets, as they are very sparse. For some tabular datasets, we
know what we can expect as proxies, however for behavioral datasets like Facebook likes, this
might not be very intuitive. This will be the focus of our next research.

6.8 conclusion

Fairness literature in AI has already revealed that AI creates new challenges for detecting
discrimination: automated discrimination is less intuitive, subtle and intangible [Wachter
et al., 2021]. As the algorithmic world will make complex decisions without any reasoning
behind them, it will be challenging to detect whether you are treated fairly. It is misguided
to focus on fairness while not obtaining transparency first [Rudin et al., 2020]. We aim to
provide this transparency by providing a tool that can shed light on: how often explicit bias in
the decision making model occurs for each subgroup, and which factors are a cause of the
implicit bias in the decision making model in each subgroup.
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7
Reranking individuals: The effect of fair classification
within-groups

Artificial Intelligence (AI) finds widespread application across various domains, but it sparks
concerns about fairness in its deployment. The prevailing discourse in classification often
emphasizes outcome-based metrics comparing sensitive subgroups without a nuanced con-
sideration of the differential impacts within subgroups. Bias mitigation techniques not only
affect the ranking of pairs of instances across sensitive groups, but often also significantly
affect the ranking of instances within these groups. Such changes are hard to explain and raise
concerns regarding the validity of the intervention. Unfortunately, these effects remain under
the radar in the accuracy-fairness evaluation framework that is usually applied. Additionally,
we illustrate the effect of several popular bias mitigation methods, and how their output often
does not reflect real-world scenarios.



reranking individuals

7.1 introduction

In the rapidly evolving landscape of Artificial Intelligence (AI) and machine learning, the
pursuit of fairness in algorithmic decision-making has emerged as a central concern. As the
influence and scope of the decisions made by AI systems are increasing, there are growing
concerns that the models making these decisions might unintentionally encode and even
amplify human bias [Corbett-Davies et al., 2023]. Algorithmic bias describes situations where
sensitive groups are substantially disadvantaged by an algorithm or model. One of the ways
bias can seep into a model is when it is trained on biased data, following the famous garbage in,
garbage out principle which emphasizing that flawed input data results in flawed output [Geiger
et al., 2020]. Examples of biased AI models are everywhere, with cases in almost every domain.
In the context of hiring, a well-known case is that of an automated Amazon recruitment
system that had to be pulled because it was biased against female applicants Dastin [2022].
Much earlier already, St George’s Hospital Medical School’s Commission for Racial Equality
discovered that a computer program used for initial screenings of applicants “written after
careful analysis of the way in which the staff were making these choices” unfairly rejected
women and individuals with non-European sounding names Johnson [2021], Lowry and
Macpherson [1988]. There is an abundance of examples akin to these ones.

In this paper, we focus on fair classification, which ensures algorithms make unbiased decisions
across groups. Many bias detection and mitigation methods exist, but most of them focus
on “between-group fairness” where the primary objective is to rectify disparities in model
predictions between distinct demographic groups. This endeavor is undeniably critical, as
it aims to rectify long-standing inequalities. However, it is equally essential to acknowledge
and scrutinize the complexities that exist “within” these groups, giving rise to a concept that
is commonly referred to as “within-group fairness”. Speicher et al. [2018] already note that
many approaches to group fairness tackle only between-group issues, worsening within-group
fairness as a consequence. Krco et al. [2023] highlight that the blind optimization of commonly
used fairness metrics does not show who is impacted within each group, while Mittelstadt
et al. [2023] emphasize that many of the currently used bias mitigation methods can make
every group worse off. These issues illustrate why solely looking at fairness by measuring
disparities between groups is not adequate.

While various benchmarking studies attempt to evaluate the performance of bias mitigation
methods, they often fall short, comparing what can be described as ‘apples to oranges’. This
issue arises because different bias mitigation methods can significantly vary the number of
positive instances, and by comparing them as-is, the actual situation faced by practitioners
is not taken into account. Scantamburlo et al. [2024] also argue that the ultimate decision
of an automated system is informed by the prediction model, but in nearly all cases is also
influenced by additional parameters such as quota or business rules. They make a distinction
between the prediction model and the decision-making system, and discuss how the field of
fair machine learning tends to blur the boundaries between the two concepts [Scantamburlo
et al., 2024]. Kwegyir-Aggrey et al. [2023] confirm that when deploying a classifier in the
real world, practitioners typically need to tinker with the threshold to make sure the model
predictions meet their domain-specific needs.

This is why directly comparing these methods on prediction labels as-is is not a good idea.
However, this is the current state of the art in benchmark studies of bias mitigation [Chen
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et al., 2023, Hort et al., 2023, Hufthammer et al., 2020, Reddy, 2022, Janssen and Sadowski, 2021,
Menon and Williamson, 2018]. The current metrics fall short in acknowledging the inherent
differences in the situations they compare, rendering them insufficient for determining the
superior performance of one method over another. More importantly, they fail to take into
account the constraints in positive decision rate that are faced in the real world. For example,
our results demonstrate that for the Adult Income dataset one bias mitigation method yields
a positive decision rate of 0.5% while another results in a positive decision rate of 39.3%,
whereas the actual positive rate of the dataset is 23.9%. If we compare the accuracy of these
two mitigation methods, we are comparing two entirely distinct points of the ROC curve, both
of which may be inapplicable in real-world settings. Moreover, the majority of bias mitigation
methods do not result in the satisfaction of the fairness metrics, necessitating additional
post-hoc interventions after their application.

We argue that the focus should shift to fairness within groups, and the crucial question to be
answered should be: how can we select the best individuals within each group? Machine learning
models not only return prediction labels, they also return prediction scores, which creates an
inherent ranking of instances. Given that the prediction labels from many mitigation methods
are often impractical due to their unrealistic positive decision rates and non-compliance with
the selected fairness metric, it is more logical to concentrate on the prediction scores produced
by each mitigation method. The objective should be to have prediction scores that reflect
the true target label as accurately as possible. Afterwards, post-hoc fairness methods can be
deployed to select the individuals with the highest scores within each group, aligning with
both industry constraints and fairness metrics. This separates the function of the prediction
model from the decision-making context [Scantamburlo et al., 2024]. However, note that using
distinct thresholds for different sensitive groups may be illegal in some contexts as it requires
the explicit use of the sensitive attribute in the decision-making process.1

BIAS 

MITIGATION

METHOD

Accuracy and fairness 

metrics are measured 

at one specific 

classification threshold.

Figure 7.1: The ranking within each group is shifted by most preprocessing and inprocessing
bias mitigation methods. The current state-of-the-art is to measure the accuracy
and fairness metrics at one specific classification threshold, and not taking into
account the swaps within each group.

When striving to establish the most optimal ranking, it is crucial to differentiate between pre-
and inprocessing bias mitigation methods on the one hand, and postprocessing methods on
the other. In general, only pre- and inprocessing methods will alter this ranking by either

1 This framework thus operates under the assumption of having access to the sensitive attribute(s) and the
legality of using it.
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fine-tuning the training data or incorporating fairness constraints during model training,
as this will change the prediction scores of the machine learning model. In contrast, most
postprocessing methods merely flip prediction labels based on the scores of the initial machine
learning model, without altering the inherent ranking of instances. Figure 7.1 visualizes how
the inherent ranking is shifted by pre- and inprocessing mitigation methods, emphasizing
the common practice of assessing performance and fairness metrics at a single classification
threshold. Furthermore, it underscores the tendency to overlook the impact of fairness
interventions on the rankings within each subgroup. This seemingly arbitrary reshuffling
within each group that occurs as a side effect of fair classification, is currently not studied.
In this process, certain individuals (from both the protected and the privileged group) who
were initially assigned a positive prediction label will now be labelled negatively, while some
group members that initially received a negative label will be switched to a positive one. This
reranking process is not per definition negative, as we will discuss later, but deserves more
attention.

This paper serves two purposes:

• To provide insights into the operational dynamics of bias mitigation methods and
illustrate how some methods to achieve fair classification will significantly impact the
ranking within each group, while others will not.

• To criticise the current approach of benchmarking bias mitigation methods, as it com-
pares situations that are significantly distinct and not applicable in real-world settings.
We demonstrate that the different bias mitigation methods lead to very different positive
decision rates, and argue that no distinction is made between the prediction model and
the decision-making context.

7.2 background

Before we go further, it is important to define some of the key terminology that is often
used in the fairness literature. A sensitive attribute refers to a characteristic or feature of an
individual that is considered sensitive, often with respect to potential discrimination. This can
include attributes such as race, gender, age, religion, sexual orientation, or any other factor
that could be the basis of unfair treatment. Consequently, a protected group typically refers
to the demographic group that is at risk of being unfairly treated or discriminated against
based on their sensitive attribute, while the privileged group is the demographic category that
is typically not subject to unfair treatment based on that sensitive attribute. In this paper, we
operate under the assumption of a single binary sensitive attribute, implying the existence of
a protected group and a privileged group. Fairness metrics are quantitative measures used to
assess the fairness of AI models, while fairness (or bias) mitigation strategies are techniques used
to either learn an AI model that is fair by design or modify AI models to reduce bias.

In the computer science community, a plethora of fairness metrics have been proposed [Corbett-
Davies et al., 2023]. One of the most popular approaches is the group fairness metric, which
quantifies the fairness of a machine learning model across different demographic or sen-
sitive groups, aiming to identify disparities in the outcome between these groups. One of
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the simplest and most commonly used definitions in this category is demographic parity (or
statistical parity), which states that the positive decision rate must be the same regardless
of the value of the protected attribute. In our example of hiring, this means that a model
must invite equal percentages of white and black applicants for an interview (if race is the
sensitive attribute) or of male and female applicants (if gender is the sensitive attribute). Other
commonly used metrics include equalized opportunity, which states that there should be an
equal proportion of true positives in both groups, and equalized odds, which examines whether
both the proportion of true positives and true negatives is equal across groups. Besides these,
many other fairness metrics exist, and the issue is that most of them cannot be optimized at
the same time Kleinberg et al. [2016]. Deciding upon a group fairness metric to optimize thus
means already imposing a certain world view. Another popular approach to assess fairness in
machine learning models is individual fairness, which demands that similar individuals receive
similar outcomes in a decision-making process, regardless of their group membership [Dwork
et al., 2012, Binns, 2020]. Dwork et al. [2012] argue that instead of focusing on a group, we
tend to care more about the individual. This notion is related to the contributions of this
paper, as we will also argue that satisfying group fairness metrics is not necessarily fair from
the viewpoint of the individual. A last important metric is calibration. Calibration ensures that
the predicted probability of a group of instances reflects the fraction of those individuals that
actually have a positive label [Pleiss et al., 2017]. In the context of fairness between groups, we
would like this calibration condition to hold simultaneously within these groups as well.

A common starting point for designing a fair algorithm is simply to exclude sensitive attributes
from the model, However, the limitations of this approach have been commonly addressed,
with the most fundamental limitation being the proxy problem [Prince and Schwarcz, 2019]. The
proxy problem states that the omission of sensitive attributes can lead the machine learning
model to rely on proxy variables that indirectly encode the information contained in the
sensitive attribute and hence still introduce bias into the model’s decision-making process. A
classic example of the proxy problem is the use of zip codes in the United States as a proxy for
racial information, as these two attributes tend to be heavily correlated. This has prompted
many to argue that proxies should be excluded from the dataset as well, however, this is very
difficult to operationalize [Corbett-Davies et al., 2023]. This is because every attribute used in
the machine learning model can be at least partially correlated with the sensitive attribute;
and often, even strongly correlated attributes may be considered legitimate factors on which
to base decisions (for example, education in the case of hiring) [Corbett-Davies et al., 2023].

This illustrates that creating a fair machine learning model is a tedious process. In response,
many bias mitigation methods that claim to improve fairness, have been introduced. We can
divide most of them into three categories: preprocessing, inprocessing and postprocessing.
Each category targets a different stage of the machine learning pipeline to ensure fairness.
The idea behind preprocessing methods is that they will change the representation of the
data before the machine learning model is learned, and as such neutralize any prejudiced
information that could affect the model’s decision. Inprocessing methods improve fairness
during the training process, by incorporating fairness constraints in the learning algorithm
and striving for a balance between accuracy and fairness. Postprocessing methods intervene
after the model has made its predictions, by adjusting the outcomes to satisfy fairness criteria.
We will discuss the used bias mitigation methods in more detail in the Materials and Methods
section. These bias mitigation methods focus on satisfying the aforementioned group fairness
metrics that measure disparities between groups Chen et al. [2023].
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Another research area that we should consider is the area of fair ranking. Yang and Stoy-
anovich [2017] measure whether a ranking is fair by comparing the distribution of protected
and non-protected candidates on different prefixes of the list, while Zehlike et al. [2017]
illustrates how group fairness metrics can be satisfied for different prefixes of the ranking.
Yang et al. [2019] demonstrate how adding diversity constraints to ranking algorithms can
reduce in-group fairness, a concept related to our measure of within-group fairness. However,
it is crucial to highlight the differences with this study, as we study fair classification, which
focuses on equal outcomes between groups, and which does not entail that the ranking
distribution should be fair. 2 We will show that several methods that are used for fair classi-
fication have as side effect that they change the rankings within each group, which in turn
has influence on the final prediction labels of each individual. This seemingly arbitrary
‘reshuffling’ as a consequence of fair classification is currently not studied and deserves more
attention.

7.3 materials and methods

7.3.1 Materials

We will use several real world datasets that are common in the domain of fair machine
learning [Le Quy et al., 2022]. The Adult Income dataset contains information extracted from
the 1994 census data with as target variable whether the income of a person exceeds $50,000 a
year or not. The Compas dataset includes demographic information and criminal histories of
defendants from Broward County, and is used to predict whether a defendant will re-offend
within two years. The Dutch Census dataset represents aggregated groups of people in the
Netherlands for the year 2001, and can be used to predict whether a person’s occupation can
be categorized as a high-level (prestigious) or a low-level profession [Van der Laan, 2000]. The
Law admission dataset contains a Law School Admission Council (LSAC) survey conducted
across 163 law schools in the United States in 1991 [Wightman, 1998] and can be used to
predict whether the student will pass the bar exam or not. The Student Performance dataset
describes the achievements of students in two Portuguese schools [Cortez and Silva, 2008].
The classification task is to predict whether they score above average in mathematics.

Table 7.1: Used datasets
Name # instances # attributes Protected attribute Protected group Target attribute Base rate
Adult 48,842 10 Gender Female High income 23.93%
Compas 5,278 7 Race African-American Low risk 52.16%
Dutch Census 60,420 11 Gender Female High occupation 52.39%
Law admission 20,798 11 Race Non-White Pass the bar 88.97%
Student Performance 649 29 Gender Male High score in mathematics 53.62%

2 This can be fixed by postprocessing methods, for example by using different thresholds for each group,
for the required positive decision rate. Fair ranking will be more strict, as it requires that the fairness
metrics are satisfied for different prefixes of the ranked list.
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7.3.2 Methods

7.3.2.1 Machine learning models

We train fully connected neural networks on each dataset, utilizing binary cross-entropy as
the loss metric.3 Neural networks are chosen because the implementation of one the bias
mitigation methods (Adversarial Debiasing) requires this. Although the remaining methods
are model-agnostic, we opt for consistency in our approach, employing a neural network
across all bias mitigation methods to ensure comparability in our final results.

7.3.2.2 Bias mitigation methods

Numerous debiasing strategies currently exist, but we focus on the methods available in the
AIF360 package [Bellamy et al., 2019]. For all algorithms, we use the default settings.

As preprocessing methods, we use Learning Fair Representations (LFR) and Disparate Impact
Remover (DIR). The idea behind Learning Fair Representations [Zemel et al., 2013] is that a
new representation Z is learned that removes the information correlated with the sensitive
attribute, but preserves the other information about X as much as possible. Disparate Impact
Remover [Feldman et al., 2015] modifies the training data to reduce the influence of sensitive
attributes, but preserves rank-ordering within groups.

We use the inprocessing methods of Adversarial Debiasing (ADV) and the Meta Fair Classifier
(MFC). Adversarial Debiasing [Zhang et al., 2018] combines a classifier that predicts the class
label with an adversary that predicts the sensitive attribute. The goal is to maximize the
classifier’s performance while minimizing that of the adversary. The Meta Fair Classifier [Celis
et al., 2019] takes the fairness metric as part of the input and returns a classifier optimized
with respect to that fairness metric.

As postprocessing methods, we use Equalized Odds Postprocessing (EOP), Reject Option Classi-
fication (ROC) and Threshold Optimation (TO). Equalized Odds Postprocessing [Hardt et al.,
2016] will solve a linear program to find the probabilities with which to change output labels
in order to optimize equalized odds, while Reject Option Classification [Kamiran et al., 2012]
will flip the predictions the model is not confident of.4 Threshold Optimization [Kamiran
et al., 2012] is maybe the most straightforward method of mitigating bias as it will opti-
mizes the thresholds for both groups in isolation.5 ROC and TO are implemented to enforce
Demographic Parity, while EOP enforces Equalized Odds by default.

3 We use a neural network, with one hidden layer with 200 nodes. We use 50 epochs, a batch size of 128

and the Adam optimizer. We do not perform hyperparameter tuning.
4 Reject option classification identifies instances where the model is uncertain about its prediction and

essentially ‘rejects’ making a definite decision. In this implementation, aiming to enhance fairness, the
labels of these instances are flipped to satisfy a fairness criteria.

5 For this bias mitigation method, we use the implementation available through the Fairlearn toolbox Bird
et al. [2020] as this method is not available in the AIF360 toolbox.
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7.3.3 Metrics

7.3.3.1 Performance metrics

Most benchmark studies compare the different mitigation methods on accuracy, which
measures how often the prediction label assigned by the machine learning model coincides
with the true label [Chen et al., 2023, Hort et al., 2021, Krco et al., 2023]. It is commonly
acknowledged that accuracy is not always the best metric to measure the performance of
a machine learning model, as it is for example not suitable to deal with imbalanced class
distributions (as in this case a model can obtain a high accuracy by just predicting all samples
as the majority class) [Chen et al., 2023, Mittelstadt et al., 2023]. This has led some studies to
include other metrics such as the F1-score, Precision, or Recall [Chen et al., 2023]. However,
another notable drawback of these performance metrics is that they measure the performance
at a specific classification threshold, as they use the prediction labels of the machine learning
model and not the prediction scores. We can evaluate the performance of the prediction scores
by using the Area Under the ROC Curve (AUC). 6

AUC allows for an objective comparison across classifiers, as it is unaffected by the choice
of threshold or the frequency of classes [Hand, 2009]. It measures how well the prediction
scores (and thus the ranking) of a machine learning model distinguishes between positive
and negative cases. The formula for the AUC score, where S(xi) notes the prediction score of
instance xi:

P(S(xi) > S(xz)|yi = 1, yz = 0)

This formula means that the AUC score is equivalent to the probability that a classifier
will rank a randomly chosen positive instance higher than a randomly chosen negative
instance. Provost et al. [1998] previously advocated for the adoption of AUC as a standard for
comparing classifiers in the broader field of machine learning. Despite this, its integration into
Fair Machine Learning has been limited.7 Furthermore, the specific context of Fair Machine
Learning presents additional justifications for focusing on the prediction scores generated
by machine learning models, rather than solely on their prediction labels, due to unrealistic
positive rates and the unsatisfaction of required fairness metrics. In this study, we operate
under the assumption that label bias is absent, meaning that the actual labels accurately
represent the intended prediction target [Wick et al., 2019, Favier et al., 2023, Lenders and
Calders, 2023]. Note that if label bias was present, it would compromise the validity of both
the AUC and accuracy metrics, as these measures rely on these labels for their calculations.

Lastly, we will measure the positive decision rate (or positive classification rate) on the whole
population. As mentioned earlier, this is important to be able to compare the different bias
mitigation methods. We use Y to denote the actual target label, and Ŷ to denote the predicted
label by the machine learning model. S represents the sensitive attribute, where s represents

6 Note that this ROC, which stands for Receiver Operating Characteristic is different from the Reject Option
Classification, that we also shorten as ROC.

7 One example is where Fong et al. [2021] investigate how acquiring additional features can improve the
AUC of the disadvantaged group.
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the protected group and ns the privileged group. The formula for the Positive Decision Rate
(PDR):

P(Ŷ = 1)

7.3.3.2 Fairness metrics

Many possible fairness metrics exist, but we will report two metrics that are commonly used in
the fairness domain to measure disparities between groups: Demographic parity (or statistical
parity) states that the positive decision rate must be approximately the same in the protected
group as in the privileged group. Statistical Parity Difference measures the difference in this
positive decision rate between both groups. The formula for the Statistical Parity Difference
(SPD):

P(Ŷ = 1|S = s)− P(Ŷ = 1|S = ns)

Equalized opportunity requires the true positive rate to be approximately the same across
groups. The formula for Equal Opportunity Difference (EOD):

P(Ŷ = 1|S = s, Y = 1)− P(Ŷ = 1|S = ns, Y = 1)

Larger values of these metrics correspond to a higher level of bias towards one of the sensitive
groups [Hort et al., 2021].

7.3.3.3 Rank correlation

We can measure the correlation between two ranked lists by using the Kendall Tau metric,
denoted as τ. This metric measures the similarity between the orderings of two lists by
quantifying the number of pairwise disagreements between them.

