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Summary

Optimizing operational decisions, routine actions within some business or
operational process, is a key challenge across a variety of domains and appli-
cation areas. The increasing availability of data, computational power, and
advanced machine learning (ML) algorithms offers exciting opportunities for
data-driven decision support. To advance the potential of ML for optimizing
operational decision-making, we explore two research directions, aiming to
develop ML models that are decision-focused and causal. This dissertation
presents several developments in machine learning in these two areas.

ML is effective at making predictions from historical data: for example, es-
timating a transaction’s fraud probability by comparing it to past cases.
However, decision-makers not only need to consider these predictions, but
also the operational context. For example, the decision-maker uses predicted
fraud probabilities to determine which transactions to investigate, while aim-
ing to minimize monetary losses due to fraud and considering the available
capacity of the fraud investigations team. Predictions can help reduce uncer-
tainty (e.g., by predicting the fraud probability), but standard ML models
are prediction-focused, instead of decision-focused. This distinction involves
two challenges for data-driven decision-making. First, prediction-focused
models prioritize predictive accuracy instead of the resulting decision qual-
ity (e.g., fraud losses recovered by the bank). Second, these models fail to
account for operational constraints, such as the available investigation capac-
ity. Decision-focused learning aims to improve data-driven decision-making
by addressing these issues and incorporating the operational context into the
optimization of ML models. In this dissertation, we analyze cost-sensitive
learning within this prediction-optimization framework and evaluate gen-
eral strategies for making cost-optimal decisions with ML. Additionally, we
propose a novel ML method for optimal decision-making under capacity con-
straints based on learning to rank.
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Summary

To make effective decisions, a decision-maker has to estimate the causal
effect of possible interventions in order to choose actions that achieve the
desired outcome. Unfortunately, standard ML models identify correlations
in the data instead of causal relationships. Because of this, these models can-
not guarantee the effectiveness of decisions made based on their predictions.
Causal inference provides a formal framework for reasoning about causality
and identifying causal effects from data. This dissertation explores the in-
tersection of causality and ML. First, we illustrate the potential of causal
ML for optimizing preventive maintenance. Next, we propose novel causal
ML methods for predicting causal effect distributions and for addressing in-
formative sampling when predicting treatment outcomes over time. We also
argue for a practical, end-to-end perspective for building ML pipelines for
causal inference and propose an automated framework doing so. Finally,
we combine decision-focused learning with causal inference by introducing
ranking metalearners to optimize treatment decisions under capacity con-
straints.
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Prologue
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1
Introduction

There have recently been remarkable advances in machine learning (ML)
and artificial intelligence. In 2012, AlexNet revolutionized computer vision,
by training a deep learning architecture on the large ImageNet data set,
leveraging graphics processing units (GPUs) for efficient training [1]. The
transformer architecture was proposed in 2017 [2] and enabled efficient train-
ing of large language models such as BERT [3] or generative pre-trained
transformers (GPT) [4]. In 2018, AlphaFold achieved significant progress
in predicting protein structures by training ML components on a large data
set of 3D protein structures [5]. Despite spanning different data modalities,
these advances share common elements: the combination of increasing data
availability, enhanced computing power, and sophisticated ML algorithms
designed to extract patterns from data.

The advancement of these technologies and the increasing abundance of data
suggest exciting prospects for using ML in all aspects of our society. This
dissertation explores the use of ML to support and improve operational
decision-making. Operational decisions are those made frequently and on
a large scale, e.g., as part of a business process or governmental policy. The
large volumes of data available from past operational decisions suggest op-
portunities for ML to extract insights from historical data and improve future
decisions. These opportunities are found in a wide variety of applications
across different fields. In the financial domain, ML could help to analyze a
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Chapter 1: Introduction

financial transaction’s fraud risk or score a customer’s creditworthiness. In
marketing, ML could help predict customer churn and optimize marketing
efforts in order to limit this churn. In maintenance, ML could predict asset
failures and help optimize maintenance operations to minimize failures. Fi-
nally, data-driven methodologies could help healthcare practitioners analyze
different treatment plans and by predicting possible treatment outcomes for
a patient. This dissertation demonstrates the potential of machine learning
for a variety of decision-making problems across these applications.

Although these applications are incredibly diverse, ranging from marketing
to healthcare, and from machines to patients, decision-making in these ap-
plications can be analyzed in a similar operational framework. For each case,
there is abundant historical data on the decision that was made, the infor-
mation that was used to make that decision, and the observed outcome. For
example, in fraud detection, historical transactions are available, including
information about that transaction (e.g., the transaction time), the decision
that was made (blocked or not), and its outcome (fraudulent or not). The
key research question we aim to tackle is:

Given available data on past operational decisions, how can we
analyze, improve and optimize future decisions?

Given the data coming from decision-making processes and the available
computing power, applying ML seems both natural and straightforward.
However, as this dissertation will illustrate, general-purpose ML algorithms
are not inherently designed for decision-making problems. Because of this,
applying ML algorithms out-of-the-box does not fully exploit their potential,
which could lead to suboptimal decisions. This dissertation explores two key
dimensions for optimizing the development and application of ML algorithms
to maximize their effectiveness in operational decision-making:

1. Decision-focused learning: Understanding the operational context is
essential for effectively applying ML and integrating it in the decision-
making process.

2. Causal inference: Estimating the causal effects of possible decisions
ensures that decisions have the envisioned impact.

1.1 Motivating Examples and Applications

This section describes some of the applications and problems addressed in
this dissertation. These cases demonstrate how the requirements of decision-
focused learning and causal inference appear in real-world scenarios.

4



1.1. Motivating Examples and Applications

Marketing. A crucial aspect of marketing is building and retaining long-
term customer relationships. Significant progress has been made in using
customer data to predict churn, but knowing if a customer will churn does
not translate directly into an actionable marketing strategy. For instance,
should pricing be adjusted for customers likely to churn? Should we offer a
gift to build brand loyalty? As customers may respond differently to these
interventions, we need to know their responses to optimize our marketing
strategy. This is exactly the goal of uplift modeling: predict the causal
effect of a marketing intervention to help prescribe the optimal action. Ad-
ditionally, retention campaigns often face budget constraints or geographic
restrictions. The goal of retention is not just to retain as many customers
as possible, but also to focus on retaining the most profitable ones. As such,
the predicted customer responses need to be integrated in a wider opera-
tional decision-making framework, formalized as a constrained optimization
problem. This example shows how prescriptive analytics can help optimize
operational marketing decisions by combining causal inference to estimate
the causal effect of a marketing intervention, and a decision-focused approach
to account for the true objective and possible constraints.

Maintenance. Maintenance is an important challenge for companies: al-
though it incurs significant costs, ensuring assets are up and running is
essential for smooth operations. Advances in sensor technology have led
to an abundance of asset data. Initially, this data was used for predictive
maintenance to anticipate asset failures. However, merely knowing that an
asset might fail is not the most useful information for maintenance tech-
nicians, as it might be too late to prevent the failure. Instead, prescrip-
tive maintenance estimates the causal effect of maintenance interventions
on reducing the failure probability, enabling data-driven maintenance plans.
Additionally, maintenance optimization involves planning maintenance ac-
tivities across assets to optimize business metrics, such as order fulfillment
or downtime costs, while considering operational constraints like technician
availability. Again, this example illustrates that causal predictions need to
be embedded in an operational decision-making problem to fully exploit the
potential of machine learning.

Healthcare. The proliferation of electronic health records has paved the
way for individualized healthcare. An initial application of machine learn-
ing in this domain was diagnostic and predicted diseases based on patient
information. Additionally, machine learning can enable a prognostic ap-
proach and prescribe optimal treatments, by predicting patient outcomes
for a potential treatment plans. In the future, these prescriptive models
could be integrated into the optimization of healthcare operations, mini-
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mizing healthcare costs and improving scheduling efficiency. For instance,
this framework could help decide which patients we schedule for surgery to
maximize life expectancies, given the limited availability of personnel and
operating rooms.

Other applications. A wide diversity of applications can be analyzed
within a similar predict-prescribe-optimize framework. In fraud detection, a
pervasive problem, predictive models are typically used. Nevertheless, there
is potential for preventive approaches that prescribe anti-fraud interventions
and integrate these recommendations into anti-fraud operations, consider-
ing fraud investigator availability and transaction costs. In credit scoring,
predictive models assess the risk of giving a loan. As this risk is affected
by the interest rate of the loan, there is potential for prescriptive pricing to
manage credit risk [6]. Additionally, a lender needs to manage its portfolio
and optimize its global risk across loans. In another application, human
resources, predictive models could not only forecast employee turnover, but
also prescribe retention strategies and help optimize the composition of the
workforce. Similar analyses can be applied to economics (economic forecast-
ing, policy simulation, economy optimization), energy management (load
forecasting, demand response, energy grid optimization), supply chain man-
agement (demand forecasting, inventory prescription, supply chain optimiza-
tion), and public health (epidemiological forecasting, intervention analysis,
public health policy).

In each of these examples, machine learning could simply be applied as a
predictive tool. However, additional value can be unlocked by using machine
learning to prescribe optimal decisions. To make the most of the available
data for decision-making, the effects of possible interventions can be pre-
dicted and integrated into a broader decision-making framework. As such,
these examples illustrate the importance of decision-focused learning and
causal inference for optimizing decision-making.

1.2 Decision-Focused Learning

Operational decisions need to take a variety of factors into account and deal
with uncertainty inherent to the decision-making context. Machine learning
can help to reduce this uncertainty by predicting outcomes from data. This
approach is typically implemented within a prediction-optimization frame-
work. First, machine learning is used to predict outcomes relevant to the
decision-making problem. For example, predicting the likelihood that inves-
tigating a financial transaction will uncover fraud based on data from past
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investigations. Second, these predictions are incorporated in a (constrained)
optimization problem, as studied in operations research, where an objective
function is optimized subject to constraints. For example, which transac-
tions should we investigate, given that we have four investigators who can
each look at ten transactions?

Although ML can provide exceptional predictive power, models typically do
not consider the operational context in which these predictions will be ap-
plied. This might result in suboptimal decisions in the second optimization
stage for two reasons. First, the objective of the ML model is not aligned
with the operational objective. ML models are typically designed to achieve
maximal predictive accuracy. In contrast, decisions are evaluated based on
criteria such as revenue, profit, production downtime, or quality of patient
care. Because of this misalignment, the most accurate ML model may not
result in the best decisions. Second, decisions need to consider operational
constraints, such as budget limitations, production capacity, or legal con-
straints. ML models aim to make accurate predictions for all instances, but
some predictions might be irrelevant given these constraints.

Decision-focused learning provides an alternative to traditional prediction-
focused approaches by training an ML model to directly optimize the quality
of the final decisions within an integrated prediction-optimization frame-
work. This approach takes the relevant objective and constraints into ac-
count and aligns the ML model with the operational problem, as traditionally
studied in operations research (OR). Therefore, decision-focused learning can
be seen as a bridge between ML and OR, offering a framework for using ML
for optimal decision-making.

1.3 Causal Inference

Decisions aim to effect change by intervening in the world. The impact or
effect resulting from a decision is a causal quantity–the decision “causes” the
change. This differs fundamentally from the correlational patterns typically
learned in ML. For example, an ML model may correctly predict that pa-
tients that receive a new state-of-the-art medical treatment are 10% more
likely to recover from a disease. However, the model does not consider
that receiving this treatment is also correlated with better healthcare, more
wealth, or better nutrition–all factors contributing to recovery. In this ex-
ample, the positive correlation between treatment and recovery may be due
to correlation of the treatment and these other factors, rather than the treat-
ment itself. Clearly, correlational inferences alone are insufficient for sound
decision-making.
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Causal inference provides a framework for reasoning about causal effects and
leveraging ML to estimate these effects from data. The key is to consider the
causal structure behind the data, in which we can distinguish at least three
types of variables. First, the treatment is the decision we are considering
(e.g., what therapy to give a cancer patient). Second, the outcome is what
we aim to optimize (e.g., the patient’s quality adjusted life years). Third,
confounders are factors that influenced both the treatment decision and out-
come (e.g., the patient’s age). The goal of treatment effect estimation is to
determine the causal effect of the treatment of the outcome, while accounting
for the influence of confounders on the treatment and outcome.

From a predictive viewpoint, estimating causal effects presents unique chal-
lenges. First, the fundamental problem of causal inference is that the causal
effect itself is never observed [7]. The causal effect of an action is defined
as the difference in outcomes between taking that action and not taking it.
However, for each instance, we either take the action or do not. Therefore,
we only observe one factual outcome and the other, counterfactual outcome
is never observed. Because of this, we never know the treatment effect itself,
which means that there is no ground truth train or validate ML models. Sec-
ond, the outcome we observe is typically not random: for example, whether
a patient receives a certain treatment depends on confounders such as co-
morbidities, age, or the physician’s beliefs, etc. These confounding factors
introduce a covariate shift between the training distribution and the un-
known, counterfactual test distribution, further complicating causal effect
estimation.

1.4 Contributions and Outline

The contributions presented in this dissertation lie at the intersection of
machine learning, operational research, and causal inference. Each chap-
ter contributes either to decision-focused learning, causal inference, or both.
An overview is provided in Figure 1.1. We introduce each contribution be-
low.

Chapter 2. As discussed in the previous sections, one of the key chal-
lenges for decision-focused learning is aligning the predictive and decision
objectives. In cost-sensitive machine learning, the goal is to incorporate
costs related to different predictive outcomes. For example, in fraud detec-
tion, the cost of a false negative (missing a fraudulent transaction) is much
higher than the cost of a false positive (flagging a legitimate transaction).
Additionally, these costs are instance-dependent and vary across transac-
tions. Chapter 2 analyzes cost-sensitive learning and presents a taxonomy
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Chapter Title

2

3

4

5

6

7

8

Predict-then-optimize or predict-and-optimize? An empirical
evaluation of cost-sensitive learning strategies

A new perspective on classification: optimally allocating limited
resources to uncertain tasks

Optimizing the preventive maintenance frequency with causal
machine learning

NOFLITE: Learning to predict individual treatment effect
distributions

Accounting for informative sampling when learning to forecast
treatment outcomes over time

AutoCATE: Towards end-to-end, automated treatment effect
estimation

Metalearners for ranking treatment effects

✔

✔

✘

✘

✘

✔

✘

✘

✘

✔

✔

✔

✔

✔

Decision-
Focused

Causal
Inference

Figure 1.1: Dissertation overview. This dissertation discusses seven chap-
ters. For each chapter, we indicate whether it contributes to decision-focused
learning, causal inference, or both.

of different possible approaches. We distinguish between methodologies that
integrate costs during the predictive phase and those that consider costs
during the decision-making phase. Furthermore, we differentiate between
class-dependent and instance-dependent costs. We compare the different ap-
proaches empirically using nine data sets from a variety of application areas,
providing a comprehensive comparison of methods within this framework.
This part has been published as [8]:

• Vanderschueren, T., Verdonck, T., Baesens, B., & Verbeke, W. (2022).
Predict-then-optimize or predict-and-optimize? An empirical evalua-
tion of cost-sensitive learning strategies. Information Sciences, 594,
400-415.

Chapter 3. In practice, the decision-making objective is only part of the
problem. Operational constraints, such as budget limitations or resource
availability, are also key considerations. Chapter 3 explores decision-making
problems in which the capacity to act on decisions is limited. For example,
in fraud detection, investigators can only review a fraction of all transac-
tions. Traditional ML models would focus equally on correctly predicting the
fraud probability for both suspicious and non-suspicious transactions. This
approach does not consider the capacity limitations and is not aligned with
the optimization phase. Conversely, Chapter 3 introduces a novel method-
ology for identifying the transactions that should be prioritized given the
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available capacity, ignoring less relevant transactions. The resulting models
are inspired by learning to rank and are directly optimized for expected profit
given the available capacity. This part has been published as [9]:

• Vanderschueren, T., Baesens, B., Verdonck, T., & Verbeke, W. (2024).
A new perspective on classification: optimally allocating limited re-
sources to uncertain tasks. Decision Support Systems, 179, 114151.

Chapter 4. Other contributions of this dissertation lie in the area of
causal inference. Chapter 4 demonstrates how causal inference and ma-
chine learning can support decision-making with a case study on preventive
maintenance. Traditional approaches rely on expert-driven mathematical
formalizations of the problem and optimize maintenance decisions within
this framework. In contrast, we propose a data-driven approach that learns
the causal effect of maintenance from historical data and prescribes optimal
maintenance decisions accordingly. Causal machine learning enables the esti-
mation of possible outcomes resulting from different preventive maintenance
frequencies, which allows for prescribing an asset-specific maintenance pol-
icy that minimizes the total maintenance cost. We additionally compare our
causal, prescriptive approach with a purely predictive approach. This part
has been published as [10]:

• Vanderschueren, T., Boute, R., Verdonck, T., Baesens, B., & Ver-
beke, W. (2023). Optimizing the preventive maintenance frequency
with causal machine learning. International Journal of Production
Economics, 258, 108798.

Chapter 5. Decision-making often not only depends on the expected ef-
fect of a decision, but also its probability distribution. Knowing the effect’s
distribution enables analyzing its expected utility or quantifying the effect’s
uncertainty. For example, a doctor might want to know the probability that
a treatment will have a strictly positive effect. Most existing methods for
predicting treatment effects only estimate the expected effect. Conversely,
Chapter 5 presents NOFLITE, a methodology for predicting an individual’s
treatment effect distribution. NOFLITE is based on normalizing flows, en-
abling us to directly optimize the model’s quality of fit, i.e., its likelihood.
This part has been published as [11]:

• Vanderschueren, T., Berrevoets, J., & Verbeke, W. (2023). NOFLITE:
Learning to predict individual treatment effect distributions. Trans-
actions on Machine Learning Research.

Chapter 6. In many settings, decisions go beyond a single action and in-
stead involve complex plans with different actions carried out over time. For
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example, in healthcare, a doctor could prescribe a cancer patient a treatment
plan consisting of different cycles of chemotherapy with varying dosages.
This temporal perspective to decision-making is beneficial for a variety of
applications, but comes with unique challenges. Most existing work aimed
to tackle one of these challenges: time-dependent confounding, where treat-
ment decisions were based on past treatments, outcomes, and covariates. In
contrast, Chapter 6 looks at another challenge, informative sampling, where
the act of observing itself is dependent on past treatments, outcomes, and
covariates. We provide an overview of different sampling mechanisms, ana-
lyze how informative sampling can lead to bias, and present a methodology
for learning treatment effects in the presence of informative sampling. This
part has been published as [12]:

• Vanderschueren, T.*, Curth, A.*, Verbeke, W., & van der Schaar, M.
(2023, July). Accounting for informative sampling when learning to
forecast treatment outcomes over time. In International Conference
on Machine Learning (pp. 34855-34874). PMLR.

Chapter 7. Challenges in causal inference, such as confounding or infor-
mative sampling, not only complicate the training of ML models, but also
their validation. These challenges therefore limit the adoption of causal ML
models, despite significant methodological advances. To encourage more
widespread adoption of these methods, Chapter 7 argues for a more holistic
view on the development of the these ML pipelines. We describe the search
for an ML pipeline for causal effect estimation as a search problem, which
we call the counterfactual combined algorithm selection and hyperparameter
optimization problem. We differentiate between design choices in three steps:
evaluation, estimation, and ensembling. The resulting framework, AutoCATE,
is the first automated ML solution tailored for treatment effect estimation
that tackles each step with automated, data-driven protocols. AutoCATE fa-
cilitates the empirical comparison and analysis of different design choices,
offering valuable guidelines for both practitioners and researchers. This part
has not yet been published outside this dissertation.

Chapter 8. In causal inference, metalearners are general frameworks that
use supervised machine learning algorithms to estimate treatment effects. A
common application for estimating treatment effects is to determine which
instances should be treated given limited treatment capacity or budgets.
Standard metalearners do not consider these treatment limitations and, as
such, may result in suboptimal treatment allocation. Therefore, Chapter 8
introduces a decision-focused methodology for causal inference, ranking met-
alearners, that maximizes the total effect resulting from a treatment policy
given limited treatment capacity. Similar to the approach discussed in Chap-
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ter 3, these metalearners achieve this by objective functions, inspired by the
literature on learning to rank. We compare these ranking metalearners with
their traditional counterparts empirically using data from applications where
instances need to be prioritized for treatment. This part has been made
available online as [13]:

• Vanderschueren, T., Verbeke, W., Moraes, F., & Proença, H. M. (2024).
Metalearners for ranking treatment effects. arXiv preprint arXiv:2405.
02183.

Chapter 9. We end this dissertation with a general conclusion in Chap-
ter 9, where we discuss our contributions and their managerial implications,
as well as limitations and potential directions for future work.
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2
Predict-then-Optimize or
Predict-and-Optimize? An
Empirical Evaluation of
Cost-sensitive Learning
Strategies

Predictive models are increasingly being used to optimize decision-
making and minimize costs. A conventional approach is predict-
then-optimize: first, a predictive model is built; then, this model
is used to optimize decision-making. A drawback of this ap-
proach, however, is that it only incorporates costs in the second
stage. Conversely, the predict-and-optimize approach proposes
learning a predictive model by directly minimizing the cost of
the downstream decision-making task. This is achieved by using
a task-specific loss function incorporating the costs of different
outcomes in the first stage, with the eventual aim of obtain-
ing more cost-effective decisions in the second stage. This work
compares both approaches in the context of cost-sensitive classi-
fication. Conceptually, we use the two-stage framework to cat-
egorize existing cost-sensitive learning methodologies by differ-
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entiating between methodologies for cost-sensitive model train-
ing and decision-making. Empirically, we compare and evalu-
ate both approaches using different cost-sensitive training and
decision-making methodologies, as well as both class-dependent
and instance-dependent cost-sensitive methods. This is achieved
using real-world data from a range of application areas and a
combination of cost-sensitive and cost-insensitive performance
measures. The key finding is that the decision-making strat-
egy is generally found to be more effective than training with a
task-specific loss or their combination.

2.1 Introduction

Predictive models are increasingly being used to optimize decision-making.
In many applications, the goal is to minimize the cost incurred through
decisions. A conventional approach is to predict-then-optimize: in the first
stage, a predictive model is built to maximize its predictive power; then, in
the second stage, decisions are made based on the model’s predictions and
the costs associated with decisions. However, a drawback of this approach is
that it only considers costs in the second decision-making stage. Conversely,
several recent works proposed an alternative, integrated predict-and-optimize
approach [14], [15]. This approach works by integrating costs within the
learning objective of the predictive model in the first stage. Thus, model
learning is decision-focused: the quality of the predictions on downstream
decision-making is directly considered [15]. The goal of this approach is to
make more cost-effective decisions. Therefore, the model’s predictions need
only be accurate insofar as this contributes to optimal decision-making in
the second stage.

We use the predict-and-optimize approach to analyze an earlier line of work
on cost-sensitive machine learning [16], [17]. Although predict-and-optimize
has typically been applied to problems such as stochastic programming and
combinatorial optimization [14], [15], the goal of cost-sensitive methodolo-
gies is similar to the one in predict-and-optimize in the sense that both
aim to obtain better decisions by aligning the predictive model with the
decision-making context. Even though a variety of cost-sensitive learning
methodologies have been proposed to more effectively deal with classifica-
tion tasks where different decisions have different costs associated with them,
it is not clear which of these approaches work best and how they relate to
each other. The lack of understanding of these methods is due to a combi-
nation of reasons. First, novel approaches are often only compared to their
cost-insensitive counterparts. Second, a variety of different metrics are used
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to judge these methodologies. Third, a limited number of datasets are typi-
cally used. These are often also proprietary, making it impossible to replicate
findings.

Using the two-stage framework, we categorize existing techniques as either
learning cost-sensitive models in the first stage or making cost-sensitive de-
cisions in the second stage. Thus, we can empirically compare the predict-
then-optimize and predict-and-optimize approaches for cost-sensitive classi-
fication. Our main contributions are as follows:

• Conceptually, we review the literature on cost-sensitive learning and
differentiate between two general approaches using the two-stage frame-
work: cost-sensitive training of models and cost-sensitive decision-
making.

• Empirically, we conduct an extensive evaluation to compare predict-
then-optimize and predict-and-optimize using nine real-world datasets
from different application areas. Moreover, we analyze different meth-
ods of incorporating costs during training and during decision-making,
as well as their combinations. We also look at the effect of incorporat-
ing costs at an instance level as opposed to a class level.

• To facilitate replication of the presented results and encourage further
research on instance-dependent cost-sensitive learning, the full experi-
mental code is made publicly available at https://github.com/toonvds/
CostSensitiveLearning.

2.2 Related work

Before applying the two-stage framework to cost-sensitive classification, we
summarize existing work based on two criteria (see Table 2.1): 1) whether the
costs are class- or instance-dependent (see section 2.2.1) and 2) whether costs
are integrated before, during or after the training of a classification model
(see section 2.2.2). Before training, instances can be preprocessed, i.e., they
can be sampled, weighted, or relabeled (e.g., MetaCost [18]). During train-
ing, costs can be incorporated in the learning algorithm, e.g., with custom
decision tree splitting criteria or through a cost-sensitive objective function.
After training, the decision threshold can be made cost-sensitive.

There are other cost-sensitive strategies that are not covered by these crite-
ria and outside the scope of this work. Several methodologies look at cost-
sensitive feature [47] or model selection [48]. A recent, dedicated framework
and overview of cost-sensitive ensemble methods is presented in [49]. More-
over, whereas this work focuses on cost-sensitive learning in the context of
supervised learning, other work has focused on cost-sensitive semi-supervised
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Table 2.1: Cost-sensitive learning overview. We present an overview
of various cost-sensitive learning methods in terms of the type of costs,
place with respect to model training and classifier(s) used when applicable.
Costs—CD: class-dependent, ID: instance-dependent; Classifiers—boosting,
DR: decision rule, DT: decision tree, LR: logistic regression, NB: Naive
Bayes, NN: neural network, SVM: support vector machine, -: classifier-
agnostic.

Ref. Costs Place w.r.t. training Classifier(s)
CD ID Before During After

[19] ✓ ✗ ✗ ✓ ✓ DR
[20] ✓ ✗ ✗ ✓ ✗ DT
[21] ✓ ✗ ✗ ✗ ✓ DR, NN
[22] ✓ ✗ ✓ ✓ ✓ NN
[23] ✓ ✗ ✗ ✓ ✗ BO
[18] ✓ ✗ ✓ ✗ ✗ -
[24] ✓ ✗ ✗ ✓ ✗ SVM
[25] ✓ ✗ ✗ ✓ ✗ DT
[26] ✓ ✗ ✗ ✓ ✗ NB
[27] ✓ ✗ ✓ ✗ ✗ DT
[28] ✓ ✗ ✓ ✗ ✓ NN
[29] ✓ ✗ ✗ ✗ ✓ -
[30] ✓ ✗ ✗ ✓ ✗ BO
[31] ✓ ✗ ✓ ✗ ✗ -
[32] ✓ ✗ ✓ ✗ ✗ -
[33] ✓ ✗ ✗ ✓ ✗ SVM
[34] ✓ ✗ ✗ ✓ ✓ BO
[35] ✓ ✗ ✗ ✓ ✗ BO
[36] ✓ ✗ ✗ ✓ ✓ LR
[37] ✓ ✗ ✗ ✓ ✓ DT

[38] ✗ ✓ ✗ ✓ ✗ BO
[39] ✗ ✓ ✗ ✗ ✓ -
[40] ✗ ✓ ✓ ✗ ✗ BO
[41] ✗ ✓ ✗ ✓ ✗ SVM
[42] ✗ ✓ ✗ ✓ ✗ DT
[43] ✗ ✓ ✗ ✓ ✓ LR
[44] ✗ ✓ ✗ ✗ ✓ -
[45] ✗ ✓ ✗ ✓ ✗ DT
[46] ✗ ✓ ✗ ✓ ✓ BO, LR
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[50] and positive-unlabeled learning [51]. Finally, a related line of work in
regression considers asymmetric objectives to more closely align a regression
model’s learning objective with the decision-making task [16].

2.2.1 Types of costs

In classification, costs can be formalized with a cost matrix [17]. Similar
to how the confusion matrix in Table 2.2a differentiates between outcomes
depending on the actual and predicted class, a cost matrix associates a cost
to these different outcomes. In Table 2.2b, a cost matrix is shown for the
setting with class-dependent costs. When costs are instance-dependent, each
instance will have a different cost matrix, denoted by the index i in Table
2.2c. Note that this framework also allows the inclusion of benefits or profits
in the form of negative costs.

Table 2.2: Cost matrix. Extending the confusion matrix (2.2a) to a class-
(2.2b) and instance-dependent cost matrix (2.2c).

(a) Confusion matrix

Actual
0 1

Predicted
0 TN FN
1 FP TP

(b) Class-dependent costs

Actual
0 1

Predicted
0 c

TN
c
FN

1 c
FP

c
TP

(c) Instance-dependent costs

Actual
0 1

Predicted
0 c

TN
i c

FN
i

1 c
FP
i c

TP
i

Class-dependent costs

Various cost-sensitive machine learning techniques have been proposed for
dealing with class-dependent costs. In this setting, one class is more impor-
tant in terms of costs, and because of that, a cost-sensitive model should
focus more on correctly classifying this class compared to a cost-insensitive
model. In the simple case of a linear decision boundary, class-dependent
costs result in a parallel shift away from the more costly class (see Figure
2.1).

Even though no general benchmarking studies exist, two works analyze
class-dependent cost-sensitive boosting specifically and find cost-sensitive
decision-making to be the most effective strategy [34], [52]. Finally, note
that the literature on class-dependent cost-sensitive learning is intertwined
with the literature on learning with class imbalance, and by using the ap-
propriate costs, similar techniques can be used. For a recent survey on class
imbalance, we refer the reader to [53].
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Instance-dependent costs

Conceptually, many of the techniques for dealing with class-dependent costs
can and have been transferred to the instance-dependent setting. However,
instance-dependent costs create an additional degree of complexity, as they
depend not only on the class but also on characteristics of the instance (e.g.,
the transaction’s amount in fraud detection). For a simple linear classifier,
class-dependent costs result in a parallel shift of the cost-insensitive optimal
decision boundary, whereas instance-dependent costs can additionally result
in a rotation of this boundary (see Figure 2.1). This illustrates that when
costs are instance-dependent, the learner needs to consider both the class dis-
tribution (explicitly) and cost distribution (implicitly). In theory, including
instance-dependent costs in decision-making can lead to lower overall costs
[41]. However, despite the conceptual differences, the benefits and drawbacks
of using instance- rather than class-dependent costs on the performance of
the learning algorithms have not yet been examined empirically.

2.2.2 Cost-sensitive classification in the predict-and-optimize
framework

Machine learning models are increasingly being used to support and op-
timize decision-making. The conventional two-stage predict-then-optimize
approach builds a predictive model with the aim of maximizing its accuracy
in the first stage and then uses this model to optimize decision-making in
the second stage. Conversely, predict-and-optimize is a recent paradigm that
directly optimizes a predictive model by using a task-specific loss function in
the first stage to optimize decision-making in the second stage [15]. The ben-
efit of an integrated approach is that it directly learns a model to minimize
the cost of the eventual decisions. The model in the predict-then-optimize
approach might produce more accurate predictions overall, but the model in
the predict-and-optimize is decision-focused instead of prediction-focused: it
learns to accurately predict only insofar as it impacts the decision-making
in the second stage, and as such, the resulting decisions are of higher quality
[14].

