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A B S T R A C T

This paper describes a dual immunosensor using neutravidin-functionalized magnetic microbeads (Neu-MBs)
and dual screen-printed carbon electrodes (SPdCEs) for the simultaneous amperometric determination of two
emerging biomarkers related to breast cancer (BC) and metastasis: Receptor Activator of Nuclear Factor-κB
Ligand (RANKL) and Tumor Necrosis Factor alpha (TNF). In the implemented methodology, sandwich-type
immunocomplexes, using biotinylated specific capture, detector antibodies and HRP-labeled secondary anti-
bodies, are formed onto Neu-MBs. Electrochemical detection was performed by amperometry (−0.20 V vs. the
Ag pseudo-reference) electrode using the H2O2/hydroquinone (HQ) system upon capturing the Neu-MBs mod-
ified with the sandwich immunocomplexes for each target biomarker on the corresponding working electrode
(WE) of SPdCEs. The approach exhibits high sensitivity offering detection limits of 2.6 and 3.0 pgmL−1 for
RANKL and TNF, respectively, using simple protocols and taking 90min as assay time. The usefulness of the dual
immunoplatform was tested by determining RANKL and TNF levels in 5 μL of human serum from healthy
controls and BC patients diagnosed with different HER2 subtypes. Results showed a higher expression of both
biomarkers in BC patients (38 and 17 % higher for RANKL and TNF, respectively) and were in agreement to
those obtained using the ELISA methodologies for each target biomarker involving the same immunoreagents.
The obtained results show the potential of this immunoplatform to improve the reliability of BC diagnosis using
fast and cost-effective procedures.

1. Introduction

Cancer is the second leading cause of death globally and their pre-
cise and early detection is key to controlling this disease and saving
millions of lives each year [1]. In particular, breast cancer (BC) is the
second most common malignancy and a leading cause of death in
women population [2]. A primary luminal-like subtype breast tumor,
characterized by estrogen receptor (ER), progesterone receptor (PR)
and human epidermal growth factor receptor 2 (HER2) positive or
negative statuses, is potentially curable. Several studies have shown
that breast tumors with HER2 gene amplification or overexpression are
more aggressive [3]. Nevertheless, the therapy based on the in-
corporation of a monoclonal antibody (Trastuzumab) targeting the

extracellular domain of the HER2 protein has demonstrated to be an
efficient therapy for transforming outcomes of this particular BC sub-
type into one with a better prognosis [4]. In contrast, triple-negative
(ER, PR and HER2, negative) BC is currently considered incurable
whose median overall survival does not exceed 13 months [5]. These
findings highlight the tremendous importance of reliable and preferably
minimally invasive detection in early stages of the BC subtype for ap-
plying the most appropriate therapy.

Cytokines detection is important in diagnosis and prognosis of
cancer and other diseases related to inflammation, immunological and
atherosclerotic processes, since they play critical roles in repairing
chemically-induced damaged tissue or controlling cell replication and
apoptosis [6]. Consequently, the determination of circulating cytokines
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as tumor biomarkers is gaining more and more acceptance and re-
levance [7]. Within this context, circulating levels of receptor activator
of nuclear factor-κB ligand (RANKL) and tumor necrosis factor (TNF)
proteins in human serum are currently considered important prognosis
biomarkers for different types of cancers [8,9].

RANKL, a homotrimeric type II membrane ligand protein of the TNF
family, is the critical regulator of osteoclasts development and bone
metabolism [10]. This ligand binds to its protein RANK on the surface
of osteoclasts precursors and induces activation of osteoclasts and
subsequent bone resorption [11]. Besides their essential function in
bone, RANK and RANKL have been identified as the key factors for the
formation of lactating mammary glands in pregnancy [12], to control
the onset of hormone-induced BC through the expansion of mammary
progenitor cells. The role of RANK/RANKL in BC is to confer resistance
to irradiation-induced cell death in mammary epithelial cells, and to
change cell adhesion and regulate self-renewal capacity of tumor stem
cells, all of which might contribute to how RANKL/RANK drive mam-
mary cancer development [13].