The formula for the Kendall Tau coefficient (τ) is defined as:

number of concordant pairs− number of discordant pairs
number of pairs

A concordant pair refers to a pair of observations where the order of the ranks is the same
between both lists, while a discordant pair refers to a pair of observations where the order
of the ranks is reversed between the two lists. A τ value of 1 indicates perfect agreement
between two rankings, whereas a value of -1 indicates perfect disagreement. Values closer
to zero suggest little to no correlation, implying a lack of consistency in the ranking order
between the two groups being compared.
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7.4 results

7.4.1 Whom do the bias mitigation strategies affect?

The lack of transparency in the field of fair machine learning has been acknowledged in
literature [Rudin et al., 2020, Wachter et al., 2021, Goethals et al., 2023b], while some have
already specifically criticized the opacity in the exact effects of the different bias mitigation
methods [Krco et al., 2023, Favier et al., 2023, Holstein et al., 2019]. We aim to shed light on
the operational dynamics of the different bias mitigation methods, by comparing the score
distributions after deploying each bias mitigation method with the score distributions of the
initial machine learning model. We illustrate the prediction scores from the initial ML model
on the x-axis and the scores post-application of various bias mitigation methods on the y-axis.
Additionally, we categorize the instances based on their affiliation with either the protected
group (represented in dark blue) or the privileged group (represented in light blue). The chart
is divided into four quadrants, each depicting the classification of instances as either positive
or negative by the initial ML model and by each bias mitigation method.8 We also include
a diagonal line that would contain all the instances, if the prediction scores would remain
identical. The presented results in Figure 7.2 are calculated using the Compas dataset. The
figures for the other datasets can be found in the Appendix (Figures C.6, C.7, C.8 and C.9),
with the results being consistent to the results of the Compas dataset.

Insights into the operational dynamics of each bias mitigation method

In Figure 7.2a, we observe the prediction scores of the initial ML model. By default, machine
learning models use a classification threshold of 0.5, categorizing instances above this threshold
as positive and those below it as negative. This behavior remains consistent for both the
protected and privileged group.

In Figures 7.2b-7.2e, we can assess the relation between the prediction scores of the initial ML
model and the prediction scores after applying preprocessing (LFR and DIR) or inprocessing
(ADV and MFC) bias mitigation methods. Figure 7.2b reveals that LFR significantly alters the
prediction scores, in a seemingly random way. Instances that receive a positive label post-LFR
are notably different from those in the initial score ranking. This suggests a substantial
transformation in the feature space due to the preprocessing method. We will assess how this
affects the performance and fairness metrics in Table 7.3. As shown in Figures 7.2c, 7.2d, and
7.2e, the methods DIR, ADV, and MFC also introduce significant alterations to the prediction
scores, and thus the inherent ranking of instances. However, the altered prediction scores
align more closely with the initial prediction scores compared to those obtained using LFR.

Figure 7.2 also provides us with insights into the fundamental distinction among various
bias mitigation methods—specifically, whether they impact the prediction scores or only the

8 Note that we use the custom threshold of 0.5 here to generate the labels, based on the prediction scores.
However, as argued by Scantamburlo et al. [2024], this does not take into account the real constraints of
decision-making context.
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(a) ML model (b) Preprocessing (c) Preprocessing

(d) Inprocessing (e) Inprocessing

(f) Postprocessing (g) Postprocessing (h) Postprocessing

Figure 7.2: Score distributions for the Compas dataset. The x-axis represents the prediction
scores of the initial ML model, while the y-axis represents the prediction score
after applying each bias mitigation method. The second quadrant represents the
instances that are ‘upgraded’ by the bias mitigation method (initially predicted as
negative, and after using the bias mitigation method predicted as positive), while
the fourth quadrant represents the instances that are ‘downgraded’ by the bias
mitigation method (initially predicted as positive, and after the bias mitigation
method predicted as negative).

prediction labels. Unlike preprocessing and inprocessing methods, the used postprocessing
methods do not alter the inherent ranking; instead, they adjust labels based on the prediction
scores of the initial machine learning model. Each method implements a unique strategy for
label flipping, all with the objective of meeting specified fairness metrics. For instance, ROC
(Figure 7.2f) targets the most uncertain instances for label flipping, TO (Figure 7.2h) establishes
distinct thresholds for each group, while EOP (Figure 7.2g) determines the ideal quantity of
labels to flip within each group and executes these flips randomly. In the scenarios of ROC
and TO, group-specific new thresholds are determined (as illustrated in Figures 7.2f and
7.2h). Regarding EOP, label flipping occurs randomly among negatively classified individuals
in the protected group and positively classified individuals in the privileged group (as shown
in green and red in Figure 7.2g). In this case, the initial ranking impacts the initial labels, but
will have no influence on the decision regarding which labels are flipped.
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Our examination provides insights into the specific instances affected by each bias mitigation
method, in response to the work of Krco et al. [2023]. Take, for instance, the case of ROC: the
instances that are flipped from a negative classification to a positive classification, are those
instances that were initially classified as negative but that posses the highest prediction score
according to the initial machine learning model.

How similar are the score distributions?

Table 7.2: Table with the similarity between the initial ranking produced by the machine
learning model and the ranking produced by the model after using a bias mitigation
method, measured by the Kendall-Tau statistic. The values between brackets present
the similarity in ranking for the protected group and privileged group respectively.

Dataset LFR DIR ADV MFC ROC-EOP-TO

Adult
0.318

(0.002, 0.034)
0.770

(0.726, 0.761)
0.729

(0.780,0.812)
0.638

(0.640, 0.663)
1

Compas
0.408

(0.153,0.534)
0.917

(0.883, 0.960)
0.805

(0.926, 0.946)
0.909

(0.900, 0.935)
1

Dutch
0.361

(-0.007, 0-0.004)
0.992

(0.991, 0.991)
0.808

(0.812, 0.913)
0.819

(0.850, 0.786)
1

Law
0.570

(0.622, 0.523)
0.870

(0.882, 0.858)
0.908

(0.896, 0.907)
-0.758

(-0.872, -0.737)
1

Student
0.215

(0.248, 0.216)
0.890

(0.891, 0.891)
0.515

(0.731, 0.678)
0.775

(0.843, 0.794)
1

Instead of visualizing how the prediction scores of the initial ML relate to the prediction
scores after each bias mitigation method, we can also calculate the overlap between the two
rankings by utilizing the Kendall-Tau statistic [Kendall, 1948]. The outcomes are presented
in Table 7.2. Table 7.2 illustrates that the ranking produced by LFR consistently presents
the least similarity with the ranking produced by the initial machine learning model. In
contrast, the use of DIR leads to a significantly higher degree of overlap in rankings across
all datasets. The similarity in rankings when applying ADV and MFC falls into a more
moderate category. These observations highlight the varying degrees of impact each method
exerts on the prediction scores and thus the ranking of individuals. With postprocessing
methods, the ranking remains identical to the ranking of the initial model, resulting in a
ranking similarity of 1 (refer to Table 7.2), and the AUC remains consistent with the initial
model (see Table 7.3). Our analysis reveals that across all datasets, the prediction scores
and consequently the intrinsic rankings are substantially modified by every preprocessing
and inprocessing bias mitigation method we evaluated.9 While such modifications are not
necessarily worrisome, it is crucial to assess whether they enhance or worsen the ranking, and

9 We see that in one case (MFC for the Law dataset), the scores are even completely shuffled in the opposite
way, which shows how random some of the effects can be.
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to what extent. It also does not feel fair from the viewpoint of the individual that they are
suddenly downweighted by a random intervention. 10

7.4.2 Can we compare the bias mitigation methods?

Table 7.3: Results of the bias mitigation strategies on the five datasets. We report: the AUC
score overall, and split over the protected group and the privileged group, the
accuracy (ACC), statical parity difference (SPD), equal opportunity difference (EOD)
and the positive decision rate (PDR). Best values are highlighted in bold.

Dataset Metric ML model LFR DIR ADV MFC ROC EOP TO

Adult AUC 0.843 0.623 0.85 0.847 0.826 0.843 0.843 0.843

AUCpro, AUCpri
0.811, 0.826 0.501, 0.508 0.824, 0.835 0.834, 0.843 0.789, 0.816 0.811, 0.826 0.811, 0.826 0.811, 0.826

ACC 0.806 0.766 0.825 0.82 0.81 0.728 0.77 0.793

SPD -0.26 -0.005 -0.164 -0.09 -0.139 -0.055 -0.046 -0.005
EOD -0.139 0.0 -0.181 -0.274 -0.278 -0.332 -0.283 -0.368

PDR 0.247 0.005 0.174 0.161 0.178 0.393 0.151 0.167

Compas AUC 0.834 0.693 0.833 0.808 0.832 0.834 0.834 0.834

AUCpro, AUCpri 0.814, 0.821 0.588, 0.703 0.81, 0.823 0.809, 0.815 0.812, 0.821 0.814, 0.821 0.814, 0.821 0.814, 0.821

ACC 0.758 0.645 0.753 0.737 0.736 0.732 0.683 0.727

SPD -0.376 -0.866 -0.332 -0.064 -0.211 -0.031 -0.07 0.014
EOD -0.13 -0.055 -0.131 -0.231 -0.175 -0.233 -0.25 -0.262

PDR 0.518 0.49 0.617 0.58 0.696 0.528 0.545 0.569

Dutch AUC 0.887 0.657 0.887 0.874 0.883 0.887 0.887 0.887

AUCpro, AUCpri
0.884, 0.848 0.499, 0.498 0.884, 0.849 0.881, 0.847 0.89, 0.852 0.884, 0.848 0.884, 0.848 0.884, 0.848

ACC 0.812 0.476 0.786 0.768 0.695 0.776 0.754 0.763

SPD -0.318 0.0 -0.432 -0.171 -0.394 -0.066 -0.159 -0.02

EOD -0.026 -0.315 -0.047 -0.073 -0.024 -0.217 -0.243 -0.254

PDR 0.416 1.0 0.586 0.303 0.203 0.395 0.45 0.396

Law AUC 0.882 0.83 0.883 0.879 0.122 0.882 0.882 0.882

AUCpro, AUCpri
0.848, 0.864 0.803, 0.792 0.853, 0.864 0.843, 0.862 0.146, 0.142 0.848, 0.864 0.848, 0.864 0.848, 0.864

ACC 0.903 0.897 0.903 0.901 0.22 0.772 0.879 0.892

SPD -0.197 -0.207 -0.184 -0.141 0.494 -0.044 -0.021 -0.002
EOD -0.111 -0.128 -0.122 -0.143 -0.151 -0.104 -0.197 -0.21

PDR 0.954 0.967 0.961 0.965 0.289 0.711 0.961 0.979

Student AUC 0.803 0.693 0.817 0.772 0.762 0.803 0.803 0.803

AUCpro, AUCpri 0.819, 0.788 0.689, 0.642 0.819, 0.814 0.757, 0.779 0.781, 0.794 0.819, 0.788 0.819, 0.788 0.819, 0.788

ACC 0.759 0.626 0.759 0.703 0.738 0.697 0.728 0.728

SPD -0.104 -0.72 -0.065 -0.573 0.031 0.076 -0.016 0.071

EOD -0.166 -0.063 -0.202 0.027 -0.283 -0.191 -0.205 -0.246

PDR 0.585 0.697 0.574 0.662 0.677 0.492 0.595 0.605

We present the results of the performance and fairness metrics for all bias mitigation methods
across five datasets in Table 7.3. Aligning with existing literature, we observe that fairness
metrics such as SPD and EOD often yield conflicting results [Kleinberg et al., 2016]. It is
rarely the same method that returns the best results for both metrics. Furthermore, no single
method consistently outperforms all others for one of the metrics. However, DIR stands out
for its excellent AUC performance, aligning with its design to preserve rank-ordering within
groups [Feldman et al., 2015].

10 So far, we emphasized that only preprocessing and inprocessing methods suffer from this reranking
process. However, the postprocessing method EOP also significantly suffers from this arbitrariness, as
it will execute random flips within each group until a fairness metric is satisfied. This means that the
impacted individuals can be different in each run, and can be individuals with a very high prediction
score can be ‘downweighted’ and individuals with a very low prediction score can be ‘uplifted’ (as the
prediction scores are not taken into account to determine who should be flipped).
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Can we use the prediction labels to compare the methods?

When comparing bias mitigation methods, conventional benchmarking studies often focus
on accuracy and fairness [Chen et al., 2023, Zemel et al., 2013]. However, relying solely on
accuracy, which uses prediction labels at a specific threshold, may lead to inappropriate
comparisons. As mentioned, there are two reasons why using the prediction labels is not
a suitable approach: First of all, the fairness metrics are not yet satisfied, and secondly,
different mitigation methods can result in varying positive rates. Both reasons would lead
to an additional altering of the prediction labels post-hoc, so comparing them at this stage
does not seem sensible. A more comprehensive approach involves assessing the performance
of the prediction scores, or comparing the prediction labels when the thresholds have been
modified to address both industry constraints and fairness considerations.

Addressing the first concern, we see that in the large majority of cases, bias mitigation methods
fail to satisfy a fairness metric, which is confirmed in literature [Chen et al., 2023]. Particularly,
only postprocessing strategies tend to show a high success rate in achieving the optimized
fairness metric, in contrast to the preprocessing and inprocessing methods. As highlighted
in other benchmark studies [Chen et al., 2023], we also note that employing bias mitigation
methods can even lead to situations that are more unfair in terms of disparities between
groups.

Regarding the second concern, Table 7.3 reveals significant positive decision rate disparities
among different strategies. This inconsistency poses challenges in real-world applications,
where a fixed or reasonably bounded positive decision rate is typically expected [Kwegyir-
Aggrey et al., 2023]. For example, when attempting to satisfy one of the fairness metrics,
practitioners might consider LFR in the Adult Income dataset, despite a slight accuracy loss.
However, this choice results in an unexpectedly low positive decision rate (0.5%), deviating
significantly from other methods. This method just predicts almost every instance as negative,
which results in a satisfaction of the fairness metrics, but is not realistic in the real-word.
Similarly, for the Dutch dataset, MFC leads to the best value for EOD, but it only has a positive
decision rate of 20.3%, while the initial model has a positive decision rate of 41.6%. DIR leads
to the best AUC, but has a positive decision rate of 58.6%. We argue against treating methods
with significantly different positive decision rates as comparable situations. In practice, most
real-world applications will have a relatively fixed positive decision rate, and bias mitigation
methods must be adapted accordingly.

Evaluate by using the prediction scores

Both these concerns can effectively be addressed by adjusting the classification threshold(s) of
the predictive model. Consequently, it makes more sense to evaluate these mitigation methods
based on their prediction scores, rather than on their prediction labels, which are still subject
to change. We advocate to compare these mitigation methods based on the AUC score, to
assess how well the individuals are ranked within each group, and to generate the prediction
labels post-hoc, based on the chosen fairness metric and practical constraints.
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It is important not only to examine the overall AUC score across the entire population, but
also the AUC scores disaggregated by different groups. Certain bias mitigation methods
may yield the optimal ranking for one group but not for another. This prompts the need
for decision-making: should preference be given to the overall best ranking or to narrowing
the gap in rankings between the protected and privileged groups? Alternatively, deploying
two separate models could be considered to ensure the best ranking for each subgroup.
Given these results, one should evaluate whether a slight improvement in AUC justifies the
adoption of distinct models. Additionally, note that for both the Adult and the Dutch datasets,
the LFR method reduces the within-group ranking to an essentially random ordering. In
any scenario, deploying a bias mitigation method that decreases the AUC score for every
subgroup seems counterproductive when we want to optimize for both performance and
fairness.11 Unfortunately, this is a common outcome in practice, as many bias mitigation
methods may compromise AUC scores across subgroups in an attempt to adhere to a fairness
metric [Mittelstadt et al., 2023].

Note that the goal of this comparison is not to declare the superior performance of one of the
mitigation methods. For this, a more comprehensive benchmark study is needed with a larger
number of datasets, machine learning models, and extensive tuning of each bias mitigation
method. This was already the goal of multiple other benchmark studies [Chen et al., 2023,
Hort et al., 2021, Reddy, 2022]. Our primary goal was to emphasize the inadequacy of the
current way of benchmarking these methods with each other, based on prediction labels that
should still be subject to change, and to highlight the effects within each group.

7.5 discussion

In this study we want to emphasize two points. First, that bias mitigation methods not only
introduce significant changes between-groups but also within-groups and that these changes
currently go unnoticed. This reranking process is not necessarily an issue, but deserves more
attention. Secondly, we argue that the current approach to comparing bias mitigation methods
is insufficient due to the sole focus on the output of the prediction model without taking
into account the decision-making system [Scantamburlo et al., 2024]. This will lead to a
comparison of disparate scenarios, as we see that the positive decision rate varies widely.

Regarding the first point, is this reranking process necessarily a bad thing? We notice in
Table 7.3 that the bias mitigation methods can result in better, worse or approximately the
same ranking accuracy (measured by the AUC) as the initial machine learning model. If the
ranking improves after using the bias mitigation method, there is no issue, as the method
will lead to better rankings that should also be more fair. But what if the ranking accuracy is
significantly worse than the the output of the initial machine learning model? Is this always
undesirable? Not per se. Up until this point, and in accordance with most papers in fair
machine learning, we assumed that we only want to remove bias between groups. However,
some of this bias might also seep in the ranking within each group, for example by favoring
individuals from the protected group that resemble individuals from the privileged group. If
we assume this within-group bias is also present and unwanted, the produced rankings of the

11 Note that we operate under the assumption that there is no label bias.

111



reranking individuals

mitigation methods might be worse with respect to the target label, but better in avoiding this
within-group bias.

If we assume that there is no within-group bias, we propose that for the dual objectives
of fairness and accuracy optimization, preprocessing and inprocessing mitigation methods
should be adopted only if they improve subgroup rankings. Should they fail to do so, we posit
that utilizing the ranking produced by the original machine learning model and then applying
fairness interventions post-hoc may be a more effective strategy. However, this practice is
not always possible, as this can lead to situations where two otherwise identical entities are
treated differently based solely on a sensitive attribute, a practice that may be unlawful in
certain contexts. Furthermore, we can not always assume that the decision-making body has
access to the sensitive attribute, and thus is able to do these fairness interventions post-hoc. In
those settings, it might be better to use preprocessing or inprocessing bias mitigation methods,
even if they worsen this trade-off.

What if the performance of the ranking stays approximately the same, but the ranking itself
will be significantly different from the ranking of the initial machine learning model (as
measured in Table 7.2)? Is this arbitrariness a problem? The opinions on this differ. The
literature on ‘predictive multiplicity’ [Marx et al., 2020] or ‘model multiplicity’ [Black et al.,
2022] discusses the situation where there exist many possible models with similar predictive
performance but slightly different decisions on individuals, which is comparable to our
situation. They argue that multiplicity should be reduced by removing some of the variance
that leads to diverging predictions [Cooper et al., 2023], while Jain et al. [2024] highlight how
fairly allocating scarce resources using machine learning could benefit from randomness. As
we can see, there is no easy answer to this question, and we look forward to more debate
about this topic.

A first limitation of our study is the assumption of no label bias. This leads us to quite a
straddle, which is common in fair machine learning. On the one hand, we presume that our
labels are correct to ensure the reliability of our metrics. On the other hand, we recognize that
models might need adjustments to correct for bias. This make sense for equal opportunity,
where the goal is to ensure that all groups have equal true positive rates, thus requiring a
classifier that does not make the situation worse. For demographic parity, the issue is more
complex: why would we want to deviate from the labels if they are correct? Nonetheless,
adjustments may be necessary to align with external policy or legal requirements.

A second limitation of our study is that it operates under the assumption of having access to
a static sensitive attribute, and it will face difficulties in scenarios where these assumptions
may not hold. For instance, the assumption of the sensitive attribute being static overlooks
the evolving nature of certain attributes, such as gender, where people can identify as
other categories over time. Another limitation arises when considering the assumption of
unrestricted access to the sensitive attribute. In reality, legal and ethical considerations may
impose constraints on obtaining or utilizing certain sensitive information [Haeri and Zweig,
2020, Veale and Binns, 2017, Johnson, 2021, Holstein et al., 2019]. For instance, privacy laws
and regulations may restrict the collection or use of specific attributes, further complicating
research in fairness.
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8
The Privacy Issue of Counterfactual Explanations

Black-box machine learning models are used in an increasing number of high-stakes domains,
and this creates a growing need for Explainable AI (XAI). However, the use of XAI in machine
learning introduces privacy risks, which currently remain largely unnoticed. Therefore,
we explore the possibility of an explanation linkage attack, which can occur when deploying
instance-based strategies to find counterfactual explanations. To counter such an attack,
we propose k-anonymous counterfactual explanations and introduce pureness as a metric to
evaluate the validity of these k-anonymous counterfactual explanations. Our results show that
making the explanations, rather than the whole dataset, k-anonymous, is beneficial for the
quality of the explanations.



the privacy issue of counterfactual explanations

8.1 introduction

Black-box models are used for decisions in more and more high-stakes domains such as
finance, healthcare and justice, increasing the need to explain these decisions and to make
sure that they are aligned with how we want the decisions to be made [Molnar, 2020, Goethals
et al., 2022]. As a result, the interest in interpretability methods for machine learning and
the development of various techniques has soared [Molnar, 2020]. At the moment, however,
there is no consensus on which technique is best for which specific use case. Within the field
of Explainable AI (XAI), we focus on a popular local explanation technique: counterfactual
explanations [Martens and Provost, 2014, Wachter et al., 2017b].