We can apply this two-stage framework to cost-sensitive classification: in the
first stage, a predictive model (i.e., a classifier) is built; in the second stage,
this model is used to assign class labels to instances in order to minimize
the resulting cost. Thus, we can classify existing cost-sensitive learning
methodologies as either learning a predictive model in the first stage or
optimizing decisions in the second stage. This distinction is based on whether
costs are integrated before, during or after the training of a model (see
Table 2.1). The first category, cost-sensitive training of models, consists of
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Figure 2.1: Toy example with class-dependent (top) and instance-
dependent costs (bottom). (Left) Two classes and the probability dis-
tribution are shown, with the instance size proportional to its misclassifica-
tion cost. (Middle) The resulting decision boundary for a cost-insensitive
classifier mimics the underlying probability distribution. (Right) For a cost-
sensitive classifier, the decision boundary lies further from the more costly
class when costs are class-dependent. With instance-dependent costs, the
decision boundary is not only related to the probability distribution, but
also the cost distribution.

techniques that are applied before or during training to build a classifier,
whereas the second, cost-sensitive decision-making, consists of thresholding
techniques that are applied after training to make decisions. Note that
several approaches are possible in each stage – several of these are described
in the following.

Cost-sensitive training of classification models

In the first stage, a predictive model is learned. A traditional approach
learns a model by maximizing its likelihood – independent of how predictions
are used in the downstream task. Alternatively, learning can be done with
a task-specific loss function to align the model with the objective of the
downstream task and obtain a cost-sensitive model. Thus, the quality of
the predictions on the resulting solution of the downstream task is directly
considered [14].
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Training with a traditional classification objective also leads to tradeoffs in
the resulting model’s accuracy for different regions of the input-output space.
However, in contrast to the decision-focused approach, this tradeoff might
not be optimal for the downstream task [14]. An illustration of the different
tradeoffs for a cost-insensitive and a cost-sensitive linear model can be seen
in Figure 2.1.

In general, machine learning algorithms can be understood in terms of risk
minimization [54]. In this framework, the goal of a learning algorithm is to
find the classifier that minimizes the risk. Formally, for a distribution p(x, y)
and a classifier fθ ∶ X → [0, 1] ∶ x ↦ fθ(x) defined by parameters θ ∈ Θ,
the risk to be minimized is:

R(θ) = ∫ ∫ L(y,x, θ)p(x, y)dxdy,

where L(y,x, θ) represents the loss or objective function for a classifier fθ(x)
and data (x, y) [32]. In reality, the true joint probability distribution p(x, y)
is unknown. Consequently, the learner relies on the empirical density to
minimize the risk given the available training data. This is the principle of
empirical risk minimization (ERM) [54]. For a dataset (xi, yi) ∈ D with i ∈
{1, ..., N}, the empirical risk is defined as:

Remp(θ) = E
x,y∼D

[L(yi,xi, θ)] =
1

N

N

∑
i=1

L(yi,xi, θ).

Clearly, it is essential to choose an appropriate loss function L. A first and
straightforward candidate is the zero-one loss comparing the actual y and
predicted label ŷ: L0/1(y, ŷ) = I(y ≠ ŷ), although it is common to use a
convex surrogate. A popular choice is the cross-entropy loss, which is
equivalent to the maximum likelihood (ML) method [54]. In binary classifi-
cation, we have LCE(yi,xi, θ):

yilog fθ(xi) + (1 − yi)log(1 − fθ(xi)). (2.1)

However, as argued above, a disadvantage of the maximum likelihood ap-
proach is that it does not take into account the costs of different decisions.
Consequently, using this loss function, the empirical risk fails to reflect the
true risk of the downstream task. To solve this issue, the ERM frame-
work can be extended to include costs: given a dataset (xi, yi, ci) ∈ D for
i ∈ {1, ..., N} with an instance’s cost matrix ci, a cost-sensitive loss function
L(y,x, c, θ) can be defined [32]. In this way, the empirical risk can be made
cost-sensitive, and a task-specific loss can be used.

22



2.2. Related work

A first approach for a task-specific loss is to weight the training examples
by their misclassification cost [17], [40]. This can be formulated in terms of
a weighted cross-entropy loss function LwCE(yi,xi, ci, θ) [32]:

c
FN
i yilog fθ(xi) + c

FP
i (1 − yi)log(1 − fθ(xi)). (2.2)

Note that this approach is equivalent to oversampling proportional to mis-
classification costs [32].

A second task-specific approach builds on the idea that the optimal cost-
sensitive prediction minimizes the expected cost [17]. Using this, an al-
ternative loss function can be defined that equals the expected cost [43],
[46]. The corresponding empirical risk is the average expected cost
LAEC(yi,xi, ci, θ):

yi(fθ(xi)cTPi + (1 − fθ(xi))cFNi ) + (1 − yi)(fθ(xi)cFPi + (1 − fθ(xi))cTNi ).
(2.3)

Cost-sensitive decision-making

The predictive model learned in the first stage is used to make decisions in
the second stage. In the case of cost-sensitive classification, the predicted
posterior probabilities are used to classify instances with the aim of minimiz-
ing the resulting cost. This is achieved by applying an appropriate decision
threshold. There are several policies that can be used to optimize decision-
making in the second stage.

The first and most natural candidate is the instance-dependent cost-sensitive
threshold, which predicts the class with the minimal expected risk. Because
this risk depends not only on the posterior probabilities but also on the
associated costs, an instance’s optimal classification should consider both
its posterior probability and its cost related to the different outcomes [17].
Formally, for an instance i, a prediction ŷi has a certain risk R(ŷi∣xi, y) asso-
ciated with it depending on its posterior probability and cost matrix:

R(ŷi∣xi, yi) = {
p(yi = 0∣xi)cTNi + p(yi = 1∣xi)cFNi if ŷi = 0

p(yi = 0∣xi)cFPi + p(yi = 1∣xi)cTPi if ŷi = 1

The optimal decision ŷ
∗ minimizes this risk, i.e., ŷ∗i = 1 if R(ŷi = 1∣xi) <

R(ŷi = 0∣xi). Using this, the optimal decision threshold t
∗
i for an instance

can be found: ŷ
∗
i = 1 if p(yi = 1∣xi) > t

∗
i , with

t
∗
i =

c
FP
i − c

TN
i

cFPi − cTNi + cFNi − cTPi
. (2.4)
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For a given classifier θ, the score fθ(xi) can be used as an estimate of the
posterior probability p(yi = 1∣xi). However, it is important to note that
this requires the model to produce calibrated probabilities or that some
calibration method is first applied to the model’s output.

In addition to the instance-dependent cost-sensitive threshold, several alter-
native decision-making strategies are possible. For example, by using the
average cost matrix, a single class-dependent cost-sensitive threshold can be
used for all instances. Furthermore, instead of the theoretically motivated
optimal thresholds, several alternatives are possible. Empirical threshold-
ing searches for the threshold that gives the lowest cost on a validation set
[29]. Moreover, a common heuristic is to use the class imbalance thresh-
old, which uses the prior probability of the minority class as a threshold
t
CI

= P (Y = 1). The idea is that this will compensate for the lack of focus
on this class, which is often more important in terms of costs.

2.3 Methodology

The goal of this work is to empirically analyze different instance-dependent
cost-sensitive learning approaches on the resulting classification performance
in terms of both costs and errors. Therefore, following the presented analysis
of the literature, we formulate three key research questions to study the
effect of cost-sensitive training using task-specific loss (RQ1), cost-sensitive
decision-making (RQ2) and their combination (RQ3). Moreover, we look at
the effect of considering costs at an instance level (RQ4). For each question,
several hypotheses are proposed.

RQ1. Does instance-dependent cost-sensitive training result in
improved performance compared to training without costs?

• H1.1: In terms of costs, cost-sensitive training results in better perfor-
mance compared to training without costs.

• H1.2: In terms of errors, cost-insensitive training results in better
performance compared to training with costs.

RQ2. Does instance-dependent cost-sensitive thresholding result
in improved performance compared to class-dependent threshold-
ing?

• H2.1: In terms of costs, instance-dependent cost-sensitive thresholding
results in improved performance compared to class-dependent thresh-
olding.
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• H2.2: In terms of costs, calibrating probabilities results in more effec-
tive thresholding.

• H2.3: In terms of errors, instance-dependent cost-sensitive thresh-
olding results in improved performance compared to class-dependent
thresholding.

• H2.4: In terms of errors, calibrating probabilities results in more ef-
fective thresholding.

RQ3. Does combining cost-sensitive training and cost-sensitive
thresholding result in improved performance compared to either
method separately or completely cost-insensitive classification?

• H3.1: In terms of costs, combining cost-sensitive training and cost-
sensitive thresholding results in improved performance compared to
either method separately or completely cost-insensitive classification.

• H3.2: In terms of errors, combining cost-sensitive training and cost-
sensitive thresholding results in improved cost performance compared
to either method separately or completely cost-insensitive classifica-
tion.

RQ4. Is it beneficial to train with instance-dependent costs instead
of class-dependent costs?

• H4.1: In terms of costs, using instance-dependent costs results in better
performance compared to class-dependent costs.

• H4.2: In terms of errors, using instance-dependent costs results in
better performance compared to class-dependent costs.

2.3.1 Experimental design

In this section, we describe the experimental design that is used to answer the
proposed research questions empirically. We analyze the effect of different
factors in the decision-focused learning framework (see Figure 2.2 for an
overview): cost-sensitive training of models in the first stage, cost-sensitive
decision-making in the second stage and the combination of both. Finally, to
look at the effect of training with instance-dependent costs, we also compare
these models with models trained with class-dependent costs in terms of
both the scores and decisions.

Cost-sensitive training

To compare different approaches to learn a predictive model in the first
stage, we will compare a traditional, cost-insensitive approach (cross-entropy

25



Chapter 2: An Empirical Evaluation of Cost-sensitive Learning Strategies

LCE) with two cost-sensitive task-specific objective functions: an indirect,
weighted approach (weighted cross-entropy LwCE) and a direct approach
(average expected cost LAEC) (see equations 2.1, 2.2 and 2.3). These are
implemented using three different types of classifiers: logistic regression,
neural network and gradient boosting. For the neural network, we use a
multilayer perceptron with one hidden layer and hyperbolic tangent as ac-
tivation function. This results in a total of 9 models (see Table 2.3). For
neural networks and gradient boosting, hyperparameter selection is based
on the best value of the objective function on a validation set.

These classifiers are frequently adopted in both science and industry, and
can be considered as representative of prominent and diverse types of ma-
chine learning techniques: they span both linear and nonlinear models, both
tree-based and neural-based models, as well as both ensembles and single
classifiers. This selection is further motivated by strong performance re-
ported across various benchmarking studies [e.g., 55]. Finally, as all three
methodologies optimize an objective function, they allow for a direct and
fair comparison of general cost-sensitive learning strategies.

Cost-sensitive decision-making

To consider the effect of cost-sensitive decision-making in the second stage,
we compare a range of nine different thresholding strategies: the theoreti-
cally optimal instance-dependent cost-sensitive threshold (IDCS) (see equa-
tion 2.4) or the equivalent with calibrated probabilities (IDCS*), as well
as their class-dependent variants (CDCS and CDCS*). Calibration is per-
formed with the nonparametric isotonic regression, which has been shown
to achieve good results when enough data are available [56]. Furthermore,
we include different types of empirical thresholding techniques by finding

2. Decision-making1. Training

Classifier

Logistic regression

Neural network

Gradient boosting

Objective function

Cross-entropy

Weighted cross-entropy

Average expected cost

Data

ThresholdScore Decision

+

Cost-sensitive training

Calibration 

(optionally)

Cost-sensitive 
decision-making

Figure 2.2: Overview of the experimental design using the two-
staged framework. In the first stage, a predictive model is built by train-
ing a type of classifier with an objective function, which can be both cost-
sensitive or cost-insensitive. In the second stage, the predictions of this
model are used to make decisions. Both the scores and decisions are evalu-
ated.
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Table 2.3: Overview of the different models. These are obtained by
combining the different objective functions with the different types of clas-
sifiers.

Logistic Neural Gradient
regression network boosting

LCE logit net boost
LwCE wlogit wnet wboost
LAEC cslogit csnet csboost

the best threshold in terms of instance-dependent costs, class-dependent
costs and F1 score on a validation set. Finally, we also include using the
class-imbalance (CI) ratio P (Y = 1) and the default threshold for binary
classification (t = 0.5).

To summarize, instance-dependent cost-sensitive learning is analyzed by
comparing different objective functions for different classifiers in the first
stage and decision-making strategies in the second stage. This allows us to
compare the predict-then-optimize and predict-and-optimize approaches, as
well as to analyze different cost-sensitive techniques in each stage. Moreover,
we also look at the effect of using instance-dependent costs as opposed to
using class-dependent costs.

2.3.2 Experimental procedure and evaluation metrics

For the empirical evaluation, a 2×5-fold stratified cross-validation procedure
is used (see Algorithm 1). This is repeated for each dataset. Using this
framework, we conduct two experiments for each model: one with instance-
dependent costs and one with class-dependent costs. The full experimental
procedure is available in the code.

We use a variety of metrics to evaluate the models. These can be categorized
based on two criteria: whether these incorporate costs (cost sensitivity) and
whether they look at probabilities or decisions (threshold dependency). To
assess the importance of costs during training independently from the thresh-
olding strategy, we rely on threshold-independent metrics. To compare the
different thresholding strategies, we use threshold-dependent metrics.

Several cost-insensitive metrics are used to assess the models’ ability to ac-
curately classify instances. First, two threshold-independent metrics are the
area under the ROC curve (AUROC) and average precision (AP), which
summarize the ROC and precision-recall curves, respectively. The latter
may be more informative given the high degree of class imbalance that is
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Algorithm 1: Experimental procedure per dataset
Result: Evaluation metrics
Load data;
Initialize cost matrix;
Split data into 5 stratified folds;
for each fold i ∈ 1 ∶ 5 do

for each repetition j ∈ 1 ∶ 2 do
Test data = fold i;
Training data = 75% of remaining data;
Validation data = 25% remaining data;

# Preprocess data:
Convert categorical features (using WoE encoding);
Standardize data: z =

x−µ
σ

;
if training with class-dependent costs then

Average cost matrix for training set;
Average cost matrix for validation set;

end

# Train and evaluate models:
Train models;
Set decision thresholds;
Evaluate model outputs and predictions for different
thresholds;

end
end
Summarize evaluation metrics over all folds;
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typically encountered in cost-sensitive applications [57]. Moreover, the Brier
score is used to assess whether the model’s outputs are calibrated probabil-
ities. Finally, to evaluate the impact of the decision-making threshold, we
use the F1-score.

Moreover, performance is also judged in terms of costs. Again, several
threshold-independent metrics are applicable. First, the average expected
cost (AEC, see equation 2.3) is used. Second, Spearman’s rank correlation
coefficient ρ is used to look at the correlation between probabilities and costs
for positive instances. This metric analyzes whether cost-sensitive models
prioritize correctly classifying costlier instances. Finally, one cost-sensitive,
threshold-dependent metric is also used: cost savings. These compare the
total costs incurred by a model to classify by predicting all instances as the
cheapest default class (either 0 or 1) [43]:

Savings =
Cost(fθ(x)) −min{Cost(f0(x)),Cost(f1(x))}

Cost(fθ(x))
(2.5)

The domain of this ratio is [−∞, 1], where 1 is the perfect model, but when
the model does better than predicting the default class, we obtain savings
in ]0, 1].
To test the statistical significance of the results, we use two types of tests
depending on whether we are performing multiple or pairwise comparisons
[58]. In the case of multiple comparisons, Friedman tests with Nemenyi
post hoc correction are used. These are visualized using critical difference
diagrams that show the average rankings (where a lower rank is better).
Models that are not connected in this diagram have significantly different
mean ranks. For pairwise comparison, Wilcoxon signed-rank tests are used.
A significance level of 5% is used primarily, except where both 5% and 10%
are used when indicated.

2.4 Empirical results

In this section, the empirical results are presented. First, the data and
corresponding cost matrices are described. Second, the results are presented,
and these findings are used to answer the proposed research questions.

2.4.1 Data

The data are from a diverse set of classification tasks where costs are instance-
dependent: fraud detection, direct marketing, customer churn and credit
scoring (see Table 2.4). All datasets are publicly available (see appendix
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A.1). In each dataset, there is some degree of class imbalance with the pos-
itive class being the minority, though some cases are more extreme than
others. The cost matrices depend on the application area and are adopted
from earlier work (for an overview, see Table 2.5). The idea behind these is
provided below.

Table 2.4: Overview of the datasets. Size (N), dimensionality (D) and
degree of class imbalance (% Pos) are shown.

Application Dataset Abbr. N D % Pos

Fraud detection Kaggle Credit Card Fraud KCCF 282,982 29 0.16
Kaggle IEEE Fraud Detection KIFD 590,540 431 3.50

Direct marketing KDD Cup 1998 KDD 191,779 22 5.07
UCI Bank Marketing UBM 45,211 15 11.70

Churn prediction Kaggle Telco Customer Churn KTCC 7,032 19 26.58
TV Subscription Churn TSC 9,379 46 4.79

Credit scoring Kaggle Give Me Some Credit GMSC 112,915 10 6.74
UCI Default of Credit Card Clients DCCC 30,000 23 22.12
VUB Credit Scoring VCS 18,917 16 16.95

Fraud detection In fraud detection, a positive prediction triggers an in-
vestigation that has a fixed cost cf , while a missed fraudulent transaction
incurs a cost equal to its amount Ai (see Table 2.5a). For both datasets, cf
is set to 10 following [46].

Direct marketing A similar reasoning applies here: any direct marketing
action results in a fixed cost cf , and missing a potential success incurs an
instance-dependent cost (see Table 2.5b). Whereas KDD uses the amount Ai
and cf = 0.68 following both [39] and [49], UBM instead uses the expected
interest given Ai and cf = 1, following [45].

Customer churn For customer churn prediction, cFPi and c
FN
i are set at

2 and 12 times the monthly amount Ai for KTCC, respectively, following
[49] (see Table 2.5c). For TSC, the cost matrix provided with the dataset is
used (not shown here, see [59]).

Credit scoring Finally, for credit scoring, the costs of a FP and FN are
calculated following [43] with both a function of the loan amount Ai.

2.4.2 Results

In this section, we report the results of the experiments and discuss the im-
plications for the research questions of this study. First, we compare training
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Table 2.5: Cost matrices for the different applications. For each
application, we present the different costs associated with different outcomes.
Ai, Inti, c

FN
i and c

FP
i represent instance-dependent costs, and cf is a fixed

cost.

(a) Fraud detection

y
0 1

ŷ
0 0 Ai

1 cf cf

(b) Direct marketing

y
0 1

ŷ
0 0 Ai/Inti
1 cf cf

(c) Customer churn

y
0 1

ŷ
0 0 12Ai

1 2Ai 0

(d) Credit scoring

y
0 1

ŷ
0 0 c

FN
i

1 c
FP
i 0

with the three different objective functions with threshold-independent met-
rics. Second, we use threshold-dependent metrics to analyze the different
thresholding strategies for the different models. Third, we compare the re-
sults of this analysis by training with class-dependent costs. Complete results
on the different experiments can be found in the digital appendix.

Cost-sensitive training

We start by looking at two traditional evaluation metrics: the area under
the ROC curve (AUROC) and the average precision (AP) (see Figure 2.3).
The cost-insensitive methodologies (net, boost, logit) have the best scores for
both of these metrics, although only the difference with the worst classifier,
cslogit, is significant at a 5% level.

1 2 3 4 5 6 7 8 9

net
boost
logit

csnet
wboost

wnet
csboost
wlogit
cslogit

CD

(a) Area under the ROC curve (AUROC)

1 2 3 4 5 6 7 8 9

net
boost
logit

wboost
wnet

csnet
wlogit
csboost
cslogit

CD

(b) Average precision (AP)

Figure 2.3: Cost-insensitive metrics: critical difference diagrams for the
AUROC and AP

The AUROC and AP do not consider costs. Therefore, the next metric
is the average expected cost (AEC) (see Figure 2.4a). Unsurprisingly, the
best performing classifiers are those directly optimizing this expected cost.
In almost all cases, the differences with the cost-insensitive models are sta-
tistically significant at the 5% level. Models trained with a cost-weighted
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objective function perform worse but still better than the cost-insensitive
classifiers.

Similarly, Spearman’s rank correlation coefficient ρ is used to compare the
correlation between the predicted probabilities and costs for the positive in-
stances (see Figure 2.4b). The cost-sensitive classifiers perform better on
average. For this metric, there does not seem to be a substantial differ-
ence between training with weighted cross-entropy and the average expected
cost.

1 2 3 4 5 6 7 8 9

cslogit
csboost

csnet
wboost

wnet
wlogit
boost
net
logit

CD

(a) Average expected cost (AEC)

1 2 3 4 5 6 7 8 9

wnet
csboost
cslogit

wboost
wlogit

csnet
boost
net
logit

CD

(b) Spearman’s rank correlation coeffi-
cient ρ

Figure 2.4: Cost-sensitive metrics: critical difference diagrams for the
AEC and Spearman ρ.

The tradeoff between minimizing costs or errors seems to more strongly
affect the least flexible classifier, logistic regression. Cslogit has the worst
performance for the cost-insensitive metrics but the best performance in
terms of AEC. In contrast, logit performs well for AUROC and AP but is
the worst in terms of the cost-sensitive metrics. This indicates that there is
a larger tradeoff between minimizing costs and errors for a more inflexible,
linear model compared to the neural networks and gradient boosting.

In conclusion, cost-sensitive models perform worse on average for traditional,
cost-insensitive evaluation metrics but better in terms of cost-sensitive met-
rics. This indicates that minimizing errors or minimizing costs are two fun-
damentally different objectives. Moreover, the type of objective function
seems to be more important than the type of classifiers, as neither logistic
regression, neural networks nor gradient boosting consistently outperform
another category.

Cost-sensitive decision-making

To analyze the different approaches to cost-sensitive decision-making, we first
compare the savings (see Table 2.6) and then the F1 scores (see Table 2.8)
for each model and thresholding strategy averaged across all datasets. This
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also allows us to analyze the effect of using a cost-sensitive objective function
in the first stage on the quality of the decisions in the second stage.

Table 2.6: Savings: comparison of the different thresholding strate-
gies (averaged across all datasets). Best and second-best result for each
model are denoted in bold and italic.

IDCS IDCS* CDCS CDCS* Empirical CI 0.5ID CD F1

logit 0.36 0.35 0.29 0.30 0.30 0.30 0.24 0.09 0.06
wlogit 0.14 0.36 0.06 0.37 0.37 0.37 0.34 -1.33 0.37
cslogit 0.38 0.37 0.38 0.38 0.38 0.38 0.37 0.38 0.38

net 0.41 0.40 0.35 0.35 0.35 0.35 0.29 0.20 0.12
wnet 0.13 0.36 0.13 0.39 0.39 0.39 0.35 -0.66 0.40
csnet 0.36 0.39 0.34 0.35 0.35 0.34 0.29 0.34 0.34

boost 0.41 0.40 0.35 0.36 0.36 0.36 0.29 0.32 0.13
wboost 0.30 0.37 0.25 0.36 0.36 0.36 0.30 0.23 0.32
csboost 0.39 0.36 0.39 0.39 0.39 0.39 0.34 0.39 0.38

In terms of savings (see Table 2.6), the importance of the decision-making
strategy is strongly related to the objective function that is used to train a
classifier. For the cost-insensitive models (trained with cross-entropy), it is
absolutely crucial to not use the default threshold 0.5 and instead use the
instance-dependent cost-sensitive threshold. When a cost-weighted objective
function is used, good results can be obtained either when t = 0.5, when
probabilities are calibrated and a cost-sensitive threshold is used, or when
the threshold is tuned empirically. Conversely, the models trained with
AEC achieve relatively stable savings across thresholding strategies. In other
words, using a task-specific loss function is related to the performance of
different decision-making strategies, with the direct approach giving the most
consistent results across strategies.

Moreover, the type of decision-making strategy that is used in the first stage,
i.e., the threshold, is more important than the type of objective function
used to train the predictive model in the first stage. In fact, given that an
appropriate threshold is used, it is only beneficial in terms of savings to use
a cost-sensitive objective function for the simplest model: logistic regression.
For neural networks and gradient boosting, the cost-insensitive models also
achieve good results given that the optimal threshold is used. The best
savings overall are obtained when a cost-insensitive model is combined with
instance-dependent cost-sensitive thresholding.

Calibrating probabilities achieve better results only for either the weighted
cross-entropy or for class-dependent cost-sensitive thresholds. In fact, the
two best savings are obtained without calibration. For models trained with a
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normal cross-entropy loss, calibration does not result in a higher Brier score,
suggesting that these probabilities were already calibrated (see Table 2.7).
Although the largest improvement of calibration is observed for the models
trained with AEC, this only leads to an improvement in terms of savings for
csnet. Only the models trained with weighted cross-entropy have a much
better performance after calibration.

In terms of savings, it is clearly beneficial to consider costs during decision-
making: empirical thresholding with the F1-score, the class imbalance heuris-
tic or t = 0.5 can obtain bad results (depending on the objective function).
In general, thresholding on an instance level also seems to be favorable to
class-dependent thresholding. Finally, both theoretical and empirical thresh-
olding can achieve good results.

Table 2.7: Brier score before and after calibration for the differ-
ent models (averaged across all datasets). The Brier score of mod-
els trained with a cost-sensitive objective function improves considerably,
whereas it is stable for the models trained with a cross-entropy loss.

Calibration logit wlogit cslogit net wnet csnet boost wboost csboost

Before 0.07 0.16 0.24 0.07 0.16 0.23 0.07 0.13 0.19
After 0.07 0.07 0.08 0.07 0.07 0.07 0.07 0.08 0.08

Difference 0.00 -0.09 -0.17 0.00 -0.09 -0.16 0.00 -0.05 -0.11

The best thresholding strategies in terms of F1 scores do not necessarily
achieve the lowest costs (see Table 2.8). This emphasizes that there is also a
clear difference between minimizing errors and costs in the decision-making
stage. The best results in terms of the F1 score are obtained when the
threshold is tuned empirically to maximize this metric. Again, calibrating
probabilities is only beneficial for the models trained with weighted cross-
entropy. For these models, however, empirical thresholding is more effective
than theoretical thresholding. Finally, note how using t = 0.5 achieves rela-
tively good results in terms of the F1 score, even though it does not result
in large cost savings.

Is it beneficial to train with instance-dependent costs instead of
class-dependent costs?

First, we look at the effect of using instance-dependent costs during training
as opposed to training with class-dependent costs in terms of cost-insensitive
metrics (see Tables 2.9 and B1). Although the results are fairly similar for
the two settings, training with class-dependent costs achieves better results
for these metrics for almost all cases. Based on this observation, it can be
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Table 2.8: F1 Score: comparison of the different thresholding strate-
gies (averaged across all datasets). Best and second-best result for each
model are denoted in bold and italic.

IDCS IDCS∗ CDCS CDCS∗ Empirical CI 0.5ID CD F1

logit 0.33 0.33 0.39 0.39 0.39 0.39 0.42 0.30 0.31
wlogit 0.23 0.30 0.26 0.39 0.38 0.38 0.41 0.21 0.39
cslogit 0.36 0.31 0.39 0.39 0.38 0.38 0.39 0.39 0.39

net 0.36 0.36 0.42 0.42 0.42 0.42 0.47 0.34 0.37
wnet 0.23 0.29 0.26 0.39 0.38 0.39 0.43 0.22 0.39
csnet 0.39 0.35 0.41 0.42 0.41 0.42 0.45 0.41 0.43

boost 0.39 0.36 0.45 0.44 0.43 0.44 0.48 0.40 0.40
wboost 0.31 0.32 0.35 0.41 0.41 0.41 0.45 0.33 0.43
csboost 0.35 0.28 0.36 0.36 0.36 0.36 0.40 0.36 0.38

concluded that training with instance-dependent costs may be disadvanta-
geous in terms of errors.

Next, we consider cost-sensitive metrics (see Tables 2.10 and B2). Here,
training with instance-dependent costs achieves comparatively better results.
Using instance-dependent costs consistently leads to lower average expected
costs (though the difference is not always significant). Additionally, in terms
of Spearman’s ρ, it is better for all models, and this difference is significant
except for csnet. In terms of savings, instance-dependent costs are better on
average, although not consistently.

2.5 Discussion

In this section, we draw upon the results of the empirical evaluation to
answer the four key research questions that were previously proposed. An
overview of findings per research question can be found in Table 2.11.

Does cost-sensitive training result in improved performance com-
pared to training without costs? Cost-sensitive training achieves bet-
ter performance in terms of cost-sensitive, but performs worse in terms of
cost-insensitive metrics. Cost-sensitive objectives result in a lower expected
cost and learn to prioritize costly instances based on the Spearman correla-
tion between model outputs and costs for positive instances. This is observed
for both cost-sensitive objective functions: the indirect, weighted approach
(weighted cross-entropy) and the direct approach (average expected cost).
These findings illustrate that there is a tradeoff between minimizing costs or
minimizing errors during training, indicating that these are two fundamen-
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Table 2.9: Instance-dependent or class-dependent costs: cost-
insensitive metrics per model. Significantly better results are denoted
in bold (5%) and italic (10%).

Metric Costs wlogit cslogit wnet csnet wboost csboost

AUROC ID 0.76 0.72 0.76 0.77 0.77 0.76
CD 0.77 0.73 0.78 0.77 0.78 0.79

AP ID 0.38 0.27 0.40 0.38 0.42 0.38
CD 0.42 0.27 0.45 0.36 0.45 0.44

F1 IDCS ID 0.23 0.36 0.23 0.39 0.31 0.35
CD 0.24 0.37 0.25 0.39 0.32 0.38

F1 IDCS* ID 0.30 0.31 0.29 0.35 0.32 0.28
CD 0.34 0.32 0.35 0.35 0.35 0.35

F1 CDCS ID 0.26 0.39 0.26 0.41 0.35 0.36
CD 0.27 0.39 0.27 0.42 0.34 0.41

F1 CDCS* ID 0.39 0.39 0.39 0.42 0.41 0.36
CD 0.41 0.39 0.42 0.42 0.43 0.43

F1 Emp ID ID 0.38 0.38 0.38 0.41 0.41 0.36
CD 0.41 0.39 0.42 0.42 0.43 0.43

F1 Emp CD ID 0.38 0.38 0.39 0.42 0.41 0.36
CD 0.41 0.39 0.42 0.42 0.43 0.43

F1 Emp F1 ID 0.41 0.39 0.43 0.45 0.45 0.40
CD 0.44 0.39 0.46 0.45 0.46 0.47

F1 CI ID 0.21 0.39 0.22 0.41 0.33 0.36
CD 0.21 0.39 0.21 0.42 0.33 0.40

F1 0.5 ID 0.39 0.39 0.39 0.43 0.43 0.38
CD 0.41 0.39 0.42 0.43 0.45 0.44

tally different objectives.

Does instance-dependent cost-sensitive thresholding result in im-
proved performance compared to class-dependent thresholding?
In terms of costs, cost-sensitive thresholding at an instance level was ob-
served to be the most successful decision-making strategy, outperforming all
other decision-making thresholds. Calibrating probabilities was only bene-
ficial when the weighted cross-entropy or a class-dependent threshold was
used. The differences in best-performing thresholds when optimizing for
savings or F1 score illustrate that minimizing errors and costs are also two
different objectives in the decision-making stage.

Does combining cost-sensitive training and cost-sensitive thresh-
olding result in improved performance compared to either method
separately or completely cost-insensitive classification? Combining
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Table 2.10: Instance-dependent or class-dependent costs: cost-
sensitive metrics per model. Significantly better results are denoted
in bold (5%) and italic (10%). AEC is normalized between 0 and 1 per
dataset (lower is better).

