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Samenvatting

In de afgelopen jaren heeft de snelle toename van beschikbare data, samen met signi-
ficante algoritmische vooruitgangen, ons vermogen om deze data te analyseren en er
waardevolle inzichten uit te halen aanzienlĳk vergroot. In dit proefschrift presenteren
we nieuwe toepassingen van machinaal leren (ML) in de biologische wetenschappen,
met een specifieke focus op neurowetenschappen, ecologie, en landbouwkundig on-
derzoek. Verder leggen we in dit proefschrift nadruk op de interpreteerbaarheid en
verklaarbaarheid van onze modellen, zodat we de redenering achter hun voorspellingen
begrĳpen.

Het proefschrift is onderverdeeld in vier delen, elk uitgewerkt in een afzonderlĳk hoofd-
stuk. In Hoofdstuk 2 behandelen we een binaire classificatietaak gericht op het de-
tecteren van aandacht in elektro-encefalografie (EEG) data. Door gebruik te maken
van geavanceerde ML-modellen, slagen we erin om onderscheid te maken tussen doel-
en afleidingsstimuli, gebaseerd op de EEG-data die zĳn verzameld tĳdens een audio-
visuele aandachtstaak. Daarnaast onderzoeken we in hoeverre EEG-data afhankelĳk
is van de proefpersoon bĳ dezelfde stimulus. Dit doen we door de prestaties van
ML-modellen getraind op individuele proefpersonen te vergelĳken met ML-modellen
getraind op meerdere proefpersonen. Ten slotte passen we verklaarbare kunstmatige in-
telligentietechnieken toe om de kenmerken te identificeren die door de modellen worden
gebruikt voor hun voorspellingen, en vinden we dat deze kenmerken overeenkomen met
de verwachtingen van domeinexperts.

Hoofdstuk 3 richt zich op de relatie tussen bodemtemperatuur, verschillende meteorol-
ogische variabelen en fenologische kenmerken van de vegetatie. Door gebruik te maken
van ML en verklaarbare kunstmatige intelligentie hebben we vastgesteld dat hogere
bodemtemperaturen leiden tot een vroeger begin van het groeiseizoen voor planten.
Onze analyse onthult bovendien dat meteorologische variabelen de meest significante
invloed hebben op de fenologische kenmerken van de vegetatie, terwĳl jaarlĳkse variaties
voornamelĳk bepaald worden door veranderingen in de bodemtemperatuur.

In Hoofdstuk 4 bespreken we het probleem van ontbrekende waarden in sensorgegevens,
waarbĳ we nadruk leggen op grootschalige draadloze sensornetwerken. We evalueren
twaalf methoden voor het invullen van ontbrekende gegevens, die elk verschillende
strategieën gebruiken en afkomstig zĳn van verschillende achtergronden. Om het eval-
uatieproces te verbeteren, introduceren we een scenario dat gebruik maakt van “gemas-
keerde ontbrekende gegevens”. Dit laat een realistischere evaluatie toe dan de gebruike-
lĳke methode, waarbĳ willekeurige ontbrekende gegevens worden gebruikt. Onze bevin-
dingen wĳzen erop dat methoden voor het invullen van ontbrekende gegevens over
het algemeen het beste resultaat opleveren wanneer ze expliciet rekening houden met
ruimtelĳke correlaties. We gebruiken deze inzichten om richtlĳnen voor toekomstig
onderzoek voor te stellen.
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Tot slot ontwikkelen we in Hoofdstuk 5 een nieuwe, wereldwĳde dataset over het his-
torisch gebruik van meststoffen. Hier gebruiken we ML om historische bemesting te
voorspellen op zowel gewas- als landniveau. We baseren deze voorspellingen op een
reeks variabelen die gerelateerd zĳn aan verschillende klassen van gewassen, evenals
sociaaleconomische, agrologische, en omgevingsvariabelen. Verder gebruiken we verk-
laarbare kunstmatige intelligentie om de meest invloedrĳke factoren die het gebruik van
meststoffen bepalen te identificeren.



Summary

In recent years, the rapid increase in available data, accompanied by significant algorith-
mic advancements, have enhanced our ability to analyze and extract valuable insights
from this data. In this thesis, we present novel applications of machine learning (ML) in
biological sciences, more particular in neuroscience, ecology, and agricultural research.
Throughout the thesis, we pay special attention to the interpretability and explainability
of our models, ensuring that we understand the reasoning behind their predictions.

The thesis is divided into four parts, each presented in a separate chapter. In Chapter 2,
we address a binary classification task aimed at detecting attention in electroencephalog-
raphy (EEG) data. By employing state-of-the-art ML models, we successfully differentiate
between target and distractor stimuli using EEG data collected during an audiovisual
attention task. Additionally, we examine subject dependence in EEG data by comparing
the performance of ML models trained on individual subjects versus multiple subjects.
Finally, we apply explainable AI (xAI) techniques to identify the features utilized by the
models for their predictions, and find that these features align with the expectations of
domain experts.

Chapter 3 focuses on the relationship between soil temperature, various meteorological
variables, and vegetation phenology characteristics. Using ML and xAI, we find that
rising soil temperatures result in an earlier onset of the growing season for plants. Addi-
tionally, our analysis reveals that the meteorological variables have the most significant
impact on the vegetation phenology characteristics, while annual variations are primarily
driven by changes in the soil temperature.

In Chapter 4, we address the issue of missing values in sensor data, with a focus on
large-scale wireless sensor networks (WSNs). We evaluate twelve missing value impu-
tations methods, each using different imputation strategies and originating from diverse
backgrounds. To enhance the evaluation process, we define a “masked missings” sce-
nario, offering a more realistic assessment compared to the standard practice of using
random missings. Our findings indicate that imputation methods explicitly accounting
for spatial correlations between sensors generally perform best, and we use these insights
to suggest directions for future research.

Finally, in Chapter 5, we develop a new global dataset considering the historical appli-
cation of fertilizers. Specifically, we use ML to predict historical fertilizer application at
both the crop and country levels, based on a set of features related to crop classes, along
with socioeconomic, agrological, and environmental variables. Additionally, we use xAI
to identify the most relevant drivers influencing fertilizer application.
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Introduction

This chapter situates the conducted research within its broader context. We begin by
providing clarity regarding important terminology, followed by a brief history of machine
learning (ML). Next, we give an overview of the research advances and applications of
ML in biological sciences, after which we provide an important note on interpretable and
explainable ML. We then clarify the structure of the remainder of this thesis, and briefly
introduce each research chapter by highlighting its main contributions. Finally, we give
an overview of other conducted research that is not explicitly covered within this thesis.

1.1 Machine learning

1.1.1 Terminology

In the midst of the current artificial intelligence (AI) boom, it can be difficult to distinguish
between terms like AI, ML, deep learning (DL), and data science (DS). AI refers to the
development of machines, usually computer systems, capable of intelligent behavior
[1]. Whereas AI can include pre-defined rule-based systems, ML is a subset of AI that
focuses on algorithms and (statistical) models that allow computer systems to perform
specific tasks without explicit instructions. Instead, they rely on patterns learned from
data to make predictions or decisions [2]. DL is the subset of ML that focuses on a
specific type of models, namely, neural networks (NNs) with many layers, otherwise
called deep neural networks (DNNs) [2]. DL is particularly useful for tasks that involve
large-scale data, and require the model to uncover complex patterns, such as image
recognition, natural language processing (NLP), and audio recognition. Finally, DS is an
interdisciplinary field that uses scientific methods and algorithms to extract knowledge
and insights from structured and unstructured data. Contrary to the three previous
fields, DS is not confined to constructing models, as it includes the entire data processing
pipeline, including data gathering, cleaning, exploration, modeling, and inference [3]. A
summary of the intersections between these various fields is included in Figure 1.1.

1
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Figure 1.1: Relationships and intersections between artificial intelligence, machine learn-
ing, deep learning, and data science. Figure based on [4].

1.1.2 A brief history of machine learning

In this thesis, we will focus more on ML, and specifically its applications in biological
sciences. During the last decade, there have been massive advancements in the field of
ML. However, Alan Turing already set the stage for thinking about intelligent machines
in 1950, as he proposed the now-called Turing Test as a criterion of machine intelligence
[5]. The first instance of ML was created in 1952 by Arthur Samuel, as he developed
a program that could learn to play checkers. However, it was not until 1959 that he
formally introduced the term “machine learning” to describe this learning process [6].
In 1958, psychologist Frank Rosenblatt developed the perceptron, an early NN that could
learn patterns from data, and eventually became the foundations for modern NNs [7].
Initially, research into perceptrons experienced a significant setback, largely due to the
influential book Perceptrons [8]. This book emphasized the limitations of perceptrons,
particularly their inability to learn nonlinear relationships. Although it was recognized
by researchers that multilayer perceptrons (MLPs) did not suffer this issue, the methods
for effectively training such MLPs were unknown at the time. For this, backpropagation
was needed, which implements a methodology for the backwards propagation of errors
from the output layer (the layer where the final prediction is made) back to the input layer
(the layer to which the input data is provided). The modern version of backpropagation
was first proposed in a master thesis written by Seppo Linnainmaa in 1970 [9]. However,
during the 70s, the field experienced an AI winter, during which both funding and interest
for AI research was reduced. It was not until 1986 that a paper by Rumelhart, Hinton, and
Williams popularized the use of the backpropagation algorithm for training MLPs. From
this point on, ML research experienced significant growth and expansion, leading to other
learning algorithms such as decision trees [10] and support vector machines (SVMs) [11],
but also more complex NN architectures such as convolutional neural networks (CNNs)
[12].

In the early 2000s, DL was popularized, emphasizing deeper NNs and eventually leading
to the AI boom. Major milestones include AlexNet in 2012 [13], as the winning solution of
the ImageNet competition, and AlphaGo [14], which defeated human champions in the
game of Go using reinforcement learning (RL), thereby inspiring a new era of AI systems.
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In 2017, the disruptive paper Attention is all you need was published, which introduces the
modern transformer architecture [15]. This transformer architecture led to major break-
throughs in NLP, including large language models (LLMs) such as Bidirectional Encoder
Representations from Transformers (BERT) [16] and generative pre-trained transformers
(GPTs) [17]. More recently, OpenAI publicly launched ChatGPT, a chatbot based on
LLMs [18]. ChatGPT is credited as one of the catalysts for the most recent AI boom,
which has resulted in sustained investment in the field of (generative) AI. Additionally,
public attention and interest for AI techniques has also increased massively, partly due
to the enhanced accessibility of AI technologies for the general public. As AI research
continues at a rapid pace, new applications in industry and research are discovered and
implemented every day, further driving innovation and creating exciting possibilities
across various sectors.

1.2 Machine learning for biological sciences

In this thesis, we focus on novel applications of ML in biological sciences. The term
“biological sciences” refers to any scientific discipline that considers the study of life and
living organisms, their life cycles, adaptations, and the environment. The exponential
growth in peer-reviewed publications exploring the use of ML methods in biological
sciences, as illustrated in Figure 1.2, underscores the potential of ML in this broad
field. Indeed, ML enables researchers to analyze vast datasets, predict behaviors and
interactions, and ultimately gain deeper insights into the mechanisms that govern life at
all scales. Below, we describe various applications of ML in the broad field of biological
sciences, with a focus on neuroscience, ecology and agricultural research.

Figure 1.2: Exponential increase of machine learning (ML) publications in biology. The
number of ML publications per year is based on Web of Science from 1996
onwards using the topic category for “machine learning” in combination
with each of the following terms: “biolog*”, “medicine”, “genom*”, “prote*”,
“cell*”, “post translational”, “metabolic” and “clinical”. Source: [19].
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1.2.1 Health sciences

In the rapidly evolving field of health sciences, ML plays a pivotal role by opening up new
avenues for advancements in diagnostics, drug discovery and personalized medicine,
among others. For example, ML can be used to automatically detect various types of
cancer, based on different medical imaging modalities [20]. In drug discovery, ML can be
of great value by predicting the 3D structures of proteins from their amino acid sequence
(also known as protein folding) [21, 22], or by generating new molecules with desirable
properties using graph generative models [23]. Furthermore, advances in causal ML can
enable a personalized medicine approach by estimating individualized treatment effects
[24].

ML also has a wide range of applications in neuroscience, which considers the study of
the nervous system, from structure to function [25]. For example, ML can be used to
detect and predict seizures in patients with epilepsy, based on electroencephalography
(EEG) data [26], allowing for timely intervention and management. Additionally, ML
can aid in the diagnosis of various neurological disorders such as Alzheimer’s disease
[27, 28], ADHD [29], and other neurological disorders [30]. Automatically detecting
specific responses in the brain, so-called event-related potentials (ERPs), using ML, also
has a wide range of applications. Primary examples of such applications are P300-
based spellers [31–33] and intelligent home control systems [34, 35]. These applications
can be of great help for patients suffering from amyotrophic lateral sclerosis (ALS) or
spinocerebellar ataxia, as it can enable them to communicate in a daily environment
[31, 33, 36, 37].

1.2.2 Biology

The ability of ML algorithms to analyze and retrieve patterns from data also facilitates
biological research by providing nuanced insights into biodiversity, ecosystem dynam-
ics, and the impact of climate change, to name a few. Specific applications include the
automated detection and classification of (plant) species, thereby supporting phenology
research [38–40]. Additionally, ML is helping in the fight against climate change [41],
for example by improving energy efficiency using smart electricity grids [42], acceler-
ating carbon capture, utilization, and storage research [43], enhancing the forecasting
of extreme events [44], modeling climate (change) using physics-informed ML [45], and
reducing agriculture-related emissions by enabling precision agriculture [46]. Within
agriculture, ML is also used to perform fertilizer research [47] and optimize fertilization
strategies [48]. In ecology, which studies the relationships among living organisms, and
their environments [49], ML has proven to be of great value in areas such as the ecological
modeling of species distribution [50, 51], ecosystem monitoring and management using
interpretable ML models [52], and (benthic) habitat mapping [53]. In summary, the effec-
tive application of ML algorithms enables biologists to not only conduct comprehensive
ecological assessments, but also predict future environmental and climatic conditions,
thereby serving a crucial role in the study and preservation of the environment.
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1.3 Interpretable and explainable machine learning

Whereas ML offers a wide range of applications across various domains, a significant
challenge that is often encountered is the lack of interpretability of many ML models [54].
This is especially important when working together with domain experts (e.g., biologists)
or individuals with no ML experience, as a lack of interpretability can make it difficult
to build trust in the model’s predictions and results. Without a clear understanding of
how an ML model arrives at its conclusions, domain experts may find it challenging to
validate the model’s outputs, integrate them into their existing workflows, or provide
valuable feedback for further model refinement [55].

Unfortunately, some models, especially complex models like deep NNs, operate as so-
called “black boxes”, where the decision-making processes are not readily transparent
or understandable [56]. In response to this, the concepts of interpretable and explainable
ML (more often referred to using the broader term explainable AI (xAI)) have become
increasingly important [57]. While interpretable ML and xAI are often used interchange-
ably, it is important to distinguish between these two concepts. Interpretable ML refers to
models that are inherently interpretable, that is, the mechanisms that occur in the input-
to-output transformation are clear and understandable, for example, linear regression
models or decision trees [57]. A significant disadvantage of interpretable models is that
they are often less powerful compared to more complex models, which can limit their
effectiveness in handling large or highly complex datasets [58]. On the other hand, xAI
techniques provide insights into the workings of complex and less transparent models,
enabling end-users to understand and trust the decisions made by these systems [57].

Among the various xAI techniques, SHapley Additive exPlanations (SHAP) values [59]
have gained significant popularity for their ability to provide consistent and interpretable
insights into model predictions [60, 61]. SHAP values are grounded in cooperative game
theory and offer a unified approach to attributing feature importance. It uses an approach
that measures each player’s contribution to the final outcome. In ML, this means that
each feature is assigned an importance value, quantifying its impact on the model’s
output. The contributions are additive, with the sum of all contributions of all features
equaling the difference between the model’s prediction for a specific instance and the
average prediction across the training set [59]. This additivity property is crucial for
generating intuitive explanations, and ultimately facilitates a better understanding and
trust in the model’s predictions. Moreover, SHAP values offer both local and global
explainability [59]. Locally, they explain individual predictions, making it clear how
each separate feature influences a specific model prediction. Globally, SHAP provides
insights into overall feature importance and model behavior by aggregating SHAP values
across many predictions. Additionally, SHAP values are model-agnostic, meaning that
they can be applied to any ML model [59]. This allows for consistent interpretability
across different types of models, providing an easy way to compare feature importance
and model behavior. Finally, SHAP adheres to the missingness property, ensuring that
features which have no impact on the model’s predictions (or that are missing in the
dataset) are assigned a SHAP value of zero [59].

Stimulated by the critical importance of transparency in ML models, as well as our close
collaboration with domain experts, the following chapters of this work are committed
to employing interpretable ML models or, when this is not feasible, to applying xAI
techniques to our models. This approach ensures that our methodologies remain clear
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and understandable. More specifically, given the properties and advantages of SHAP
values discussed above, we will frequently use SHAP values throughout this thesis.

However, we should exercise caution when interpreting results from xAI techniques.
While these methods offer valuable insights into a model’s decision-making process, they
can sometimes oversimplify complex behaviors [62]. For instance, xAI techniques may
highlight certain features or patterns as highly influential to a model’s predictions, but this
does not necessarily mean they capture the full scope of the underlying relationships [63].
Moreover, xAI methods typically do not identify causal relationships [63]. Furthermore,
different xAI techniques can yield varying explanations for the same model, which can
lead to misinterpretations if not critically evaluated. To avoid misleading interpretations,
it is essential to combine xAI insights with domain expertise and critical thinking.

1.4 Overview of research and contributions

Biological Sciences

Health Sciences

Neuroscience

Chapter 2:
Attention
detection

Biology

Ecology

Chapter 3:
Phenology
modeling

Chapter 4:
Missing value

imputation

Agricultural Research

Chapter 5:
Fertilizer use

modeling

Figure 1.3: Schematic representation of the structure of this thesis, illustrating the break-
down of biological sciences into specialized research domains.

Figure 1.3 provides a schematic representation of the structure of this thesis, and details
how all research contributions are integrated under the theme “ML applications for
biological sciences”. Below, we provide a brief overview of every chapter, highlighting
its goals and key findings.

In Chapter 2, we build a model to accurately differentiate between target and distractor
stimuli in an audiovisual attention task. This classification is entirely based on the
subject’s EEG data that was collected during the task. The main contributions of this
chapter are the following:

• We use state-of-the-art ML models to classify EEG signals associated with attention-
related brain activity.

• We study the difference in performance between models trained on individual
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subjects and models trained on multiple subjects, emphasizing the challenges as-
sociated with generalizing models across different subjects.

• Using xAI, we investigate which EEG channels and time points the model relies on
for its predictions, and verify whether these findings correspond with the expecta-
tions of domain experts.

In the end, this study demonstrated the effectiveness of ML to detect attention by suc-
cessfully differentiating between targets and distractors. Furthermore, we found that the
models used patterns in the EEG signals that aligned with the expectations of the domain
experts to make their predictions.

This paper was published in Sensors:

Mortier, Steven, Renata Turkeš, Jorg De Winne, Wannes Van Ransbeeck, Dick Bottel-
dooren, Paul Devos, Steven Latré, Marc Leman, and Tim Verdonck. Classification of
Targets and Distractors in an Audiovisual Attention Task Based on Electroencephalogra-
phy. Sensors 23, no. 23: 9588. 2023 [64]

In Chapter 3, we use ML techniques and SHAP values to investigate the relationship
between soil temperature, a selection of meteorological variables, and vegetation phenol-
ogy in subarctic grasslands. The findings from this research enhance our understanding
of the mechanisms driving ecosystem dynamics in these regions and have implications
for predicting and managing subarctic grasslands in the face of environmental change.
More specifically, the following contributions were made:

• We derive three key parameters considering vegetation phenology based on Nor-
malized Difference Vegetation Index (NDVI) data: the start of season, peak of
season, and maximum annual NDVI value.

• We improve upon existing research methodologies by also taking nonlinear effects
into account. Specifically, instead of linear models, we use ML models capable of
modeling nonlinear relationships to predict the aforementioned key parameters.

• We extend previous research by taking a set of three meteorological variables into
account: the air temperature, solar irradiance, and precipitation.

In summary, this study confirmed that previous research findings, indicating that the
start of the season occurs earlier as soil temperature increases, also hold over longer
time scales. In addition, considering meteorological variables such as precipitation, we
discovered their significant influence on vegetation dynamics. As a result, we recommend
that future research on vegetation dynamics incorporates these meteorological variables.

This paper was published in Ecological Informatics:

Mortier, Steven, Amir Hamedpour, Bart Bussmann, Ruth Phoebe Tchana Wandji, Steven
Latré, Bjarni D. Sigurdsson, Tom De Schepper, and Tim Verdonck. Inferring the Rela-
tionship between Soil Temperature and the Normalized Difference Vegetation Index with
Machine Learning. Ecological Informatics, 82:102730. 2024 [65]
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In Chapter 4, we analyze methods for missing value imputation in environmental moni-
toring datasets, collected using wireless sensor networks (WSNs). Our analysis focuses
on a comprehensive dataset from a large-scale citizen science project, using low-cost
sensors to record microclimate data. The key contributions of our research include:

• We assess twelve different imputation methods, ranging from simple statistical
methods to complex DL methods, and focusing on different types of features.

• We introduce a “masked missing” scenario to get an evaluation of the methods that
is more representative of a real-world scenario.

In summary, this study effectively addressed the challenge of imputing missing values
in large-scale sensor data. In general, methods focusing on spatial correlations outper-
formed methods that focused solely on temporal correlations.

This paper was published in Sensors:

Mortier, Steven, Thomas Decorte, Jonas J. Lembrechts, Filip J. R. Meysman, Steven Latré,
Erik Mannens, and Tim Verdonck. Missing Value Imputation of Wireless Sensor Data
for Environmental Monitoring. Sensors 24, no. 8: 2416. 2024 [66]

In Chapter 5, we use ML to develop a comprehensive global dataset detailing crop-specific
fertilization rates, on country level. The main contributions are the following:

• We extend upon the previously most comprehensive database [67] by adding new
global datasets, country-specific datasets, and extensive crop class related data.
Additionally, we add socioeconomic, environmental, and agricultural variables
that are identified as possible drivers of cropland fertilization.

• Using ML, we predict the N, P2O5 and K2O fertilizer application rate for different
crops over 60 years, thereby filling gaps in the dataset.

• We apply xAI to identify global socioeconomic, agricultural, and environmental
drivers related to fertilizer intensity for different crops.

• After taking the fraction of fertilizer use allocated to grasslands and fodder crops
into account, we adjust the ML predictions to align with the total annual country-
level N, P2O5 and K2O use in agricultural land.

This study resulted in a global dataset of fertilizer application rates, including a tab-
ular dataset and high-resolution maps. Thereby, we provided a valuable open-source
resource for analyzing historical fertilizer consumption across different crops, countries,
and fertilizer types.

This paper is currently under review:

Coello, Fernando Coello, Thomas Decorte, Iris Janssens, Steven Mortier, Jordi Sardans,
Josep Peñuelas, and Tim Verdonck. Global Crop-Specific Fertilization Dataset from 1961-
2019. Under Review. 2024 [68]

Finally, in Chapter 6, we conclude the thesis by summarizing our key findings, describing
the main limitations, and suggesting interesting directions for possible future research.
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1.5 Contributions not included in this thesis

Over the course of my PhD, I have made other significant contributions that are not explic-
itly covered within the following chapters. These contributions are briefly summarized
below.

1.5.1 EEG features for attention

In Chapter 2, we successfully built a model to classify target and distractor stimuli in
an audiovisual attention task. Following this, we conducted further research into which
EEG data representations or features are most closely linked to attention, and assess their
robustness with respect to cross-subject variability. We explored various EEG features,
including time-domain and recurrence plots obtained from univariate time series, as well
as representations obtained directly from multivariate time series, such as global field
power or functional brain networks. Additionally, to address the cross-subject variability
in EEG data, we investigated persistent homology features that are robust to different
types of noise. These contributions are formalized in the following publication:

Renata Turkeš, Steven Mortier, Jorg De Winne, Dick Bottelooren, Paul Devos, Steven Latré
and Tim Verdonck. Who is WithMe? EEG features for attention in a visual task, with
auditory and rhythmic support. Under review. 2024.

1.5.2 Bio-accelerated mineral weathering

During my PhD, I was part of the Bio-Accelerated Mineral weathering (BAM!) project
[69], a multidisciplinary Horizon2020 project that aims to develop new negative emission
technologies (NETs). NETs allow to actively sequester CO2 from the atmosphere, in an
effort to counterbalance climate change. More specifically, the BAM!-project brings the
most important natural CO2 sequestering process on geological timescales, silicate weath-
ering, to a controlled reactor environment [69]. This reactor combines the weathering
power of prokaryotes, plants, fungi, and invertebrates in order to maximize CO2 removal.
Using ML, we identified the dominant drivers of CO2 removal, providing insights that
can be used to further enhance the process. Additionally, we designed an optimal ex-
periment design methodology, using bayesian optimization (BO) to intelligently select
combinations for subsequent batches, based on prior insights. The BAM!-project is still
in progress but has already produced the following publications:

• Calogiuri, Tullia, Mathilde Hagens, Jan Willem Van Groenigen, et al., Steven
Mortier, et al., Alix Vidal. Design and Construction of an Experimental Setup
to Enhance Mineral Weathering through the Activity of Soil Organisms. JoVE
(Journal of Visualized Experiments) 2023 (11 2023): e65563. [70]

• Iris Janssens, Thomas Servotte, Steven Mortier, et al., Steven Latré, and Tim Ver-
donck. Machine learning as a tool to identify dominant drivers of carbon dioxide
removal in enhanced weathering experiments. Close to submission. 2024.
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1.5.3 PRINCE Out-of-Distribution Challenge

I participated in the PRomoting INvariance for Classification of browsing journeys across
Environments (PRINCE) challenge, organized as part of ECML-PKDD 2022 [71]. The pur-
pose of the challenge was to use training data to learn a robust prediction function in a
binary classification task, with a special focus on out-of-distribution (OOD) generaliza-
tion. The data consisted of categorical features aggregated from traces in computational
advertising. Participants had access to data from three training environments, while
solutions were evaluated on nine hidden testing environments. Here, an environment is
defined as a distinct subset of the dataset that may feature unique underlying patterns
that are not necessarily present in other environments. This task is challenging for exist-
ing methods that usually focus on correlations to make a prediction, as some interesting
shifts (covariate/diversity shift and concept/correlation shift) existed between these en-
vironments. The competition had two prizes: a generalization prize, which was awarded
to the solution that achieved the best performance on the test set, and a robustness prize,
which was awarded to the solution that achieved the “best worst performance across the
test environments”. Using MLPs with a modified loss function focused on OOD general-
ization, we won both prizes. Specifically, we used risk extrapolation (REx) as introduced
by Krueger et al. [72], which has two main goals:

1. Reducing training risks

2. Increasing similarity of training risks

As shown by [72], sacrificing performance in individual environments in order to per-
form more similarly across environments can help with OOD generalization. We use
two implementations of REx: minimax risk extrapolation (MMREx) and variance risk
extrapolation (VREx). The loss function corresponding to MMREx is as follows:

𝑅MMREx = (1 + 𝑚𝛽)max
𝑒
𝑅𝑒 − 𝛽

𝑚∑
𝑒=1

𝑅𝑒 (1.1)

with𝑚 the number of environments, 𝑅𝑒 the risk of environment 𝑒 and 𝛽 a hyperparameter
that controls how much we seek to extrapolate in the space of risk functions. VREx on
the other hand, minimizes the variance of the risks of the environments together with
the total risk across all environments. Its loss function is the following:

𝑅VREx = 𝛽Var({𝑅1 , . . . , 𝑅𝑚}) +
𝑚∑
𝑒=1

𝑅𝑒 (1.2)

where 𝛽 controls the balance between reducing the average risk and enforcing the equality
of risks. For a more in-depth discussion of these algorithms, we refer to [72].

This winning solution was presented at ECML-PKDD 2022:

Steven Mortier, Bart Bussmann, Tim Verdonck. 2022. PRINCE Out-of-Distribution Chal-
lenge Winning Solution: a Robust Neural Network Ensemble. Oral invited presentation:
ECML-PKDD 2022, Grenoble, France.
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Classification of targets and distractors

in an audiovisual attention task

This chapter is based on:

Mortier, Steven, Renata Turkeš, Jorg De Winne, Wannes Van Ransbeeck, Dick
Botteldooren, Paul Devos, Steven Latré, Marc Leman, and Tim Verdonck. Clas-
sification of Targets and Distractors in an Audiovisual Attention Task Based on
Electroencephalography. Sensors 23, no. 23: 9588. 2023

2.1 Introduction

The interaction between humans and artificial intelligence (AI) still lacks the level of
engagement and synchronization that symbolizes the interaction between humans. The
primary goal of the WithMe project1 is to thoroughly study the processes that occur in
the human brain during joint activities with another individual, such as working towards
shared objectives [73]. The brain signals collected in this study are primarily indicative of
attention, but also of emotion and reward. The purpose of this research is to determine
relevant electroencephalography (EEG) features indicative of attention using machine
learning (ML).

To this end, a specific experiment was designed. Temporal audiovisual integration and
support of visual attention by sound is well demonstrated in the pip-and-pop experiment
[74]. The pip-and-pop experiment is based on a visual search, which does not lead to a
strong visually evoked potential. Moreover, as we expected that rhythmic presentation
of target stimuli also affects working memory, the task was replaced by a modified digit-
span task where five target digits had to be remembered and reported in our experiment
[73]. This task involves visual attention, working memory, and sequence recall. To
investigate the role of attention, we measured the brain activation directly by means of
EEG. Specifically, event-related potentials (ERPs) have been shown to be excellent tools

1The WithMe project is a research project funded by the Research Foundation Flan-
ders (FWO). More information can be found at https://researchportal.be/en/project/
withme-making-human-artificial-intelligence-interactions-more-entraining-and-engaging.

11

https://researchportal.be/en/project/withme-making-human-artificial-intelligence-interactions-more-entraining-and-engaging
https://researchportal.be/en/project/withme-making-human-artificial-intelligence-interactions-more-entraining-and-engaging


12
CHAPTER 2. CLASSIFICATION OF TARGETS AND DISTRACTORS IN AN

AUDIOVISUAL ATTENTION TASK

for studying attention [75, 76]. Risto Näätänen was a pioneer in this domain, as he
studied the connection between ERPs and attention, which led to his discovery of the
(auditory) mismatch negativity ERP [77–80]. Additionally, research has shown that the
amplitude of the P300 is directly related to the amount of attentional resources available
for stimulus processing [80–83]. The P300 ERP is observed to be elicited for deviant
stimuli in a sequence of standard stimuli, where the deviant stimuli are in some way
more relevant to the presented task [84–86]. In our experiment, we thus expect that
the targets elicit a P300 ERP. Research has shown that the P300 actually consists of two
subcomponents: the P3a and P3b [87]. The P3a generally reaches its peak around 250ms
to 280ms post-stimulus and is associated with attention-related brain activity [88]. On
the other hand, the P3b peak can vary in latency, lying between 300ms and 500ms post-
stimulus [87]. The P3b is elicited by improbable events, provided that the improbable
event is somehow relevant to the task at hand [89]. In our experimental setting, we
expect to elicit a P3a, as the target stimuli are not scarce (there are approximately 50%
targets and 50% distractors) and our experiment is designed to evoke attention. We do
not expect to elicit a P3a for distractors, as subjects should not pay attention to them.

The goal of this work is to accurately classify whether a target or distractor stimulus
was presented to the subject, based on the subject’s EEG data. For this purpose, we
applied different existing ML methods to classify EEG data and investigate which method
performs best on our specific use case. As we expect to elicit attention when a target
is shown (and not when a distractor is shown), the trained ML will effectively be an
attention detector. We expect the attention to manifest itself in the form of a P3a ERP,
and therefore expect that the model will base its predictions on the presence of a P3a peak.
Detecting P3a signals, and, more broadly, P300 signals, has a wide range of applications
[90, 91], particularly in P300-based brain computer interfaces (BCIs) [92], for example
in spellers [31–33] and intelligent home control systems [34, 35]. These applications
can be of great help for patients suffering from amyotrophic lateral sclerosis (ALS) or
spinocerebellar ataxia, as it can enable them to communicate in a daily environment
[31, 33, 36, 37]. In the literature, a wide array of techniques are used to classify and detect
P300 [93]. Some techniques rely on a data transformation and subsequently use logistic
regression to classify the transformed data, for example xDAWN+RG [94–97]. Recently,
deep learning approaches, primarily based on convolutional neural networks (CNNs),
for example EEGNet [98–100], have also gained in popularity [101–103]. Finally, as EEG
data are essentially heavily correlated multivariate time series, it is possible to apply
standard time series classification techniques as well [104–106].

Building BCIs that are trained on multiple subjects and generalize well to previously
unseen subjects holds significant value [107]. Indeed, BCIs often need to be re-trained or
at least calibrated for the end-user [108], which is a costly and user unfriendly process
[109, 110]. However, due to inter-subject variability of EEG data, training models that
generalize to multiple subjects (cross-subject (CS) models) is a harder task than training
models for one subject (individual subject (IS) models) [109–111]. For this reason, we
also investigate the hypothesized drop in performance when transitioning from IS to CS
models. Additionally, the ML models should be able to make predictions in real-time, as
this is essential in real-world BCI applications.

Finally, we analyze which EEG channels and time points are used by our models to
make its predictions, and check whether these align with the expected P3a attention
signature. However, ML models such as CNNs are considered “black boxes", as no clear
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explanation for the decisions made by these models exists [112]. The rapidly emerging
and improving field of explainable AI (xAI) aims to tackle these issues by providing
insights into ML models’ decision-making processes. Some xAI techniques that are
often used to gain insights into EEG classification models are Local Interpretable Model-
Agnostic Explanations (LIME) [113, 114], DeepLIFT [98, 115, 116] and saliency maps
[117–119], among others.

In summary, we aim to enhance the interaction between humans and AI and have de-
signed a novel experiment for this purpose. Specifically, this work considers building a
ML model to recognize targets shown to a subject, which equates to creating an attention
detector. These models should ideally generalize well to previously unseen subjects. The
primary contributions of this work are:

• Training of state-of-the-art classification methods to accurately predict target and
distractor stimuli based on EEG data.

• Analysis of the performance difference between IS and CS models.

• Investigation into which EEG channels and time points were important for the
model predictions, using xAI.