Counterfactual explanations, which are used to explain predictions of individual instances, are
defined as a change to the feature values of an instance that alters its prediction [Martens and
Provost, 2014, Molnar, 2020].1 Factual instances are the original instances that are explained and
the counterfactual instance is the original instance with the updated values from the explanation.
An example of a factual instance, counterfactual instance and counterfactual explanation for a
credit scoring context can be seen in Figure 8.1. Lisa is the factual instance here, whose credit
gets rejected. Fiona, a nearby instance in the training set whose credit was accepted, is selected
as counterfactual instance by the algorithm and based on Fiona, Lisa receives a counterfactual
explanation that states which features to change to receive a positive credit decision. These
explanations can serve multiple objectives: they can be used for model debugging by data
scientists or model experts or to justify decisions to end users [Aı̈vodji et al., 2020, Molnar,
2020, Martens, 2022]. For a complete overview of potential objectives of counterfactual
explanations, we refer you to Section 3.2.3. We will start from the set-up where we assume
the counterfactual explanations are used to give actionable recourse. However, other use cases
of counterfactual explanations (model debugging, fairness audits, ..) can also lead to privacy
issues.

Note that in this set-up, we assume the counterfactual explanations are used to give actionable
recourse. However, the use cases of counterfactual explanations are a lot broader as they can
also be used to gain general insights into the model, model debugging, fairness audits, etc. I
refer to Section 3.2 for a complete overview. Note however that in a lot of these settings, the
explanations go to the model owners and not to external parties. We see the setting where the
explanations are given to external parties as the ones with the highest privacy risk.

Factual instance
Identifier Quasi-Identifiers Private attributes Model prediction
Name Age Gender City Salary Relationship status Credit decision
Lisa 21 F Brussels $50K Single Reject

Counterfactual explanation=
If you would be three years older, lived in Antwerp
and your income would be $10K higher, you would have
received a positive credit decision

1 Depending on the used objective function, counterfactual explanations can be generated to optimize for
diversity, proximity, plausibility, actionability, sparsity,... [Verma et al., 2020]. The different optimization
emtrics will result in different counterfactual explanations.
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Counterfactual instance
Identifier Quasi-Identifiers Private attributes Model prediction
Name Age Gender City Salary Relationship status Credit decision
Fiona 24 F Antwerp $60K Single Accept

Figure 8.1: Example of a counterfactual explanation

At the same time, there is a growing concern about the potential privacy risks of machine
learning [Liu et al., 2021]. Privacy is recognized as a human right and defined by Oxford
Dictionary as “a state of being free from the attention of the public”.2 In a privacy attack, the
goal of an adversary is to gain knowledge that was not intended to be shared [Liu et al.,
2021, Rigaki and Garcia, 2023]. Different kinds of privacy attacks exist: both the training
data, where the adversary tries to infer membership in a membership inference attack or specific
attributes of an input sample in an attribute inference attack, as well as the model, in a model
extraction attack, can be the target [Fredrikson et al., 2015, Rigaki and Garcia, 2023, Liu et al.,
2022]. These attacks are described in more detail in Section 3.4.

Unfortunately, there exists an inherent tension between explainability and privacy as the usage
of Explainable AI can increase these privacy risks [Aı̈vodji et al., 2020]: model explanations
offer users information about how the model made a decision about their data instance.
Consequently, they leak information about the model and the data instances that were used
to train the model. Earlier research already shows that explanations can provide ground
for membership inference attacks, where is determined whether a given instance is part
of the training data, [Naretto et al., 2022, Shokri et al., 2020, Quan et al., 2022, Pawelczyk
et al., 2023] and model extraction attacks, where information about the functionality of the
model is collected through query access [Aı̈vodji et al., 2020, Quan et al., 2022]. In this
paper, we introduce a new kind of privacy attack based on counterfactual explanations and
we call this an explanation linkage attack. A linkage attack attempts to identify anonymized
individuals by combining the data with background information. An explanation linkage
attack attempts to link the counterfactual explanation with background information to identify
the counterfactual instance. We illustrate an example of an explanation linkage attack in
Section 8.2. Unfortunately, the introduction of these attacks indicates that an attempt to make
an AI system safer by making it more transparent can have the opposite effect [Sokol and
Flach, 2019]. Other researchers [Shokri et al., 2019, Budig et al., 2021, Patel et al., 2022] also
confirm the trade-off between privacy and explainability and emphasize that assessing this
trade-off for minority groups is an important direction for future research [Patel et al., 2022].

Our contributions are as follows:

• We introduce a new kind of privacy attack, the explanation linkage attack, that are based
on real instances.

• As a solution for this problem, we propose k-anonymous counterfactual explanations
and develop an algorithm to generate these.

2 https://www.oxfordlearnersdictionaries.com/definition/american english/privacy
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• We evaluate how k-anonymizing the counterfactual explanations influences the quality
of these explanations, and introduce pureness as a new metric to evaluate the validity of
these explanations.

• We show the trade-off between transparency, fairness and privacy when using k-anonymous
explanations: when we add more privacy constraints, the quality of the explanations
and therefore the transparency decreases. This effect on the explanation quality is larger
for minority groups, as they tend to be harder to anonymize, and this can have an
impact on fairness.

8.2 problem statement : explanation linkage attacks

We introduce the privacy problem of counterfactual explanations that are based on real
instances, and illustrate this problem by using a simple toy dataset. This dataset con-
tains individuals that are described by a set of identifiers, quasi-identifiers and private
attributes [Sweeney, 2002b]. Identifiers are attributes such as name, phone or social security
number and need to be suppressed in any case as they often do not have predictive value
and can uniquely identify a person. Quasi-identifiers are attributes such as age, zip code
or gender that can hold some predictive value. They are assumed to be public information;
however, even though they cannot uniquely identify a person, their combination might. It
has been shown that 87% of US citizens can be re-identified by the combination of their zip
code, gender and date of birth [Sweeney, 2000]. Private attributes are attributes that are not
publicly known, and are meant to be kept confidential.

Let us briefly discuss the set-up of this attack: We assume that the adversary has access to the
identifiers and quasi-identifiers of everyone in the the dataset. 3 In line with the literature,
we look at the following two re-identification scenarios for a single individual [El Emam and
Dankar, 2008, Elliot and Dale, 1999, Marsh et al., 1991]:

• Re-identification of a specific individual (prosecutor re-identification scenario): The ad-
versary (e.g., a prosecutor) knows that a specific individual is part of the dataset, and
wants to infer its private information.

• Re-identification of an arbitrary individual (journal re-identification scenario). The adver-
sary (e.g., a journalist) does not care which individual is being re-identified but only
wants to prove that it can be done.

If the attacker wants to execute one of the scenarios above and gets access to the private
attributes of a user in the dataset, a possible avenue to achieve this is by asking for counter-
factual explanations. The counterfactual explanation will never contain identifiers but if it
contains a combination of quasi-identifiers that can uniquely identify a person, the attacker
can deduce the person’s private attributes. We name this kind of attack an explanation linkage
attack.

3 People’s quasi-identifiers are often rather easy to be obtained by the public as lists like voter records are
publicly available [Sweeney, 2000, Machanavajjhala et al., 2007].
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Assume the following factual instance Lisa in Table 8.1:

Table 8.1: Factual instance Lisa
Identifier Quasi-identifiers Private attributes Model prediction
Name Age Gender City Salary Relationship status Credit decision
Lisa 21 F Brussels $50K Single Reject

Name is the identifier that is deleted from the dataset, but, as mentioned, people can often
still be identified by their unique combination of quasi-identifiers. Age, Gender and City
are the quasi-identifiers in this dataset that are assumed to be public knowledge for every
adversary. A possible reasoning behind this, is that the adversary acquired access to a voter
registration list as in Sweeney [2000]. Salary and Relationship are private attributes that one
does not want to be public information, and the target attribute in this dataset is whether the
individual will be awarded credit or not. Lisa is predicted by the machine learning model as
not creditworthy and her credit gets rejected. Logically, Lisa wants to know the easiest way to
get her credit application accepted, so she asks for a counterfactual explanation, the smallest
change to her feature values that result in a different prediction outcome.

Table 8.2: Training set
Identifier Quasi-identifiers Private attributes Model prediction
Name Age Gender City Salary Relationship status Credit decision
Alfred 25 M Brussels $50K Single Reject
Boris 23 M Antwerp $40K Separated Reject
Casper 34 M Brussels $30K Cohabiting Reject
Derek 47 M Antwerp $100K Married Accept
Edward 70 M Brussels $90K Single Accept
Fiona 24 F Antwerp $60K Single Accept
Gina 27 F Antwerp $80K Married Accept
Hilda 38 F Brussels $60K Widowed Reject
Ingrid 26 F Antwerp $60K Single Reject
Jade 50 F Brussels $100K Married Accept

In our set-up, the counterfactual algorithm looks for the instance in the training set that
is nearest to Lisa and has a different prediction outcome (the nearest unlike neighbor). The
training set, with the nearest unlike neighbor highlighted, is shown in Table 8.2. Fiona has
similar attribute values as Lisa, but is 24 years old instead of 21, lives in Antwerp instead of
Brussels and earns $60K instead of $50K. When Fiona is used as counterfactual instance by
the explanation algorithm, Lisa would receive the explanation: ‘If you would be 3 years older,
lived in Antwerp and your income was $10K higher, then you would have received the loan’. Based
on her combined knowledge of the explanation and her own attributes, Lisa can now deduce
that Fiona is the counterfactual instance, as there is only one person in this dataset with this
combination of quasi-identifiers (a 24-year old woman living in Antwerp). Therefore, Lisa can
deduce the private attributes of Fiona, namely Fiona’s income and relationship status, which is
undesirable.
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Obviously, this is just a toy example, but we envision many real-world settings where this
situation could occur. For instance, when end users receive a negative decision, made by a
high-risk AI system: these systems are defined by the EU’s AI Act, which categorizes the risk of
AI systems usage into four levels [European Commission, 2021]. Among others, they include
employment, educational training, law enforcement, migration and essential public services
such as credit scoring. Article 13(1) states: “High-risk AI systems shall be designed and developed
in such a way to ensure that their operation is sufficiently transparent to enable users to interpret
the system’s output and use it appropriately.” These systems are therefore obliged to provide
some form of transparency and guidance to its users, which could be done by providing
counterfactual explanations or any other transparency technique. Most of these settings use
private attributes as input for their decisions, so it is important to make sure that the used
transparency techniques do not reveal private information about other decision subjects. For
example, in decisions about educational training or employment, someone’s grades could be
revealed, or in credit scoring, the income of other decision subjects could be disclosed.

This privacy risk occurs when the counterfactual algorithm uses instance-based strategies to
find the counterfactual explanations. These counterfactuals correspond to the nearest unlike
neighbor and are also called native counterfactuals [Brughmans et al., 2023a, Keane and Smyth,
2020]. Other counterfactual algorithms use perturbation where synthetic counterfactuals
are generated by perturbing the factual instance and labelling it with the machine learning
model, without reference to known cases in the training set [Keane and Smyth, 2020]. We
focus on counterfactual algorithms that return real instances: several algorithms do this,
as this substantially decreases the run time while also increasing desirable properties of
the explanations such as plausibility [Brughmans et al., 2023a]. Plausibility measures how
realistic the counterfactual explanation is with respect to the data manifold, which is a
desirable property. Guidotti [2022], and Brughmans et al. [2023a] show that the techniques
resulting in an actual instance have the best plausibility results. Furthermore, it is argued that
counterfactual instances that are plausible, are more robust and therefore are less vulnerable to
the uncertainty of the classification model or changes over time [Artelt et al., 2021, Brughmans
et al., 2023a, Pawelczyk et al., 2020]. This shows that for some use cases it can be very
useful to use real data points as counterfactuals instead of synthetic ones as for the latter
the risk of generating implausible counterfactual explanations can be quite high [Laugel
et al., 2019]. Algorithms that use these native counterfactual explanations include NICE
(without optimization setting) [Brughmans et al., 2023a], the WIT tool with NNCE [Wexler
et al., 2019], FACE [Poyiadzi et al., 2020] and certain settings of CBR [Keane and Smyth,
2020]. Perturbation-based counterfactual algorithms experience different privacy risks such
as membership inference attacks: Pawelczyk et al. [2023] use counterfactual distance-based
attacks which leverage algorithmic recourse to determine if an instance belongs to the training
data of the underlying model or not. We envisage a different scenario, where the adversary
knows which instances are in the training data, but wants to gain access to its private
attributes. It is worth emphasizing that some perturbation-based counterfactual algorithms
could still have some vulnerability to explanation linkage attacks, although arguably less likely
than native counterfactuals. Some perturbation algorithms (such as NICE with optimization
settings) start from a real counterfactual instance in the dataset, and it is possible they will
return the real instance without perturbations. In many cases, the instance will only be slightly
perturbed, so that an ingenious adversary can still have high confidence about the private
attribute values of the counterfactual instances. Even when the counterfactual algorithm
does not start from a real instance, but uses plausibility with respect to the data manifold
to generate its explanations, the explanation algorithm could still return a (or seemingly)
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real instance. Our algorithm could also offer protection in those cases, by ensuring that the
returned instance is at least k-anonymous.

8.3 proposed solution

As a solution, we propose to make the counterfactual explanations k-anonymous. k-anonymity
is a property that captures the protection of released data against possible re-identification by
stating that the released data should be indistinguishable between k data subjects [Van Tilborg
and Jajodia, 2014].

8.3.1 What is k-anonymity?

Before k-anonymity was introduced, data that looked anonymous was often freely shared after
removing explicit identifiers such as name and address, incorrectly believing that individuals
in those datasets could not be identified. Contrary to these beliefs, we have seen that people
can often be identified through their unique combination of quasi-identifiers.

Consider a database that holds private information about individuals, where each individual
is described by a set of identifiers, quasi-identifiers, and private attributes. k-anonymity
characterises the degree of privacy, where the information for each person in the dataset
cannot be distinguished from at least k− 1 other individuals whose information was also
released [Sweeney, 2002a]. A group of individuals that cannot be distinguished from each
other and thus have the same values of quasi-identifiers are named an equivalence class.

Usually k-anonymity is applied on the whole dataset: the quasi-identifiers of the data records
are suppressed or generalised in such a way that one record is not distinguishable from at
least k− 1 other data records in that dataset [Meyerson and Williams, 2004]. In this way, the
privacy of individuals is protected to some extent by “hiding in the crowd” as private data can
now only be linked to a set of individuals of at least size k [Gionis and Tassa, 2008]. However,
by generalising or suppressing attribute values, the data becomes less useful, so the problem
studied is to make a dataset k-anonymous with minimal loss of information [Gionis and Tassa,
2008, Xu et al., 2006a]. We will measure the loss in information value with the Normalized
Certainty Penalty (NCP) and explain this metric in Section 8.4.

8.3.2 Application to our problem

Our application differs from the original set-up of k-anonymity as it specifically aims to
ensure anonymity in counterfactual explanations, rather than anonymizing the entire dataset.
While the original application is suitable for situations where the entire dataset is publicly

1 LeFevre et al. [2006]
2 Sweeney [2002a]
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Table 8.3: Comparison between the original problem setting of k-anonymity and our problem
setting.

k-anonymity
Dataset Counterfactual explanation

Input Dataset

Dataset
Factual instance
Counterfactual explanation
Machine learning model

Defined over Dataset Counterfactual explanation
Method Mondrian4, Datafly5,.. CF-K

Risk

Identifying instances in the dataset
based on their combination
of quasi-identifiers and inferring
their private attributes

Identifying the counterfactual instance
based on its combination
of quasi-identifiers and inferring
its private attributes

Evaluation metrics
Degree of privacy
Information loss

Degree of privacy
Information loss
Counterfactual validity

accessible. We highlight this difference in Table 8.3. A counterfactual instance is defined as
k-anonymous if the combination of quasi-identifiers can belong to at least k individuals in the
training set, and consequently, a counterfactual explanation is defined as k-anonymous if the
counterfactual instance on which it is based, has a combination of quasi-identifiers that can
belong to at least k individuals in the training set. We implement this by looking for close
neighbours of Fiona, that have similar values of quasi-identifiers, and that also have the desired
prediction outcome. In this case, the closest neighbor to Fiona that has the desired prediction
outcome is Gina, as can be seen in Table 8.2. Next, we generalise the quasi-identifiers of the
counterfactual instance so that they can belong to both the counterfactual instance and the
neighbour, resulting in a counterfactual instance that is at least 2-anonymous (see Figure 8.2.)
However, by doing so we degrade the quality of the data as we will see in Section 8.4.

The k-anonymous counterfactual explanation based on the k-anonymous counterfactual
instance in Figure 8.2 and factual instance Lisa (21, F, Brussels, $50K, Single) is: ‘If you would be
3-6 years older, lived in Antwerp and had an income of $60K, you would have received the loan’. This
explanation is 3-anonymous because the combination of quasi-identifiers in the counterfactual
instance (24-27, F, Antwerp) could point to at least three instances in the training set in
Table 8.2, namely Fiona, Gina and Ingrid.

However, the fact that other instances than the ones explicitly used to generate the k-
anonymous counterfactual explanation, might also fall in the range of the explanation,
introduces a new issue that is specific to k-anonymous counterfactual explanations. Counter-
factual explanations are defined as the smallest change to the feature values of an instance
that alter its prediction outcome, but does this still hold for k-anonymous counterfactual
explanations? We are no longer sure that all the value combinations in the k-anonymous
counterfactual instance lead to a change in the prediction outcome and therefore we are not
sure whether they are valid counterfactual explanations.

In this toy example, the value combination of Ingrid in Table 8.2 is also part of the k-anonymous
counterfactual instance, as Ingrid is between 24 and 27 years old, female, single, living in
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Counterfactual instance
Identifier Quasi-Identifiers Private attributes Model prediction
Name Age Gender City Salary Relationship status Credit decision
* 24 F Antwerp $60K Single Accept

+
Neighbor
Identifier Quasi-Identifiers Private attributes Model prediction
Name Age Gender City Salary Relationship status Credit decision
* 27 F Antwerp $80K Married Accept

K-anonymous counterfactual instance
Identifier Quasi-Identifiers Private attributes Model prediction
Name Age Gender City Salary Relationship status Credit decision
* 24-27 F Antwerp $60K Single Accept

Figure 8.2: How to generalize the counterfactual instance. As can be seen, we generalize only
the values of the quasi-identifiers. The private attributes are still the same as in the
original counterfactual instance as their attribute value is not public and therefore
cannot be used to identify someone.
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Antwerp and earning $60K. However, the model predicts Ingrids credit decision to be rejected.
A possible reasoning behind this could be because the model has learned that for higher
age groups a higher income is required to be awarded the credit (or any other pattern).
Therefore, if Lisa would follow-up the “advice” in the counterfactual explanation, it is possible
that she would end up in this value combination, which does not result in an altering of the
prediction outcome. This is problematic as this is one of the key objectives of counterfactual
explanations.

This issue leads us to a new metric: how valid is the k-anonymous counterfactual explanation?
We discuss the evaluation metrics further in Section 8.4.

8.4 evaluation metrics

We measure the quality of the explanations by using the following metrics:

• The degree of privacy is measured by k: to how many instances from the training set
can this counterfactual explanation be linked?

• The validity of the counterfactual explanations is measured by the pureness.

• The loss in information value is measured by the Normalized Certainty Penalty (NCP).

We assess how the degree of privacy influences the loss in information value and the validity
of the counterfactual explanations in Figure 8.4.

degree of privacy We measure the degree of privacy by using the definition of k-
anonymity. In our toy example, k is 3, as the generalised quasi-identifiers of the k-anonymous
counterfactual instance could belong to three people when we look at the training set in
Table 8.2 (Fiona, Gina and Ingrid). In our set-up, we will implement the degree of privacy as a
minimum constraint in the algorithm.

counterfactual validity We define a possible value combination as a combination
of attribute values that is in the range of the k-anonymous counterfactual instance. Note that
we take into account all the attributes here, not only the quasi-identifiers. For a categorical
attribute, we look at all the values present in the k-anonymous counterfactual instance. For
a numerical attribute, we look at all the values that are in the range of the k-anonymous
counterfactual instance and are also present in the training set. We illustrate these calculations
in Table 8.4. The pureness of a k-anonymous counterfactual explanation can be calculated as
follows:

Pureness =
# of value combinations with desired prediction outcome

# of value combinations
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The theoretical pureness is calculated on all the value combinations, but we will approximate
this by querying the model with 100 random combinations6 and see how many of these
combinations lead to the desired prediction outcome. The pureness is the proportion of these
value combinations that lead to the desired prediction outcome, which obviously should be
as high as possible (preferably 100%).

Table 8.4: Possible value combinations and its model predictions.
Age Gender City Salary Relationship status Model prediction
24 F Antwerp $60K Single Accept
25 F Antwerp $60K Single Accept
26 F Antwerp $60K Single Reject
27 F Antwerp $60K Single Reject

Table 8.4 shows all possible value combinations of the k-anonymous counterfactual instance,
and the prediction outcome to each value combination. The goal of the counterfactual
explanation was to alter the prediction outcome from Reject to Accept, so this is the desired
prediction outcome. The k-anonymous counterfactual explanation in our toy example leads
to the desired prediction outcome in 50% of the cases ( 2

4 ). If we sample 100 times out of the
value combinations above, we expect this to approximate the theoretical pureness of 50%.

loss in information value When datasets are made k-anonymous, they tend to
lose information. In general, excessive anonymization makes the data less useful because some
analysis is no longer possible or the analysis provides biased and incorrect results [El Emam
and Dankar, 2008].

A variety of metrics to measure information loss have been proposed, and we focus on the
metrics discussed in Ghinita et al. [2007], which are Normalized Certainty Penalty (NCP) [Xu
et al., 2006b], Discernibility metric (CD M) [Bayardo and Agrawal, 2005] and the classification
metric (CM) [Iyengar, 2002].