Metric Costs wlogit cslogit wnet csnet wboost csboost

AEC ID 0.56 0.07 0.47 0.18 0.41 0.06
CD 0.68 0.25 0.59 0.18 0.48 0.21

Spearman’s ρ ID 0.09 0.11 0.16 -0.06 0.13 0.23
CD -0.10 -0.05 -0.10 -0.07 -0.07 -0.10

Savings IDCS ID 0.14 0.38 0.13 0.36 0.30 0.39
CD 0.14 0.32 0.17 0.36 0.30 0.38

Savings IDCS* ID 0.36 0.37 0.36 0.39 0.37 0.36
CD 0.38 0.36 0.40 0.39 0.38 0.39

Savings CDCS ID 0.06 0.38 0.13 0.34 0.25 0.39
CD 0.03 0.31 0.08 0.34 0.22 0.35

Savings CDCS* ID 0.37 0.38 0.39 0.35 0.36 0.39
CD 0.32 0.31 0.34 0.35 0.34 0.35

Savings Emp ID ID 0.37 0.38 0.39 0.35 0.36 0.39
CD 0.32 0.31 0.34 0.34 0.34 0.35

Savings Emp CD ID 0.37 0.38 0.39 0.34 0.36 0.39
CD 0.32 0.31 0.34 0.34 0.34 0.35

Savings Emp F1 ID 0.34 0.37 0.35 0.29 0.30 0.34
CD 0.27 0.31 0.27 0.29 0.26 0.27

Savings CI ID -1.33 0.38 -0.66 0.34 0.23 0.39
CD -1.59 0.31 -0.81 0.34 0.19 0.34

Savings 0.5 ID 0.37 0.38 0.40 0.34 0.32 0.38
CD 0.33 0.31 0.35 0.34 0.29 0.34

cost-sensitive training and decision-making did not necessarily achieve bet-
ter results. In fact, the best savings were obtained by training with a cost-
insensitive objective function and using the instance-dependent cost-sensitive
threshold. This illustrates that the type of thresholding is more important
than the type of objective function in terms of costs.

Is it beneficial to train with instance-dependent costs instead of
class-dependent costs? In terms of both training and thresholding, using
instance-dependent instead of class-dependent costs was observed to achieve
better results for cost-sensitive metrics, but worse results for traditional cost-
insensitive metrics. Specifically, not using costs at all is preferential for mini-
mizing errors, using instance-dependent costs is optimal for minimizing costs,
and using class-dependent costs lies somewhere between these two.
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Table 2.11: Summary of the key findings. We present a summary of
the results per research question and hypothesis. Performance is judged in
terms of costs and errors. Each question is answered with yes (✓), no (✗) or
inconclusive (?).

Research question Costs Errors

1. Does instance-dependent cost-sensitive training result in improved perfor-
mance compared to training without costs?

Instance-dependent cost-sensitive training results in better perfor-
mance compared to training without costs. ✓ ✗

2. Does instance-dependent cost-sensitive thresholding result in improved
performance compared to class-dependent thresholding?

Instance-dependent cost-sensitive thresholding results in improved per-
formance compared to class-dependent thresholding. ✓ ✗

Calibrating probabilities results in more effective thresholding. ? ?

3. Does combining cost-sensitive training and cost-sensitive thresholding re-
sult in improved performance compared to either method separately or com-
pletely cost-insensitive classification?

Combining cost-sensitive training and cost-sensitive thresholding re-
sults in improved performance compared to either method separately
or completely cost-insensitive classification.

✗ ✗

4. Is it beneficial to train with instance-dependent costs instead of class-
dependent costs?

Using instance-dependent costs results in better performance compared
to class-dependent costs. ✓ ✗
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2.6 Conclusion

In this paper, we presented a focused review and empirical analysis of instance-
dependent cost-sensitive classification. Conceptually, we reviewed cost-sensitive
classification through the lens of predict-and-optimize and differentiated be-
tween different methods for both cost-sensitive training and decision-making.
Several key methodologies were implemented for different classifiers, and the
resulting models were compared empirically on nine datasets from different
application areas. Based on the experimental results obtained from this
large-scale benchmarking experiment, we answered four research questions
(see Table 2.11 for an overview).

These findings stress the importance of considering the right objective for an
application. Optimizing for accuracy can be detrimental to a classifier’s per-
formance when the actual objective is to minimize costs, which is the case in
a large variety of business applications. For this, it is especially important to
consider the right type of thresholding strategy. Overall, a conceptually sim-
ple yet well-performing strategy is to first train a cost-insensitive model and
only introduce costs in a second stage through instance-dependent thresh-
olding. In other words, using a task-specific loss in the first stage does
not result in better decisions in the second stage, given that the optimal
decision-making policy is used.

These results correspond with empirical research in the class-dependent
setting: two works compared cost-sensitive boosting algorithms with cost-
sensitive thresholding and found the latter to be the more effective strategy
[34], [52]. Nevertheless, theoretical results in the class-dependent setting
suggest that cost-sensitive training can be optimal under certain conditions.
For example, under model misspecification, a cost-sensitive objective func-
tion [32] can be preferential to theoretical thresholding. Consequently, a
direction for future research is to extend the theoretical analysis from the
class-dependent setting toward instance-dependent costs. Additionally, it
will be interesting to investigate the influence of the characteristics of the
cost distribution and cost matrix on the performance of instance-dependent
cost-sensitive training and decision-making methods. By sharing our code,
we hope to encourage and facilitate further research on instance-dependent
cost-sensitive learning.
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3
A New Perspective on
Classification: Optimally
Allocating Limited Resources
to Uncertain Tasks

A central problem in business concerns the optimal allocation
of limited resources to a set of available tasks, where the payoff
of these tasks is inherently uncertain. Typically, such problems
are solved using a classification framework, where task outcomes
are predicted given a set of characteristics. Then, resources are
allocated to the tasks predicted to be the most likely to suc-
ceed. We argue, however, that using classification to address
task uncertainty is inherently suboptimal as it does not take into
account the available capacity. We present a novel solution that
directly optimizes the assignment’s expected profit given limited,
stochastic capacity. This is achieved by optimizing a specific in-
stance of the net discounted cumulative gain, a commonly used
class of metrics in learning to rank. We demonstrate that our
new method achieves higher expected profit and expected preci-
sion compared to a classification approach for a wide variety of
application areas.
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3.1 Introduction

Optimally allocating limited resources is a central problem in economics
[60] and operations research [61]–[63]. It is often complicated further by
uncertainty inherent to the considered problem. On the one hand, future
resource capacity may be limited and not known exactly in advance. On the
other hand, the tasks that require resources might have uncertain payoff.
This situation is commonly encountered in various real-world applications.
As a running example, consider the case of credit card fraud detection. Fraud
analysts can only investigate a limited number of transactions each day. A
priori, it is not known whether investigating a transaction will uncover a
fraudulent case. The general challenge is how to optimally allocate limited
resources to maximize business pay-off, e.g., how to optimally allocate fraud
investigators to suspicious transactions to minimize losses due to fraud. By
learning from historical data, machine learning models can assist decision-
makers by predicting the most relevant tasks (e.g., transactions) based on
their characteristics.

Prior work addresses the problem of uncertain task outcomes via classifi-
cation [e.g., 55], [64]–[69]. The most promising tasks can be identified by
estimating the probability of success for each task. The problem of allocating
stochastic, limited capacity could then be addressed separately in a second
stage, when assignment decisions are made by prioritizing tasks based on
the estimated probabilities to result in a successful outcome. In our running
example, this strategy would correspond to first predicting which instances
are most likely to be fraudulent, and then investigating the most suspicious
transactions. This strategy is commonly used as a decision support tool for
fraud detection, but also other domains where similar problems arise, such as
direct marketing, churn prediction, or credit scoring. In this article, however,
we argue and demonstrate that this approach based on classification models
is suboptimal when resources are limited, because a classification model does
not take capacity limitations into account. Hence, although only the most
promising tasks can be executed, the model focuses equally on accurately
predicting probabilities for tasks that are highly unlikely to be successful
and, consequently, to be executed.

To tackle this challenge, we propose a novel approach based on learning to
rank that simultaneously accounts for both resource and task uncertainty.
When resources are limited, we demonstrate that this approach is supe-
rior to allocation based on classification. First, we show theoretically how
learning to rank can directly optimize the assignment’s expected profit given
limited, stochastic capacity. By considering the available capacity during op-
timization, the model focuses on correctly ranking the most promising tasks,
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proportional to their likelihood of being processed under limited capacity.
Second, while instances are processed individually in classification, learning
to rank explicitly considers a task’s relevance in comparison to the other
available tasks. The benefit of this approach is that we only care about rel-
ative positions in the ranking, corresponding to the need to prioritize tasks
relative to each other.

Our contributions are threefold. First, we formalize the problem of allocating
limited, stochastic resources to uncertain tasks by framing it as an assign-
ment problem. Second, we propose a novel, integrated predict-and-optimize
approach to solve this problem based on learning to rank. We contrast our
approach with a two-stage predict-then-optimize framework that first uses
a classification model to predict task outcomes and then solves the assign-
ment problem using the predicted task probabilities. Third, we compare
both methods empirically using various real life data sets from different ap-
plication areas.

3.2 Related work

The proposed solution in this paper relates to prior work on uncertainty in
assignment problems, predict-and-optimize, classification, and learning to
rank. In this section, we briefly introduce each line of work, describe its
relationship to our contribution, and clarify the remaining research gap that
our work aims to address.

3.2.1 Uncertainty in assignment problems

Optimal allocation of resources and decision-making under uncertainty are
key problems in operations research [61], [62]. In this work, we consider an
assignment problem. This is a general problem formulation in which the
goal is to find an optimal matching of workers and tasks subject to certain
constraints. This type of problem has been analyzed extensively [70] and
applied to a diverse range of tasks [e.g., 71], [72]. Moreover, various exten-
sions consider different sources of uncertainty: uncertain worker capacity,
uncertain task presence (i.e., outcomes), or uncertain task-worker profits
[73]–[75]. This work focuses on a specific type of linear assignment problem,
in which we simultaneously address two sources of uncertainty: uncertain
capacity and uncertain task success. However, instead of assuming that task
success follows a probability distribution, we use a predictive model to esti-
mate it. Although our aim is similar to Johari, Kamble, and Kanoria [76],
they consider an online setting, where workers arrive and depart over time
with uncertainty, with a focus on trading-off exploration and exploitation.
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In contrast, we assume that the worker capacity follows a known, static
probability distribution. Moreover, they consider fixed job types with cer-
tain outcomes, while we learn these outcomes using a predictive model. In
general, our work is different from most work in this category as we aim to
simultaneously tackle the prediction of task success as well as the optimiza-
tion of the assignment problem, while most work in this category is limited
to the optimization.

3.2.2 Predict-and-optimize
The intersection of operations research and machine learning has increasingly
drawn the attention of researchers from both fields [77], [78]. In particular,
recent work on predict-and-optimize is relevant [15], [79], [80]. The central
aim in predict-and-optimize is to align a predictive model more closely with
the downstream decision-making context [81]. This is achieved by fusing the
prediction and optimization phases and training the model in an end-to-end
manner, with the aim of obtaining higher quality decisions [82]. Ranking
specifically has been studied in this context. Demirović, Stuckey, Bailey,
et al. [83] use ranking to solve a ranking problem with uncertainty in the
objective function–similar to task uncertainty in our work. However, in
contrast to this work, they do not account for uncertainty in the constraint.
Moreover, their method is limited to pairwise ranking, whereas we optimize
a listwise objective, allowing us to consider the stochastic capacity in the
optimization of the model. Demirović, J Stuckey, Bailey, et al. [84] are
limited to linear predictive models. In contrast, our method is compatible
with a variety of linear and non-linear machine learning algorithms. Their
analysis considers more general optimization problems with uncertainty in
the objective function. Conversely, our proposed solution is tailor-made to
this specific problem setting, allowing us to use the problem structure in our
solution. In general, most work in predict-and-optimize does not account for
uncertainty in the constraints or optimization problem [85].

3.2.3 Classification
Classification is a task in machine learning where the goal is to predict
the class of an instance given its characteristics. For instance, classifying
a task as either successful or not is a binary classification problem. Exist-
ing work typically considers the applications in this paper as classification
problems, e.g., fraud detection [68], [69], credit scoring [55], [65], direct mar-
keting [64] and customer churn prediction [66], [67]. Moreover, to align the
models more closely with the decision-making context, cost-sensitive clas-
sification has been used [37], [43], [86], [87]. Cost-sensitive methodologies
incorporate the costs of different decisions into the optimization or use of
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predictive models [8], [17], [88]. Cost-sensitive variants have been proposed
for different classification models, such as logistic regression and gradient
boosting [43], [87]. Nevertheless, these consider a different setting: classify
instances. Conversely, our work aims to prioritize instances, to process given
limited worker capacity. The output of a classification model is often used to
rank instances, reflected by widely used evaluation metrics that analyze this
ranking, such as the receiver operating characteristics curve and precision–
recall curve [57]. However, in contrast to our work, these approaches do not
consider the available capacity during optimization of the models. Although
limited capacity has been acknowledged in the literature (e.g., in fraud detec-
tion [89], direct marketing [90] or churn prediction [91]), no existing solution
explicitly addresses this issue. Shifman, Cohen, Huang, et al. [92] consider
a cost-sensitive classification problem with resource constraints. However,
in contrast to our work, they consider misclassification costs to be unknown
and do not consider uncertainty in the capacity constraint.

3.2.4 Learning to rank

In learning to rank, the goal is to predict the order of instances relative to
each other, based on their characteristics. Although learning to rank origi-
nated in the field of information retrieval, it is a general framework that has
been applied to a variety of problems that have traditionally been solved with
classification models, such as software defect prediction [93], credit scoring
[94] and uplift modeling [95]. Moreover, similar to cost-sensitive classifi-
cation, the learning to rank framework has been extended to incorporate
costs of instances to align the optimization of the model more closely with
the resulting decisions [96]. However, our approach is the first to explic-
itly consider the available capacity during the optimization of the ranking
model.

3.3 Problem formulation

This work addresses the problem of optimally assigning limited and stochas-
tic resources to tasks with uncertain outcomes to maximize the expected
profit. In our running example of fraud detection, the goal would be to
uncover fraudulent transactions by having fraud investigators look at them,
with the aim of minimizing that day’s losses due to fraud. On the one hand,
there is task uncertainty. Before investigating a transaction, the outcome of
the investigation is uncertain–though this could be estimated based on his-
torical data. On the other hand, there is an uncertain resource constraint.
The availability of fraud investigators is uncertain, as well as their produc-
tivity on that day. Using historical data, we assume that a worker capacity
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Figure 3.1: Problem overview. Our setting concerns a type of linear
assignment problem with two sources of uncertainty: stochastic worker ca-
pacity and uncertain task outcomes. To account for stochastic capacity in
the assignment problem, the capacity distribution is converted to workers
with decreasing processing probabilities. Task outcomes are also uncertain
and need to be predicted. The key objective is to assign workers to tasks to
maximize the resulting expected profit.

distribution can be estimated. In the following, we formalize this problem
as a general optimization problem.

In this section, we formalize this setting as a linear assignment problem, in
which the goal is to optimally assign workers to tasks, where both workers
and tasks are sources of uncertainty. The exact number of workers is uncer-
tain at the time when resources need to be allocated, but we assume it is
governed by a known probability distribution. In practice, this distribution
can be estimated from historical data on the available resources or based
on domain knowledge. Alternatively, a deterministic capacity can be con-
sidered. Second, task outcomes are also uncertain and need to be predicted
using historical data on similar tasks. A graphical overview of the problem
is shown in Figure 3.1. In the following, we introduce and formally define
each element of the assignment problem.

Stochastic capacity

The available resources or number of workers W is a discrete random vari-
able described by a known probability distribution: W ∼ Dist. In this work,
we consider a common situation where the expected capacity is smaller than
the number of available tasks: E(W ) ≪ N . In expectation, the stochastic
capacity can be converted to a sequence of N workers with monotonically de-
creasing expected success rates. Each rate wj equals the worker’s probability
of being available given W ∼ Dist and is described by the complementary
cumulative probability distribution function: wj = P (W ≥ j) = 1 − FW (j).
This yields a monotonically decreasing sequence of N worker success rates
W = (w1 . . . wN) = {1 − FW (j)}Nj=1 with w1 ≥ . . . ≥ wN . Given
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Table 3.1: Notation table. We give an overview of the notation used in
this work. For each symbol, we give both the general name and its role in
our running example of fraud detection.

Symbol Definition (with an example for fraud detection)

W Stochastic worker capacity (number of tasks processed
by fraud specialists)

W Vector of worker probabilities wj with wj = P (W ≥ j)
T Number of tasks (transactions considered)
R Task rewards ri (transaction payoff, i.e., fraud amount

intercepted - processing cost)
Y Task outcome yi (fraudulent or legitimate)
A Assignment matrix aij (which transactions fraud

specialists should investigate)
v Payoff when executing a task
c Cost matrix
x Task characteristics (time and place where

transaction was made)
fθ Predictive model
π Permutation of instances, i.e., a ranking

E(W ) ≪ N , we expect that most tasks will not be executed and most
wj will be (close to) zero. This formulation will allow us to optimize the
expected objective in section 3.4.

Uncertain tasks

There is also uncertainty regarding task outcomes. To address this uncer-
tainty, we predict it using historical data on similar tasks. Let T = (X ,Y,V)
be the domain of all possible tasks ti = (xi, yi,vi), where xi ∈ X ⊂ Rd is a
set of characteristics and yi ∈ Y = {0, 1} is a binary label equal to 1 if the
task is successful and 0 otherwise. Moreover, vi = {v+i , v−i } ∈ V ⊂ R2 denotes
the payoff if the task is executed, with v

+
i if task i was successful (yi = 1) and

v
−
i otherwise. A task’s reward is defined as ri = yiv

+
i + (1 − yi)v−i . We have

N available tasks to be allocated T = {(xi, yi,vi) ∶ i = 1, . . . , N}, although
yi is unknown when resources need to be allocated. Given historical data, a
(deterministic) predictive model can estimate task outcomes yi resulting in
N predictions.
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Matching workers and tasks

Workers and tasks can then be combined in an expected profit matrix P =

(pij), where pij = riwj is the profit of assigning task i to worker j for i, j =
1, . . . , N . Given P , the goal is to find the optimal assignment matrix A =

(aij), where aij = 1 if worker i is assigned to task j and 0 otherwise, for i, j =
1, . . . , N . This results in the following linear assignment problem:

maximize
N

∑
i=1

W

∑
j=1

aijri (3.1)

subject to
N

∑
i=1

aij ≤ 1 i = 1, . . . , N ; (3.2)

W

∑
j=1

aij = 1 j = 1, . . . ,W ; (3.3)

aij ∈ {0, 1} i = 1, . . . , N ; j = 1, . . . ,W ; (3.4)
W ∼ Dist (3.5)

where conditions 3.2 and 3.3 specify that each task is assigned to exactly
one worker and vice versa; condition 3.4 imposes absolute assignments by
restricting aij to 0 or 1. Condition 3.5 specifies that the resource capac-
ity or number of workers is described by a known probability distribution
Dist.

3.4 Methodology

We present two approaches for the problem presented in Section 3.3. On
the one hand, a two-stage predict-then-optimize framework can be used. In
the first stage, we predict the task successes Ŷ. Here, we show how different
types of classification objectives can be used to predict task success. In the
second stage, we optimize the assignment of tasks to workers to obtain an
assignment matrix A. For this, we provide an analytical solution and prove
its optimality. On the other hand, we present an integrated predict-and-
optimize framework for prediction and optimization by leveraging learning
to rank techniques.

3.4.1 Two-stage predict-then-optimize
This section presents a conventional two-stage approach for solving the prob-
lem. In the first stage, a classification model predicts each task’s proba-
bility of success. Existing approaches in classification can be used to op-
timize this model for either accuracy or profit [87]. In the second stage,
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tasks are assigned to workers based on these predicted probabilities. We
present a straightforward procedure for this assignment and prove its opti-
mality.

Predicting task outcomes using classification

To handle the uncertainty regarding task outcomes, we train a classification
model to predict whether a task will be successful. Given historical data
DTrain, the goal is to predict yi using a classifier fθ ∶ X → [0, 1] ∶ x ↦ fθ(x)
defined by parameters θ ∈ Θ that predicts the probability of a task being
successful. Classifier training can be accomplished with different objective
functions. We present two alternatives: one that focuses optimization on
accuracy and one that optimizes the classification cost.

The conventional approach is to train the classifier with the aim of maximiz-
ing accuracy. This can be achieved using the maximum likelihood approach
or, equivalently, by minimizing the cross-entropy loss function:

LCE
= yilog fθ(xi) + (1 − yi)log(1 − fθ(xi)). (3.6)

A drawback of this approach is that the solution ignores some of the problem
specifications. Some tasks are more important to classify correctly than
others, depending on their cost (or profit) when executed. Therefore, in
cost-sensitive learning, these costs are incorporated into the training of a
model. In classification, the cost of a decision depends on whether it was
classified correctly and on the task itself. These costs are formalized with
the concept of a cost matrix ci [17]:

Actual class yi
0 1

Predicted class ŷi
0

1

⎛
⎜
⎝
c
TN
i c

FN
i

c
FP
i c

TP
i

⎞
⎟
⎠

(3.7)

This way, we can directly minimize the average expected cost of predictions,
as an alternative to the cross-entropy loss [43], [87]:

LAEC
= yi(fθ(xi)cTP

i + (1 − fθ(xi))cFN
i )

+ (1 − yi)(fθ(xi)cFP
i + (1 − fθ(xi))cTN

i ).
(3.8)

LAEC is a semidirect predict-and-optimize method: it incorporates some
information of the downstream decision-making task, but learning is still
separated from optimization [83], [84].
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Optimizing worker–task assignments

Given task predictions Ŷ, we can optimize the task–worker assignments. Al-
though various general algorithms have been proposed to solve assignment
problems, our formulation can be solved analytically. Here, we present this
solution and prove its optimality. The key insight is that, in expectation, the
worker capacity can be seen as a sequence of workers with decreasing success
rates, with each success rate the probability of that working existing given
W ∼ Dist. In other words, this probability is given by the complementary
cumulative probability distribution function: wj = P (W ≥ j) = 1 − FW (j).
Based on this, we can sort the tasks in terms of expected reward and the
workers in terms of expected probability. Matching these two sortings then
optimizes the assignment problem, where the most promising tasks are as-
signed to the most likely workers.
Theorem 1. W = {wi}Ni=1 is a sequence of monotonically decreasing worker
success rates such that w1 ≥ ⋅ ⋅ ⋅ ≥ wN with wi ∈ [0, 1] for i = 1, . . . , N .
R̂ = (r̂1 . . . r̂N) are the predicted task rewards arranged in decreasing
order such that r̂1 ≥ . . . ≥ r̂N . For the resulting expected profit matrix
P = (pij) with pij = wir̂j, the optimal assignment is A

∗
= IN .

Proof. Proof of Theorem 1.

A
∗
= IN is a feasible solution: it is straightforward to verify that the iden-

tity matrix satisfies constraints 3.2, 3.3 and 3.4 of the assignment problem.
Moreover, the solution is the result of a greedy strategy: at each step m, we
assign worker w with probability wm to the highest remaining task m with
payoff r̂m. To prove the optimality of this strategy, we show that it does not
deviate from the optimal solution at each step up until the final solution is
obtained.

First, the best single worker–task assignment is selected: the highest profit
pij is p11 = w1r̂1; no other higher profit exists as no higher wi or r̂j exist.
Next, we continue this strategy of selecting the best remaining worker–task
assignment until there are no tasks left. We can show that, at each step, no
other assignment matrix leads to a larger profit than this one. At step m,
the profit obtained given assignment matrix A

∗ equals p11+p22+. . .+pmm =

w1r̂1 + w2r̂2 + . . . + wmr̂m.

Deviating from A
∗ at a certain step means that at least one worker must

be assigned to another task. We prove that no alternative assignment leads
to a higher profit. Consider switching the assignments of tasks i and j with
i < j. In the case that task j has already been assigned to a worker, we
have:

pii + pjj ≥ pij + pji
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⟺ wir̂i + wj r̂j ≥ wir̂j + wj r̂i

⟺ wi(r̂i − r̂j) ≥ wj(r̂i − r̂j)
⟺ wi ≥ wj and r̂i − r̂j ≥ 0.

In the case that task j has not yet been assigned, we have:

pii ≥ pij

⟺ wir̂i ≥ wir̂j

⟺ wi ≥ 0 and r̂i ≥ r̂j

In both cases, the final statements follow from W and R̂ being monotonically
decreasing and i < j, or from wi ∈ [0, 1].

3.4.2 Integrated predict-and-optimize using learning to
rank

In this section, we present a novel integrated approach for solving the as-
signment problem in Section 3.3. Previously, we showed how the optimal
assignment is A

∗
= IN if W and R̂ are arranged in decreasing order. Given

that W is defined as a decreasing sequence, the challenge of optimizing the
assignment can also be seen as correctly predicting the order of expected task
rewards R̂. This formulation is equivalent to an alternative interpretation
of the assignment problem as finding the optimal assignments by permuting
the rows and columns of the profit matrix P such that the resulting sum of
the elements on the diagonal is maximized, or formally [74]:

max
π∈Πn

N

∑
i=1

pi,π(i) (3.9)

for π ∈ ΠN with ΠN the set of all permutations of the indices {1, . . . , N},
i.e., π ∶ {1, . . . , N} ↦ {1, . . . , N}. In our case, we need to find the optimal
permutation of available tasks π(T).
In this formulation, the assignment problem can be seen as predicting the
optimal permutation π(T) based on characteristics of the available tasks.
Formally, let gθ ∶ X → R ∶ x ↦ gθ(x) be a ranking model. The goal is
to find parameters θ ∈ Θ such that the ordering of the mapping of tasks
gθ(x1) ≥ . . . ≥ gθ(xn) corresponds to the ordering of their rewards r1 ≥

. . . ≥ rN . A ranking based on gθ can be seen as a permutation π of the
indices {1, . . . , n}.
The expected profit of a permutation π(T) given a capacity W can be op-
timized directly using learning to rank. The key insight is that for a given
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permutation π of tasks T, the expected profit ∑N
i=1 wir̂π(i) of a ranking is

equivalent to its discounted cumulative gain (DCG), which is a commonly
used class of metrics in learning to rank [97]. Typically, the DCG is defined
with discount 1

log2(i+1)
and gain 2

ti −1 for i ∈ {1, . . . , n}. However, to match

the expected profit, our formulation uses discount {wi}Ni=1 corresponding to
the capacity distribution, gain equal to 1 for all i, and relevance r̂i. By
dividing the DCG by its ideal value (IDCG), the normalized DCG (NDCG)
is obtained: NDCG = DCG

IDCG with NDCG ∈ [0, 1].

Optimizing the NDCG (or equivalently, the expected profit) directly is chal-
lenging as it depends on the predicted relative positions of instances instead
of the model’s outputs gθ(xi). Nevertheless, various algorithms have been
proposed for this task in the literature on learning to rank. In this work,
we use the widely used LambdaMART [98], which uses a combination of the
LambdaRank loss and gradient boosting of decision trees to construct the
ranking model. In this way, we can train a ranking model gθ to optimize the
NDCG or expected profit of the assignments directly.

Finally, we need to specify each task’s relevance, which serves as a label
according to which the ranking would ideally be constructed. Because the
ranking corresponds to the priority that should be given to tasks, it should
respect the ordering in terms of both outcome yi and task payoffs vi. In other
words, successful tasks should be more relevant than unsuccessful tasks, and
a more profitable task should be more relevant. Therefore, we use a task’s
reward ri as a cost-sensitive relevance, as it uses an instance’s class label
yi and its cost matrix ci (see Equation (3.7)). By means of this approach,
a positive task’s relevance is the profit (or equivalently, the negative cost)
obtained by classifying it positively minus the profit obtained by classifying
it negatively; vice versa for negative tasks. Thus, we obtain the relevance or
reward ri as follows:

ri = yiv
+
i + (1 − yi)v−i = yi (cFN

i − c
TP
i ) + (1 − yi) (cTN

i − c
FP
i ) .

Alternatively, if the goal is to optimize for accuracy rather than cost, we can
use class label yi as the relevance of instance i.

3.5 Empirical results

In this section, we empirically evaluate and compare the two-stage and the
integrated approach for a variety of tasks. We use publicly available data
from a variety of application areas. For each application, the goal is to
optimally allocate resources to optimize the expected cost given stochastic
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capacity. All code for the experimental analysis will be made available online
upon publication of this paper.

To compare the different approaches, we use gradient boosting to train
the predictive models. Four different objectives are compared, depending
on the task (classification or learning to rank) and on whether they aim
to maximize precision or profit. First, xgboost and csboost are conven-
tional approaches based on classification. More specifically, xgboost de-
notes a conventional classification model using the cross-entropy loss LCE

(see Equation (3.6)), while csboost uses a cost-sensitive objective function
LAEC (see Equation (3.8)). Second, LambdaMART and csLambdaMART
are integrated predict-and-optimize approaches based on learning to rank.
LambdaMART uses the binary class label yi, whereas csLambdaMART uses
task payoffs ri as relevance. All models are implemented in Python using
the xgboost package [99]. Gradient boosting is a popular methodology for
both classification and ranking that has great predictive performance, as
illustrated by recent benchmarking studies [55], [100].

3.5.1 Data

The data sets are enlisted in Table 3.2 and stem from different applica-
tion areas: customer churn prediction, credit scoring and direct marketing.
They all concern binary classification where tasks are either successful or
unsuccessful. Resources are limited and stochastic: we assume a lognormal
capacity distribution W ∼ LN (µ = log(100), σ = 1).

The cost matrices are taken from earlier work on cost-sensitive classification
(see Table 3.3). In churn prediction, we have c

FP
i and c

FN
i as, respectively,

2 and 12 times the monthly amount Ai for KTCC following Petrides and
Verbeke [88]; whereas we follow the cost matrix given with the data set for
TSC [101]. For credit scoring, we calculate the instance-dependent costs cFP

i

and c
FN
i as a function of the loan amount Ai following Bahnsen, Aouada, and

Ottersten [43]. In direct marketing, a positive classification incurs a fixed
cost cf = 1, while missing a potential success incurs an instance-dependent
cost equal to the expected interest given Ai, following Bahnsen, Aouada,
and Ottersten [45]. Similarly, in fraud detection, a positive prediction leads
to an investigation that entails a fixed cost cf , and missing a fraudulent
transaction leads to a cost equal to its amount Ai. We use cf = 10, following
Höppner, Baesens, Verbeke, et al. [87].
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Table 3.2: Data sets overview. For each data set, we present the applica-
tion area, abbreviation, number of instances (N), class imbalance in terms
of proportion of positive instances (% Pos), and corresponding reference.

Application Abbr. N % Pos Ref.