Ultimately, the contributions of this research collectively advance our understanding of
human-AI interaction and will aid in the development of more effective BCIs and their
associated applications.

The remainder of this paper is structured as follows: Section 2.2.1 introduces the WithMe
experiment and dataset, while Section 2.2.2 explains the data preprocessing routine.
Section 2.2.3 illustrates the classification problems and provides a description of the
classification methods used in this work. Section 2.3 presents the results and provides an
in-depth analysis of the best performing model. This section also contains an extensive
discussion of the achieved results. Finally, in Section 2.4, we draw conclusions and
provide possible directions for future research.

2.2 Materials and Methods

In this section, we describe the WithMe dataset that is analyzed using ML in this study.
We then define the preprocessing steps that are applied to the EEG data. Finally, we
present the classification problem and the classification methods and metrics that we
will use to tackle this problem.

2.2.1 The WithMe experiment

Forty-two young adults participated in the experiment (21 females, 21 males; mean age
23.64 ± 2.69 years). They were recruited through the university network and through
the social and professional network of the authors. All subjects declared to have normal
or corrected to normal vision and showed normal hearing (< 25 dB hearing loss) for
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the frequencies present in the experiment, based on a standard pure tone audiometry
hearing test. To mitigate a potential influence of age and/or intelligence, the subject’s
age range was limited to young adults under 30, and they were only accepted if they
were enrolled in or finished some form of higher education.

Before starting the experiment, subjects had to fill in a questionnaire that asked for general
background information to identify some personal characteristics. For example, subjects
were asked if they ever enrolled in some form of musical education and/or were an
active musician. More details about the questionnaires and their extensive analyses are
described in [73].

The experiment consisted of a modified digit-span task. A target digit was presented,
followed by either no, one or two distractor digits, another target, etc. One sequence
of digits always consisted of five targets and five distractors, although the subjects
did not know this a priori. After one sequence of targets and distractors was pre-
sented, the subject had to report all targets in the correct order that they were pre-
sented to them. The targets and distractors were presented as an encircled number
𝑥 ∈ {0, 1, 2, . . . , 9}. Additionally, a distractor could also show up as an empty circle. Tar-
get digits were colored black (𝑟𝑔𝑏(0, 0, 0)), while distractor digits were displayed in dark
gray (𝑟𝑔𝑏(𝑥, 𝑥, 𝑥), 𝑥 ∈ [50, 75]), with the exact value of 𝑥 determined individually to make
the difference between targets and distractors just noticeable. An example sequence is
shown in Table 2.1. In total, 30 different sequences of targets and distractors were created,
which were shown to the subject under four different conditions in a pseudo-randomized
order [73]. Depending on the condition, the subject received either no support (Con1),
visual rhythmic support (Con2), auditory non-rhythmic support (Con3) or visual rhyth-
mic and auditory support (Con4), as shown in Figure 2.1b. This adds up to a total of 120
sequences shown to the subject. In conditions with auditory support (Con3 and Con4),
targets were accompanied by a 500 Hz tone burst, which lasted for 50ms. In conditions
with rhythmic support, targets were presented with a fixed time interval of exactly 1.25s
between them. In these rhythmic conditions, the sequence of digits was preceded by five
rhythm inducing stimuli to induce the subject with the rhythm. In Con2, this was done
using empty black circles, while in Con4 auditory tone bursts were used to induce the
rhythm. For more detailed information about the experiment, we refer to the original
paper that describes the experiment and performs a behavioral analysis [73].

Table 2.1: An example of a sequence of stimuli shown to the subject, with the targets in
black and distractors in gray. In conditions with rhythm (Con2 and Con4), this
sequence is preceded with five empty circles to induce the rhythm. The subject
is expected to report the target digits and ignore the distractors.

Sequence Targets Distractors

3 9 2 4 3 3 1 2 8 39432 23 18
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Figure 2.1: (a) The WithMe experiment uses 64 electrodes, organized according to the
10-10 system. Figure made using [120]. (b) Depending on the condition, the
subject received no support (Con1), visual rhythmic support (Con2), audi-
tory non-rhythmic support (Con3) or visual rhythmic and auditory support
(Con4).

2.2.2 Dataset and preprocessing

During this experiment, EEG data was sampled at 2048 Hz using the standard 64-
electrode EEG 10-10 system as shown in Figure 2.1a. Thereafter, standard EEG pre-
processing techniques were applied. The data was re-referenced to the average of both
earlobes, just one earlobe if the other one was too noisy, or another pair of channels, if
both earlobes were badly recorded or too noisy. In the case of bad channels, these were
identified and removed. EEG data was notch-filtered at the line frequency (50 Hz) and
its multiples, after which a band-pass filter from 0.2 Hz to 100 Hz was applied. The
data was split into epochs, ranging from 0.2 seconds pre-stimulus to 1.0 seconds post-
stimulus, resulting in 1.2 second epochs. Independent component analysis (ICA) was
applied to the epoched data. Any components that represent artifacts were removed by
visual inspection of the ICA components.

During the previous steps, some channels were marked as bad channels. Instead of
dropping these channels, we chose to interpolate them using their neighboring channels,
as the former would result in an inconsistent number of channels across sequences and
subjects. The interpolation was performed using the MNE-Python package [120] (All
Python packages that were used in this work can be found in Table 2.7, together with
their version number and citation). Finally, the data was downsampled to 50 Hz, as
this reduces computation time, decreases file read/write time and saves memory, while
generally leading to little or no loss of information [121]. We should however note that,
based on the Nyquist theorem, this limits the highest frequency that can be accurately
represented to half of the sampling frequency, i.e., 25 Hz. This preprocessing routine
ideally resulted in 600 target epochs, 600 distractor epochs, and 300 induction epochs for
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Figure 2.2: The evoked response for targets and distractors for one subject. The data is
averaged over all electrodes of the parietal-occipital region in the brain, as
indicated in the figure inset.

each of the 42 subjects. However, during preprocessing, some epochs were rejected for
various reasons, for example, an excessive number of bad electrodes or too much noise.
On average, less than 0.6% of the epochs were rejected per subject.

As mentioned in Section 2.1, we expect to observe a P3a ERP when subjects see a target
stimulus. The P3a ERP is characterized by a positive voltage deflection between 250ms
and 280ms post-stimulus, although the exact timing can vary [88, 122, 123]. As our
experiment uses visual stimuli, we expect the P3a ERP to be the most pronounced in the
parietal-occipital region of the brain [121]. Figure 2.2 shows the evoked response for one
subject, averaged over all parietal-occipital electrodes, as indicated in the figure inset.
We observe a clear positive deflection between 200ms and 300ms post-stimulus, which is
in line with our expectations.

2.2.3 Classification problem

The models trained in this study consider a two-class classification problem (target versus
distractor) and take single-trial EEG epochs as input to predict a binary label. As the
data is downsampled to 50 Hz, one epoch contains 60 time steps, for 64 electrodes. This
means that the input is of shape (𝑁, 64, 60) with 𝑁 the number of epochs. It is important
to note that it is impossible to obtain 100% accuracy for this model. Indeed, the model
makes a prediction based on the subject’s assessment of a stimulus, and it is possible
that a subject did not correctly recognize all targets and distractors. As the ground truth
labels are based on the predefined labels of the experiment, it is possible that there is
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a slight mismatch between the labels and the subject’s perceived class. Nevertheless,
we assume that this problem is rare, meaning that commonly used metrics, for example
accuracy, have a valid interpretation.

Ideally, the models should be able to generalize to previously unseen subjects. To inves-
tigate this, we train the models in two ways: models trained on IS and models trained
on (nearly) all subjects, also called CS models. The former will be evaluated using a ran-
domly sampled test set with a standard 80% train and 20% test set split, while the latter
are evaluated using a leave-one-out (LOO) methodology. In general, models perform
better when trained and tested on individual subjects [124]. This can be attributed to
the variability in subject’s EEG data elicited by the same stimuli. However, in practice,
EEG classification models should ideally extrapolate to previously unseen subjects. For
example, BCIs often need to be calibrated for new end-users, which usually takes 20 to 30
minutes [125–127]. Therefore, it is interesting to investigate which model architectures
are best suited to build subject-independent classifiers.

2.2.3.1 Classifiers

To solve this classification problem, we train and evaluate different existing ML models.
Different methodologies for classifying EEG data exist. For example, we can extract
features from the EEG data and use these extracted features as input to the classifier.
These features can, among others, be extracted from the time domain, frequency domain
or the time-frequency domain, or through methods such as principal component analysis
[128, 129]. Such methods are referred to as feature-based methods. Another common
approach uses raw or preprocessed EEG data as input to the classifier. In this approach,
commonly referred to as an end-to-end method, the classifier itself will extract relevant
features from the data during training, and use these features to classify a sample. As
both methodologies are interesting approaches, we will use methods belonging to both
approaches. In this study, we apply four distinct classifiers and compare the results on
a novel data set. An overview of the classifiers and their methodologies is presented in
Table 2.2. First, we will apply the xDAWN pipeline, which has demonstrated significant
success in several EEG classification tasks and is often used as a baseline technique
[94, 95]. For example, the BCI challenge organized as part of the IEEE Neural Engineering
Conference 2015 was won by an xDAWN-based approach [95]. In this study, we employ a
similar approach, consisting of first estimating two sets of xDAWN spatial filters, one for
each class (target and distractor) [94]. Subsequently, the grand average evoked potential
of each class is filtered using the corresponding filters, after which they are concatenated
to each of the trials. Then, the covariance matrix of each resulting trial is used as a feature
for the next steps in the pipeline [130, 131]. The next step is to project the covariance
matrices on the tangent space using a Riemannian metric, as described in [96, 97]. After
these feature extraction steps, a classifier is used to make the final predictions. Based on
[95] and [132], we used logistic regression [133]. For the remainder of this study, we will
refer to this method as xDAWN+RG (xDAWN+Riemannian Geometry). Calculating the
xDAWN covariance matrices and projection to the tangent space were done using the
PyRiemann package [132].
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Table 2.2: Overview of the methods that were used in this study, together with their
original target domain and methodology.

Model Target domain Methodology
xDAWN+RG [94] EEG feature-based

EEGNet [98] EEG end-to-end
MiniRocket [105] time series feature-based

Rocket [104] time series feature-based

The second method we consider is EEGNet, as it is often considered to be the state-of-
the-art solution for various EEG-based classification tasks [98]. Indeed, EEGNet exhibits
strong performance on a variety of EEG-based classification tasks, such as P300 ERP
classification [98, 118] and motor imagery classification [134]. Whereas the previous
method used extracted features as input to the classifier, EEGNet performs both the fea-
ture extraction and classification. EEGNet is a deep learning model, more specifically a
CNN. As its name suggests, EEGNet is optimized for classifying EEG data by employing
a set of specific design choices. Firstly, it uses temporal convolutions to learn frequency
filters [98]. As suggested by the authors, the length of the temporal kernel used in these
convolutions is set to half the sampling rate, which allows the model to capture frequency
information at frequencies of 2 Hz and higher [98]. Second, depthwise convolutions are
used to learn frequency-specific spatial filters. In this context, depthwise convolutions
have two main advantages. First, they noticeably reduce the number of trainable param-
eters, since these convolutions are not fully connected to the previous layer; instead, they
are connected to each feature map individually. This induces the second, EEG-specific
advantage: the model learns spatial filters for each temporal filter, which enables the
efficient extraction of frequency-specific spatial filters [98]. The last convolutional part
consists of a separable convolution, which is a combination of a depthwise convolution
and pointwise convolution. The former learns how to summarize individual feature
maps in time, while the latter learns how to optimally combine the feature maps [98].
Finally, all features are passed to a dense layer for classification. More details on the EEG-
Net architecture can be found in [98]. We use the standard EEGNet-8,2 layout, which
means that the model learns 8 temporal filters and 2 spatial filters per temporal filter.

The first two methods are designed for EEG specifically. However, since EEG data is es-
sentially a heavily correlated multivariate time series, it is interesting to study the results
of a more general method designed to classify such time series. This opens the door to
a much wider range of potential methods, which may be more optimized or easier to
implement. To this end, we applied RandOm Convolutional KErnel Transform (Rocket)
[104]. Based on the success of CNNs for time series classification, Rocket uses random
convolutional kernels combined with simple linear classifiers. This novel combination
achieves state-of-the-art performance on the UCR time series archive using only a frac-
tion of the computational cost of existing methods [104, 135]. As a follow-up to Rocket,
the authors also designed MiniRocket [105]. They claim MiniRocket can be trained up to
75 times faster than Rocket, while achieving nearly the same performance. MiniRocket
distinguishes itself from Rocket primarily by reducing the degree of randomness that
Rocket generates, resulting in MiniRocket being almost deterministic [105]. Since meth-
ods to classify EEG data, such as EEGNet, can be very computationally expensive, it
is worth exploring the effectiveness of less computationally expensive methods. We
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used the Rocket and MiniRocket implementations in the sktime package and combined
them with the ridge regression classifier implemented in scikit-learn, as suggested by the
authors [104, 105, 133, 136].

2.2.3.2 Metrics

To allow the comparison of various approaches, it is essential to have predetermined
performance metrics. We will focus on three metrics that are widely used in EEG classifi-
cation literature: accuracy, F1-score, and area under the receiver operating characteristic
curve (ROC AUC) [137]. First, the accuracy states the number of correctly classified
samples across both classes. Second, the F1-score assesses the predictive performance
of a model by calculating the harmonic mean of the precision and recall metrics. The
equations used to calculate the accuracy and F1-score are given in Equation (2.1) and
Equation (2.4) respectively, where we use the following abbreviations: true positives
(TP), false positives (FP), true negatives (TN) and false negatives (FN). Third, by plotting
the true positive rate against the false positive rate for different classification thresholds,
we obtain the ROC curve. The ROC AUC is defined as the area under this curve and pro-
vides a measure for how well a classifier can distinguish between true and false samples,
or in our case, targets and distractors respectively. Finally, we also assess the required
training time and model complexity of all models.

accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 (2.1)

precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 (2.2)

recall = 𝑇𝑃

𝑇𝑃 + 𝐹𝑁 (2.3)

F1-score = 2 ×
precision × recall
precision + recall =

2𝑇𝑃
2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 (2.4)

2.3 Results and discussion

2.3.1 Individual subject models

The performance of the models, assessed using the metrics introduced in Section 2.2.3.2,
can be seen in Table 2.3 and Figure 2.3. Evidently, using an EEG-specific model archi-
tecture benefits the performance of IS models. While xDAWN+RG and EEGNet perform
equally well, they demonstrate superior accuracy, F1-score and area under the curve
(AUC) in comparison to MiniRocket and Rocket. As expected, MiniRocket achieves
slightly inferior performance compared to Rocket. However, MiniRocket’s training time
was 15 times faster on our dataset. Notably, while xDAWN+RG and EEGNet exhibit
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equal performance, xDAWN+RG is significantly less computationally expensive than
EEGNet. On central processing units (CPUs) alone, EEGNet’s training time is 9 times
longer. Although training times can be accelerated for EEGNet using (expensive) graph-
ics processing units (GPUs), even when using an NVIDIA GTX 1080 GPU, EEGNet still
requires 2.5 times as long to train as xDAWN+RG.

Table 2.3: Classifier test performance for individual subject models, averaged across the
42 subjects. The best performances are indicated in boldface.

Model Accuracy F1-score AUC
xDAWN+RG 0.76 ± 0.04 0.76 ± 0.04 0.84 ± 0.05
MiniRocket 0.69 ± 0.05 0.70 ± 0.05 0.76 ± 0.06

Rocket 0.72 ± 0.05 0.72 ± 0.05 0.79 ± 0.06
EEGNet 0.76 ± 0.04 0.76 ± 0.04 0.83 ± 0.04
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Figure 2.3: Violin plots of the test accuracy, F1-score and AUC for models trained on
individual subjects.

2.3.2 Cross-subject models

Similar results are obtained for CS models, where EEG-specific approaches perform
better than Rocket and MiniRocket, as shown in Table 2.4 and Figure 2.4. However,
in this scenario, EEGNet outperforms xDAWN+RG. We hypothesize that this can be
attributed to EEGNet’s added complexity and a greater number of parameters compared
to xDAWN+RG. This additional capacity is more likely to be able to learn features that
extrapolate well to previously unseen data points.

Table 2.4: Classifier performance for cross-subject models. Every subject was used as a
test subject once, we report the average across all test sets. The best perfor-
mances are indicated in boldface.

Model Accuracy F1-score AUC
xDAWN+RG 0.73 ± 0.04 0.72 ± 0.06 0.81 ± 0.05
MiniRocket 0.69 ± 0.04 0.69 ± 0.05 0.76 ± 0.05

Rocket 0.72 ± 0.05 0.71 ± 0.06 0.79 ± 0.05
EEGNet 0.76 ± 0.04 0.76 ± 0.05 0.84 ± 0.05
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Figure 2.4: Violin plots of the test accuracy, F1-score and AUC for cross-subject models.

2.3.3 Individual subject models vs. cross-subject models

As we discussed in Section 2.2.3, we expect that the performance of the IS models is
better than that of the CS models. Despite having access to a significantly larger amount
of data, constructing a CS model is a considerably more challenging task. To illustrate
the performance disparity between the two, we refer to Table 2.5 and Figure 2.5, which
showcase the performance difference by subtracting the CS model’s performance from
that of the IS model. EEGNet, MiniRocket and Rocket exhibit similar performance for
both IS and CS models. However, the xDAWN+RG model demonstrates a noticeable
decrease in performance. Given the lower absolute performance of the (Mini)Rocket
models compared to EEGNet and xDAWN+RG, we will focus on the latter for the re-
mainder of this discussion. We hypothesize that the inferior performance on CS models
when using xDAWN+RG can be attributed to its simpler and lightweight nature. Fur-
thermore, xDAWN+RG works by first calculating the evoked responses for all classes.
These can differ significantly from subject to subject, both in P3a peak height and in
time [37, 138, 139]. The convolutional nature of EEGNet likely enabled it to capture the
temporal dynamics of the elicited responses more effectively across different subjects.
It is important to note that the CS models had access to a significantly larger corpus of
training data than the IS models, which is part of the reason that they kept up reasonably
well with the IS models.

Table 2.5: Drop in performance, calculated by subtracting the test performance of cross-
subject models from that of individual subject models. The best performances
are indicated in boldface.

Model Accuracy F1-score AUC
xDAWN+RG 0.03 ± 0.02 0.04 ± 0.04 0.03 ± 0.02
MiniRocket 0.00 ± 0.03 0.01 ± 0.03 -0.00 ± 0.03

Rocket 0.00 ± 0.02 0.01 ± 0.04 -0.00 ± 0.03
EEGNet 0.00 ± 0.02 0.00 ± 0.02 -0.01 ± 0.03
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Figure 2.5: Violin plots of the drop in performance, calculated by subtracting the test
performance of cross-subject models from that of individual subject models.

2.3.4 Analysis of the EEGNet cross-subject model

This section aims to conduct a further investigation into the CS EEGNet model. We
conduct this analysis for the EEGNet model, as it performed the best in both the IS and
CS scenario. Furthermore, we include this analysis only for the CS models, as they are the
most useful in practice, due to their generalization capabilities. However, the conclusions
are similar for the IS models.

2.3.4.1 Confusion matrices
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Figure 2.6: Confusion matrices for the cross-subject EEGNet model, split across the four
conditions defined in Figure 2.1b. The confusion matrices are obtained by
aggregating all the test predictions of the CS models.
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First, we investigate whether the model focuses on the correct features to make a pre-
diction. For example, it is possible that we trained a sound detector instead of a tar-
get/distractor model. Indeed, conditions Con3 and Con4 contain auditory clues for the
target. Theoretically, the model could rely solely on the activation in the auditory stim-
uli processing region of the brain and achieve acceptable performance. For example, if
the model performs perfectly on Con3 and Con4, while predicting all trials belonging
to Con1 and Con2 to be distractors (due to the absence of auditory stimuli), it would
achieve an accuracy of approximately 75%. The confusion matrices in Figure 2.6 negate
this assumption. The model performs comparably in detecting distractors under all con-
ditions. However, the model performs slightly better at identifying targets correctly for
Con3 and Con4. The accuracies for specific conditions, shown in Table 2.6, also reflect
this. Indeed, the accuracies for conditions Con3 and Con4 are higher than the accuracies
for Con1 and Con2. We hypothesize that the inclusion of auditory support causes an
additional signature in the EEG data, making it easier for the model to recognize targets.
Additionally, it was already confirmed by a previous analysis that the subjects are able
to recall the targets better in conditions with auditory support [73].

Table 2.6: The test accuracies of the CS EEGNet model for the different conditions.

Condition Accuracy
Con1 0.74
Con2 0.71
Con3 0.81
Con4 0.77

2.3.4.2 Saliency maps

Next, we explore the electrodes and timings that are predominantly used by our models
for making predictions. Trivially, we expect that the model does not use the pre-stimulus
(𝑡 < 0) EEG data. As deep learning methods such as EEGNet are inherently black box
models, we resort to xAI methods to obtain (interpretable) insights into the model. A
possible technique is a saliency map, which is a visual representation that highlights the
degree of importance of regions or features in an input sample on the model prediction
[117]. To generate a saliency map, the gradient of the model output with respect to the
input sample is computed using backpropagation [118]. More specifically, this process
involves fixing the weights of the trained model and propagating the gradient with
respect to the layer’s inputs back to the first layer that receives the input data. Figure 2.7
shows such a saliency map. This saliency map illustrates the electrodes and timings
that had the greatest average impact on the model prediction when identifying a sample
as a target. It is computed by first calculating the average saliency map for each test
subject individually, then normalizing these saliency maps, and ultimately taking the
average across all 42 subjects. In Figure 2.8, the same information is repeated, displayed
as a topographic map at five time points. From Figures 2.7 and 2.8, we can see that
our model predominantly used the parietal-occipital electrodes and time points between
200ms and 300ms post-stimulus to make its prediction, which is what we expected. We
also investigated the saliency maps under different conditions, but noticed no significant
difference between the conditions.
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Figure 2.7: Saliency map for epochs labeled as targets by the cross-subject EEGNet model.
We averaged normalized saliency maps over all 42 test subjects for the CS
model.
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Figure 2.8: The saliency map from Figure 2.7, shown as a topographic map at five different
timings. A deeper shade of red indicates a larger gradient. At 𝑡 = −0.200ms
and 𝑡 = 0.700ms, the gradients are near zero, indicating that the model does
not use these timings. Contrary, for 𝑡 ∈ {0.200, 0.300, 0.400}ms, there is a
large gradient in the parietal-occipital region of the brain.

2.3.5 Real-world applicability

As discussed earlier in Section 2.3, the EEGNet model requires significantly more train-
ing time compared to the xDAWN+RG model. Despite this, all models demonstrate
the ability to perform inference in near real-time. This quick inferencing capability is
crucial for applications that require immediate feedback, such as ERP spellers, where
any delay could negatively impact user experience and overall system responsiveness.
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Fast inference ensures that users receive the feedback they need without perceptible lag,
enhancing both usability and effectiveness in real-world scenarios.

2.4 Conclusions and Future work

The WithMe project has led to the collection of a large, novel EEG dataset that can be
used to create ML methods to automatically detect attention using P3a ERPs in single
trial data. This is of great importance to BCIs, as they often rely on the P3a, or, more
broadly, the P300 ERP and have a wide range of applications.

We successfully achieved the goal of this work, which was to classify target and dis-
tractor stimuli based on the subject’s EEG data. To achieve this goal, we studied four
classification methods that differed significantly in origin and complexity. We inves-
tigated the performance of these methods both as IS and CS models, with the latter
the most practically relevant due to its generalization capabilities. For the IS models,
xDAWN+RG and EEGNet obtained an accuracy of 76%, outperforming MiniRocket and
Rocket. While EEGNet was able to obtain the same accuracy of 76% in the CS case, the
accuracy of xDAWN+RG dropped to 0.73%. We attribute this difference to the larger
complexity of EEGNet, which likely enables it to generalize better to previously unseen
subjects. The drop in performance between IS and CS models is not as pronounced as
we expected it to be, and even nonexistent for EEGNet. We attribute this to the fact that
the CS models had approximately 42 times more training data available. The EEGNet CS
model performed slightly better on samples recorded under conditions Con3 and Con4,
which are the conditions that include auditory support. While EEGNet achieved the
best performance overall, it also has the highest model complexity (highest number of
trainable parameters) and takes the longest time and most compute to train. However,
all four models are able to make predictions in real time. This property is essential for
real-world human-AI interaction experiments and applications.

Finally, the application of xAI enabled us to investigate which EEG channels and time
points were used by the otherwise black-box EEGNet CS model to make its predictions.
Indeed, using saliency maps, we conclude that the model primarily based its prediction
on the values of the electrodes in the parietal-occipital region between 200ms and 300ms
post-stimulus. This is in line with our hypotheses, as we expected to elicit an attention-
related P3a ERP in the parietal-occipital region of the brain when the subject saw a target
digit.

In conclusion, we achieved the goal of accurately classifying targets and distractors based
on a subject’s EEG data. At the same time, our work contributes to the development of
more effective BCIs and their applications. Finally, we validated the EEG data collected
in the WithMe experiment.

While this study provides valuable insights into attention detection using EEG data, it is
important to acknowledge some limitations. For example, as mentioned in Section 2.2.3,
part of the data used to train the model was labeled incorrectly, as the ground truth labels
are based on the predefined labels of the experiment rather than the subject’s perceived
class. A possible solution is to limit the data to samples where the entire sequence was
reported correctly. However, this would mean that we lose a lot of data, which would in
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turn decrease the performance of the models. Alternatively, we could remove all “bad
sequences”, where a bad sequence would be defined as a sequence in which none of the
targets were remembered correctly. This could be caused by either incorrectly identifying
the stimuli, or by bad memory management, despite correctly identifying the targets and
distractors. However, the number of answers that did not include at least one of the
target digits (regardless of its place in the sequence) is negligible.

In future work, an experiment dedicated to attention should be used to circumvent
the limitations regarding bad labels, as described earlier in this section. This would
allow for labels that exactly correspond to the subject’s perception of a stimulus, which
would in turn lead to more accurate attention detectors. The ultimate goal could then
be to use this attention detector in a BCI, to detect whether a subject paid attention.
In case they did not, the BCI could repeat the sequence or stimulus, to make sure
that the subject can act accordingly. This could also improve learning systems, that is,
systems that know whether a student actually paid attention to the provided information
[140, 141]. Regarding the training and optimization of ML models, it would be interesting
to include an exhaustive feature selection procedure to allow the ML model to focus on
the (most) relevant features. Additionally, we want to explore other ways to enable CS
generalization, for example using transfer learning [142, 143]. This could further increase
the generalization performance of all methods. In particular, this has the potential
to elevate the performance of lightweight models such as xDAWN+RG to that of the
computationally expensive EEGNet. While this work focuses on the detection of attention
using epoched EEG data, the experiment can also be used to study working memory
[73]. Indeed, the complete sequence EEG data should permit an investigation regarding
working memory and whether it is influenced by auditory and/or rhythmic support.

2.5 Data availability statement

Publicly available datasets were analyzed in this study. The behavioral data can be
found at: https://osf.io/ntmy8/?view_only=88d951c394c7481dba00a1497d64797f.
The preprocessed EEG data are openly available from Figshare at https://doi.org/10.
6084/m9.figshare.24278887 [144].

2.6 Appendix

Table 2.7: The versions of the Python packages used in the project.

Package Version Reference
python 3.9.13 [145]
MNE 1.2.1 [120]

pyriemann 0.3 [132]
torch 1.13.1 [146]

sktime 0.17.1 [136]
scikit-learn 1.1.3 [133]

https://osf.io/ntmy8/?view_only=88d951c394c7481dba00a1497d64797f
https://doi.org/10.6084/m9.figshare.24278887
https://doi.org/10.6084/m9.figshare.24278887
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3.1 Introduction

In-situ monitoring of changes in vegetation in inaccessible Arctic regions is challenging,
prompting many such studies to rely on remote sensing techniques [147]. In the field
of remote sensing, vegetation indices such as the Normalized Difference Vegetation
Index (NDVI) are used to quantify and qualify vegetation cover [148]. This is achieved
through airborne or satellite spectral methods [149, 150] or ground-level measurements,
using handheld instruments [151, 152]. Vegetation activity monitoring using NDVI has
shown both intra-annual and inter-annual variations that can give valuable insights into
ecosystem changes [153, 154]. Some parameters that can be derived from such intra-
annual seasonal NDVI curves are the start of the season (SOS), peak of the season (POS),
and maximum annual NDVI value (PEAK) [155, 156].

In high latitudes, the intra-annual temperature and irradiance variation are important
factors that control the cycles in the growth and reproduction of the flora [157, 158]. Over
the last decades, different life-cycle events of vegetation (phenology) have been observed
to change in this region [159]. This has been related to ongoing climate change [160],
which has started to affect vegetation phenological cycles, productivity, and community
structure [161]. Inter-annual analyses found relationships between climate change and
these changes in vegetation dynamics, particularly with regard to the increase in surface
temperature, resulting in an increased PEAK NDVI and with a notable impact on the

27
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length of the growing seasons [162, 163]. Starting from the year 2000, scientists started to
name this phenomenon of an increasing PEAK “Arctic greening” [164]. This phenomenon
was hypothesized to persist with continued climate warming, based on the compelling
evidence of increased PEAK NDVI [165], plant productivity [166], phenology [161], and
vegetation composition [167] between 1980s and early 2000s [159, 168].

Interestingly, the “Arctic greening” effect has not occurred everywhere at high latitudes
and since the early 2000s, the relationship between PEAK NDVI with an increase in
surface temperature has weakened in many places [169, 170]. In fact, in some regions,
this relationship has even become negative, introducing the term “Arctic browning”
[165]. It is generally believed that the shift towards browning must indicate that other
meteorological drivers (e.g., temperature, precipitation, wind, photoperiod) or biological
drivers (e.g., insect grazing, drought, etc.) are in play. However, the issue still requires
further study.

In Iceland, the same strong “Arctic greening” trend was shown to occur during the 1980s-
2000s as in many other high-latitude regions, but with a notable stagnation of the national
PEAK NDVI during 2000-2010, even if the surface temperatures continued to increase in
Iceland during that period [171, 172]. What happened in Iceland after 2010 is unclear,
but a recent study showed that the inter-annual variation in the national average PEAK
NDVI has been large during 2001-2019 period [173]. Therefore, it is of interest to further
study how the NDVI of Icelandic ecosystems responds to further warming.

The impact of climate change on high latitude vegetation is not only limited to the
air temperature increases. Soil warming studies have revealed significant insights into
how soil warming affects soil processes and, consequently, vegetation. Soil warming
experiments in high latitudes have demonstrated that increased soil temperatures can
lead to changes in nutrient availability, microbial activity, plant composition and biomass,
all of which influence plant growth and ecosystem dynamics [174–176]. For example,
[177] found that soil warming resulted in changes to below-ground plant biomass and
fine root biomass, under different warming conditions. These changes were associated
with shifts in plant community composition and soil chemistry, highlighting the complex
adaptation mechanisms of subarctic grasslands to prolonged soil warming.

Continued climate change is expected to cause relatively higher increases in surface
temperatures at higher latitudes in the coming decades [160], which will likely lead
to relatively more ecosystem changes in plant productivity than at lower latitudes [178].
Potential changes include further temporal shifts in parameters that characterize growing
seasons [161] and increases in plant productivity [179, 180]. However, it is important to
further investigate the warming impacts on NDVI to better underpin such predictions
for future changes. Combining data from manipulation (warming) experiments offer
possibilities to study future high-latitude ecosystem NDVI responses [181, 182].

To relate changes in vegetation composition, biomass or NDVI to environmental param-
eters, traditional statistical methods like (non-)linear regression or linear mixed models
have been most commonly used [182–187]. Additionally, multivariate methods have also
been used, for example multivariate analysis of variance tests [188].

Despite massive advancements in the field of machine learning (ML) during the last
decade, ML is not yet often used for vegetation studies. ML models can be used for var-
ious tasks, among which are classification, regression, and image segmentation. In ML,
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models extract knowledge from data and use this knowledge to produce an output rele-
vant to the task at hand. These models use three main learning paradigms: supervised
learning, unsupervised learning or reinforcement learning. This study only considers
the first paradigm, as we build a regression model. Within supervised learning, there
are a multitude of model types, for example, support vector machines [189], boosted
tree ensembles (e.g., XGBoost [190] or LightGBM [191]) and artificial neural networks
(ANNs) [192]. This analysis will use ANNs, particularly multilayer perceptrons (MLPs),
which are fully connected feedforward neural networks that consist of multiple layers of
nodes that are connected with each other by weighted edges.

Recently, ML has also shown promising results in the field of ecology [51, 193], for use
cases such as species identification [39, 194–196], behavioral studies [197, 198], ecological
modelling and forecasting [199–201], remote sensing [202, 203] and climate change studies
[204–206], among others. The utilization of ML techniques has opened new avenues
for understanding complex ecological phenomena and predicting ecological responses.
Considering the proven potential of ML in addressing research questions in the broad
field of ecology [207, 208], we propose to apply ML methods to investigate the relationship
between vegetation phenology and environmental drivers in subarctic grasslands.

Unfortunately, MLPs are black-box models. This means that, while they can approxi-
mate any function, it is nearly impossible to determine the structure of the approximated
function. This led to a whole new field within ML, explainable AI (xAI), which tries
to create methods that allow human users to understand the predictions made by an
ML model [209]. Some popular examples include sensitivity analysis [210], Local Inter-
pretable Model-Agnostic Explanations (LIME) [113], and SHapley Additive exPlanations
(SHAP) values [59]. This study uses the last method, as it is gaining in popularity and
is now often used in ecology. For example, [211] use SHAP values to investigate how
inter-annual variation in the daily average temperature affected the first flowering date
or the full blossom date of the Yoshino cherry trees in Japan. [212] construct a seagrass
distribution model and explain the importance of environmental variables in the model
and subsequent predictions. In [213], an XGBoost model is trained to predict chlorophyll
concentration, and they use SHAP values to perform feature selection, as well as investi-
gate feature importance. SHAP values have a number of advantages over other methods
for understanding the output of a model. First, SHAP values are model-agnostic, which
means that they can be used with any ML model [59]. Second, SHAP values are able
to account for interactions between features, which is something other methods are not
able to do. Third, SHAP values have an intuitive interpretation, which means that they
are easy to understand and explain to others. Finally, SHAP values have some desirable
mathematical properties, such as local accuracy, missingness, and consistency [214].