NCP penalises attributes for the way they are generalised and captures the uncertainty
caused by this generalization [Xu et al., 2006b]. It assigns larger penalties when attribute
values are mapped to generalised values that replace many other values [Loukides and
Gkoulalas-Divanis, 2012]. An advantage of this metric is that it can give different weights
to different attributes, as some attributes can be more important than others for the data
analysis process [Xu et al., 2006b]. The NCP for each numerical (Num) quasi-identifier A in
an equivalence class G is defined as:

NCPANum (G) =
maxG

ANum
−minG

ANum

maxANum −minANum

, (8.1)

where the numerator and denominator represent the range of attribute A for the equivalence
class G and for the whole dataset respectively [Ghinita et al., 2009]. This metric thus measures

6 We chose for 100 random value combinations instead of trying out all the possibilities as the number of
combinations can quickly become very large when there is a lot of generalization. The more random value
combinations we test, the more we approximate the theoretical pureness, but the longer the computation
time.
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which part of the total range of the numerical attribute, is present in the equivalence class.
Higher values signify more generalization, and consequently, more information loss. In the
case of a categorical (Cat) quasi-identifier A, NCP is defined as follows:

NCPACat (G) =

0, if |AG| = 1
|AG |
|A| , otherwise

(8.2)

where |A| is the number of distinct values of attribute A in the whole dataset, and |AG| is
the number of distinct values of attribute A in equivalence class G [Xu et al., 2006b]. So, for
a categorical attribute, this metric will check which proportion of possible unique values is
present in the k-anonymous counterfactual instance. The higher this number is, the more
generalized this attribute will be and the more information about this attribute is lost. The
NCP of equivalence class G over all quasi-identifier attributes is:

NCP(G) =
d

∑
i=1

wi · NCPAi (G), (8.3)

where d is the number of quasi-identifiers in the dataset, Ai is a (numerical or categorical)
attribute with weight wi, where ∑i wi = 1 [Ghinita et al., 2009]. For our experiments, we
assume all attributes have an equal weight but this can easily be altered in future experiments.
NCP measures the information loss for a single instance and its equivalence class. This can
be aggregated to the information loss in the entire dataset [Ghinita et al., 2009, Xu et al.,
2006b] but for our problem setting, we only need to calculate the NCP for each k-anonymous
counterfactual explanation, which constitutes one equivalence class. As an illustration, we
calculate the NCP of the k-anonymous counterfactual explanation (CE) in our toy example7:

NCPAge(CE) =
maxCEAge −minCEAge

maxAge −minAge
=

27− 24
70− 23

= 0.064,

NCPGender(CE) = 0 (|ACE| = 1), NCPCity(CE) = 0 (|ACE| = 1),

NCP(CE) =
1
3
· 0.064 +

1
3
· 0 + 1

3
· 0 = 0.021

For our experiments, we focus on the metrics NCP and pureness, but for completeness we
also report the results with two additional metrics. The discernibility metric assigns a penalty
to each tuple, based on how many tuples are indistinguishable from it after anonymizing. The
idea is that it is desired to maintain discernibility between tuples as much as is allowed by a
given setting of k [Bayardo and Agrawal, 2005]. The discernibility metric for anonymization
g, and a degree of privacy k is:

CDM(g, k) = ∑
∀E s.t.|E|≥k

|E|2 + ∑
∀E s.t.|E|<k

|D||E|

In this expression, E refers to the equivalence class of the tuple, and D to the dataset. Each
successfully anonymized tuple (equivalence class larger than k) gets as penalty the size of
the equivalence class, and each suppressed tuple (equivalence class smaller than k) gets as
penalty the size of the total dataset. In our set-up, all the counterfactual explanations will be

7 See Table 8.2 for the range of each attribute in the training set.
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successfully anonymized so each anonymized explanation will get as penalty the size of its
equivalence class. The discernibility metric for the k-anonymous counterfactual explanation
in our example is 3, as this is the number of people belonging to its equivalence class (see
Table 8.2.) This metric has been criticized because it does not take into account how much the
anonymized data instances approximate the original instances [El Emam et al., 2009]. NCP is
a more suitable metric to measure the actual information loss incurred by anonymizing the
counterfactual explanations [Ghinita et al., 2007, Pramanik et al., 2016].

The classification metric (CM) is a class-conscious metric that attempts to create equivalence
classes that consist of tuples that are uniform with respect to the class label [Iyengar, 2002].

CM =
∑N

i penalty(tuplei)

N

N is the number of anonymized tuples, which can be rows in a dataset or in our case number
of the anonymized counterfactual instances. Each tuple receives a penalty of 1 if its class is
different from the majority class label of its equivalence class. In the case of our toy example,
the k-anonymized counterfactual instance does not receive a penalty as its label is the same as
the majority class label of its equivalence class (Accept). This metric is related to our notion of
pureness, but keep in mind that they measure different things. The classification metric looks
at the instances in the equivalence class (which are Fiona, Gina and Ingrid in the case of our
toy example) and their majority label. For pureness, we take all the attributes into account
(so also the private attributes), and not only look at the instances present in the dataset,
but at all the possible value combinations in the range of the anonymous explanation (by
using sampling). This can be seen in Table 8.4. Pureness is therefore more suitable than the
classification metric to measure how often the anonymous counterfactual explanation gives
us correct advice.

8.5 materials and methods

8.5.1 Materials

We choose the datasets described in Table 8.5, as they are all tabular datasets that contain
various personal attributes through which individuals could be identified, and are often used
in research about privacy-preserving data mining [Kisilevich et al., 2008, Simi et al., 2017,
Slijepčević et al., 2021].14 All these datasets contain private information such as financial
and health data that people generally do not want to be made public. In this Table, we list
general dataset description properties such as the number of instances and attributes, and
the target attribute. We also mention the quasi-identifiers and sensitive attribute (on which
discrimination is measured) that we used for our experiments. Additionally, we measure the

6 https://github.com/EpistasisLab/pmlb/tree/master/datasets/adult
7 https://archive.ics.uci.edu/ml/machine-learning-databases/cmc/
8 https://github.com/EpistasisLab/pmlb/tree/master/datasets/german
9 https://github.com/EpistasisLab/pmlb/tree/master/datasets/heart c

10 https://www.opendatanetwork.com/dataset/health.data.ny.gov/82xm-y6g8
11 https://github.com/kaylode/k-anonymity/tree/main/data/informs
14 https://github.com/kaylode/$k$-anonymity
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Table 8.5: Description of used datasets with dataset properties
Dataset Adult 8 CMC 9 German 10 Heart 11 Hospital 12 Informs 13

# instances 48,842 1,473 1,000 303 8,160 5,000

# attributes 11 8 19 12 20 13

QID

Age, Sex,
Race,
Relationship,
Marital status

WifeAge,
ChildrenBorn

Age, Foreign
Personal status,
Residence time,
Employment, Job,
Property, Housing

Age,
Sex

Age Group,
Race,
Gender,
Ethnicity,
Zip Code

Dobmm,
Dobyy,
Sex,
Marry,
Educyear

Sensitive
attribute

Sex WifeReligion Personal status Sex Gender Race

Target
attribute

Income
Contraceptive
method

Credit
decision

Heart
disease

Costs Income

Uniquely
identifiable
(in %)

3.17 4.41 83.7 4.62 6.32 76.18

∥EQ∥ < 10
(in %)

15.39 53.78 100 79.54 37.08 100

privacy risk present in each dataset in two ways: 1) We measure the percentage of people
that are uniquely identifiable by their combination of quasi-identifiers, and 2) We measure
the percentage of instances that are not protected by k-anonymity (with k =10). This thus
means that we measure the percentage of people that belong to an equivalence class with a
size smaller than 10.

8.5.2 Methods

On every dataset, we apply the methodology as described in Figure 8.3. We first split the
dataset in a training and test set, using a split of 60-40. We fit and tune a Random Forest
model through cross-validation on the training set. The following grid is used for tuning:

n estimators = [10, 50, 100, 500, 1, 000, 5, 000]

max leaf nodes = [10, 100, 500, n] with n = ∞

We use the standard version (no optimization setting) of NICE [Brughmans et al., 2023a]
as counterfactual algorithm, as this will return actual instances from the training set, and
fit this on the training set and the trained machine learning model. This trained machine
learning model is used to make predictions on all the instances in the test set. For all the test
instances15 without the desired prediction outcome, we use NICE to generate a counterfactual
explanation. We focus on the test instances without the desired prediction outcome as these
are the instances that generally use counterfactual explanations to receive advice on how to
change their prediction outcome. As mentioned, when using NICE without any optimization
setting, the counterfactual instances are real instances from the training data so they should
be anonymized. The final step is to use CF-K to make these explanations k-anonymous.

15 We set a limit at 1,000 instances for the sake of time.
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Figure 8.3: Used methodology to generate k anonymous counterfactual explanations from a
dataset.
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8.5.3 Novel algorithm CF-K

In the original application of k-anonymity, the whole dataset is made public and therefore
has to be made k-anonymous. The goal is to find an optimal partition, for which both exact
algorithms [LeFevre et al., 2005] and heuristics like genetic algorithms [Iyengar, 2002] and
greedy algorithms (Mondrian [LeFevre et al., 2006], Datafly [Sweeney, 2002a]) exist.

Our approach differs from the approaches published in the literature, as only the counter-
factual explanation is made public and not the whole dataset. Therefore, we search for an
equivalence class for each returned counterfactual instance separately. This changes the set-up
of the problem, as making the whole dataset k-anonymous can degrade the data more than
just making the counterfactual explanations k-anonymous: not every training instance is
used as counterfactual explanation and unused training instances do not need to be made
k-anonymous or used in the calculation for the best clustering. In the same way that local
encoding achieves less information loss than global recoding [Xu et al., 2006b], we hypothesize
that only k-anonymizing the counterfactual instances can achieve lower information loss. We
verify this claim in Section 8.6.2. Furthermore, specifically for our problem of k-anonymous
counterfactual explanations we have to take the counterfactual validity of the k-anonymous
explanations into account as this is essential for the goal of counterfactual explanations. We
use this as additional metric in our algorithm.

We name our algorithm that makes counterfactual explanations k-anonymous CF-K. It is
based on the metaheuristic GRASP (Greedy Randomized Adaptive Search Procedure) [Feo
and Resende, 1995]. GRASP is a multi-start metaheuristic in which each iteration consists of
two phases: construction and local search. After the two phases, the current best solution
is updated. The construction phase builds a feasible solution, and the local search phase
searches the neighborhood until a local optimum is found [Feo and Resende, 1995]. In this
construction phase, GRASP combines greediness with randomness, with the purpose of
escaping the myopic behavior of a purely greedy algorithm. We choose a heuristic algorithm,
as it is a NP-hard problem and we are not looking for the optimal solution but for the best
solution that can be found in limited computing time. Our aim is to provide a method that
performs well, but we expect further optimizations to be possible in future research.

8.5.3.1 Algorithm description

Our algorithm starts from a counterfactual explanation that is given to one of the instances
in the test set with an unfavorable prediction outcome. The counterfactual instance that
this explanation is based on is an actual instance in the training set, and we want it to be
unidentifiable from at least k− 1 other instances in the training set. This is the case when at
least k− 1 other instances in the training set have the same values for the quasi-identifiers
(these are the attributes that we assume to be publicly known).

phase 1 : construct greedy randomized solution In this phase, we con-
struct a feasible solution. We first check for the current counterfactual instance if its values
of quasi-identifiers are present for k individuals in the training set. In this case, a solution is
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found, the quality of the solution is calculated and the algorithm moves to the next phase.
If this is not the case, we generate a list of size α by selecting the closest neighbors of the
counterfactual instance in the training set with the required prediction outcome. Then, we
randomly select a neighbour from this list and create a new generalized instance out of this
neighbor and the counterfactual instance. The fact that we randomly select a neighbor out
of this list and not just select the closest neighbour makes up the probabilistic component of
GRASP. We create this generalized instance by generalizing the values of the quasi-identifiers
so that the generalized instance includes both the values of the quasi-identifiers of the coun-
terfactual instance as well as those of the neighbor. This happens as in Figure 8.2. We check
again whether this generalised instance satisfies k-anonymity. If this is the case, a solution is
found, the quality of this solution is calculated and the algorithm moves to the next phase. If
this is not the case, this loop is repeated until the generalised instance satisfies k-anonymity.

phase 2 : local search The local search algorithm iteratively tries to replace the
current solution by a better solution in the neighbourhood. The algorithm terminates when no
better solution is found. The neighborhood is defined by checking for every quasi-identifier in
the current solution whether slightly changing it, is a feasible solution (satisfies k-anonymity)
and improves the solution quality. A slight change in this case is adding a value (if the
quasi-identifier is a single value) or removing a value from the list (if the quasi-identifier is
already a generalized list).

Algorithm 8.1 GRASP

for i = 1, ..., MaxIter do
Solution← ConstructGreedyRandomizedSolution(Input);
Solution← LocalSearch(Solution);
BestSolution← UpdateSolution(Solution, BestSolution);

end for
return BestSolution;

grasp We iterate these two phases for a specified number of iterations. After each iteration,
we check if the new solution is better than the current best solution and if this is the case,
we update the current best solution. After the specified number of iterations, the algorithm
terminates and the current best solution is returned.

8.5.3.2 Choice of parameters

The input parameters in our algorithm are k, the level of desired privacy, α, the degree of
randomness we give to the algorithm and the number of iterations the algorithm can perform.
We show the effect of changing the input parameters on the german dataset by evaluating the
metrics NCP, pureness and execution time.

degree of privacy k We see that if we increase k, the level of privacy guarantees
for each individual, the other metrics deteriorate. The Normalized Certainty Penalty, which
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Figure 8.4: Evaluation of parameters

measures how much information value we lose by making the data k-anonymous, increases
when we increase the value of k. This makes sense as the data quality degrades more
when we add more privacy guarantees and therefore require more instances to be identical.
Furthermore, the average pureness, and thus the counterfactual validity, also decreases. The
trade-off between privacy (measured by k) and information loss (measured by NCP) has been
confirmed by the literature [Ayala-Rivera et al., 2014, Sumana and Hareesha, 2010], but we are
the first to show this trade-off between k and counterfactual validity (measured by pureness).
Furthermore, the average execution time also increases if we increase k, as more privacy
guarantees have to be implemented. For the remainder of the experiments, we use a k of 10

as this is a common number to baseline k-anonymity performance [El Emam and Dankar,
2008, El Emam et al., 2009]. We include the results for other values of k for both our algorithm
(CF-K) and Mondrian in the Appendix.

parameter α The parameter α is a measure of the randomness of the algorithm, as it
determines the number of closest neighbors from which we randomly select one. We see that
increasing α will increase the NCP but will lower the pureness. This is to be expected as we
look at further neighbors when α is larger, so this will increase the information loss, but also
creates more room to improve the pureness in the local search. Increasing α decreases the
execution time, which is reasonable as we will satisfy k-anonymity faster by taking further
neighbors The optimal value of α will depend on the dataset and how highly one values the
different metrics. To avoid a multiple comparisons problem, we fix α at 20 for the rest of the
experiments.
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number of iterations Increasing the number of iterations improves both the NCP
and the pureness, but also increases the execution time. A trade-off has to be made between
solution quality and execution time in determining the optimal number of iterations. We fix
the number of iterations at 3 for the rest of the experiments.

8.6 results

8.6.1 Results per dataset

Table 8.6: Results of CF-K over all the datasets (k = 10).
Dataset Adult CMC German Heart Hospital Informs
NCP (mean) 0.55% 3.84% 21.41% 2.81% 3.42% 9.97%
Pureness (mean) 99.81% 93.15% 98.52% 100% 91.39% 85.33%
Execution time (mean) 24.78s 16.20s 13.31s 3.93s 17.76s 32.20s
CDM 87,181 5,366 1,010 790 17,115 9,023

CDM
#explanations 110.78 13.2 16.83 14.11 22.94 13.65

CM 0.82 0.28 0.03 0.32 0.77 0.12

When we compare the results of Table 8.6 with the privacy risks of each dataset reported in
Table 8.5, we see that explanations of the datasets with the highest privacy risks (German and
Informs) have the highest information loss (in terms of NCP) when they are made anonymous.
We measured the privacy risk by calculating the number of people in the dataset that are
in equivalence classes smaller than 10 (before anonymizing), and for German and Informs,
this will be the case for every person. For other datasets, such as Adult, only around 15% of
individuals are in equivalence classes smaller than 10, so only a small portion of counterfactual
instances will have to be anonymized. The average information loss (measured by NCP)
for the anonymous explanations of this dataset is therefore much lower. The CDM metric is
harder to compare across datasets, as the size of the anonymous set has a large influence
here. Therefore, we add an extra row where we divide CDM by the number of anonymized
explanations. This gives us the average size of the equivalence class for all the anonymized
explanations. We see that for Adult, some equivalence classes can be really large, but the
average NCP is low, which is more important for our problem. This consequently implies
that the data did not have to be significantly degraded, but the generalized quasi-identifiers
still encompass a substantial number of individuals. We also see that in the Heart dataset, the
counterfactual validity measured by the pureness is always 100%. We expect this to be the
case if the quasi-identifiers, which are Age and Sex in this case, have a small influence on the
outcome of the machine learning model. We verify this by examining the feature importance
ranking of the used model, and indeed see that the quasi-identifiers are ranked very low.
This could explain why generalizing them has no effect on the counterfactual validity. For all
datasets, the pureness is above 85%, which makes the generalized counterfactual explanations
pretty valid. We see that although CM and pureness are related, they can give very different
results per dataset. CM assesses the majority label of the whole equivalence class, while
pureness will evaluate how many value combinations in the k-anonymous counterfactual
instance will lead to the desired target outcome. As already said, for our use case, pureness is
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more relevant as this will actually assess how often the counterfactual explanations points us
in the ‘right’ direction. Also note that for pureness, higher values are better, while for CM,
lower values are preferred (less penalties).

We can also assess how the results vary for different values of k in the Appendix. We see
that if k increases, in general the information loss becomes higher and the pureness becomes
lower. This is in line with the results of Section 8.5.3.2, and again shows the trade-off between
privacy and explainability.

With regard to the execution time, we see that it will be fast enough for most applications, and
is in line with the order of magnitude of generating counterfactual explanations [de Oliveira
and Martens, 2021]. If further speed-ups are necessary, this can be realised by decreasing the
number of iterations, further optimization of the algorithm or using a stronger computer. All
measurements were taken on a Dell Latitude 7400 laptop with 16GB of RAM and Intel®CoreTM

i7-8665U CPU.

8.6.2 Comparison with Mondrian

Table 8.7: Results of the Mondrian algorithm (k = 10)
Dataset Adult CMC German Heart Hospital Informs
NCP (mean) 15.97% 7.05% 59.55% 53.01% 26.03% 36.31%
Pureness (mean) 90.30% 69.15% 90.50% 100% 63.77% 72.40%
Execution time (mean) 7.11s 0.87s 0.38s 0.23s 1.19s 1.11s
CDM (mean) 120,227 6,318 963 1,044 16,534 9,177

CDM
#explanations 152.77 15.56 16.05 18.64 22.16 13.88

CM (mean) 0.83 0.24 0.17 0.41 0.80 0.40

We compare CF-K with an alternative strategy: making the whole dataset k-anonymous, and
taking the counterfactual explanations out of this anonymized dataset. This differs from our
strategy where we directly make the counterfactual instances and explanations k-anonymous.
We use an open source implementation of Mondrian16 to compare CF-K with. Mondrian is a
top-down greedy data anonymization algorithm that has been shown to be one of the best
performers [Ayala-Rivera et al., 2014, LeFevre et al., 2006]. For all instances in the test set (max
1,000) with an unfavorable outcome, we compare the k-anonymous counterfactual explanation
generated by CF-K with the k-anonymous counterfactual explanation based on an instance
selected from the anonymized (by Mondrian) test set. When we compare the results in
Table 8.6, with the results in Table 8.7, we see that for all datasets CF-K succeeds in achieving a
better (and thus lower) average NCP than the Mondrian implementation on the whole dataset.
This is in line with our hypothesis that only k-anonymizing the counterfactual instances
can result in lower information loss, as unused training instances do not need to be used
in the calculations for the best clustering. Furthermore, the average counterfactual validity
(measured by pureness) in all datasets is higher when using k-anonymous explanations than
when using an explanation from a k-anonymous dataset (except for the Heart dataset, where

16 https://github.com/danielegiampaoli/Mondrian K-anonymization
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the average counterfactual validity is 100% for both implementations). Counterfactual validity
can only be calculated on an explanation, and not on a dataset, so methods to make the
dataset k-anonymous can not optimize for this metric. Therefore, our methodology to make
the explanations k-anonymous, was needed to be able to take this metric into account. With
regard to the CDM metric: in four out of the six datasets, CF-K results in the smallest classes,
while in two out of the six datasets, Mondrian will achieve slightly smaller equivalence
classes. However, even in those cases, the average information loss measured by NCP will
be lower when using CF-K, and as explained, it makes more sense to focus on this metric.
The results for the CM metric show that for most datasets, the CF-K algorithm results in
equivalence classes that are a bit more uniform with respect to the class label. However,
as mentioned, pureness is more suited to measure the actual validity of the counterfactual
explanations. We see in the Appendix, that the results for other values of k (5 and 20) are in
line. For the Mondrian algorithm, the evaluation metrics also deteriorate when the level of
privacy protection (k) is increased, and CF-K still outperforms Mondrian in terms of NCP and
pureness for all values of k.