Churn prediction KTCC 7,032 26.58 [102]
TSC 9,379 4.79 [101]

Credit scoring

HMEQ 1,986 19.95 [103]
BN1 3,123 33.33 [55]
BN2 7,190 30.00 [55]
VCS 18,917 16.95 [104]
UK 30,000 4.00 [55]
DCCC 30,000 22.12 [105]
GMSC 112,915 6.74 /

Direct marketing UBM 45,211 11.70 [106]
KDD 191,779 5.07 /

Fraud detection
KCCF 282,982 0.16 [107]
KIFD 590,540 3.50 /
ACCF 3,639,323 0.65 [108]
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Table 3.3: Cost matrices for the different application areas. For each
application, we present the costs for all outcomes in terms of predicted (ŷ)
and actual (y) labels. Ai, c

FN
i , cFP

i and Inti represent instance-dependent
costs and cf is a fixed cost.

yi
0 1

ŷi
0 0 12Ai

1 2Ai 0

(a) Churn prediction

yi
0 1

ŷi
0 0 c

FN
i

1 c
FP
i 0

(b) Credit scoring

yi
0 1

ŷi
0 0 Ai/Inti
1 cf cf

(c) Direct marketing

yi
0 1

ŷi
0 0 Ai

1 cf cf

(d) Fraud detection

3.5.2 Results

We present the results using various performance metrics to compare the dif-
ferent models. The main metric of interest is either the expected precision or
the expected profit given the stochastic capacity distribution W , depending
on whether accuracy or profit is the objective. Furthermore, we present sev-
eral additional classification and ranking metrics to gain more insight into
the differences between the methodologies. For each metric, we present the
average over all data sets and test whether the best performance is signifi-
cantly different from the others using a Friedman test on the rankings with
Bonferroni–Dunn post hoc correction [58], [109], [110] (see Table 3.4).

Expected precision and expected profit

In terms of expected precision, LambdaMART is the best performing model.
Two models optimize for accuracy: LambdaMART and xgboost. The rank-
ing model, LambdaMART, outperforms the classification model, xgboost. In
terms of expected profit, the cost-sensitive ranking model, csLambdaMart,
performs best. Of the two models optimizing for accuracy, xgboost and
LambdaMART, the ranking model again achieves better results, although
this difference is not statistically significant. This increase in performance of
the rankings models compared to classification models illustrates the poten-
tial benefit of our integrated ranking approach when capacity is constrained.
We further compare the trade-off between profit and precision in Figure 3.2
by plotting the rankings for each data set. To get an idea of the densities for
the different models, we estimate it using a Gaussian kernel and show it for
probabilities greater than 0.5. Although the densities overlap, the ranking
models outperform their classifying counterparts in their respective category.
Again, this demonstrates the benefit of integrating the capacity constraint
in the optimization.
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Table 3.4: Evaluation metrics overview. We present an overview of the
evaluation metrics. The average and standard deviation over all data sets
are shown, with the best result denoted in bold. Results that are not sig-
nificantly different from the best result are underlined (α = 0.05). This is
based on a Friedman test on the rankings with Bonferroni–Dunn post hoc
correction. For both expected precision and profit, the ranking models per-
form best in their respective category. For the classification metric, average
precision, the cost-insensitive classifier, xgboost, performs best. Conversely,
for the ranking metrics, namely, Spearman correlation and the area under
the cumulative profit curve, the ranking models outperform their classifying
counterparts.

Expected
precision

Expected
profit

Average
precision

Spearman
correlation AUCPC

xgboost 0.496 ±.08 0.212 ±.05 0.942 ±.01 −0.038 ±.03 0.555 ±.07
csboost 0.587 ±.06 0.294 ±.05 0.908 ±.02 +0.226 ±.07 0.566 ±.07

LambdaMART 0.656 ±.07 0.247 ±.05 0.937 ±.01 −0.030 ±.04 0.536 ±.06
csLambdaMART 0.609 ±.07 0.359 ±.05 0.934 ±.01 +0.383 ±.08 0.600 ±.06

Average precision, Spearman’s ρ and AUCPC

These metrics weight all instances in the ranking equally, as opposed to the
previous metrics that weighted instances depending on their probability of
being processed given the capacity distribution [57]. On the one hand, we
consider a classification metric: given the high degree of class imbalance
for some data sets, we use the average precision. On the other hand, we
consider two ranking metrics: the area under the cumulative profit curve
and Spearman’s rank correlation coefficient ρ.

First, we assess the quality of the model’s predictions with a standard classifi-
cation metric: average precision (AP). This metric summarizes the precision-
recall curve and looks at the trade-off between precision and recall at different
thresholds. As expected, the cost-insensitive classification model, xgboost,
performs best. This result is no surprise, given that xgboost is a classification
model that optimizes for accuracy. However, this conventional classification
metric has only weak correlation with the expected precision, suggesting that
it is not a good indicator of performance. Therefore, this results gives rise to
an important insight: when there is limited capacity to act on predictions,
traditional classification metrics are not a good indicator of performance.

We also adopt two ranking metrics. First, we use Spearman’s rank cor-
relation coefficient to quantify the correlation between the ranking of the
predictions and the ranking of the task payoffs. csLambdaMart is the best
performing model, outperforming csboost. Moreover, both cost-insensitive
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models have a correlation of approximately 0. This is as expected, as these
models do not take payoff into account in their optimization. Second, the
cumulative profit curve plots the profit that is realized as a function of the
number k of first ranked instances, with k ∈ [1, N]. We compare the area
under this curve with the area of a random ranking and one of the optimal
ranking to obtain a value between 0 and 1. csLambdaMART performs best,
though neither the difference with xgboost nor csboost is statistically signif-
icant. Compared to the classification metric, these results are more aligned
with the expected precision and profit.

These findings indicate that metrics for evaluating the ranking quality, such
as Spearman’s ρ or the AUCPC, are more suitable than classification met-
rics, such as the average precision, for evaluating a model’s performance
under limited capacity. Moreover, our results suggest that ranking as a solu-
tion more closely aligns with the problem of allocating limited resources to
uncertain tasks than classification, which is also confirmed by the superior
performance of ranking models compared to classification models in terms of
expected precision and expected profit. This represents an important insight,
given the abundance of existing work using classification models for these
application areas where capacity constraints are commonly encountered.

Top k metrics

Finally, we also consider metrics focusing solely on the top of the ranking.
Given limited capacity, these are the instances that will be prioritized. We
can evaluate this critical part of the ranking by looking at the precision and
profit of the ranking for the first k instances for different values of k (see
Figure 3.3). The ranking model optimizing for accuracy, LambdaMART,
performs best in terms of precicision@k, while the ranking model optimizing
for profit, csLambdaMART, has the best performance in terms of profit@k.
Again, these findings suggest that ranking models perform better given lim-
ited worker capacity, due to their ability to better prioritize the most impor-
tant tasks at the top of the ranking. Indeed, given limited capacity, these
are the tasks that will be executed.

3.6 Conclusion

In this work, we formally introduced and defined a commonly encountered
problem: how to optimally allocate limited, stochastic resource capacity to
tasks with uncertain payoff to maximize the expected profit. Moreover, we
contribute by proposing a novel integrated solution using learning to rank
and empirically comparing it with a more conventional predict-then-optimize
approach using a classification model.
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Figure 3.2: Comparing the methodologies in terms of expected pre-
cision and profit. We plot each methodologies’ ranking in terms of ex-
pected profit and expected precision on each data set. For each method, the
average ranking is shown with a star (⭐). Moreover, the ranking density
is fitted with a Gaussian kernel; for visual clarity, only probabilities greater
than 0.5 are shown. On average, csLambdaMART performs best in terms
of expected profit, while LambdaMART performs best in terms of expected
precision.

Our findings illustrate the benefit of approaching this problem as a ranking
problem, which allows us to consider the availability of limited and stochas-
tic resources. Theoretically, we show how the expected profit for a given
capacity distribution can be optimized directly using learning to rank with
a specific formulation of the net discounted cumulative gain as the objec-
tive. Empirical results for a variety of applications show that ranking models
achieve better performance in terms of expected profit or expected precision,
depending on the objective. Moreover, good results in terms of ranking
metrics are more indicative of good performance in terms of expected profit
compared to conventional classification metrics. This illustrates how ranking
is more closely aligned with the problem at hand compared to classifying.
In summary, in the common scenario where decision-makers are constrained
by limited resources, deciding upon resource allocation using classification
models is inferior to using learning to rank. These findings have important
implications for practitioners in a variety of application areas.

Managerial implications Our findings have significant implications for
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Figure 3.3: Evaluating the top k ranked instances. Precision (a) and
profit (b) for obtained by the top k instances in the ranking for the different
models averaged over all data sets. The ranking models outperform the
classifiers in the metric they optimize for: LambdaMART is the best in
terms of precision; csLambdaMART has the best profit.

practitioners that use predictive models for decision support in applications
where resource capacity to act upon predictions is limited. This situation is
commonly encountered in applications such as fraud detection, credit scor-
ing, churn prediction, and direct marketing. Our work shows that, when
decision-makers are faced with the challenge of optimally allocating limited,
stochastic resource capacity to tasks with uncertain payoffs, they should con-
sider adopting a ranking-based approach. We demonstrated that optimizing
the expected precision or profit with a ranking model leads to improved
decision-making compared to a commonly used approach using classification
models. Similarly, we showed that ranking metrics provide a more accurate
assessment of performance than classification metrics in settings where re-
sources are constrained. Our results underscore the importance of embracing
learning to rank over traditional classification methods in resource allocation
decisions, which has important implications for practitioners seeking to max-
imize profitability and efficiency in applications with resource constraints.

Our work opens several promising directions for future research. For exam-
ple, it would be interesting to consider a temporal variant of the assignment
problem with tasks arriving sequentially in time. Although this problem has
been studied extensively for stochastic or random arrival rates [111]–[113],
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future work could consider the addition of a predictive ranking model to
address uncertainty regarding task outcomes. Another possible extension
would be to consider tasks that require varying degrees of resources. For ex-
ample, in credit scoring, loans with a large principal require more resources.
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Causal Inference
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4
Optimizing the Preventive
Maintenance Frequency with
Causal Machine Learning

Maintenance is a challenging operational problem where the goal
is to plan sufficient preventive maintenance (PM) to avoid asset
overhauls and failures. Existing work typically relies on strong
assumptions (1) to model the asset’s overhaul and failure rate,
assuming a stochastic process with known hazard rate, (2) to
model the effect of PM on this hazard rate, assuming the effect
is deterministic or governed by a known probability distribution,
and (3) by not taking asset-specific characteristics into account,
but assuming homogeneous hazard rates and PM effects. Instead
of relying on these assumptions to model the problem, this work
uses causal inference to learn the effect of the PM frequency on
the overhaul and failure rate, conditional on the asset’s charac-
teristics, from observational data. Based on these learned out-
comes, we can optimize each asset’s PM frequency to minimize
the combined cost of failures, overhauls, and preventive mainte-
nance. We validate our approach on real-life data of more than
4,000 maintenance contracts from an industrial partner. Empir-
ical results on semi-synthetic data show that our methodology
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based on causal machine learning results in individualized main-
tenance schedules that are more accurate and cost-effective than
a non-causal approach that does not deal with selection bias and
a non-individualized approach that prescribes the same PM fre-
quency to all machines.

4.1 Introduction

Maintenance constitutes an intricate operational problem. The challenge is
to avoid failures and costly overhauls, while simultaneously minimizing the
cost of preventive maintenance (PM). We consider the problem of deciding on
the frequency of PM interventions, where the optimal frequency minimizes
the combined cost of both PM and detrimental outcomes resulting from de-
terioration, such as failures or overhauls. To optimize the PM frequency,
existing work typically makes strong assumptions regarding the asset’s haz-
ard rate, i.e., the frequency with which failures and overhauls occur, and the
effect of PM on this hazard rate. Moreover, existing maintenance policies
assume asset homogeneity in the hazard rate and/or PM effect by not taking
asset characteristics into account. We argue that all of these assumptions
can be violated in practice.

First, most work assumes the asset’s overhaul and failure rates follow a
stochastic process that is known to the decision-maker, which is typically
not the case in practice [114]. Moreover, estimating the parameters of the
stochastic process from data is challenging due to censoring [115], [116] and
still requires assuming a certain type of statistical distribution that might not
coincide with the actual overhaul or failure rate. Finally, most existing work
assumes asset homogeneity and does not incorporate the effects of the asset’s
characteristics on the overhaul and failure rates. In reality, however, an older
asset might be more prone to failure and require more PM interventions than
a more recent one.

Existing work also requires assumptions on the effect of PM on the overhaul
and failure rates. A broad spectrum of maintenance effects have been stud-
ied in the literature, ranging from perfect maintenance, which restores the
system to a state as good as new, to worst maintenance, where maintenance
causes the asset to fail [117]. Existing approaches in imperfect maintenance
assume that the effect is either deterministic or stochastic following a spec-
ified probability distribution. These assumed effects, however, might not
always correspond to the actual effect. Moreover, the effect of PM is typi-
cally assumed to be identical for all assets. In reality, the effect of the same
type of PM intervention could be very different for different assets. For
example, changing a gear would likely have a different impact on a brand-
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new asset compared to the exact same maintenance intervention on an old,
worn-down asset.

In this work, we relax these assumptions regarding the hazard rate and the
PM effect. Instead, we propose a data-driven maintenance policy that learns
the effect of the PM frequency on the resulting overhaul and failure rates,
conditional on the asset’s characteristics. This approach allows to flexibly
learn the outcomes for different PM frequencies from historical, observational
data using machine learning, rather than assuming a prespecified (or known)
hazard rate and PM effect based on expertise, and to design an asset-specific
PM schedule based on the learned outcomes.

These benefits are achieved by framing maintenance as a problem of causal
inference. We argue that the challenge in maintenance is that, for each
specific asset, we only observe one overhaul and failure rate corresponding
to the PM frequency that was administered in practice. We never observe
the counterfactual outcomes, i.e., what would have happened if that asset
had received more or less maintenance. Because of this, we never know
whether the optimal PM frequency was prescribed. Causal inference offers
a solution to this problem by predicting each individual asset’s hypothetical
overhauls and failures at different PM frequencies. By learning a model
that predicts the overhaul and failure rate given the PM frequency, we can
optimize the PM schedule to minimize the total estimated cost. Essentially,
we propose using observational data to learn an asset-specific digital twin
for maintenance that predicts the overhaul and failure rate should an asset
be prescribed a certain PM frequency.

This work contributes to the extant literature on preventive maintenance by
proposing a novel prescriptive framework for maintenance that prescribes
each asset’s desired preventive maintenance frequency based on the esti-
mated effect of PM on its overhaul and failure rates. To this aim, we frame
maintenance as a problem of causal inference and leverage state-of-the-art
machine learning methods for causal inference. These models learn to es-
timate an asset’s potential outcomes for different PM frequencies from ob-
servational data. Moreover, we formulate a prescriptive policy that uses the
potential outcomes to decide on the optimal PM frequency that minimizes
the total cost of failures, overhauls and PM interventions. Empirically, we
contribute by demonstrating the use of our causal inference framework on
a dataset consisting of more than 4,000 maintenance contracts of industrial
equipment provided by an industrial partner. Finally, as our proposed ap-
proach itself comes with assumptions, we discuss their viability in the context
of maintenance.
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4.2 Related work

Maintenance has been studied extensively in operations research, with a wide
variety of proposed maintenance policies [118]–[120]. Our work touches upon
the literature on time-based maintenance, imperfect maintenance, condition-
based maintenance, as well as prescriptive analytics and causal inference.

4.2.1 Time-based maintenance
We consider the problem of finding an optimal PM frequency, equivalent to
finding the optimal period between PM interventions, known as time-based
maintenance [121]. This approach has been widely studied and, because of
its simplicity, it is still frequently used in practice [122], [123]. The key idea
is to perform PM with a constant frequency throughout the asset’s lifetime.
Typically, this optimal PM frequency is found by modelling the stochastic
overhaul and failure rates using a statistical distribution and then finding
the PM frequency that minimizes the estimated total cost [122].

The drawback of most existing time-based maintenance policies is that they
model failures and overhauls using an assumed stochastic process. Estimat-
ing the parameters of this stochastic process can be difficult due to censoring.
This is because, in reality, assets are often maintained before failure occurs.
Even if the parameters of the stochastic process can be estimated from data,
the process itself can be misspecified. Moreover, existing work on time-based
maintenance typically does not consider asset heterogeneity. Our proposed
approach does not rely on a parametric model of the asset’s overhauls and
failures, but estimates each asset’s overhaul and failure rates given the PM
frequency using a flexible machine learning model, conditional on that asset’s
characteristics.

4.2.2 Imperfect maintenance
Most existing work assumes that preventive maintenance restores the system
to a state that is as good as new. However, maintenance is typically imper-
fect in reality. Different maintenance effects have been studied in the liter-
ature, ranging from maintenance that restores the system to a perfect state
to maintenance that makes the system’s state worse [117]. Consequently,
developing maintenance policies that incorporate imperfect maintenance is
an important research problem.

Existing work models the effect of imperfect maintenance as either stochastic
(based on a known probability distribution) or deterministic [117], [124].
Stochastic effects include the (p, q) rule, where maintenance is as good as
new with probability p and as good as old with probability q = 1 − p [125]–
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[127], and its age-dependent variant (p(t), q(t)) [128]. Other work assumes
a deterministic effect. Improvement factor models assume that maintenance
decreases the system’s failure rate by a deterministic improvement factor
[129]. Similarly, in virtual age models, imperfect maintenance decreases the
system’s age or failure rate with a deterministic factor q where 0 < q < 1
[130], [131].

The literature has proposed methods for estimating the parameters of these
imperfect maintenance models from data and corresponding goodness-of-
fit tests [132]–[134]. However, these approaches still start from a (deter-
ministic or stochastic) model of the PM effect that can be misspecified in
practice. Moreover, the goodness-of-fit tests only verify whether the model
corresponds to the asset pool globally. Conversely, our approach estimates
an effect that is, first, model-free as it does not assume a certain type of effect
and, second, machine-dependent, as it is based on individual characteristics.
This is achieved by learning the overhaul and failure rates for different PM
frequencies from observational data. Finally, a key difference with our ap-
proach is that we do not consider the effect of a single PM intervention, but
rather focus on the outcomes over a period of time caused by different PM
frequencies.

4.2.3 Condition-based maintenance

Data-driven, condition-based maintenance policies have recently gained im-
portance in the maintenance literature [135]. Condition-based maintenance
is a policy in which maintenance is optimized based on the machine’s state
or its characteristics [136], [137]. Especially relevant to our work are recent,
predictive maintenance approaches that learn a predictive model from data
to decide on the appropriate maintenance interventions [138], [139]. Various
authors propose using neural networks due to their flexibility and ability to
extract features from data [140]–[143].

A typical approach is to predict the machine’s health from its characteris-
tics and apply maintenance when a degradation threshold is reached. This
is achieved by monitoring the machine’s health using a data-driven model
to predict whether a failure is imminent. When the perceived risk is too
high, e.g., exceeding a degradation threshold, an intervention can be sched-
uled to avoid failure [e.g., as in 144]–[149]. Therefore, various works have
proposed predicting failures using machine learning models [150]–[152] with
several recent approaches based on neural networks specifically [153]–[162].
By incorporating asset characteristics in the estimation, predictive policies
can account for asset heterogeneity.

The downside of condition-based approaches is that they only predict the
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asset’s deterioration and do not consider the impact of PM on this deteri-
oration. The time at which the deterioration threshold is reached and PM
is planned, might not correspond to the optimal timing to most effectively
perform maintenance and remedy the deterioration. Ideally, maintenance
should not be performed just before the asset fails, but at the time when it
is most effective at lowering the asset’s failure probability. To this end, it is
important to estimate the asset’s hazard rate resulting from a certain PM
frequency, which is exactly what our approach aims to achieve.

Similar to the general literature on imperfect maintenance, existing condition-
based approaches that consider imperfect maintenance also assume either a
deterministic or stochastic maintenance effect. There exist three broad cate-
gories of condition-based approaches that account for imperfect maintenance
[137]. A first category considers minimal maintenance with a determinis-
tic effect, in which a system has several deterioration stages and imperfect
maintenance returns the system to the previous stage. A second category
considers stochastic effects, where the maintenance effect is governed by an
assumed probability distribution. Finally, in improvement factor models,
imperfect maintenance decreases the system’s hazard rate with a (determin-
istic) factor between zero and one. To the best of our knowledge, no existing
condition-based approaches aim to learn the effect of maintenance from data.

4.2.4 Prescriptive analytics and causal inference
Instead of assuming a hazard rate or PM effect, this work uses machine learn-
ing models to learn the effect of maintenance using techniques from causal
inference. Causal inference aims to estimate the effect of a certain cause
from data, in our case the failure rate resulting from a given PM frequency.
Ideally, estimating maintenance effects would be done by conducting a ran-
domized controlled trial: assigning different PM frequencies to a collection of
(similar) machines and comparing the outcomes [163]. However, in practice,
this approach can be prohibitively expensive, unfeasible, or even unethical
(e.g., when considering life support equipment in hospitals). In maintenance,
it would generally be challenging to randomly assign varying levels of PM
to different machines, because an excessively low PM frequency might risk
not ensuring minimal service levels. When randomized controlled trails are
impossible, we need to rely on historical, observational data of machines and
their maintenance to learn the outcomes caused by different PM frequencies.

The challenge of working with observational data is that this data is biased
due to existing maintenance policies that were in use [163]. For example,
as a result of an existing policy, machines more prone to failure might have
been more likely to receive more maintenance in the past. This phenomenon,
called selection bias or confounding bias, can result in biased estimates of
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the counterfactual outcomes if ignored. Under certain assumptions, special-
ized tools from the causal inference literature can be used to tackle exactly
this problem and learn causal effects from observational data, i.e., in the
presence of selection bias [164]. Specifically, our work is related to learning
potential outcomes for continuous-valued interventions [165]–[169], e.g., the
PM frequency1. Learning the outcomes for different levels of a continuous
treatment is also referred to as learning a dose-response curve.

Causal inference has been applied to a variety of applications, such as person-
alized medicine [170], economic policy design [171], marketing [172], [173],
and education [174]. Moreover, it is related to prescriptive analytics [175],
[176], which has recently gained importance in operations research [177],
[178]. This work uses causal inference to predict a machine’s failure rate and
overhaul rate for different PM frequencies and, consequently, to decide upon
a personalized PM schedule. To the best of our knowledge, this is the first
application of causal inference for maintenance optimization.

4.3 Problem overview

This work aims to solve the problem of prescribing an asset’s PM frequency
to minimize the costs resulting from overhauls, failures, and PM. In partic-
ular, we are motivated by the challenge faced by a provider of full-service
maintenance contracts. The service provider is responsible for maintaining
the client’s asset at a predetermined price [179]. To maximize its profit mar-
gin, the service provider needs to decide on the PM frequency that minimizes
the costs of failures, overhauls, and PM. The PM frequency is usage-based
and defined over a running period, which corresponds to a standardized
number of running hours. For each contract, the service provider has access
to contract characteristics, such as the type of machine it concerns and the
machine’s age at contract start. We consider each machine as a single-unit
system.

We assume the service provider conducts a single type of planned PM inter-
vention and needs to decide on the frequency of these interventions. Planned
PM aims to prevent two types of events: overhauls and failures. The first,
overhauls, are unplanned, comprehensive maintenance interventions during
which large parts of the machinery need to be replaced. From the viewpoint
of the full-service maintenance provider, these are the most costly type of
event. The second, machine failures, are also unplanned and result in an
urgent need for maintenance as the machine stops running until corrective

1The number of PM interventions is discrete, but the number of PM interventions per
running period (i.e., PM frequency) is continuous-valued.
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maintenance occurs. A failure also incurs a cost to the service provider that
is smaller than the cost of an overhaul, but larger than the cost of PM.

The overall goal is to find each contract’s optimal PM frequency that min-
imizes the combined cost of planned PM, overhauls and failures, from the
perspective of the service provider. Although planning more PM interven-
tions is likely to result in less overhauls and failures, it comes at an increased
maintenance cost. Therefore, the optimal PM frequency is a trade-off be-
tween costs resulting from planned PM on the one hand and costs resulting
from unplanned overhauls and failures on the other hand. Due to hetero-
geneity in the contracts and associated machines, maintenance might need to
be planned more frequently for some contracts. Therefore, it is important to
consider the contract’s characteristics when deciding on the PM frequency.
To this aim, the service provider has access to information on past contracts,
including the administered PM frequency, and the overhaul and failure rates
observed for that PM frequency.

Let each contract be defined as a tuple (X, T,O(T ), F (T )). X ∈ X ⊂ Rd

denotes a vector of (static) characteristics of the contract and the associated
machine. The treatment, in our case the PM frequency, corresponds to
the number of PM interventions that were applied per running period, and
is denoted as T ∈ T ⊂ R+. Finally, O ∈ O ⊂ R+ and F ∈ F ⊂ R+

are the observed number of overhauls and failures per running period, i.e.,
the overhaul and failure rates. Following the causal inference literature, we
adopt the Rubin–Neyman potential outcomes framework [180], [181] and
denote the overhaul intensity O and failure rate F for a given maintenance
frequency t as O(t) and F (t).

X

T

O F

Figure 4.1: Diagram illustrating the assumed causal relationships
between the different variables. X: Asset characteristics, T : PM fre-
quency, O: Overhaul rate, and F : Failure rate.

The objective is to decide on each asset’s optimal PM frequency t
∗
i that

minimizes the total cost per running period. We assume a cost model per
running period similar to [123]. Each asset i’s cost per running period con-
sists of the combined costs of PM, overhauls and failures, which all depend
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on the decision-variable, i.e., the PM frequency ti:

ci(ti) = ct tiÍ ÒÒÒÒÒÒÑÒÒÒÒÒÒÏ
PM

+ co oi(ti)ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï
Overhauls

+ cf fi(ti)ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
Failures

, (4.1)

for i ∈ {1, . . . , n}. We assume that the costs of PM, overhauls, and failures
are deterministic and known (ct, co, cf ∈ R+).

To assist the service-provider’s decision-making, data is available on m past
contracts D = {(xi, ti, oi, fi)}ni=1. For each of these past contracts, only
one potential outcome was observed for O and F given that contract’s PM
frequency T : oi(ti) and fi(ti). The other, counterfactual outcomes are never
observed—this is known as the fundamental problem of causal inference
[182]. The challenge in causal inference is to predict, for a new contract, the
potential outcomes for all possible values of T using historical, observational
data.

For each observed contract i, decisions regarding the administered PM fre-
quency ti were based on its characteristics xi according to a (possibly un-
known) existing policy, resulting in selection bias or confounding bias in the
data. In observational data, we can expect a relationship between an asset’s
characteristics and the PM frequency it received. For example, the service
provider might know from experience that older machines are more likely to
fail when not receiving frequent PM and, because of this, typically prescribed
more maintenance to those machines in the past. Factors that influence both
the administered PM frequency and the outcome, the failure and overhaul
rate, are called confounders. In this example, age is a confounder affecting
both the received PM frequency and the resulting failure rate. We show the
assumed causal structure of the problem in Figure 4.1.

The presence of confounders and selection bias is typically the case when
working with observational data. This is because past PM frequencies were
not assigned at random, but based on information on the contract and ma-
chine. Because of the associations between confounders and the PM fre-
quency, assets that received relatively infrequent PM are different from as-
sets that received relatively more frequent PM. This phenomenon, called
selection bias, complicates learning the relationships between overhaul and
failure rates, the PM frequency, and asset characteristics. Therefore, when
learning a predictive model for estimating the overhaul and failure rate re-
sulting from a given PM frequency from observational data, we are required
to adjust for selection bias to obtain unbiased estimates.
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Total cost 
PM cost 
Cost of failures 
Cost of overhauls

1. Machine information 2. Predict potential outcomes  and 3. Prescribe the PM frequency  to minimize the total cost

CostFeature Value
Machine type 2
Age 10.2
Running hours 2,000
Contract type 1

... PM Frequency 

Failures  
Overhauls  

Potential
outcomes

PM Frequency 

Figure 4.2: Methodology overview. We present a high-level overview of
our methodology. First, machine characteristics xi are used to predict the
potential outcomes in terms of overhauls oi(t) and failures fi(t). Based on
these estimates, the total cost for different PM frequencies t ∈ T can then
be estimated. Finally, the PM frequency t̂

∗
i is chosen to minimize the total

expected cost.

4.4 Methodology

Our methodology consists of a predict-then-optimize framework, see Fig-
ure 4.2 for a high-level overview. First, we predict each new contract’s
potential outcomes, i.e., its overhaul oi(t) and failure rate fi(t) for PM fre-
quencies t ∈ T , based on its characteristics xi. Therefore, the first step is to
train a machine learning model to estimate these potential outcomes from
observational data on past contracts D. In a second phase, we use these
predictions to estimate each contract’s total cost per running period for dif-
ferent PM frequencies t ∈ T . The PM frequency is chosen to minimize the
resulting total cost of overhauls, failures, and PM.

In what follows, we first introduce standard assumptions that are required to
estimate potential outcomes from observational data in Section 4.4.1. Sec-
ond, we describe how we estimate the potential outcomes by learning a causal
machine learning model from observational data. We use a state-of-the-art
methodology called SCIGAN [169]. This is described in Section 4.4.2. Third,
in Section 4.4.3, we describe how these predictions are used to determine each
machine’s optimal PM frequency that minimizes the total estimated cost.

4.4.1 Assumptions

The challenge in estimating potential outcomes from observational data is
dealing with selection bias. Learning unbiased estimates of the potential out-
comes from observational data requires making three standard assumptions:
consistency, overlap, and unconfoundedness [165], [169]. The first, consis-
tency, means that each contract’s observed outcomes for O and F given PM
frequency T = t are its potential outcomes O(t) and F (t):

Assumption 1. Consistency Y = Y (t) for all t ∈ T .
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This assumption implies that there is only one version of the treatment and
that the mechanism used to assign the treatment does not matter. It is
violated if, for example, the prescribed PM is not performed for some assets,
e.g., when some clients do not adhere to the PM frequency prescribed by
the service provider. Consistency may seem straightforward, but ensures
that the PM schedule prescribed by the service provider will be observed in
practice.

The second assumption, overlap or positivity, ensures that each possible
contract xi has a non-zero probability of receiving each frequency of PM
interventions ti:

Assumption 2. Overlap For all x ∈ X with p(x > 0) and t ∈ T ∶ 0 <

p(t∣x) < 1.

This implies that, for each observed machine, it was a priori possible to ob-
serve each PM frequency, although not necessarily with the same probability.
This assumption would be violated when, for example, machines older than
five years always receive at least ten PM interventions per running period.
In that case, the probability of receiving a PM frequency lower than ten is
zero for those machines, implying a violation of the overlap assumption. In
that case, we would not be able to account for selection bias, as no obser-
vations would exist to infer what would happen to old machines at low PM
frequencies.

The third and final assumption, unconfoundedness or no hidden confounders,
ensures that there are no unobserved variables influencing both the treatment
assignment T and a potential outcome O(t) or F (t):

Assumption 3. Unconfoundedness Conditional on machine characteristics
X, potential outcomes O(t) and F (t) are independent of the PM frequency
T :

{O(t), F (t)∣t ∈ T } ⊥⊥ T ∣X.

This assumption implies that all information that informed decisions regard-
ing past PM frequencies are included in the data. This assumption would be
violated if, for example, machines in some locations were maintained more
frequently in the past, but no record of the machine’s location was kept.
If hidden confounders are present, it is impossible to adjust for the hidden
confounder and, consequently, for selection bias based on the observed data.
Given that Assumptions 1 to 3 are met, controlling for confounding result-
ing from machine characteristics xi allows accounting for selection bias in
observational data and obtain unbiased estimates.
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4.4.2 Predictive model to estimate the effect of the PM
frequency on overhaul and failure rates

First, we need to predict each contract’s potential outcomes, i.e., its over-
haul oi(t) and failure rate fi(t) for each PM frequency t ∈ T , based on
its characteristics xi. To this aim, we learn two machine learning models
go ∶ X × T → O and gf ∶ X × T → F defined by parameters θo, θg ∈ Θ. The
goal is to obtain unbiased estimators of the potential outcomes:

go(t,x) = E [O(t)∣X = x] , (4.2)
gf(t,x) = E [F (t)∣X = x] . (4.3)

In this work, we learn go and gf using SCIGAN, a recently proposed method-
ology for predicting potential outcomes of continuously-valued treatments
that achieved state-of-the-art performance across a variety of settings [169].
Each model is learned in two steps. First, a generative adversarial network
(GAN) [183] is trained to model the distribution of the potential outcomes,
conditional on the contract’s characteristics. This is achieved by training
two neural networks, where the generator network learns to generate coun-
terfactual contracts that cannot be distinguished from factual, observed con-
tracts by the discriminator network. In a second phase, the GAN is used to
augment the observed training data with generated counterfactual samples.
This way, the augmented data set contains all potential outcomes, including
the factual outcome and the generated, counterfactual outcomes. This way,
the fundamental problem of causal inference is alleviated as we “observed”
all potential outcomes for each contract and, because of this, the augmented
data set does not suffer from selection bias. Using the augmented data set,
a predictive model can be trained to predict the potential outcomes in a
supervised manner. For this, we again use a neural network. Each network
is implemented as a multilayer perceptron (MLP). Appendix B.1 provides
more information on the training and hyperparameter optimization of the
models.