An earlier study was conducted by [182] at the same research sites in Iceland [215],
focusing on the phenology of subarctic grasslands. They used a short-term temporal
dataset from 2013 to 2015 with curve function fitting analyses based on the methodol-
ogy proposed by [216] to determine seasonal (intra-annual) parameters (e.g. SOS). They
found that the response towards earlier SOS in the warmed subarctic grasslands did not
saturate at higher soil warming levels (i.e., +10°C). Therefore they concluded that grow-
ing seasons at high-latitudes grasslands are likely to continue lengthening with future
warming. However, there was still quite a large unexplained inter-annual variability in
their 3-year dataset, that warranted a further study [182]. In this study, we extended the
analysis period to six years, compared to the three years used by [182]. This enabled
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a more comprehensive examination of the inter-annual variability in NDVI phenology
and annual maximum values. Specifically, the variables used to study NDVI phenology
were the annual day numbers of the SOS and POS, as well as the PEAK, in each research
plot. Our primary objective was to reanalyze the soil warming effects using conventional
linear statistics, as performed by [182], and to assess the robustness of these relationships
over a longer timeframe. Additionally, our study extends previous research by employ-
ing ML algorithms to identify further drivers of the unexplained inter-annual variation
in the studied variables. Specifically, we added a set of three meteorological variables,
namely air temperature, precipitation, and irradiance. However, as predictions made
by ML are often not intuitive, we used xAI methods, providing deeper insights into the
model outputs.

Our objective was to study the relationship between soil temperature and vegetation phe-
nology. More specifically, we studied this relationship using three vegetation phenology
characteristics: SOS, POS and PEAK. Additionally, we investigated the effect of other
meteorological variables on these characteristics. To this end, we postulated following
hypotheses:

A Soil warming

i. A higher soil temperature will introduce significantly earlier SOS, as was found
by [182] for individual years.

ii. The POS will take place at a similar time each year, regardless of the soil
temperature. Plants must use some external trigger to “know” when to start
to slow down growth and prepare for autumn. The prevailing theory suggests
that for most plants, this is triggered by the length of the day [217, 218],
which remains consistent across different years, and is mediated through the
phytochrome system [219].

iii. The PEAK value will not be significantly related to soil temperature, as [220]
showed that there was no difference in above-ground biomass between the
warming treatments.

B Other meteorological variables
We expect that ML can identify other important controls for the previously observed
inter-annual variability of NDVI phenology and PEAK values. Additionally, we
expect that ML can identify the importance of meteorological variables compared
to the soil temperature. Out of the three additional meteorological variables, we
hypothesized for both phenology and PEAK values:

i. Larger impact of meteorological variables compared to the soil temperature,
as they can also impact the soil temperature [221–223].

ii. Within the meteorological variables, air temperature’s influence is expected to
be the smallest due to its regulation of soil temperature , while precipitation
may have an intermediate effect given consistently high soil water content in
these areas [215]. Additionally, a substantial impact of irradiance is hypothe-
sized, particularly in consistently cloudy sub-Arctic climates [224].

Ultimately, the contributions of this research advance our understanding of the relation-
ships between soil temperature, other meteorological variables, and vegetation phenol-
ogy. We achieve this goal by employing a methodology that exceeds standard practice,
using ML and SHAP values.
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3.2 Materials and Methods

3.2.1 Data

Figure 3.1: Map depicting the research site locations near the village of Hveragerdi,
Iceland. "GO" (grassland old) marks the sites where the soil has been warming
for over six decades, and "GN" (grassland new) denotes the sites where soil
warming began following the May 2008 earthquake.

The study was carried out in the south of Iceland near the village of Hveragerdi on the
ForHot site [215], as shown in Figure 3.1. Following an earthquake in May 2008, the
bedrock of one unmanaged (cold) grassland field site underwent a disruption, resulting
in the creation of areas with differently warmed soils. Another nearby grassland field
site had had such warmed soil gradients for at least six decades, and those were not
disturbed by the earthquake in 2008 [215]. In spring 2013, five transects were selected
in each field site, each with five permanent plots across the natural soil temperature
gradients, resulting in a total of 50 studied plots. We categorized the plots according to
their annual soil temperature range, as indicated in Table 3.1.
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Table 3.1: Category of the temperature range of the plots.

Category Temperature Range

A Ambient

B +0.5 to 1°C

C +2 to 3°C

D +3 to 5°C

E +5 to 10°C

3.2.1.1 NDVI data

To be able to estimate vegetation phenology characteristics, we measured the NDVI of
all studies plots using a handheld instrument from SKYE Instruments (SpectraoSense2).
From 2014 to 2019, NDVI measurements were done approximately bi-weekly from April
to November, except during periods with continuous snow cover in early spring, late
autumn, or winter. The measurements were always conducted on a clear day. We
refer to [182] for further information about the NDVI measurements. As can be seen in
Figure 3.2, the NDVI data clearly showed a seasonal pattern, with a higher NDVI in the
summer months.
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Figure 3.2: Overview of all available variables for plot GN1A (unwarmed control plot).
Whereas the NDVI and soil temperature (upper two figures) are unique for
all 50 plots, the meteorological variables (bottom three figures) are the same
for every plot.
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3.2.1.2 Soil Temperature data

The soil temperature at a depth of 10 cm was monitored in all the permanent plots using
HOBO TidbiT v2 Water Temperature Data Loggers (Onset Computer Corporation, USA)
since the spring of 2013 [215]. In Table 3.1, the different soil warming categories with
their accompanying temperature range are given, while Figure 3.2 shows the data for one
of the 50 plots used in this study. The main soil warming effect was an approximately
constant shift in temperature across the seasons, as shown by [215].

3.2.1.3 Meteorological data

In addition to NDVI and soil temperature data, we also used meteorological data. As the
measurement of meteorological variables such as irradiance (global radiation), precipi-
tation, and air temperature at the Forhot site only began in 2019, we relied on data from
another source. Specifically, we obtained the aforementioned meteorological variables
from a weather station in Reykjavík1,located approximately 40 km from the research site,
as this is the closest station where irradiance is measured. We aggregated the data by
taking the average on a weekly resolution scale, and assumed that the weather conditions
are the same for all plots during each year. Given the distance between the weather sta-
tion and the research plots, the data serve as a proxy for the actual weather conditions at
the ForHot site. In Figure 3.2, the three bottom panes show all meteorological variables
measured in the relevant period.

3.2.2 Data analysis

3.2.2.1 Estimating the NDVI seasonal characteristics

To extract the intra-annual vegetation phenology characteristics (SOS, POS and PEAK)
in each plot during each growing each growing season, we first fitted a curve to the
measured NDVI data. Based on the approach of [216], we used a double logistic curve.
We require that the two logistic curves transition into each other continuously, such that
the resulting function is differentiable at every point. These requirements result in the
following formula for the estimated NDVI:

�𝑁𝐷𝑉𝐼(𝑥) = 
𝑐

1 + 𝑒𝑏1 ·(𝑥−𝑎1)
+ 𝑑 𝑥 ≤ 𝑝

− 𝑐

1 + 𝑒𝑏2 ·(𝑥−𝑎2)
+ 𝑑 + 𝑐 𝑥 > 𝑝

(3.1)

where the parameters 𝑎1, 𝑎2, 𝑏1, 𝑏2, 𝑐, 𝑑 and 𝑝 are fitted to a season’s NDVI data and
𝑥 represents the week number (𝑥 ∈ 0, 1, . . . , 52) of the year. The parameter 𝑝 has an
important interpretation, as it is defined as the date of the POS, i.e., where the maximal
NDVI value is reached.

1Data courtesy of the Icelandic Meteorological Institute.
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The best fit for the curve parameters is found using the Trust Region Reflective algorithm
[225]. This generally robust optimization method finds the optimal set of parameters by
minimizing the mean squared error (MSE) between the predicted NDVI curve and the
NDVI data points. After the curve parameters have been fitted, we extracted the start
SOS, POS and PEAK for each plot in each year.

The SOS is considered to be the time of year when the NDVI increases the fastest, i.e.,
the curvature of the NDVI curve increases the most. This can be calculated using the
second derivative of the fitted curves. As shown in Figure 3.3 , the estimated start of
season is the moment in time when the second derivative of the first logistic function
is maximal. Combined with the aforementioned definition of the POS, we establish the
following equation for calculating the relevant vegetation phenology characteristics:

�𝑆𝑂𝑆 = argmax
𝑥

−
𝑐𝑏2

1𝑒
𝑏1(𝑥−𝑎1) (−𝑒𝑏1(𝑥−𝑎1) + 1

)(
1 + 𝑒𝑏1(𝑥−𝑎1)

)3 (3.2)

�𝑃𝑂𝑆 = 𝑝 (3.3)�𝑃𝐸𝐴𝐾 = �𝑁𝐷𝑉𝐼(𝑝) (3.4)

where �𝑆𝑂𝑆 indicates the estimated start of the season, �𝑃𝑂𝑆 the date of the peak of the
season, and �𝑃𝐸𝐴𝐾 the maximum value of the NDVI.
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Figure 3.3: The SOS is estimated based on the second derivative of the fitted NDVI curve.
The SOS is defined as the week when the NDVI curvature increases the most,
and is indicated with a red line.
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3.2.3 Statistical modeling and machine learning

3.2.3.1 Linear regression

After identifying the start and peak of the season for each plot and year, we performed a
linear regression analysis. In this analysis, we used the SOS, POS, and PEAK as depenent
variables, with the average soil temperature in each plot an year as the independent
variable. We conducted this analysis using the ordinary least squares method available
in the statsmodels library (version 0.13.2) for Python 3.9.13 [226]. This approach also
enabled us to compute the p-values for the slope and intercept of the linear model through
a t-test. These p-values help use determine the statistical significance of the relationship
between soil temperature and vegetation phenology characteristics by indicating whether
the observed relationships are likely due to chance or reflect a genuine underlying pattern.

3.2.3.2 Machine learning

To better understand the inter-annual variability in our results, we used ML techniques to
create models predicting different vegetation phenology characteristics. Specifically, we
trained three separate MLPs: one to predict the start of the season, another to predict the
peak of the season, and a third to predict the height of the peak season. An MLP is a type
of ANN designed to mimic the way the human brain processes information. It consists
of multiple layers of nodes (neurons): an input layer, one or more hidden layers, and an
output layer which is used to provide the final predictions. Each node in a layer connects
to every node in the next layer, with each connection having a specific weight. During
training, the MLP adjusts these weights to minimize the difference between its predictions
and the actual outcomes using an algorithm called backpropagation, allowing it to learn
complex patterns in the data [227].

Contrary to the linear models introduced in Section 3.2.3.1, the MLPs also take meteoro-
logical variables into account. This meant that in total, each MLP used 79 input variables,
which included the average weekly air temperature, precipitation and solar irradiance for
the first 26 weeks of the year, as well as the average soil temperature over the entire year.
We implemented the MLPs using the MLPRegressor class from the scikit-learn package
(version 1.1.3) [133]. To ensure the models were as accurate as possible, we optimized
their hyperparamaters – the parameters that control the learning process – through a
process called grid search, which we performed using Optuna (version 3.1.0) [228]. This
process involved testing different combinations of hyperparameters to find the best set-
tings for each of the three target variables. A description of these hyperparameters, the
ranges we explored, and the optimal values we found are provided in Table 3.2.

To evaluate how well the models performed, we used three standard metrics: MSE, mean
absolute error (MAE), and the coefficient of determination (𝑟2). For the grid search, we
focused on minimizing the MSE to identify the optimal set of hyperparameters. Prior to
conducting the grid search, we divided our data into a training set (80% of the data) and
a test set (20% of the data). This split ensures that the models are trained on one portion
of the data and tested on a separate, previously unseen portion, allowing us to assess
their ability to generalize to new, unseen data accurately.
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Table 3.2: Overview of the explored ranges of hyperparameters used in the Optuna grid
search. The optimal values for the three different regression tasks are displayed
in the right-most three columns. If the number of neurons in a layer is zero,
the layer was not used in the network.

Description Range SOS POS PEAK

Number of neurons
in first layer int: 10, 20, . . . , 100 100 70 30

Number of neurons
in second layer int: 0, 10, . . . , 100 0 0 100

Strength of the L2
regularization term

float: 1e-4 — 1e-1
logscale 0.0290 0.0010 0.0606

the solver for
weight optimization adam, lbfgs adam adam adam

initial learning rate float: 1e-4 — 1e-1
logscale 0.0031 0.0003 0.0028

learning rate
schedule for
weight updates

constant, adaptive constant adaptive adaptive

maximum number
of iterations

int: 1000, 2000, . . . ,
10000 8000 8000 8000

maximum number
of iterations with no
improvement

int, 10, 20, . . . , 100 20 50 100

3.2.3.3 SHAP values

The 79 input features we used are not equally important, and each one influences the
model’s predictions differently. To understand which features are most significant, and
what the direction of their impact is, we use SHAP values. They are calculated by by
examining how the model’s predictions change when a specific feature is included or
excluded, considering all possible combinations of features [59]. By averaging these
effects, SHAP values provide a clear and fair measure of each feature’s contribution to
the final prediction. This method ensures that the importance of each feature is assessed
in the context of all other features in the model. In the end, SHAP values can break down
each prediction made by the model, showing the contribution of each feature. The sum
of the SHAP values for all features then equals the model’s output.

After training the MLP models, we computed SHAP values using the model-agnostic
Kernel SHAP method to understand which features are most important in predicting the
start and (height of the) peak of the greening season. We used the implementation in the
Python SHAP package for this analysis [59].
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3.3 Results

3.3.1 The logistic fitting

For most plots and years, good fits were found for the double logistic curves that were
fitted to the intra-annual individual plot NDVI data, with an average 𝑟2 of 0.942 (± 0.095).
However, for 5.8% of all plots and years, the data did not follow a double sigmoid curve,
and the 𝑟2 value was lower than 0.80. These curves were not included in the analysis. The
mean estimated SOS was week 20.41 (± 2.40), the mean estimated POS was week 29.97
(± 3.27), and the mean estimated PEAK was 0.842 (± 0.071) across all the soil warming
treatments.

3.3.2 The average response to soil temperature

Figure 3.4 shows the linear relationship found between the average annual soil tem-
perature and the three NDVI characteristics found by the double-logistic curves. The
parameters of the linear model are given in Table 3.3. A significant linear relationship
was found between average soil temperature and SOS (𝑝 < 0.001), POS (𝑝 = 0.001) and
PEAK NDVI (𝑝 < 0.001) (Figure 3.4 and Table 3.3). The relationship between soil tem-
perature and SOS was negative, with an estimated coefficient of -0.2160 (± 0.053). This
means that for every 4.63 degrees of soil warming, the greening season starts a week
earlier. Otherwise stated, the SOS happens 1.52 days earlier per degree of soil warming
when derived across multiple years. Similarly, we see that the date of the NDVI peak
shifted forward. The estimated coefficient of -0.2353 (± 0.07) indicates that for every 4.25
degrees of soil warming, the NDVI peaks a week earlier, or the POS occurs 1.65 days
earlier per degree of soil warming. Finally, the PEAK value of the NDVI curve increased
slightly with increasing soil temperature.

Table 3.3: The parameters describing the results of the linear models, where different
variables are fitted against the average soil temperature over a whole year.
The SOS and POS are measured in weeks, while the intercept is measured in
degrees Celsius.

Target variable Slope Intercept r2 p-value
SOS −0.216 ± 0.052 22.011 ± 0.454 0.06 <0.001
POS −0.235 ± 0.070 31.755 ± 0.607 0.04 0.001

PEAK 0.005 ± 0.001 0.801 ± 0.013 0.05 <0.001

Although the linear relationships that were observed between average soil temperature
and SOS, POS, and PEAK were significant (Figure 3.4), we also observed a lot of unex-
plained variance, which is indicated by the relatively low 𝑟2 values in Table 3.3.
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Figure 3.4: Linear model that predicts the start of the season (a), the peak date of the
season (b) and the peak value of NDVI (c), based on the average annual soil
temperature. The filled circles represent the mean values for each category
(A to E) of average soil temperature, with error bars indicating the standard
deviation. The semi-transparent circles represent individual observations.
The color indicates the soil warming category where the blue points are A
plots, the red points are B plots, the yellow points are C plots, the green
points are D plots, and the orange points are E plots. All models had a
significant relationship between the average soil temperature and the studied
NDVI curve parameter (See Table 3.3).

3.3.3 The machine learning approach

To explain a larger part of the variance, the possibility of predicting characteristics of
the NDVI curve using MLPs, based on both the soil temperature and meteorological
variables, was investigated. The performance of the MLPs can be found in Table 3.4.
From Tables 3.3 and 3.4, it becomes evident that the inclusion of the meteorological
variables and the utilization of MLPs enabled us to explain a significantly larger part of
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the variance compared to the linear models.

Table 3.4: Model performance of MLP after a 5-fold cross validation (CV) grid search.
The test set consists of 20% of the total data, and is split evenly across the years
of data taking. The naive MSE (MAE) is the MSE (MAE) when the mean of all
training samples is used as the prediction.

Target 5-fold CV MSE Test MSE (naive) Test MAE (naive) Test r2

SOS 3.408 4.760 (7.102) 1.521 (2.095) 0.322
POS 7.933 8.943 (11.103) 2.473 (2.696) 0.192

PEAK 0.004 0.004 (0.006) 0.053 (0.063) 0.248

To investigate the impact of a given feature on the predictions made by the model, we
calculated SHAP values for all three MLPs. These can be found in Figure 3.5, Figure 3.6
and Figure 3.7 for the SOS, POS and PEAK, respectively. In these figures, we separate
the six years to investigate the annual variation in the SHAP values. To obtain the SHAP
value for one meteorological variable, we summed the SHAP values of the 26 weekly
averages, as shown in Equation (3.5). Next, we calculated the sum of absolute values of
the SHAP values, A_SHAP, for the four remaining features for all 𝑛 samples, as shown
in Equation (3.6). By taking the absolute value and adding it over all years, we can
investigate the total impact of a feature on the prediction, regardless of the direction of
the impact. The results for the A_SHAP values are shown in Figure 3.8.

SHAP 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 =

26∑
𝑤𝑒𝑒𝑘=1

SHAP 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 ,𝑤𝑒𝑒𝑘 (3.5)

A_SHAP 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 =

𝑛∑
𝑖

|SHAP 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 ,𝑖 | (3.6)

When interpreting Figures 3.5 and 3.8a, we see that the meteorological variables had
the largest impact on the prediction of the SOS. However, within each year, this impact
was approximately constant. The intra-annual variation in the SOS was clearly the
result of soil warming. In fact, the Pearson correlation between soil temperature and
its accompanying SHAP values was -0.93, meaning that the higher the soil warming,
the earlier the season started each year. All Pearson correlation values can be found in
Table 3.5.

From Figures 3.8b and 3.8c, we can also conclude that the three meteorological variables
also had the largest impact on the predictions of the POS and PEAK. From Table 3.5,
we can see that the POS was earlier and the PEAK value of the NDVI was higher with
increasing soil temperature, as they had a Pearson correlation coefficient of -0.85 and 0.91,
respectively. For the POS, Figure 3.6 indicates that the size and direction of the SHAP
effect for the three meteorological variables shifts significantly over the years, while the
smaller effect of the soil temperature is relatively stable across the six years and drives
the intra-annual variation within the dataset.
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Table 3.5: Pearson correlation coefficient between the average soil temperature and its
corresponding SHAP values.

Target variable Pearson correlation
SOS -0.93
POS -0.85

PEAK 0.91
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Figure 3.5: SHAP values of multi-layer perceptron that predicts the start of the greening
season based on the average soil temperature, air temperature, precipitation,
and radiation. The color indicates the soil warming category where the blue
bars are A plots, the red bars are B plots, the yellow bars are C plots, the green
bars are D plots, and the orange bars are E plots.
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Figure 3.6: SHAP values of multi-layer perceptron that predicts the peak of the greening
season (POS) based on the average soil temperature, air temperature, precip-
itation, and radiation. The color indicates the soil warming category where
the blue bars are A plots, the red bars are B plots, the yellow bars are C plots,
the green bars are D plots, and the orange bars are E plots.
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Figure 3.7: SHAP values of multi-layer perceptron that predicts the peak NDVI based
on the average soil temperature, air temperature, precipitation, and radiation.
The color indicates the soil warming category where the blue bars are A plots,
the red bars are B plots, the yellow bars are C plots, the green bars are D plots,
and the orange bars are E plots.
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Figure 3.8: Sum of the absolute SHAP values as defined in Equation (3.6).

3.4 Discussion

The purpose of this study was to explore the relationship between soil temperature and
NDVI, along with the impact of meteorological variables, utilizing ML techniques. The
discussion will focus on emphasizing the novelties of this work, addressing the hypothe-
ses presented in the paper, discussing the findings in relation to previous research, and
highlighting the implications of the results.

3.4.1 Using machine learning to study vegetation phenology

Currently, the standard practice in vegetation phenology studies using NDVI consists of
using traditional statistical methods such as (non-)linear regression or linear mixed mod-
els [182–187]. However, our results clearly indicate that, after applying linear regression,
a large amount of unexplained variance remains. Our study advances the traditional ap-
proach by using ML models, specifically MLPs, which integrate meteorological variables
to capture nonlinear relationships. This method allowed us to explain a larger portion of
inter-annual variance compared to traditional methods. The use of SHAP values further
provided insights into a deeper understanding of the complex interactions between soil
temperature, meteorological variables, and NDVI dynamics.

3.4.2 Effect of the soil temperature on SOS, POS, and PEAK in subarctic
grasslands

The first hypothesis stated that a higher soil temperature would lead to an earlier SOS
based on previous research by [182]. Such responses have also been found when past
changes in NDVI have been related to changes in annual, seasonal or monthly tempera-
tures [162, 163, 229].

The findings of this study supported this hypothesis, as a significant relationship was
observed between average soil temperature and the start of the greening season. The
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negative coefficient (-0.2160) indicates that SOS occurs 1.5 days earlier per degree of soil
warming across the six years. This finding was consistent with a recent analysis from the
International Tundra Experiment covering up to 20 years of data from 18 sites and 46 open-
top chamber warming experiments across the Arctic, sub-Arctic, and alpine ecosystems
[230]. They observed a 0.73-day earlier start of the greening season, in an environment
where the average air warming was 1.4 °C and the soil warming approximately half of
that [230]. Our finding was also consistent with previous research at the same ForHot
site, as [182] found that on average, the SOS occurred 1.6 days earlier for every degree of
soil warming.

Day length has traditionally been considered a dominant factor in regulating the phe-
nology of many plant species [217, 218], particularly in high-latitude ecosystems where
day length changes significantly throughout the growing season. Therefore in this study,
the second hypothesis stated that the date of the POS would occur at a similar time
each year, regardless of soil temperature, as the day length remains consistent across all
years. However, our results indicate that temperature conditions in the soil can have a
considerable influence on the timing of POS. The hypothesis was therefore rejected. This
finding suggests that, in our sub-Arctic grasslands, day length might not be the primary
factor influencing the timing of the POS. While previous studies have highlighted the
interplay between day length and air temperature in determining phenological events
[231], our study is unique in demonstrating the notable impact of soil temperature. This
underscores the need to consider soil temperature as an influential factor in phenological
studies, particularly in the context of climate change where both soil and air temperatures
are rising.

The third hypothesis proposed that the PEAK NDVI would not be significantly related
to soil temperature, based on previous research by [220], who had not found significant
differences in vegetation biomass across the warming gradients. However, the findings of
this study indicate a slight increase in the PEAK value with increasing soil temperature.
Although the relationship was not as strong as for the SOS and POS, it suggests that higher
soil temperatures may contribute to higher NDVI peak values. It is worth noting that
while NDVI is often used to estimate vegetation biomass [232–235], it is not measuring it
directly, but rather the amount of chlorophyll per surface area [148]. Therefore, “Arctic
greening” measured using the NDVI, could occur without any changes in vegetation
biomass, if the plants are getting “greener” due to a higher nutrient content in warmer
soils. Further research is needed to better understand this relationship and its underlying
mechanisms.

3.4.3 Effect of the other meteorological variables

Hypothesis B focused on the impact of other meteorological variables (air temperature,
precipitation, and irradiance) on the inter-annual variability of the NDVI phenology and
PEAK values, and the potential of ML to identify their importance. The results of the ML
analysis using MLPs showed that these variables have a strong impact on the predictions
of the SOS, POS, and PEAK, and the 𝑟2 values of the MLPs were much higher than those
obtained by the linear regression.

The SHAP values also provided information on the relative importance of these variables.
It was noteworthy that the three meteorological variables had a much larger impact on
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the predictions than the soil warming data. These findings align with other studies
that emphasize the significance of climatic variables over soil conditions because of their
influence on soil temperature in predicting vegetation responses [221, 222]. However, the
intra-annual variation in the SOS, POS, and PEAK was found to be influenced by the soil
temperature. This influence of soil temperature highlights the significant role of below-
ground processes in driving vegetation phenology and productivity [175]. Studies have
shown that soil temperature can affect root growth, nutrient availability, and microbial
activity, all of which are crucial for plant development [174, 177, 220]. Understanding
these interactions is essential for accurately predicting how the ecosystems will respond
to ongoing climate change.

The SHAP values did not indicate significant differences among the meteorological pa-
rameters, making it challenging to prioritize their impact as hypothesized. This con-
tradicts our hypothesis that air temperature’s influence would be minimal due to its
regulation of soil temperature, precipitation would have an intermediate effect, and
irradiance would have a substantial impact, especially in cloudy sub-Arctic climates
[215, 224]. However, collectively, these meteorological factors exhibited a considerably
higher influence on the predictions compared to the soil warming data. Therefore, our
findings not only contribute to understanding the dominant impact of meteorological
parameters on vegetation dynamics, but also emphasize the need for continued research
to explain the interdependencies and potential interactions between these factors.

3.4.4 Methodological considerations

It is important to note some limitations of the study. The analysis focused on a specific
location in Iceland, and the results may not be directly applicable to other regions. The
study period also covered a limited period of time (2014-2019), and longer-term data
would provide a more comprehensive understanding of the inter-annual variation in
NDVI. Furthermore, the meteorological data does not have the same spatial resolution
as the NDVI or soil temperature data. Indeed, as we relied on the measurements of the
nearest weather station, we had to assume that the weather conditions were the same
across all plots.

The SHAP values should also be interpreted with caution. Although they are model-
agnostic, we can only draw valid conclusions if the model generalizes well. That is, if it
has an acceptable test set performance [236]. Furthermore, the SHAP values do not have
a causal interpretation [237]. We cannot assume that if the variable X has a large impact
on the prediction of Y, then X causes Y. On the contrary, Y might cause X, X and Y could
both be caused by a confounding variable, or they could have no causal relationship at
all.

Nevertheless, this study produces valuable insights and provides clear directions for
future research. Our promising results, achieved by applying ML in a vegetation phenol-
ogy study, emphasize the potential of this approach in advancing our understanding of
seasonal plant characteristics based on NDVI data. They can also be viewed as a starting
point for other analyses in a broader ecological context.

In the future, it would be interesting to consider other model architectures or methodolo-
gies, as this could further validate our results, or maybe even improve them. Additionally,
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other xAI approaches like LIME [113] could be considered, allowing comparison between
different xAI approaches.

3.5 Conclusions

Our results only partly supported our hypotheses regarding the effect of soil temperature
on the timing of the SOS, timing of the POS, and peak NDVI values. We observed a
significant relationship between soil warming and the timing of SOS and POS, indicating
that higher soil temperatures advance the onset of the growing season. Unexpectedly,
this also led to a corresponding shift in the timing of POS. Moreover, the peak NDVI
values showed a slight increase with higher soil temperatures. Furthermore, we explored
the impact of meteorological variables, more specifically air temperature, precipitation,
and irradiance, on vegetation phenology and its inter-annual variation. The use of
SHAP values allowed us to gain insight into the relative importance and contribution
of each meteorological variable to the predictions. It became evident that the three
meteorological variables had the largest impact on the prediction of SOS, POS, and
PEAK NDVI values across the six years. However, within a given year, the impact of
the three meteorological variables remained approximately equal, while the variations
in phenological characteristics were primarily driven by soil temperature.

For future work, we suggest further exploration of the underlying mechanisms driv-
ing the observed relationships between soil temperature and phenology. Investigating
the physiological responses of plant species to soil temperature variations and explor-
ing the interactions between soil temperature and other environmental factors at finer
temporal and spatial scales would provide a more comprehensive understanding. Addi-
tionally, collecting data considering the soil characteristics, e.g., soil chemistry or nutrient
availability, could improve the performance of the ML models, and further increase the
explained variance.

In addition, incorporating advanced remote sensing techniques, such as satellite imagery,
in conjunction with ground-based measurements can improve the accuracy and compre-
hensiveness of phenological studies in subarctic grassland ecosystems. Long-term mon-
itoring at multiple sites and the incorporation of various geographical locations would
provide valuable information on the generalizability of our findings and the response of
subarctic grasslands to ongoing climate change.

This study contributes to our knowledge of the relationships between soil temperature,
other meteorological variables, and vegetation phenology in subarctic grassland ecosys-
tems. The findings enhance our understanding of the mechanisms driving ecosystem
dynamics in these regions and have implications for predicting and managing subarctic
grasslands in the face of environmental change. Finally, this work also functions as a
proof-of-concept for ML-based vegetation phenology studies, and thereby provides a
solid foundation for future research in this domain.
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3.6 Data availability statement

The data used in this study is made available as open data and can be found here:
http://dx.doi.org/10.17632/C9T7FX9N4H.1 [238].

http://dx.doi.org/10.17632/C9T7FX9N4H.1
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Mortier, Steven, Thomas Decorte, Jonas J. Lembrechts, Filip J. R. Meysman, Steven
Latré, Erik Mannens, and Tim Verdonck. Missing Value Imputation of Wireless
Sensor Data for Environmental Monitoring. Sensors 24, no. 8: 2416. 2024

4.1 Introduction

Over the last decade, major advances in wireless communication technology, microelec-
tronics, and (big) data analytics have caused a significant increase in the application
of wireless sensor networks (WSNs) [239, 240]. A WSN comprises a network of many
spatially distributed sensors that monitor certain parameters of a physical system and
engage in wireless data communication. The WSN is made up of sensor nodes, some-
times also called sensor motes, which are essentially microcomputers with the ability to
collect data, process these data internally, and finally transmit these data to a centralized
location. WSNs have numerous applications in different fields, including environmental
monitoring, health monitoring, logistics, and smart cities [241, 242]. With the increasing
use of WSNs, there is a growing demand for performant data analysis techniques capable
of handling the vast volumes of collected data.

An important challenge within WSN research concerns missing value imputation for the
extensive spatiotemporal datasets that are generated. Unavoidably, networks tend to lose
readings from sensors for reasons that are difficult or impossible to anticipate, such as
sensor failure due to power depletion, network outages, and communication errors, but
also destruction due to storms or vandalism [243].

These missing readings can have important consequences for real-time monitoring, for
example, in an emergency setting. Likewise, environmental monitoring applications

49
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relying on WSN data can suffer from missing data, which might lead to delayed or incor-
rect responses to environmental changes. Additionally, missing values can weaken the
reliability of sensor data and increase the difficulty of sensor calibration. Finally, incom-
plete data can also compromise the performance of subsequent modeling and statistical
analysis, which may result in biased conclusions or inaccurate predictions. A concrete
example can be found in environmental research, where a WSN is commonly leveraged
to measure variables such as temperature, humidity, atmosphere pressure, and sunlight,
among others. Despite the wealth of data collected by sensor nodes, they often exist in
raw form. Analytical tools commonly employed in such fields, such as support vector
machines, principal component analysis, and singular value decomposition, face limita-
tions when confronted with datasets containing missing data. Consequently, addressing
the issue of missing data in these datasets presents a significant hurdle, impacting the
efficacy of analyses and hindering the ability to draw meaningful conclusions [244].

The objective of this study was to evaluate the performance of missing value imputation
techniques on a dataset generated by a WSN for environmental monitoring. To this end,
we employ a unique dataset that originated from one of the largest citizen science projects
to date involving Internet of Things (IoT) monitoring. Throughout the summers of 2021
and 2022, 4400 citizens within the region of Flanders (Belgium) installed IoT sensors in
their gardens to measure the temperature and soil moisture at a high temporal frequency
(every 15 min). The goal of this citizen science project, called CurieuzeNeuzen in de Tuin;
Nosy Parkers in the Garden (CNidT), was to gain insight into how garden ecosystems
can provide cooling for climate adaptation and mitigate the impacts of extreme weather
events like heat waves. In projects like CNidT, missing values in the sensor time series
are undesirable, both from a scientific and from a citizen perspective. From a scientific
perspective, the data incompleteness reduces the power of the ensuing statistical analysis,
which here aimed to uncover the factors that drive local garden cooling during extreme
weather events. Likewise, data incompleteness was also highly unwanted from the citizen
perspective: participating citizens were updated daily through personal dashboards,
while society at large was informed through real-time maps on the website of a national
newspaper. However, missing values were common in the recorded time series due to a
combination of random sensor failure (e.g., battery problems), failed data transfers (e.g.,
due to network outages), and errors made by the citizens (e.g., destruction or damaging
of the sensor). For these reasons, the dataset from the CNidT project was especially
suitable as a case study for missing value imputation in WSN data. The CNidT dataset
is an integral component of the SoilTemp project, which is a publicly available database
outlined in Lembrechts et al. (2020) [245]. This extensive database comprises data from
7538 temperature sensors spanning 51 countries and encompassing diverse biomes. The
primary objective of the SoilTemp project is to enhance the global comprehension of
microclimates and to address discrepancies between existing climate data and the finer
spatiotemporal resolutions pertinent to organisms and ecosystem dynamics [245].