8.6.3 Does this have fairness implications?

A minority group is defined as a group whose characteristics such as race, religion, gender,
... etc. are fewer in numbers than the main group of that classification. Nowadays, it is
often used to refer to people that experience a relative disadvantage based on their group
membership [Healey et al., 2019]. We define the minority and majority group for each dataset
based on the sensitive attribute, mentioned in Table 8.5. The minority group is the category of
that sensitive attribute that is the least present in the training set. We see in Figure 8.4 that
when we make the explanations more private (increase k), the explanation quality decreases
and they become less useful. Unfortunately, this effect is larger for minority groups which can
lead to potential issues regarding fairness. As can be seen in Figure 8.5, in every examined
dataset (except for Hospital), the average NCP is higher for the minority group. For the average
counterfactual validity, we found no difference between both groups. So we see in Figure 8.5
that the quality of explanations of the minority group has to be reduced more to achieve the
same level of privacy. This can be explained by the fact that they often have more unique
quasi-identifiers, as there are less people that share their public characteristics (definition of a
minority group), so their quasi-identifiers have to be generalised more to be anonymous. For
the Hospital dataset, the average information loss is slightly higher for the majority group. We
hypothesize that this is due to the higher percentage of individuals with the desired target
outcome (high income) for the minority group (men) than for the majority group (women),
and hence it will be more difficult to find pure explanations for the latter. When explanations
are used in high-stakes settings, it is undesirable that minority groups are offered lower
quality explanations, but also that there is a higher risk of leaking their private information
when no precautions are taken [Patel et al., 2022]. Other research showed another possible
trade-off between fairness and privacy, as the privacy risks of different demographic groups
are disparately affected by fairness-aware machine learning [Chang and Shokri, 2021]. These
results show that different ethical objectives can work against each other and that one has to
make sure that minority groups are not adversely affected in unexpected ways.
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(a) Adult Income (b) CMC

(c) German (d) Heart

(e) Informs (f) Hospital

Figure 8.5: Comparison of the average NCP between the majority and minority group

8.6.4 Comparison with perturbation-based counterfactual algorithms

We mentioned before that using native counterfactuals increases desirable properties such as
plausibility, compared to counterfactual algorithms based on perturbations. CF-K is essentially
slightly perturbing the native counterfactuals, so will the returned counterfactual explanations
still be more plausible than the explanations from perturbed-based algorithms? Plausibility
estimates the closeness of the counterfactual to the data manifold, by measuring the closeness
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NICE
(none)

NICE
(sparse)

NICE
(prox)

NICE
(plaus)

CF-K
(k=5)

CF-K
(k=10)

CF-K
(k=20)

1NN 0 2.77 2.94 2.48 0.84 1.22 1.32

5NN 2.64 3.73 3.81 3.54 2.72 2.80 2.83

Table 8.8: Plausibility results for various settings of the NICE algorithm and CF-K, lower values
are better (closer to the data manifold). NICE (None) returns native counterfactuals,
the other settings of NICE (sparse, prox and plaus) return perturbed counterfactuals,
and CF-K returns the anonymized version of the native counterfactuals (which will
thus be slightly perturbed).

to the nearest instance(s) in the training data [Dandl et al., 2020, Brughmans et al., 2023a].
We report the average distance to the nearest and the 5-nearest neighbors for all settings of
NICE (none, proximity, sparsity, plausibility). As explained before, only the None setting refers
to a native counterfactual that will be grounded in the dataset, and the other settings will be
perturbation-based counterfactual algorithms that aim to optimize for proximity, sparsity,
and plausibility [Brughmans et al., 2023a]. We see in the benchmark study of Brughmans
et al. [2023a] that the native counterfactual algorithms such as WIT and NICE (None) will
result in the best plausibility scores, followed by NICE (plausibility), which is to be expected
as it is designed to optimize for this metric. NICE (plausibility) outperformed all other
perturbation-based algorithms, so this algorithm is chosen to compare with.

We also calculate the distance to the nearest and the 5-nearest neighbors for the anonymous
counterfactual instances generated by CF-K (for different privacy settings).17 The results for
the German dataset can be seen in Table 8.8. NICE (None) still reports the best results, but
CF-K significantly outperforms the other perturbation-based counterfactual algorithms, even
NICE (plausibility). Furthermore, these other settings of NICE still start from an instance in
the training set, so while they are less likely to return real instances, it is still a possibility.
This is why for an optimal level of plausibility and a guarantee of privacy, it is better to
use CF-K. Furthermore, we are also interested in the relationship between plausibility and
privacy. When we increase the level of privacy protection, what is the effect on the plausibility
of the k-anonymous explanations? We see in Table 8.8 that the plausibility metrics will
deteriorate when we increase the level of privacy protection, which shows another side of the
privacy-explainability trade-off.

8.7 discussion and future research

Transparency in machine learning has become a major topic, yet there is little research on
the resulting potential risks to user privacy [Patel et al., 2022]. Although research has shown
that offering model explanations may come at the cost of user privacy [Sokol and Flach, 2019,
Shokri et al., 2019], none of the currently offered model explanation technologies offer any

17 We measure the distance to a generalized counterfactual instance in a conservative way: We sample 100

times a value combination out of the generalized counterfactual instance (as we did to calculate pureness),
and calculate its distance to its nearest and 5-nearest neighbors. For one generalized counterfactual
instance, we then take the average distance over the 100 samples.
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privacy guarantees. Once such explanation systems are deployed on high-stakes data, such
as financial transactions or patient health records, a formal investigation of privacy risks is
necessary. In this research, we introduce the explanation linkage attack, constituting the privacy
risk that some counterfactual explanation techniques pose to the privacy of data subjects,
because adversaries can infer their private attributes. We are the first to apply k-anonymity
on counterfactual explanations instead of on the complete dataset, and show that applying
k-anonymity only on the counterfactual explanations can achieve lower information loss and
higher counterfactual validity. Furthermore, we see that if we increase the privacy constraints,
the quality of the explanations becomes worse, which demonstrates the trade-off between
privacy and transparency.

Other researchers [Patel et al., 2022, Shokri et al., 2019] have stated that assessing the priva-
cy/explainability trade-off for minority groups is a promising avenue for future exploration,
which is what we explored in Section 8.6.3. We noticed that the average information loss
tends to be higher for minority groups, and this difference increases with the level of privacy,
hereby introducing a new element of unfairness.

A debate on explanation quality could be a promising avenue for future research. For
k-anonymous counterfactual explanations that have a pureness of 100%, generalized quasi-
identifiers might actually be an advantage instead of a drawback. Think about the following
scenario: Would you prefer the explanation ‘If you would have been a teacher and would have
earned $10K more, then you would have received the loan’ or the explanation ‘If you would have been
a teacher or a nurse and would have earned $10K more, then you would have received the loan’, if
both explanations are valid? While generalizing instances in a dataset means less information
value, this trade-off is less clear in counterfactual explanations; generalizing them might
give you more options to achieve the required target outcome and thus be more valuable.
However, this is only the case when the counterfactual explanations are entirely valid and
have a pureness of 100%. A discussion on explanation quality was not the goal of this study,
so we leave this as an avenue for future research.

We also foresee another way to implement privacy constraints in future research, where the
explanation technique itself is adapted to have privacy guarantees, instead of enforcing it
in post-processing. Other authors propose a methodology where they search for a group of
counterfactual explanations for a group of instances [Carrizosa et al., 2024b]. They do not
include any privacy guarantees yet, but this kind of set-up could be used to create anonymized
explanations as well. This could also have other desired side effects such as more robust
explanations.

A last direction for future research we envision is applying other privacy schemes to coun-
terfactual explanations. Beyond k-anonymity, other widely accepted protection schemes
include l-diversity [Machanavajjhala et al., 2007], t-closeness [Li et al., 2006] and differential
privacy [Dwork, 2006]. K-anonymity can be prone to privacy risks, for example when the
attacker has background knowledge, can combine multiple explanations or when there is little
diversity in the private attributes. l- diversity tries to solve these issues by requiring that the
private attribute(s) should have a minimum of l properly depicted values. T-closeness goes
even further and requires that the distance between the distribution of the private attribute
in any equivalence class and the distribution in the whole table is less than a threshold
t. Differential privacy offers a broader approach that captures the increased risk to one’s
privacy incurred by participating in a database, and counters this by introducing controlled
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noise into the data. Up until now, we assumed that all the attributes in the dataset except
the quasi-identifiers, are private attributes, so l-diversity and t-closeness might not be that
straightforward to implement. It is also important to note that we are explicitly searching for
no diversity in the target variable, as we want k-anonymous counterfactual explanations that
are as pure as possible. It will be interesting to see how applying these other privacy schemes
(l-diversity, t-closeness and differential privacy) affect the explanations, and whether they will
have the same implications regarding the explanation quality and fairness.

139





9
The Impact of Cloaking Digital Footprints on User
Privacy and Personalization

Our online lives generate a wealth of behavioral records—digital footprints—which are stored
and leveraged by technology platforms. This data can be used to create value for users
by personalizing services. At the same time, however, it also poses a threat to people’s
privacy by offering a highly intimate window into their private traits (e.g., their personality,
political ideology, sexual orientation). We explore the concept of cloaking: allowing users
to hide parts of their digital footprints from predictive algorithms, to prevent unwanted
inferences. This paper addresses two open questions: (i) can cloaking be effective in the longer
term, as users continue to generate new digital footprints? And (ii) what is the potential
impact of cloaking on the accuracy of desirable inferences? We introduce a novel strategy
focused on cloaking “metafeatures” and compare its efficacy against just cloaking the raw
footprints. The main findings are (i) while cloaking effectiveness does indeed diminish over
time, using metafeatures slows the degradation; (ii) there is a trade-off between privacy
and personalization: cloaking undesired inferences also can inhibit desirable inferences.
Furthermore, the metafeature strategy—which yields more stable cloaking—also incurs a
larger reduction in desirable inferences.



the impact of cloaking digital footprints

9.1 introduction

A growing portion of our life happens online. We shop on Amazon, entertain ourselves on
Netflix or Spotify, and communicate with friends and family via Facebook and Instagram.
Whether we like it or not, the digital traces we generate during these interactions provide the
mediating platforms with an extensive and comprehensive picture of our personal habits and
preferences [Matz et al., 2020, Kosinski et al., 2013]. In fact, research has shown that a person’s
digital footprints—including their Facebook Likes and status updates, smartphone records
or credit card spending—can be used to infer highly intimate characteristics such as sexual
or political orientation, personality traits, mental health, or religious views [Kosinski et al.,
2013, Matz et al., 2017]. Given that most individuals consider these characteristics deeply
private, automated inferences of such traits without individuals’ knowledge or consent raises
important concerns related to people’s rights to privacy and self-determination [Matz et al.,
2020]. The act of drawing highly intimate inferences from seemingly innocuous data, for
example, can be regarded as an intrusion of privacy, especially when individuals are neither
aware of such inferences being made nor able to object to them. Moreover, the psychological
insights that platforms (and other third parties) can glean from digital footprints allow them
to influence their users’ behaviors and decisions through mechanisms of personalization (an
approach known as psychological targeting [Matz et al., 2017]).

As a potential remedy, Chen et al. [2017] introduced user cloaking of digital footprints. Cloaking
first reveals to users which footprints they have to hide from predictive algorithms to avoid
certain undesired inferences, and then gives them the option of restricting future inferences
about them from using those particular footprints. Cloaking also has a key advantage over
simply opting out of each particular offending inference: the exact same inference—that the
user is a good target for particular content or a particular ad—may be unlikely to repeat;
nonetheless, it may likely that very similar inferences will be made in the future. Cloaking
has a substantial advantage over simply opting out of inferences altogether, as it will continue
to allow desired inferences, for example for personalized content. However, it is not clear
from prior work how well cloaking will perform over time, as individuals leave additional
digital footprints.

Digital footprints are typically high-dimensional, sparse, fine-grained behavioral data; models
normally draw on combinations of many different features as evidence to support a possible
inference Ramon et al. [2021b]. Therefore, as our results show, using a cloaking strategy
solely based on the fine-grained features will not be sufficient in the longer-term. People will
continue to live their lives and behave similarly in the future, and predictive models will in
many cases trigger once again using the new footprints [Chen et al., 2017, De Cnudde et al.,
2020]. For example, our analysis of inferences based on Facebook Likes1 reveals that when
we take a snapshot at a later point in time, more than 80% of the people whom the models
would infer to be Republican will be subject to this same inference again, despite cloaking the
fine-grained features that drove the inference in the first place.

This is why we also investigate enhancing the longer-term efficacy of cloaking. Specifically,
we examine grouping the fine-grained features into “metafeatures” (higher-level feature
representations) and cloaking these metafeatures instead. The idea is that the metafeatures

1 Following prior authors, we will capitalize “Like” when it refers to the action on Facebook.
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will also include other similar behaviors that a user might take in the future, and which
therefore may subsequently trigger the undesired inference. Our results show that this
approach indeed increases the longer-term effectiveness of cloaking considerably and thus
enhances privacy protection over time.

Importantly, the implications of cloaking digital footprints to reduce undesired inferences
are not uniformly positive. As mentioned above, the same digital footprints may be used for
different inferences as well. For example, a particular footprint might reveal not only sexual
orientation but also the personality trait of Openness. While a user might be concerned about
their data being used to infer their sexual orientation and subsequently discriminate against
them, they might be appreciative of personalized services and ads that account for their
level of openness to experience. That is, the same traces and mechanisms that may lead to
discrimination, can also benefit users in the form of personalized content (e.g., individualized
playlists, more relevant news, etc.). Desired personalization can not only lead to happier
users but also to higher engagement [Fernández-Lorı́a et al., 2017] and ultimately to higher
platform revenue [Johnson et al., 2020].

In this paper we also examine the unintended consequences of cloaking. Specifically, sup-
pressing certain digital footprints via cloaking mechanisms can have spillover effects: the data
available for desired personalization tasks decreases, potentially reducing accuracy and effec-
tiveness. To explore this privacy-personalization trade-off, we evaluate the impact of cloaking
strategies on the accuracy of unrelated prediction tasks that are not the subject of cloaking.
For example, we examine how cloaking for sexual orientation impacts the performance of a
model predicting personality using the same large collection of digital footprints. Insights into
the nature of this trade-off are crucial to empower users to make informed decisions about
their online activity and about where on the privacy-personalization trade-off they want to
be. To the best of our knowledge, our study is the first to evaluate empirically how a privacy
intervention affects personalization levels, thereby offering new insights into the trade-off
between privacy and personalization.

In summary, our study offers three main contributions:

• We assess the longer-term effectiveness of cloaking digital footprints, measuring the
percentage of targeted individuals whose privacy remains protected over time. The
results show that indeed the effectiveness of cloaking fine-grained features decreases
steadily and markedly over time for most inference tasks.

• We introduce a new cloaking strategy based on metafeatures, and show that it enhances
longer-term cloaking protection (as intended).

• We examine the privacy-personalization trade-off inherent in using cloaking to protect
against unwanted inferences. Specifically, we show that cloaking for one task can
affect the predictive performance of other personalization tasks. Moreover, the more-
stable metafeature-based strategies have a stronger effect on other prediction tasks,
highlighting the trade-off faced by users: better longer-term privacy protection indeed
can reduce desired personalization performance more.
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9.2 background

The trade-off between privacy and personalization is well recognized as a critical issue in our
digital age [Garcia-Rivadulla, 2016, Chellappa and Sin, 2005, Habegger et al., 2014, Taylor
et al., 2009]. On the one hand, personalization approaches might be appreciated by consumers
who receive more relevant products and services as a result of targeted advertising and
product design [Tran, 2017]. On the other hand, the ability to predict people’s intimate traits
and influence their behavior raises serious concerns for individuals and society at large. In
countries where homosexuality is illegal, for example, the ability to infer sexual orientation
from Facebook Likes could become a death sentence [Cabañas et al., 2018]. Similarly, health
insurance companies could attempt to identify people with unhealthy habits or specific health
problems, resulting in higher premiums or even rejection of coverage altogether [Cabañas et al.,
2018]. The perhaps most well-known case of such an abuse is that of Cambridge Analytica,
the UK-based PR firm which used psychological targeted advertisements on Facebook to
interfere in the 2016 US presidential elections [Matz et al., 2020, Doward and Gibbs, 2017].

Given the seriousness of these potential transgressions and privacy violations, scientists,
activists and policy makers have pushed for legislation that aims to prohibit the prediction
of protected categories, such as race or religion. Facebook, for example, has faced years of
criticism for offering advertisers ‘interest’ categories that have led to the exclusion of people
of color from housing ads, fueled political polarization, and helped Big Pharma track users
with specific illnesses [ Waller, Angie and Lecher, Colin, 2022, Angwin and Parris Jr., 2016,
Edelman, Gilad, 2019, Lecher, Colin, 2021]. In 2022, Facebook responded to the growing public
pressure and changing regulatory landscape by removing the option to target users explicitly
based on potentially sensitive traits such as health, race, sexual or political orientation, and
religious beliefs [ Waller, Angie and Lecher, Colin, 2022].2

However, non-profit news organization The Markup reported that Facebook’s attempts at
better protecting their users’ privacy and preventing discrimination were only partially
successful. For example, although Hispanic Culture was removed from the target categories
available to advertisers, Spanish Language was not [ Waller, Angie and Lecher, Colin, 2022].
Despite the fact that Facebook has since removed additional interests and categories related
to protected traits, we argue that playing whack-a-mole across many millions of pages and
categories is destined to fail. This is partially the case because few users for whom a protected
trait is predicted will actually Like pages that explicitly reveal these traits. For example, less
than 5% of users predicted to be homosexual were connected with explicitly homosexual
pages such as No H8 Campaign, Being Gay or I Love Being Gay [Kosinski et al., 2013].

Consequently, the mere act of eliminating certain prediction categories from the platforms
prediction or targeting engines is insufficient. This is particularly true when ads or content
are targeted based on machine-learned models rather than the explicit choice of individual
interests. Even if Homosexuality is removed as an explicit targeting category and No H8
Campaign is removed as a data item for prediction, algorithms likely will learn to use other
digital footprints to target content or ads that would appeal to gay individuals.

2 Some of the interest categories that will be no longer available include ‘Gay Pride’, ‘Islamic Calendar’,
and ‘Lung Cancer Awareness’ [Silberling, Amanda, 2021, Waller, Angie and Lecher, Colin, 2022]. A
comprehensive list of removed Facebook pages can be found here: https://www.propublica.org/article/
facebook-lets-advertisers-exclude-users-by-race.
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In order to substantially limit the predictability and use of sensitive traits across all users,
platforms would have to ban an unreasonable number of pages from their inference algorithms,
among them many seemingly neutral pages that will be hard to justify and would likely
evoke concerns related to freedom of speech and expression. Moreover, implementing such
paternalistic measures may undermine an individual’s agency over what they choose to
reveal about themselves. For example, should we force users to restrict their online identities
if they feel perfectly safe and comfortable about their lifestyle and sexual orientation, and
would be delighted to receive associated advertisements? In addition, generic one-size-fits-all
approaches to restricting certain aspects of online behavior can have negative consequences
for socially relevant causes that would benefit from personalization and civic engagement:
climate activists and medical researchers, for example, have pointed out that the changes to
Facebook’s targeting platform have severely limited their ability to reach relevant audiences [
Waller, Angie and Lecher, Colin, 2022].

In this paper, we examine an individualized approach that offers users more control and
transparency over their online identities, and can be tailored to and by the individual: cloaking
certain digital traces that are relevant for inferences about a particular individual. Chen et al.
[2017] propose a “cloaking device” that reveals to users the digital footprints without which
the prediction model would not have made the inference, and allows them to restrict inference
procedures from using those footprints. Let us consider a digital footprint to be a specific
aspect of online behavior that is stored about the individual on a technology platform, such
as a particular song listened to on Spotify or a specific page Liked on Facebook. Cloaking a
digital footprint means removing it from the set of data considered by an algorithm drawing
inferences for that user. In the common case of a machine learning model in an AI inference
system, where the digital footprints are the features used by the model, cloaking the digital
footprint represented by feature x for user u would mean setting the value of x to whatever
would be the value if the system had not saved that digital footprint for that user (for example,
setting the feature value to zero as an indication that the user did not Like the page in
question). This cloaking could be implemented by the platform, by providing users with the
option to choose which inferences to avoid. Alternatively, such transparency could guide
users to better decide which data they feel comfortable sharing in the first place; however, for
many systems, the digital footprints are the result of simply using the system, so this latter
alternative would involve restricting one’s own behavior.

The reason why we (and previous authors) focus on cloaking the underlying features, and
not the particular inferences, is because the latter cannot protect the user from closely related
inferences in the future [Chen et al., 2017]. This is in line with the current advertising options
on Facebook: as mentioned before, it is no longer possible to target people based on certain
private traits (e.g., sexual orientation). Hence, targeting such advertisements has to rely
on associated interests (e.g. Facebook Likes that are empirically related to a certain sexual
orientation). This is natural since fine-grained behavioral data, such as Facebook Likes, are
the primary features used by content-selection and ad targeting machine learning models
on such platforms [Facebook, 2020, Andreou et al., 2019, Chaudhary et al., 2021, Lukka and
James, 2014]. The previously proposed cloaking strategy has been shown to be effective in
avoiding inferences at the time the cloaking takes place, with relatively little burden on the
users [Chen et al., 2017]. However, prior work has not investigated how effective the cloaking
would be over time, as users continue to leave new digital traces.
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9.3 materials

We use data from the MyPersonality project, which contains the Liked Facebook pages of
220,489 volunteers in the United States, along with their scores on the Big 5 personality
traits and personal characteristics such as gender, age, sexual orientation and political pref-
erences [Kosinski et al., 2013]. A Facebook Like is a mechanism used by Facebook users
to express their positive association with online content, and in this case we focus on the
public pages they Liked, which can relate to products, public persons, music, sports, books,
restaurants, or public statements they agree with. Using this data, it is possible to create
a user-Like matrix X such that xij = 1 if user i Liked page j. Behavioral datasets, such as
Facebook Likes, are usually very sparse as any user usually only takes a limited number of
actions (in this case Like Facebook pages), while the total number of possible actions is very
large [Junqué de Fortuny et al., 2013]. As described in more detail below, we assess the impact
of cloaking the Likes that lead to the inferences of gender, political orientation and sexual
orientation.3 In this study, we use these as examples of the attributes individuals might wish
to safeguard; the specific attributes deemed private of course will vary depending on the
individual’s preferences. The data is described in Table 9.1.