4.4.3 Optimization of the maintenance cost
The predicted potential outcomes allow estimating the costs incurred at
different PM frequencies. It can be seen that, using the predicted potential
outcomes, all terms in Equation (4.1) depend on the PM frequency ti:

ci(ti) = ct ti + co oi(ti) + cf fi(ti). (4.4)

Each machine’s optimal PM frequency t
∗
i is found by minimizing the ex-

pected cost: t
∗
i = argminti ci(ti) for all i ∈ {1, . . . , n}. To account for het-
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erogeneity in the contracts, the PM frequency is optimized for each specific
machine.

4.5 Results

We validate our methodology empirically using data provided by an orig-
inal equipment manufacturer that offers full-service maintenance contracts
to their customer base. By optimizing the PM frequency, they can minimize
the total cost of such a contract, resulting from PM, overhauls, and failures.
In Section 4.5.1, we first present the data used in our experimental anal-
ysis. Section 4.5.2 describes the semi-synthetic data generating procedure
that we used to evaluate the predicted potential outcomes and prescribed
PM frequencies. In Section 4.5.3, we present the evaluation metrics and
benchmarks used. Finally, Section 4.5.4 presents the empirical results of our
experimental analysis.

4.5.1 Data

Our data set contains more than 4,000 full-service maintenance contracts.
For each contract i, we have information xi relating to the characteristics of
the machine, the contract, and maintenance-related events. An overview of
the information available in the data is presented in Table 4.1 and an excerpt
is shown in Table 4.2. Maintenance-related events (PM interventions, over-
hauls, and failures) are presented per running period, which is a set number
of running hours. For reasons of confidentiality, the exact number of running
hours per period is not revealed in this article. Costs are averaged over all
events and re-scaled for reasons of confidentiality.

The data is preprocessed as follows. Categorical variables are encoded with
dummies and xi is standardized. The PM interventions, overhauls, and fail-
ures that occurred throughout the contract are converted to the number of
events per running period to calculate each contract’s PM frequency, over-
haul rate, and failure rate. For future contracts, the exact number of running
hours might not be known when the contract starts, but an estimate would
typically be available.

4.5.2 Semi-synthetic data generating procedure

In order to obtain a good predictive model, we need to be able to accurately
predict the overhaul and failure rates at different PM frequencies. However,
if we test this predictor’s accuracy using only observational data, we can
verify the model’s ability to accurately predict the observed outcome, the
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Table 4.1: Data overview. Overview of the available contract information
on machine and contract characteristics, preventive maintenance interven-
tions, overhauls, and failures. For confidentiality, we present PM interven-
tions, overhauls, and failures per running period, which is an undisclosed
number of running hours. Similarly, the costs are averaged and re-scaled.

Variable Domain

Machine information
Type {1, . . . , 7}
Age at contract start (in years) [0, 39]
Running hours at contract start [2500, 110000]

Contract information
Type {1, 2}
Duration (in days) [180, 5850]
Running hours during contract [0, 186000]
Average running hours per year [300, 8500]
Preventive maintenance per running period
PM frequency [0, 20]

Outcomes per running period
Number of overhauls [0, 128]
Number of failures [0, 185]

Average costs (in €)
Preventive maintenance 73
Overhaul 207
Failure 104
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Table 4.2: Data excerpt. We present an excerpt of the data set, showing
examples of covariates related to the machine and contract xi, and mainte-
nance related events per running period: the observed PM frequency ti, the
overhaul rate oi(ti), and the failure rate fi(ti).

Machine information Contract information Outcome freq.
Type Age Running hours Type Duration Running hours Running hours PM Overhaul Failure

[years] contract start [days] over contract avg per year ti oi(ti) fi(ti)

4 0 528.88 1 1,826 12,391.63 2,434.67 1.42 0.19 0.91
5 12 77,301.37 1 1,764 29,131.68 4,907.42 2.24 2.57 7.24
6 15 39,312.72 1 2,555 8,906.65 2,694.49 2.89 5.92 8.47
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
2 16 61,948.75 0 1,764 21,303.56 3,912.07 4.02 0.25 2.52

overhaul and failure rates only at the observed PM frequency ti (the ob-
served outcome), but not the overhaul and failure rates if the machine had
received more or less maintenance (the unobserved outcomes). This makes
the evaluation of causal models challenging, as only one potential outcome
is observed for each contract in our dataset. Therefore, we rely on semi-
synthetic data to evaluate our model. This approach is commonly used in
both maintenance [see e.g., 179] and causal inference [e.g., 170].

The key idea of the semi-synthetic setup is to create a test set containing
each contract’s potential outcomes at all possible PM frequencies, instead
of only the observed outcome at one administered PM frequency. This is
achieved by generating the outcomes at all possible PM frequencies oi(t)
and fi(t) for all possible PM frequencies t ∈ T , based on the contract’s
real characteristics xi. This allows us to create (1) a training set with only
one observed PM frequency for each contract, equivalent to observational
data, and (2) a test set containing potential outcomes for all possible PM
frequencies for each contract, which are never observed in reality but needed
for evaluation.

Potential outcomes oi(t) and fi(t) are generated based on the observed char-
acteristics xi and PM frequencies t ∈ T . For the failure rates, we have:

fi(t) = 9σ( v
⊺
fxi

Í ÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÏ
Base rate

−
1

10
σ (w⊺

fxi)
ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

PM effect

t + ϵf
ÍÑÏ

Noise

), (4.5)

with vf ,wf ∼ U ((0, 1)d×1) and ϵf ∼ N (0, 1). σ denotes the logistic func-
tion. This way, each machine has a base failure rate that is diminished by
administering more frequent PM, where both the base rate and PM effect
depend on the contract’s characteristics xi. The factor 9 rescales the average
failure rate to roughly the same number in the original, observed data. For
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Figure 4.3: Semi-synthetic data. We represent the observed outcomes
for contracts in the training and validation set by dots and the potential
outcomes for contracts in the test set by a line. The bold lines illustrate the
overhaul rate, failure rate, and total cost averaged across all contracts.

the overhaul rates, we similarly have:

oi(t) = 7σ( v
⊺
oxi

Í ÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÏ
Base rate

−
1

10
σ (w⊺

oxi)
ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

PM effect

t + ϵo
ÍÑÏ

Noise

), (4.6)

where vo,wo ∼ U ((0, 1)d×1) and ϵo ∼ N (0, 1).

Using the semi-synthetic setup, the contracts in the test set have known
potential outcomes for all possible values of ti ∈ T based on Equations (4.5)
and (4.6). Conversely, the training and validation sets include only one
observed outcome for one PM frequency ti. An illustration of a generated
data set is shown in Figure 4.3. The training, validation, and test sets
respectively consist of 50%, 25% and 25% of the data. Experiments are
repeated five times.

In a first analysis, we use the PM frequency ti that was observed in practice
for the training and validation set. In other words, we only simulate the
overhaul and failure rates. In a subsequent analysis, we evaluate our ap-
proach for different levels of selection bias by also controlling the observed
PM frequencies in the training and validation set. For this, we manipulate
the level of selection bias by making the observed PM frequencies ti more or
less dependent on the contract characteristics xi, using an approach similar
to [169]. More specifically, we control the selection bias by assigning PM
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frequencies based on sampling from a beta distribution:

ti ∼ 20Beta (1 + λδi
10

, 1 + λδi) , (4.7)

where δi = σ(wbxi) with wb ∼ U ((0, 1)d×1). δi ensures that assignment of
the PM frequency is based on observed features xi. This way, we control
the level of selection bias by setting λ. A value of λ = 0 results in Beta(1, 1)
or a uniform distribution. This implies that we randomly assign each ma-
chine’s PM frequency with equal probability for each PM frequency in T .
Therefore, λ = 0 results in a situation equivalent to a randomized controlled
trial. Higher values of λ imply more selection bias, with λ = 30 resulting
in an overall distribution of the PM frequencies over the entire training set
that is similar to the observed distribution. In other words, λ = 30 corre-
sponds to a realistic level of selection bias. Figure 4.4a shows each contract’s
distribution from which the PM frequency is sampled, for different values of
λ. A higher value of λ increases the diversity of the different contracts’ PM
frequency distributions, resulting in more selection bias in the training data.
Figure 4.4b compares the observed distribution of PM frequencies over all
contracts in the original data and the overall distributions of PM frequencies
resulting from different values of λ.

4.5.3 Performance evaluation
We evaluate our predict-then-optimize approach using three different met-
rics. First, we evaluate the ability of the machine learning model to accu-
rately predict a contract’s overhaul oi(t) and failure rate fi(t) over different
levels of PM frequencies t ∈ T . This is measured using the mean integrated
square error (MISE) [168], [184]:

MISE =
1
n

n

∑
i=1

∫
m

0
(yi(t) − ŷi(t))2 dt, (4.8)

for yi(t) ∈ {oi((t), fi(t)}. Because we simulate the outcomes (see Fig-
ure 4.3), we know the ground truth yi(t) for each t ∈ T . Second, to evaluate
the accuracy of the prescribed maintenance frequencies t̂

∗
i , we consider a

variant of the policy error (PE) [168] that compares the prescribed PM fre-
quency with the optimal PM frequency:

PE =
1
n

n

∑
i=1

(t∗i − t̂
∗
i )

2
. (4.9)

The optimal PM frequency t
∗
i can be found numerically by searching over

the total cost incurred at each possible PM frequency t ∈ T . Third, we
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Figure 4.4: Simulating selection bias. (4.4a) We simulate a training data
set where each contract’s (observed) PM frequency is drawn from its proba-
bility distribution, shown in green, using Equation (4.7) for different values
of λ. When λ = 0, each contract has equal probabilities of receiving each
PM frequency between 0 and 20, corresponding to randomly assigned PM
frequencies. Increasing λ makes the distributions more dependent on con-
tract characteristics and therefore more diverse. This way, certain contracts
will more likely receive less frequent PM, resulting in selection bias. Higher
values of λ imply more diversity in the distributions and, consequently, more
selection bias. (4.4b) We show how the PM frequency is distributed among
the different contracts, both in reality and as a result of different values of λ.
Larger values of λ result in more selection bias, with a value of 30 resulting
in an overall PM frequency distribution close to the original.
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Table 4.3: Methodologies overview. Our proposed, individual policy,
SCIGAN–ITE, prescribes the PM frequency based on the individual treat-
ment effect (ITE) estimated using SCIGAN. This proposed approach is an-
alyzed using an ablation study and compared with two variants. The first,
MLP–ITE, does not account for selection bias. The second, SCIGAN–ATE,
is a general policy based on the average treatment effect (ATE) and is not
individualized towards each individual machine.

Methodology Selection bias? Individualized?

SCIGAN–ITE ✓ ✓

MLP–ITE ✗ ✓
SCIGAN–ATE ✓ ✗

evaluate the prescribed maintenance frequency in terms of costs using the
policy cost ratio (PCR) that compares the costs of the estimated optimal
PM frequency ci(t̂∗i ) with the cost of the optimal PM frequency ci(t∗i ):

PCR =
1
n

n

∑
i=1

ci(t̂∗i )
ci(t∗i )

. (4.10)

For all metrics, a lower value indicates better performance with 0 being the
optimal value for MISE and PE and 1 for PCR.

Our proposed maintenance policy uses SCIGAN to learn the individual treat-
ment effects (ITE), i.e., each contract’s overhaul and failure rate for differ-
ent PM frequencies and will be referred to as SCIGAN–ITE. We benchmark
against two other policies (see Table 4.3). First, a policy based on a neu-
ral network (MLP) that learns oi and fi given xi and ti in a completely
supervised manner without adjusting for selection bias (MLP–ITE). This
allows us to assess whether there is a benefit of using the GAN to adjust
for selection bias. Second, the average policy (SCIGAN–ATE) sets a single
optimal t̂∗ for all contracts based on the average (instead of the individual)
PM effect. This allows to validate the benefit of an individualized policy
tailored towards each specific machine.

4.5.4 Empirical results
In this section, we present the results of the semi-synthetic experiments
based on more than 4,000 maintenance contracts. Section 4.5.4 addresses (1)
whether there is improved performance resulting from adjusting for selection
bias and (2) whether an individualized policy per contract outperforms a
general policy that does not take contract characteristics into account. In
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Section 4.5.4, we show the importance of accounting for selection bias by
evaluating the different policies’ performance for varying levels of selection
bias (Section 4.5.4).

Benefits of a causal, individualized PM policy

Table 4.4 reports the empirical results for the predictions and PM frequen-
cies obtained using each methodology. The left part of Table 4.4 compares
the ability of SCIGAN and MLP of accurately predicting the overhaul and
failure rate at different PM frequencies. SCIGAN achieves the lowest error
measured by the MISE. It predicts the overhaul and failure rate more ac-
curately than the supervised MLP that does not account for selection bias.
In the right part of Table 4.4, we assess the quality of the PM frequencies
prescribed by the different approaches. These results show that the rela-
tively more accurate predictions of the individualized, prescriptive approach
(SCIGAN–ITE) also result in better PM frequencies. On the one hand,
SCIGAN–ITE prescribes PM frequencies that are closer to the optimal PM
frequency compared to the supervised (MLP–ITE) and non-individualized
approach (SCIGAN–ATE), measured using the PE. On the other hand,
SCIGAN–ITE also results in the lowest total cost as indicated by the PCR,
achieving a cost that is 7% higher than the optimal policy, compared to 11%
for MLP–ITE and 24% SCIGAN–ATE. The gap of 7% between SCIGAN–
ITE and the optimal policy can be explained by the model being trained on
limited data and the presence of noise in the data.

Figure 4.5 takes a closer look at these results, by showing how each model’s
performance of each contract individually, rather than looking only at the
average performance over all contracts. The left panel in Figure 4.5 assesses
how close each contract’s PM frequency is to the optimal PM frequency,
by showing each model’s error distribution, i.e., the differences between the
prescribed and optimal PM frequencies for all contracts. For SCIGAN–
ITE most of the errors are close to zero, indicating that the prescribed
PM frequency is typically reasonably close to the optimal PM frequency.
By comparison, MLP–ITE and SCIGAN–ATE more frequently prescribe a
PM frequency that deviate from the optimal PM frequency, illustrated by
the heavier tails in their distributions. The right panel in Figure 4.5 looks
at the costs resulting from each contract’s prescribed PM frequencies, by
showing the distribution of each contract’s PCR, i.e., the cost resulting from
the prescribed PM frequency relative to the cost incurred by the optimal
PM frequency. SCIGAN–ITE typically frequently obtains a PCR close to
one, indicating that it incurs costs that are close to the optimal policy.
By comparison, MLP–ITE and especially SCIGAN–ITE more frequently
incur costs that are much higher than the costs resulting from the optimal
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Table 4.4: Empirical evaluation. We compare performance for the differ-
ent policies over five simulation runs. We evaluate each model’s ability to
accurately predict the potential outcomes oi(t) and fi(t) using the MISE,
as well as each model’s ability to accurately prescribe PM frequencies (PE)
and to minimize costs (PCR). For all metrics, a lower value is better.

MISE
Overhauls Failures

SCIGAN 07.71 ± 0.60 14.16 ± 1.68
MLP 10.25 ± 1.33 18.27 ± 3.65

PE PCR

SCIGAN–ITE 2.40 ± 0.46 1.07 ± 0.01
MLP–ITE 4.36 ± 1.25 1.11 ± 0.02

SCIGAN–ATE 8.77 ± 1.07 1.24 ± 0.04

PM frequency. These findings correspond to the findings averaged over all
contracts in Table 4.4.

The improved performance of SCIGAN compared to a standard MLP sug-
gests that learning PM effects from observational data requires account-
ing for selection bias. Moreover, the relatively worse performance of the
non-individualized approach, SCIGAN–ATE, compared to the individualized
approach, SCIGAN–ITE, shows the benefit of an individualized, machine-
dependent policy for imperfect maintenance that takes into account machine
characteristics and accounts for machine heterogeneity.

Importance of accounting for selection bias

The results in the previous section were obtained for the level of selection
bias that was observed in reality, by using the PM frequencies in the training
set as originally observed. In this section, we obtain more insight into the in-
fluence of selection bias by comparing the performance of SCIGAN–ITE and
MLP–ITE for varying levels of selection bias. This is achieved by controlling
the level of selection bias using λ (see Equation (4.7)). At λ = 0, there is no
selection bias. In this case, each contract’s PM frequency is randomly drawn
from the domain of all possible PM frequencies, with each contract having
equal probabilities of receiving each PM frequency. In other words, setting
λ = 0 results in data similar to a randomized controlled trial, which would
be ideal for learning causal effects. Even though randomly assigning PM
frequencies is not reasonable in the context of maintenance, this simulation
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Figure 4.5: Evaluating the policies’ decisions. We compare the accura-
cies and costs of the prescribed PM frequencies by looking at each model’s
performance over all contracts. (Left) We show how the differences between
the prescribed and optimal PM frequency are distributed per model. (Right)
We show the distribution of all contracts’ policy cost ratios resulting from
each model. Results are shown for one representative iteration.

allows us to study the influence of selection bias on performance. Increasing
λ makes a machine’s observed PM frequency less random and more depen-
dent on its characteristics and, therefore, results in more selection bias.

Figure 4.6 compares SCIGAN’s and MLP’s abilities of predicting overhauls
and failures, as well as their ability of prescribing good PM frequencies, for
varying levels of selection bias. SCIGAN achieves good predictive perfor-
mance in terms of MISE for the entire range of operating conditions, rang-
ing from no selection bias and randomly assigned PM frequencies (λ = 0) to
realistic levels of selection bias (λ = 30). Conversely, the MLP, a supervised
approach that does not adjust for selection bias, accurately predicts the po-
tential outcomes when the PM frequencies in the training set are randomized
(λ = 0), but results in notably worse predictions compared to SCIGAN when
selection bias is present at higher levels of λ. This result implies that it is
important to adjust for dependencies between a contract’s characteristics
and its observed PM frequency when estimating PM effects from observa-
tional data. Similarly, SCIGAN is robust towards higher levels of λ and
selection bias in terms of decision-making, illustrated by stable values for
PE and PCR across different levels of selection bias, whereas MLP results
in less accurate and more costly decisions as bias increases.

Observational data on maintenance operations is likely to contain selection
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bias, because a machine’s PM frequency that was observed in the past will
not have been assigned randomly, but based on machine characteristics–be
it following a technician’s expertise or an existing maintenance policy. Our
empirical results demonstrate the importance of dealing with selection bias
when working with observational data. Moreover, our results indicate that
the generative model in SCIGAN is able to accurately generate counterfac-
tual outcomes to overcome selection bias, resulting in both better predictions
and decisions compared to the MLP that does not use this generative model.
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Figure 4.6: Results for varying levels of selection bias. We show
results for different levels of selection bias in terms of λ (see Equation (4.7)).
Although SCIGAN–ITE performs similar to MLP–ITE for lower values of λ,
it has better performance for stronger levels of bias in terms of MISE, PE,
and PCR.

4.6 Conclusion

This work proposes a novel way to optimize the preventive maintenance fre-
quency. Our causal inference approach predicts how the failure and overhaul
rate would be impacted by a certain PM frequency, taking the asset’s charac-
teristics into account. This is achieved by relying on state-of-the-art machine
learning methodologies for causal inference that learn an asset’s outcomes
for different PM frequencies from observational data on assets that were
maintained in the past. The benefit of our approach is that, unlike existing
approaches, our methodology does need strong assumptions regarding the
failure or overhaul rate or PM effect. These are usually assumed to be known
and are difficult to verify from data due to censoring, as assets are usually
maintained before failure occurs. Moreover, existing approaches typically
do not account for asset heterogeneity. Conversely, our approach is to learn
an asset’s overhaul and failure rate resulting from a given PM frequency
from observational data using flexible machine learning models. This allows
to estimate what will happen for a contract given a certain PM frequency,
in terms of overhauls and failures, and makes it possible to prescribe the
PM frequency that minimizes the combined costs resulting from overhauls,
failures, and PM.

Theoretically, we contribute by framing time-based maintenance as a prob-
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lem of causal inference and by proposing a predict-then-optimize frame-
work to solve this problem. Empirically, we validate our approach with
semi-synthetic experiments using real-life data on more than 4,000 full-
service maintenance contracts. We find that our proposed approach out-
performs both an approach that does not account for selection bias and a
non-individualized approach in terms of both accuracy and cost of the pre-
scribed PM schedules. Moreover, we highlight the importance of dealing
with selection bias when learning from observational data. Past mainte-
nance decisions were likely not made at random, but based on the asset’s
characteristics. Because of this, machine learning models need to account for
dependencies between asset characteristics and the observed PM frequency
in order to obtain a good estimate of the overhaul and failure rate for a
given PM frequency. These findings show that our proposed approach offers
a powerful and flexible policy for individualized maintenance.

4.6.1 Limitations

Our data-driven approach requires observational data to train the machine
learning models. When limited data is available, more simple machine learn-
ing methodologies based on, for example, linear regression can be preferred
to the presented approach based on neural networks. Choosing and validat-
ing causal inference models is an active area of research [185], [186].

Causal inference not only requires data, but also requires that certain as-
sumptions regarding the data are met. The first, overlap, implies that each
asset could in principle receive each possible PM frequency, albeit not with
the same probability. This requires a degree of flexibility or variability in
how PM frequencies were assigned in the past. Alternatively, it might re-
quire some experimentation to provide insight into deviations from the ex-
isting policy. Overlap can be tested [187] and characterized [188] from data.
Moreover, recent work has looked at characterizing uncertainty in regions
where overlap is violated [189], [190].

The second assumption, unconfoundedness, is untestable in practice [165].
However, it can be assessed by people with domain-knowledge that were in
charge of making maintenance decisions. The relevant question is whether
all relevant information regarding the assignment of past PM frequencies
is included in the data. If there are unobserved confounders, adequately
adjusting for selection bias might not be possible, which would result in bi-
ased estimates of the overhaul and failure rate. Recently, sensitivity analyses
have been suggested to assess the influence of hidden confounders [191], [192].
Similarly, methods have been proposed for quantifying ignorance regarding
the potential outcomes due to possible violations of these assumptions [193].
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4.6.2 Managerial implications
Optimizing maintenance using causal inference and machine learning offers
a potentially flexible and powerful maintenance policy. Our approach pre-
scribes the optimal PM frequency to each individual asset by comparing
different counterfactual outcomes that would result from different mainte-
nance frequencies, by learning a causal machine learning model from data on
assets that were maintained in the past. Under the right conditions, causal
inference represents a viable and performant paradigm for maintenance op-
timization. However, our approach also requires a different way of thinking
about maintenance optimization. A completely data-driven policy for pre-
ventive maintenance is based on assumptions regarding the data and the
models learned from this data. Therefore, maintenance practitioners should
check whether their setting allows for causal inference, i.e., whether the re-
quirements presented in Section 4.4.1 are met. If not, practitioners might
consider altering their maintenance operations to satisfy these conditions,
e.g., by running small-scale experiments to observe the effect of deviating
from their existing policies.

4.6.3 Future work
In terms of future work, it would be valuable to not only optimize the fre-
quency of one type of PM intervention, but also consider different possible
interventions in terms of their depth and costs. This way, it would be possi-
ble to alternate cheap, quick visits and more expensive and thorough visits
throughout the asset’s lifetime. Moreover, it would be interesting to incor-
porate more flexible timing of maintenance interventions and consider se-
quences of different maintenance interventions, potentially prescribed based
on real-time dynamic data obtained through sensors. Sequences of treat-
ments have also received attention in the literature on causal inference [e.g.,
194]–[196]. Finally, it would be interesting to look at ways of more closely
integrating the predictive model in the decision-making step, e.g., by using
approaches for integrated predict-and-optimize [197] or cost-sensitive learn-
ing [8].
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5
NOFLITE: Learning to Predict
Individual Treatment Effect
Distributions

Estimating the effect of a treatment on an individual’s outcome
of interest is an important challenge in various fields, such as
healthcare, economics, marketing, and education. Previous work
in machine learning has focused on estimating the expected value
of the treatment effect. However, effective personalized decision-
making requires more than just the treatment expected effect; it
requires knowing the entire treatment effect distribution. Know-
ing this distribution allows analyzing the treatment’s expected
utility or quantifying the uncertainty regarding a treatment’s ef-
fect. This information is essential for prescribing optimal treat-
ments. The ability of a model to predict accurate individual
treatment effect distributions is captured by its likelihood. In
light of this, we propose a novel neural architecture, NOFLITE,
that uses normalizing flows to directly optimize this likelihood,
while simultaneously learning flexible estimates of the individ-
ual treatment effect distribution. Experiments on various semi-
synthetic data sets show that NOFLITE outperforms existing meth-
ods in terms of loglikelihood. Moreover, we illustrate how the
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predicted distributions can enable an in-depth analysis of the
treatment effect and more accurate decision-making.

5.1 Introduction

Knowing how a certain treatment or action will affect an instance’s outcome
of interest is of great importance in various domains, such as healthcare
[170], marketing [198], education [199], and economics [10]. A wide variety
of existing work has looked at using machine learning (ML) for estimating
the individual treatment effect, to help decision-makers optimize treatment
assignment at an individual level. Existing work on treatment effect estima-
tion in ML has proposed novel approaches based on a variety of different ML
algorithms, including neural networks [200]–[203], Gaussian processes [204],
and decision trees [205]–[207], as well as general meta-learners [208], [209].

In spite of this growing body of literature, existing work has almost exclu-
sively focused on accurately estimating the expected value of the treatment
effect. We argue, however, that a more comprehensive approach is needed:
to effectively support decision-making, we require accurately modeling the ef-
fect’s entire distribution. Such an approach is essential for adopting ML
for treatment decision-making in practice. First, it unlocks a wide range of
descriptive statistics, enabling a more detailed analysis of the treatment
effect. For example, it allows for reasoning about uncertainty of events re-
sulting from a treatment: e.g., to get uncerainty intervals or estimate the
probability of the treatment’s effect being positive. This way, the treatment
effect distribution subsumes other common estimands which focus on a single
attribute of this distribution, such as the mean, median, or other quantiles.
Second, the treatment effect distribution is essential for deciding upon
the optimal treatment. By pairing the treatment effect distribution with
a utility function, we can obtain the expected utility (see Figure 5.1 for a
graphical illustration). Utility functions have been influential in a variety of
fields, including economics [210], [211], game theory [212], insurance [213],
design [214], and healthcare [215].

Contributions. The goal in this work is to estimate individual treatment
effect distributions. To obtain good estimates of this distribution, we require
learning a model with a high likelihood from observational data. This work
addresses treatment effect estimation through this lens and, in doing so,
makes three contributions. 1. To learn models with high likelihood, we
propose a novel neural architecture, NOFLITE, which employs normalizing
flows to learn flexible estimates of the treatment effect distributions. 2. We
propose an end-to-end training strategy to directly maximize the metric of
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Figure 5.1: Optimizing treatment decisions requires knowing the
treatment effect distribution. Predicting the treatment effect distribu-
tion p(τ) allows for assessing a treatment’s utility by pairing it with a utility
function u(τ) and obtaining its expected utility E(u(τ)). Consequently, the
individual treatment effect distribution is instrumental to analyzing treat-
ment utilities (on the left) and comparing treatment preferences (on the
right). Left: For a given treatment and the corresponding treatment effect
distribution p(τ), we can compare different utility functions u(τ) and their
expected utilities. Right: Similarly, for a given utility function u(τ), dif-
ferent treatment effect distributions p(τ) incur different expected utilities.
These types of analyses are not possible using only the individual’s expected
treatment effect E(τ), illustrating the importance of estimating the entire
treatment effect distribution p(τ) for personalized decision-making.

interest–the model’s likelihood–while regularizing to account for treatment
assignment bias. This way, we aim to learn an unbiased model with high
likelihood given the (unknown) test distribution from observational training
data. 3. We evaluate our method empirically and compare performance
to other state-of-the-art approaches using three semi-synthetic data sets.
Contrary to existing work, this evaluation is centered around the model’s
likelihood.

5.2 Related work

Our work builds upon existing work in (individual) treatment effect esti-
mation and normalizing flows. In this section, we discuss the most closely
related literature for each category in turn.

5.2.1 Treatment effect estimation
A wide variety of methodologies have been proposed for estimating the ex-
pected individualized treatment effect (ITE). For a complete overview, we
refer to [164]. Even though estimating the distribution of the ITE has re-
ceived far less attention, several methods that were originally proposed for
estimating the expected value are nevertheless capable of learning distribu-
tional estimands. These methods include Bayesian Additive Regression Trees
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(BART) [205] and Causal Multi-task Gaussian Processes (CMGP) [204], as
well as a variety of metalearners – general combinations of supervised ML
methods [208]. Particularly relevant to our work are recent approaches based
on generative neural networks. On the one hand, generative adversarial net-
works have been used to learn the counterfactual distribution and deal with
confounding bias, for binary treatments [GANITE; 216] and multiple treat-
ments with continuous dosages [SCIGAN; 169]. On the other hand, varia-
tional autoencoders have been used to adjust for a hidden confounder using
a (noisy) proxy [217].

To the best of our knowledge, the only work explicitly looking at learning
individual treatment effect distributions is the recently proposed Collaborat-
ing Causal Networks (CCN) [218]. As opposed to NOFLITE, CCN does not
learn by maximizing the model’s likelihood, but rather uses collaborating
networks [219], where one network is trained to estimate the cumulative dis-
tribution function and another model estimates its inverse. An additional,
more subtle distinction is that they focus on estimating and evaluating the
distribution of the potential outcomes, instead of the treatment effect distri-
bution. A structured comparison of existing methodologies and the proposed
NOFLITE is provided in Table 5.1.

In this work, we rely on a generative neural network. More specifically, we
estimate the treatment effect distribution using normalizing flows, a flexible
type of generative model that transforms a distribution to a simple prior
through a series of learned transformations. Similar in spirit to our work
is the recent Interventional Normalizing Flows [220]. They propose to use
normalizing flows to estimate the density of the average treatment effect
resulting from an intervention, building upon the theoretical results of [221].
In contrast, we aim to predict distributions at an individual level.

Although our work focuses on the static setting, other work has looked
at forecasting treatment outcomes over time [12], [222]. In this setting,
CF-ODE has recently been proposed for learning uncertainty estimates for
treatment outcomes over time [223].