Given that missing data within WSNs pose a fundamental challenge, the development of
methods capable of imputing these missing values represents an active area of research.
Within our study, several imputation approaches were evaluated to analyze their per-
formance. An overview of all considered approaches and their imputation strategies is
given in Table 4.1. A first approach involves techniques that take advantage of the tem-
poral correlation between data, thus imputing missing values for a given sensor using
the available data of that same sensor at different time steps. Evaluated methods for this
approach include mean and linear spline imputation [246]. A second class of techniques
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utilizes spatial correlation to impute values, focusing on data from other sensors in the
network at the same time step to impute the missing values of one sensor. Evaluated
methods for this approach include k Nearest Neighbours (KNN) imputation [247], mul-
tiple imputation (MI) techniques such as Multiple imputation using chained equations
(MICE) and Markov chain Monte Carlo (MCMC) [248–250], and random forests (RFs) to
replace missing data (MissForest) [251]. The last strategy combines both the spatial and
temporal aspects, taking full advantage of the patterns and intricacies present within the
data. For this, specific methods for WSNs have been developed, such as data estima-
tion using statistical model (DESM) and applying k-nearest neighbor estimation (AKE).
Matrix completion (MC) methods can also be exploited here as they use correlations
within one sensor and across multiple sensors but assume that the data is static, i.e., they
ignore the temporal component of the data [252, 253]. Other methods in this class tend
to leverage deep learning to impute missing values, for example multiple imputation
using denoising autoencoders (MIDA) [254] or recurrent neural network (RNN)-based
approaches such as bidirectional recurrent imputation for time series (BRITS) and multi-
directional recurrent neural network (M-RNN) [253, 255]. For a detailed explanation of
all imputation methods evaluated in this study, we refer to Section 4.2.3.

Table 4.1: The imputation techniques that were considered in this study, together with
their respective imputation strategy.

Method Imputation Strategy
AKE [244] WSN-specific
BRITS [255] Deep learning
DESM [256] WSN-specific
KNN [247] Spatial correlations
MC [252] Temporal and spatial correlations (static)
MCMC [250] Spatial correlations
MICE [249] Spatial correlations
MIDA [254] Deep learning
MRNN [253] Deep learning
Mean imputation Temporal correlations
MissForest [251] Spatial correlations
Spline [246] Temporal correlations

Previous studies have conducted various comparative analyses, assessing different datasets,
classes of algorithms, setups, and types or scenarios of missingness. However, in most
studies, the focus is more on multivariate time series rather than on specific WSN data.
[257] compared seven imputation methods across five publicly available datasets, con-
cluding that KNN imputation exhibited the highest performance. Similarly, [258] evalu-
ated six imputation techniques on 69 datasets, noting that random forest-based solutions
generally outperformed others. Notably, their study also evaluated performance in
downstream machine learning (ML) tasks, finding that the imputation rendered a 10 to
20% performance increase. [259] focused on sensor time series imputation, comparing 16
recovery algorithms on six public and two synthetic datasets, including block missings,
which are more reflective of WSN data characteristics. Their findings suggested that the
optimal recovery method often depends on dataset-specific characteristics. [260] assessed
six imputation techniques using Turkish State Meteorological Service data, introducing
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the correlation dimension technique to account for spatiotemporal dependencies in im-
putation evaluation. Their study indicated that the MCMC approach yielded the most
favorable results.

In this study, we evaluated 12 imputation techniques for different artificial missing scenar-
ios (by inducing 10%, 20%, 30%, 40%, and 50% data removal), as well as a more realistic
scenario defined as “masked” missings. In this scenario, we replicated the missing pat-
terns observed in sensors with incomplete data onto sensors with complete information,
simulating a real-world missings scenario. In this way, we created a standardized sce-
nario through which we can evaluate how effective every method is in compensating
for the missing patterns. Comparisons are made based on the root-mean-square error
(RMSE) and mean absolute error (MAE) to assess the accuracy of the imputed values.
Our study advances the existing literature by conducting a comprehensive comparison
of various missing value imputation methods, employing different strategies and model
types. Moreover, we analyze a genuine WSN dataset featuring a substantial sensor count
(1500) and expand the assessment of these techniques from random missing values to
masked missing values, offering a more realistic evaluation scenario for practical deploy-
ment.

The remainder of this study is structured as follows: Section 4.2.1 introduces the CNidT
project, while Section 4.2.2 describes the dataset collected in the project, as well as the
preprocessing steps that were used. In Section 4.2.3, the imputation methods evalu-
ated in this study are described, and the evaluation criteria are detailed in Section 4.2.4.
Section 4.3 presents the results and discusses the implications of these results. In Sec-
tion 4.4, we summarize our findings, list the most important insights and conclusions,
and provide possible directions for future research.

4.2 Materials and Methods

4.2.1 The Curieuze-Neuzen Citizen Science Project

The dataset analyzed in this study originated from the citizen science project “Curieuze-
Neuzen in de Tuin” (CNidT), which translates as “Nosy Parkers in the Garden” [261, 262].
The project engaged 4400 citizen participants across the strongly urbanized and densely
populated region of Flanders (Belgium, Northwestern Europe) to monitor the microcli-
mate in their garden. The scientific objective was to quantitatively assess the impact of
gardens on the local microclimate and their potential role in the mitigation of extreme
weather events [263]. Initially, 50,578 citizens registered as candidates to participate in
the project. From this pool of registrations, 4400 sampling locations were selected using
an environmental sampling algorithm, to obtain a representative subsample that covered
the range of gardens in terms of size and composition but also to ensure a suitable geo-
graphical distribution across the measurement domain [264]. To this end, metadata were
collected for each garden, including variables related to urbanity, garden characteristics,
garden management, topography, and geography. These metadata were obtained from
participants through questionnaires combined with available remote sensing data. Factor
Analysis of Mixed Data (FAMD) was implemented to reduce the dimensionality of avail-
able metadata, and the selection algorithm used the first three Principal Components
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(PC) from FAMD coordinates to hierarchically select candidate locations, maximizing
variation between gardens in the available environmental space.

The project included two six-month measurement campaigns, spanning the growing
season (spring and summer) of 2021 and 2022. Citizens received a microclimate sensor
device (a “lawn dagger”) that was inserted in the soil in the middle of a lawn patch in
the garden. The microclimate sensor was a custom-tailored modified version of the well-
established TMS logger, which provides a robust and cost-effective device to monitor
temperature and soil moisture near the soil surface [265]. The TMS sensors recorded
data every 15 min with three temperature sensors (DS7505 digital thermometer), one
positioned at 10 cm below the soil surface, one at the soil surface, and one 12 cm above
it. In addition, the TMS measures soil moisture using the time domain transmission
principle in the top 15 cm of the soil [265]. The device has a large internal storage,
allowing it to internally store the data collected over a period up to 10 years.

While regular TMS sensors only allow off-line data collection, a novel TMS-NB version
of the instrument was specifically developed for the project, which was equipped with
wireless transmission ability (collaboration between University of Antwerp, sensor de-
velopment company TOMST, and telecom operator Orange Belgium). To this end, the
TMS-NB was equipped with a data transfer module (BG77 Quectel with Qualcomm
chipset) to send small data packages via the Narrowband Internet of Things (NB-IoT)
network hosted by Orange Belgium. Measurements of temperature and soil moisture
were recorded every 15 min, and the recorded data were stored in the device’s internal
memory. Data collected over one day were sent as one data package via NB-IoT each day
at midnight. This data package included additional metrics (e.g., battery status, signal
quality) and was transmitted via the LiveObjects platform of telecom operator Orange to
a relational database (MS SQL) at the University of Antwerp.

The CNidT project thus gave rise to a large WSN (>4000 nodes) that performed NB-IoT-
based environmental monitoring for a period of two summers (April–September). The
use of low-cost sensors and reliance on citizen input occasionally led to erroneous values
or missing data points due to various factors, including random sensor malfunctioning
(e.g., occasional missing data), connectivity issues (i.e., data package not sent over the
NB-IoT network), as well errors and accidents by the participants (e.g., sensors damaged
by kid’s play or robot lawn mowers). As sensor malfunctioning was virtually absent
(<0.01% of data points) and connectivity issues could be solved by reading out the data
manually after the end of the project, overall data availability ended up around 90%
(see Section 4.2.2). Although such a percentage might be sufficient for most scientific
questions, the project’s goal of reporting back to individual citizens in real time about
conditions in their own garden, as well as a subsequent analysis using ML methods,
makes a gap-filling exercise especially appealing.

4.2.2 Dataset and Preprocessing

A subset of the available data was used to evaluate the missing value imputation tech-
niques. Sensor readings were retained for one six-month measurement campaign (start-
ing on 12 April 2021, at 00:00:00 until 30 September 2021, at 23:45:00), measured every
15 min, thus providing a maximum of 16,512 records in each sensor time series (172
days of data collection times 96 readings per day). Before the final construction of the
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dataset, extensive manual data recovery measurements were done from the TMS-NB
sensor to have as complete a dataset as possible. Furthermore, the additional metrics
(e.g., battery status, signal quality) from the processed signal were also analyzed to gen-
erate as complete a sample as possible. Each sensor reading contained four data records
(three temperatures at different heights and soil moisture). Data from the temperature
sensor at 12 cm above the soil surface (expressed in degrees Celsius) were selected for
the evaluation (and thus the remainder of our analysis), as these readings expressed
the highest variability. This finding made sense, as it is generally known that the soil
temperature becomes less variable over time as you go deeper into the soil profile [266].
Data series were available for 4163 sensor locations. Figure 4.1a illustrates the location of
the sensors and whether the recorded time series for the sensor was complete or not. In
total, 2978 sensors (or 71.5% of the WSN) had no missing values. Across all 4163 sensors
comprising the WSN, 7.8% of records were missing. Although the missing percentage is
not extremely high, about one-third of the sensors showed at least a few missing values,
with some sensors missing nearly all values.

The geographical coordinates of the sensor location (uncertainty 10 m) are part of the
metadata. As some methods utilize geometric distances between sensors, we calculated
the haversine distance (as described by [267]) for every sensor combination as follows:

𝑑ℎ𝑎𝑣(𝑥, 𝑦) := 2𝑟 arcsin

(√
sin2

( 𝑦𝑙𝑎𝑡 − 𝑥𝑙𝑎𝑡
2

)
+ cos(𝑥𝑙𝑎𝑡) cos(𝑦𝑙𝑎𝑡)𝑠𝑖𝑛2

( 𝑦𝑙𝑜𝑛 − 𝑥𝑙𝑜𝑛
2

))
(4.1)

where 𝑥 and 𝑦 are the coordinates of two different sensors, and 𝑟 is the radius of the
Earth (6371 km). The haversine (or great circle) distance is the angular distance between
two points on the surface of a sphere. We used the haversine distance rather than the
Euclidean distance to account for the Earth’s curvature given the scale of the measurement
domain (Flanders region; ∼300 km).

(a)

+51°

+3° +4° +5° +6°

Sensors with all values
Sensors with missing values
Sensors with all values
Sensors with missing values

(b)

Figure 4.1: (a) The TMS-NB microclimate sensor was used in a large-scale citizen science
project on microclimate monitoring. The sensor measures temperature at
three heights, as well as soil moisture. Data transmission occurred via NB-
IoT. (b) The WSN covered 4400 gardens across Flanders. Sensor locations are
colored based on whether time series were complete (green) or had missing
records (red).
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4.2.3 Missing Value Imputation

In the literature, various methodologies for imputing missing (sensor) data exist. Below,
we provide a concise overview of the methods that were considered in this study. For a
more detailed explanation, we refer to their respective papers and code implementations.
First, we introduce different types of missing values, after which we detail how to create
suitable test datasets for imputation.

4.2.3.1 Different Types of Missing Values

There are three types of missing data mechanisms: missing completely at random
(MCAR), missing at random (MAR), and missing not at random (MNAR) [268–270].
MCAR implies that missingness is independent of observed and unobserved data, mak-
ing observed data still representative. This assumption is often strong and unrealistic.
MAR means missingness is linked to observed but not unobserved data [268]. MNAR oc-
curs when missingness is related to unobserved variables, making it the most challenging
scenario to handle and non-ignorable [271].

4.2.3.2 General Approach

To test the performance of imputation methods, we restricted ourselves to data series
that had complete information, as done in other comparison studies [253, 272]. From the
2978 sensors available with complete records, we selected a subset of 1500 as our basic
dataset. In these complete data series, we artificially introduced data gaps that had to
be resolved by imputation. Two separate approaches for missing value creation were
applied.

In a first approach, we applied patterns of randomly missing values with increasing
fractions of data missing (10%, 20%, 30%, 40%, and 50%) using the numpy.random.choice
function [273]. This approach provides missing values that are MCAR, which is the
missingness pattern that is most often used in the literature on missing value imputation
[258]. Although it would also be possible to introduce MAR missing values, e.g., based
on sensor location, we did not consider this option, as it is included in the masked missing
scenario introduced below. Finally, MNAR missing values would manifest themselves by
removing temperature values based on the actual temperature values themselves (e.g.,
low temperature values are removed). As our sensor operates within a range of −55 ◦C
to 125 ◦C [265], this scenario was not relevant for our dataset.

In reality, missing data patterns are not necessarily random. In order to mimic a more
realistic case, we took advantage of the missing data patterns from the sensors that
actually had missing data. To this end, missing patterns were imposed from incomplete
sensors onto complete sensors, thus imposing a mask with missing data. In this approach,
time points for which an incomplete sensor was missing data were imposed as a mask
onto a sensor with a complete data series (as illustrated in Figure 4.2). This approach
is further referred to as the masked missing. This approach allows for a more realistic
evaluation, as potential issues such as spatial or temporal block missing, for example,
due to network failure or sensor failure, will be present in the data.
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Figure 4.2: Example of missing data pattern in a representative sensor time series, which
includes 15-min temperature recordings over a six-month period. (a) Time
series for a sensor with complete data. (b) The same time series but with
missing data artificially imposed. The missing time points are based on a
mask derived from a different sensor with actual missing data.

For all six scenarios (10%, 20%, 30%, 40%, and 50% random missing as well as the masked
missing), a 2×5 nested cross validation (CV) was run to obtain robust results. Nested CV
involves two levels of CV loops: an outer loop and an inner loop. In the outer loop, the
dataset is divided into training and testing sets using k-fold CV. Each fold of the outer loop
trains the model on the training set and evaluates it on the testing set. Within each fold of
the outer loop, an inner CV loop is employed where the training data are split into training
and validation sets, also using k-fold CV. The inner loop is responsible for selecting the
set of hyperparameters that performs best on the validation set. In our study, we used a
2 × 5 nested CV, i.e., we had two outer loops and five inner loops. For hyperparameter
tuning, where applicable, we utilized a randomized grid search strategy. This involved
exploring a predefined range of hyperparameters, as listed in Table 4.2, and selecting
the combination that minimized the average Root-Mean-Square Error (RMSE) of the
validation set of all folds. To ensure comprehensive exploration of the hyperparameter
space, we conducted tuning across 50 different hyperparameter combinations. Notably,
this process was carried out each time on a randomly selected subset of 500 sensors from
our dataset to ensure computational efficiency while maintaining representativeness.
To facilitate transparency and reproducibility, we have included the best-performing
hyperparameters used in our study, which are presented in Table 4.2 in the appendix.

In this section, we use the following notation, where a given test dataset 𝑋 is defined as
follows:

𝑋 := {𝑋𝑛𝑡}, 𝑛 ∈ {1, . . . , 𝑁}; 𝑡 ∈ {1, . . . , 𝑇} (4.2)

with𝑁 being the number of sensors and𝑇 the number of time points. The imputed value
for sensor 𝑛 at time point 𝑡 is denoted by 𝑋̂𝑛𝑡 . A test dataset is schematically depicted in
Figure 4.3. The implementation of all evaluated methods was done in Python, with the
list of packages included in Table 4.7.
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Figure 4.3: Schematic representation of a test dataset used in imputation analysis. A net-
work of 𝑁 sensors is providing data readings over 𝑇 time points. Artificially
induced missings are indicated by the orange fields.

4.2.3.3 Mean Imputation

In this approach, missing values are filled using the arithmetic mean. Specifically, within
our application, we replace missing data points from a particular sensor with the mean
value of that sensor across all available time steps. Mathematically, the imputed value
is expressed as shown in Equation (4.3), where 𝑉 represents the set of time points with
available observations for the given sensor as follows:

𝑋̂𝑛𝑡 =
1
|𝑉 |

∑
𝑣∈𝑉

𝑋𝑛𝑣 . (4.3)

Mean imputation is effective when there is limited temporal and spatial variability and
when the number of missing observations for a sensor is relatively low. Because of
its straightforward approach, it serves as a baseline method for comparison within our
study.

4.2.3.4 Spline Imputation

The linear spline imputation method uses temporal correlation within one sensor to
impute missing values [246]. An imputed value 𝑋̂𝑛𝑡 for sensor 𝑛 is estimated at time
𝑡 by applying a linear interpolation based on the closest available time point in both
directions, 𝑡− and 𝑡+:

𝑋̂𝑛𝑡 = 𝑋𝑛𝑡− +
𝑋𝑛𝑡+ − 𝑋𝑛𝑡−
𝑡+ − 𝑡−

(𝑡 − 𝑡−). (4.4)
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4.2.3.5 K Nearest Neighbor (KNN) Imputation

The KNN method was originally developed to estimate missing values in gene expression
microarray experiments, but it can be easily applied to other use cases [247]. During
imputation, data points with similar features as the data point with missing values are
selected. In our case, the data points are the different sensors, while the features are
the values at different time points. Thus, the KNN imputation technique leverages the
spatial correlation of the dataset. This method would find 𝑘 sensors that have a value
present for the missing time point, where the values of the other time points are most
similar to those of the sensor with the missing value. Afterward, a weighted average
of the 𝑘 “closest” sensors is calculated to estimate the missing value. The contribution
of each of the 𝑘 sensors is weighted by its similarity to the features of the sensor with
missing values, where the similarity is quantified using the Euclidean distance.

4.2.3.6 Multivariate Imputation by Chained Equations (MICE)

The previously introduced methods all involve replacing missing values with a single
estimation, disregarding the uncertainty and variability of the missingness. MI is a statis-
tical technique used to handle missing data that generates multiple plausible imputations
based on the distribution of the observed data [248, 249]. Estimating multiple imputa-
tions, as opposed to just one imputation, accounts for (part of) the statistical uncertainty
in the imputations [274]. MICE is an example of an MI technique and generally operates
under the assumption that the missing data are MAR or MCAR [249, 274–276]. When the
data are not MAR, the application of MICE could result in biased or inaccurate estimates.
The chained equations process used in MICE consists of the following steps [274, 276]:

1. Make an initial guess about the missing values using a simple imputation method,
such as mean imputation.

2. Set the missing values for one feature 𝑓 back to missing. The observed values for 𝑓
are then regressed using (all) other features in the dataset.

3. Make a prediction for the missing values of 𝑓 using the regression model from the
previous step.

4. Repeat steps 2 and 3 for all features that contain missing values. At the end of this
step, all features with missing values have been imputed.

5. Repeat steps 2, 3, and 4 for a number of cycles and update the imputations in
each cycle.

The number of cycles can be chosen by the user and is task-dependent. The final impu-
tation is the imputation found in the final cycle [274].

4.2.3.7 Markov Chain Monte Carlo (MCMC) Imputation

Another MI technique is MCMC [250], based on the Bayesian framework. In essence,
MCMC leverages the principles of a Markov Chain and Monte Carlo simulation to ap-
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proximate missing values by iteratively sampling from a probability distribution. The
main focus is finding the desired posterior distribution defined by a set of parameters 𝜃,
from which the unobserved values 𝑋𝑢 can be predicted using the conditional density of
the observed observations 𝑋𝑜 [250, 277]. The method starts from an initial, plausible ap-
proximation of the missing readings 𝑋𝑢 . In the next step, the MI technique starts. Given
certain parametric assumptions, the 𝜃𝑖 can be estimated from the posterior distribution
𝑓 (𝜃𝑖 |𝑋𝑜 , 𝑋𝑢), with 𝜃𝑖 being the estimated parameter values in step 𝑖. In a second step,
the predictive distribution can be used to obtain the improved predicted values 𝑋 𝑖

𝑢 at
iteration 𝑖.

𝑋 𝑖+1
𝑢 ∼ 𝑓 (𝑋𝑢 |𝜃𝑖 , 𝑋𝑜) (4.5)

In the next step, the 𝜃 parameter values can again be estimated from the complete data
posterior distribution using the newly acquired values.

𝜃𝑖+1 ∼ 𝑓 (𝜃 |𝑋𝑜 , 𝑋 𝑖+1
𝑢 ) (4.6)

These last two steps are iteratively executed until gradually converging to the true distri-
bution. Due to the sequential sampling from two distributions, a Markov Chain is made,
and the use of simulations renders the MCMC name [250, 277, 278]. MCMC imputation
offers several advantages, including the ability to handle complex data structures and
missingness patterns, as well as the flexibility of incorporating prior knowledge or con-
straints. The technique tends to be computationally intensive for large datasets, and it
often requires careful tuning.

4.2.3.8 Matrix Completion (MC) Imputation

Another imputation technique based on iterative MI is matrix completion, based on
[252]. The method uses the spatial and temporal correlations of the data to impute
missing values. The main idea of MC is to handle missing values in a data matrix by
imputing them with estimates based on the observed values and the low-rank structure
of the data matrix. More precisely, missing readings get replaced iteratively with those
obtained from a soft-thresholded singular value decomposition [252]. First, a singular
value decomposition is applied to the incomplete matrix with soft-thresholding, where
the nuclear norm of the matrix is used as a regularizer. In the next step, the modified
singular value matrices are used to reconstruct the data matrix. Then, these two steps
are iterated until convergence of the imputed values is reached. The matrix completion
technique as discussed by [252] is well-suited for situations where the data matrix can
easily be approximated by a lower-rank matrix, rendering an effective solution to the
missing value problem for large and sparse matrices.

4.2.3.9 Data Estimation Using Statistical Model (DESM) Imputation

Similar to previously discussed methods, DESM uses temporal and spatial correlations
between sensors to impute missing values [256]. The method is specifically developed
for WSNs, with the sensor data specific characteristics in mind. More specifically, DESM
relies on historical values of the sensor for which a value is missing (sensor 𝑛), as well
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as the values of the sensor spatially located the closest (sensor 𝑚), with the requirement
that the latter sensor does not have missing values around the time point that needs to
be imputed. Missing values are then estimated according to

𝑋̂𝑛𝑡 = (1 − 𝛼)𝑌̂ + (𝛼)𝑍̂. (4.7)

In Equation (4.7), 𝑌̂ is the imputed value at the previous time point 𝑋̂𝑛(𝑡−1), and 𝑍̂ is
defined as follows:

𝑍̂ = 𝑋𝑛(𝑡−1)

(
1 +

𝑋𝑚𝑡 − 𝑋𝑚(𝑡−1)
𝑋𝑚(𝑡−1)

)
. (4.8)

DESM leverages both the temporal influence of one sensor on itself, included in 𝑌̂, as
well as the spatial attributes of the other sensors (in this case 𝑚), represented by 𝑍̂, to
impute the missing readings. The 𝛼 in Equation (4.7) is the Pearson correlation coefficient
between two sensors 𝑋𝑛 and 𝑋𝑚 , which serves as a weight parameter that evaluates the
effects of 𝑌̂ and 𝑍̂ on the estimated value. Equation (4.8) is based on the assumption that
the data collected by sensors 𝑋𝑛 and 𝑋𝑚 are approximately similar, as they are spatially
close to each other.

4.2.3.10 Applying k Nearest Neighbor Estimation (AKE) Imputation

Sensors that are located in close spatial proximity to other sensors will yield very similar
measurements, which means that it is possible to impute missing values based on the
neighboring sensor values for the same time point. As the exact functional relationship
between two nearby sensors is unknown, the AKE method assumes that this relationship
can be approximated linearly in a short time period [244]. Under this assumption,
we can estimate missing values 𝑋𝑚

𝑛𝑡 from a neighbor sensor 𝑋𝑚𝑡 for any time 𝑡 using
linear regression

𝑋̂𝑚
𝑛𝑡 = 𝛼 + 𝛽𝑋𝑚𝑡 , (4.9)

where 𝛼 and 𝛽 are estimated using all non-missing (𝑋𝑛𝑡 , 𝑋𝑚𝑡) pairs. In total, 𝑘 linear
regression models will be fitted for every sensor, where 𝑘 is a tunable hyperparameter.
To obtain an imputed value, we have to combine the estimations from all 𝑘 neighboring
sensors. While using the arithmetic mean of all imputations is a valid option, this would
disregard the strength of the linear correlation between two sensors. For this reason,
AKE uses a weighted average of all 𝑘 estimated values

𝑋̂𝑛𝑡 =

𝑘∑
𝑚=1

𝑤𝑛𝑚 · 𝑋̂𝑚
𝑛𝑡 , (4.10)

where𝑤𝑛𝑚 is the weight, for which 0 ≤ 𝑤𝑛𝑚 ≤ 1 and
∑𝑘
𝑚=1 𝑤𝑛𝑚 = 1. As we can assess the

performance of a linear regression by using the determination coefficient 𝑟2, we define
the weight 𝑤𝑛𝑚 as the normalized determination coefficient as follows:

𝑤𝑛𝑚 =
𝑟2
𝑛𝑚∑𝑘
𝑗=1 𝑟

2
𝑛𝑗

. (4.11)
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4.2.3.11 MissForest Imputation

The MissForest method is a non-parametric imputation method that uses an RF to impute
missing values [251]. To start, an initial guess is made for the missing values, using mean
imputation or another imputation method. Afterward, the RF is trained on all data,
including the initial guess for the missing values. The trained RF is then used to impute
the missing values again. This procedure is repeated for a fixed number of iterations or
until a stopping criterion is reached, whichever comes first. The stopping criterion is met
as soon as the difference between the previously imputed values (𝑋̂𝑜𝑙𝑑) and the newly
imputed values (𝑋̂𝑛𝑒𝑤) increases for the first time, i.e., the imputation has converged. The
difference Δ is defined as follows, with 𝑝 being the total number of missing values:

Δ =

∑𝑝

𝑖=1(𝑋̂
𝑛𝑒𝑤
𝑖

− 𝑋̂𝑜𝑙𝑑
𝑖

)2∑𝑝

𝑖=1(𝑋̂
𝑛𝑒𝑤
𝑖

)2
. (4.12)

Due to the use of random forests, the method is relatively robust against outliers; however,
it can become computationally expensive on large datasets.

4.2.3.12 Multiple Imputation Using Denoising Autoencoders (MIDA)

MIDA is another MI technique that uses overcomplete denoising autoencoders (DAEs)
to impute missing values [254]. An overcomplete DAE is a DAE where the input data
are projected to a higher-dimensional subspace, from which the missing values are
recovered. The input layer has 𝑇 nodes, assuming the data have 𝑇 features (time points
in our use case). Then, each successive hidden layer adds Θ nodes, where Θ is a tunable
hyperparameter. This is done for 𝑗 encoding layers, after which 𝑗 − 1 decoding layers
are added, which decrease the number of nodes from 𝑇 + 𝑗Θ to 𝑇 for the output layer.
Empirically, Θ = 7 and 𝑗 = 3 have been found to be a good choice, but both of these
parameters can be seen as tunable hyperparameters [254]. The MI part of MIDA is
established by initializing the model with a different set of random weights in multiple
runs, thereby providing multiple predictions. By leveraging the representational learning
capabilities of denoising autoencoders, MIDA can capture the underlying patterns in the
data, thus potentially generating more realistic results. However, these results heavily
depend on the quality and similarity between the unknown and known observations in
the training data. Furthermore, the use of autoencoders and MI also make this method
computationally expensive.

4.2.3.13 Bidirectional Recurrent Imputation for Time Series (BRITS)

There are several methods based on an RNN for missing value imputation, such as BRITS
[255]. The imputation method tries to learn the missing values in a bidirectional recurrent
dynamical system, without any specific assumptions [255]. The method was originally
developed for missing value imputation in multiple correlated time series, which we
extend to the WSN framework. In BRITS, an RNN is used directly for predicting missing
values, meaning that missing values are regarded as variables of the bidirectional RNN
graph, leveraged in the back-propagation of the neural network. This approach ensures
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that missing values receive delayed gradient updates in both the forward and backward
directions, with consistency constraints. The model architecture can also be leveraged for
simultaneous regression or classification jointly in one graph, rather than pure missing
imputation. This can mitigate a part of the error propagation in subsequent modeling
tasks. The main advantages of the BRITS imputation method are the application to
general missing settings, as well as the ability to handle correlated time series and
nonlinear dynamics within the data.

4.2.3.14 Multi-Directional Recurrent Neural Network (M-RNN) Imputation

Closely related to BRITS is M-RNN, as introduced by [253]. M-RNN imputes values both
within and across data-streams, thus both in a temporal and spatial fashion. The original
method was developed for clinical applications, yet it can be easily applied to other
scenarios. The imputation technique contains both an interpolation block (temporal)
and an imputation block (spatial), which are trained simultaneously. The interpolation
block uses an adjusted bi-directional RNN with a lagged timing for the inputs into the
hidden layers in the forward direction and advanced in the backward direction [253].
The imputation block is then a fully connected neural network with dropout. Similarly
to BRITS, the method can also be used for a subsequent modeling task directly. Notably,
the M-RNN tends to be less affected by both the quantity and specific nature of missing
data.

4.2.4 Empirical Evaluation

To compare the performance of the different methods, it is important to have a predeter-
mined set of performance metrics. In this study, we use the RMSE and MAE to assess
the accuracy of the imputed values. Based on previous studies, we also evaluate the per-
centage of cases in which a missing value can be estimated, i.e., the prediction coverage
error (PCE), as defined in Equation (4.13) [279, 280].

PCE =
number of successful imputations

number of missings × 100% (4.13)

The PCE is necessary to be able to interpret the RMSE and MAE fairly; indeed, the
RMSE and MAE ignore missing data points that the model was unable to impute. For
example, if a model relies on the five nearest sensors for imputations, it will be unable to
provide an imputation if those sensors also have missing values. As a result, the RMSE
and MAE might be underestimated for some methods that are not able to impute all
samples, resulting in an overstatement of the model performance. For these cases, the
PCE provides additional context.
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4.3 Results and Discussion

4.3.1 Random Missings

The performance of the various imputation methods, evaluated using the metrics defined
in Section 4.2.4, is depicted in Figures 4.4 and 4.5. Exact values for the RMSE, MAE, PCE,
and execution times are detailed in Tables 4.3 to 4.6. As can be seen in Figure 4.4 and
Tables 4.3 and 4.4 the MC imputation method achieves the best performance (smallest
RMSE and MAE) for all degrees of missingness. Generally, all methods consistently out-
perform the baseline mean imputation, except for the MIDA method, where performance
diverges for higher degrees of missingness (see Section 4.3.5). In the results, a noticeable
trend is observed where methods considering the spatial features of the data generally
outperform others. Methods such as MissForest and MCMC obtain a good performance
and even outperform DESM, which is specifically tailored for WSNs problems. AKE,
another WSN-specific method, has a very good performance and is only outperformed
by MC and MICE. For nearly all methods, the performance gets worse with increasing de-
grees of missingness, which is expected and is also commonly observed in the literature
[253, 280]. A notable exception to this rule is M-RNN, as its performance remains stable
with increasing degrees of missingness. Although unexpected, we consider this result to
be less significant, as the difference is relatively small, and the absolute performance of
M-RNN is among the worst for our specific use case. In addition, M-RNN can efficiently
handle higher degrees of missingness, explaining the result.
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Figure 4.4: (a) The RMSE for all models for different degrees of missingness. (b) The
MAE for all models for different degrees of missingness.

4.3.2 Masked Missings

As random missings do not accurately represent real-life missing scenarios, we also eval-
uated all methods on a realistic missings dataset obtained by creating masks from real,
observed missing patterns. From Figure 4.5 and Tables 4.3 and 4.4, we can conclude
that the MC method performs best, as was also the case in the random missing scenario.
Similarly, AKE, DESM, MCMC, and MissForest are again among the top performing
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methods, indicating the better performance of spatial methods on our dataset. As ex-
pected, the performance in the masked missings scenario is generally worse than for
random missings, as so-called “block” missings frequently cause a lack of “nearby” data
points, which are often used to impute missing values. In particular, the performance
of spline imputation and MICE is significantly worse in the masked scenario. This find-
ing was expected for spline imputation, as it applies a linear interpolation based on the
closest time points surrounding the missing value, which will often be missing itself in
the case of block missings. For MICE, this can be attributed to a worse convergence of
the model due to a poor initial guess. More specifically, the initial guess for the MICE
algorithm was made using mean imputation. From Tables 4.3 and 4.4, we can clearly see
that mean imputation performs significantly worse for masked missings when compared
to its performance for random missings and thus probably did not provide an accurate
initial guess.
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Figure 4.5: (a) The RMSE for all models for the masked data. (b) The MAE for all models
for the masked data.

4.3.3 Prediction Coverage Error

We should, however, interpret the results for AKE and DESM in the masked missings
scenario with caution. In fact, Figure 4.6 and Table 4.5 show that these methods do
not achieve a PCE of 1, meaning that they were unable to impute all missing values.
Indeed, AKE and DESM were only able to impute 95.3% and 98.5% of the missing values,
respectively. As AKE requires at least one sensor (in a group of 𝑘 nearby sensors) to
have an observed value in the given time step and DESM requires one sensor to have
no missing values around the considered time step, this is likely attributable to large-
scale network outages. Indeed, these outages result in spatially nearby points failing
simultaneously. Although the number of unfilled missings is quite small, an end user
might opt to address the remaining gaps by employing a straightforward imputation
method such as mean imputation.
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Figure 4.6: (a) The PCE for all models for the masked data. (b) The execution time (on
a logarithmic scale) for all models, averaged over all degrees of missingness,
including masked missings.

4.3.4 Execution Time

A final criterion to consider when evaluating the imputation methods is the time needed
to train the method (if necessary) and make the imputations, which is combined in the
execution time. In Figure 4.6 and Table 4.6, the execution time averaged over all degrees
of missingness and masked missings is shown. As expected, the deep learning-based
methods (M-RNN, MIDA, and BRITS) were very computationally intensive to train.
The MCMC method was also very computationally expensive, which was expected, as
the authors state that this is the case for large datasets [250]. Finally, even though the
MC method is specifically designed for large matrices, it is interesting to note that it
achieved a very small execution time while also providing the best imputed values in
both missing scenarios.

4.3.5 Discussion

Within our empirical evaluation, spatial methods tend to outperform others across all
imputation scenarios. This can be attributed to the large number of sensors as well as
the spatial proximity of the sensors. Furthermore, the evaluated time steps were limited,
thus impacting the performance. In general, these results are in line with the literature.
However, the deep learning-based methods exhibited poor performance on our dataset,
regardless of the missing pattern. We attribute this to several factors. First, the rela-
tively short time series considered in these data may limit the ability of certain deep
learning-based methods, such as BRITS, to accurately capture temporal dependencies
and patterns. Additionally, most deep learning applications tend to evaluate datasets
with either a higher frequency of measurements or a higher number of measured objects
or sensors. Furthermore, our dataset considers the behavior of small microclimates, in
which local effects may cause temperature peaks that do not appear for other sensors,
which complicates generalization to other sensors. Nevertheless, deep learning-based
methods do exhibit good results for other datasets and should therefore not be ignored
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as a possible imputation technique [253–255]. They also offer the added advantage of
making supplementary predictions using the acquired structure [253, 255] or by training
new models based on the already learned weights. For datasets where deep learning-
based methods perform very well or at least comparably to other methods, this added
benefit could be the deciding factor.