Table 9.1: Data description for the target variables that will be cloaked. We select only
the instances that have a value for the corresponding trait.4 The features are the
Facebook pages that remain after pre-processing. Active elements shows the number
of non-zero elements in the entire matrix; Sparsity is the percentage of zero elements
over the total number of elements in the matrix. Average Likes is the average number
of Likes a person associated with this trait has. Balance is the percentage of instances
with a positive value for the target variable.

Target variable Instances Features
Active
elements

Sparsity
(in %)

Average
Likes

Balance
(in %)

Male 165,234 115,326 16,901,459 99.91 86.8 38.37

Female 165,234 115,326 16,901,459 99.91 112.0 61.63

Homosexual 22,477 115,326 2,197205 99.92 104.3 4.67

Lesbian 29,309 115,326 4,041,148 99.88 110.5 2.65

Democrat 36,534 115,326 4,190,576 99.90 134.0 17.27

Republican 36,534 115,326 4,190,576 99.90 124.2 10.24

personality traits Personality trait research suggests that personality consists of
a range of consistent and relatively stable characteristics (traits) that determine how an
individual will think, feel and behave [Matz et al., 2016]. The Big 5 (BF) Model of Personality
is the most widely accepted model and proposes five independent traits to capture individual
personality differences [Costa and McCrae, 1992, Matz et al., 2016]. The five traits are: 1)

3 Only gender is still available as an explicit targeting option on Facebook, but machine learning models
can still learn the other traits implicitly when optimizing a particular ad or content element.

4 For the prediction task of homosexuality, only men whose data record has a value for sexual orientation
will be considered, while for the prediction task of lesbian, only women with a value for sexual orientation
will be taken into account.
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Extraversion, the tendency to seek excitement and stimulation in the company of others; 2)
Openness, the tendency to be intellectually curious, creative and unconventional; 3) Neuroticism,
the tendency to experience negative emotions, and being anxious and nervous; 4) Agreeableness,
the tendency to be trusting, compassionate and cooperative; and 5) Conscientiousness, the
tendency to be organized and efficient [Matz et al., 2016, Ramon et al., 2021a]. The Big
5 personality traits were established using the International Personality Item Pool (IPIP)
questionnaire with 20 items [Goldberg et al., 2006, Kosinski et al., 2013]. The traits are
recorded on a 5-point Likert scale, and we only select the data instances that have a value
for the corresponding trait. Research shows that the power of digital footprints to predict
personality traits is in line with the typical strength of the relationship between personality and
behavior, also known as the personality coefficient (a correlation between 0.30 and 0.40) [Meyer
et al., 2001, Azucar et al., 2018].

9.4 methods

cloaking mechanism . As described above, cloaking refers to the mechanism of
changing user data so that—from the perspective of the inference procedure—it was as if the
user did not exhibit one or more specific behaviors. In this setting of Facebook Likes, cloaking
can be defined as hiding specific Like pages from the prediction algorithm. This does not
mean that the user actually has to unLike these pages (although this can be an alternative
as well), but that the prediction algorithm no longer uses these “hidden” data attributes for
the inference of that person. The cloaking mechanism introduced by Chen et al. [2017] relies
on counterfactual explanations. These counterfactual explanations explain inferences made
by machine learned models via the features that led to the inferences, defined specifically
as a minimal subset of features the removal of which will change—in our case, inhibit—the
system’s inference [Martens and Provost, 2014, Wachter et al., 2017b, Verma et al., 2020,
Fernández-Lorı́a et al., 2022]. When using behavioral data, this corresponds to a minimal set
of non-zero features of the instance, where changing (just) these feature values to zero would
lead the model to draw a different inference [Ramon et al., 2020]. We apply counterfactual
explanations instead of other explanation techniques as they give a direct way to alter the
predicted outcome, in line with Chen et al. [2017]. Nevertheless, with suitable modifications
other explanation techniques such as SHAP could also be adapted to support cloaking [Ramon
et al., 2020, Lundberg and Lee, 2017].5

We use the procedure introduced in Martens and Provost [2014] to compute the counterfactual
explanations.6 This algorithm finds counterfactual explanations using a heuristic search that
requires the decision to be based on a scoring function, such as a probability estimate from a
predictive model [Fernández-Lorı́a et al., 2022]. The search algorithm then uses this scoring
function to first consider features that, when changed to their counterfactual values, reduce
the score of the predicted class the most. When a set of features is found that would alter
the outcome of the predicted class, these features are changed to their counterfactual value.
This change is done by replacing the original feature value with the median value of that
feature over the training data, which in the case of behavioral data will be 0 as this data is

5 Fernández-Lorı́a et al. [2022] detail why feature importance methods such as SHAP cannot be used
directly for tasks like this that depend on inhibiting the inference.

6 Python code available at https://github.com/ADMAntwerp/edc
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extremely sparse. For example, in the Facebook data, there is no page that is Liked by the
majority of users, so the median value of every feature will be 0. Counterfactual explanations
will then point to the Facebook Likes a user has to cloak (or simply unLike). An example
of such a counterfactual explanation could be: If you would not have liked the pages ‘The Tea
Party Patriots’ and ‘Sarah Palin’, you would not not have been predicted to be a Republican. A user
is considered to be successfully cloaked when his or her score falls below the predefined
threshold for drawing the inference in question [Chen et al., 2017]. For example, this might be
the model score threshold used for deciding to target content or an ad. The average size of a
counterfactual explanation, i.e., the average number of Likes that have to be cloaked to avoid
positive inference for each prediction task, can be found in Table 9.2.

Table 9.2: Model statistics. Positive rate indicates the percentage of (test set) instances that are
predicted as positive by the machine learned model. AUC is the model’s accuracy
on the task, as measured by the area under the ROC curve. Explanation size is the
average number of Likes that must be cloaked to avoid positive inferences.

Target variable
AUC
(in %)

Positive rate
(in %)

Explanation size
(avg.)

Male 95.2 5.13 8

Female 95.2 4.75 6

Homosexual 89.4 5.72 4

Lesbian 77.8 7.88 2

Democrat 77.3 4.58 3

Republican 82.1 4.79 6

metafeatures Dimensionality reduction methods are techniques to reduce a high
dimensional feature space into a lower-dimensional form. To group fine-grained features
into higher-level metafeatures, we use Non-Negative Matrix Factorization (NMF) [Lee and
Seung, 1999].7 We chose this dimensionality reduction technique because the non-negativity
constraint facilitates the interpretation of the extracted metafeatures, and it has been shown
to provide interpretable results for fine-grained data applications [Contreras-Piña and Rı́os,
2016, Ramon et al., 2021b].8 We create 50 metafeatures for the Facebook Likes and assign
each page to the metafeature or topic for which it has the highest weight to ensure mutual
exclusivity (each feature only belongs to one metafeature) [Ramon et al., 2021b]. An example
of two metafeatures is shown in Section 9.4.

Another option to create metafeatures is to use the categories that Facebook assigned to
the Facebook Like pages itself. These categories are more broad such as ‘Public Figure’
or ‘Musician/Band’. We will call these domain-based metafeatures, in line with Ramon et al.
[2021b], to contrast with the data-driven metafeatures produced using NMF. The different
datatypes used in the study are shown in Table 9.3. The results in Section 9.6 are generated

7 Non-Negative Matrix Factorization (NMF) is a dimensionality reduction technique that decomposes a
non-negative data matrix into two lower-dimensional, non-negative matrices. It is particularly useful for
identifying latent features in data, when we would like to be able to interpret the latent features.

8 Note that there exist many other techniques to generate the metafeatures, but we do not compare them in
this work, as our goal is to study whether using metafeatures can give better performance, rather than to
figure out what sort of metafeatures performs best.
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using the data-driven MF. We report the results from using domain-based metafeatures in
Appendix E.1.

Datatype In this study
Fine-grained feature (FG) Facebook Like

Metafeature (MF)
Data-driven MF (created by NMF)
Domain-driven MF (assigned by Facebook)

Table 9.3: Features that are used in the study

9.5 experimental set-up

We focus on cloaking the inferences gender (male and female), sexual orientation (homosexual
and lesbian) and political orientation (democrat and republican). We train Logistic Regression
models with ℓ2-regularization with the Scikit-learn library (Python). We chose Logistic
Regression as the literature has shown that this is one of the best performing classification
models for behavioral data [De Cnudde et al., 2020], and this type of model is commonly used
to train models on behavioral data [Agarwal et al., 2014, Perlich et al., 2014, Clark and Provost,
2019, Ramon et al., 2021a]. We use 66% of the data for training, and the remaining 33% for
testing. We also exclude users with fewer than 10 Likes and Facebook pages with fewer than
10 Likes. For fine-tuning the hyperparameters of the model, we perform a grid search on the
training set by using three-fold cross-validation, where we tune the regularization parameter
C of the ℓ2-LR model. As is common in targeted advertising, we assume that a positive
inference is drawn, which means that the user would be targeted, when the model assigns
the user a score which places him or her in a specified top quantile of the score distribution
produced by the prediction model [Chen et al., 2017, Perlich et al., 2014]. For online targeting,
a typical value for this quantile is between 90 and 100, and we base our threshold for positive
inference on the 95th percentile of the scores over the training set [Chen et al., 2017, Perlich
et al., 2014]. The chosen threshold will of course depend on the budget of the advertising
campaign, and can be adjusted based on campaign performance data and insights from initial
targeting efforts.9 The test set AUC and positive rate for each prediction task are reported in
Table 9.2.

9.5.1 Longer-term cloaking protection

We study longer-term cloaking protection using the methodology depicted in Figure 9.1. We
simulate a person’s behavior over time by first holding back 50% of Likes for each user at
random.10 After dropping these pages, we train a regularized logistic regression model for
every prediction task on the reduced training set. We use this model to make predictions on

9 Note that a limitation of this approach is that it will be impossible to use the targeting thresholds that are
used by mainstream social media platforms, given that this information is proprietary.

10 This means that the simulation uses the assumption that people’s behavior over time is stable in the short
run, as their liking behavior does not change—since the data does not include time stamps. Verifying this
on time-stamped data would be an avenue for follow-up research.
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USER LIKE A LIKE B .. LIKE M

User 1 1 0 0

User 2 1 1 0

..

User n 0 0 1

USER LIKE A LIKE B .. LIKE M

User 1 1 0 0

User 2 1 0 0

..

User n 0 0 0

Training set Test set

ML Model Predictions

Positively predicted 
instances

Cloak 
fine-grained features

Cloak 
meta-features

Evaluate:
Longer-term 

cloaking protection

Evaluate:
Longer-term

cloaking protection

Drop 50 % 
of liked pages

Negatively predicted 
instances

Gradually re-introduce 
dropped pages

Figure 9.1: Experimental set-up to measure the longer-term cloaking protection.

the instances in the reduced test set and select the positively predicted instances. For these
instances, we compare two cloaking strategies to inhibit positive inferences:

1. Cloaking the fine-grained features—i.e., the individual Likes. Specifically, we remove
all the Liked pages in the corresponding counterfactual explanation of that instance,
the same procedure used by Chen et al. [2017]. We call this strategy FG.

2. Cloaking the metafeatures, where we remove all the pages in the counterfactual expla-
nation of that instance and the other Liked pages that belong to the same metafeatures
as the pages in the counterfactual explanation. We call this strategy MF.

Using the second strategy leads to the number of Liked pages available for inference decreasing
substantially more than when using the first strategy, which we will show in Figure 9.6.

We simulate an individual’s behavior over time by gradually introducing the 50% of pages that
initially were held back. We measure the longer-term cloaking protection of both strategies by
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computing the percentage of positively predicted instances for which cloaking this targeting
task successfully inhibited future inferences for that same task and individual.

9.5.2 Trade-off between privacy and personalization

USER LIKE A LIKE B .. LIKE M

User 1 1 0 0

User 2 1 1 0

..

User n 0 0 1

Training set Test set

Evaluate:
Pearson 

correlation

ML Model
(Private trait)

PredictionsML Model
(Big 5 trait)

Positively predicted 
instances

Negatively predicted 
instances

Cloak 
fine-grained features

Cloak 
meta-features

No
Cloaking

Evaluate:
Pearson

correlation

Evaluate:
Pearson

correlation

Predictions for
Big 5 traits

Predictions for
Big 5 traits

Predictions for
Big 5 traits

Figure 9.2: Experimental set-up to measure the impact of cloaking a private trait on other
prediction tasks.

As discussed at the outset, although we may think myopically about a privacy-preserving
action when taking it, such actions can have spillover effects. In particular, cloaking data
in order to inhibit one inference can have effect on other inferences—possibly ones that we
would not want to inhibit. Therefore, consumers and platforms should be interested in what
effect hiding portions of someone’s digital traces has on the performance of other inference
tasks.
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Define X as the initial complete data, and Xc as the cloaked data. To what extent does
changing X to Xc affect the predictions of models predicting different target variables?

We show the set-up of our experiment in Figure 9.2. We examine the effect on a second set of
prediction tasks when applying cloaking to the sensitive-trait-prediction tasks we described
above. The new tasks involve predicting an individual’s ratings for the Big 5 personality traits,
the accuracy of which we measure using Pearson correlation, which is the most commonly
used measure of prediction accuracy for predicting these personality traits [Kosinski et al.,
2013, Azucar et al., 2018]. We choose the Big 5 traits as the set of tasks to assess spillover
effects because they cover broad aspects of personality and are very well understood. We
compare the effects of: not cloaking an individual’s data, cloaking fine-grained footprints
(FG), and cloaking metafeatures (MF).11

9.6 results

9.6.1 Longer-term cloaking protection

Let’s consider first a single individual, whom we will call John, who has been using a
particular technology platform and thereby leaving digital footprints. The platform’s political-
orientation model gives him a high enough score as a Republican in order for him to receive
corresponding political ads. John no longer wants to receive advertisements related to his
political orientation, maybe because he no longer identifies as such, or he wants to keep his
political orientation private, or he simply finds these advertisements annoying. We want to
see if, as he subsequently continues his usual behavior, and thereby continues to Like pages,
John gets targeted as Republican again after using the cloaking device described by Chen
et al. [2017].

We represent John in Figure 9.3. As described above, we simulate the point where the model
uses half of his digital traces (88 Likes) as the current footprint data, and the point with all his
digital footprints as his future data (175 Likes). Using the current data, John is targeted as a
Republican.12 John wants to inhibit this inference and receives the following advice (based
on counterfactual explanations to bring him under the threshold): If you would hide the Likes
‘Conservative’ and ‘Chick-fil-A‘, you would no longer be targeted as Republican. After cloaking these
pages, John has 86 Likes remaining and is no longer targeted as Republican.13

We move on to the future point. John, who has remained active, has Liked 87 new pages
(essentially doubling his digital traces). Even though the two Liked pages from his initial
counterfactual explanation are still cloaked, John gets re-predicted as Republican due to his
new digital footprints.14 This illustrates that cloaking is not necessarily robust in the longer

11 The point here is not that inferences for the Big 5 traits are not privacy invasive; this of course will depend
on the individual. Rather, the point simply is to examine the effects of cloaking some potentially sensitive
inferences on other inferences that are broadly applicable.

12 Prediction score = 0.161, which is above the targeting threshold of 0.148.
13 Prediction score = 0.140, which is below the threshold of 0.148.
14 His prediction score on the full data is 0.260; after cloaking the two Likes in his explanation, his prediction

score is 0.225. This above the targeting threshold of 0.194. The threshold is different now because after
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JOHN SMITH
John is predicted to be a Republican based on his Facebook likes. He does not want this 
information to be linked to his profile so decides to use a cloaking strategy.

CLOAKING INDIVIDUAL LIKES CLOAKING  METAFEATURES

Feature Cloaked

Conservative 1

Chick-fil-A 1

Lila Rose 0

Tim Hawkins 0

The Lord of The Rings 0

… …

Feature Metafeature Cloaked

Conservative A 1

Chick-fil-A B 1

Lila Rose A 1

Tim Hawkins B 1

The Lord of The Rings C 0

… … …

CURRENT DATA (88 likes, 86 remaining after cloaking) CURRENT DATA (88 likes, 72 remaining after cloaking)

Feature Cloaked

Conservative 1

Chick-fil-A 1

Lila Rose 0

Tim Hawkins 0

The Lord of The Rings 0

Sarah Palin 0

Pro-Life Rocks 0

The Tea Party Patriots 0

… …

Feature Metafeature Cloaked

Conservative A 1

Chick-fil-A B 1

Lila Rose A 1

Tim Hawkins B 1

The Lord of The Rings C 0

Sarah Palin A 1

Pro-Life Rocks A 1

The Tea Party Patriots A 1

… ... …

FUTURE DATA (175 likes, 173 remaining after cloaking) FUTURE DATA (175 likes, 146 remaining after cloaking)

Result: John is no longer predicted to be a 
Republican

Result: John is no longer predicted to be a Republican

Result: John is predicted as a Republican again Result: John is still not predicted to be a Republican

*

**

**

*

*

**

*

Figure 9.3: Example of John. The column Cloaked signals the pages that are cloaked for each
strategy and point in time.
*: Original features cloaked to ensure John is not predicted as republican.
**: Additional features cloaked because they are part of same metafeature as the
original features.

term, as individuals continue to leave new digital footprints. (Note that Chen et al. pointed
out as a limitation of the original cloaking design that if cloaking does not also cover closely
associated features, one might end up being targeted again in the future [Chen et al., 2017].)

Cloaking based on metafeatures is intended to (partially) address this lack of robustness.
Recall that cloaking metafeatures also cloaks other footprints that are (estimated to be) closely
related to those suggested by the counterfactual explanation. So for our current example,
the Facebook page ‘Conservative’ belongs to metafeature A, and the Facebook page ‘Chick-
fil-A’ belongs to metafeature B. Typically, metafeatures such as these15 are interpreted by
looking at the top weighted fine-grained features for each metafeature [Wang and Zhang,
2012, O’callaghan et al., 2015, Contreras-Piña and Rı́os, 2016]. These are shown in Table 9.4.

Metafeature A clearly is related to right-wing politics, and metafeature B to Christianity.
Metafeature cloaking hides not only the Likes (fine-grained features) in the counterfactual

everyone in the dataset has acquired new digital traces, the scores for the top 5th percentile will be
different.

15 Specifically, those created by embedding the original data in a lower dimensional space.
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Table 9.4: Interpretation of two metafeatures generated with NMF by showing the 10 features
with the highest coefficients for each metafeature.

Metafeature A Metafeature B

Being Conservative The Bible
Sarah Palin Jesus Daily
Conservative “I’m proud to be Christian” by Aaron Chavez
Glenn Beck Casting Crowns
Fox News Chris Tomlin
Tea Party Patriots Third Day
Mitt Romney TobyMac
FreedomWorks Jeremy Camp
Sean Hannity Switchfoot
John McCain Skillet Music

explanation, but also all the Likes that belong to the same metafeature as each of these Likes.
When we also cloak all the Likes in the associated metafeatures, 14 additional pages are
cloaked. These include ‘Tim Hawkins’ and ‘Lila Rose’.16 Subsequently, when John Likes
pages in the future, the new pages associated with those same metafeatures will be hidden as
well. For John, this leads to also hiding pages such as ‘Sarah Palin’, ‘Tea Party Patriots’ and
‘Pro-Life Rocks’. In total, 29 new pages are cloaked in the future and the result is that John
will not be predicted as Republican even after leaving his future footprints.17

Moving beyond the specific example of John, we compare the longer-term cloaking protection
of the two cloaking strategies in hiding gender, political orientation and sexual orientation.
As shown in Figure 9.4, cloaking the fine-grained features offers less protection over time than
cloaking the metafeatures. When using only the fine-grained features, people get targeted
again relatively quickly. For example, when cloaking male, after adding 10% new Likes, only
57.6% of instances are still successfully cloaked. After adding all their new Likes (and thus
doubling their digital traces), only 21.5% are still successfully cloaked. On the other hand,
when we cloak the metafeatures instead, we see that 86.6% are still successfully cloaked when
the digital traces are doubled.

We see the same patterns when cloaking female and political orientation (Democrat and
Republican). Sexual orientation, especially lesbian, is more effectively cloaked over time than
other tasks when using fine-grained features; cloaking the metafeatures is still a more effective
longer-term cloaking strategy, but the difference between the strategies is smaller.18 We
conjecture that this could be related to the more severe class imbalance: there are fewer people
whose true target label is lesbian in the targeted population (True Positives).

16 This brings the prediction score further down to 0.120.
17 The prediction score on the future data after cloaking the metafeatures is 0.126, which is well below the

threshold of 0.194.
18 We see that for the prediction task of lesbian, for a very small number of individuals, cloaking the

metafeatures instead of the fine-grained can lower the number of successfully cloaked individuals, even
without adding additional data.
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Figure 9.4: Longer-term cloaking protection. We measure the longer-term cloaking protection
as the percentage of positively predicted instances for which cloaking this targeting
task successfully inhibits future inference. The population taken into account
constitutes the intersection of individuals predicted as positive when using 1/2 of
the data, and when using the full data. We measure the evolution over time on the
x-axis by gradually re-adding the dropped pages.