Regarding the multifunctional cytokine TNF, it is a 55 kDa biolo-
gically active molecule playing important roles in apoptosis and cell
survival, and involved in various immune and inflammatory processes
[14] for which it has become a good biomarker in relation to some
pathologies [15]. Indeed, increased levels of TNF and other proin-
flammatory cytokines have been found for invasive breast carcinomas
[16], and higher expression of intratumoral TNF is associated with
lymph node metastasis and elevated tumor grade [17]. In this regard, it
is worth mentioning that, among other types, human breast tumors
have been shown to alter both the expression and function of TNF,
providing soluble decoy receptors such as the RANKL-related osteo-
protegerin (OPG) [18]. As it was recently demonstrated, OPG and
RANKL are involved in the development of lactating breast glands and
breast tumor growth and metastasis [12,19,20], whereas the RANKL/
RANK system acts by providing to damaged mammary epithelium a
growth and survival advantage, these being a prerequisite to the in-
itiation of BC [21,22].

As it is known, achieving an effective clinical diagnosis requires
building reliable tools for the detection of biomarkers associated with
malignant tumor growth in order to improve accuracy and minimize
the false-positive rate [23]. Therefore, the determination of tumor
biomarkers implied in tumor progression, aggressiveness and meta-
static events is a primary task in the diagnosis of cancers as soon as
possible in order to choose the most efficient therapy in the shortest
time. However, given the poor specificity of biomarkers related to a
type of cancer, the determination of a single tumor marker is facing
great challenge [24]. Obviously, multianalyte approaches applied in
this field for the purpose of determining multiple tumor biomarkers
providing more information for clinical diagnostics by means of faster
and low-cost assays are of great significance [25].

All these evidences highlight the interest in the development of
novel, fast and accurate methodologies for the determination of RANKL
and TNF simultaneously, whose monitoring shows some difficulties
related to their low concentration ranges in biological samples, to im-
prove the reliability in BC subtype diagnosis [6]. These target bio-
markers are usually individually determined by ELISA tests (soluble
fractions) [26] and immunohistochemistry [27]. Over these techniques,
electrochemical immunosensors exhibit interesting advantages in terms
of portability, miniaturization, on-site monitoring and multiplexing
analysis [28]. Although the individual determination of TNF [29–32]
and RANKL [33] have been reported, as far as we know, no bioelec-
troanalytical platform has been proposed for the determination of both
cytokines simultaneously.

With the main purpose of contributing to the reliable, objective,
quantitative and minimally invasive diagnosis of BC subtype and status
within clinically actionable times, this work reports the preparation,
characterization and application of a fast and user-friendly electro-
chemical immunoplatform for the accurate determination of serum

circulating RANKL and TNF proteins recently related to this type of
neoplasia. The proposed methodology involves the formation of sand-
wich immunocomplexes onto Neutravidin-functionalized magnetic
beads (Neu-MBs) followed by the amperometric transduction at screen-
printed dual carbon electrodes (SPdCEs). The immunoplatform was
applied to the determination of both biomarkers in untreated human
serum from BC patients.

2. Experimental

Used apparatus, electrodes, reagents and solutions are described in
detail in the Supporting Information.

2.1. Experimental procedures

2.1.1. Preparation of the dual immunoplatform
For the individual determination of each biomarker, a 3 μL-aliquot

of Neu-MBs suspension was transferred into a 1.5 mL microcentrifuge
tube and washed twice with 50 μL of 0.01M phosphate buffer saline
solution (PBS) pH 7.4. Then, after placed the microcentrifuge tubes in
the magnetic separator, the MBs were concentrated during 3min, and
the supernatant was removed as well as after all incubation/washing
steps. Bio-functionalization of MBs was carried out by incubating these
particles with 25 μL of 5 μgmL−1 RANKL or 1 μgmL−1 TNF biotiny-
lated capture antibodies (bCAbRANKL or bCAbTNF) solutions prepared in
0.01M PBS pH 7.4. The microcentrifuge tubes were placed in the in-
cubator shaker during 45min (25 °C, 950 rpm) to obtain, respectively,
bCAbRANKL-MBs and bCAbTNF-MBs bioconjugates. After two washings
with 50 μL of blocking buffer (BB) solution, the microcentrifuge tubes
containing bCAbRANKL-MBs were placed in the incubator shaker for
60min (25 °C, 950 rpm) with 25 μL of a mixture solution containing
RANKL standards (or the sample to be analyzed), 1 μgmL−1 RANKL
detector antibody (DAbRANKL) and 0.5 μgmL−1 HRP-anti-mouse IgG
prepared in the BB solution. On the other hand, bCAbTNF-MBs were
incubated with 25 μL of TNF standards or the sample to be analyzed
prepared in BB solution also containing 1 μgmL−1 of TNF detector
antibody (DAbTNF) for 60min (25 °C, 950 rpm). Next, the DAbTNF-TNF-
bCAbTNF-MBs were washed twice with 50 μL of BB solution, and sub-
sequently incubated for 30min (25 °C, 950 rpm) with 25 μL of
0.5 μgmL−1 HRP-anti-mouse IgG prepared in BB solution. Finally, the
modified MBs were washed twice with BB solution and the ampero-
metric measurements were performed after re-suspension in 5 μL of
0.05M phosphate buffer solution (PB) pH 6.0.