4.4 Conclusions

During the last decade, sensors have become increasingly important across scientific
fields and industries. Unfortunately, sensor data often contain missing values, which
can significantly hamper the interpretation and possible analysis of the collected data.
Consequently, the importance of methods capable of imputing these missing values with
accurate estimates has grown considerably. In this study, we conducted a comparison of
twelve imputation methods on a unique environmental microclimate monitoring dataset
collected by the CNidT citizen science project. We extend the current literature by provid-
ing an extensive comparison of different missing value imputation methods originating
from different backgrounds and imputation strategies. In addition, our work considers
a real WSN dataset with a large number of sensors (1500), which is uncommon in the
literature. Furthermore, we extend the evaluation of the evaluated techniques from ran-
dom missings to masked missings, which provides a highly realistic evaluation scenario
for practical implementations.

We evaluated the imputation methods for two different missing patterns: random miss-
ings, with the degree of missingness ranging from 10% to 50%, and masked missings,
which were obtained using realistic missing value patterns. For all missing patterns, the
MC method outperformed all other methods. MissForest and MCMC also performed
relatively well in both scenarios, while MICE only achieved good results for random
missings. The methods that are designed for WSNs specifically also performed well in
both scenarios; however, they were not able to provide imputations for all missing values
in the masked missings scenario. Finally, the deep learning-based methods, M-RNN,
MIDA, and BRITS, performed poorly for both missing patterns, which can be attributed
to the characteristics of our dataset. We can conclude from the results obtained that
the methods that exploit spatial correlations within the dataset tend to perform better
than the other methods. This can be explained by the relatively small distance between
sensors, as well as the granularity of the temporal component. Moreover, since the
data encompassed the period from April to September, temperatures predominantly
experienced an upward trajectory, making it challenging to discern a clear trend in the
temporal aspects of the data. These results can be extrapolated to similar scenarios where
the number of sensors is high and densely distributed with a comparable length of time.
The success of methods such as MC, MissForest, and MCMC, particularly in capturing
spatial correlations within the dataset, suggests that they would generalize well to such
environments. Despite challenges posed by masked missing values, these methods still
demonstrated robust performance, implying their potential applicability in scenarios
with complex missing data patterns.

Future research can expand upon our study with a more detailed assessment of (other)
methods on different datasets. More specifically, different numbers of sensors and tem-
poral granularity can be evaluated to more clearly identify the impact of these dataset
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specific features on the evaluated models. This can aid in the identification of a gen-
eral best imputation technique across different WSNs. Furthermore, in future studies
concerning missing data imputation for WSNs, additional features of the sensors or lo-
cations can be used to address missing values, such as the type of microclimate location,
or other measured variables, such as the humidity in our specific use case. Also, the de-
velopment of novel WSN-specific methods that efficiently exploit all structures (spatial
and temporal) that are available in the data, carry significant potential. For example, a
method could use an MI approach by first imputing all missing values using temporal
correlations and subsequently using these imputations to obtain a more accurate spatial
imputation, or vice versa. Additionally, cost-sensitive methods for missing value im-
putation can be evaluated, where over- or underestimations of the actual value can be
penalized more heavily. Moreover, the evaluation of the temporal and spatial granularity
and its impact on the imputation performance for various methods could be a valuable
addition. Finally, our comparative study focuses on daily temperature values, whereas it
may be interesting to evaluate it per 15-min interval or hourly and assess the imputation
performance.

In conclusion, we were able to successfully impute missing values in our unique environ-
mental monitoring dataset and provided guidelines for researchers who want to impute
missing values in a similar dataset. Ultimately, we found that the best method to impute
missing values is often dataset-specific and should be identified using a set of artificially
induced missings, preferably both randomly generated and based on a realistic missing
pattern.

4.5 Data availability statement

Publicly available datasets were analyzed in this study. The data can be found at: https:
//www.vlaanderen.be/datavindplaats/catalogus/curieuzeneuzen-in-de-tuin. Data
can also be found in the SoilTemp database available at: https://www.soiltempproject.
com/ [245]. Code for the replication of our study is available on GitHub: https:
//github.com/STAN-UAntwerp/Missing_Imputation_Sensors.

https://www.vlaanderen.be/datavindplaats/catalogus/curieuzeneuzen-in-de-tuin
https://www.vlaanderen.be/datavindplaats/catalogus/curieuzeneuzen-in-de-tuin
https://www.soiltempproject.com/
https://www.soiltempproject.com/
https://github.com/STAN-UAntwerp/Missing_Imputation_Sensors
https://github.com/STAN-UAntwerp/Missing_Imputation_Sensors
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4.6 Appendix

4.6.1 Hyperparamter search

Table 4.2: The hyperparameter grid search space for each evaluated model.

Method Hyperparameter Search Space Optimal Hyperparameter Value
AKE [244] 𝑘: [2–25] 15

timesteps: [5–30], 18
BRITS [255] hidden dimensions: [5–15], 8

learning rate: [0.0001,0.001,0.01,0.1] 0.001
KNN [247] N neighbors: [2–25] 5
MICE [249] N nearest features: [2–25] 24
MIDA [254] Θ: [5,6,7,8,9] 7

sequence length: [5–30], 5
MRNN [253] hidden dimensions: [5–25], 7

learning rate: [0.0001,0.001,0.01,0.1] 0.01

4.6.2 Results

Table 4.3: The RMSE scores for all imputation models, for different degrees of miss-
ingness and masked missings. The best performances are indicated in bold.

Method 10% 20% 30% 40% 50% Masked
AKE [244] 0.499 0.508 0.514 0.516 0.520 0.614
BRITS [255] 2.829 2.859 2.928 3.122 3.523 2.837
DESM [256] 0.857 0.862 0.866 0.870 0.875 0.901
KNN [247] 1.711 1.695 1.680 1.648 1.628 1.748
MC [252] 0.304 0.322 0.354 0.372 0.398 0.493
MCMC [250] 0.847 0.856 0.858 0.861 0.864 0.858
MICE [249] 0.414 0.422 0.437 0.440 0.448 1.195
MIDA [254] 1.200 2.326 3.850 5.256 6.593 1.294
MRNN [253] 2.558 2.472 2.394 2.326 2.268 2.023
Mean Imputation 4.259 4.250 4.241 4.239 4.245 5.703
MissForest [251] 0.664 0.669 0.673 0.674 0.675 0.714
Spline [246] 1.335 1.406 1.486 1.592 1.724 3.796
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Table 4.4: The MAE scores for all imputation models, for different degrees of missingness
and masked missings. The best performances are indicated in bold.

Method 10% 20% 30% 40% 50% Masked
AKE [244] 0.370 0.375 0.376 0.379 0.384 0.444
BRITS [255] 2.255 2.277 2.321 2.460 2.744 2.265
DESM [256] 0.617 0.621 0.622 0.627 0.631 0.630
KNN [247] 1.320 1.304 1.293 1.267 1.254 1.371
MC [252] 0.226 0.240 0.255 0.272 0.294 0.341
MCMC [250] 0.640 0.645 0.644 0.648 0.650 0.650
MICE [249] 0.311 0.318 0.322 0.328 0.335 0.594
MIDA [254] 0.946 2.082 3.574 4.959 6.233 1.019
MRNN [253] 1.938 1.848 1.768 1.698 1.635 1.429
Mean Imputation 3.436 3.424 3.414 3.413 3.418 4.534
MissForest [251] 0.519 0.520 0.520 0.522 0.523 0.554
Spline [246] 1.013 1.059 1.110 1.183 1.272 2.520

Table 4.5: The PCE scores for all imputation models, for different degrees of missingness
and masked missings. The best performances are indicated in bold.

Method 10% 20% 30% 40% 50% Masked
AKE [244] 1.000 1.000 1.000 1.000 1.000 0.953
BRITS [255] 1.000 1.000 1.000 1.000 1.000 1.000
DESM [256] 1.000 1.000 1.000 1.000 0.999 0.985
KNN [247] 1.000 1.000 1.000 1.000 1.000 1.000
MC [252] 1.000 1.000 1.000 1.000 1.000 1.000
MCMC [250] 1.000 1.000 1.000 1.000 1.000 1.000
MICE [249] 1.000 1.000 1.000 1.000 1.000 1.000
MIDA [254] 1.000 1.000 1.000 1.000 1.000 1.000
MRNN [253] 1.000 1.000 1.000 1.000 1.000 1.000
Mean Imputation 1.000 1.000 1.000 1.000 1.000 1.000
MissForest [251] 1.000 1.000 1.000 1.000 1.000 1.000
Spline [246] 1.000 1.000 1.000 1.000 1.000 1.000
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Table 4.6: The execution times for all imputation models, for different degrees of miss-
ingness and masked missings. The lowest execution times are indicated in
bold.

Method 10% 20% 30% 40% 50% Masked
AKE [244] 13.1 18.0 28.1 26.5 46.2 12.4
BRITS [255] 52.4 81.7 103.0 123.6 303.8 36.1
DESM [256] 10.2 19.8 44.2 47.0 92.4 8.8
KNN [247] 15.3 21.7 27.6 34.2 41.6 11.8
MC [252] 1.5 2.0 3.9 3.7 6.2 2.2
MCMC [250] 537.0 552.1 572.3 567.6 881.5 435.9
MICE [249] 23.5 25.7 32.6 25.8 41.6 23.4
MIDA [254] 70.1 71.2 106.0 81.5 108.6 68.6
MRNN [253] 1180.5 1193.6 1640.9 1278.7 1811.7 1144.0
Mean Imputation 0.3 0.3 0.5 0.4 0.6 0.3
MissForest [251] 1.3 1.4 1.8 1.6 2.3 1.3
Spline [246] 0.4 0.4 0.7 0.4 0.7 0.4

4.6.3 Package Versions

Table 4.7: The versions of the Python packages used in the project.

Package Version Reference
python 3.11.5 [145]

scikit-learn 1.3.2 [133]
fancyimpute 0.7.0 [281]

geopy 2.4.1 [282]
keras 2.12.0 [283]

missforest 2.3.1 [251]
numpy 1.23.5 [273]
pandas 2.1.4 [284]
scipy 1.11.4 [285]

seaborn 0.13.1 [286]
tensorflow 2.12.0 [287]

tensorflow-probability 0.20.0 [287]
torch 2.1.2 [288]
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5.1 Background & Summary

Inorganic fertilizers are essential for replenishing the nutrients that are removed from
soils during crop harvesting. The three main nutrients provided by fertilizers, nitrogen
(N), phosphorus (P) and potassium (K), play a key role in plant functions. While N
and P, which are basic components of nucleotides, proteins and membrane lipids, are
essential in energy metabolism [289, 290], K is essential for the transportation of water,
metabolites, and nutrients across plant tissues, for defense against oxidative stresses, and
for the maintenance of osmotic homeostasis [291, 292]. Although the first commercial
inorganic fertilizers were developed in 1843, they were not the main anthropogenic
inputs in the N, P, and K biochemical cycles until the second half of the 20th century
[293]. Today, inorganic fertilizers dominate as the primary nutrient input in croplands,
surpassing the second human input, manure, by over double [293], and also serve as
the main N input for grasslands [294]. This substantial surge during the 20th century
not only facilitated the rapid growth in human population, but also had ecological and
socioeconomic ramifications, such as water eutrophication, soil degradation, climate
change, and mineral resource depletion [295, 296]. In the remainder of this study, the
term ’fertilizer’ will refer to inorganic fertilizers, and all data and results regarding P and
K will be presented in their oxidative forms (P2O5 and K2O, respectively), in accordance
with common references in international standards and regulations.

Given their food security, socioeconomic and environmental implications, considerable
research has been conducted to discern the temporal and regional trends in the use of
N, P2O5, and K2O [294, 297–300]. Nevertheless, limited availability of temporal global

71
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spatial information regarding their application across various crops have restricted these
analyses to a few global and regional studies that primarily focused on N [297, 301, 302].
These studies initially estimated consumption at the country- and state-level using simple
equations, based on a few crop-specific fertilization features and changes in crop surface
area [297, 301, 302], or using Bayesian Markov Chain Monte Carlo modeling [303]. A
global, crop-specific fertilization dataset is crucial for understanding crop nutrient man-
agement practices worldwide, identifying past trends and current gaps in fertilization,
guiding agricultural policies to improve crop yields while minimizing environmental
impacts, and providing input data for modeling [297]. Therefore, we aim to address this
knowledge gap by providing insights into the application rates of P2O5 and K2O while
also seeking to improve estimates for N.

In order to accomplish this objective, we began by updating the panel datasets on crop-
land fertilization; enhancing the most comprehensive database developed by Ludemann
et al. (2022) [67] by incorporating global datasets covering data from the 1970s and 1980s
[304, 305], country-specific data for European countries from 2001 to 2014 [306–309].
This compilation process led to a 35% expansion of the Ludemann et al. (2022) database.
Second, the dataset was expanded with data of various potential socioeconomic, environ-
mental, and agricultural drivers of cropland fertilization. Third, two machine learning
(ML) regression models - eXtreme Gradient Boosting or XGBoost (XGB) [190] and Hist-
GradientBoosting (HGB) [133], both capable of handling the prevalent missing values
within the dataset [133]- were applied to predict N, P2O5, and K2O fertilizer application
rates for the different crop classes over 60 years. Since these models are considered black-
box models, feature importance was incorporated using SHapley Additive exPlanations
(SHAP) [59] values to identify the global socioeconomic, agricultural, and environmental
drivers of cropland fertilization and to validate the ML models. Fourth, the predictions
were validated on national databases. However, since the ML models were trained on
global data, which show a discrepancy with the national data, the model predictions
were first adjusted to match the total annual country-level N, P2O5, and K2O use in agri-
cultural land, similar to previous studies [297–300, 310]. Crucial in this adjustment was
the fraction of total country-level fertilizer use allocated to grasslands and fodder crops,
as an important portion of total fertilizer use in some countries is devoted to these areas,
and little previous estimates existed [293, 310–312], especially for K2O [293]. Therefore,
these fractions were estimated by reviewing scientific and technical information from
75 countries. The adjusted predictions were then validated using national databases of
fertilizer application rates at the crop-level. Finally, the results were spatially allocated
using crop maps of the year 2000, developed by Monfreda et al. (2008) [313]; the annual
harvested area of each crop class in each country; and the spatial changes in cropland
surface based on the Hyde v3.3. project [314].

5.2 Methods

The following section outlines the comprehensive methodology that was adopted in
this study. The methodology encompasses various stages, including the collection and
aggregation of different datasets and the compilation into a unified dataset, as well
as any preprocessing steps that were carried out. Additionally, we introduce the ML
models used in this study, as well as the respective training and evaluation procedures.
Furthermore, we discuss the measures that were undertaken to explain the predictions
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made by the ML models. Following this, we describe how we used the predictions to
create detailed maps of global fertilizer application rates. Finally, we explain how we
assessed the validity and plausibility of the dataset derived from our study.

5.2.1 Data collection

5.2.1.1 Fertilizer application rate by crops

To compile a consistent and detailed dataset of fertilizer application rates for different
crops, countries, and years, 14 global datasets [67, 304–309, 315–321] were used. We
discarded national databases, such as the United States of America (USA) [322] and India
[323–329], to construct a homogeneous database. This approach avoids multiple year-
nutrient-crop-country entries from both global and national databases, and allows us to
retain external databases for validating the ML model predictions. To standardize all
these datasets and minimize data loss, we classified all crop types into 13 crop groups
(wheat, maize, rice, other cereals, soybean, palm fruit, other oilseeds, vegetables, fruits,
roots and tubers, sugar crops, fiber crops and other crops) (Table 5.4), in alignment with
the Indicative Crop Classification for agricultural census (ICC) Version 1.1 [330].

During the 80s, the International fertilizer Development Center (IFDC) published two
reports [304, 305] regarding crop-specific data of fertilizer use by crop (FUBC) (here-
inafter referred to as FUBC-IFDC). After the crop grouping, these publications included
data for 459 country-crop-years combinations (kg ha-1 of N, P2O5, and K2O) from 83
countries for 1973-1988. During the 90s, the Food and Agriculture Organization (FAO),
in collaboration with the fertilizer industry (IFDC and International Fertilizer Associa-
tion (IFA)), published five crop-specific datasets of fertilizer application rate (hereinafter
referred to as FUBC-FAO). After grouping the data, these publications included data for
1693 fertilizer application rate specific to years and crops (kg ha-1 of N, P2O5, and K2O)
from 108 countries for 1984–2002, although most of the data (98%) covered 1988–2002.
The data were collected using questionnaires from governmental agencies, members of
industry companies, agronomists, and economic experts. In both datasets (FUBC-IFDC
and FUBC-FAO), the use of fertilizer for each combination of nutrient, crop, country, and
year was provided two ways: (a) as the average application rate of a fertilizer over total
cropland area, and (b) as the percentage of fertilized cropland area and the application
rate in that area. We transformed all data to the average application rate by multiplying
the percentage of fertilized area by the application rate in that area. The data were either
from a year (e.g., 1996) or a season (e.g., 1996/97). For seasonal data, we considered the
starting year of the season as the year of the data in the analyses. For data for nutrient,
crop, country, and year that were in more than one report, the data was selected from the
most recent report. Data for crop, country, and year that were divided into crop varieties
or management practices (e.g., irrigated or rain-fed rice, or soft or durum wheat) were
aggregated and weighted by the area of the crop class included in the report. Data for
sweet maize, or corn, were excluded, assuming that it referred to Zea mays var. saccharata
and the data for silage maize, because FAOSTAT reports only the harvested area for
maize grain. Values for the crop groups were derived from individual crops when either
more than 90% of the harvested area (based on FAOSTAT data [331]) was dedicated to
the production of a single crop, or when a combination of crops was available in the data,
their weighted average was assigned to the entire group.
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Since the last FAO publication, IFA has released five reports detailing the total amount
of N, P2O5, and K2O used for various crop classes, providing yearly or seasonal data
spanning from 2006 to 2018 [67, 320, 321, 332] (hereinafter referred to as FUBC-IFA).
Initially covering 11 crop types, these reports expanded to 14 types in the fourth report.
They encompassed information for the European Union (EU) together as well as 27 other
countries. In 2022, Ludemann published a more comprehensive dataset covering data for
66 countries, featuring EU data at the country scale, and information for 20 crop classes
[67]. This report also included the FUBC-FAO data for the 1990s and prior data from IFA.
However, small discrepancies between the FUBC-FAO original data and the one compiled
by Ludemann et al. (2022) prompted us to retain the original FUBC-FAO information.
To estimate the average application rate for each combination of crop, country, and year,
we divided the total used amount of each fertilizer by the harvested area provided by
FAOSTAT [331]. As previous research we assumed the harvested area as a proxy for
the crop’s annual surface on each country [297, 298]. It is worth noting that the average
application rate for maize was slightly overestimated because FUBC-IFA included the
amount discharged to silage maize. According to Maiz’Europ’ [333], the current area
of forage maize crops is 17.3 million ha (approximately 1% of the total area of maize
crops in 2020) with the European Union as the most important producer of silage maize,
with 6 million ha. We utilized the available raw data from Ludemann et al. (2022)[67],
adopting FAO-IFDC datasets methods for grouping, and omitted certain countries where
values were estimated based on the previous report and changes in crop surface. For the
EU countries, Norway and the United Kingdom (UK), four unpublished datasets from
Fertilizer Europe (FE) spanning 2001–2015 (referred to as FUBC-EFMA) [306–309] were
used. These datasets offered similar information to the FUBC-FAO publications for the
EU countries, the UK and Norway and allowed us to exclude the fertilizer application to
silage maize, which is important in the EU[333]. However, FUBC-EFMA datasets lacked
individual crop classes for rice and soybeans, resulting in missing data at the country-
level for these crops since 2000 in EU countries.
The resulting dataset included data for the average fertilizer application for 3712 combi-
nations of 13 crop classes, 114 countries, and years from 1973 to 2018. For most of the
combinations of countries and crops, data were available for only a few years (on average,
a country-crop combination had data for 4.1 ± 2.9 years, and 64% of the combinations
had five or fewer years with available data).

In order to later validate our estimations, we compiled a series of national databases. Na-
tional data was quite limited, as only a few countries conduct surveys to study fertilizer
management across different crops. The two countries with most available data were the
USA [322], and the UK [334], which collected long time series on cropland fertilization
for the three primary nutrients. The USA dataset [322] contains fertilization information
for four crops -cotton, maize, soybean, and wheat- dating back to 1964. To compare with
our predictions, we converted all data to average kg ha-1. Additionally, based on the
same surface threshold used for global datasets, we assumed that the application rate for
cotton was equivalent to that of all fiber crop classes. The UK dataset [334] provides data
for four crop classes -roots and tubers, other oilseeds, sugar crops, and wheat- starting
from 1998 for the three nutrients across all Great Britain. We also compiled existing
information from several Asian countries, including India, the Philippines, and Pakistan
[323–329, 335, 336]. The datasets from India [323–329] and Pakistan [335] did not require
additional preprocessing, as they provided the data in average kg ha-1. However, the
dataset from Pakistan presented the information for all three nutrients combined [335].
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For the dataset from the Philippines, which covers rice and maize, we converted the raw
data on the regional number of 50 kg bags per hectare of different fertilizers to N and P2O5
using the country-specific fertilizer nutrient information [337]. Finally, we also compiled
existing data from Sweden [338–341] and New Zealand [342]. The data for P2O5 and K2O
in the Sweden dataset, initially present in their pure nutrient form, were transformed to
their oxidized forms by multiplying by the molecular weights of these elements.

5.2.1.2 Fertilizer use in other agricultural lands

An important step in the methods involves adjusting ML model predictions to national-
level fertilizer use. We used the FAOSTAT database regarding fertilizer annual use at the
country level for making this adjustment[343]. This database includes data on all fertilizer
use for agricultural lands, covering both croplands and grasslands [343]. However, the
crops included in the ML models, as well as in the FAOSTAT harvested area data[331]
do not cover grasslands -whether permanent or temporary- nor fodder crops such as
silage maize or fodder beet. Therefore, the primary goal of this section is to estimate the
fraction of total fertilizer used for these types of agricultural lands.

Data regarding fertilizer application rate for grasslands and fodder crops is even more
scarce than fertilization for other croplands. Additionally, FAOSTAT lacks information
about the surface of the majority of the fodder crops [331]. Therefore, the methods used
for estimation may not be as accurate as those used for other agricultural lands. Here, we
reviewed technical information, such as the FUBC compiled reports [67, 304–309, 315–319,
321], and scientific information from countries where the fertilization of grasslands was
considered to be higher than 1% of the total fertilizer consumption in previous research
[293, 294, 310–312]. Previous research typically focused only on permanent grassland
fertilization, as their goal was to distinguish agricultural fertilizer usage between arable
-croplands and temporary grasslands- and non-arable land -permanent grasslands- [293,
311, 312]. However, we included in the estimation the proportion of fertilizer used for
temporary grasslands and fodder crops for two main reasons: 1) our main goal was to
distinguish agricultural fertilizer usage between all croplands included in the thirteen
crop classes defined in the previous section and the rest of the agricultural land, 2)
the majority of data available in the compiled global reports give information about all
grasslands and fodder crops together [67, 304–309, 315–321]. The information estimated
was the annual country proportion of N, P2O5, K2O fertilizers used for agriculture for
grasslands and fodder crops. Depending on the available information, we have assessed
at the country- or regional-level. In total, we reviewed scientific and technical reports
for 75 countries. As in previous research[293, 310–312], the methods used for estimating
the share of N, P2O5, and K2O usage for grasslands and fodder crops varied between
countries and regions depending on the available information. Therefore, for every
country, we argued the decisions taken based on the available data for providing at least
as transparent as possible the estimations made. Moreover, we included a summary
table (Table 5.7) with the sources used for estimating the range of values used for each
country.
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5.2.1.3 Potential drivers

To develop our ML models, we compiled a series of datasets that contain information
on features that were identified in previous research as drivers or correlates of cropland
fertilization. In this section and the next two, we clarify our rationale for the variable
selection, the data sources and the methods used for estimating some of these variables.
The list of all considered features can be found in Table 5.3 in the appendix. Further
details about their estimations are provided below.

Environmental data Environmental variables related to climate and soil characteristics
have been identified as factors that influence fertilization management in farm-level
studies [344] and regional panel data [345, 346]. Therefore, we selected several potential
factors, some of which have previously been shown to correlate with fertilization, such
as mean annual precipitation (MAP) [345], or soil organic carbon (SOC) [346], as well as
newer potential factors such as the aridity index. Data for these factors were sourced
from two main databases: the CRU v.4. databases [347], for climatic factors, and the
SoilGrids v.2. database [348], for soil characteristics. Obtaining values at the country-
level while considering variations in climatic and soil conditions within a country can
be imprecise. However, our fundamental unit of analysis is the country-level, as the
FUBC values are measured on this scale. To mitigate this limitation, we used spatial
information for climatic and soil characteristics along with information about the location
of crops [313]. All environmental variables were estimated using Equation (5.1), but
preprocessing differed across variables.

𝐸𝑛𝑣𝑙𝑖𝑐 =

∑
𝑔∈𝐺(𝐸𝑛𝑣𝑖 𝑔 × 𝐻𝐴𝑟𝑒𝑎_𝑀2000𝑔𝑐 𝑗)

𝐻𝐴𝑟𝑒𝑎_𝑀2000𝑐 𝑗
(5.1)

Here, 𝐸𝑛𝑣𝑙𝑖𝑐 represents the mean value of the environmental variable for country j, in
year i, where crop c is located in the country; 𝐸𝑛𝑣𝑖 𝑔 is the value of the environmental
variable in year i, for grid cell g ;𝐻𝐴𝑟𝑒𝑎_𝑀2000𝑔𝑐 denotes the area of grid cell g for crop c
in country j; 𝐻𝐴𝑟𝑒𝑎_𝑀2000𝑐 𝑗 is the total surface of crop c in country j based on Monfreda
et al. (2008) crop maps [313]; and G denotes the set of cells where the crop is located
based on Monfreda et al. (2008) crop maps [313]. Here, the grid cells are 5-arcminute
by 5-arcminute cells on a latitude-longitude grid. For the MAP, the 𝐸𝑛𝑣𝑖 𝑔 values of
Equation (5.1) are calculated by summing the precipitation from all months in the CRU
v.4. dataset [347] for each grid cell g, and year i. For the mean annual temperature
(MAT), the 𝐸𝑛𝑣𝑖 𝑔 values are calculated as the average of the monthly temperatures from
the CRU v.4. dataset [347], weighed by the number of days of each month. The potential
evapotranspiration (PET) values are derived by multiplying the daily month average
from CRU v.4.[347] by the number of days in each month and summing the results. For
the aridity index, we used the United Nations (UN) definition [349] of the ratio between
MAP and total PET for each grid cell. As soil variables do not have temporal resolution,
we simplified Equation (5.1) by removing the temporal factor. Additionally, for some soil
variables like the soil cation exchange capacity (CEC), we aggregated the information by
calculating the average for the first three depth layers from SoilGrid v.2. (0-5, 1-15 and
15-30 cm) [348].
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Agrological data We selected agrological features that were previously identified as
factors potentially related to or driving fertilizer intensification, such as holding size
[350], crop area [346], or irrigation implementation [345], as well as features that should
be connected to crop fertilization at the country-level, such as country fertilizer use per
cropland area [343]. Most of the agrological variables used are taken directly from the
sources indicated in Table 5.3. However, some required preprocessing. For holding size,
we applied the methodology used by Zou et al. (2022) [310], which involves standardizing
the information based on the average holding size according to the total agricultural area.
We used holding size data from the FAOSTAT agricultural censuses [351] and previous
research [352]. To estimate the annual nutrient removal for each crop class based on
annual production, we used the recent compilation by FAO [293] on nutrient removal
in kilograms per tonne of crop produced, along with the annual country production
data from FAOSTAT [331]. Additionally, we used this compilation alone as a proxy for
fertilizer recommendations, since these recommendations are generally based on the
nutrient requirements of each crop [353].

Socioeconomic data Economic factors, particularly those related to the profitability of
fertilizer use, have been widely studied to understand fertilizer adoption at the farming-
level [354, 355]. Both input prices (fertilizers) and output prices (crops) determine prof-
itability and can be key factors influencing fertilization decisions. However, assessing
inputs at the country-level is challenging, primarily due to a lack of standardized data.
The only available dataset, FAOSTAT [356], does not cover all periods and lacks standard-
ization. To address this, we used two variables as proxies of fertilizer prices: a) global real
prices for Urea, phosphate rock, and muriate of potash, as compiled by the World Bank
[357]; and b) the distance from the production sites or mines, following the methodology
proposed by McArthur et al. (2017) [358]. This methodology uses gravity models of
trade, based on the premise that fertilizers are produced in a few specific countries [358].
The underlying hypothesis is that countries closer to fertilizer plants or mines are more
sensitive to price variations because transport costs are a significant factor for farmers
[358]. We applied a similar approach, estimating the minimum cost-adjusted distance
by using the costDist function from terra package [359], global friction maps [360], the
locations and operational years of potash [361] and phosphate mines, the locations of
ammonia plants [358, 362] and the centroid of the cropland area on the country based
on the Monfreda et al. (2008) crop maps [313]. Assessing the output prices for crops
faces a similar problem: there is no standardized dataset with national-level data for the
entire period. To resolve this, we used two proxies for crop prices: a) global real prices
for specific commodities like wheat, maize, rice, palm oil, soybeans, sugar, and cotton,
compiled by the World Bank [357], and b) standardized data from two FAOSTAT datasets
[363, 364] that provide prices paid to producers at the country-level. The first dataset
[363] contains information from 1990 onwards in United States dollars (USD), and local
currency units (LCU), while the second dataset [364] covers 1966 to 1990, only in LCU.
To standardize both datasets, we converted the older dataset into USD using annual
currency exchange rates [365]. We then removed outliers independently for each crop
by considering only values within 1.5 times the interquartile range. Before applying this
method to the 1966-1990 dataset, we tested it on the LCU data for maize, wheat, and rice
from the 1990 onwards dataset. We compared the original USD values with those ob-
tained after converting the LCU data using exchange rates. The outlier detection method
retained more than 99% of equivalent values (defined by a ratio between the original
and calculated USD values of 0.99 to 1.01), while removing over 90% of non-equivalent
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values. Finally, the data was converted to real prices by applying the Consumer Price
Index [366].

Other socioeconomic factors, that are not directly related to the profitability of fertilizer
use, have also been linked to country-level fertilizer use. These factors include the income
level, reflected in the gross domestic product (GDP) per capita [367]; the population
pressure, defined as the country’s population divided by its agricultural land area [368];
and the farmers’ knowledge about fertilizer use, as well as general education levels [354],
which we measured by the percentage of total GDP spent on education. We used the
sources listed in Table 5.3 to obtain data for these variables.

5.2.2 Data preprocessing

Several preprocessing steps were performed to prepare the raw data for the ML models.
First, drawing from both expert domain knowledge and exploratory data analysis (e.g.,
using correlation matrices), the features relevant to N, P2O5 and K2O fertilizer applica-
tion rate were selected (Table 5.3). Since not every feature was relevant for each of the
three targets, we narrowed down the dataset to data points where the average fertilizer
application rate is known for all three fertilizers. This restriction ensured that the dataset
comprised only labeled data points, which is crucial for supervised ML techniques. Sub-
sequently, anomalies in the data where the fertilizer application rate was unrealistically
large, i.e., greater than 5000 kg ha−1, were removed. Finally, categorical features were
one-hot encoded (OHE).

5.2.3 Machine learning

Previous studies within this domain typically propose linear equations to estimate the
fertilizer application rate, and only consider a limited set of agricultural factors [297, 298].
However, it is well-established that natural phenomena frequently exhibit nonlinear re-
lationships [369], rendering them unsuitable for modeling with linear methodologies.
Similar studies have also employed Bayesian methods [303], with certain modeling as-
sumptions that are not present in our study. ML has the potential to overcome these
limitations. The field of ML has seen major increases in research [370] and industry
[371], and, more specifically, ML has shown promising results in the field of ecology
[51, 193], including agricultural research [48, 372], fertilizer consumption [47, 373] and
fertilizer management [374]. For this reason, ML was used in this study to estimate the
annual fertilizer application rate at the crop- and country-level. The benefit of using ML
is threefold. First, ML allows us to include a larger range of variables, for example also
including socioeconomic factors. Second, nonlinear ML techniques enable us to model
nonlinear relationships between the variables in our dataset. Lastly, the model output
can provide insights into the drivers associated with crop fertilization on a global scale,
through the use of SHAP values [59] outlining the feature importance. The employed ML
methods to estimate fertilizer application rate for crops differ from previous research,
which typically relied solely on changes in crop area, overall fertilizer consumption, and
limited data regarding fertilizer application rate at the individual crop-level [297, 298].
An advantage of our method is that it enables us to estimate values for countries where
specific data is lacking by relying on other related variables. For example, the projected
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data for the Union of Soviet Socialist Republics (USSR) aligns closely with national to-
tals, even in the absence of country-specific data and without adjustments based on total
consumption, as conventionally done [297, 298].

5.2.3.1 Models

In this study, two ML models based on gradient boosted regression trees were selected
to predict the average annual fertilizer application at the crop- and country-level. In
gradient boosting [375], an ensemble of weak learners (in our case regression trees) is
trained sequentially. First, a weak learner is fitted to the original data. In the next
iteration, another weak learner is fitted to the residuals, i.e., the differences between the
ground truth target values and the current predictions made by the ensemble. When
fitting a new weak learner to the residuals, gradient boosting adjusts its parameters in
the negative gradient direction, aiming to reduce the residual error of the ensemble. This
sequential learning process enables gradient boosting models to create a strong learner
by combining multiple weak learners. The specific gradient boosting models employed
in this study are XGB [190] and HGB [133, 191]. XGB has been shown to be a powerful tool
for predictive modeling in a wide range of applications in both industry and research,
including agricultural research [48] and fertilizer research [47]. It offers an optimized and
scalable implementation of gradient boosting, and includes regularization techniques to
prevent overfitting [190]. The HGB model is primarily based on LightGBM [191], which
addresses one of the major bottlenecks in gradient boosting model training, namely the
requirement to sort all samples at each node [133]. Indeed, in a traditional gradient
boosting model, samples must be sorted at each node to determine the best split. This
sorting process can become computationally expensive, especially when dealing with
large datasets or deep trees. In HGB, the samples are first collected into a histogram,
which removes the need for sorting as samples in a histogram are implicitly ordered.
This optimization results in a model that is much faster to train than traditional gradient
boosting models, while still achieving similar or better performance [133]. The choice
for these two methods over other conventional ML approaches, such as neural networks,
was primarily driven by the fact that both methods natively handle missing values. This
constitutes a significant advantage, given that global fertilizer application rate data, along
with the socioeconomic and agricultural variables used to predict the annual fertilizer
application, are often incomplete. This also demonstrates another advantage of applying
ML to this problem over the conventional approach using linear equations. Indeed, the
absence of just one variable in the equation renders it impossible to compute.