We analyze whether there is a difference in longer-term cloaking protection between correctly
predicted people (True Positives) and people who were incorrectly predicted as exhibiting
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the target trait (False Positives). Intuitively, we might think that people who were correctly
inferred to have the predicted trait would be more likely to reveal themselves again over time.
In Figure 9.5a, one can observe that the longer-term cloaking protection of True Positives is

(a) (b)

Figure 9.5: Is there a difference in longer-term cloaking protection between True Positives
and False Positives? We measure this at the point where the digital traces have
doubled.

in fact lower when using the FG cloaking strategy. This aligns with intuition—that the True
Positives have higher likelihood of repeating behaviors that could result in the same prediction.
This difference almost disappears when we assess the longer-term cloaking protection with
metafeatures (Figure 9.5b).

We also present the results of two additional cloaking strategies in Appendix E.1. The first
option involves using the categories assigned by Facebook to the Liked pages themselves
(domain-based metafeatures). The advantage of using domain-based metafeatures is that
they are readily available and by design comprehensible. However, as shown in Figure E.10,
the data-driven metafeatures created by NMF are more effective in avoiding inferences over
time, and in addition our analysis reveals that on average they hide fewer pages than the
domain-based metafeatures. We conjecture that this is because they more accurately capture
general patterns of behavior. For example, when examining the metafeatures in Table 9.4, we
see that they are strongly associated with right-wing politics and Christianity, which are both
highly predictive of being a Republican. On the other hand, domain-based metafeatures such
as ‘Public Figure’ may be too general to capture these specific patterns.

A different strategy for increasing the robustness of cloaking involves adding a tolerance level
to the initial counterfactual explanations. This means that instead of using the threshold
of the decision-making system to generate the counterfactual explanations, for cloaking we
employ a lower threshold. It is to be expected that when we bring someone just below the
threshold (which is what counterfactual explanations do), the chances of them crossing the
threshold again are relatively high. Therefore, we explore bringing individuals not only below
the 95% threshold but also below the 90th percentile (while still using the 95th percentile as
the threshold for prediction). This approach should provide an additional layer of protection
from future targeting. As depicted in Figure E.11, it does indeed offer extended protection
initially, but on average, the protection of the cloaking strategy still diminishes rapidly as
more Likes are accumulated over time. This strategy has no impact on the pages that will
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be cloaked in the future, and this is clearly evident in the results. This highlights one of the
major advantages of using metafeatures as the basis of a cloaking strategy.

9.6.2 Trade-off between privacy and personalization

Figure 9.6: What percentage of people’s digital footprints are hidden with each cloaking
strategy? We measure loss in personalization by the average % of someone’s
Likes that have to be removed to cloak a trait, and privacy protection as the
level of longer-term cloaking protection at the point when the individual’s digital
footprints are doubled.

Cloaking metafeatures hides larger portions of an individual’s digital footprints, resulting in
increased privacy protection but potentially losing the benefits of personalization. We assume
users do not want to lose all personalization; otherwise, an individual could simply cloak all
his Liked pages and no inferences would be made (this could still be a viable option for some
users, although this will be a bad outcome from the perspective of the advertising platform).
Figure 9.6 illustrates that cloaking metafeatures results in a substantial increase in privacy, but
also in a substantial increase in the number of pages that are being hidden than when using
fine-grained features. In the example of John, after cloaking the fine-grained features, he has
173 Likes left for personalization, while after cloaking the metafeatures, he only has 149 Likes
left. Therefore it is important to assess the impact of cloaking an individual’s sensitive traits
on the ability to predict other things about the individual. To verify whether the additional
protection from the MF strategy is not just due to the removal of more features, we also
test out a random strategy. In this setting, we remove the features from the counterfactual
explanation, and in addition remove additional features—chosen at random–to total the same
number of features as removed by the metafeature cloaking strategy. Figure 9.6 shows that this
random strategy (visualized in black) leads to some additional protection over the fine-grained
strategy, but to significantly less protection than the metafeatures strategy for every prediction
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task, while the same number of Likes are removed. We note that the difference is especially
large for the gender (male and female) and the political (democrat and republican) prediction
tasks.

(a) Male (b) Female

(c) Homosexual (d) Lesbian

(e) Democrat (f) Republican

Figure 9.7: Effect of cloaking on the predictive performance of the Big 5 traits.

We follow the set-up described in Section 9.5.2 to measure the impact of cloaking sensitive
traits on the predictive performance of other prediction tasks (in this case the Big 5 traits).
Figure 9.7 shows that the impact of cloaking metafeatures on the predictive performance of
the Big 5 traits is larger on average than the impact of cloaking fine-grained features. For
both strategies, the impact is largest when cloaking gender, followed by political orientation.
The impact of both cloaking strategies on the predictive performance seems fairly small in
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most cases, but we cannot truly judge the losses in value (corresponding to the small losses in
predictive power) in a study such as this.

9.7 discussion and conclusion

The digital traces we leave every day enable those who collect them to make intimate
inferences about who we are [Kosinski et al., 2013]. While such inferences might lead to
desired personalization outcomes, they also pose a considerable threat to individuals’ privacy
and self-determination. In this paper, we examined the effectiveness and impact of two related
privacy-enhancing cloaking strategies that conceal a portion of users’ digital footprints from
inference procedures, in order to limit the ability of platforms to make predictions about
underlying sensitive and psychological traits. Although previous work has shown that such
cloaking mechanisms (Chen et al.’s specifically) can be effective in the short-term [Chen
et al., 2017], our findings suggest that the corresponding cloaking effectiveness can decline
rapidly over time. That is, as people continue to generate traces after the cloaking has
been implemented, the system often can draw those same inferences from the new data.
We introduce a new cloaking strategy—one that is based on cloaking metafeatures rather
than individual footprints—and show how this strategy offers better longer-term privacy
protection.

Our findings also highlight the potential trade-off between privacy protection and personalized
services. That is, while individuals might be interested in cloaking certain aspects of their
identity (e.g., their sexual orientation), they might appreciate the benefits they receive from
sharing other aspects (e.g., their openness). We show that cloaking a particular trait likely
has spillover effects on other traits that were not intentionally targeted. Although the trade-
off between personalization and privacy is not a new idea [Garcia-Rivadulla, 2016], we are
not aware of empirical analyses of the actual trade-offs introduced by privacy-enhancing
techniques like cloaking.19

The extent to which trading off personalization for enhanced privacy protection is desirable
will depend on the specific context and preferences of the user [Westin, 2003]. While some
users might be willing to forsake targeted advertising for higher levels of privacy, others
might favor convenience and service over the ability to conceal potentially unwanted aspects
of their identity. The same is true for companies who might trade-off the ability to get highly
granular consumer insights on all levels for a higher likelihood that consumers will stay on
the platform and refrain from opting out of tracking and personalization altogether. We argue
that different forms of cloaking can provide solutions that operate between the two extremes.
On the one hand, they allow companies to keep collecting large amounts of data and monetize
it within the boundaries set by users. On the other hand, users gain control over the level
of personalization they feel comfortable with, while having the ability to inhibit unwanted
inferences.

19 Prior work has shown a trade-off between privacy protection and advertising effectiveness [Goldfarb
and Tucker, 2011], and Cloarec et al. [2024] investigate this trade-off on an eHealth platform, but to our
knowledge, there has not been research that evaluates this at the level of a specific prediction task.
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9.7.1 Practical Implications

One of the main practical implications of this research is to extend the options that could be
available for individuals to have control when it comes to protecting their privacy. While data
protection regulations such as the General Data Protection Regulation (GDPR) in Europe or the
California Consumer Privacy Act (CCPA) have pushed for increased consumer control [Harris,
2020, Van Ooijen and Vrabec, 2019], there is a growing body of research suggesting that—
without any support—individuals struggle to act as responsible stewards of their personal
data [Garcia-Rivadulla, 2016]. Research on the privacy paradox, for example, reveals a stark
discrepancy between a user’s expressed concerns regarding online privacy and their actual
behavior when sharing personal information [Barth and De Jong, 2017, Kokolakis, 2017].
Despite expressing concerns about their privacy, individuals are often willing to share personal
information online in exchange for personalized recommendations [Barth and De Jong, 2017].
For instance, even though 93% of USA citizens consider it important to maintain control
over who can access their data, only a small fraction of people actually read the privacy
policies of the services collecting their data [Matz et al., 2020, Madden and Rainie, 2015,
Solove, 2012]. One (obvious) reason why consumers do not succeed in achieving desired
levels of privacy is their lack of knowledge about how their data is actually being collected
and used [Acquisti et al., 2020]. Related is the acceptability gap, which shows that users are
more accepting of personalized services than of the collection of personal data required for
these services [Kozyreva et al., 2021]. They overlook the relationship between them, and as a
result, fail to engage in an adequate comparison of the value received from personalization
to the value of keeping data private Kozyreva et al. [2021]. As a consequence, most people
tend to overvalue the short-term benefits of actions, such as using an app, over the long-term
privacy risks, which are delayed and intangible [Acquisti, 2004].

Complicating matters further, research has suggested that people’s apparent inaction re-
garding their privacy is also the result of them feeling that they have no control over the
situation, and as a consequence simply give up (a phenomenon researchers have called digital
resignation) [Acquisti et al., 2020, Draper and Turow, 2019]. Finally, it may simply be that
the perceived cost of protecting privacy is simply too high: either not using a service or
possibly navigating an ultra-complicated web of documents and settings. In all of these
cases, providing transparency into how data is used and control over its use seems vital for
consumer welfare and, in particular, for users to make informed privacy decisions [Matz et al.,
2020]. Both privacy and transparency are essential prerequisites for establishing a trustworthy
AI system [Liu et al., 2022].

In this paper, we analyze and extend a tool that could help guide individuals in making
choices on their privacy settings online. Since the implications of sharing personal data are
often difficult to anticipate, let alone to trade off for immediate convenience rewards, we need
easy ways for people to move the dial between oversharing and undersharing. Cloaking offers
such a lever and might encourage platforms to offer more mechanisms for users to control
data-driven inferences and personalization (including targeted advertising) either through
editing of the data items—the digital footprints—that are stored about them or through an
explicit cloaking mechanism that hides footprints from the AI inference systems specifically.

Notably, the cloaking methodology depends on the cooperation of the platforms that collect
this kind of data (like Facebook, Google, Spotify). While platforms might try to resist the
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introduction of technology that limits their ability to commercialize consumer insights, we
argue that introducing increased consumer control in the form of cloaking could eventually
benefit them in the long-run. As stricter data protection regulations are introduced around
the world—often empowering consumers to revoke access to their personal data—platforms
might be forced to provide sufficient transparency and control in order to retain users and
prevent them from opting out of data collection entirely. Moreover, a gradual shift to higher
levels of platform-supported user control might prevent legislators from introducing more
paternalistic regulatory actions.

9.7.2 Limitations

Of course there are limitations to this study. First of all, note that we use an archival dataset
of Facebook Likes, which was collected until 2012. This raises the question how valid these
findings remain today. Note that the sociodemographics of Facebook users is different from
that of users of Instagram or Tiktok, and from the general population [Cavalcante, Kaylan,
2023, Ribeiro et al., 2020]. Additionally, we only look at Facebook Likes, while Kim and Yang
[2017] shows that other patterns of behavior on Facebook such as following, commenting or
sharing are distinctly different from Facebook Likes and are driven by different things. It
would be an interesting avenue of future research to repeat this study on a more recent dataset
of Facebook traces (not necessarily Likes) or on data from other platforms such as Tiktok or
Instagram.

Another limitation that we already shortly addressed in Section 9.5.1, is the non-temporality
of the data. Our simulation assumes that people’s behavior is stable over time, but it would
be interesting to conduct this analysis and verify the results on actual time-stamped data. The
metafeatures would have to be updated continuously, when new Like pages are created, and
users Like more things. However, from the viewpoint of the platform, this would still be a lot
more efficient than recloaking every undesired inference once new pages and Likes become
available.

A last potential limitation in our methodology is the use of static thresholds on the output
score from the machine learned models. To our understanding, the most common practice
is to use fixed thresholds. However, thresholds are changed for various reasons, and more
sophisticated advertising systems may dynamically adjust targeting thresholds—for example,
to allocate a budget intelligently over the budget period, to deal with time-of-day differences,
etc. In addition, we cannot know the targeting thresholds that are actually in place, as
this information is proprietary. For our experiments, we base our threshold for positive
inference on the 95th percentile of the scores over the training set, which is in line with
the literature [Chen et al., 2017, Perlich et al., 2014]. In the case of dynamic thresholds, the
threshold used for cloaking would have to be considered carefully. One would want to take
into account the potential threshold range and cloak based on some notion of the expected
minimum threshold that might be used.
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10
Conclusion

This final Chapter summarizes the main empirical and methodological contributions from
this thesis, discusses some general limitations, and presents directions for future research.

10.1 main findings

“Technology is neither good nor bad, nor is it neutral.”

Kranzberg’s First Law of Technology

In this thesis, I explore the potential impact that Explainable AI techniques can have on society,
highlighting the dual nature of their effects. I want to emphasize that these techniques can
both bring positive advancements and harbor potential risks, depending on the application.
My research discusses both these effects

First, in Chapter 4, I investigate the necessity of Explainable AI by comparing the performance
of black-box and white-box models. My findings indicate that, on average, black-box models
exhibit superior performance; however, the performance difference is often marginal. Hence,
I advocate for the use of white-box models in contexts where transparency is considered
critical, while reserving black-box models and explainable AI techniques for other settings.

My research also highlights potential dangers, as discussed in Chapters 5 and 8. In Chapter 5,
I demonstrate the potential of manipulation arising from the abundance of possible expla-
nations for each situation. This leads to considerable influence for the explanation provider,
and I explore some scenarios in which this might lead the provider to behave unethically.
Additionally, Chapter 8 focuses on the privacy implications that counterfactual explanations
may entail, potentially revealing sensitive information about data subjects.

However, amidst these challenges, I also identify some benefits of employing Explainable AI,
and counterfactual explanations in specific in Chapters 6 and 9. In Chapter 6, I illustrate how
counterfactual explanations can serve as a tool for assessing bias in machine learning models,
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thereby contributing to avoiding discriminatory outcomes. In Chapter 9, I analyze how digital
users can use XAI-tools to avoid undesired inferences based on the behavioral traces they
leave behind. More in general, in Chapter 7, I note that the impact of bias mitigation methods
is very opaque, and that more transparency is needed in their operational dynamics and who
they impact.

In conclusion, my thesis highlights the significance of Explainable AI and transparency in
Machine Learning as powerful tools with the potential to both advance and harm society.
Through my evaluation of the challenges, and opportunities, I advocate for responsible and
context-aware deployment of ML and XAI techniques.

10.2 limitations

While I address the limitations specific to each study within each chapter, I will also discuss
some general limitations of my studies and the overarching research domain here.

First off, the majority of my work is positioned within the realm of XAI, and it is important to
recognize that many of the techniques described are far from perfect and that using them can
create additional challenges. A significant concern within XAI is the mentioned ’disagreement
problem,’ where the multiplicity of potential explanations for a single phenomenon under-
mines the reliability of any given explanation. This issue, detailed in Chapter 5, suggests that
the selection of explanations could be biased, leading to a preference for justifications that
align with the selector’s views or intentions [Bordt et al., 2022]. Additionally, the phenomenon
of the ’anchoring effect,’ as explored by Chu et al. [2020] presents another challenge. Their
research demonstrates that individuals exposed to arbitrary explanations from flawed machine
learning models tend to develop unwarranted trust in these models, irrespective of their
validity. These concepts highlight that we need to remain skeptical when using XAI.

Secondly, the aspiration to mitigate complex sociological dilemmas through AI introduces the
risk of ’techno-solutionism,’ where technology is perceived as a universal remedy [Morozov,
2013]. This perspective fails to recognize that issues such as transparency, fairness, and
privacy are deeply entrenched in societal and systemic structures, and thus, cannot be fully
resolved through technological means alone. Although the methods I describe in my thesis are
based in the field of computer science, for their application collaboration with legal experts,
social scientists, policymakers, and other relevant fields is needed. Many of these decisions
should not be up to data scientists alone, and I emphasize the need for ongoing societal and
policy engagement. It is also necessary to question whether it is even appropriate to use an
algorithm in the first place; in some settings, we might not want to relinquish the control to a
black-box model. However, it is equally important to note that idealizing human judgment
as a superior alternative ignores the inherent biases and complexities characterizing human
decision-making processes. One should carefully consider whether to opt for human or
algorithmic decision-making, as both can be flawed. The best approach may vary depending
on the specific application.

Lastly, specific to the field of fairness, the frameworks in both Chapter 6 and Chapter 7 assume
access to a static, sensitive attribute. In reality, access to these attributes might be hard to
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obtain, as legal and ethical constraints may impose constraints on obtaining or utilizing certain
sensitive information [Haeri and Zweig, 2020, Veale and Binns, 2017, Johnson, 2021, Holstein
et al., 2019]. Additionally, as society is evolving, some of these sensitive attributes are no
longer static. Take for example gender: individuals may change gender or may not identify as
one of the binary gender categories. This is an obvious limitations of both my studies in the
fairness domain but also opens up opportunities for future research, which I will discuss in
Section 10.3.

10.3 future research directions

Given the relevance of ethical AI and the continuous emergence of new techniques, the
potential for future research in this domain is extensive. I foresee several directions for future
research (again besides specific questions that are mentioned in each study separately).

First, building on the contributions presented in Chapter 5, there are numerous possibilities
for further investigation into the disagreement problem. One potential avenue is to explore
the extent to which the non-deterministic nature of the explanation algorithms influences
the obtained results. It would also be interesting to investigate the factors that contribute
to disagreement, such as specific data instances or machine learning models. For instance,
analyzing whether certain models yield greater diversity in explanations or if data instances
near decision boundaries result in increased disagreement would be intriguing research
inquiries. Furthermore, besides investigating the issue further, it is also worthwhile to think
about potential solutions. It would be useful for regulators if there would be a technique
that could assess how likely it is that an explanation is manipulated, and not generated in a
standard manner. Developing a framework or methodology to assess this would be a valuable
research contribution.

Second, most of my research focuses on applications of tabular data. Only in Chapter 9,
I use a behavioral dataset (Facebook likes). Working with tabular or behavioral datasets
leads to very different challenges, as tabular datasets are structured datasets with a limited
number of attributes that are typically consciously collected, while behavioral datasets portray
a picture of people’s behavior over time and are generated automatically though tracking
systems [De Cnudde et al., 2019]. In the future, I would like to extend some of my findings to
this type of datasets as well. Addressing fairness in this domain present unique challenges
and has remained largely unexplored. Given the complexity of contextual biases in behavioral
data, transparency mechanisms will be of vital importance to evaluate them.

A third challenge I aim to address in the fairness area is linked to one of the limitations I
just mentioned, namely scenarios where there is no access to the sensitive attribute . Most
existing fairness metrics and mitigation strategies presuppose the availability of this attribute,
but in practical situations this assumption may not hold. Moreover, as society evolves, new
forms of discrimination can emerge beyond the traditionally protected attributes [Wachter,
2022]. To tackle this issue, I aim to develop solutions that do not rely on explicit access to
a sensitive attribute. My approach would include various techniques, including clustering,
uncertainty estimation, and explainable artificial intelligence (XAI) methods, to identify and
address discriminated subgroups, even when the sensitive attribute is unobservable or rapidly
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changing. The goal of this research is to enhance the fairness and equity of algorithms in
situations where traditional fairness metrics fall short due to a lack of access to the sensitive
attribute.

A last research area that I want to move forward in, is the direction of ’Fair AI In Practice’.
As outlined in Chapter 7, many of the bias mitigation methods result in scenarios that
do not align with real-world applications. I want to contribute to frameworks that can be
readily applied by practitioners. One of the research goals I have here is studying the cost
of resource-constrained fairness. In most applications of fair machine learning, the resources
are approximately fixed (think about student admission, healthcare screening or hiring), and
current estimates of the cost do not take this into account. Being fair in a resource-constrained
context entails redistributing resources from privileged groups to protected groups, which
will be associated with costs and benefits for both groups. Additionally, I would like to
conduct various case studies where I examine my findings in real-world applications, starting
from the data collection to the implementation of the machine learning model.
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Enric Junqué de Fortuny, David Martens, and Foster Provost. Predictive modeling with big
data: is bigger really better? Big data, 1(4):215–226, 2013.

Faisal Kamiran and Toon Calders. Data preprocessing techniques for classification without
discrimination. Knowledge and information systems, 33(1):1–33, 2012.

Faisal Kamiran and Indrė Žliobaitė. Explainable and non-explainable discrimination in
classification. In Discrimination and Privacy in the Information Society, pages 155–170. Springer,
2013.

Faisal Kamiran, Asim Karim, and Xiangliang Zhang. Decision theory for discrimination-aware
classification. In 2012 IEEE 12th international conference on data mining, pages 924–929. IEEE,
2012.
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Appendices

a the cost of comprehensibility

a.1 Materials

a.1.1 Datasets

The used datasets can be found in Table A.1.