The fact that the expectation of the treatment effect is insufficient for decision-
making has motivated previous work in related areas. Most closely related to
ours are methods for predicting the treatment effect distribution at the pop-
ulation level, instead of the individual level [220], [221], [224]–[226]. Other
work has been done on different, but related problems, such as estimating
quantile treatment effects [227], [228], finding the treatment regime that
optimizes the quantile treatment effect [229], conformal inference of treat-
ment effects [230], [231], or bounding the potential outcomes to support
decision-making [232]. More generally, other related work in machine learn-
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Table 5.1: Literature table. We compare NOFLITE with existing method-
ologies for estimating individual treatment effect distributions. Three di-
mensions are considered: (1) whether a neural network is used, (2) whether
the model’s likelihood Lθ is optimized directly, and (3) whether it adjust
for confounding.

Method Neural? Likelihood? Confounding? Ref.

BART ✗ ✓ ✗ [205]
CMGP ✗ ✓ ✓ [204]

CEVAE ✓ ✗ ✗ [217]
GANITE ✓ ✗ ✓ [216]

CCN ✓ ✗ ✓ [218]

NOFLITE ✓ ✓ ✓ (Ours)

ing aims to estimate confidence intervals or distribution properties for more
comprehensive off-policy evaluation [e.g. 233]–[238] or learns to optimize the
distribution of returns of a reinforcement learning agent [239], [240].

5.2.2 Normalizing flows

Our approach builds upon a type of deep generative model called normal-
izing flows. Normalizing flows offer distinct advantages over other types of
generative models like generative adversarial networks [241] or variational
autoencoders [242]. The key benefit of using normalizing flows is that they
allow for an exact evaluation of the density. Consequently, the model can
be directly optimized for the metric we are interested in: the model’s like-
lihood. We provide a brief introduction to normalizing flows below. For a
more detailed overview, we refer to [243].

A normalizing flow is an invertible mapping g ∶ Y ↦ Z from the empiri-
cal/original data space Y to a latent space Z [244], [245]. During training,
the flow learns to map the empirical distribution p(y) to a known (simple)
prior distribution p(z), typically a Gaussian distribution. The mapping g
consists of a series of invertible transformations g(y) = g1 ◦ ⋅ ⋅ ⋅ ◦ gk(y) with
parameters θ learned by a neural network. This way, the density can be
obtained using the change of variables formula:

p(y) = pZ(g(y))
»»»»»» det (

∂g(y)
∂y

)»»»»»» . (5.1)

Using this formulation, we can evaluate the model’s density exactly. Con-
sequently, we can optimize the mapping g to directly maximize the model’s
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likelihood. After training, inference can be done by sampling from the simple
prior p(z) and transforming the sample based on the inverse flow g

−1(z).

Normalizing flows have been successfully applied in a wide range of tasks,
such as generating images [245]–[247], audio [248]–[251], and graphs [252], as
well as reinforcement learning [253]–[255] and energy forecasting [256], [257].

Different families of transformations g have been proposed in the literature
on normalizing flows. In this work, we use deep sigmoidal flows [258]. Our
choice is motivated by sigmoidal flows offering a flexible transformation –
the resulting flow is a universal approximator – and their excellent empirical
performance. Deep sigmoidal flows use a transformation g that is a strictly
monotonic neural network. The parameters of this network are given by
a conditioner network. To comply with the monotinicity requirement, the
learned transformer parameters are restricted to strictly positive weights and
strictly monotonic activation functions–more specifically, a sigmoid activa-
tion. Although the inverse transformation g

−1 is not known analytically,
it can be approximated numerically. There is a wide variety of other flow
transformations that could potentially also be used with NOFLITE, including
gaussianizations flows [259], [260], residual flows [261], or neural spline flows
[262].

5.3 Problem Formulation

Notation. We describe our problem setting using the Neyman-Rubin po-
tential outcomes framework [263]. Let each instance be defined by covariates
X ∈ X ⊂ Rd, a binary treatment indicator T ∈ T = {0, 1}, and an outcome
Y ∈ Y ⊂ R. Let the potential outcomes Y

(0)
, Y

(1)
∈ Y ⊂ R be defined as

the outcomes that would be observed given treatment T = 0 and T = 1.

Goal. Given an individual’s covariates x, we are interested in predicting its
individual treatment effect1 p(τ), i.e., the difference between both potential
outcomes τ = Y

(1) − Y
(0). Most existing work aims to learn an individual’s

expected treatment effect:

E(τ) = E(Y (1)
− Y

(0) ∣ X = x). (5.2)

1When using the term Individual Treatment Effect (ITE), we refer to the instance’s
measured covariates included in X. Note, however, that these covariates need not com-
pletely describe this individual and, because of this, may refer to multiple individuals. The
only requirement is that X satisfies the ignorability assumptions (1-3). Because of this
distinction, earlier work has argued that it is more precise to denote τ as the Conditional
Average Treatment Effect (CATE), see [264].
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We argue, however, that this expectation itself is insufficient for decision-
making in many applications. Instead, we need to learn the distribution of
the individual treatment effect:

p(τ) = P (Y (1)
−Y

(0) ∣ X = x) = P (Y (1) ∣ X = x)−P (Y (0) ∣ X = x). (5.3)

This distribution can be used to optimize an individual’s treatment. For
example, a decision-maker can use it to assess probabilistic statements, such
as the probability of the treatment effect being strictly positive p(τ > 0). Al-
ternatively, the ITE distribution can be used to evaluate treatment decisions
by pairing it with a (personalized) utility function to obtain the expected
utility: E(u(τ)) = ∫ u(τ)p(τ) dτ , see Figure 5.1.

Our goal is to obtain good estimates of the treatment effect distribution,
i.e., to obtain a model θ ∈ Θ with a high likelihood p(τ ∣θ) = Π

n
i=1 p(τi∣θ) =

Π
n
i=1 p(y(1)i −y

(0)
i ∣θ) given a (hypothetical) test set Dtest = {(xi, y

(0)
i , y

(1)
i )}ni=1

containing both counterfactuals. Compared to point estimates such as the
mean squared error, the likelihood can incorporate uncertainty and capture
the entire data distribution. This way, it provides a more comprehensive
measure of model performance and facilitates more robust decision-making.

Data and assumptions. We assume access to an observational dataset
Dtrain = {(xi, ti, y

(ti)
i )}nj=1 sampled from the joint distribution p(X,T, Y ).

Learning a model for estimating the individual treatment effect distribution
from this data is challenging for several reasons. We only observe one factual
outcome Y

(t) in practice, while the other, counterfactual outcome Y
(1−t) is

never observed. Consequently, the treatment effect itself is never observed,
which is known as the fundamental problem of causal inference [182]. Ad-
ditionally, because the data are observational, treatments were assigned by
a (potentially unknown) policy based on instance covariates. Therefore, it
is necessary to adjust for confounding in order to obtain unbiased estimates
of p(y(t)) and, consequently, p(τ). A final challenge is that we need to
learn each individual’s entire distribution based on only one sample for each
individual by leveraging data from similar individuals.

To identify the individualized treatment effect from observational data, we
require the following standard assumptions [263], [265]:

Assumption 4 (Consistency). An instance’s observed outcome given a
treatment is equal to its potential outcome: Y ∣X,T = Y

(t)∣X.

Assumption 5 (Overlap). Each instance has a strictly positive probability
of receiving each treatment: 0 < P(T = t ∣ X = x) < 1, ∀ t ∈ T, ∀ x ∈ X .
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Figure 5.2: NOFLITE architecture overview. We visualize the S-learner
configuration of our method. Optimization: NOFLITE learns (1) a conditional
prior p(z∣x, t) for each instance, and (2) an invertible mapping g(y) from
that conditional prior to the empirical distribution p(y(t)∣x), possibly con-
ditioned on x and/or t. Both the encoder and normalizing flow use neural
networks and are trained with gradient descent. Inference: Based on input
(x, t), the conditional prior p(z∣x, t) is estimated. Samples z are drawn from
this prior and transformed using the inverse flow g

−1(z) to estimate the dis-
tribution of each potential outcome p(y(t)∣x).

Assumption 6 (Unconfoundedness). Potential outcomes are independent
of the treatment given the covariates: (Y (0)

, Y
(1)) ⊥⊥ T ∣ X.

5.4 NOFLITE: Estimating ITE distributions us-
ing normalizing flows

To tackle the problem formulated above, we propose NOFLITE2: a neural
architecture using normalizing flows for estimating individual treatment ef-
fects distributions. A high-level overview of the architecture is shown in
Figure 5.2. NOFLITE consists of two parts. The first part learns to predict
a simple, conditional prior p(z∣x, t), in this case a Gaussian distribution
parametrized by (µ, σ). The second part learns to transform this prior to a
more complex posterior distribution of the potential outcome p(y∣x, t). The
entire model is trained end-to-end by directly maximizing its likelihood,
while regularizing to deal with confounding. Both the model architecture
and training procedure are explained in more detail below.

5.4.1 Architecture

NOFLITE’s architecture consists of two parts (see Figure 5.2): (1) an en-
coder f , i.e., a neural network that estimates a simple, parametrized prior

2All code is available at https://github.com/toonvds/NOFLITE.
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distribution, and (2) a normalizing flow g
−1 to transform this prior to a

more complex posterior distribution. In the following, we provide a detailed
description of both modules.

Encoder: learning conditional priors

The first part of the model is a neural network that encodes the input (x, t)
as a simple prior distribution p(z∣x, t). This prior can be seen as a first
approximation of the empirical distribution. We use a normal distribution
defined by parameters µ and σ: f ∶ (X,T ) ↦ (M,Σ). Depending on the ap-
plication, other distributions could be used, such as a uniform or log-normal
distribution. The only requirements are that the distribution is defined by a
finite set of parameters and that its likelihood can be computed analytically.

To deal with confounding, x is first transformed to a balanced representation
ϕ. This is achieved by learning a representation in which the distributional
distance between the treated and non-treated representations is minimized
[200], [201]. The training procedure is discussed in detail below.

Normalizing flow: learning complex posteriors

Although the encoder could be trained on its own to maximize the likeli-
hood of the conditional prior, the model’s hypothesis space would in that
case be limited to simple parametric distributions, such as the normal distri-
bution. Therefore, to augment the representational capacity of our model,
the second part of the network uses a normalizing flow that gradually trans-
forms the simple prior distribution p(z∣t, x) into a more complex posterior
distribution p(y(t)∣x, t) that can match more complex potential outcome dis-
tributions. The number of flow transformations k in g is a hyperparameter
that can be tuned. This number can be used to tune the complexity of the
transformation and, therefore, the complexity of the posterior distribution.

Normalizing flows are an active field of research and, as such, new flow trans-
forms continue to be proposed. In principle, any type of normalizing flow is
compatible with NOFLITE, as long as some requirements are fulfilled. First,
they have to be compatible with a univariate distribution (e.g. coupling
layers [245] are not suitable). Second, we have to be able to compute both
g and g

−1. Nevertheless, these requirements leave a variety of flow transfor-
mations [e.g., 261], [262], with several potential candidates that have been
shown to be universal approximators [e.g., 258], [260].

In this work, we instantiate g with a sigmoidal flow [258]. This flow type
offers great flexibility and is a universal approximator. The transforma-
tion is defined by a monotonic transformer network, whose parameters are

97



Chapter 5: Learning to Predict Individual Treatment Effect Distributions

estimated by a second conditioner network. By constraining the outputs
of the conditioner network, the monotonicity of the transformer network is
ensured. Specifically, the transformer network has strictly positive weights
and strictly monotonic activation functions. The conditioner network can
take different factors into account, such as covariates x and/or treatment
t. Although the inverse mapping is not known analytically, we can use an
interpolation search to find it numerically.

Metalearner configuration

We implement our model in two metalearner configurations. For the S-
learner configuration, the encoder concatenates the balanced representation
ϕ with the treatment t and uses this combination as inputs to predict the pa-
rameters of the conditional prior p(z∣x, t). For the T-learner configuration,
both treatments have individual output heads after the shared balanced rep-
resentation ϕ. Similarly, we define two corresponding metalearners for the
normalizing flow. The S-learner shares the flow across treatments, poten-
tially conditioning the flow transformation on the treatment–depending on
the flow type. The T-learner learns a separate flow per treatment. Either
one might be more suitable, depending on the data generating process; we
see this is a hyperparameter that can be tuned.

5.4.2 Optimization
The model is trained end-to-end to simultaneously estimate accurate treat-
ment effect distributions by maximizing the likelihood, while regularizing to
deal with confounding:

LNOFLITE = −LLL + λLMMD (5.4)

with hyperparameter λ ∈ R+ trading-off likelihood maximization and bal-
ancing.

To calculate the model likelihood, the encoder and normalizing flow cooperate
and meet in the middle, i.e., in the latent space Z. On the one hand, the
encoder maps the inputs (x, t) to a prior distribution N (µ, σ). On the other
hand, the normalizing flow g maps the outcome y to a latent z. The goal
of both components is to cooperate and maximize the likelihood of z given
N (µ, σ). This results in the following training objective:

LLL = log pZ(g(y)) + log »»»»» det (
∂g(y)
∂x

)»»»»» . (5.5)

The first term, the likelihood of g(y), can be computed analytically given
the Gaussian prior from the encoder. The second term, the log determi-
nant of the Jacobian, can be calculated from the flow transformation. This
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way, using a normalizing flow allows computing the likelihood exactly and,
therefore, optimizing it directly. In practice, we minimize the negative log-
likelihood −LLL, which is equivalent to maximizing this log-likelihood.

We learn a balanced representation to deal with confounding [200], [201].
This is achieved by minimizing the distributional distance between the rep-
resentations of different treatments. Specifically, we use the linear Maximum
Mean Discrepancy (MMD) [266]:

LMMD = 2

ÂÂÂÂÂÂÂÂÂÂ

1
n0

∑
i∈D0

ϕ(xi) +
1
n1

∑
j∈D1

ϕ(xj)
ÂÂÂÂÂÂÂÂÂÂ

2

, (5.6)

where D0 and D1 denote the control and treatment group with n0 and n1

elements (per batch), respectively.

5.4.3 Inference

Inference is done in two steps. For each instance, samples are drawn from
its prior distribution z ∼ N(µ(x, t), σ(x, t)). These samples are then trans-
formed to samples from the posterior using the inverse mapping: ŷ = g

−1(z).
After this process is completed for both treatments, a sample for the ITE is
obtained by taking the difference between each sampled potential outcome:
τ̂ = ŷ

(1) − ŷ
(0).

5.5 Results

In this section, we evaluate our proposed approach and compare it with
several benchmarks. Our main goal is to assess whether NOFLITE learns
to predict accurate individual treatment effect distributions from different
types of observational data sets. More specifically, our experiments aim to
answer three questions. (1) Does NOFLITE predict accurate individual treat-
ment effect distributions? This is our main question of interest. We evaluate
this with the loglikelihood. (2) Does the predicted distribution allow for a
more detailed analysis of individual the treatment effect, based on statistics
derived from this distribution? This is evaluated by looking at the predicted
distribution’s expected value (using the precision in estimation of heteroge-
neous treatment effects), as well as the derived confidence intervals (using
the intersection-over-union and empirical coverage). (3) Does the predicted
distribution enable accurate decision-making when paired with a utility func-
tion? We evaluate this by looking at the accuracy of the recommended
treatments.
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The remainder of this section starts by describing our experimental setup,
including data sets and benchmark methodologies in Section 5.5.1 and eval-
uation metrics in Section 5.5.2. The empirical results are presented in Sec-
tion 5.5.3. More information on hyperparameter tuning for NOFLITE is pro-
vided in Appendix C.2.

5.5.1 Data and benchmarks

Evaluating individualized estimates of the treatment effect is challenging,
because only one outcome is observed and, because of that, we do not have
access to the ground truth. To overcome this challenge, we follow exist-
ing work and evaluate based on semi-synthetic data. More specifically, in
this work, we evaluate NOFLITE using commonly used benchmark data sets:
IHDP, EDU, and News. These are introduced briefly in the following; Ap-
pendix C.1 provides more detailed information on the data generating pro-
cesses.

IHDP. The Infant Health and Development Program [IHDP; 205] is a
semi-synthetic data set that is commonly used to evaluate machine learning
models for causal inference. Covariates are based on a real-world randomized
experiment in which some infants (n = 747) were targeted with child care and
home visits. The resulting outcome is simulated based on these covariates
(x ∈ R25) and the treatment, with the resulting treatment effect following
a normal distribution. Although this dataset has recently been criticized
[267], we include it due to it being a widely-used benchmark.

EDU. The Education data set [EDU; 218] measures the effect of providing
a mother with adult education benefits on their children’s learning. The
data is simulated based on covariates x ∈ R32 using two (non-linear) neural
networks, with added Gaussian (t = 0) or exponential noise (t = 1). For both
potential outcomes, the noise level depends on one of the covariates; more
specifically, a single binary variable. Confounding is introduced through
covariate-based propensities and removing well-balanced subjects.

News. The News data set [200] shows the effect of reading an article on
either mobile or desktop (t) on the reader’s experience (y), based on the
article’s content in word counts (x). The data is simulated using a topic
model z(x), which is used to define two centroids in the topic space: z

c
0

(desktop) and z
c
1 (mobile). Device assignment and reader experience are

both simulated based on the similarity of the article’s topic z(x) to the
centroids zc0 and z

c
1. The resulting data is very high-dimensional (d = 3,477).
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Benchmark methodologies. We compare NOFLITE with several other
machine learning models capable of learning distributions. First, we com-
pare against Causal Multi-task Gaussian Processes3 [CMGP; 204]. Second,
we compare against other methods relying on generative neural networks.
The Causal Effect Variational Autoencoder [CEVAE; 217] uses a variational
autoencoder to model latent confounders given noisy proxies. GANITE [216]
uses generative adversarial networks to deal with selection bias and to obtain
a probabilistic estimate of the treatment effect. Finally, we compare against
Causal Collaborating Networks [CCN; 218].

5.5.2 Performance metrics

The main goal in this work is to predict accurate individual treatment ef-
fect distributions. Therefore, the main metric of interest is the model’s
loglikelihood, which allows for a comprehensive assessment of each instance’s
predicted distribution, by quantifying how likely the test data is given the
predicted distributions. We estimate the loglikelihood as follows. For each
instance i, we sample 500 samples from the model θ based on the covari-
ates xi. Then, for each instance, we fit a Gaussian kernel density estimator
kdei(xi, θ) using these samples and estimate the loglikelihood of the true
treatment effect according to this kernel density estimator log p(τi ∣ kdei(xi, θ)).
The loglikelihood is averaged over all instances:

LL =
1
n

n

∑
i=1

log p(τi ∣ kdei(xi, θ)). (5.7)

The loglikelihood evaluates the predicted distributions globally. As argued in
the motivation, statistics derived from the distribution can be used to facil-
itate decision-making. Therefore, to facilitate a more holistic assessment of
performance, we present additional metrics that analyze specific properties
of the predicted distribution. First, we use the square root of the preci-
sion in estimation of heterogeneous effects [

√
PEHE, see 205] to evaluate the

accuracy of the expected value of the individual treatment effect:

PEHE =
1
n

n

∑
i=1

((y(1)i − y
(0)
i ) − E (ŷ(1)i − ŷ

(0)
i ))

2

=
1
n

n

∑
i=1

(τi − τ̂i)2. (5.8)

Moreover, we evaluate the empirical coverage (Cov) of the estimated 90%
confidence interval ĈI, i.e., the probability that an observed sample of the

3For the high dimensional News data set, we take the first 100 principal components
to avoid excessive training times. This number was tuned based on a validation set.
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ITE lies within the estimated interval:

Cov =
1
n

n

∑
i=1

1(τi ∈ ĈIi). (5.9)

For the 90% CI, the empirical coverage should ideally be 0.90 with small vari-
ance between iterations. For some data sets, we know the distribution that
was used to generate the data. In these cases, we can additionally compare
the predicted and true confidence intervals. We propose to evaluate their
overlap using the intersection-over-union (IoU) comparing the predicted and
ground truth confidence intervals:

IoU =
CI ∩ ĈI

CI ∪ ĈI
. (5.10)

This metric is bounded between 0 and 1. The worst value, 0, indicates an
empty intersection. The best value, 1, indicates an intersection equal to the
union and, consequently, an estimated confidence interval that is equal to
the ground truth.

Finally, we evaluate the quality of decisions made based on the predicted
distributions, for a given utility distribution. The decision to treat or not is
based on whether the expected utility is positive. For IHDP, we use u(τ) =
(τ − 4)3, given that the average treatment effect will be 4 on average [205].
For EDU, we use u(τ) = (τ − 1)3, as the treatment effect was empirically
observed to be approximately 1 on average. The predicted optimal treatment
decision is compared with the theoretical optimal based on the ground truth
distribution using the accuracy (Acc). For the News data, we cannot do this
analysis, as the true distribution is not known. For all metrics and models,
we use 500 samples (per instance) for evaluation.

5.5.3 Empirical results
We compare the different models for the IHDP, EDU, and News data sets in
Table 5.2. In terms of loglikelihood, NOFLITE obtains the best performance
out of all methods under consideration for each data set. These findings
demonstrate NOFLITE’s ability to learn accurate individual treatment effect
distributions from a variety of observational data sets and associated data
generating processes. For the IHDP data set, NOFLITE slightly outperforms
the next-best model, CMGP. Both methods use a Gaussian prior, which
matches IHDP’s data generating process. On the EDU data set, the data
generating process is more complex and requires more flexiblity. Indeed,
the Gaussian prior of CMGP results in relatively worse performance and
the more complex models, such as NOFLITE and CCN, perform better. This
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illustrates how the normalizing flows can allow for a more flexible model of
posterior when required. Finally, the good performance on the News data
set illustrates NOFLITE’s ability of learning from high dimensional data. As
opposed to CMGP, which needs PCA preprocessing, it can also handle this
high dimensional data out-of-the-box.

When we look at the metrics evaluating statistics derived from the treat-
ment effect distribution, i.e. the PEHE and IoU, there is no clear winner
overall: either CMGP, CCN or NOFLITE result in the best performance. Nev-
ertheless, for all metrics, NOFLITE’s performance is competitive with the best
performing methodology for each data set. This illustrates how optimizing
the likelihood and learning distributions results in good performance for the
metrics evaluating properties of this distribution. Nevertheless, if there is one
particular metric of interest (e.g., PEHE), other objectives than NOFLITE’s
loglikelihood might be preferable (e.g., the mean squared error). Moreover,
we observe that NOFLITE obtains relatively high accuracy for both the IHDP
and EDU data sets. This illustrates that pairing the NOFLITE’s predicted
distributions with a utility function enables qualitative decision-making.

Finally, we illustrate how NOFLITE can be used for practical applications.
We do this by training our model on an iteration of the News data set and
showing the model’s output for a few selected test instances, see Figure 5.3.
Figures 5.3a to 5.3c show the ITE distribution and related statistics based
on samples from the learned model. This not only allows for visualizing
the estimated distribution p(τi) and its associated expected value E(τ), but
also for assessing the uncertainty using the 90% confidence interval or a
boxplot. Moreover, due to the News data set being semi-synthetic, we can
compare the ground truth τobserved with the estimated distribution. Finally,
the model can be used to consider the treatment decision for an instance by,
e.g., looking at the probability of its treatment effect being strictly positive.
Figure 5.3d shows the heterogeneity in distributions of different instances,
both in terms of expected value and shape.

5.6 Conclusion

Estimating an instance’s individual treatment effect distribution is an essen-
tial requirement for personalized decision-making. To this aim, we presented
NOFLITE, a flexible neural method for estimating treatment effect distribu-
tions that directly optimizes the metric of interest for this task: the model’s
likelihood. By leveraging normalizing flows, the model is not constrained to
any particular parametric distribution, but can instead trade off a simple
normal distribution with a more complex posterior, depending on the data.
Experiments on a variety of data sets demonstrated NOFLITE’s good perfor-
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Figure 5.3: NOFLITE illustration. We visualize NOFLITE’s output for se-
lected test instances for one iteration of the News data set. Individual treat-
ment effect distributions: Figures (a-c) visualize one particular instance’s
treatment effect distribution and related statistics based on samples from
the model. Distribution heterogeneity: Figure (d) compares the predicted
individual treatment effect distributions of several instances.

mance in practice and underlined its excellent representational capacity, as
illustrated by its ability to obtain high likelihoods for a variety of data set
sizes, dimensionalities, and data generating processes.

Future work in normalizing flows could benefit our method, as novel flow
transformations will be compatible with our method and help address po-
tential limitations of our work. First, depending on the flow transformation
that is used, training or inference can be slow in normalizing flows. Sec-
ond, NOFLITE introduces a variety of hyperparameters. Therefore, novel
flow transformation with less hyperparameters might benefit adoption of
our method in practice. Related to these points, it would be interesting to
incorporate advances in other types of generative models, such as diffusion
models [see e.g. 268], in future work.

Although estimating individual treatment effect distributions can be very
valuable, it constitutes a challening problem – especially when working with
high-dimensional, observational data. For many applications, the available
data may be limited. Although NOFLITE can be used without flow transfor-
mations, its flexibility comes from the normalizing flows, which require data
to be trained succesfully. Although NOFLITE’s hyperparameters can be tuned
by looking at the fit on a validation set, validating causal inference models
itself is a challenging problem [269]. Therefore, we consider it a promising
area for future work to analyze NOFLITE from a theoretical perspective and
come up with performance guarantees based on statistical learning theory.
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Additionally, our method relies on the standard ignorability assumptions in
causal inference. Judging the feasibility of these assumptions is impossible
based on data alone and requires the judgment of domain experts. There
is a growing body of work looking at learning treatment effects under viola-
tions of these assumptions (e.g., under hidden confounding, see [270], [271]).
Another interesting direction for future work is to analyze performance of
our method in settings where the ignorability assumptions are violated, and
to extend our methodology to account for these violations.
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Table 5.2: Empirical results. We compare NOFLITE against a variety of
existing methods for three data sets: (a) IHDP, (b) EDU, and (c) News. For
each metric, arrows indicate whether a lower (↓) or higher (↑) value is better;
the ideal coverage is 90%. We show the best result in bold. We highlight
the loglikelihood ( LL ) in gray to emphasize that this is our main metric
of interest, as it evaluates the quality of the predicted distributions. For all
data sets, GANITE achieves a loglikelihood of less than −10, indicated by a
dash (—).

LL (↑)
√
PEHE (↓) IoU (↑) Cov (90%) Acc (↑)

CMGP −1.95±0.07 0.73±0.09 0.77±0.01 0.88±0.00 0.90±0.01

BART −2.16±0.05 2.22±0.36 0.63±0.02 0.83±0.01 0.84±0.01

GANITE — 6.32±0.89 0.01±0.00 0.01±0.00 0.55±0.02

CEVAE −2.97±0.09 5.71±0.89 0.25±0.01 0.98±0.00 0.57±0.01

CCN −2.16±0.08 1.46±0.17 0.66±0.02 0.84±0.00 0.86±0.01

NOFLITE −1.90±0.01 1.09±0.20 0.75±0.00 0.88±0.00 0.90±0.01

(a) IHDP (n=747; d=25)

LL (↑)
√
PEHE (↓) IoU (↑) Cov (90%) Acc (↑)

CMGP −1.74±0.01 0.22±0.01 0.56±0.00 0.91±0.00 0.70±0.00

BART −1.71±0.01 0.53±0.01 0.56±0.00 0.89±0.00 0.69±0.00

GANITE — 1.26±0.08 0.37±0.03 0.46±0.03 0.72±0.01

CEVAE −2.67±0.03 2.20±0.25 0.25±0.00 1.00±0.00 0.49±0.01

CCN −1.65±0.01 0.31±0.01 0.64±0.01 0.87±0.00 0.76±0.01

NOFLITE −1.62±0.01 0.26±0.01 0.64±0.01 0.89±0.00 0.76±0.01

(b) EDU (n=8,627; d=32)

LL (↑)
√
PEHE (↓) Cov (90%)

CMGP −2.29±0.03 2.21±0.05 0.95±0.00

BART −2.43±0.04 2.71±0.12 0.97±0.00

GANITE — 18.91±11.29 0.01±0.00

CEVAE −2.83±0.04 3.74±0.18 0.97±0.00

CCN −2.25±0.03 2.23±0.04 0.84±0.00

NOFLITE −2.15±0.02 2.18±0.05 0.93±0.00

(c) News (n=5,000; d=3,477)
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6
Accounting for Informative
Sampling When Learning to
Forecast Treatment
Outcomes Over Time

Machine learning (ML) holds great potential for accurately fore-
casting treatment outcomes over time, which could ultimately
enable the adoption of more individualized treatment strategies
in many practical applications. However, a significant challenge
that has been largely overlooked by the ML literature on this
topic is the presence of informative sampling in observational
data. When instances are observed irregularly over time, sam-
pling times are typically not random, but rather informative–
depending on the instance’s characteristics, past outcomes, and
administered treatments. In this work, we formalize informative
sampling as a covariate shift problem and show that it can pro-
hibit accurate estimation of treatment outcomes if not properly
accounted for. To overcome this challenge, we present a general
framework for learning treatment outcomes in the presence of
informative sampling using inverse intensity-weighting, and pro-
pose a novel method, TESAR-CDE, that instantiates this frame-
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work using Neural CDEs. Using a simulation environment based
on a clinical use case, we demonstrate the effectiveness of our
approach in learning under informative sampling.

6.1 Introduction

Due to its importance in applications ranging from economics to health-
care and marketing, the problem of estimating personalized causal effects of
actions – e.g., treatments, interventions, or policies – has received wide atten-
tion in the recent machine learning (ML) literature [209]. Effectively using
real data for estimating such effects requires dealing with unique challenges
arising from its observational nature. Therefore, the recent ML literature
on treatment effect estimation has paid great attention to solving method-
ological issues arising due to treatment assignment biases in static [201] and
longitudinal settings [272]. This paper focuses on another challenge that has
been largely overlooked by the ML literature on treatment effect estimation,
despite its relevance and prevalence in practice: the problem of informative
sampling, sometimes also called informed presence bias [273]. That is, in
observational data, the timing at which an observation was made is often
not random, but rather indicative of some underlying information relevant
to the estimation problem of interest.

In electronic health records, for example, patients are typically not recorded
randomly over time, but informatively [274]: observations are only recorded
at irregular visits to a health care provider, with visit times typically de-
pending on the patient’s past and present characteristics, evolving health
state, and administered treatments. The resulting sampling mechanism is
inherently intertwined with the patient’s observed outcomes and treatments,
with more check-ups being scheduled for patients in critical condition or to
follow up after a treatment. Throughout this work, we will refer to exam-
ples from health care due to their societal relevance and intuitive appeal,
but the problem of informative sampling appears in a wide variety of other
domains, such as policy design [274], epidemiology [275], economics [276], or
maintenance [10].

Informative sampling poses an important challenge, as it can bias estimates
of causal effects when not accounted for [274], [277], [278]. Intuitively, infor-
mative sampling leads to relatively more measurements of abnormal values
and fewer measurements of normal values and, therefore, selection bias in
the data [279], [280]. Standard statistical methods can estimate causal ef-
fects in the presence of informative sampling, given a well-specified model
of the sampling mechanism [281]. However, existing approaches for mod-
eling the sampling mechanism from the (bio)statistics literature assume a

108



6.1. Introduction

t

Y (t)

λ(t)

(a) Regular sampling

t

Y (t)

λ(t)

(b) Sampling completely at random (SCAR)
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Figure 6.1: Problem illustration: sampling mechanisms. We show an
instance’s latent trajectory (Y (t)) and sampling intensity (λ(t)) over time
t, along with administered treatments ( ) and observations ( ) resulting
from different sampling mechanisms. (a) Regular. Samples are obtained
at regular intervals over time. (b) SCAR. Samples are irregular, drawn at
completely random intervals over time. (c) SAR. Sampling times are irreg-
ular, but not completely random: e.g., there might be more samples when the
outcome is large. We refer to the dependence of the sampling intensity on
an instance’s covariates, treatments, and/or outcomes as informative sam-
pling. Whereas existing work in the ML literature assumes regular sampling
or SCAR, this work is, to the best of our knowledge, the first to consider
learning to forecast treatment outcomes given SAR.
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certain parametric form or latent variable(s), which might not match the
actual data-generating process. Moreover, Farzanfar, Abumuamar, Kim, et
al. [282]’s survey on longitudinal healthcare research finds that these meth-
ods are rarely used in practice, leaving potential bias largely unaddressed.
Therefore, this work examines the use of flexible ML methods for this task
and investigates the unique methodological challenges arising therein.