5.2.3.2 Model training and evaluation

The selection of the optimal set of model hyperparameters is usually done using cross
validation (CV), after which the CV error is reported as the performance of a model
[376]. However, based on Stone (1974) [377], model assessment and model performance
require different CV approaches. For this reason, we used nested CV, as it allowed us to
find the optimal set of hyperparameters for a model and provide an unbiased estimate
of the model’s performance [378]. In nested CV, two levels of CV loops are used: an
outer loop and an inner loop. In the outer loop, the dataset is split into training and
testing sets, typically using k-fold CV. Each fold of the outer loop trains the model on
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the training set and evaluates the model on the testing set. Within each fold of the
outer loop, the training data is provided to an inner CV loop, in which the training
data is further split into training and validation sets, also typically using k-fold CV. The
inner loop is responsible for selecting the set of hyperparameters that performs best
on the validation set. Finally, the performance of the selected set of hyperparameters
is evaluated on the corresponding test set in the outer loop. In our study, we used a
2 × 5 nested CV, i.e., we had two outer loops and five inner loops. We employed a grid
search that iteratively went over all possible combinations of hyperparameters, based
on the explored hyperparameters as shown in Table 5.1 for both the HGB and XGB
models. The performance of the models was evaluated by averaging the performances of
the two models in the outer CV loop. The considered performance metrics included the
coefficient of determination (𝑅2), mean absolute error (MAE), mean squared error (MSE),
and root-mean-square error (RMSE), all computed between the predicted and reported
data points.

Table 5.1: Overview of the explored hyperparameters for the Histogram-based Gradient
Boosting (HGB) and eXtreme Gradient Boosting (XGB) regression models.

Method Hyperparameter Possible values

HGB

max_depth 2, 5, 10, 20
max_iter 25, 50, 100, 200, 500
learning_rate 0.01, 0.1, 0.5, 1
min_samples_leaf 5, 10, 20, 50

XGB

max_depth 2, 3, 4, 5
n_estimators 25, 50, 100, 200, 300, 400
colsample_by_tree 0.6, 0.7, 0.8, 0.9, 1.0
subsample 0.6, 0.7, 0.8, 0.9, 1.0
min_child_weight 3, 4, 5, 6, 8, 10

5.2.3.3 Model interpretability through SHAP value analysis

Unfortunately, gradient boosting methods are so-called black-box models, i.e., it is not
immediately clear how certain predictions are made. However, assessing the impact
of the features on the predicted fertilizer application rate in the learned models could
provide us with valuable insights into the drivers of fertilizer application rate. Therefore,
we resorted to explainable AI (xAI) methods to understand the predictions made by our
models. More specifically, we used SHAP values [59] as they are model-agnostic, can
account for interactions between features and have an intuitive interpretation. Indeed,
summing the SHAP values for all features in one sample results in the prediction of the
model. Additionally, like XGB and HGB, SHAP values are robust with respect to missing
data by design [59]. Special attention was given to categorical values, as retrieving one
SHAP value for a categorical feature that is divided into OHE features is non-trivial.
However, as the SHAP values are calculated using the preprocessed input data (i.e.,
containing the OHE categorical features), the SHAP values for one categorical variable
were obtained by adding together all SHAP values for its respective OHE features.
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5.2.4 Adjustment to country totals

Previous research has always started with the same premise of allocating total fertilizer
consumption at the country-level for estimating crop-level use [297, 298]. However, here
we adopt a different strategy, initiating the estimation of the fertilizer consumption at the
crop-level directly. Despite this shift in strategy, we still consider country-level data to
be more reliable than datasets compiled from various FUBC sources. To reconcile our
approach with the more dependable country-level data, we adjusted the ML predictions
to align with FAOSTAT’s total fertilizer consumption at the country-level [343]. As shown
in Equation (5.2), we distributed the differences between the predicted total fertilizer
consumption and the FAOSTAT totals equally among crops, after excluding the fraction
used for grasslands and fodder crops from FAOSTAT totals.

𝐹𝑒𝑟𝑡_𝑃𝑟𝑒𝑑𝑖𝑐 𝑗 = 𝐹𝑒𝑟𝑡𝑀𝐿_𝑃𝑟𝑒𝑑𝑖𝑐 𝑗 ×
∑
𝑑∈𝐶(𝐹𝑒𝑟𝑡𝑀𝐿_𝑃𝑟𝑒𝑑𝑖𝑑𝑗 × 𝐻𝐴𝑟𝑒𝑎_𝐹𝐴𝑂𝑖𝑑𝑗)

𝐹𝐴𝑂𝑆𝑇𝐴𝑇_𝐹𝐸𝑅𝑇𝑛𝑔𝑖 𝑗
(5.2)

Where, 𝐹𝑒𝑟𝑡_𝑃𝑟𝑒𝑑𝑖𝑐 𝑗 represents the fertilizer application rate predictions after the adjust-
ment for year i, crop c, and country j. 𝐹𝑒𝑟𝑡𝑀𝐿_𝑃𝑟𝑒𝑑𝑖𝑐 𝑗 denotes the ML model predictions,
C is the set of all crops classes included in the models, 𝐻𝐴𝑟𝑒𝑎_𝐹𝐴𝑂𝑖𝑑𝑗 the FAOSTAT har-
vested area [331] of each crop class d, and 𝐹𝐴𝑂𝑆𝑇𝐴𝑇_𝐹𝐸𝑅𝑇𝑛𝑔𝑖 𝑗 is the total FAOSTAT
fertilizer consumption for the country, after removing the fraction used for grasslands
and fodder crops.

5.2.5 Validation

To validate the model predictions, we compared the model predictions with national
databases containing information about the average use per hectare for different fertilizers
and crops. This validation is quantified using the MAE and mean absolute percentage
error (MAPE) as well as with comparative plots if enough data was obtainable from the
various national databases. The MAE gives an idea about the actual deviation, whilst the
MAPE makes the comparison between prediction errors easier. The evaluated national
databases include data obtained from for the USA [322], UK [334], India [323–329],
Sweden [338–341], Philippines [336], and New Zealand [342]. For Pakistan [335], only
data for the sum of fertilizer application rate is available, hence the sum of N, P2O5, and
K2O was used, expressed as NPK. This approach is restricted by available data in national
databases for average fertilizer application rate across various crops and nutrients.
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5.2.6 Gridded crop-specific application rate per fertilizer

HArea_M2000
Gridded harvested area

(13 crop classes,
year = 2000)

HArea_M1961_2019
Gridded harvested area

(13 crop classes, years = 1961-2019)

HArea_1961_2019
Gridded harvested area

(13 crop classes, years = 1961-2019)

FertCrop_1961_2019
Gridded fertilization amount by surface

(NPK fertilizer use for 13 crop classes, years = 1961-2019)

HArea_FAO1961_2019
Country level Harvested Area

(13 crop classes, years = 1961-2019)

Fert_Predictions
Country N, P2O5, K2O use per hectare

(13 crop classes, years = 1961-2019)

CArea_Hyde
Gridded cropland area

(Rice / Not rice croplands,
years = 1961-2019)

HistGradientBoosting
method trained on
data described in

Table 5.3

Equations (5.3) to (5.6)

Equation (5.7)

Equation (5.8)

Figure 5.1: Outline of the process for generating the gridded crop-specific fertilizer
dataset.

Following the generated comprehensive dataset of global fertilizer application rate, we
constructed detailed 5-arcmin resolution gridded maps for each fertilizer (N, P2O5, and
K2O), crop class and year from 1960 to 2020. The final gridded map dataset was com-
piled in a three-step process, as highlighted in Figure 5.1. First, data of the gridded
harvested area spanning from 1961 to 2019 for the 13 distinct crop classes (see Ta-
ble 5.4) were acquired by combining data from the EARTHSTAT project of the year
2000 (𝐻𝐴𝑟𝑒𝑎_𝑀2000) [313], supplemented with historical arable land and permanent
crop areas per year (𝐶𝐴𝑟𝑒𝑎_𝐻𝑦𝑑𝑒) from the History Database of the Global Environ-
ment (HYDE version 3.3) [314]. The EARTHSTAT maps were created by combining
national-, state-, and country-level census statistics with an up-to-date global dataset of
croplands, organized on a 5-arcminute by 5-arcminute latitude-longitude grid. These
datasets, reflecting land use around the year 2000, detail both the area harvested and the
yield of 175 diverse crops worldwide [313]. Innovative maps outlining major crop groups
were generated by consolidating these individual crop maps. The HYDE 3.3 project pro-
vides long time series estimates and maps for land use, including the cropland areas,
based on an allocation algorithm with time-dependent weighting [314]. The elaborate
information from the crop specific EARTHSTAT maps for the year 2000, in combination
with the yearly changes in gridded cropland from HYDE 3.3, allowed us to make detailed
gridded 5-arcmin resolution crop specific harvested areas for each of the evaluated years
and crops using Equations (5.3) to (5.6):
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For 𝐶𝐴𝑟𝑒𝑎_𝐻𝑦𝑑𝑒𝑔𝑖 > 0 and crop is rice:

𝐻𝐴𝑟𝑒𝑎_𝑀𝑔𝑖𝑐 = 𝐶𝐴𝑟𝑒𝑎_𝐻𝑦𝑑𝑒_𝑅𝑔𝑖 ×
𝐻𝐴𝑟𝑒𝑎_𝑀2000𝑔𝑅𝑖𝑐𝑒
𝐶𝐴𝑟𝑒𝑎_𝐻𝑦𝑑𝑒_𝑅𝑔2000

(5.3)

For 𝐶𝐴𝑟𝑒𝑎_𝐻𝑦𝑑𝑒𝑔𝑖 > 0 and crop is not rice:

𝐻𝐴𝑟𝑒𝑎_𝑀𝑔𝑖𝑐 = 𝐶𝐴𝑟𝑒𝑎_𝐻𝑦𝑑𝑒_𝑁𝑅𝑔𝑖 ×
𝐻𝐴𝑟𝑒𝑎_𝑀2000𝑔𝑐

𝐶𝐴𝑟𝑒𝑎_𝐻𝑦𝑑𝑒_𝑁𝑅𝑔2000
(5.4)

For 𝐶𝐴𝑟𝑒𝑎_𝐻𝑦𝑑𝑒𝑔𝑖 > 0 ∪ ∑
𝑐∈𝐶 𝐻𝐴𝑟𝑒𝑎_𝑀2000𝑐 = 0 and crop is rice:

𝐻𝐴𝑟𝑒𝑎_𝑀𝑔𝑖𝑐 = 𝐶𝐴𝑟𝑒𝑎_𝐻𝑦𝑑𝑒_𝑅𝑔𝑖 ×
∑
𝑘∈𝐾 𝐻𝐴𝑟𝑒𝑎_𝑀2000𝑔𝑅𝑖𝑐𝑒/𝐾
𝐶𝐴𝑟𝑒𝑎_𝐻𝑦𝑑𝑒_𝑅𝑔2000

(5.5)

For 𝐶𝐴𝑟𝑒𝑎_𝐻𝑦𝑑𝑒𝑔𝑖 > 0 ∪ ∑
𝑐∈𝐶 𝐻𝐴𝑟𝑒𝑎_𝑀2000𝑐 = 0 and crop is not rice:

𝐻𝐴𝑟𝑒𝑎_𝑀𝑔𝑖𝑐 = 𝐶𝐴𝑟𝑒𝑎_𝐻𝑦𝑑𝑒_𝑁𝑅𝑔𝑖 ×
∑
𝑘∈𝐾 𝐻𝐴𝑟𝑒𝑎_𝑀2000𝑔𝑐/𝐾
𝐶𝐴𝑟𝑒𝑎_𝐻𝑦𝑑𝑒_𝑁𝑅𝑔2000

(5.6)

Here, the indices denote the grid cell (𝑔), the year (𝑖), the crop (𝑐). The harvested
area (𝐻𝐴𝑟𝑒𝑎_𝑀𝑔𝑖𝑐) was generated through a series of conditional operations. These
conditions stipulate that if the value of the HYDE3.3 cropland area map (𝐶𝐴𝑟𝑒𝑎_𝐻𝑦𝑑𝑒𝑔𝑖)
for that year 𝑖 and grid cell 𝑔 is larger than 0, and the crop is not rice, then the value
of that grid cell for that specific crop and year is given by the HYDE3.3 cropland area
(𝐶𝐴𝑟𝑒𝑎_𝐻𝑦𝑑𝑒_𝑁𝑅𝑔𝑖) for that grid cell/year combination. The value of the grid cell is
then further adjusted by the ratio of the HYDE3.3 map of the year 2000 to the EARTHSTAT

map of the year 2000 for the corresponding grid cell and crop (
𝐻𝐴𝑟𝑒𝑎_𝑀2000𝑔𝑐

𝐶𝐴𝑟𝑒𝑎_𝐻𝑦𝑑𝑒_𝑁𝑅𝑔2000
).

In the case of rice, the specific HYDE3.3 map for cropland area of rice was selected.
Additionally, in instances where 𝐶𝐴𝑟𝑒𝑎_𝐻𝑦𝑑𝑒𝑔𝑖 was larger than 0 and the sum of all
crops across the EARTHSTAT maps of the year 2000 is equal to 0 (e.g., when new lands
are cultivated), a progressively expanding area 𝐾 was evaluated to find an appropriate
ratio based on the average of the 𝑘 neighboring cells. The evaluated values for 𝑘 were
5, 10, 25, 50, 100, 150, 200 and 250, up until a value different from zero for the ratio is
found. If no value different from zero was found, the ratio value was set equal to 1. This
last step made the assumption that the crop distribution in neighboring cells adequately
represents the distribution in the newly cultivated area, allowing for the calculation of
adjusted harvested areas. Furthermore, as the 𝐻𝐴𝑟𝑒𝑎_𝑀2000𝑔𝑐 is consistently used, we
assumed that the changes in crop distribution over time remain constant.

To ensure consistency with FAOSTAT data used in the model predictions, the gridded
harvested area (𝐻𝐴𝑟𝑒𝑎_𝑀1961_2019) was aligned with the country-specific harvested
area reported by FAOSTAT (𝐻𝐴𝑟𝑒𝑎_𝐹𝐴𝑂2000). This adjustment, applied through Equa-
tion (5.7), provided a corrected gridded harvested area for the 13 crop classes over the
60-year period (𝐻𝐴𝑟𝑒𝑎_1961_2019):
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𝐻𝐴𝑟𝑒𝑎𝑔𝑖𝑐 = 𝐻𝐴𝑟𝑒𝑎_𝑀𝑔𝑖𝑐 ×
∑
𝑗∈𝐽 𝐻𝐴𝑟𝑒𝑎_𝐹𝐴𝑂𝑖𝑐 𝑗∑
𝑗∈𝐽 𝐻𝐴𝑟𝑒𝑎_𝑀𝑖𝑐 𝑗

(5.7)

In this equation, 𝐻𝐴𝑟𝑒𝑎_𝐹𝐴𝑂𝑖𝑐 𝑗 represents the harvested area for year 𝑖, crop 𝑐, and
country 𝑗 as reported by FAOSTAT, summed over all countries (𝐽) in grid cell 𝑔 (to accom-
modate grid cells with multiple countries). Similarly, 𝐻𝐴𝑟𝑒𝑎_𝑀𝑖𝑐 𝑗 represents the esti-
mated harvested area for the same combinations, also summed over all countries in grid
cell 𝑔. The ratio of these sums adjusts the model gridded harvested area (𝐻𝐴𝑟𝑒𝑎_𝑀𝑔𝑖𝑐)
to match FAOSTAT data, ensuring the resulting gridded harvested area on a country
level is consistent with official statistics across the 60-year period.

Finally, the gridded harvested area (𝐻𝐴𝑟𝑒𝑎1961_2019) was augmented with the average
application rate of each predicted fertilizer (N, P2O5, K2O) as per Equation (5.8):

𝐹𝑒𝑟𝑡𝐶𝑟𝑜𝑝𝑔𝑖𝑐 = 𝐻𝐴𝑟𝑒𝑎𝑔𝑖𝑐 ×
∑
𝑗∈𝐽

(𝐹𝑒𝑟𝑡_𝑃𝑟𝑒𝑑𝑖𝑐 𝑗 × 𝑃𝑒𝑟𝑐𝐶𝑜𝑢𝑛𝑡𝑟𝑦𝑔) (5.8)

where 𝐹𝑒𝑟𝑡_𝑃𝑟𝑒𝑑𝑖𝑐 𝑗 is the country-level prediction resulting from the HGB model after
applying the adjustment, and 𝑃𝑒𝑟𝑐𝐶𝑜𝑢𝑛𝑡𝑟𝑦𝑔 refers to the percentage of grid cell 𝑔 that
is occupied by the country 𝑗. This process was then applied to each fertilizer separately
to obtain gridded maps for each fertilizer, year, and crop combination.

5.3 Data Records

The gridded fertilizer application data for N, P2O5, and K2O by crops from 1961 to 2019 are
available in a Figshare repository [379]. The dataset spans from 180ºE to 180ºW and 90ºS
to 90ºN at a resolution of 5 arc-min in WGS84 (EPSG: 4326). It is provided in .tiff format,
which can be read by many tools, such as R and Python. The gridded application data
by crops and fertilizers are stored in several files named “Crop_NameFertilizerYear.tiff”.
Here, “Crop_Name” represents each crop class listed in Table 5.4, “Fertilizer” refers to
N, P2O5, or K2O, and “Year” indicates any year from 1961 to 2019.

5.3.1 Crop-specific N application

On a global scale, the N application has grown for all crops (see Figure 5.5 in the
appendix). For example, the average N use of the three main cereals has risen from 17.1
± 6.1 kg ha-1, 26.6 ± 7.2 kg ha-1, 12.1 ± 3.9 kg ha-1 for wheat, maize and rice, respectively,
in the 1960s, to 97.8 ± 4.2 kg ha-1, 118.8 ± 4.2 kg ha-1, 113.8 ± 1.9 kg ha-1 in the 2010s
decade. Moreover, the largest increases in N application occurred in vegetable crops,
with a global growth of more than 120 kg ha-1 between these two decades (Figure 5.5).
Conversely, the lowest increases occurred in soybean, where N application rates grew
by less than 20 kg ha-1. At the regional scale, the intensification of N fertilizer use has
shifted from higher use at the beginning of the period in the USA and Europe to being
currently dominated by Asian countries such as China and India (Figure 5.5). This trend
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is particularly evident for some crops like vegetables and fruits, where China now has the
areas with the highest N use worldwide, whereas in the 1960s, these areas were primarily
in Southern Europe and California.

5.3.2 Crop-specific P2O5 application

The application of P2O5 also experienced global increases across all crops (see Figure 5.6
in the appendix), but to a lesser extent than N. The average P2O5 used for the three main
cereals and soybean rose from 13.8 ± 3.3 kg ha-1, 13.1 ± 2.4 kg ha-1, 6.3 ± 1.9 kg ha-1, and
12.6 ± 2.4 kg ha-1 for wheat, maize, rice and soybean, respectively, in the 1960s to 35.5
± 4.9 kg ha-1, 43.0 ± 5.7 kg ha-1, 39.9 ± 5.0 kg ha-1, and 39.1 ± 6.6 kg ha-1 in the 2010s.
Similar to N, the largest increases occurred in vegetable crops, where P2O5 application
rates increased by more than 50 kg ha-1. Conversely, the smallest increases were observed
in the other cereal crop class, where the average P2O5 application rate increased by only
about 2.5 kg ha-1 between the two decades. Regionally, a similar pattern occurred with
P2O5 use, following the trend previously seen with N, where the hotspot shifted from
Europe to Asia. This shift is particularly notable for wheat, where the hotspot of P2O5
intensification moved from Western Europe to northern India and northeastern China
(Figure 5.6).

5.3.3 Crop-specific K2O application

Globally, the use of K2O has also increased across almost all crop classes (see Figure 5.7
in the appendix). For wheat, maize, rice, and soybean, the average K2O application rates
have risen from 7.2 ± 1.6, 9.8 ± 2.0, 3.4 ± 0.5, and 11.6 ± 2.6 kg ha-1, respectively, to 15.4 ±
4.1, 33.1 ± 4.8, 27.3 ± 3.9, and 9.8 ± 3.2 kg ha-1. Unlike N and P2O5, the largest difference
in average K2O application occurred for the oil palm crop, which increased from 3.7 ±
1.4 kg ha-1 during the 1960s to 87.6 ± 8.3 during the 2010s. Similar to P2O5, the other
cereal class experienced the smallest change in K2O use. In this case, the average K2O
application rate decreased from 11.7 ± 1.9 kg ha-1 during the 1960s to 9.8 ± 3.2 kg ha-1

during the 2010s. Regionally, a similar pattern emerged with K2O, following the trend
observed with N and P2O5, with the hotspot of K2O fertilization shifting from Europe and
the USA to Asia. However, this change was more pronounced in different crops, such as
oil crops, where the use of K2O has increased significantly in countries like Malaysia and
Indonesia (Figure 5.7).

5.4 Technical Validation

This section provides a detailed discussion of the validation efforts made to confirm the
validity, consistency, and plausibility of our compiled dataset and predictions. First,
the performance of the ML models is evaluated. Subsequently, we use SHAP values
to confirm that our models used sensible features to make their predictions, based on
literature. Finally, the predictions are validated by comparing them with reported data
in both national and global databases.
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5.4.1 ML Model performance

The performance of the ML models predicting the fertilizer application rates for the
three fertilizers is shown in Table 5.2. Both XGB and HGB significantly outperformed
the naive prediction, which is uses the mean fertilizer application as its prediction. HGB
consistently outperformed (or matched) XGB for all three fertilizers and performance
metrics. For this reason, we will use the HGB model in the remainder of this technical
validation, as well as any subsequent analyses.

Table 5.2: Performances of the eXtreme Gradient Boosting (XGB) and HistGradientBoost-
ing (HGB) models on the test sets in a 2x5-fold nested cross validation grid
search. The performance is quantified using the mean absolute error (MAE),
root mean squared error (RMSE), mean squared error (MSE) and the coefficient
of correlation (𝑅2). The naive performance of a model is defined as the perfor-
mance of a model that uses the mean of all training samples as its prediction.
It serves as a baseline value to compare the test performances of the models
with. The best performances are indicated in boldface.

Fertilizer Model MAE RMSE MSE R2

N
HGB 26.01 ± 0.94 43.50 ± 5.13 1905 ± 446 0.62 ± 0.04
XGB 26.67 ± 1.48 43.35 ± 7.12 1905 ± 617 0.62 ± 0.08
naive 53.09 ± 0.75 70.13 ± 4.19 4927 ± 588 0.00 ± 0.00

P2O5

HGB 15.19 ± 0.67 25.68 ± 1.18 660 ± 61 0.63 ± 0.05
XGB 16.83 ± 0.23 26.40 ± 0.74 697 ± 39 0.61 ± 0.04
naive 29.97 ± 0.23 42.12 ± 1.02 1774 ± 86 0.00 ± 0.00

K2O
HGB 19.18 ± 0.27 35.74 ± 4.56 1287 ± 326 0.65 ± 0.08
XGB 19.99 ± 0.20 36.24 ± 4.66 1324 ± 338 0.64 ± 0.09
naive 43.08 ± 0.76 60.25 ± 0.52 3631 ± 63 0.00 ± 0.00

5.4.2 SHAP value analysis

To examine the impact of the features on the prediction of the N, P2O5 and K2O applica-
tion rates, the SHAP values of the ten most important features for the three corresponding
HGB models are illustrated in Figure 5.2. Agrological drivers dominated the predictions,
comprising six, seven, and eight of the ten highest ranked features, respectively. The
impact of the features remained consistent across all fertilizers, albeit with varying mag-
nitudes (Figure 5.2-d,e,f). In particular, the predicted fertilizer application rates were
consistently positively impacted by the country fertilizer per ha and the crop nutrient
removal per ha (as red dots, i.e. high values of country fertilizer per ha and high nutrient
removal per ha, corresponded with positive SHAP values), while it was negatively im-
pacted by the crop nutrient content (red dots corresponding with negative SHAP values;
Figure 5.2-d,e,f). These relationships align with the expected influence of these features
on fertilization at the crop-level [380]. Across the different fertilizers, the most important
socioeconomic features varied. For instance, the GDP per capita was the most important
socioeconomic feature in the prediction of the P2O5 and K2O application rates, while in
the N prediction, the global crop price was more important. Fertilization at the country-
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level is usually associated with the economic development of the country, measured by
GDP [367, 381]. However, at the crop-level, this relationship only held true for the most
expensive fertilizers, P2O5 and K2O. For N, the most affordable nutrient [357], factors
such as global crop price and N cost from production appeared to be more significant
(Figure 5.2). Few environmental features seemed to be relevant for the predictions (Fig-
ure 5.2); only the soil pH, soil organic carbon stock (OCS), and aridity index appeared in
the top ten for some nutrients. Although the influence of these variables appeared to be
low, the direction of these relationships confirmed the findings of other authors at the
farm- or regional-level for soil organic carbon content and soil pH. [344–346].

Figure 5.2: SHapley Additive eXplanation (SHAP) values of the top 10 most important
features in the prediction of, respectively, the crop N (a,d), P2O5 (b,e) and K2O
(c,f) application rates using Histogram-based Gradient Boosted regression.
(a,b,c) The top plots present the average feature importance, determined by
the mean absolute SHAP value of each feature. (d,e,f) The bottom plots depict
a SHAP value for each prediction and show the local feature importance and
the feature effect. The color of a dot represents the value of the feature in
that instance - red indicating relatively high, blue indicating relatively low
values. A dot with a high SHAP value for a feature suggests a positive
contribution to the prediction, whereas a very negative SHAP value leads to
a lower prediction. The features are ranked in order of descending average
importance and the blue, green and orange squares indicate whether the
feature is an environmental, agrological or socioeconomic characteristic.
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5.4.3 Validation
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Figure 5.3: Comparison of the application rates per ha per year for various crops between
our predicted model output and the data reported by the United States De-
partment of Agriculture (USDA) for the USA.

To evaluate the validity of our results, we compare the compiled dataset based on the
predictions against several national databases [322–329, 334–336, 338–342] based on the
MAE and MAPE errors between both, averaged over the available years as illustrated in
Table 5.5. For most country/crop combinations, the differences are within reasonable
ranges, with MAE values between 5-40 kg ha-1 and MAPE values between 10%-50%.
However, for some countries, the deviations are larger, suggesting that our models may
not capture all the underlying intricacies in the data for each country or crop. This can
be seen for Sweden where most results deviate between 20%-100%, or New Zealand
where similar results can be found. However, it should be noted that these larger
differences between our compiled dataset and the national databases cover only limited
years as data was not always available for certain countries, as was the case for Sweden
and New Zealand. Still, these discrepancies are slightly better than in earlier research
[297]. Additionally, more detailed plots to evaluate the results per year for the USA
and UK, based on the United States Department of Agriculture (USDA) and Department
for Environment, Food & Rural Affairs (DEFRA) respectively, are included in Figures 5.3
and 5.4. For the USDA and DEFRA crop nutrient data, the MAPE values are less than 50%
and usually less than 25%, except for USDA soybean N (Figure 5.3). Figures 5.3 and 5.4
show that our predictions follow the real observed trend for the samples and thus form
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Figure 5.4: Comparison of the application rates per ha per year for various crops between
our predicted model output and the data reported by the Department for
Environment, Food & Rural Affairs (DEFRA) for the UK.

a reliable end source with only minimal differences. These discrepancies between the
national databases and our compiled dataset can be attributed to occasional disparities
between the application rates in the training data (data provided by the global dataset
compilation) and the data in the national databases, e.g., the USA data for soybean N
in 1998 differed by 400% between the two samples. These differences should be taken
into account when comparing our results to the national databases, as our predictions
are based on the global compiled dataset. As can be seen in Table 5.6, where the global
databases data and the national databases are compared based on MAE and MAPE,
most country/crop combination indicate an MAPE values between 10%-50%, which is
similar to our resulting error in Table 5.5. Also, the lack of training samples for some
country/crop combinations resulted in larger errors for these occurrences.

To conclude, the model performances and logical feature importance, derived from the
SHAP values, in conjunction with the relatively minor differences between this study
and regional statistics, as well as earlier literature [297], indicate that our crop-specific
fertilizer application rate dataset is comparatively accurate across regions and years.
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5.5 Usage Notes

In this study, we provide detailed estimates on global N, P2O5, and K2O fertilizer ap-
plication rate based on the HGB model output and compile a comprehensive dataset of
these estimates by major crop groups between 1960 - 2020. Tabular data of the country-
and crop-level predictions are made available as well as the 5-arcmin resolution grid-
ded maps from our application, rendering an easy to use complete dataset. Subsequent
analysis can be done both on the tabular data and the outputted maps, such as a trend
analysis of fertilizer application rate or causal discovery to identify drivers of fertilizer
application rate. Furthermore, our dataset can be leveraged as a source in other models
where for example yield, ecological impact or fertilizer pricing can be seen as the output
rather than use.

Our results represent an improvement and advance in efforts to evaluate historical fer-
tilizer consumption for different crop groups and fertilizers. However, as demonstrated
during the validation process, this approach still has limitations that data source users
should be made aware of. The limited amount of available data for some crops, nutrients,
and regions can lead to biases, particularly in regions such as Africa, during certain years,
especially in the 60s, and for certain nutrients, mainly K2O. Hence, the ML approach can
be sensitive to outlying data points or noise and the limited data can make it prone to
overfitting, which was mitigated as much as possible in the CV setup. In addition, our
model is trained on data provided by global datasets [67, 304–309, 315–321], which means
that while our predictions may align closely with them, it is essential to acknowledge that
they might diverge from national data mainly due to the difference between the two data
sources as highlighted by the validation. This discrepancy between global and national
databases such as the USDA [322] or DEFRA [334] databases highlights the complexity
of accurately capturing historical fertilizer consumption trends across different regions
and crop types. Moreover, the gridded cropland data provided by the HYDE 3.3 project
[314], is inconsistent with the one from satellite-derived land use (e.g., China and India
[382, 383]) or data derived from a national census at regional scale (e.g., USA [384]), as
stated by Adalibieke et al. (2023) [297]. Furthermore, utilizing neighboring cells to allo-
cate harvested areas across different crops, as well as leveraging the EARTHSTAT map
[313], implies some assumptions (see Equations (5.3) to (5.6)). The main assumption is the
suggestion that the distribution pattern of a specific cell mirrors that of its neighboring
cells, which constrains potential changes in cropland over cells. The consistent use of the
EARTHSTAT map [313] of the year 2000 also assumed that the crop group distribution of
harvested area remains constant over time between 1961-2019. Finally, it is important to
recognize that there are additional uncertainties stemming from the utilization of various
data sources and methodological decisions within each data source, but these lie beyond
the scope of our study.

Nevertheless, our study extends the current literature by providing a more detailed his-
torical geospatial distribution of fertilizer application rate by crop and using ML to obtain
detailed predictions with high precision. The detailed description and open-source code,
in combination with the limited data sources used and ability to forecast, also make the
method reproducible and easy to extend to forecast fertilizer application rate. In addi-
tion, our approach does not entail any assumptions, making it more flexible and robust
than precious studies. Future research can build upon our study by expanding on more
detailed specific fertilizer application rate. Considering the frequency of fertilizer ap-
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plication as well as the timing can be valuable for future research on the evaluation of
fertilizer effectiveness and use. In addition, our study focuses on broad fertilizer applica-
tions, however, more detailed maps can be made for different types of specific fertilizers
considered in our study (e.g., N fertilizer types). Furthermore, the time granularity of our
maps can be improved. In addition, satellite data can be used to obtain even more fine-
grained predictions, both in regions and more detailed time periods. Finally, a deeper
investigation into the drivers of fertilizer application rate could enrich our understand-
ing. While our focus has primarily been on the explainability of our model, exploring
methodologies such as causal discovery or causal ML within a temporal setting could
unveil the drivers of fertilizer application rate over time, potentially providing valuable
insights and facilitating more detailed predictions.

5.6 Data availability statement

Our Python (3.10.3) code, encompassing the model training, prediction generation, SHAP
value computation, model validation and plot creation, as well as the R (4.2.2) scripts
made for map generation are made available alongside the provided data map resources
[385]. Open source packages used in the code are tabulated with their respective version
in Table 5.8. Access to these resources is available at the designated location [379, 385].
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5.7 Appendix

5.7.1 Fertilizer usage in grasslands and fodder crops

5.7.1.1 The Americas

Argentina: In the 1960s, fertilizer application rate in Argentina was primarily directed to-
wards sugar cane and citrus [386], with minimal application to grasslands, nearly zero in
1964 [386]. Throughout the 1970s and 1980s, the fertilizer application rate remained low,
although there was a notable increase in P2O5 application to grasslands, reaching 28%
country consumption in 1979 [304]. The substantial expansion in N and P2O5 fertilizer
occurred during the 90s, leading to a slight rise in the share of N used for grasslands,
and to a significant decrease in P2O5 share for grasslands [315–319]. To fill data gaps, we
adopted a methodology similar to Lassaletta et al. (2014) [311], utilizing linear interpola-
tion of national [387–395] and global datasets for the years lacking data, with grasslands’
fertilizer share assumed as 0 in 1965 [386]. Despite potential limitations, setting the share
to 0, as done in FAO nutrient budgets [293], may underestimate fertilizer application rate,
particularly for P2O5. K2O fertilizer application rate in Argentina remains minimal due to
soil composition, with all reports except one considering it as 0 in the use for grasslands
and fodder crops [304, 305, 315–319, 387–395].