Table A.1: Used datasets

Dataset # observations # features Imbalance

adult 48842 14 0.27

agaricus lepiota 8145 22 0

analcatdata aids 50 4 0

analcatdata asbestos 83 3 0.01

analcatdata bankruptcy 50 6 0

analcatdata boxing1 120 3 0.09

analcatdata boxing2 132 3 0.01

analcatdata creditscore 100 6 0.21

analcatdata cyyoung8092 97 10 0.26

analcatdata cyyoung9302 92 10 0.34

analcatdata fraud 42 11 0.15

analcatdata japansolvent 52 9 0

analcatdata lawsuit 264 4 0.73

appendicitis 106 7 0.36

australian 690 14 0.01

backache 180 32 0.52

biomed 209 8 0.08

breast cancer wisconsin 569 30 0.06

Continued on next page
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Table A.1 continued from previous page

Dataset # observations # features Imbalance

breast cancer 286 9 0.16

breast w 699 9 0.1
breast 699 10 0.1
buggyCrx 690 15 0.01

bupa 345 5 0

chess 3196 36 0

churn 5000 20 0.51

clean1 476 168 0.02

clean2 6598 168 0.48

cleve 303 13 0.01

coil2000 9822 85 0.78

colic 368 22 0.07

corral 160 6 0.02

credit a 690 15 0.01

credit g 1000 20 0.16

crx 690 15 0.01

diabetes 768 8 0.09

dis 3772 29 0.94

flare 1066 10 0.43

GAMETES Epistasis 2 Way 1000atts
0.4H EDM 1 EDM 1 1

1600 1000 0

GAMETES Epistasis 2 Way 20atts
0.1H EDM 1 1

1600 20 0

GAMETES Epistasis 2 Way 20atts
0.4H EDM 1 1

1600 20 0

GAMETES Epistasis 3 Way 20atts
0.2H EDM 1 1

1600 20 0

GAMETES Heterogeneity 20atts
1600 Het 0.4 0.2 50 EDM 2 001

1600 20 0

GAMETES Heterogeneity 20atts
1600 Het 0.4 0.2 75 EDM 2 001

1600 20 0

german 1000 20 0.16

glass2 163 9 0

haberman 306 3 0.22

heart c 303 13 0.01

heart h 294 13 0.08

heart statlog 270 13 0.01

hepatitis 155 19 0.34

Hill Valley with noise 1212 100 0

Hill Valley without noise 1212 100 0

horse colic 368 22 0.07

house votes 84 435 16 0.05

hungarian 294 13 0.08

hypothyroid 3163 25 0.82

ionosphere 351 34 0.08

irish 500 5 0.01

kr vs kp 3196 36 0

Continued on next page
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Table A.1 continued from previous page

Dataset # observations # features Imbalance

labor 57 16 0.09

lupus 87 3 0.04

magic 19020 10 0.09

mofn 3 7 10 1324 10 0.31

molecular biology promoters 106 57 0

monk1 556 6 0

monk2 601 6 0.1
monk3 554 6 0

mushroom 8124 22 0

mux6 128 6 0

parity5 32 5 0

parity5+5 1124 10 0

phoneme 5404 5 0.17

pima 768 8 0.09

postoperative patient data 88 8 0.21

prnn crabs 200 7 0

prnn synth 250 2 0

profb 672 9 0.11

ring 7400 20 0

saheart 462 9 0.09

sonar 208 60 0

spambase 4601 57 0.04

spect 267 22 0.35

spectf 349 44 0.21

threeOf9 512 9 0

tic tac toe 958 9 0.09

tokyo1 959 44 0.08

twonorm 7400 20 0

vote 435 16 0.05

wdbc 569 30 0.06

xd6 973 9 0.11

a.1.2 Dataset properties

For the analysis of the dataset properties, we use the metafeature toolbox of Alcobaba
[Alcobaça et al., 2020], that automatically extracts metafeatures out of the dataset. The
metafeatures of this toolbox are based on those described in [Rivolli et al., 2018]. We select the
metafeatures out of the groups: general, statistical, info-theory and complexity. The general
metafeatures represent the basic information about the dataset. They capture metrics such as
the number of instances, attributes, or other information about the predictive attribute [Rivolli
et al., 2018]. The statistical measures represent information about the data distribution like
the number of outliers, the variance, the skewness or the correlation in the data , and others
[Rivolli et al., 2018]. The information-theoretic measures capture the amount of information
present in the data such as the joint entropy, class entropy, class concentration, and others
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[Rivolli et al., 2018]. The last group of measures we include is the group of information-
complexity based on [Lorena et al., 2019]. We do not include the clustering, landmarking
or model-based metafeatures because they already fit a model to the dataset and extract
information from this model. The used dataset properties can be seen in Table A.2.1

Metafeature name Description

AttrConc (mean) Concentration coef. of each pair of distinct attributes.
AttrEnt (mean) Shannon’s entropy for each predictive attribute.

AttrToInst The ratio between the number of attributes.
C1 The entropy of class proportions.
C2 The imbalance ratio.

CanCor (mean) Canonical correlations of data.
CatToNum The ratio between the number of categoric and numeric features.

ClassConc (mean) Concentration coefficient between each attribute and class.
ClassEnt Target attribute Shannon’s entropy.
ClsCoef Clustering coefficient.

Cor (mean) The absolute value of the correlation of distinct dataset column pairs.
Cov (mean) The absolute value of the covariance of distinct dataset attribute pairs.

Density Average density of the network.
Eigenvalues (mean) Eigenvalues of covariance matrix from dataset.

EqNumAttr Number of attributes equivalent for a predictive task.
F1 (mean) Maximum Fisher’s discriminant ratio.

F1v (mean) Directional-vector maximum Fisher’s discriminant ratio.
F2 (mean) Volume of the overlapping region.
F3 (mean) Feature maximum individual efficiency.
F4 (mean) Collective feature efficiency.

FreqClass (mean) Relative frequency of each distinct class.
Gmean (mean) Geometric mean of each attribute.

Gravity Distance between minority and majority classes center of mass.
Hmean (mean) Harmonic mean of each attribute.
Hubs (mean) Hub score

InstToAttr Ratio between the number of instances and attributes.
IqRange (mean) Interquartile range (IQR) of each attribute.
JointEnt (mean) Joint entropy between each attribute and class.
Kurtosis (mean) Kurtosis of each attribute.

L1 (mean) Sum of error distance by linear programming.
L2 (mean) OVO subsets error rate of linear classifier.
L3 (mean) Non-Linearity of a linear classifier.
LhTrace Lawley-Hotelling trace.

Lsc Local set average cardinality.
Mad (mean) Median Absolute Deviation (MAD) adjusted by a factor.
Max (mean) Maximum value from each attribute.

Mean (mean) Mean value of each attribute.
Median (mean) Median value from each attribute.

Min (mean) Minimum value from each attribute.
MutInf (mean) Mutual information between each attribute and target.

N1 Fraction of borderline points.
N2 (mean) Ratio of intra and extra class nearest neighbor distance.
N3 (mean) Error rate of the nearest neighbor classifier.
N4 (mean) Non-linearity of the k-NN Classifier.

NrAttr Total number of attributes.

1 Based on the list: https://pymfe.readthedocs.io/en/latest/auto pages/meta features description.html
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NrBin Number of binary attributes.
NrCat Number of categorical attributes.

NrClass Number of distinct classes.
NrCorAttr Number of distinct highly correlated pair of attributes.

NrDisc Number of canonical correlation between each attribute and class.
NrInst Number of instances (rows) in the dataset.

NrNorm Number of attributes normally distributed based in a given method.
NrNum Number of numeric features.

NrOutliers Number of attributes with at least one outlier value.
NsRatio Noisiness of attributes.

NumToCat Number of numerical and categorical features.
Ptrace Pillai’s trace.

Range (mean) Range (max - min) of each attribute.
RoyRoot Roy’s largest root.

Sd (mean) Standard deviation of each attribute.
SdRatio Statistical test for homogeneity of covariances.

Skewness (mean) Skewness for each attribute.
Sparsity (mean) (Possibly normalized) sparsity metric for each attribute.

T1 (mean) Fraction of hyperspheres covering data.
T2 Average number of features per dimension.
T3 Average number of PCA dimensions per points.
T4 Ratio of the PCA dimension to the original dimension.

TMean (mean) Trimmed mean of each attribute.
Var (mean) Variance of each attribute.
WLambda Wilks’ Lambda value.

Table A.2: Dataset properties used in the analysis

a.2 Extra results on accuracy

Figure A.1: Critical difference diagram of the comparison of classifiers for accuracy. Models
that are not connected by the bold line have a significant difference in performance
(at a 5% level with the Nemenyi test).
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(a) Non-linearity of the cost of comprehensibility
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(b) Non-linearity of the cost of explainability

Figure A.2: Comparing black box and white box models. For both plots, the datasets are
ordered according to the gap in accuracy between the best black box and the best
native (left figure) or surrogate (right) white box model (right).The y-axis measures
the relative difference in the accuracy, defined as the ratio of the difference between
the black and white box accuracy divided by that of the best model.
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(a) Comparison of performance
of the native and surrogate
white box models across all
the datasets.
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(b) Comparison of performance
of the native and surrogate
white box models across all
opaque datasets.
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(c) Comparison of performance
of the native and surrogate
white box models across all
comprehensible datasets.

Figure A.3: Comparison across datasets of best black box model for each dataset, surrogate
white box model mimicking this best black box, and best native white box model.
BB stands for black box and WB for white box. The line at 0 indicates the
performance of the best black box model. The y-axis indicates the absolute
difference in accuracy from the best black box model.

We report the empirical results as in the main article, this time using the accuracy
of the models as our metric instead of the f1-score. All results are in line with the
results for the f1-score. The hypothesis of the Friedman test is rejected with a value
of 2.09 · e−23. In Figure A.1, we show that the black box models are significantly
better than the white box models but not significantly different from each other.
The same can be said for the white box models. We see a non-linear nature of the
cost of comprehensibility and explainability in Figures A.2a and A.2b. Finally, from
the boxplots in Figure A.3 we see again that for the opaque datasets the surrogate
white box models are better on average than the native ones. We also reject the
hypothesis that the native and surrogate white boxes perform equally well (p-value
9.63 · e−6) on average across all datasets. When we perform the same analysis for the
two different types of datasets, we see again that the surrogate white box models
outperform the native white box ones for the opaque datasets (Wilcoxon test p-value
of 2.71 · e−6), while the two are not significantly different for the comprehensible
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Table A.3: The dataset properties that are significant when explaining the cost of comprehen-
sibility using a number of standard dataset properties as independent variables in
a regression model where the cost is the dependent variable.

Variable MSE Pr(>F) Coef

F1v 0.089 0.0002 0.116

L3 0.059 0.003 0.096

T4 0.045 0.012 0.063

L2 0.044 0.012 0.089

L1 0.042 0.014 0.082

N4 0.038 0.020 0.094

CanCor 0.032 0.034 -0.075

F3 0.031 0.036 0.087

F3 0.031 0.036 0.087

EqNumAttr 0.029 0.044 -0.171

NsRatio 0.029 0.044 -0.171

datasets (Wilcoxon test p-value of 0.53). All these results are comparable with the
results obtained when using f1-score as a metric.

Finally, we also compare the dataset properties that predict whether a dataset is
opaque or comprehensible and see if they are the same for both metrics. We see in
Table A.3 that the same dataset properties are important in predicting the gap in
accuracy as in predicting the gap in f1-score, but that now some more attributes are
significant. F1v, L1, EqNumAttr and NsRatio were already significant in predicting
the gap in f1-score. The linearity measures L2 and L3 are now also significant but
they have a similar meaning as L1, namely they are linearity measures that quantify
whether the data is linearly separable, which means higher values of these attributes
point to more complex problems [Lorena et al., 2019]. N4 signifies the non-linearity
of the nearest neighbor classifier and higher values are also indicative of problems
of greater complexity [Lorena et al., 2019]. F3 signifies the Maximum Individual
Feature Efficiency where lower values indicate simpler problems [Lorena et al.,
2019]. JointEnt computes the relationship of each attribute with the target variable,
capturing the relative importance of the predictive attributes [Rivolli et al., 2018].
CanCor measures the canonical correlation between the predictive attribute and the
target [Rivolli et al., 2018].
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b predictive counterfactual fairness

b.1 PreSHAPF

Alternative XAI techniques can also be employed to investigate the presence of
implicit bias in a machine learning model. In this section, we use SHAP values as a
means of examining disparities between two sensitive groups. The results can differ
as SHAP values focuses on variations in prediction scores, rather than on decisions
(which basically is the combination of a prediction score and threshold). SHAP
values are a computationally efficient way to calculate Shapley values, which are
defined as the average marginal contribution across all possible coalitions [Lundberg
and Lee, 2017].

SHAP attributes to each feature the change in the expected model prediction when
conditioning on that feature and thus reveals the extent to which each feature
contributes to the prediction score, either positively or negatively [Lundberg and
Lee, 2017]. As with PreCoF, we focus on the negatively affected members of both
the protected and the unprotected group. We compare the mean SHAP values in
both subgroups and PreSHAPF (Predictive SHAP Fairness) will reveal for which
features the difference between both subgroups is the largest.2 There are two main
differences between PreCoF and PreSHAPF: First, PreCoF focuses on the decisions
made by the model, while PreSHAPF focuses on the prediction scores. Second,
PreCoF returns features (and PreCoFc the feature values for the categorical features),
while PreSHAPF will always return feature values for the categorical features.

b.1.1 PreCoF vs PreSHAPF

The results for the datasets used in this paper can be found in Figure B.4. For each
dataset, we calculate PreSHAPF as the discrepancy in mean SHAP values between
both subgroups. As demonstrated in Figure B.4, the most salient patterns detected
with PreCoF are also present in PreSHAPF, however, slight variations are observed
as they measure distinct phenomena.

As depicted in Figure B.4a, the two features with the largest difference in PreSHAPF,
namely relationship: 0 and marital-status: 2, correspond to the feature values with
the highest value in PreCoFc, as can be seen in Figure 6.1b. These features, on
average, negatively impact the prediction score of women (to be predicted to have
a high income) compared to men. The other top features are different between
PreCoF and PreSHAPF. In Figure B.4b, we observe that the feature national group:

2 We use the SHAP package TreeExplainer to calculate the SHAP values (as we are explaining a random
forest) [Lundberg et al., 2020]. We use the group difference plots provided by SHAP to graph the
difference in mean SHAP values between the two subgroups [Lundberg et al., 2020].
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(a) Adult income dataset (b) Catalonia juvenile dataset

(c) Crime and communities dataset (d) Student performance dataset

(e) Law admission dataset

Figure B.4: PreSHAPF

Spanish, which was the PreCoFc attribute in Figure 6.3b, is the feature value with the
highest value in PreSHAPF. For foreigners, this feature, on average, has a larger
positive impact on the prediction score (to be predicted to recidive) compared to
locals. However, in Figure 6.3b, we see that the other values for national group,
namely Altres and Europa, are also high ranked in PreCoF, but they are not among
the top features in PreSHAPF. As illustrated in Figure B.4c, the features with the
highest PreSHAPF value are the same as the PreCoF attributes (PctIlleg, PctKids2Par,
PctFam2Par, NumIlleg) in Figure 6.5a in a slightly different order. Figure B.4d shows
that both values of School have the highest value in PreSHAPF. These attributes (on
average) negatively impact the prediction score (to be predicted a good student)
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of girls compared to boys This is in line with the results of PreCoF, as School was
the PreCoF attribute in Figure 6.6a, but the other attributes differ. In Figure B.4e,
we observe that all features, on average, have a negative impact on the prediction
score (to be predicted to pass the bar) of Non-Whites compared to Whites. The two
features for which this discrepancy is the largest are zgpa and lsat, which were also
the two attributes with the largest value in PreCoF in Figure 6.8a.

Overall, we notice that the global patterns seem consistent over PreCoF and PreSHAPF.
However, the less important features can vary strongly, which shows that PreCoF
and PreSHAPF function differently. When we change the threshold of the machine
learning classifier trained on these datasets, the results of PreCoF will strongly
change (for some thresholds, all of the top features are different), while this will
have no effect on the results of PreSHAPF. We add a supplementary illustration
which shows the effect of the decision threshold on PreCoF and PreSHAPF in
Section B.1.2.

b.1.2 PreCoF versus PreSHAPF on a transparent model

To further demonstrate the functionality of PreCoF and its distinction with SHAP
values, we present an additional illustration using an existing churn dataset set.3

This dataset aims to predict whether a bank customer will churn or not, where the
unfavorable outcome is that the customer will attrite, and the favorable outcome that
the customer will remain loyal. The dataset does not contain a sensitive attribute,
but we artificially introduce this aspect to the dataset, randomly assigning half of
the instances the gender of male and half of the instances the gender of female. In
contrary to our previous experiments, we use an interpretable decision tree (with a
restricted number of 7 leaf nodes) to provide insight into the model’s functioning
and to facilitate a comparison of how counterfactual explanations and SHAP values
detect bias within the model.

To investigate the implicit bias, we add a proxy that is correlated with the target
outcome and gender. This action is likely to result in the model picking up this
biased pattern, even after we remove the sensitive attribute (gender) and may result
in gender discrimination in the model’s predictions. As in our previous experiments
to detect implicit bias, we remove the sensitive attribute (gender) from the data, split
the data into a training and test set, and fit a machine learning on the training set.
However, in this scenario, we use a simple decision tree, as opposed to a Random
Forest model, to compare the results from PreCoF and PreSHAPF with the actual
model, as depicted in Figure B.5a.

These results clearly illustrate how counterfactual explanations and SHAP values
function differently. The proxy has a large impact on the prediction score, but will

3 https://www.kaggle.com/datasets/syviaw/bankchurners
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(a) Decision tree, where the unfavorable outcome is listed as −, and the favorable outcome as +.

(b) PreCoF (c) PreSHAPF

Figure B.5: Additional illustration with a transparent machine learning model to show the
difference between PreCoF and PreSHAPF

not have an effect on the decision for any of the instances (both leaf nodes after the
biased feature split result in the same outcome as the threshold is 0.5). When using
PreSHAPF, we see in Figure B.5c that the feature with the largest value is proxy.
This makes sense, as we see in the decision tree, that it has a large effect on the
prediction score and we know that it is correlated to gender. On the other hand, in
Figure B.5b, PreCoF does not report this feature as it does not change the decision
for any of the instances. If the threshold of the machine learning classifier changes
to 0.7 or 0.8, PreCoF does report proxy as the top feature.

These results indicate that both SHAP values and counterfactual explanations are
well-suited to identify patterns of indirect discrimination, but that they measure
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distinct phenomena. Their outcomes may vary as counterfactual explanations
focus on decisions and SHAP values on prediction scores. In this paper, we use
counterfactual explanations as our focus is on the actual decisions people receive,
but using SHAP values is a good alternative when the focus is on fair scoring (for
example with a varying or unfixed threshold). Our main argument that a deeper
understanding of the nature of the bias is necessary before deciding on a method to
address it, remains valid when using both XAI techniques. Finally, our experiments
further confirm that both PreCoF and PreSHAPF are detecting bias in the model,
and not in the underlying data. If a biased feature is added to the dataset but
not picked up by the model, neither PreCoF or PreSHAPF will show this biased
feature.
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c beyond accuracy-fairness

c.1 Score distributions for the other data

Figure C.6: Score distributions for the Adult dataset
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Figure C.7: Score distributions for the Dutch dataset

204



C beyond accuracy-fairness

Figure C.8: Score distributions for the Law dataset
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Figure C.9: Score distributions for the Student dataset
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d the privacy issue of counterfactual explanations

d.1 Results with different values for k

Table D.4: Results of CF-K (k = 5).
Dataset Adult CMC German Heart Hospital Informs
NCP (mean) 0.18% 2.07% 14.53% 0.93% 1.97% 7.34%
Pureness (mean) 99.69% 96.24% 99.85% 100% 95.31% 89.16%
Execution time (mean) 16.82s 12.67s 6.25s 1.92s 14.93s 25.04s
CDM 83,990 3,584 576 450 12,809 4,755

CDM
#explanations 106.72 8.83 9.6 8.04 17.17 7.19

CM 0.81 0.24 0.07 0.25 0.71 0.11

Table D.5: Results of Mondrian (k = 5)
Dataset Adult CMC German Heart Hospital Informs
NCP (mean) 9.28% 4.95% 42.02% 24.44% 14.72% 29.40%
Pureness (mean) 92.30% 79.85% 93.82% 100% 71.05% 74.39%
Execution time (mean) 16.65s 1.56s 0.56s 0.36s 2.48s 2.64s
CDM (mean) 116,132 4,348 402 486 12,524 4,607

CDM
#explanations 147.56 10.71 6.07 8.68 16.79 6.97

CM (mean) 0.82 0.24 0.22 0.32 0.73 0.31

Table D.6: Results of CF-K (k = 20).
Dataset Adult CMC German Heart Hospital Informs
NCP (mean) 0.84% 7.46% 27.38% 5.02% 5.35% 12.86%
Pureness (mean) 99.61% 88.85% 99.08% 100% 88.85% 82.46%
Execution time (mean) 32.69s 19.29s 25.44s 4.15s 27.61s 86.101s
CDM 93,597 9,509 1,541 1,329 24,442 15,976

CDM
#explanations 118.93 23.42 25.68 23.73 32.76 24.17

CM 0.84 0.25 0.02 0.39 0.85 0.14
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Table D.7: Results of Mondrian (k = 20)
Dataset Adult CMC German Heart Hospital Informs
NCP (mean) 23.32% 12.35% 71.39% 57.44% 38.63% 42.62%
Pureness (mean) 85.01% 59.40% 89.52% 100% 58.08% 72.88%
Execution time (mean) 16.39s 2.21s 0.72s 0.42s 2.77s 3.06s
CDM (mean) 126,238 14,557 1,832 2,003 25,566 20,242

CDM
#explanations 160.40 35,85 30.53 35.77 34.27 30.62

CM (mean) 0.82 0.20 0.13 0.43 0.87 0.33
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e the impact of cloaking digital footprints on user privacy and

personalization

e.1 Results of other cloaking strategies

e.1.1 Using domain-based metafeatures

Figure E.10: Longer-term cloaking protection over time when using domain-based metafea-
tures.

209



appendices

e.1.2 Using explanations with a tolerance

Figure E.11: Longer-term cloaking protection over time when using explanations with an
additional tolerance level.
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