Related work.1 Since the initial seminal ML work on heterogeneous treat-
ment effect estimation considering binary treatments and static data [200],
[201], this literature has grown rapidly both by making methodological re-
finements in the original setting [203], [283] and by considering new settings,
such as continuous treatments [272] or survival outcomes [284]. Recent ex-
tensions have specifically explored using ML methods for estimating treat-
ment effects over time, such as RNNs [272], [285]–[287], transformers [288],
and Neural ODEs [289], [290] or Neural CDEs [291].

Most existing ML work on causal inference in a temporal setting has, to
the best of our knowledge, implicitly relied on strict assumptions regarding
the sampling mechanism. The majority assumes regular and uninforma-
tive sampling times (Figure 6.1a). Only very recent work relying on neural
differential equations to model the effects of treatment in continuous time
[289]–[291] allows for observations to be irregular (Figure 6.1b), but does not
consider or account for potential bias resulting from sampling times being
informative rather than completely random, which is the focus of this work
(Figure 6.1c). This stands in stark contrast to the close attention paid in
the treatment effect estimation literature to other sources of covariate shift
arising in observational data, e.g., due to static treatment assignment [200],
treatment assignment over time [272], censoring [284] or competing events
[292]. In this spirit, we find it important to study when and how the infor-
mativeness of sampling acts as an additional source of covariate shift in this
setting.

Contributions. Despite the rapid recent expansion of the ML literature on
estimating treatment effects, we believe that there is still a fundamental lack
of understanding, or even formalization, of the challenges arising due to one
of the most fundamental features of observational data: sampling, the act
of observation itself, can be inherently informative. Therefore, we focus on
understanding and analyzing the challenges that arise from informative sam-
pling and propose strategies to alleviate bias arising in this context. In doing
so, we make three contributions: (1) We formalize the problem of forecast-
ing treatment outcomes under informative sampling as a machine learning
problem and characterize the key challenges arising therein as a consequence

1We discuss the related work more extensively in Appendix D.1.
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of covariate shift induced by informative sampling. (2) We present a general
strategy for tackling this challenge and propose a novel method for learning
under informative sampling, TESAR-CDE, that instantiates this framework
using Neural CDEs. (3) We design a simulation environment based on a
clinical use case to study the effect and different drivers of informative sam-
pling and use it to empirically demonstrate that our proposed method is able
to correct for the resulting bias that existing methods can suffer from.

6.2 Problem Formalization: Data Structure and
Informative Sampling Mechanism

This section describes and formalizes the problem of forecasting treatment
outcomes in the presence of informative sampling. We investigate the as-
sumptions required for and challenges inherent to tackling this problem in
Section 6.3. We build on the exposition in Lin, Scharfstein, and Rosenheck
[274], who study longitudinal outcome prediction in the presence of infor-
mative sampling but do not explicitly consider estimating treatment effects,
and build on ideas from Seedat, Imrie, Bellot, et al. [291] and Lok [293] who
study forecasting treatment outcomes in continuous time but do not consider
informative sampling.

6.2.1 Problem structure: Complete versus observed data

Underlying complete data structure. We consider data collected over a
period [0, T ] in which instances are characterized by a d-dimensional covari-
ate path X ∶ [0, T ] → Rd and a treatment path A ∶ [0, T ] → {0, 1} – which
jumps to 1 only at time steps t when treatment is administered2 – both of
which possibly modulate an outcome process of interest Y ∶ [0, T ] → R.
While we only observe the outcome Y associated with the treatment path
A that was actually administered (sometimes also referred to as the factual
outcome), we assume that any instance is characterised by a possibly infinite
number of potential outcomes Ya ∶ [0, T ] → R associated with other feasible
treatment paths a.

Observed data structure. Paths X, A and Y are only sampled (observed)
at possibly irregular and discrete time-points, such as scheduled check-ups

2In this exposition, we assume that A(t) = 1 only at single time-steps where treatment
is administered; for treatments that are administered over a time-period [t1, t2] one could
instead define a counting process that jumps whenever treatment status is changed as in
Seedat, Imrie, Bellot, et al. [291] and Lok [293]. Further, as noted in Seedat, Imrie, Bellot,
et al. [291], this definition can be generalized to multiple treatments by assuming A to be
a multivariate process.
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or unscheduled appointments. Therefore, we additionally define a counting
process N ∶ [0, T ] → N0 recording the number of observations made by
time t. This process jumps whenever a new observation is sampled3, so that
dN(t) = 1 if an instance is sampled at time t and dN(t) = 0 otherwise, where
dN(t) = N(t) − lims↑tN(s). As in Lin, Scharfstein, and Rosenheck [274],
for a variable V (t), let V

o(t) = V (max s ∶ 0 ≤ t, dN(s) = 1) denote its most
recent observation by time t, V̄ o(t) = {V o(s) ∶ 0 ≤ s ≤ t} its observed history
by time t and V̄ (t) = {V (s) ∶ 0 ≤ s ≤ t} its full (yet possibly not observed)
history by time t. Further, let V̄

o(t−) and V̄ (t−) denote the same histories
where the upper limit does not include t. Then, for a study following n
instances until time T , we observe a dataset D = {Oi}ni=1 consisting of n
i.i.d. copies of O = Fo(T ) where Fo(T ) = (X̄o(T ), N̄(T ), Āo(T ), Ȳ o(T )).

6.2.2 Distinguishing between different sampling patterns

In order to define what distinguishes the informativeness of different sam-
pling patterns, we first need to introduce a conditional intensity λ(t) which
governs the observation process N(t). In its most general form, adopting
the notation of Lin, Scharfstein, and Rosenheck [274], this can be defined
through

P(dN(t)=1∣X̄(T ), N̄(T ), Ā(T ), Ȳ (T )) = λ(t)dt, (6.1)

For notational convenience, we omit conditioning in λ(t).

Using this definition, we can differentiate between different sampling mecha-
nisms [294], giving rise to a classification similar to missingness mechanisms
in static data [295]. This categorization is based on the causal role of the
instance history in relation to the observation intensity (Figure 6.1 shows a
graphical overview):

• Regular sampling (Figure 6.1a). Instances are observed at K reg-
ular (pre-determined) timesteps T = {t1, . . . , tK}, so that λ(t)dt =

1 if t ∈ T else λ(t)dt = 0. Most existing related work [e.g. 272], [285],
[288] implicitly relies on this assumption.

• Sampling completely at random (SCAR; Figure 6.1b). Instances
are observed at completely random time-steps, with the intensity inde-
pendent of all variables: λ(t)dt=P(dN(t)=1∣X̄(T ), N̄(T ), Ā(T ), Ȳ (T ))=
P(dN(t)=1). Recent work on treatment effect estimation from irreg-
ularly sampled data using neural differential equations [289]–[291] is
explicitly only equipped to handle this scenario.

3For ease of exposition, we assume that whenever an instance is observed at t, we
record all of X(t), A(t) and Y (t). Nevertheless, it would be possible to relax this by
instead introducing separate counting processes for each variable or component thereof.
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• Sampling at random (SAR; Figure 6.1c). Being observed at time t
is independent of the (up until then unknown) outcome at time t given
the observed history up to time t:

λ(t)dt = P(dN(t)=1∣X̄(T ), N̄(T ), Ā(T ), Ȳ (T ))
= P(dN(t)=1∣X̄o(t), N̄(t−), Āo(t−), Ȳ o(t−))

This work investigates the challenges of learning given SAR, which is
considerably weaker than SCAR: it allows, for example, for patients
to have more frequent visits due to past outcomes, administered treat-
ments, or worsening symptoms (provided that these are recorded in
X).
We also consider a stricter variant, which we will refer to as the
strong SAR assumption: here we assume that λ(t)dt = P(dN(t) =

1∣X̄(T ), N̄(T ), Ā(T ), Ȳ (T )) = P(dN(t)=1∣X̄o(t−), N̄(t−), Āo(t−), Ȳ o(t−)).
This differs from the more general (weaker) SAR assumption above in
that observing a patient at time t, i.e. dN(t), cannot depend on the
covariates X

o(t) to be observed at time t. As we discuss in the next
sections, the weaker SAR assumption already allows identification of
treatment effects in our setting, while the strong SAR assumption can
greatly simplify estimation of intensities.

• Sampling not at random (SNAR). The most general scenario is
one where observing is not independent of future outcomes conditional
on the observed history – i.e. λ(t)dt≠P(dN(t)=1∣X̄o(t), N̄(t−), Āo(t−), Ȳ o(t−)).
This would be the case, e.g., if patients chose to visit due to worsen-
ing symptoms that are not recorded in X and hence act as a latent
cause of the intensity and outcome. In this scenario, outcomes cannot
be consistently forecast unless further assumptions regarding the sam-
pling or outcome-generating mechanism are made. Therefore, we rely
on sampling at random in this work.

6.3 Forecasting Treatment Outcomes Under In-
formative Sampling: Goals, Assumptions
and Inherent Challenges

6.3.1 Goal: Forecasting treatment outcomes

We aim to estimate conditional average potential outcomes (CAPOs)
µa,t(τ) at a future time t + τ, τ ∈ (0, τmax] (with τmax ≤ T − t):

µa,t(τ) = E[Ya(t+τ)∣X̄o(t), N̄(t), Āo(t), Ȳ o(t)] (6.2)
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i.e., the instance’s expected outcome under treatment plan a conditional
on its full observed history Ho(t) = {X̄o(t), N̄(t), Āo(t), Ȳ o(t)} up to time
t. We only consider viable treatment plans a subject to a(t∗) = A(t∗) for
t
∗
≤ t – i.e., those that do not modify the past, factual treatment history

prior to the current time t. Such an estimate could be used in practice to
decide between competing treatment plans based on expected outcome under
either choice. In line with Gische, West, and Voelkle [296], we purposefully
use the term forecasting instead of predicting throughout to signify that we
wish to give causal interpretation to the modeled effects of treatments. This
is because, analogously to the standard static setting, unless we make further
identifying assumptions, we can in general not assume that predictions based
on expectations of the form E[Y o(t+ τ)∣A = a,Ho(t)] are equal to forecasts
based on expectations of the form E[Ya(t + τ)∣Ho(t)].

6.3.2 Identifying assumptions
To ensure identification of causal claims from observational data, we need to
introduce additional assumptions. First, we make assumptions that corre-
spond to adaptations of the standard ignorability assumptions [181] from the
standard static setting to our setting. To do so, we define treatment propensi-
ties for single time-steps π(a(t)) = P(A(t)=a(t)∣X̄(T ), Ȳ (T ), Ā(T ), N̄(T ))
and entire trajectories πt(a) = P(A=a∣Ho(t)) given history until time t.

Assumption 7. Consistency. Given an observed treatment path A, we ob-
serve the outcome corresponding to the associated potential outcome: Y

o(t) =
YA(max s ∶ 0 ≤ s ≤ t, dN(t) = 1).
Assumption 8. Unconfoundedness. The treatment propensity π(a, t)
does not depend on future outcomes or unobserved information:

π(a(t)) = P(A(t)=a(t)∣X̄(T ), Ȳ (T ), Ā(T ), N̄(T ))
= P(A(t)=a(t)∣X̄o(t), N̄(t), Āo(t−), Ȳ o(t−))

Assumption 9. Overlap (Positivity for treatment). 0 < P(A = a∣Ho(t)) <
1, for all admissible treatment paths a and histories Ho(t) of interest for
forecasting.

These assumptions are required regardless of the sampling mechanism. For
regular sampling, these reduce to the sequential ignorability assumptions
made in earlier work [e.g., 272], [285], [288].

On top of these ignorability assumptions, estimating causal effects under
informative sampling requires making additional assumptions regarding the
sampling mechansism [277]. In contrast to existing work which implicitly
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assumed regular observations [e.g., 272], [285] or sampling completely at ran-
dom [e.g., 291], we explicitly state our assumed observation process. Specif-
ically, we rely on the weaker, previously introduced sampling at random
(SAR) assumption:

Assumption 10. Sampling at random (SAR). The sampling intensity
process does not depend on unobserved or future information, i.e., λ(t) =

P(dN(t) = 1∣X̄o(t), N̄(t−), Āo(t−), Ȳ o(t−)).

Analogous to assumptions on treatment overlap, we assume the probability
of observing at any point in time is bounded away from zero, for any history
of interest for forecasting:

Assumption 11. Positivity of observation. P(dN(t+τ) = 1∣Ho(t)) > 0
for any τ ∈ (0, T − t] and history Ho(t) of interest.

Finally, we assume that all treatment events are observed. In most applica-
tions, this is a natural assumption (e.g., if treatments are administered at
a hospital). It is generally not possible to estimate treatment effects from
observed outcomes without knowing which treatments were administered,
unless further assumptions are made [297].

Assumption 12. Observed treatments. All treatments are observed, i.e.
P(A(t) = 1∣dN(t) = 0) = 0.

The identifying assumptions discussed above can equivalently be expressed
as a generative model, determining the temporal ordering of realizations of
the different observed variables4. In particular, at each time t, the visit de-
cision dN(t) is realized first, which can depend on observed histories Ho(t−)
and covariates to be observed X

o(t) (SAR) or on Ho(t−) only (strong SAR);
the former implies a setting where e.g. patients present themselves for an ap-
pointment due to worsening symptoms while the latter allows only schedul-
ing of future appointments due to symptoms already observed earlier. If
dN(t) = 1, then covariates X

o(t) are first observed, treatment A(t) is then
determined based only on observed information (Ho(t−), N(t) & X

o(t))
and, finally, the outcome is realized and observed as Y

o(t).

4In principle, other generative models could be assumed as long as sufficient exclusion
restrictions between observation-/treatment-generating processes and outcome-generating
processes are made. For example, the visit process can depend on future treatments if
such treatments are pre-scheduled.
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6.3.3 What makes learning CAPOs from observational
data challenging?

If we had access to the complete data structure with all potential outcomes
Ya(t), learning an estimate µ̂a,t(τ ;Ho(t)) for the CAPOs with fixed a would
be a standard ML problem: we would search a hypothesis function in some
hypothesis class F that minimizes the expected (oracle) risk R

∗, i.e.,

µ̂a,t(τ ;Ho(t)) ∈ arg min
fa,τ∈F

R
∗(fa,τ) (6.3)

where, for some loss function ℓ, and using the shorthands t
′
= t + τ and

ht = Ho(t)

R
∗(fa,τ) = E [∫

T

0
∫
τmax

t
ℓ (Ya(t′), fa,τ(ht)) dτdt] =

∫
T

0
∫
τmax

0
∫∫ ℓ (ya(t′), fa,τ(ht)) dP (ya(t′)∣ht)dP (ht)dτdt

However, as previously discussed, in reality we only have access to obser-
vational data in which patients are (i) incompletely, irregularly, and infor-
matively observed and (ii) characterized by only a single factual outcome
corresponding to the treatment actually received. If we were to learn a stan-
dard ML predictor from this observed data, we would instead be optimizing
the observational risk R

obs(ha,τ) =

E [∫
T

0
∫
τmax

0
1{A=a}dN(t′)ℓ (Ya(t′), fa,τ(ht)) dτdt] =

∫
T

0
∫
τmax

t
∫∫ ℓ(ya(t′), fa,τ(ht))πt(a)λt(t′)

dP (ya(t′)∣ht)dP (ht)dτdt

Thus, unless the τ -step ahead intensity λt(t′), defined through λt(t′)dτ =

P(dN(t+τ)=1∣Ho(t)∪ Ā(t+ τ
−)), and treatment propensity πt(a) are con-

stant across patient histories, the minimizers of R∗ and R
obs will in general

be different. Intuitively, this is because the distribution of patient charac-
teristics in the observed data can differ from the distribution in the under-
lying unobserved complete distribution, both due to informative sampling
and treatment selection. Thus, the challenge we are facing here is one of
covariate shift between the training data and hypothetical test data.

Covariate shift and its potential remedies have been studied in much depth
in the recent ML literature (see e.g. Redko, Morvant, Habrard, et al. [298]
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and Farahani, Voghoei, Rasheed, et al. [299] for recent overviews). Here,
we explore the use of one of the oldest and most well-established solutions:
importance weighting [300]. That is, as further discussed in the next section,
we propose to minimize a weighted observational risk

R
w(fa,τ) = E [∫

T

0
∫
τmax

0
wa,τ ℓ(fa,τ)dτdt] (6.4)

with ℓ(fa,τ) = 1{A = a}dN(t′)ℓ (Ya(t′), fa,τ(ht)). For oracle importance

weights w
∗
a,τ =

1
π(a)λt(t′)

it is easy to see that R
obs,w

∗

(fa,τ) = R
∗(fa,τ).

6.4 Learning to Forecast Treatment Outcomes
Under Informative Sampling

This section presents a methodology for learning to forecast treatment out-
comes under informative sampling. Section 6.4.1 presents a general frame-
work that is compatible with any ML algorithm capable of predicting out-
comes over time. Section 6.4.2 instantiates this framework using Neural
CDEs.

6.4.1 Learning To Forecast Using Inverse Intensity Weights
The analysis presented in Section 6.3.3 allows straightforward construction of
a framework for learning to forecast treatment outcomes from informatively
sampled (SAR) data. Given an ML algorithm A that can issue continuous-
time predictions using irregularly sampled data, one simply needs to fit A
on the observed data while providing appropriate importance weights w. As
the true weights will generally be unknown in practice, one might have to
use A to also learn (i) observation intensities and (ii) treatment propensities
to gain access to estimates of the true importance weights. As we discuss
for a specific example in Section 6.4.2, one could learn such weights either
in a pre-processing step or in an end-to-end fashion.

When learning intensity weights, it becomes important whether one makes
the general SAR or the strong SAR assumption: under the strong SAR
assumption, learning λt(t′) comes down to the easier task of estimating
P(dN(t′) = 1∣Ho(t)) directly, where t

′
= t + τ . Under the more gen-

eral SAR assumption, one needs to model dN(t′) and X
o(t′) jointly as a

marked point process to learn the distributions P (dN(t′), Xo(t′)∣Ho(t)) =

P (dN(t′)∣Xo(t′),Ho(t))P (Xo(t′)∣Ho(t)), where P (Xo(t′)∣Ho(t)) could be
a high-dimensional continuous density. In the remainder, we therefore re-
strict ourselves to the strong SAR setting – allowing us to highlight the
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Figure 6.2: TESAR-CDE: Adapting TE-CDE for learning given
SAR. The history of observations ( ) and treatments ( ) up to time t is first
encoded as a continuous latent path z(t). Based on a future treatment plan
Āt(t′), the decoder then forecasts a future latent path zt(t′), with t

′
= t+ τ .

In contrast to TE-CDE, TESAR-CDE (1) uses the latent path zt(t′) to fore-
cast both the outcome ŷt(t′) and intensity λ̂t(t′), and (2) uses the intensity
to weight the outcome loss using LWMSE.

challenges arising when learning under some form of informative sampling.
It would be an interesting next step to incorporate some of the recent work
on Neural Temporal Point Processes [see e.g. 301] to enable learning under
more complex dependencies.

In the following, we discuss two possible implementations of this framework
using Neural CDEs by extending the methodology for learning continuous
time treatment effects of Seedat, Imrie, Bellot, et al. [291] (which originally
did not correct for informative sampling). Nevertheless, the approach dis-
cussed above is more general and could be applied to any ML model that
can predict Y (t).

6.4.2 TESAR-CDE: Forecasting with Intensity-weighted
Neural CDEs

This section presents TESAR-CDE, a specific implementation of the frame-
work discussed above by extending TE-CDE [291] to account for informative
sampling (SAR), see Figure 6.2 for a graphical overview. In the remainder
of this work, we focus on the special case where complete treatment plans
A are randomly assigned and fixed at time t = 0; such a situation com-
monly arises in practice, e.g., in a clinical trial with a dynamic observation
plan [274], [302]. This allows to single out the challenges arising solely due
to the presence of informative observations. Moreover, this allows us to
highlight that the forecasting problem remains challenging even in the ab-
sence of all treatment selection bias (the main challenge addressed in related
work). Nevertheless, if required, any existing method equipped to deal with
outcome-treatment confounding – e.g., using importance weighting [285] or
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adversarial training [291] – could simply be combined with the inverse in-
tensity weighting approaches we discuss and test below.

Background: TE-CDE

Treatment Effect Neural Controlled Differential Equation [TE-CDE; 291] is
a recently proposed model for forecasting treatment effects from irregularly
sampled data. TE-CDE views observations as samples from an underlying
continuous-time process and uses Neural CDEs [303] to learn this latent
trajectory. First, an encoder learns a latent path z(t) as the solution of a
CDE:

z(t0) = g(X(t0), A(t0), Y (t0)),

z(t) = z(t0) + ∫
t

t0

fθ(z(s))
d(X(s), A(s), Y (s))

ds
ds

with g and fθ neural networks. This is achieved by solving the above initial
value problem (IVP), ∀s ∈ [t0, t]:

z(t) = ODESolve(fθ, z(t0), X̄(t), Ā(t), Ȳ (t))

using a numerical ODE solver [303]. The decoder forecasts the future latent
path zt(t′) by solving a second IVP given the future treatment plan Āt(t′):

zt(t′) = ODESolve(fϕ, z(t), Āt(t′)),

with decoder network fϕ and t
′
= t + τ . A final network fψ maps the

latent path zt(t′) to the outcome ŷt(t′) = fψ(zt(t′)). Figure 6.3a shows the
complete architecture.

The entire model (g, fθ, fϕ and fψ) is trained by optimizing the mean squared
error (MSE) of the predicted outcome:

LMSE
i =∫

T

0
∫
τmax

0
dNi(t′) (yi(t′) − ŷi,t(t′))

2
dtdτ.

This way, the mean squared error is calculated using the observed outcomes
in the considered forecasting horizon (0, τmax], for each timestep t ∈ [0, T ].
To account for bias resulting from time-dependent confounding, TE-CDE
also uses domain adversarial training to learn a treatment-invariant repre-
sentation. However, as discussed above, we focus on unconfounded settings
in the remainder of this work and therefore do not include this, though it is
straightforward to add it in settings where needed.
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Figure 6.3: Comparing TESAR-CDE to TE-CDE. We show TE-CDE
and our proposed alternative, TESAR-CDE, in its two-step and multitask
configuration. Arrows indicate the input ( ), forward pass ( ) and back-
propagation ( ). The multitask model uses the intensity loss only to train
the intensity map, but not the shared encoder or decoder. The dashed arrow
( ) indicates that the intensities are used as weights λ

−1
t in LWMSE, but

not backpropagated as part of this loss.

TESAR-CDE: Learning to forecast with an inverse-intensity weighted
loss

In this section, we instantiate our previously proposed framework using Neu-
ral CDEs, resulting in TESAR-CDE, Treatment Effects given Sampling At
Random using Neural CDEs. Essentially, we extend TE-CDE for learning
under informative sampling. Given (estimated) intensities λ̂i,t(t′), adapting
TE-CDE’s outcome loss to adjust for informative observations is straightfor-
ward: the inverse of these estimated intensities can be used as importance
weights to train TE-CDE for outcome prediction using a weighted MSE:

LWMSE
i =∫

T

0
∫
τmax

0
dNi(t′)

(yi(t′) − ŷi,t(t′))
2

λ̂i,t(t′)
dtdτ.

We propose a multi-stage or end-to-end version of TESAR-CDE (Figure 6.3
compares the proposed architectures with TE-CDE). Both predict the inten-
sity from zt as λ̂i,t(t′) = f

λ
ψ(zt(t′)). We assume there is a minimal sampling

interval dt; e.g., doctors might not measure covariates more than once per
hour. Let dNi,t(t′) = 1 if instance i was observed in interval (t, t′], 0 oth-
erwise. The intensity λi,t(t′) can then be approximated by minimizing the
cross-entropy

LCE
i = −

T

∑
t=0

τmax

∑
τ=0

[ dNi,t(t′) log(λ̂i,t(t′))

+ (1−dNi,t(t′)) log(1−λ̂i,t(t′))],

where t
′
= t + τ . For applications where no minimal time step dt exists,
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neural point processes can be used to learn the intensity in continuous time
[see e.g. 301].

The two-step procedure consists of two TE-CDE style models that are
trained sequentially. A first model predicts the intensity λi,t(t′); a second
model uses the inverse of these intensities λi,t(t′)−1 as weights in its weighted
MSE loss. Alternatively, we can combine both tasks in a multitask frame-
work to predict both intensities and outcomes:

LMT
= (1 − α)LWMSE

i + αLCE
i , (6.5)

with hyperparameter α balancing the importance of the two terms. The
intensity loss only optimizes the intensity map f

λ
ψ ; the weighted MSE is

used to optimize the rest of the network (g, fθ, fϕ, f
y
ψ). Moreover, similar to

Hassanpour and Greiner [304]’s architecture for learning importance weights
to correct for treatment-outcome confounding, we do not backpropagate with
respect to the intensity weights in the weighted MSE for outcome prediction,
as this could bias the network to predict small weights (i.e. large intensities)
in order to minimize the weighted MSE.

The potential benefits of the multitask framework are threefold. First, learn-
ing a shared representation zt to predict both outcome and intensity results
in fewer parameters. Second, it requires only training one network and one
call to the ODE solver per iteration, resulting in computational speedups.
Third, to reduce the variability due to importance weighting, we only opti-
mize the shared representation of the multitask model for outcome predic-
tion. For bias correction using importance weighting, the shared represen-
tation does not need to be a sufficient statistic for predicting the intensity.
This is because we only need to care about the non-uniformity in observation
intensity insofar as it is related to the outcome. The reason for this is concep-
tually identical to why one should not include predictors of treatment only
(a.k.a. instruments) in a propensity score [305] and why sufficient dimen-
sionality reduction before importance weighting is recommended in general
applications with covariate shift [306]: importance weighting generally only
needs to adjust for shifts in variables that are themselves predictors of the
outcome. Our multitask learner implicitly enforces this by optimizing the
shared representation based on the outcome loss only. The two-step and
multitask architectures are illustrated in Figure 6.3b and Figure 6.3c. Ap-
pendices D.3 and D.4 provide more details on the training procedure and
implementation.
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6.5 Results

To assess the impact of informative sampling, we propose a novel simulation
environment that allows us to control the level of informativeness and assess
its effect on the resulting model’s performance. Our simulation is inspired
by real-world randomized controlled trials that compared treatment regimes
in the context of lung cancer [307]–[309]. Given the patient’s history, our
goal is to forecast the patient’s tumor size for a potential future treatment
plan. Our code is available at https://github.com/toonvds/TESAR-CDE.

6.5.1 Simulation: lung cancer treatment
Following existing work [e.g., 288], [291], we simulate data based on the
tumor growth model of Geng, Paganetti, and Grassberger [310]. To analyze
the effect of informative sampling, we combine this tumor growth model
with a sampling mechanism in which the degree of informativeness can be
controlled. We refer to Appendix D.5 for more detailed information and
visualizations.

Tumor growth simulation. We simulate tumor growth based on a pharmacokinetic-
pharmacodynamic model of Geng, Paganetti, and Grassberger [310]. This
model simulates the outcome, tumor volume Y (t), based on the historical
tumor volume, tumor growth, chemotherapy, and radiotherapy:

dY (t)
dt

= [1 +

Tumor growthÌ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÐÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÎ
ρ log ( K

Y (t))−
ChemotherapyÌ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÐ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Î

βcC(t) (6.6)

− (αrd(t) + βrd(t)2)
ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï

Radiotherapy

+ ϵ(t)
ÍÒÒÒÒÑÒÒÒÒÒÏ
Noise

]Y (t),

with K, ρ, βc, αr, βr, ϵt sampled following Geng, Paganetti, and Grassberger
[310]; C(t) and d(t) are set following existing work [272], [285], [291].

Treatment plans. We differentiate between a sequential and concurrent
treatment regime [309]. In the sequential treatment arm, patients receive
weekly chemotherapy for five weeks, followed by weekly radiotherapy for
five weeks. In the concurrent treatment arm, patients biweekly receive both
chemotherapy and radiotherapy for ten weeks. Patients are randomly di-
vided among the two treatment arms based on a Bernoulli distribution with
probability p = 0.5. This way, there is no confounding: treatment assign-
ments are random and do not change during the trial.

Observation process. We observe patients based on a patient-specific,
history-dependent intensity process. This is achieved by simulating each
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Figure 6.4: Results for varying informativeness γ and different fore-
casting horizons τ . We show the RMSE ± SE over ten runs. (Left)
RMSE for increasing levels of informativeness γ, keeping the forecasting
horizon fixed at τ = 1. (Right) RMSE for an increasing forecasting horizon
τ up to five days, keeping informativeness fixed at γ = 6.

patient’s observation process with intensity λi(t) in which γ controls the
informativeness:

λi(t) = σ [γ (D̄i(t−)
Dmax

−
1

2
)] , (6.7)

where σ denotes the sigmoid function. Dmax = 13cm denotes the maximal
tumor diameter and D̄(t−) is the average tumor diameter over the past 15
days. By simulating the observation process in this way, we can control the
degree of informativeness: γ = 0 implies SCAR as λi(t) = 0.5, while γ > 0
implies SAR with a larger γ implying more informativeness or dependence
between the tumor size and intensity. As γ increases, patients with larger
tumors are more likely to be observed, those with smaller tumors less.

Experimental setup. We assume treatments are always observed, as these
are planned in advance and administered in the hospital. Nevertheless, at
treatment time, we do not necessarily observe the patient’s tumor size, e.g.,
because observing tumor size requires an invasive procedure separate from
the treatment. For the test set, we observe all information at daily inter-
vals. This idealized setup allows us to assess whether the model is able to
learn the underlying distribution, as opposed to fitting the observed sam-
ples. Similarly, the test data also contains the potential outcomes for both
treatment arms. For each experiment, we generate a training set with 200
patients, validation set with 50 patients, and test set with 200 patients, all
over a period of 120 days.

6.5.2 Empirical results
This section presents the empirical results using the experimental setup de-
scribed above. More specifically, we aim to answer three questions: (1)
What is the impact of informative sampling?; (2) What is the impact of
observation scarcity?; and (3) When does informativeness matter? In Ap-
pendix D.6, we present additional experiments to evaluate TESAR-CDE’s
intensity prediction and analyze the sensitivity of the multitask configuration
to hyperparameter α.
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Figure 6.5: Observation scarcity. We show the RMSE ± SE over ten runs
at increasing observation scarcity Sλ for fixed informativeness (γ = 4) and
forecasting horizon (τ = 1).

What is the impact of informative sampling? We compare the different
models at varying levels of informativeness in Figure 6.4. Increasing γ makes
the observation process more informative by having patients with a large tu-
mor visit more and patients with small tumors less (Equation (6.7)). The
left side of Figure 6.4 shows the RMSE of the different models at increasing
informativeness. As sampling becomes more informative, TE-CDE’s perfor-
mance deteriorates and is outperformed by the proposed TESAR-CDE. The
multitask variant in particular is robust to high levels of informativeness,
achieving the lowest RMSE overall. The two-step variant generally outper-
forms TE-CDE, but performs worse for very high informativeness. As a high
γ results in very low intensities for some patients, the importance weights of
these observations induce large variance and worse generalization properties
in the weighted loss. This phenomenon is a well-known issue in importance
weighting more generally [311]. The right of Figure 6.4 shows the perfor-
mance at different forecasting horizons τ ranging from one to five days at
a fixed informativeness of γ = 6. Both TESAR-CDE variants outperform
the standard TE-CDE over all horizons, with the multitask variant again
performing the best overall.