Brazil: According to several sources, the use of fertilizer in Brazil’s grasslands has been
very low [396, 397]. The most recent values reported by IFA in 2014 and 2018 indicate
that less than 1% of the fertilizer used in Brazil is used in grasslands [67, 321]. However,
Lassaleta et al. (2014) [311] and FAO [293] considered higher percentages for N and
K2O based on regional averages [311] or previous research [293]. For P2O5 and K2O,
only FAO includes an estimation, considering 0 for P2O5, while they estimate the K2O
consumption by calculating the average between N and P2O5 consumption [293]. We
have decided to consider 0 as the share used for grasslands and fodder crops due to
the latest reported values and considering that no information is reported in previous
reports [67, 304, 305, 315–319, 321].

Canada: Most of the compiled reports do not provide information about the use of
fertilizers for fodder crops and grasslands [304, 305, 315–319]. The latest report, with
2018 data, indicated that 0.5% of N, 0.9% of P2O5, and 0.6% of K2O fertilizers were
allocated to permanent grasslands, which increased to 12%, 14.5%, and 25% respectively
when considering tame hay and silage maize as well. Regarding N, FAO [293] and the
2014 estimation by Lassaleta et al. (2014) [311] are consistent with the 2018 estimation
for all forages. However, the values for P2O5 and K2O for all forages in the latest report
differ significantly from those used by FAO [293] (0% for P2O5 and 5% for K2O). This
discrepancy in P2O5 may be due to FAO’s reliance on Heffer et al. (2017) which does
not consider nongrass perennial crops 0% [398], and the discrepancy for K2O because
FAO considered the average value between N and P2O5 [293]. We decided to utilize
the percentage for all forages included in the last report [67] for the entire period. We
maintained the same values throughout the period due to insufficient data to estimate
any trends. Additionally, in 1974, Beaton and Berger noted that a significant share
of fertilizer used in Canada was for forages, estimating 45% of total use in 1970 was
for hay and grazing grasslands [399]. They suggested that their estimation might be
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overestimated; however, it is unlikely that the fraction of fertilizers used for forages was
0 between 1960 and 1990.

Chile: Based on the estimations of the FAO and IFA reports, Lassaleta et al. (2014) [311]
and FAO [293] considered a significant share of fertilizer used for grasslands. For N
Lassaleta et al. (2014) suggested an increasing percentage from 0% in 1960 to 20% in 2005,
while FAO maintained a constant percentage of 20%. For P2O5 and K2O, the values used
by FAO were also high, at 30% and 25% respectively. However, for Chile, using a constant
value for the period overestimated the early years as the share used for grasslands for N
and P2O5 was only 1% at the beginning of the 1960s [400]. We therefore decided to make
a reconstruction similar to the one demonstrated by Lassaleta et al. (2014), by considering
1% as the starting share for each nutrient, and incorporating the reported values for all
grasslands [67, 304, 305, 315–319, 321].

Dominican Republic: The values reported in global studies from the 1990s indicate that
during this decade, the percentage of fertilizer application rate on grasslands and fodder
crops ranged between 2% and 4% [315, 317, 318]. Considering these findings, Lassaleta
et al. (2014) [311] allocated values ranging from 0% to 2% for N. We have chosen to utilize
the average values from the three reports [315, 317, 318] for the period 1990-2020. This
decision was influenced by the lack of available data since 1997, and by the emergence
of fertilizer application rate for pasture as a new and increasing practice during the 90s
[401].

Mexico: The use of fertilizer for grasslands and fodder crops appears to be nearly zero,
as indicated by previous research [293, 311] and reported values [67, 315, 319, 321]. The
only relevant fertilizer used for grasslands and fodder crops in Mexico appears to be
related with P2O5 related with alfalfa production [315, 319, 402]. Due to limited available
information, and the longstanding presence of alfalfa production in Mexico since the
Spanish colonization, we opted to consider the average percentage (2.5%) used in the two
reports with data for alfalfa [315, 319].

United States of America: According to global and national estimates from previous re-
search, the share of N used for grasslands during the period ranged from 0% to 20% of the
total [293, 301, 311]. For P2O5 and K2O, the most recent estimation from FAO indicated
a constant share of 0% for phosphorus and 10% for potassium [293]. To estimate the
total fertilizer use for permanent and non-permanent grasslands from 1959 to 2014, we
used all the available data [315, 317, 321, 399, 403]. In many sources, the information
for grasslands is combined, encompassing both permanent and non-permanent grass-
lands. We used linear interpolation to estimate the share used for all grasslands together,
replicating the method from the most recent estimation [301]. However, we included
data from three additional years (1974, 1992, 1996) [315, 317, 399], and also extended the
estimation to cover P2O5, and K2O.

Uruguay: Grassland fertilization was actively promoted by the Uruguayan government
during the 60s [404]. As early as 1963, one-third of the fertilizer used in the country was
applied to pastures, with a focus on P2O5 due to the low P content of the Uruguayan
soils [404]. These trends are reflected in the first IFDC report, which allocated 45% of the
P2O5 used in the country for grasslands and fodder in the year 1986 [305]. However, this
share decreased to 22% by 2018. In contrast, the percentage of N used for grasslands has
shown an increasing trend, from almost 0% in 1986 [305] to 12% in recent years [67, 319].
K2O is not used for these agricultural lands in the country [67, 305, 315, 319]. Given the
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significant variation in percentages between decades and nutrients, we performed linear
interpolation considering 33% for P2O5 in 1960, and 0% for N as starting points, and all
the values included in the reports [67, 305, 315, 319].

Venezuela: Information regarding grassland and fodder crop fertilization in Venezuela
is limited. Due to the scarcity of data and discrepancies between reported values [317,
319], FAO has considered a fertilization rate of 0% for grasslands during the specified
period. Conversely, Lassaleta et al. (2014) [311] proposed different rates between 0% and
9% from 1960 to 2009 for N. Given the challenge of determining the most appropriate
criteria, we opted to adhere to the FAO considerations. This decision is influenced by
low government optimal use recommendations for grasslands compared to croplands
[405], along with scientific evidence suggesting minimal fertilization for warm-climate
grasslands [405, 406].

5.7.1.2 Oceania

Australia: According to Lassaletta et al. (2014), the share of N used for grasslands never
exceeded 8.5% [311], which is similar to the 10% used by FAO in their nutrient budgets
assessments of [293]. Despite an intensification in the use of N in Australian grasslands
over the past three decades [407], it is noted that these grasslands were already being
fertilized in the late 1950s, primarily with K2O [408]. For instance, in 1956, 15% of the K2O
used in South Australia was directed towards pastures, a figure that rose to 42% by 1966
[408]. Therefore, we have opted to consider a constant share of 6.4% for N use since 1960
derived from the mean value of the reports [67, 305, 315–319, 321]. Regarding P2O5 and
K2O fertilizer, it appears that the FAO estimations [293] may have underestimated their
use, particularly for K2O. Thus, we decided to use the average value of all reports, because
even with fluctuations, the variation in the reported values since 1985 is not too high,
resulting in figures of 38.4 ± 4.1% for P2O5 and 41.6 ± 6.9% for K2O [67, 305, 315–319, 321].

New Zealand: Previous global research presented contradictory estimates of fertilizer
application rate for grasslands in New Zealand [293, 311], with figures ranging widely
from 0% to 90%. However, both global and national reports consistently support the
notion that the majority of the fertilizer application rate in the country is directed towards
grasslands and fodder crops [67, 317, 319, 321, 342]. Therefore, we have adopted a
constant percentage throughout the entire period as grasslands have been the primary
type of agricultural land developed in the country since the British colonization, their
fertilization has been relevant since the early 20th century [409], and the fraction used
for grassland has remained constant at least in the last 30 years [67, 317, 319, 321]. The
percentages selected were derived from the average of global reports [67, 317, 319, 321]:
91.1 ± 1.4% for N, 93.0 ± 3.3% for P2O5, and 88.8 ± 4.4% for K2O.

5.7.1.3 Europe

Between 1980 and 2000, Europe accounted for at least half of the N fertilizer used for
grasslands and fodder crops, while consuming less than one-third of the total global
fertilizer consumption [294]. Consequently, the available information was broader, and
the methods applied could be more comprehensive. Einarsson et al. (2021) provided the
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most comprehensive estimation for N in most European countries [312]. They compiled
and estimated the surfaces of croplands, including fodder crops, as well as temporary
and permanent grasslands for the EU countries spanning from 1960 to 2019. Using
their compiled data and the fertilizer application rate information from our study, we
employed a similar methodology to estimate the fraction of N, P2O5, and K2O used in
these areas.

However, we extended the analysis to include fodder crops and all types of grasslands
together, while also estimating P2O5, and K2O. First, we used Equation (5.9) to estimate
the ratio (𝑅 𝑓−𝑎) between the fertilization intensity of grasslands and fodder combined,
and the fertilization intensity of all agricultural land for the years with available data:

𝑄 𝑓

𝑄𝑎
=
𝑅 𝑓 × 𝐴 𝑓

𝑅𝑎 × 𝐴𝑎
→

𝑄 𝑓 × 𝐴𝑎
𝑄𝑎 × 𝐴 𝑓

=
𝑅 𝑓

𝑅𝑎
= 𝑅 𝑓−𝑎 (5.9)

where 𝑄 𝑓 is the amount of fertilizer (N, P2O5, or K2O) used for grasslands and fodder
crops, 𝑄𝑎 denotes all the fertilizer of the same nutrient used in the country, 𝐴 𝑓 represent
the grassland and fodder surface, and 𝐴𝑎 represents the total agricultural land, and 𝑅 𝑓−𝑎
the ratio of fertilizer application rate per area between fodder and grasslands (𝑅 𝑓 ), and all
agricultural land (𝑅𝑎). Therefore, 𝑅 𝑓−𝑎 represents the fertilizer application relationship
between fodder and grassland in comparison to all agricultural lands.

After estimating the annual 𝑅 𝑓−𝑎 , we used two different procedures and equations de-
pending on the years for which 𝑅 𝑓−𝑎 data was available. If scientific literature and the
observed variation in 𝑅 𝑓−𝑎 indicated significant differences across the years, we per-
formed a linear interpolation of the available values and then applied Equation (5.10).
Otherwise, we applied (5.11). To assess the variation in 𝑅 𝑓−𝑎 we estimated the MAE of
the results derived from Equation (5.11) compared with all the reported values. When
the variation of 𝑅 𝑓−𝑎 occurred only in some decades within the period, we combined
Equation (5.10) and Equation (5.11). Detailed explanations were provided for each coun-
try individually. For non-EU countries, we applied similar procedures as those used for
the other continents. In Equations (5.10) and (5.11) presented below, 𝑅 𝑓−𝑎 is the average
𝑅 𝑓−𝑎 of all reports with data, and 𝑖 is the year.

𝑄 𝑓𝑖

𝑄𝑎𝑖

= 𝑅 𝑓−𝑎 𝑖 ×
𝐴 𝑓𝑖

𝐴𝑎𝑖
(5.10)

𝑄 𝑓𝑖

𝑄𝑎𝑖

= 𝑅 𝑓−𝑎 ×
𝐴 𝑓𝑖

𝐴𝑎𝑖
(5.11)

Austria: The methodology used by Einarsson et al. (2021) [312] results in an almost
constant percentage of N used for permanent grasslands of ≈10% for the 1960-2019
period. This result led FAO to consider that 10% of fertilizer used in agricultural lands
was used for permanent grasslands [293]. The intensification of grassland management
began in the 1970s and 1980s [410], and the share used for grasslands was higher in the
late 1970s than in the 1990s [304, 315]. For P2O5 and K2O, FAO considered a constant
10% allocation for permanent grasslands [293], based on previous estimations for P2O5
[310] and the average value between the fraction used for N for K2O. While historical
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data suggest fluctuations in the percentage of fertilizers used for grasslands and fodder
crops over time [304, 305, 315–319], the application of Equation (5.11) using constant
𝑅 𝑓−𝑎 values of 0.33 for N, 0.46 for P2O5, and 0.32 for K2O, and surfaces changes [312],
provided an MAE of 2.33 ± 3.09%, 3.87 ± 3.47%, 3.31 ± 2.29% respectively. Only two
errors higher than 10% occurred, both underestimations, namely -11.8 % for N in 1977
[304], and -10.2% for P2O5 for 1990 [315], suggesting higher 𝑅 𝑓−𝑎 during the 1970-1990
period. Based on these results, we decided to utilize the mentioned 𝑅 𝑓−𝑎 values for the
period from 1991 to 2020 as well as for the period from 1961 to 1969. For the years from
1970 to 1990, we calculated the average 𝑅 𝑓−𝑎 from 1977 and 1990 reports [304, 315] to
minimize the errors during the period.

Belgium and Luxembourg: Belgium and Luxembourg often share statistics as a single entity
in historical statistics. Consequently, we adopted the same estimation for both countries.
According to Einarsson et al. (2021) [312], the percentage of fertilizer application rate for
permanent grasslands ranged from 53% in the 1980s to 40% in the last years. They deem
the N fertilization of permanent grasslands significant throughout the period based on
the little available information they found [312]. The same literature confirmed the use
P2O5, K2O for grasslands as early as 1955, although with slightly lower applications [312]
as in the actual reports. The use of constant 𝑅 𝑓−𝑎 values of 1.03 for N, 0.91 for P2O5, and
0.81 for K2O based on the technical reports values [67, 304, 306–309, 315–320] resulted
in MAE values of 2.18 ± 1.82% for N, 5.46 ± 4.04% for P2O5, 3.62 ± 2.51% for K2O. Only
two instances of overestimations exceeding 10% were observed for P2O5 in the two last
reports [67, 309]. This may be linked with the enforcement of limits on P2O5 application
in the Flanders region since 2011 [411]. Therefore, for P2O5 we decided to use the average
𝑅 𝑓−𝑎 for the 1960-2010 period, and use a linear interpolation of the 𝑅 𝑓−𝑎 values since
2011.

Czech Republic, Slovakia, and Czechoslovakia: Information regarding grasslands and fodder
crops before the disintegration of the Czechoslovak Republic is very limited [312]. Fol-
lowing assumptions made by Einarsson et al. (2021) [312], we extended the average 𝑅 𝑓−𝑎
reported for the Czech Republic and Slovakia since 1993 [67, 308, 309, 319] through the
period 1960-1992, considering surfaces changes, and the agricultural land of each coun-
try [312]. Potential overestimations could occur for the early years, as the fertilization of
these areas compared to other croplands might have been lower than in the 1990s, like in
neighboring countries such as Hungary or Germany [412, 413]. After 1993, there are four
years with available data for both countries [67, 308, 309, 319]. The 𝑅 𝑓−𝑎 values for all
years are similar for each nutrient in each country, so we used Equation (5.11) to estimate
the 1993-2020 period. This approach resulted in low deviations from the reported values
for the Czech Republic (MAE = 2.08 ± 1.58% for N, 2.57 ± 1.30% for P2O5, 1.69 ± 1.47%
for K2O) and Slovakia (MAE = 1.49 ± 1.47% for N, 2.02± 2.87% for P2O5, 1.79 ± 2.13% for
K2O).

Denmark: Danish grasslands and fodder crop fertilization have a long history with N, with
average rates of 45 and 17 kg ha-1 for temporary and permanent grasslands respectively
in the early 1960s [414]. The usage of Equation (5.11) for the whole period for the
three nutrients resulted in large deviations (MAE = 8.89 ± 4.40% for N, 5.36 ± 3.71% for
P2O5, 8.42 ± 5.67% for K2O). Therefore, as the amount of available data was large in the
compiled technical reports we used Equation (5.10), and linear interpolation of all 𝑅 𝑓−𝑎
values for the period 1980-2020 [67, 304, 306–309, 315–319]. For the 1960-1980 period, we
utilized N data from 9 years within that timeframe [414]. Additionally, we considered
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the 1980-2020 relationship between N 𝑅 𝑓−𝑎 and P2O5 or K2O 𝑅 𝑓−𝑎 , and the available
N data for estimating the 1960-1980 timeframe regarding the P2O5 or K2O values. We
regard this assumption as the only available information for the period spanning 1960-
1980 for P2O5 and K2O [399] suggests a similar relationship in the application rates for
all forages between N and the other nutrients, at least in the reported values since 1980
[67, 304, 306–309, 315–319].

Finland: Einarsson et al. (2021) [312] did not consider significant fertilization on per-
manent grasslands in Finland, as they mainly use arable land for forage production
[415]. However, fodder crops and temporary grasslands are key parts of the agricultural
production in the country [415], and they are commonly fertilized [67, 304, 306–309, 315–
319]. Using Equation (5.11) for the entire period across the three nutrients resulted in
minimal deviations for N and P2O5 (MAE = 1.57 ± 2.99%, 2.10 ± 3.34% respectively), but
substantial deviations for K2O (7.51 ± 7.38% ). Given the substantial deviation for K2O,
and the large bias for 𝑅 𝑓−𝑎 in 1979 [304] for N and P2O5, the first year with available
data, we opted to use Equation (5.10), and the linear interpolation of the 𝑅 𝑓−𝑎 . However,
potential deviations may arise for the 1960s, as fertilizers were predominantly utilized
for high-value crops during the early part of the decade [416], yet no data are available
for that period.

France: Data regarding grasslands and fodder crop fertilization is less limited than in the
majority of EU countries, although large differences exist between the available data. Two
recent publications estimated the share of N and P2O5 used for permanent grasslands
since 1960 [312, 417] based on country surveys at the region-level [418–421]. However,
the results obtained by them differ from the FUBC-FAO and FUBC-FE reports [67, 306–
309, 315–319]. For example, for 2006, Le Nöe et al. (2018) [417] report a share of P2O5
used for permanent grasslands of 27% whereas the FE reports a value for all grasslands
of 20%. Considering other years with comparable data, such as 1990 or 2017, Einarsson
et al. (2021) [312] estimate a share of 16% and 7% respectively for N used for permanent
grasslands, while FAO only reports 6% for 1990, and the national survey reports 4.7%
for 2017 [421]. Therefore, as it is difficult to discern the more accurate value between the
two estimations, we opted to use the average between the 𝑅 𝑓−𝑎 linear interpolated data
from the global datasets [67, 306–309, 315–319], and from the national surveys [418–421],
considering for both as 0 the share in 1955 [417] and the single estimate for the 70s [399].

Germany: The availability of data since the German reunification is substantial in global
reports [306–309, 315–319]. These reports suggest a decline since 1990 in fertilizer use for
all forages compared to the rest of croplands, with the drop being particularly notable
for N and P2O5. As a result, we decided to use Equation (5.10), and interpolate the
𝑅 𝑓−𝑎 values, instead of 𝑅 𝑓−𝑎 for the 1990-2020 period. For the 1960-1989 period, data on
grassland and fodder fertilization is scarce and primarily pertains to West Germany [399].
Most of the data available for the period are relative to N, except the 1982 IFDC-FUBC
report. For the 1960-1989 period, We decided to use the linear interpolation assuming,
similar to the case of France, zero fertilization of grasslands and fodder crops in 1955,
as fertilization of these areas in Western Germany, where most of this agricultural land
is located, was minimal before 1960 [413], using the only report with available data for
the three nutrients [304]. We extrapolate the data from Western Germany for the entire
country due to data availability [304, 312, 399], the prevalence of these agricultural areas
in Germany [312], and because grassland fertilization in East Germany was similar to that
in West Germany, at least in the late 1970s [422]. Using these approaches, we deviate by
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approximately 3.9% from the N estimated data for the year 1974 [399]. Additionally, we
deviated by about 10% from the N value for permanent grasslands reported by Einarsson
et al. (2021) for 1966 (based on real data) [312]. This deviation is reasonable, consider-
ing that the average difference between 𝑄 𝑓 /𝑄𝑎 only using information for permanent
grasslands or all forages for N is 7.9% [306–309, 315–319].

Greece: Fertilization has not been considered for permanent grasslands in either previous
research [293, 311, 312] or technical reports [67, 306–309, 315–319]. However, since we
are also considering fertilization for fodder crops, the technical reports have allocated
fertilization for them, especially for alfalfa and sillage maize [67, 306–309, 315–319],
which constitute the two main actual fodder crops in the country [312]. Therefore, we
used Equation (5.10) and the linear interpolation of 𝑅 𝑓−𝑎 because the values of the 1990s
are lower than the actual ones, and we have assumed a zero level of fodder fertilization
in 1960, as it was only experimental in the country [423].

Hungary: Einarsson et al. (2021) [312] did not consider fertilization for permanent grass-
lands due to the scarcity of the data and because grassland fertilization is not a common
practice nowadays [312]. Reported values suggest that a significant fraction, approxi-
mately 5% of the fertilizer used since 1990 in the country was allocated to grasslands and
fodder crops [67, 307–309, 315], with an even higher proportion during the 1980s [304].
Scientific information confirms that the change in the political regime in 1989 was a key
driver of fertilization practices in the country, reducing the fertilizer use by five-fold in
the country, and limiting fertilization of these areas to managed grasslands [424]. Fur-
thermore, fertilization in the country commenced in the 1960s and remained stagnant
during the 1980s [412]. Therefore, for the period 1960-1989, we applied Equation (5.10),
and the linear interpolation of 𝑅 𝑓−𝑎 from a 0 value in 1960, to the 1980 reported value
[304]. For the 1990-2020 period, we used Equation (5.11), and the average 𝑅 𝑓−𝑎 , as there
is no deviation larger than 10% from the reported values using this method.

Ireland: Ireland is likely one of the countries that use a larger proportion of fertilizers
for grasslands and fodder crops [293, 311, 312], and also has more available information.
Since 1972, six national surveys have been conducted, providing data for 22 years [425–
430]. Moreover, the global datasets also include information from ten different years
since 1987 [67, 306–309, 315–319]. For the 1986-2020 period, we used the average of the
linear interpolation of the 𝑅 𝑓−𝑎 values based on national surveys [425–430], and surfaces
data [431–435], along with the 𝑅 𝑓−𝑎 values based on the global datasets [67, 306–309, 315–
319] and the Einarsson et al. (2021) surface compilation [312]. We excluded 𝑅 𝑓−𝑎 values
based on the global datasets [67, 306–309, 315–319] and the Einarsson et al. (2021) surface
compilation [312] for the 2006-2010 period due to a change in the criteria for temporary
grassland surface, which resulted in overestimations (𝑄 𝑓 /𝑄𝑎 > 1). For the 1960-1985
period, we only considered the linear interpolation of the available data, all from the
national surveys 𝑅 𝑓−𝑎 [425–427], and surfaces [431, 432]. In cases where there was no
available surface data [431] in the national databases, like 1972, we used the closest
year with available data (e.g., 1970). For 2008, which has two available national surveys
[429, 430], we took the average of both. We considered the share of fertilizer used for
grasslands and fodder crops as zero in 1955 because almost all fertilizer was used for
tillage crops in that year [436], with grassland fertilization increasing during the 1960s
[437].

Italy: Einarsson et al. (2021) used a constant 𝑅 𝑓−𝑎 for permanent grasslands for all years,
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as similar values are given in various reports and scientific information [312]. When
considering grasslands and fodder crops together, the 𝑅 𝑓−𝑎 were also consistent for each
nutrient over all years [67, 306–309, 316–319, 399], even including the 1974 data [399]. The
MAE using Equation (5.11) for the entire period across the three nutrients resulted in
minimal deviations comparing with the reported values [67, 306–309, 316–319, 399] (MAE
= 2.24 ± 1.55% for N, 2.00 ± 1.37% for P2O5, and 3.21 ± 1.21% for K2O). Therefore, we used
the the𝑅 𝑓−𝑎 for the three nutrients. However, there could be potential overestimations for
the 1960s decade because nearby countries like France or Germany did not use fertilizers
for these agricultural lands before 1955 [417].

The Netherlands: Information regarding grassland fertilization in the country is abundant
[312, 438]. However, before the development of global datasets, information regarding
P2O5 and K2O is very limited. For the period 1979-2019, we used Equation (5.10) con-
sidering the linear interpolation of the eleven 𝑅 𝑓−𝑎 data derived from the global datasets
[67, 304, 306–309, 317–319] and the agricultural surfaces changes [312]. We used the
global datasets instead of the national data available because they provide information
regarding the three nutrients. For the years 1960 to 1979, we used the available compila-
tion of N application rates [438], and the total N fertilizer consumption [343] to estimate
the 𝑄 𝑓 /𝑄𝑎 values for N. For P2O5 and K2O, we used the ratio between the 𝑄 𝑓 /𝑄𝑎 used
for N and these two nutrients for the most recent year with available data, 1979 [304], to
extrapolate the results for the 1960-1979 period.

Poland: The available data in reports from the period 1988-2018 [67, 306–309, 315, 318, 319]
did not show a constant 𝑅 𝑓−𝑎 for any nutrient N, P2O5 and K2O. Data on fertilization
before 1989, during the communist government, is sparse [312, 315]. However, similar to
other Eastern European countries like Hungary, it appears that fertilizer intensification in
the country started during the 1960s [439], with a significant drop following the regime
change [343]. As a result, we adopted the same criteria used for other Eastern European
countries, setting the 1960 value to zero, and applying two distinct linear interpolations
of 𝑅 𝑓−𝑎 : one for the 1960-1989 period, and another for the 1990-2020 period. For the
1990-2020 period, there are seven years with available data, whereas for the 1960-1989
only 1989 has data. Despite this limited data for the earlier period, survey estimates
[439] combined with FAOSTAT totals [343] suggest that the combined share of the three
nutrients was between 14% and 15% in the late 1960s, which aligns with the individual
nutrient shares calculated by the linear interpolation which are between 10% and 13%.

Portugal: Einarsson et al. (2021) did not consider fertilization of permanent grasslands,
citing the relatively low surface area in the country [312]. However, recent technical
reports suggest that 𝑄 𝑓 /𝑄𝑎 exceeds 20% for the three major nutrients [67, 306–309, 317–
319]. We chose to apply Equation (5.10) and to interpolate the 1977-2020 data [67, 304, 306–
309, 315, 316, 318, 319] because using Equation (5.10) led to discrepancies greater than
10% in some years. For the years before 1977, we retained the 𝑅 𝑓−𝑎 1977 values [304]
(which resulted in 𝑄 𝑓 /𝑄𝑎 < 2%) as there is no information for the earlier period.

Romania: As with other Eastern European countries, there is no available information
regarding grassland and fodder crop fertilization before the political regime change in
1989. However, between 1990 and 2020, data from five years suggest that about 5% of
fertilizer is used for grasslands and fodder crops [307–309, 315, 317]. For Romania, we
applied Equation (5.11), using the average 𝑅 𝑓−𝑎 value and the grassland and cropland
surface data [312]. Potential overestimations occurred during the first decades, although
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the estimated 𝑄 𝑓 /𝑄𝑎 are less than 5% for the first decades.

Spain: Previous research has not considered the fertilization of permanent grassland
because this practice in the country is very uncommon [293, 312]. However, when
considering temporary grasslands and fodder crops, this assumption changes, as forage
crops occupy about 8% of the arable land in the country and consume nearly the same
percentage of fertilizers [440]. To estimate the share of fertilizer use in these areas, we
created a linear interpolation of the 𝑅 𝑓−𝑎 data from the ten years with available data,
ranging from 1979 to 2014, and applied Equation (5.10). Using Equation (5.11) resulted
in estimations that were twice the reported values for the earlier years. Given the fraction
used for these areas in 1979 was minimal (𝑄 𝑓 /𝑄𝑎 < of 2%), potential overestimations for
the first years are also likely minimal.

Sweden: In the country, fertilization of forage production areas is closely linked to the tran-
sition from natural permanent grassland to temporary grassland production on arable
land that occurred during the first part of the 20th century, especially during the 1940s
and 1950s [441]. Moreover, based on the available data, fertilizer intensification of these
areas compared to other croplands 𝑅 𝑓−𝑎 was lower during the 1970s than at the end of
the century [318, 319, 399]. Therefore, we applied Equation (5.10) and performed the
linear interpolation of the 𝑅 𝑓−𝑎 of each nutrient of the 11 years with available data since
1974 [67, 305–309, 315, 316, 318, 319, 399]. A slight overestimation might occur for the
earlier years, as the intensification of these areas was increasing before the first year with
available data [441], but no data for the period was found.

United Kingdom and Northern Ireland (UK): The UK has the world’s longest and most
complete dataset on the fertilization of grasslands and croplands [334]. Annual time
series data on fertilizer use for permanent and temporary grasslands are available for
England and Wales since 1969 and for Great Britain since 1982 [334]. Northern Ireland
is not included in these surveys. Additionally, there are surveys for the years 1957, 1962,
and 1966 for England and Wales [442]. Two problems arise for the estimation of 𝑄 𝑓 /𝑄𝑎

from this data. The first one is that the surveys only include fertilization on permanent
and temporary grassland, excluding rough grazing. The second challenge is that there
is no information for Northern Ireland - which accounts for about 6% of the country’s
fertilizer consumption [334]-, and from 1960 to 1982, there is also no data for Scotland,
who are responsible for about 14% of the country’s fertilizer consumption [334]. For the
period 1982-2019, we used the annual fertilizer application rates for Great Britain’s tillage
crops [334] and the corresponding cropland surface area [443] (excluding temporary
grasslands) to estimate the total fertilizer use for croplands. We considered grassland
fertilization to be the complement of the value obtained, assuming the same application
rates for Northern Ireland. To include these estimations in the fraction used for fodder
crops, we add the average share used for them, which is less than the 3% for all nutrients
[67, 306–309, 315, 317]. For the period 1960-1981, we applied the same methodology
but using the application rates [334, 442] and surfaces [444] from England and Wales,
adjusted by -2.5% for N, +2.8% for P2O5, and +0.9% for K2O. These adjustments are based
on the observed differences between the application rates in Great Britain and those in
England and Wales during the 1980s decade. Moreover, for the 1960s decade for which
there are no data available for all years, we applied the linear interpolation of the years
with data. We used the national databases instead of the global datasets because they
provide annual information covering almost the entire period for the three nutrients, and
the values between them were quite similar.
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Iceland: Iceland’s agriculture sector is primarily focused on livestock production, with
about 90% of its agricultural land being permanent grasslands [445]. Additionally, most
of the arable land is used for forage crops [445]. While grassland fertilization is a common
practice in Iceland [446], there is limited information on application rates for different
types of agricultural land, and no specific estimates on the proportion of fertilizer used
for forage crops in the country. When we applied Equation (5.11) using the average 𝑅 𝑓−𝑎
from other Nordic countries—Denmark, Sweden, and Finland, it resulted in a 𝑄 𝑓 /𝑄𝑎

ratio greater than 100%. To address this, we allocated a mid-value between 100% and
the proportion of agricultural land occupied by grasslands and fodder crops, ensuring it
does not exceed 100%.

Switzerland: Data on fodder crop and grassland fertilization in the country from the
period 1979-1999 suggest that between 30 and 50% of the fertilizer used in the country is
applied to these lands [304, 315–319]. However, whereas the data of the first two years
indicate that almost 50% of N is used for grasslands and fodder crops [304, 315], only
about 30% was used in 1999 [319]. Since 2000, the areas of artificial grasslands and silage
maize (the two main forages that receive fertilizers [315]) have remained almost constant
[447]. As there is no information available regarding grassland fertilization before 1979
or after 2000, we used the 1979 data for the period 1960-1979 and the 2000 data for the
period 2000-2020. For the period from 1979 to 2000, we applied linear interpolation to
the six years with available data [304, 315–319].

Norway: Fodder crops and grasslands (both temporary and permanent) play a key role in
the agricultural sector of the country [448, 449]. Technical reports and scientific studies
data indicate a nearly constant share of 𝑄 𝑓 /𝑄𝑎 for N, P2O5, and K2O [67, 306–309, 316–
319, 399]. Therefore, we used the average of all the available 𝑄 𝑓 /𝑄𝑎 data [67, 306–
309, 316–319, 399], covering the period 1974-2018 for N, and from the period 1990-2018
for P2O5 and K2O. The resulting values, with a share of 64.02% ± 1.76% for N, 50.02%
± 2.25% for P2O5, and 65.59% ± 6.07% for K2O, were comparable to those estimated for
other Scandinavian countries.

Yugoslav Socialist Federal Republic, and actual former countries: Fodder crops and grasslands
played a significant role in the agricultural production of the Yugoslav Social Federal
Republic (SFR) [450]. Pastures and meadows occupied 33% of the country’s land, while
fodder crops took up 20% of the arable land [450]. However, to the best of our knowledge,
no information is available regarding fertilization for different agricultural lands before
the dissolution of the country. After the dissolution, information became available in
global reports for Croatia and Slovenia, but not in the other countries [67, 306–309, 316,
319]. To estimate the 𝑄 𝑓 /𝑄𝑎 values for Yugoslav SFR during the period 1961-1991, we
used the weighted average by agricultural land surface [312] of the earliest 𝑅 𝑓−𝑎 values
from Croatia and Slovenia [306, 312, 316], given that their 𝑅 𝑓−𝑎 values have changed
significantly in recent years [67, 306–309, 316, 319]. We also considered the cropland,
grasslands, and fodder crop surfaces of Yugoslavia SFR from the 1990s [450] to estimate
the𝑄 𝑓 /𝑄𝑎 used for the 1961-1991 period. For the period 1990-2019, for actual EU former
countries, we performed the linear interpolation of the 𝑅 𝑓−𝑎 values [67, 306–309, 316, 319]
to estimate 𝑄 𝑓 /𝑄𝑎 considering the annual surfaces values [312]. In Serbia, the largest
country, forage production is a crucial component of its agricultural sector, with about
two-fifths of the agricultural land dedicated to this purpose [451]. However, as no specific
information on fertilization rates has been found. We considered the average weighted
𝑅 𝑓−𝑎 ratio of Croatia and Slovenia along with the 2004-2008 surfaces of agricultural
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lands, grasslands, and fodder crops [451]. For smaller countries like Montenegro of
North Macedonia, we assumed the average annual 𝑄 𝑓 /𝑄𝑎 values of Serbia and Croatia.