2.1.2. Amperometric measurements
The as-prepared 5 μL-aliquots of the modified MBs suspension were

dropped onto the respective surface of the SPdCE working electrodes
(HRP-anti-mouse IgG-DAbRANKL-RANKL-bCAbRANKL-MBs onto WE1 and
HRP-anti-mouse IgG-DAbTNF-TNF-bCAbTNF-MBs onto WE2) previously
placed in the poly(methyl methacrylate) (PMMA) casing with en-
capsulated neodymium magnets. Subsequently, the ensemble SPdCE/
magnet holding block with the MBs immunoconjugates magnetically
captured was immersed into 10mL of 0.05M PB pH 6.0 solution also
containing 1mM HQ (prepared just before the electrochemical mea-
surement) in an electrochemical cell. Amperometric measurements
were performed at room temperature in stirred solutions by applying
−0.20 V (vs. Ag pseudo-reference electrode. After the background
current was stabilized (∼50 s), 50 μL of a recent 0.1M H2O2 solution in
0.05M PB pH 6.0 were added, and the current provided by the HRP
reduction of H2O2 mediated by HQ, was recorded during ∼100 s (time
required for reaching the steady-state). All the amperometric data were
calculated as the difference between both the steady-state and the
background current, and the mean values of three replicates (α=0.05)
were employed.

Each batch of modified MBs and SPdCEs was only used to perform a
single measurement and they were discarded afterward.
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2.1.3. Analysis of sera
Human serum samples from patients diagnosed with HER2-positive

and HER2-negative BC and from healthy individuals (control group)
were provided by Hospital Universitari de Sant Joan (Tarragona,
Spain), and stored at −80 °C until use. In all cases, the ethical issues,
relevant guidelines and regulations were accomplished for sample using
and experiments performance. Furthermore, all individuals gave their
written informed consent to participate in the study. The determination
of RANKL and TNF was carried out in 5-times diluted serum samples in
BB. Since no matrix effect was observed in the diluted serum samples,
quantification of both biomarkers was performed by direct interpola-
tion of the measured amperometric signals into the calibration plots
constructed with RANKL and TNF standards. The results obtained with
the developed dual immunoplatform were compared with those pro-
vided for the individual determination of each target analyte with the
respective ELISA kit using the same immunoreagents and following the
recommended protocols.

3. Results and discussion

Fig. 1 shows the steps involved in the preparation and functioning of
the dual immunosensor, for the simultaneous amperometric detection
of RANKL and TNF. Briefly, sandwich-type immunoassays were im-
plemented onto the Neu-MBs by immobilizing the respective RANKL
and TNF biotinylated capture antibodies (bCAbs). Neu-MBs were se-
lected as solid support for the assays due to their advantages over
streptavidin- or avidin-MBs in terms of higher binding affinity and
lower non-specific adsorptions [34,35]. The target RANKL or TNF
captured onto these immunocaptors were sandwiched with their cor-
responding detector antibodies (DAbs) enzymatically labeled with HRP-
anti-mouse IgG. Thereafter, the MBs modified with the im-
munoconjugates were captured on the corresponding working electrode
surface of the SPdCE (RANKL in WE1 and TNF in WE2). Amperometric
measurements were carried out using the H2O2/HQ system and the

reduction currents at −0.20 V (vs. Ag pseudo-reference electrode),
were proportional to the concentration of RANKL and TNF.

3.1. Evaluation of the experimental variables

The working protocol for the individual amperometric determina-
tion of RANKL and TNF at SPCEs was optimized using the larger ratio
between the amperometric responses obtained in the presence of
100 pgmL−1 RANKL or TNF standard solutions (signal, S) and in their
absence (blank, B) (S/B ratio), as the selection criteria. Table S1 sum-
marizes the tested variables, and the results obtained are displayed in
Figs. S1 and S2 (in the Supporting Information), respectively. Other
used experimental variables such as the detection potential (−0.20 V
vs. the Ag pseudo-reference electrode), or the concentrations of H2O2

and HQ, and the pH value and composition of the solution where the
amperometric measurements were made, were those optimized in
previous works [36–38].

The number of incubation steps (30 and 60min each for RANKL and
TNF, respectively) required for modification of the bCAb-MBs upon
target addition was optimized for both immunoassays. Figs. S1c and S2c
show the responses obtained with the prepared immunosensors by
implementing the following protocols: (I) One single incubation step
performed in a mixture solution which contained the target biomarker
(RANKL or TNF), the DAb and HRP-anti-mouse IgG; (II) protocols in-
volving two successive incubation steps, a first step in a mixture solu-
tion of the target biomarker and the detector antibody (DAb), followed
by incubation in the HRP-anti-mouse IgG solution (IIA); a first in-
cubation step in the biomarker solution and a subsequent incubation
performed in a mixture solution containing DAb and HRP-anti-mouse
IgG (IIB); (III) three successive incubation steps in RANKL or TNF
standard, DAb and HRP-anti-mouse IgG solutions, respectively. With
the aim of developing simpler and shorter methods without compro-
mising sensitivity, protocols involving 1 incubation step for RANKL and
2 incubation steps (first incubation with biomarker and DAb, and then

Fig. 1. Schematic display of the developed MBs-based immunoplatform for the dual amperometric determination of RANKL and TNF at SPdCEs.
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with HRP-anti-mouse IgG, protocol IIA) for TNF were selected to de-
velop the immunosensors.

3.2. Simultaneous determination of RANKL and TNF with the dual
immunoplatform

The optimized individual methodologies for RANKL and TNF were
integrated at the dual electrochemical SPdCEs platform. The possible
loss of sensitivity compared with the individual determinations and the
eventual cross-talking that could occur between the neighboring elec-
trodes were evaluated by evaluating the amperometric responses
measured for RANKL and TNF standards prepared at different con-
centrations. Fig. 2 shows a decrease of about 12 and 17 % in the am-
perometric responses recorded at the SPdCEs for 100 pg mL−1 RANKL
and TNF standards, respectively, attributed to the higher surface area of
the working electrodes in the single SPCEs (12.6 mm2) compared to
those of SPdCEs (6.3mm2 each). In addition, no significant cross-
talking was apparent between the two adjacent electrode surfaces due
to the presence of the non-target biomarker. As Fig. 2 shows, the cur-
rents measured when a 100 pgmL-1 RANKL standard was incubated
with bCAbTNF-MBs and DAbTNF (V), or when a 100 pgmL-1 TNF stan-
dard was incubated with bCAbRANKL-MBs and DAbRANKL (VII) were not
significantly different from those measured in the absence of each
target biomarker incubated with its corresponding immunoreagents (IV
and VI). These results demonstrated the usefulness of the developed
strategy for the sensitive and selective simultaneous determination of
RANKL and TNF.

Under the optimized working conditions, the calibration plots for
RANKL and TNF obtained at the SPdCEs are displayed in Fig. 3. Linear
regressions adjusted to the equations: -i, nA = (1.9 ± 0.1) nAmL−1 pg
[RANKL] + (117 ± 9) nA (R2= 0.992) and -i, nA = (1.10 ± 0.06)
nAmL−1 pg [TNF] + (91 ± 5) nA (R2=0.991) were obtained. The
LOD (2.6 pgmL−1 for RANKL and 3.0 pgmL−1 for TNF) and LQ
(8.6 pgmL−1 and 9.9 pgmL−1 for RANKL and TNF, respectively) values
were estimated according to the 3×sb/m and 10×sb/m criteria, being
sb the standard deviation obtained from 10 amperometric measure-
ments carried out in the absence of each biomarker (B signals) and m
the slope of the respective standard calibration plot.