USSR and Former USSR Countries: Quantitative and qualitative information about fer-
tilization of grassland and fodder crops before the collapse of the USSR is quite scarce
[315, 452, 453]. Some publications suggest that the use of fertilizers in these areas was
minimal before 1975 [452, 453]. However, data from 1990-1991, just before the collapse,
from certain republics (Russia, Latvia, Estonia, or Belarus) indicate that a significant
share of fertilizers was used for fodder crops and grasslands [315] (e.g., 40% for N in
the Russian Federation [315]). For the period 1960-1991, we estimated the 𝑅 𝑓−𝑎 for the
entire USSR in 1990, weighing the value of each republic 𝑅 𝑓−𝑎 [315, 454] in 1990-1991
by the total fertilizer use of each republic [315, 454]. The four republics with available
data for this year (Russian Federation, Belarus, Latvia, and Estonia) account for 40% of
the agricultural land of the country and 62% of its fertilizer consumption [454]. After
estimating 𝑅 𝑓−𝑎 for each nutrient in 1990, we used linear interpolation to estimate the
annual 𝑅 𝑓−𝑎 values, considering the value in 1975 as zero [452, 453]. Finally, similar to the
EU countries, we considered the annual cropland, grassland, and fodder crop surfaces
[454], along with the calculated 𝑅 𝑓−𝑎 , to estimate the annual𝑄 𝑓 /𝑄𝑎 . For the period from
1992 to 2020, we considered individual country information where some data was avail-
able. However, for the following actual countries, there is no information in the global
reports [67, 306–309, 315–320]: Armenia, Georgia, Kazakhstan, Kyrgyzstan, Tajikistan,
and Turkmenistan. For all these countries, we considered a constant 𝑄 𝑓 /𝑄𝑎 ratio during
the 1992-2020 period due to the limited information. For Armenia and Georgia, we as-
sumed the 𝑄 𝑓 /𝑄𝑎 value in 1998 for Azerbaĳan, the other Caucasian country [315]. For
the Central Asian countries, we used the ratio for grasslands derived from Uzbekistan’s
2014 data [321], which is significantly lower than the USSR’s share in 1990. This reduction
seems reasonable given the significant decrease in fertilizer use, temporary grasslands,
and fodder crop surfaces in the region since the USSR collapse [455].

Estonia, Latvia, Lithuania: The Baltic countries are the three former USSR countries with
the most available data in global datasets [67, 306–309, 319]. Fertilizer intensification in
these areas has changed significantly over the last three decades due to the abandonment
of intensively managed areas [312]. This trend is reflected in the changing 𝑅 𝑓−𝑎 values.
Therefore, we used Equation (5.10) and the linear interpolation with the six years with
available data 𝑅 𝑓−𝑎 from the 1991-2018 period [67, 306–309, 319] to estimate the 𝑄 𝑓 /𝑄𝑎

values since the collapse of the USSR.

Belarus, Moldova, and Ukraine: For these three countries, limited data is available regarding
fodder crops and grasslands, but some information can be found in global reports [67,
317, 321]. Thus, for each country, we used the average of the𝑄 𝑓 /𝑄𝑎 values from the 1992-
2020 period. In the case of Belarus, where two sets of data were available for grasslands
and one for fodder crops [67, 321], we took the average for grasslands from both reports
and the ratio that accounts for the share of grasslands and the share including fodder
crops.

Russian Federation: There are three years with available data between 1992 and 2020
[316, 317, 321]. In the first two years, the data showed that an average of approximately
25% of the country’s fertilizer was used on grasslands and fodder crops [316, 317].
However, in the latest report from 2014, only about 4% was attributed to these areas
(excluding fodder crops not used for hay or silage) [321]. Therefore, we decide to use
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the linear interpolation of the 𝑄 𝑓 /𝑄𝑎 values for the years with available data. For the
late years, we likely underestimated the value because some fertilizer is used for fodder
crops, like fodder beet, that are not intended for silage or hay. However, these fodder
crops only accounted for about the 8% of the total fertilizer used for fodder crops and
grasslands in 1990 [315].

5.7.1.4 Asia

China: Fertilization of China grasslands remains low at present [321]. Among the com-
piled reports, only the latest one considers a proportion of the total fertilizer application
rate in China, allocating 2% for N, 4% for P2O5, and 3% for K2O. Other information on
grassland fertilization in China is scarce, with the few authors that provided some infor-
mation describing it as sparse [456]. FAO, [293] considers this proportion as 0% for all
three nutrients throughout the entire period, which differs from Lassaleta et al. (2014),
who, based on regional averages, estimated a percentage ranging between 0 and 4.7%
from 1960 to 2014. However, any global report or national more detailed information
considers any fertilization. We have decided to adopt the same criteria as FAO [293],
albeit potentially underestimating values for the last decades.

Iran: Fertilization of Iran’s grasslands and fodder crops appears to be minimal, with
few reports providing data, and only since 1990, indicating values between 2% and
6% for all three nutrients [315, 316, 321]. Other information is scarce and focused on
experimental trials rather than broader country-wide applications. Considering that the
first fertilization trials were developed during the 70s, and the first report with data is
for 1990 [315], which reported 2% of N and 6% for P2O5, we considered as 0% the share
for the period 1960-1990, and the average of the reports for the period 1990-2020.

Japan: Since the first report with data, in 1979, almost all reports have underscored the
importance of grassland and fodder fertilization in Japan. FAO attributed a constant share
of 20% for N, 0% for P2O5, and 10% for K2O for the 1961-2019 period [293]. Conversely,
Lassaleta et al. (2014) [311] suggested a growing percentage of 20% for N, starting from
0% in 1960, and increasing to 20% in 2009. Although data before 1979 is unavailable, the
reported data for N use in 1979 was 15.7%, higher than the 5.2% estimated by Lassaleta
et al. (2014) [311]. Additionally, due to the lack of data, it is challenging to determine
the inception of grassland fertilization in Japan, though it appears to coincide with
the transition from semi-natural grasslands to more intensive pasture during the 60s
[457]. Therefore, we opted to adhere to FAO’s criteria, maintaining the same percentage
throughout the period, despite the potential overestimated values for the initial years. We
considered the average of all available reports with data [67, 304, 315–319, 321], because
FAO criteria appears to underestimate the P2O5, and K2O used for grasslands, resulting
in percentages of 17.3% for N, 16.9% for P2O5, 15.6% for K2O.

Korea Republic: Grassland fertilization appears to be a common practice in the country
nowadays [458]. However, there is no available data on the fertilization of these areas
in global reports [304, 315, 317, 319], nor scientific publications. We used the same
assumption as Lassaleta et al. (2014), which is to consider the same proportion as in
Japan, the geographically and socioeconomically closest country [311]. This assumption
also aligns with the observation that the sum of this percentage, and the fertilizer used
for the main crops [304, 315, 317, 319] is less than the total for the country [343].
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Turkey: Information about fertilization of grasslands and fodder crops in Turkey is scarce,
suggesting that it is not a common practice. Lassaleta et al. (2014) [311] considered
percentages as high as 4.8% for N in 2009, whereas FAO considered 0% for all nutrients.
All the available data since 1990 except for 2014 considered some amount of fertilizer
used for grasslands, and forages [67, 304, 315–319, 321]. Therefore, we used the average
percentage of all reports for the period 1990 - 2020 [67, 304, 315–319, 321].

Other Asian Countries: Cambodia, Indonesia, Malaysia, The Philippines, Thailand, Vietnam,
India, and Pakistan: In Asian Southeast countries, only Lassaleta et al. (2014) [311] con-
sidered that some fertilizer is used on grasslands, based on regional averages used for
grasslands and other crops (including fruits, tea, vegetables, and forage and grasslands)
[311]. However, no global report [67, 304, 305, 315–319, 321] or country-level sources [459]
mentioned fertilizer application to grasslands as significant in these countries. Therefore,
we have chosen to align with FAO’s criteria, which assumes no fertilizer application rate
for grasslands in this region [293]. We applied the same criteria for India and Pakistan,
despite previous research considering a certain percentage used for grasslands [294, 311].
The data reports [67, 304, 305, 315–319, 321], the scientific literature [460, 461], and FAO
[293] support the idea of non-fertilization of grassland in these two countries.

5.7.1.5 Africa

Egypt: Data regarding grassland and fodder crop fertilization in Egypt are scarce [305,
318]. As is common for many African countries, there is no fertilization of grasslands
[462]. However, the few available data about the fertilization of Egyptian clover [305, 318],
the main fodder crop in the country [402], suggests that a significant portion of N and
P2O5 is utilized for fodder production, aligning with country recommendations [463].
Previous research, focused solely on grasslands, has either considered 0% allocation for
the three nutrients [293] or a range between 0% and 4% for N [311]. Here, we opted to
consider the average of the two reports (1986, 1997) with data [305, 318] for the entire
period as Egyptian clover production has been significant since the beginning of the
period [464], and the available data is not sufficient to discern any trend.

Morocco: Previous research has indicated various fractions of N fertilizer used for grass-
lands in the country, ranging from 0% to 11% [293, 311, 462]. With the available infor-
mation, it is impossible to discern if any application for permanent grasslands occurred
in the country, but not for forages such as alfalfa, Egyptian clover, or vetch [465, 466].
Additionally, due to the scarce available data in the reports, discerning any trend is chal-
lenging [315, 318, 466], although the presence of improved pastures, usually linked to
fertilizer application rate, doubled during the 80s decade [465]. Here, we have opted to
use the same percentage, the average of all reports, to estimate the percentage of N, P2O5,
and K2O, despite the potential overestimations in the first decades.

South Africa: Fertilization of grasslands and fodder crops such as alfalfa appeared to be
significant throughout the study period in South Africa. Both previous scientific research
[293, 311] and various technical reports [67, 315–319, 321] indicated percentages ranging
0% and 22.3% for N. For all three nutrients, the share used for grasslands and fodder crops
during the 90s was higher than in the last decades [67, 315–319, 321]. This percentage
appears to be higher due to larger fertilizer application rates to croplands compared to
grasslands and fodder crops [67, 315], and not due to the relationship between cropland
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and grassland surface [467]. While information regarding grassland fertilization prior to
1990 is limited, several factors support the hypothesis of early fertilizer application rate
for grassland and fodder production. These include the fraction used for grasslands and
fodder in 1990 [315], substantial research conducted on improved grasslands since 1920s
[468], and the early introduction of alfalfa in 1858 [402] which is a significant consumer
of P2O5 and K2O in the country. Given the challenge of identifying any discernible
trend and the likelihood of significant consumption at the beginning of the period, we
have chosen to adopt the same percentage for the entire duration, aligning with FAO
assumptions [293], despite potential slight over- and underestimations throughout the
period. The average of all reports [67, 315–319, 321], resulted in percentages of 12.4% for
N, 13.3% for P2O5, and 9.2% for K2O.
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5.7.2 Figures

Figure 5.5: Spatial pattern of crop-specific fertilizer (N) consumed by each 0.05° grid cell
for the following: a) average for the 1970s decade across all 13 crop classes,
b) average for the 1970s decade for wheat, c) average for the 1970s decade
for rice, d) average for the 1970s decade for maize, e) average for the 1970s
decade for other cereals, f) average for the 1970s decade for all oil crops, g)
average for the 1970s decade for vegetables and fruits, h) average for the 1970s
decade for roots and tubers, sugar crops, fiber crops, and other crop classes, i)
average for the 2010s decade across all 13 crop classes, j) average for the 2010s
decade for wheat, k) average for the 2010s decade for rice, l) average for the
2010s decade for maize, m) average for the 2010s decade for other cereals, n)
average for the 2010s decade for all oil crops, o) average for the 2010s decade
for vegetables and fruits, p) average for the 2010s decade for roots and tubers,
sugar crops, fiber crops, and other crop classes.
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Figure 5.6: Spatial pattern of crop-specific fertilizer (P2O5) consumed by each 0.05° grid
cell for the following: a) average for the 1970s decade across all 13 crop classes,
b) average for the 1970s decade for wheat, c) average for the 1970s decade for
rice, d) average for the 1970s decade for maize, e) average for the 1970s decade
for other cereals, f) average for the 1970s decade for all oil crops, g) average for
the 1970s decade for vegetables and fruits, h) average for the 1970s decade for
roots and tubers, sugar crops, fiber crops, and other crop classes, i) average for
the 2010s decade across all 13 crop classes, j) average for the 2010s decade for
wheat, k) average for the 2010s decade for rice, l) average for the 2010s decade
for maize, m) average for the 2010s decade for other cereals, n) average for the
2010s decade for all oil crops, o) average for the 2010s decade for vegetables
and fruits, p) average for the 2010s decade for roots and tubers, sugar crops,
fiber crops, and other crop classes.
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Figure 5.7: Spatial pattern of crop-specific fertilizer (K2O) consumed by each 0.05° grid
cell for the following: a) average for the 1970s decade across all 13 crop classes,
b) average for the 1970s decade for wheat, c) average for the 1970s decade for
rice, d) average for the 1970s decade for maize, e) average for the 1970s decade
for other cereals, f) average for the 1970s decade for all oil crops, g) average for
the 1970s decade for vegetables and fruits, h) average for the 1970s decade for
roots and tubers, sugar crops, fiber crops, and other crop classes, i) average for
the 2010s decade across all 13 crop classes, j) average for the 2010s decade for
wheat, k) average for the 2010s decade for rice, l) average for the 2010s decade
for maize, m) average for the 2010s decade for other cereals, n) average for the
2010s decade for all oil crops, o) average for the 2010s decade for vegetables
and fruits, p) average for the 2010s decade for roots and tubers, sugar crops,
fiber crops, and other crop classes.
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5.7.3 Tables

Table 5.3: Environmental, agrological and socioeconomic features used in the prediction
of the fertilizer application rates, accompanied by their description, unit, and
data source. The Model column indicates whether the feature was an input for
either the N, P2O5 or K2O prediction, or for all 3 predictions.

Feature Description Unit Model Source

Year Year of the data All
Crop Crop class All
Country Code of the country or region

in FAOSTAT
All

Country surface Surface of the country 𝑘𝑚2 All [469]
Region World region All [470]

PET Annual potential evapotran-
spiration

mm/year All [347]

MAP Annual precipitation mm/year All [347]
TMN Average annual temperature ◦ C All [347]
Aridity index Aridity index All [347]
Soil N Average soil nitrogen content

at 0-30 cm depth
cg/kg All [348]

Soil OCS Average soil organic carbon
stock at 0-30 cm depth

t ℎ𝑎−1 All [348]

Soil sand Average soil sand content at 0-
30 cm depth

g/kg All [348]

Soil silt Average soil silt content at 0-30
cm depth

g/kg All [348]

Soil clay Average soil clay content at 0-
30 cm depth

g/kg All [348]

Soil pH Average soil pH at 0-30 cm
depth

All [348]

En
vi

ro
nm

en
ta

l

Soil CEC Average soil cation exchange
capacity at pH 7 at 0-30 cm
depth

mmol(c)/kg All [348]

Crop area Harvested Area of the crop ha All [331]
Crop area perc Area of the crop over the total

cropland area
% All [331]

Country N per ha Amount of N fertilizer used
per cropland area

t/ha N [343]

Country P2O5 per
ha

Amount of P2O5 fertilizer used
per cropland area

t/ha P2O5 [343]

Country K2O per
ha

Amount of K2O fertilizer used
per cropland area

t/ha K2O [343]

Country N use Amount of N fertilizer used in
the country

t N [343]

Continued on next page
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Table 5.3 – continued from previous page
Feature Description Unit Model Source
Country P2O5 use Amount of P2O5 fertilizer used

in the country
t P2O5 [343]

Country K2O use Amount of K2O fertilizer used
in the country

t K2O [343]

Holding size stand Standardized average size of
farms for each country and
year

ha All [310]

Crop N content N content of the crop kg/t N [293]
Crop P content P content of the crop kg/t P2O5 [293]
Crop K content K content of the crop kg/t K2O [293]
Crop N removal
per ha

Average N removal per ha for
the crop, country and year

kg/ha N [293,
331]

Crop P removal per
ha

Average P removal per ha for
the crop, country and year

kg/ha P2O5 [293,
331]

Crop K removal per
ha

Average K removal per ha for
the crop, country and year

kg/ha K2O [293,
331]

Irrigation imple-
mentation

Share of agricultural land irri-
gated in the country

% All [471]

A
gr

ol
og

ic
al

Machinery use Number of agriculture ma-
chinery per ha of arable land
for the country and year

ℎ𝑎−1 All [472,
473]

Global urea price Current urea price per metric
tonnes

$ current N [357]

Global P-rock price Current P price per metric
tonnes

$ current P2O5 [357]

Global K2O price Current K2O price per metric
tonnes

$ current K2O [357]

Global crop price Real global crop price $ current All [357]
Education Fraction of GDP used for edu-

cation
% All [474]

GDP per capita Current GDP per capita $ current All [475]
N cost from pro-
duction

N fertilizer cost from produc-
tion

N [358]

P cost from produc-
tion

P2O5 fertilizer cost from pro-
duction

P2O5 [358]

K cost from pro-
duction

K2O fertilizer cost from pro-
duction

K2O [358]

Population pres-
sure

Population per ha of agricul-
tural land

persons/ha All [473,
476]

So
ci

oe
co

no
m

ic

National crop price Real price paid to farmer at the
country-level

$ current All [363,
364]
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Table 5.4: Crop Classification with FAOSTAT Item Codes

Crop Class Crop
Code

Description Crops FAOSTAT (FAOSTAT Item Code)

Wheat 1_1 Wheat Wheat (15)
Maize 1_2 Maize, only for

grain
Maize, corn (56)

Rice 1_3 Rice Rice (27)
Other Cereals 1_4 Other cereals

not mentioned
above

Barley (44), Buckwheat (89), Canary seed (101),
Fonio (94), Millet (79), Oats (75), Rye (71),
Sorghum (83), Triticale (97), Quinoa (92), Ce-
real n.e.c (108)

Soybean 2_1 Soybean Soya beans (236)
Palm Oil fruit 2_2 Palm oil fruit Oil Palm fruit (254)
Other Oilseeds 2_3 Other oilseed

crops not soy-
bean and palm
oil fruit

Castor oil seeds (265), Coconut, in shell (249),
Jojoba seeds (277), Linseed (333), Mustard seed
(292), Olives (260), Poppy seeds (296), Rape and
colza seed (270), Safflower (280), Sesame seed
(289), Sunflower seed (267), Tallowtree seed
(305), Tung nuts (275), Other oil seeds, n.e.c
(339)

Vegetables 3_1 Vegetables Artichokes (366), Asparagus (367), Cabbages
(358), Cauliflowers and broccoli (393), Chill-
ies and peppers, green (401), Cucumber and
gherkins (397), Eggplants (399), Green gar-
lic (406), Leeks and alliaceous (407), Can-
taloupes and other melons (568), Melonseed
(299), Mushrooms and truffles (449), Okra
(430), Onion and shallots, green (402), Onion
and shallot, dry (403), Pumpkins, squash and
gourds (394), Spinach (373), Tomatoes (388),
Watermelons (567), Carrots and turnips (426),
Lettuce and chickory (372), Cassava leaves
(378), Green corn (446), Other vegetables fresh
n.e.c (463)

Continued on next page
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Table 5.4 – continued from previous page
Crop Class Crop

Code
Description Crops FAOSTAT (FAOSTAT Item Code)

Fruits 3_2 Fruits Apples (515), Apricots (526), Avocados (572),
Bananas (486), Blueberries (552), Cherries
(531), Sour cherries (530), Cranberries (554),
Currants (550), Dates (577), Figs (569), Goose-
berries (549), Pomelos and grapefruits (507),
Grapes (560), Kiwi fruits (592), Lemos and
limes (497), Oranges (490), Papayas (600),
Peaches and nectarines (534), Pears (521),
Perssimons (587), Pineapples (574), Plantains
(489), Plums and sloes (536), Quinces (523),
Raspberries (547), Strawberries (544), Tan-
gerines, mandarins, clementines (495), other
berries n.e.c (558), other citrus n.e.c. (512),
other fruits n.e.c. (619), Other pome fruits n.e.c
(542), Other stone fruits n.e.c (541), Other trop-
ical fruits n.e.c (603)

Roots and tubers 4 Roots and tu-
bers

Cassava (125), Potatoes (116), Sweet potatoes
(122), Taro (136), Yams (137), Yautia (135), Edi-
ble roots and tubers n.e.c. (149)

Sugar crops 5 Sugar cane,
sugar beet and
only sugar
crops

String beans (423), Sugar beet (157), Sugar cane
(156), Locust beans (461), Other sugar Crops
n.e.c. (161)

Fiber crops 6 Cotton and
other fiber
crops

Coir (813), True hemp (777), Hempseed (336),
Jute (780), Kapok fruit (310), Kapok seed (311),
Karite nuts (263), Abaca, manila, hemp (809),
Ramie (788), Seed cotton (328), Sisal (789),
Agave fibres (800), Flax (773), Kenak (782),
Other fibre crops (821)

Continued on next page
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Table 5.4 – continued from previous page
Crop Class Crop

Code
Description Crops FAOSTAT (FAOSTAT Item Code)

Other crops 7 Nuts, pulses,
stimulants
and aromatics,
natural rubber,
tobacco

Almonds (221), Areca nuts (226), Cashew nuts
(217), Chestnuts (220), Hazelnuts (225), Pista-
chios (223), Walnut (222), Brazil nuts (216), Kola
nuts (224), Other nuts (234), Broad beans and
horse beans, dry (181), Broad beans and horse
beans, greens (420), Chick peas (191), Cow
peas, dry (195), Lentils, dry (201), Lupins (210),
Peas, dry (187), Peas, green (417), Pidgeon peas,
dry (197), Bambara beans (203), Vetches (205),
Other beans, green (414), Other pulses n.e.c
(211), Coffee, green (656), Green tea (675), Tea
leaves (667), Cocoa beans (661), Chickory roots
(459), Mate leaves (671), Other stimulant, spice
and aromatic n.e.c (723), Anise, badian, corian-
der, cumin, caraway, fennel and juniper (711),
Cinnamon (693), Cloves (698), Ginger (720),
Hop cones (677), Pepper (Piper spp.) (687),
Nutmeg, mace, cardamoms (702), Vanilla (692),
Chillies and peppers (689), Peppermint (748),
Pyrethrum (754), Tobacco (826), Natural rub-
ber (836), Balata, gutta-, percha-, chicle, and
similar natural gums (839)
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Table 5.7: Fraction of N, P2O5, and K2O allocated for grasslands and fodder crops. The
values given are the unique values or the range of values considered for the
entire period. The mentioned sources give the information used to calculate
these percentages, however, the specific country considerations are pointed
throughout the Fertilizer use in other agricultural lands subsection

Country N share P2O5 share K2O share Sources
Argentina 0-9.8 0-28.0 0 [304, 305, 315–

319, 386–395]
Canada 12.0 14.5 25.3 [67, 398, 399]
Chile 1.2-22.9 1.5-35.0 1.2-26.9 [67, 304, 305, 315–319,

321, 400]
Dominican Republic 0-3.1 0-3.0 0-2.5 [315, 317, 318, 401]
Mexico 0 2.6 0 [315, 319]
United States of Amer-
ica

6.6-16.6 4.0-17.2 6.8-19.1 [315, 317, 321, 399, 403]

Uruguay 2.0-12.4 21.5-42.9 0 [67, 305, 315, 319, 404]
Australia 6.4 38.4 41.6 [67, 305, 315–319, 321]
New Zealand 91.1 93.0 88.8 [67, 317, 319, 321]
Austria 20.8-31.4 27.1-30.3 19.5-21.8 [304, 305, 312, 315–319]
Belgium and Luxem-
bourg

52.7-66.9 35.5-62.3 41.2-52.3 [67, 304, 306–309, 312,
315–319]

Czech Republic 16.7-19.7 13.6-16.0 13.9-16.3 [67, 308, 309, 312, 319]
Slovakia 10.4-13.6 6.6-8.6 5.9-7.7 [67, 308, 309, 312, 319]
Czechoslovakia 20.8-31.4 27.1-30.3 19.5-21.8 [67, 308, 309, 312, 319]
Denmark 10.0-62.0 10.0-74.0 9.0-61.0 [67, 304, 306–309, 315–

319, 414]
Finland 37.0-49.0 22.0-37.0 21.0-64.0 [67, 304, 306–309, 315–

319]
France 7.0-39.0 9.0-48.0 12.0-52.0 [67, 306–309, 312, 315–

319, 399, 417–421]
Germany 11.0-43.0 10.0-42.0 9.0-39.0 [304, 306–

309, 312, 315–319, 399]
Greece 0-10.0 0-13.0 0-10.0 [67, 306–309, 312, 315–

319]
Hungary 1.0-20.0 1.0-18.0 1.0-20.0 [67, 304, 307–309, 312,

315]
Ireland 24.0-90.0 20.0-82.0 19.0-83.0 [67, 306–309, 315–319,

425–436]
Italy 9.0-11.0 7.0-8.0 6.0-8.0 [67, 306–309, 312, 316–

319, 399]
The Netherlands 52.8-77.6 9.2-58.3 10.5-26.2 [67, 304, 306–309, 312,

317–319, 438]
Poland 1.0-43.0 1.0-40.0 1.0-33.0 [67, 306–309, 312, 315,

318, 319, 439]
Continued on next page
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Table 5.7 – continued from previous page
Country N share P2O5 share K2O share Sources
Portugal 2.0-23.0 3.0-23.0 2.0-29.0 [67, 304, 306–309, 312,

315, 316, 318, 319]
Romania 4.3-5.6 4.2-5.4 2.2-2.8 [307–309, 312, 315, 317]
Spain 4.0-4.6 1.4-12.1 0-7.9 [67, 304, 306–309, 312,

315, 316, 318, 319, 440]
Sweden 12.7-45.1 2.1-36.7 0-7.9 [67, 305–309, 315, 316,

318, 319, 399]
United Kingdom and
Northern Ireland

32.4-60.8 17.6-48.8 21.7-39.7 [67, 306–309, 315, 317,
334, 442, 444]

Iceland 97.5 97.5 97.5 [445, 446]
Switzerland 32.7-56.5 36.3-51.0 10.8-38.2 [304, 315–319]
Norway 64.0 50.0 66.0 [67, 306–309, 316–319,

399]
Yugoslav SFR 15.4 16.1 14.9 [306, 312, 312, 316, 450]
Croatia 8.8-22.4 8.7-25.9 8.8-37.8 [67, 306–309, 312, 316,

319]
Montenegro and
North Macedonia

10.2-25.1 10.5-28.2 10.4-36.0 [67, 306–309, 312, 316,
319]

Serbia 11.6-27.7 12.2-31.1 12.1-37.6 [67, 306–309, 312, 316,
319, 451]

Slovenia 45.6-70.9 43.2-77.9 35.1-76.5 [67, 306–309, 312, 316,
319]

USSR 0-34.0 0-34.0 0-32.0 [315, 452–454]
Armenia, Georgia and
Azerbaĳan

4.0 7.0 9.0 [319]

Kazakhstan, Kyrgyzs-
tan, Tajikistan, Turk-
menistan and Uzbek-
istan

2.0 2.0 1.5 [321]

Estonia 5.0-40.0 3.0-32.0 21.0-64.0 [67, 306–309, 319]
Latvia 7.0-81.0 6.0-60.0 6.0-65.0 [67, 306–309, 319]
Lithuania 18.0-59.0 16.0-45.0 16.0-63.0 [67, 306–309, 319]
Belarus 27.0 14.0 26.0 [67, 321]
Republic of Moldova 7.0 6.0 3.0 [317]
Ukraine 2.0 1.0 1.0 [67, 321]
Russian Federation 6.5-43.4 1.8-19.4 2.8-33.4 [316, 317, 321]
Islamic Republic of
Iran

0-3.2 0-3.7 0-1.1 [315, 316, 321]

Japan and Republic of
Korea

17.3 16.9 15.6 [67, 304, 315–319, 321]

Turkey 0-1.2 0-2.4 0-2.1 [67, 304, 315–319, 321]
Egypt 4.0 8.6 1.0 [305, 318]
Morocco 14.8 10.5 6.1 [315, 318, 466]
South Africa 12.4 13.3 9.2 [67, 315–319, 321]
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Table 5.8: Overview of the used open source packages and respective programming
language in the code for both model training, SHapley Additive exPlanations
(SHAP) value computation and validation, as well as map building.

Programming language Package Version
Python Python [145] 3.10.3
Python numpy [273] 1.23.2
Python pandas [477] 1.4.1
Python rasterio [478] 1.3.9
Python scikit-learn [133] 1.3.2
Python shap [59] 0.44.0
Python xgboost [190] 2.0.3
R R [479] 4.2.2
R sf [480, 481] 1.0-15
R ncdf4 [482] 1.22
R exactextractr [483] 0.10.0
R readxl [484] 1.4.3
R stringr [485] 1.5.0
R dplyr [486] 1.1.2
R readr [487] 2.1.4
R ggplot2 [488] 3.4.2
R tidyverse [489] 2.0.0
R cshapes [490] 2.0
R terra [359] 1.7-65
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Conclusions and future perspectives

In general, our findings emphasize the significant value of ML in biological sciences.
Specifically, we demonstrated that ML models can assist in analyzing complex datasets
by revealing patterns and relationships that were previously hidden. The rapid growth of
computational power, the increasing volume of biological data, and swift advancements
in ML research offer tremendous potential for its applications in this field. This final
chapter summarizes the key contributions of this thesis and suggests potential directions
for future research.

In Chapter 2, we introduced the WithMe dataset, and showed that it can be used to
develop ML methods for detecting attention based on P3a ERPs in single-trial data. In
this study, we successfully classified target and distractor stimuli using four different
classification methods: xDAWN+RG, EEGNet, MiniRocket, and Rocket. EEGNet and
xDAWN+RG achieved a 76% accuracy in the IS case, with EEGNet maintaining the same
accuracy as in the CS case, while xDAWN+RG’s accuracy fell to 73%. EEGNet’s more
complex structure likely enabled better generalization across subjects. Importantly, all
four models can provide real-time predictions, which is essential for human-AI inter-
action experiments and applications. Using xAI, we found that the EEGNet model
made its predictions based on EEG signals from the parietal-occipital region between
200-300ms post-stimulus, aligning with the hypotheses of domain experts. Future work
could address the fraction of mislabeled data by designing an experiment solely focused
on attention detection, enabling models to align labels more accurately with subjects’
perceived stimuli. Additionally, it could be interesting to include a feature selection
procedure, allowing models to focus on the most relevant features. Finally, as EEG
data is notoriously subject-dependent, exploring other ways to achieve CS generalization
could be interesting [109]. One promising strategy is the application of transfer learning
[142, 143].

In Chapter 3, our research only partially confirmed the proposed hypotheses regarding
the impact of soil temperature on the SOS, POS and PEAK. While we confirmed that
higher soil temperatures lead to an earlier SOS, we also observed a similar shift in the
POS, which was unexpected. Additionally, the PEAK increased slightly with increasing
soil temperatures, which also deviated from expectations. Our analysis also confirmed
that meteorological variables had the most significant impact on all three seasonal char-
acteristics. Contrary to our hypothesis, the influence of these variables was relatively
equal. Finally, annual variations in phenological characteristics were primarily driven
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by soil temperature. Future research should prioritize further exploration of the rela-
tionships between soil temperature and phenology, along with the interactions between
soil temperature and meteorological variables at finer temporal and spatial scales. Ad-
ditionally, integrating advanced remote sensing techniques, such as satellite imagery,
with ground-based measurements, has significant potential to enhance the precision of
phenological studies in subarctic grasslands. From a methodological perspective, con-
sidering alternative ML model architectures like XGBoost [190] and other xAI methods
like LIME [113] could be interesting, as this enables comparisons between different ML
models and xAI methods.

In Chapter 4, we successfully tackled the important issue of missing values in sensor
data. We started by introducing an extensive real-world dataset collected using a large-
scale WSN for environmental monitoring. Current literature typically examines datasets
containing a few dozen sensors, whereas our dataset comprises 1500 sensors. This fea-
ture allows us to evaluate missing value imputation methods for large-scale WSNs more
reliably. Additionally, we expanded upon the existing literature by introducing “masked
missings”, which provide a far more realistic evaluation scenario compared to the com-
mon practice of using random missings. After thoroughly evaluating both random and
masked missing scenarios, we found that the MC method consistently outperformed the
others. In general, methods that specifically account for spatial correlations tended to per-
form better. Following this work, there are many directions for future research. From an
evaluation perspective, future research can build upon our study by exploring additional
datasets with varying numbers of sensors and temporal granularities, which would en-
hance our understanding of how dataset characteristics influence method performance.
On a methodological note, we expect great value in the development of WSN-specific
imputation methods. For example, one could consider a two-step approach, where the
first step is focused on temporal correlations and the second step on spatial correlations.
More specifically, one could first apply the iterative imputing network as proposed by
[491]. The benefit of the iterative component is twofold: it enables the method to deal
with sparse data, which (trivially) is often the case in a missing value problem. Addition-
ally, iterative imputation methods are more capable of dealing with clustered missings
(so-called missing blocks). In the next step, one could exploit spatial correlations by tak-
ing inspiration from methods such as [244], which assumes that the relationship between
two spatially close sensors can be estimated by a linear relationship, and accordingly fits
a linear regression model between two sensors, which is ultimately used to make the
imputations. A possible improvement to this proposed method could be using more
complex ML models such as XGBoost [190] or MLPs to model the relationships between
(multiple) nearby sensors. Finally, creating a specialized open-source Python package for
missing value imputation methods would be highly valuable. The leading package for
general missing value imputation, fancyimpute [281], has been in bare maintenance mode
for three years. Meanwhile, Autoimpute [492] primarily focuses on simpler imputation
techniques, and ImputeBench [259] is dedicated solely to time series imputation.

Finally, in Chapter 5, we compiled a comprehensive dataset of global N, P2O5, and K2O
application rates by major crop groups from 1961 to 2019. We used ML, specifically
gradient boosted decision trees, to estimate fertilizer application rates. These estimates
were made based on a collection of crop class related data, historical fertilizer application
rates, as well as various socioeconomic, environmental and agricultural variables that
were identified as possible drivers of cropland fertilization. We corrected the estimates
by considering the proportion of fertilizer use allocated to grasslands and fodder crops,
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ensuring they more accurately reflect the total annual country-level N, P2O5, and K2O
application rates use in agricultural land. Ultimately, we provide a tabular dataset of
the country- and crop-level estimates, as well as gridded maps with a resolution of 5
arc minutes, both of which are published as open-source resources. Our results present
a clear improvement in efforts to evaluate historical fertilizer consumption for different
crop groups, countries, and fertilizers. Future research can build upon our study by
for example considering the frequency of fertilizer application, as well as the associated
timings of the application within a year. Additionally, while our study focuses on the
application of broad fertilizer classes, more detailed estimates can be made for the differ-
ent types of fertilizers, e.g., different N fertilizer types. The data published in this study
also opens up a lot of possible directions for future research. For example, a thorough
analysis of the drivers of fertilizer application rate could deepen our understanding, and
also inform future decisions made by policy-makers. While we use xAI to get insights re-
garding these drivers, exploring methodologies such as causal structure discovery could
provide us with a more comprehensive and causally accurate understanding of the main
drivers of fertilizer application rate.
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