A good repeatability between the amperometric responses was ob-
tained for both biomarkers using ten different dual immunosensors
prepared at the same day. The RSD values (3.8 % and 4.1 % for RANKL
and TNF, respectively) confirmed the high reproducibility of the

working experimental procedure, which includes the preparation of the
sandwich immunocomplexes on the MBs followed by their magnetic
capture on the SPdCEs working surfaces and the dual amperometric
measurements.

The developed dual immunoplatform (the first one described until
now for the simultaneous determination of RANKL and TNF) provides
quite similar LOD values (indicated in parenthesis) for both biomarkers
than those claimed for previously reported single immunosensors such
as an integrated immunoplatform for RANKL involving AuNPs/
MWCNTs hybrid nanocomposites (3.1 pgmL−1) [32], a MBs-based
immunosensor for TNF (2.0 pgmL−1) [29], a label-free design invol-
ving Ag@Pt core–shell nanoparticles supported on MWCNTs for TNF
(1.6 pgmL−1) [30], or a dual nanostructured immunoplatform for the
simultaneous determination of TNF and IL-1β (0.83 pgmL−1 for TNF)
[31]. Importantly, the methodology reported in this paper requires the
shortest assay time (2 h 15min) for the determination of both target
biomarkers simultaneously, in just 90min counting since the prepara-
tion of the bCAb-MBs.

The analytical characteristics of the dual immunoplatform were also
compared with those claimed for the commercial ELISA kits used for the
individual determination of each biomarker which involve the same
immunoreagents employed in this work. The ELISA kits required a
much longer assay time with an “overnight” step for immobilization of
the capture antibody, 1 h for blocking and nearly 5 h to complete the
immunoassay after target addition. In addition, ELISA kits demand
100 μL of biological sample to each well, and provide logarithmic ca-
libration plots (non-linear) with dynamic ranges from 78 to
5000 pgmL−1 for RANKL and 16−1,000 pgmL−1 for TNF, as well as
minimum detectable concentrations of 20 pgmL−1 and 5 pgmL−1, re-
spectively. Conversely, as stated above, the dual bioplatform is not
restricted to the determination of a single biomarker like the ELISA kits,
allowing the simultaneous determination of both biomolecules in the
above cited total assay time of 90min counting upon target addition.
Furthermore, the immunosensor demands only 25 μL of solution con-
taining the biomarker for the suitable determination of each compound,
and provides non-logarithmic linear ranges between 8.6 and
1000 pgmL−1 for RANKL (LOD of 2.6 pgmL−1) and
9.9−1,000 pgmL−1 for TNF (LOD of 3.0 pgmL−1). In addition, a better
precision, with RSD values around 4 %, was achieved for the ampero-
metric measurements carried out with the dual immunoplatform than
that reported for individual ELISA kits (RSD=10 %). All these ad-
vantages together with the inherent characteristics of portability and
cost-effectiveness of the electrochemical instrumentation required
make the developed dual immunoplatform an ideal device to perform
routine determinations of RANKL and TNF biomarkers at the point of
attention.

3.2.1. Storage stability of the bCAb-MBs bioconjugates
In order to evaluate the storage stability of the bCAbRANKL-MBs and

bCAbTNF-MBs bioconjugates (i.e. before the addition of the biomarker/
sample), different batches of bCAb-MBs were prepared in the same day
and stored at 4 °C in 1.5mL microcentrifuge tubes resuspended in 50 μL
of sterilized 0.01M PBS pH 7.4. Then, the amperometric responses were
measured with the immunosensors prepared using the stored bCAb-
MBs, in the absence and in the presence of both biomarker standards
(100 pgmL−1 RANKL and TNF), with the results plotted in Fig. S3
(Supporting Information). As it can be seen, a good storage stability of
bCAb-MBs bioconjugates was apparent, allowing the accurate de-
termination of RANKL and TNF without significant differences in sen-
sitivity during approximately 20 days after the preparation of MBs
bioconjugates.

3.2.2. Dual immunosensor selectivity
The selectivity of the dual immunoplatform was tested by compar-

ison of the amperometric responses for 0 and 100 pgmL−1 RANKL and
TNF standard solutions, prepared in the absence and in the presence of

Fig. 2. Comparison of the amperometric currents measured with single and
dual immunosensors for mixture solutions containing: 0 pgmL−1 of both
RANKL and TNF (I and III); 100 pgmL−1 RANKL and TNF (II and IV);
0 pgmL−1 RANKL and 100 pgmL−1 TNF (V); 100 pgmL−1 and 0 pgmL−1 TNF
(VI); and 100 pgmL−1 RANKL (with bCAbTNF-MBs and DAbTNF) and
100 pgmL−1 TNF (with bCAbRANKL-MBs and DAbRANKL) (VII). Error bars were
estimated from three replicates as three times the calculated standard devia-
tion.
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various non-target cancer biomarkers as well as other proteins coex-
isting in serum samples. Fig. 4 shows as no significant interference was
found for the determination of RANKL and TNF coexisting with other
serum proteins (assayed at the expected concentration levels for healthy
patients), which evidenced the high specificity of the bCAbs and DAbs
employed and the excellent selectivity of the dual immunoplatform.

The dual immunoplatform was applied to the quantification of
RANKL and TNF standards prepared in lyophilized human serum. Fig. 5
compares the immunosensor responses for 0, 500 and 1000 pgmL−1

RANKL or TNF standards prepared in buffered solutions or in undiluted
and (2 or 5-times) diluted serum (in BB solution). As it can be seen, no
significant differences could be observed for the amperometric re-
sponses obtained in buffered solutions and in 5-times diluted serum

samples. Therefore, at such dilution level, matrix effects were no sig-
nificant, which allows the determination of RANKL and TNF in 5-times
diluted serum samples just by simple interpolation of the amperometric
signals into the respective calibration plot constructed with the stan-
dards of both biomarkers.

3.3. Applicability to the analysis of RANKL and TNF in human serum from
BC patients

The applicability of the dual immunoplatform to determine RANKL
and TNF levels in human serum from healthy individuals (control
group) and BC patients diagnosed with different HER2 subtypes was
evaluated. It is important to note that since serum samples were 5-times
diluted and an incubation volume of 25 μL was used (see detailed
protocol in sections 2.1.1 and 2.1.3) just 5 μL of clinical sample are
required for each target biomarker determination. Moreover, the pos-
sibility to perform the determination by simple interpolation of the
measured amperometric responses into the calibration plots prepared
with RANKL and TNF standard solutions greatly simplifies the protocols
and reduces the assay times. Data obtained for the quantification of
both biomarkers in the different human serum samples analyzed are
displayed in Fig. 6. As expected, a higher expression of RANKL (38 %
higher) and TNF (17 % higher) was found in BC patients compared with
control group. Despite the small cohort of patients analyzed, the results
obtained were in agreement with the reported oncogenic role of both
biomarkers and their key actuation in the BC progress HER2 subtype
identification.

Table 1 compares the concentrations of RANKL and TNF found in
the samples of human serum for three replicates using the dual im-
munosensor with those provided by the individual commercial ELISA
kits involving the same immunoreagents. As it is shown in Fig S4, an
excellent correlation between both methods occurred.

The calculated RANKL and TNF expression level in healthy in-
dividuals are in accordance with reported values [32,33,39–44]. As
commented above, higher concentrations of both biomarkers were
found in BC patients compared with the control group. Importantly,
while similar TNF concentrations were found for HER2-positive and
negative BC patients (48 vs. 40 pgmL−1), a significantly higher RANKL
concentration was apparent for HER2-positive BC group compared to
the HER2-negative BC patients (550 vs. 339 pgmL−1). These results
demonstrate the independent prognostic factor value of both cancer
biomarkers, where high concentration levels of TNF are related with
larger stages of BC and lymph node metastasis [43] and overexpression
of RANKL in serum, closely related with the BC subtype (HER2 posi-
tive), is indicative of cancer progression and aggressiveness and a
higher probability of the metastatic process to bone [45].

Regarding TNF expression in BC patients (Fig. 6b), circulating bio-
marker levels found in serum were threefold higher for BC than for the

Fig. 3. Calibration plots and real amperometric responses (0, 500 and 1,000 pgmL−1) obtained with the dual amperometric immunoplatform for RANKL (a) and TNF
(b) standard solutions. Error bars were estimated from three replicates as three times the calculated standard deviation.

Fig. 4. Amperometric measurements obtained with the dual immunoplatform
for 0 (stripped bar, B) and 100 pgmL−1 RANKL (green) or TNF (purple) (solid
bar, S) prepared in the absence (Control) and in the presence of 50mgmL−1

HSA; 1mgmL−1 Human IgG; 5mgmL−1 Hemoglobin (Hb); 50 ng mL−1 IL-
13Rα2; 10 ng mL−1 E-CDH; 100 pg mL−1 RANKL (purple) or TNF (green);
500 ngmL−1 CXCL4 and 500 ngmL−1 CXCL7. Red circles indicate the re-
spective S/B ratio and error bars are estimated as three times the standard
deviation value of three replicates (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article).
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control group. These results agree with those found in the literature for
TNF expression in BC [43]. However, data obtained indicated that the
TNF levels in serum between HER2 positive and HER2 negative BC
patients were not significantly different. Therefore, it can be concluded
that TNF levels in BC are associated with tumor aggressiveness but not
with HER2 expression [43]. Conversely, significant differences were
found for RANKL expression in BC patients with different HER2 ex-
pression (Fig. 6a), with mean values of 339 and 550 pgmL−1 for HER2
negative and HER2 positive BC patients, respectively. This suggests that
HER2 expression in BC may promote the production of RANKL, as in-
creased levels of RANKL in the bone microenvironment can be directly
regulated by HER2 overexpression [45]. In BC patients, HER2 oncogene
amplification (HER2 positive) is strongly associated with enhanced
disease aggressiveness and a poor prognosis due to that breast carci-
noma frequently metastasizes to bone [46]. Moreover, the increased
circulating levels of RANKL found in BC patients compared with
healthy individuals, coupled with the high levels obtained for the ag-
gressiveness cancer biomarker TNF, indicate advanced stages of BC that
may disseminate to bone [21,46].

Despite the higher overexpression of RANKL and TNF in serum from
patients diagnosed with BC should be exhaustively evaluated with more
samples from different patient cohorts, the results obtained with the
developed dual immunoplatform make RANKL and TNF attractive cir-
culating biomarkers for the reliable detection of BC and HER2 subtype.

4. Conclusions

In this work, the first electrochemical immunoplatform for the si-
multaneous determination of RANKL and TNF, two relevant biomarkers
related with BC and HER2 subtype, is reported. The developed meth-
odology relies on the preparation of sandwich type configurations for
the target biomarkers between the capture antibodies immobilized onto
MBs-based immunoplatforms and detector antibodies labeled with
HRP-conjugated secondary antibodies. The developed immunosensor is
sensitive (LODs of 2.6 pgmL−1 and 3.0 pgmL−1 for RANKL and TNF,
respectively) and selective, allowing the simultaneous and accurate
determination of the biomarkers in 5-times diluted serum samples.
Importantly, the determinations can be completed in about 90min
(starting from the prepared bCAb-MBs) using simple protocols and
small sample amounts (5 μL of human serum per target biomarker de-
termination). The developed methodology is competitive with respect
to the commercial ELISA kits for single determinations, in terms of
assay time, precision, portability and cost for the determination of the
endogenous content of the target proteins in serum. Furthermore, the
developed methodology using the MBs-based electrochemical design
may be easily adapted to the determination of other proteins, and to
fabricate an electrochemical array useful for the determination of
multiple circulating biomarkers in a single test. Among their ad-
vantages, this novel device involving affordable and portable

Fig. 5. Amperometric measurements provided with the dual immunoplatform for standard solutions of RANKL (a) and TNF (b) prepared in buffer solution and in
human serum samples (undiluted and diluted as indicated). Error bars are estimated as three times the standard deviation of three replicates. S/B ratios are estimated
as the ratios of the amperometric signals obtained in the absence and in the presence of 1,000 pgmL−1 of the target biomarker.

Fig. 6. RANKL (a) and TNF (b) levels in serum samples grouped into pools of healthy individuals (control) and BC patients regarding HER2 status measured with the
developed dual immunosensor. Representative real amperometric traces are shown above the bars for each clinical group. Error bars are estimated as three times the
standard deviation value of three replicates.
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instrumentation, allows to perform the much-in-demand in-situ de-
terminations of these emerging relevant biomarkers. It is worth to
mention that the simultaneous determination of RANKL and TNF bio-
markers in a single experiment is expected to be decisive in improving
the reliability in BC detection and HER2 subtype classification.
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