What is the impact of observation scarcity? We analyze the influence
of less frequent sampling across all patients. We simulate lower overall sam-
pling by scaling all intensities as λ′(t) = λ(t)

Sλ
with Sλ ∈ {1, 2, 3, 4}. Figure 6.5

shows the impact of increasing scarcity on the resulting RMSE. As expected,
all models perform worse with less frequent sampling. The two-step TESAR-
CDE performs worse than the baseline TE-CDE as scarcity increases, while
the multitask TESAR-CDE is again the best performing model overall. This
result indicates that the parameter efficiency of the multitask model can be
helpful when sampling is scarce.

When does informativeness matter? The previous experiments ana-
lyzed informative observation processes where the observation intensity λ(t)
was directly related to the outcome Y (t). Next, we analyze a special case
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of SAR where the intensity depends on information that is completely un-
related to the outcome or treatments. This extreme scenario mimics a sit-
uation in which there are patients that visit often for reasons unrelated to
underlying symptoms or outcome, e.g. when they suffer from hypochon-
dria. We examine this using an intensity that depends on covariates x

λ:
λi(t) = σ (γ∑d

j (cjxj)), where we include d = 10 static variables x(i) for each
patient, with each xj ∼ N (0, 1) influencing the intensity through a coefficient
cj ∼ U(−1, 1), but not affecting the patient in any other way. Figure 6.6
shows the prediction error of the different models for an increasing γ, aver-
aged over τ ∈ {1, . . . , 5}. In this scenario, the sampling mechanism does not
significantly affect performance, with all models having similar performance.
If anything, TESAR-CDE (Multitask) performs slightly worse, possibly due
to importance weighting being unnecessary and adding variance in this sce-
nario. This result indicates that informative sampling may only matter when
it depends on factors influencing both observation intensity and outcome.

6.6 Conclusion

This work analyzed and formalized an essential challenge in learning to fore-
cast treatment outcomes over time from observational data: the presence of
informative sampling. We differentiated between different sampling mecha-
nisms depending on the causal role of the observation intensity. This cate-
gorization allowed us to identify an overlooked, yet common setting in which
observations are sampled irregularly over time with the observation intensity
depending on the history of the instance’s covariates, outcome, and/or treat-
ments. We formalized learning in this context and analyzed it as a problem of
covariate shift. Based on this, we proposed a general framework for learning
under informative sampling and a novel method, TESAR-CDE, that insta-
tiates this framework using Neural CDEs. Empirical results demonstrate
the improved performance of TESAR-CDE over the current state-of-the-art
when sampling is informative.

Accounting for informative sampling when learning to forecast treatment
outcomes relies on strong identification assumptions regarding both the treat-
ment assignment and sampling mechanism. As these assumptions are untestable,
we need to rely on domain expertise to judge their plausibility in practical
applications. For example, the sampling at random assumption would be
violated if the observation intensity is affected by an unobserved cause of
the outcome. While beyond the scope of the current work, we believe that
exploring learning under violations of these assumptions is an important and
fruitful area for future research – similar to the rich lines of work exploring
estimation of treatment effects with hidden confounders or missing treatment
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Figure 6.6: Outcome-unrelated sampling. We show the RMSE ± SE
over ten runs for a sampling mechanism unrelated to the outcome Y (t) in
function of informativeness γ.

information.
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7
AutoCATE: Towards End-to-End,
Automated Treatment Effect
Estimation

Accurate estimation of heterogeneous treatment effects is critical
in domains such as healthcare, economics, and education. While
machine learning (ML) has led to significant advances in esti-
mating conditional average treatment effects (CATE), real-world
adoption of these methods remains limited due to the complex-
ity of implementing, tuning, and validating them. To this end,
we advocate for a more holistic view on the development of ML
pipelines for CATE estimation through automated, end-to-end
protocols. We formalize the search for an optimal pipeline as
a counterfactual Combined Algorithm Selection and Hyperpa-
rameter optimization (CASH) problem. We introduce AutoCATE,
the first automated solution tailored for CATE estimation that
addresses this problem based on protocols for evaluation, esti-
mation, and ensembling. Our experiments show how AutoCATE
allows for comparing different protocols, with the final configu-
ration outperforming common strategies. We provide AutoCATE
as an open-source software package to help practitioners and re-
searchers develop ML pipelines for CATE estimation.
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7.1 Introduction

Accurately estimating causal effects is crucial for high-stakes decisions in
domains such as healthcare, education, and economics. Despite advances
in machine learning (ML) for estimating the conditional average treatment
effect (CATE), real-world adoption remains limited due to the complexity of
developing ML pipelines for CATE estimation. Methods often involve nu-
merous hyperparameters, and their performance varies significantly across
data sets and applications. Moreover, validating counterfactual predictions
and tuning pipelines is highly challenging, and the performance of different
evaluation criteria varies with the data generating process [269]. For practi-
tioners unfamiliar with ML, such as clinicians or marketers, these challenges
often outweigh potential benefits, hindering the practical use of these tech-
niques. To overcome this, we advocate for automated, end-to-end solutions
for learning ML pipelines for CATE estimation.

The challenge of automated CATE estimation. Despite automated
ML (AutoML) making significant progress [see 312], existing solutions do
not address the unique challenges of CATE estimation. A key problem is
the lack of ground truth CATE: the treatment effect is the difference between
the outcomes with and without treatment, but only one of these outcomes
is observed for each instance. Additionally, which outcome is observed de-
pends on confounding variables (e.g., older patients may be more likely to
receive treatment), leading to covariate shift [201]. Finally, CATE estimation
pipelines are more complex than those in supervised learning. Metalearn-
ers combine multiple baselearners, possibly including both classification and
regression models. Risk measures themselves also require predictions and,
therefore, tuning of ML pipelines. These unique challenges complicate both
the training and validation of ML pipelines and highlight the need for au-
tomated, end-to-end approaches tailored to CATE estimation, which is the
focus of this work.

Contributions. To tackle these challenges, we propose a practical and com-
prehensive solution as the automated, end-to-end construction and validation
of ML pipelines for CATE estimation:
• Counterfactual CASH—We formalize the optimization of CATE es-
timation pipelines as a counterfactual Combined Algorithm Selection and
Hyperparameter optimization (CASH) problem. Our solution, AutoCATE,
automates the search for optimal configurations across preprocessors, met-
alearners, evaluators, baselearners, and their hyperparameters. The process
is organized into three stages–evaluation, estimation, and ensembling–each
including several design choices.
• End-To-End Protocols—We develop end-to-end protocols that ensure

128



7.2. Related Work

robust performance across diverse data sets and applications. Our approach
addresses key aspects often overlooked in CATE estimation, such as prepro-
cessing, feature selection, or ensembling. This perspective uncovers novel
insights (see Figure 7.1), questions (e.g., the intricate trade-off between us-
ing data for training or validation) and solutions (e.g., multi-objective opti-
mization with different evaluation criteria).

• Software Package—We provide AutoCATE as an open-source software
package, enabling automated CATE estimation in a few lines of code. This
way, we democratize access to advanced ML techniques for CATE estimation
and make them accessible for practitioners unfamiliar with ML. Additionally,
AutoCATE provides a platform for future research, encouraging research on
all aspects of the ML pipeline for CATE estimation that supports practical,
real-world applications.

7.2 Related Work

Our work is most related to two areas in ML: (1) AutoML, and (2) CATE
estimation and validation.

7.2.1 Automated Machine Learning (AutoML)

AutoML focuses on the automatic and efficient construction of high-performing
ML pipelines. This entails making a series of design choices regarding pre-
processing, feature transformation and selection, ML algorithms, and hyper-
parameter tuning [313]. As the optimal choices depend on the data and task,
AutoML is essentially a search problem. While combinations could be tried
randomly, more efficient search methods have been developed, e.g., based on
Bayesian optimization [314]–[316]. Similarly, meta-learning has been applied
to integrate information across other data sets in the search [317]. AutoML
has made significant progress across data modalities, such as structured data
[318], text [319] or images [320]. A critical aspect of AutoML is its accessi-
bility, often provided through low-code solutions for practitioners unfamiliar
with ML [318], [321]–[323].

Automated solutions exist for a wide range of tasks, including semantic seg-
mentation [324], machine translation [325], reinforcement learning [326], or
time series forecasting [322]. For more comprehensive overviews, see [327]
and [312]. However, to the best of our knowledge, AutoML has not yet
been applied to CATE estimation. As discussed, estimating treatment ef-
fects presents unique challenges, such as the absence of a ground truth,
covariate shift due to confounding, and the need for intermediary models
in metalearners and risk measures. These complexities render standard Au-
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Figure 7.1: AutoCATE enables insights into CATE estimation. We an-
alyze hundreds of pipelines optimized by AutoCATE (see Section 7.5). Met-
alearners—(a) Different metalearners can be optimal for a data set, high-
lighting the need for searching across them. (b) The top five pipelines often
feature a mix of different metalearners (e.g. {T, T,RA,RA,DR}: 3 unique
types), showing that different metalearners can perform well and suggesting
potential for combining them. Baselearners—(c) The chosen baselearners
are also diverse, and (d) different model types favor different ones. Using a
single baselearner is thus likely suboptimal, supporting our choice to tune
submodels independently.

toML approaches ill-suited for CATE estimation and illustrate the need for
approaches specialized to CATE estimation.

7.2.2 Treatment Effect Estimation and Model Valida-
tion

Estimation. Various ML methodologies have been proposed for estimating
treatment effects. Metalearners are general strategies for using standard
supervised learning algorithms for CATE estimation [208]. Additionally,
various ML algorithms have been adapted for CATE estimation, such as
Gaussian processes [204], neural networks [201], [216], decision trees [206],
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or random forests [207], [328]. Notably, other parts of the ML pipeline are
also more complicated when estimating treatment effects, such as missing
value imputation [329], feature selection [330], and ensemble selection [331].

Building an ML pipeline for CATE estimation presents significant challenges,
related to the absence of ground truth CATE and the number of design
choices involved. Due to the no free lunch theorem, no ML algorithm be
optimal in all possible settings. Additionally, there is no globally optimal
metalearner, as performance similarly depends on the (unknown) data gen-
erating process and sample size [209]. Finally, tuning is more involved : for
example, a DR-Learner combines four models (to estimate the propensity,
the outcome per treatment group, and the final treatment effect)–each of
which can be a different baselearner with separate hyperparameters.

Model validation. As the CATE is unobserved, various evaluation criteria
have been proposed for validating CATE estimators. A common approach
is the error in predicting the observed potential outcome µ, i.e., the µ-risk.
However, this criterion has several limitations [269], [332]: it does not ac-
count for confounding, may not accurately predict CATE error1, and is not
applicable to estimators that directly predict the CATE. To mitigate the first
issue, an inverse propensity weighted variant µIPW-risk, can be considered.
Other evaluation criteria address all issues by constructing labels based on
plug-in estimates (e.g., S- or T -risk) or metalearner pseudo-outcomes (e.g.,
R- and DR-risk), see Appendix E.2.2 for a detailed overview.

There is no consensus on the optimal validation criterion. While [333] and
[332] advocate for the R-risk, [331] favor the T - and DR-risk. Conversely,
[269] show that the effectiveness of different risk measures varies with various
factors, such as the metalearner and data generating process, with no single
criterion being universally optimal. Additionally, [332] stress the flexibility of
the estimators used to construct the pseudo-labels, with [331] recommending
the use of AutoML. These complexities and design choices highlight the need
for automated procedures.

7.3 Problem Formulation

Notation and assumptions. We represent an instance by a tuple (x, t, y),
with covariates X ∈ X ⊂ Rd, a treatment T ∈ T ={0, 1}, and an outcome
Y ∈ Y ⊂ R. The potential outcome Y associated with a treatment t is
denoted as Y (t). We aim to estimate the conditional average treatment effect

1For example, consider the case where both potential outcomes are overestimated by
the same amount. Even though µ-risk would indicate a poor model quality, the resulting
CATE estimates would still be accurate.
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(CATE): τ = E[Y (1)− Y (0)∣X]. Estimating the CATE from observational
data requires standard assumptions (see Appendix E.1.2). More background
on CATE estimation is provided in Appendix E.1.

Goals and challenges. We aim to develop a general procedure for learning
a pipeline for CATE estimation from an observational data set. Formally,
this is a counterfactual Combined Algorithm Selection and Hyperparameter
optimization (CASH) problem. It involves searching over ML pipelines ah
with algorithms a ∈ A and hyperparameters h ∈ Ha to minimize the error
on test data Dtest:

argmin
a,h

L(ah∣Dtest). (7.1)

An algorithm a can be an ML method tailored for CATE estimation or a
metalearner combining one or more baselearners. Solving the counterfactual
CASH problem involves several unique challenges. An algorithm’s quality of
fit on the train data L(ah∣Dtrain) is unobserved, as there is no ground truth
CATE. Additionally, there is covariate shift between the observational train-
ing data and test data due to confounding. Both points present challenges
for both building and validating an ML pipeline.

7.4 AutoCATE: End-To-End, Automated CATE
Estimation

AutoCATE finds an optimal ML pipeline in three stages: evaluation, estima-
tion, and ensembling :

(1) Evaluation: In the first stage, we construct a proxy risk for L based
on a risk measure (e.g., R-risk) and evaluation metric (e.g., MSE). To accu-
rately estimate this risk on the validation data, we perform an automated
search over preprocessors, ML algorithms, and their hyperparameters.

(2) Estimation: The second stage automatically searches over combina-
tions of preprocessors, metalearners, baselearners, and their hyperparame-
ters to obtain ML pipelines for CATE estimation.

(3) Ensembling: The final stage uses the proxy risk from the first stage to
select and combine estimation pipelines from the second stage. The result
can be a single ML pipeline or an ensemble.

A high-level overview of AutoCATE’s functionalities and building blocks is
shown in Figure 7.2.
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Machine Learning Pipelines — Building Blocks
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Figure 7.2: AutoCATE overview. We estimate treatment effects in three
stages: (1) Evaluation–learning the appropriate risk measure(s), (2) Esti-
mation–tuning a CATE estimation pipeline, and (3) Ensembling–selecting a
final model or constructing an ensemble. We build ML pipelines for evalu-
ation and estimation based on a collection of preprocessing algorithms and
ML baselearners.

7.4.1 Stage 1: Evaluation—Designing a Proxy Risk and
Evaluation Protocol

The counterfactual CASH problem requires minimizing L(ah∣Dtest), which
involves two challenges: the lack of ground truth τ and the presence of
covariate shift due to confounding. To tackle these, the evaluation stage
measures risk by learning pseudo-labels–i.e., proxies for τ–from validation
data.

Risk measures. AutoCATE includes different possible risk measures, de-
scribed in Appendix E.2.2. We include pseudo-labels used in metalearners
(DR-, R-, Z-, U -, and F ), plug-in risks (T and 1NN), and a risk approx-
imation using influence functions (IF ). We exclude the µ- and µIPW-risks
as they do not apply to all metalearners, and the S-risk due to poor results
in prior work [e.g., 331]. As constructing these risk measures requires ac-
curately estimating nuisance parameters, we search over preprocessing and
ML algorithms to find good-performing ML pipelines.

There is no ground truth, and different measures may be preferable depend-
ing on the (unknown) data generating process. To make our evaluation more
robust, we allow for combining different measures. Similarly, since pseudo-
outcomes are learned from data, there is no “true” version, enabling us to
construct multiple version of a single risk (e.g., two R-risks). Using multiple
risk measures results in a multi-objective search problem. To account for
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Figure 7.3: Evaluation framework. We show two possible frameworks for
validating pipelines based on a single split or a cross-validation procedure.
For each, the data is split in three groups to (1) train the estimation pipelines,
(2) train the validation pipelines, and (3) validate the validation pipelines.

the varying scales of different risks, we normalize them by comparing each
model’s performance to an average treatment effect (ATE) baseline.

Metrics and implementation. Given a risk measure, different metrics can
compare the pseudo-outcomes and CATE predictions to evaluate the quality
of the ML pipeline. We include general metrics of predictive accuracy, like
the mean squared error (MSE) or mean absolute percentage error (MAPE),
and metrics related to a downstream application, such as the Area Under
the Qini Curve (AUQC) when ranking effects [13]. The R-risk requires a
metric that accommodates weights. Finally, we allow for a stratified training-
validation split or a stratified k-fold cross-validation procedure. Figure 7.3
shows more information on these evaluation frameworks.

7.4.2 Stage 2: Estimation—Building a CATE Estima-
tion Pipeline

Different metalearners can be used to estimate the CATE. Metalearners are
general frameworks for using ML algorithms to estimate treatment effects.
As such, they are versatile, accommodate various ML algorithms, and can be
efficiently trained using existing ML packages. Common examples include
the S-Learner (single model with the treatment as a feature), Lo-Learner
(single model with treatment interaction terms), and T -Learner (separate
models for each treatment group). Other metalearners use pseudo-outcomes
that converge to the treatment effect, such as the DR-, X-, R-, RA-, Z-,
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U -, and F -Learners. Appendix E.2.1 provides more detailed information on
each metalearner. Our package uses the CausalML implementations where
available [334].

7.4.3 Stage 3: Ensembling—Selecting and Ensembling
Estimation Pipelines

The pipelines from the estimation stage are evaluated with risk measures
from the evaluation stage. The final ensembling stage selects the best
pipeline(s) for prediction. No established methods exist for ensembling
CATE estimators and, due to the lack of ground truth, most standard en-
sembling methods are not applicable. AutoCATE includes can select the best-
performing pipeline or the top five for improved robustness and accuracy. We
also include a novel stacking procedure that assigns weights (between zero
and one) to each pipeline and optimizes these to minimize the squared er-
ror with respect to the pseudo-outcomes. The weights are regularized, with
tuning on a holdout set.

With multiple risk measures in a multi-objective search, there may not be
a single optimal pipeline, but rather a Pareto frontier. One strategy is to
select all Pareto optimal points, though pipelines that perform very well on
only a single measure may not work well generally. To select pipelines with
good general performance, we can select the pipeline (or the top five) with
the lowest average risk across objectives. Similarly, we can select based on
each pipeline’s Euclidean distance to the origin, or its average rank across
objectives. Finally, we can apply the abovementioned stacking procedure
for each risk measure separately and averaging the weights in a final stacked
pipeline.

7.4.4 ML Pipeline Building Blocks: Preprocessing and
ML Baselearners

We construct ML pipelines in both the evaluation and estimation stage.
The building blocks for these include preprocessors and ML algorithms, all
built on top of scikit-learn [335]. For preprocessing, we provide different
feature selection and scaling algorithms. As baselearners, we include different
ML algorithms with both classification and regression counterparts, ranging
from linear regression to random forests. We provide more information in
Appendix E.2.3.

The final search space includes a variety of preprocessors, metalearners, base-
learners, and their hyperparameters. Efficient optimization schemes such as
Bayesian optimization could be used, but we use random search through-
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out this work to focus on other design choices in AutoCATE. Nevertheless,
we implement our search using optuna [336], allowing easy integration of
sophisticated optimizers like a Tree-structured Parzen Estimator [314].

7.4.5 Low-Code CATE Estimation Through AutoCATE’s
API

AutoCATE is implemented in Python, following scikit-learn’s design prin-
ciples [335]. The low-code API enables automated CATE estimation with
just four lines of code:
1 from src.AutoCATE import AutoCATE
2 autocate = AutoCATE ()
3 autocate.fit(X_train , t_train , yf_train)
4 cate_pred = autocate.predict(X_test)

Initialization arguments can be specified (e.g., the number of estimation
trials; see Appendix E.2.5).

7.5 Empirical Evaluation: Comparing Automated
Strategies

This section empirically compares design choices for solving the counter-
factual CASH problem for all three stages: evaluation (7.5.2), estimation
(7.5.3), and ensembling (7.5.4). We identify best practices and benchmark
the resulting configuration against common approaches for CATE estimation
(7.5.5).

7.5.1 Experimental Setup: Data and Evaluation Met-
rics

Our experiments compare various automated, end-to-end strategies for learn-
ing a CATE estimation pipeline. Using AutoCATE, we evaluate design choices
in each stage: evaluation, estimation, and ensembling. To obtain general in-
sights, we leverage a collection of standard benchmarks for CATE estimation:
IHDP [205], ACIC [337], News [200], and Twins [217]; see Appendix E.3 for
details. These semi-synthetic benchmarks include 247 distinct data sets that
vary in outcome (regression and classification), dimensionality, size, and ap-
plication area, allowing for a comprehensive analysis AutoCATE. Unless noted
otherwise, results are reported in precision in estimating heterogeneous treat-
ment effects (PEHE):

√
PEHE =

√
(τ − τ̂)2.
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Table 7.1: Performance for validation based on different risk mea-
sures. Results in

√
PEHE±SE (lower is better). Bold highlights the best

results, with underlined values falling within 1 standard error. Results for
50 evaluation trials and 50 estimation trials with a T -Learner and gradient
boosting.

DR F IF kNN R T U Z

IHDP 2.12±.34 3.33±.55 3.13±.45 2.22±.36 3.37±.71 2.15±.35 3.58±.72 5.40±.86

ACIC 1.56±.09 1.74±.10 2.52±.16 1.74±.10 1.63±.10 1.52±.09 1.72±.09 2.40±.15

Twins .333±.00 .340±.00 .340±.01 .323±.00 .335±.00 .323±.00 .359±.01 .350±.01

News 2.42±.07 2.48±.07 2.73±.09 2.43±.07 2.51±.08 2.42±.07 2.60±.09 3.02±.11

(a) Comparing downstream performance for different risk measures

Combining risks T -risk—Multiple versions Best
All DR,T DR,T,kNN Top 1 Top 2 Top 3 Top 5 single

IHDP 2.48±.36 2.19±.35 2.13±.35 2.15±.35 2.15±.35 2.17±.35 2.11±.36 2.12±.34

ACIC 1.94±.13 1.58±.09 1.60±.09 1.52±.09 1.54±.08 1.55±.09 1.52±.08 1.52±.09

Twins .331±.01 .323±.00 .324±.00 .323±.00 0.323±.00 .323±.00 .324±.00 .323±.00

News 2.52±.07 2.41±.06 2.41±.07 2.42±.07 2.41±.07 2.43±.07 2.43±.07 2.42±.07

(b) Comparing downstream performance for different combinations of risk mea-
sures

7.5.2 Analyzing AutoCATE—Stage 1: Evaluation Proto-
col

We analyze the evaluation protocol by comparing risk measures, metrics,
and evaluation procedures.

How to measure risk regarding CATE predictions?

What risk measure works best? We compare predictive error result-
ing from model selection with different risk measures in Table 7.1a. Three
options consistently show low error: the DR-, kNN -, and T -risk. These
results largely correspond with existing work. Curth and Schaar [269] and
Mahajan, Mitliagkas, Neal, et al. [331] similarly found the DR-risk to work
well, though the kNN -risk works comparatively better in our experiments.
Although [269] reported worse results for the T -risk, both our findings and
those in [331] show that it can give good results with proper tuning of the
underlying models. We further analyze the impact of tuning in Figure 7.4:
increased tuning for the evaluation models generally results in better down-
stream performance.

Is it beneficial to use multiple risk measures? We explore the impact of
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Figure 7.4: How many iterations should we tune evaluation models?
We compare downstream results, based on different number of trials, used
to tune the models underlying the evaluation metrics. Results for a T -risk
and 50 estimation trials with a T -Learner and gradient boosting.
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Figure 7.5: How much data to use for evaluation? We show results
for different holdout ratios and fit a polynomial function for each data set
to gain insight into the optimal ratio. Results for 50 evaluation trials with
a T -risk and 50 estimation trials with a T -Learner and gradient boosting.

combining different risk measures in a multi-objective search, hypothesizing
that this could lead to more robust pipeline selection as each measure is a
different proxy to the same ground truth. Table 7.1b shows both results
for risk measure combinations, and for multiple versions of a single measure
based on different estimates. We observe that combining different types or
different versions of risk measures can indeed improve performance, though
no strategy substantially improves upon the best single measure.

What evaluation procedure to use?

How to set the holdout ratio? Risk measures require estimates learned
from validation data, creating a trade-off between using data for evaluation
or estimation. Figure 7.5 presents results for different holdout ratios, illus-
trating this trade-off and showing that a holdout ratio of 30-50% generally
works well. We use 30% for holdout in the rest of this work. Although more
folds in cross-validation often improve model performance in supervised set-
tings, we do not observe this effect for AutoCATE (see Table B3), likely due
to the complex interplay between the number of folds and the holdout ratio.

What evaluation metric to use? All previous experiments used the
mean squared error (MSE) to compare the predicted CATE and pseudo-
outcome(s), corresponding with the goal of minimizing PEHE. However,
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Table 7.2: Comparing different evaluation metrics. We compare model
selection with different evaluation metrics. For the Twins data set, MAPE
cannot be calculated, as the true CATE can be zero. Bold highlights the best
results, with underlined values falling within 1 standard error. Colored cells
show the hypothesis that matching metrics will yield the best performance.
Results for 50 evaluation trials with a T -risk and 50 estimation trials with a
T -Learner and gradient boosting.

MSE MAPE AUQC
√

PEHE 2.15±0.35 2.28±.36 2.26±.41

MAPE 1.76±1.30 1.40±.94 0.50±.15

AUQC 0.92±0.01 0.88±.02 0.96±.01

(a) IHDP

MSE MAPE AUQC
√

PEHE 1.52±.09 1.67±.09 1.50±.08

MAPE 1.10±.21 1.03±.14 1.11±.24

AUQC 0.91±.01 0.90±.01 0.91±.01

(b) ACIC

MSE MAPE AUQC
√

PEHE .323±.00 .323±.00 .344±.00

MAPE — — —
AUQC 0.00±.00 0.00±.01 0.03±.01

(c) Twins

MSE MAPE AUQC
√

PEHE 2.42±.07 2.52±.07 2.46±.07

MAPE 5.75±.74 5.83±.69 5.86±.85

AUQC 0.66±.01 0.64±.01 0.65±.01

(d) News

depending on the downstream application, alternative metrics might be more
important. Using these in AutoCATE is straightforward. Table 7.2 shows
results for two such metrics: the mean absolute percentage error (MAPE)
and area under the Qini curve (AUQC). As hypothesized, selecting models
based on a particular metric generally improves performance for that metric.

7.5.3 Analyzing AutoCATE—Stage 2: Estimation Proto-
col

Given an evaluation protocol, we can compare strategies for the estima-
tion stage. This section examines how including different metalearners and
baselearners affects AutoCATE’s performance.

Metalearners. Figure 7.6 compares different versions of AutoCATE with ei-
ther all meta- and baselearners, or only the best per category. The complete
“AllMeta-AllBase” occasionally yields poor performance. Although results
generally improve with more trials, this behavior persists after 100 trials
for the News data. Further inspection reveals that bad iterations are due
to instability of the R- and U -Learners: even when performing well on the
validation set, they can perform exceptionally poor after retraining on all
data. Other metalearners are almost never optimal. Consequently, “Best-
Meta” excludes the R-, F -, Z, and U -Learners, leading to improved stability
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Figure 7.6: What meta- and baselearners to include? We compare
different search spaces for AutoCATE, either including all metalearners (All-
Meta) or only the best (BestMeta), as well as all baselearners (AllBase) or
only the best (BestBase). Results for 50 evaluation trials with a T -risk.

and performance across all data sets except Twins. In Appendix E.4.2, we
compare metalearners in terms of precision and time efficiency, and show
how often each metalearner gets picked in the BestMeta configuration.

Baselearners. The “BestBase” versions in Figure 7.6 only use base learners
that typically perform well with tabular data: random forests, extremely
randomized trees, gradient boosting, and multilayer perceptrons. This con-
straint is applied to both evaluation and estimation pipelines. While se-
lecting these baselearners improves performance, it is less significant than
filtering metalearners.

7.5.4 Analyzing AutoCATE—Stage 3: Ensembling Proto-
col

The ensemble stage compares pipelines built in the estimation stage using
the objective(s) learned in the evaluation stage. Selected pipelines are re-
trained on the entire data and saved for inference.

Single objective. With a single objective, we can select the best pipeline
(Top 1), the best five (Top 5), or use stacking to build a final estimator that
combines all pipelines. Table 7.3a compares these strategies, showing that
combining pipelines improves performance for all data sets except Twins.
Appendix E.4.3 illustrates how an ensemble’s predictions can help assess an
estimate’s uncertainty.

Multiple objectives. Model selection is more complex with multiple ob-
jectives. We can select the best pipelines based on the average normalized
score, Euclidean distance to the origin, or average rank, to then select the
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Table 7.3: Ensemble strategies. We compare ensembling strategies for
a single or multiple objectives in terms of

√
PEHE. Bold highlights the

best results, underlined values lie within 1 standard error. Results for 50
evaluation trials and 50 estimation trials with a T -Learner and gradient
boosting.

Top 1 Top 5 Stacking

IHDP 2.15±.35 1.90±.34 1.96±.34

ACIC 1.52±.09 1.34±.08 1.42±.09

Twins .323±.00 .325±.00 .344±.00

News 2.42±.07 2.33±.06 2.33±.06

(a) Comparing ensemble strategies for a single T -risk

Average Distance Ranking

Top 1 Top 5 Top 1 Top 5 Top 1 Top 5 StackingPareto

IHDP 2.19±.35 1.84±.31 2.27±.37 2.99±.54 3.58±.66 2.99±.54 1.94±.32 2.19±.36

ACIC 1.58±.09 1.35±.08 1.55±.08 1.41±.08 1.69±.08 1.41±.08 1.43±.09 1.50±.08

Twins .323±.00 .325±.00 .323±.00 .341±.00 .367±.01 .341±.00 .349±.00 .326±.00

News 2.41±.06 2.32±.06 2.42±.07 2.38±.07 2.58±.08 2.38±.07 2.34±.06 2.39±.07

(b) Comparing ensemble strategies when combining DR- and T -risks

top one or top five pipelines. Alternatively, we can create stacking esti-
mators for each objective and average the weights (“Stacking”), or select all
Pareto optimal models (“Pareto”). Table 7.3b compares these strategies. Sin-
gle pipelines typically underperform compared to ensembles built from the
top five pipelines, all Pareto optimal pipelines, or stacking. Selecting based
on average performance yields the best performance. No single strategy is
consistently optimal.

7.5.5 Benchmarking AutoCATE Against Common Alter-
natives

This section compares the optimized configuration of AutoCATE with some
common alternative approaches for tuning CATE estimation pipelines. These
benchmarks select the best model using the error in predicting observed
outcomes (µ-risk). We include both S- and T -Learners. For T -Learners,
we tune models separately for the control and treatment groups. First,
we compare a T -Learner with gradient boosting tuned based on the µ-risk
against AutoCATE using only a T -Learner and gradient boosting optimized
for T -risk. While these strategies are similar, AutoCATE evaluates the entire
pipeline jointly and (potentially) adds preprocessing. Conversely, the tradi-
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Figure 7.7: Comparing AutoCATE with tuning based on µ-risk. We
compare tuning a T -Learner with gradient boosting using either AutoCATE
(based on a T -risk) or tuning based on the MSE on the observed outcome.
AutoCATE uses a T -risk with 50 evaluation trials and top 1 model selection.
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Figure 7.8: Benchmarking AutoCATE. We compare AutoCATE with com-
mon benchmarks using S- and T -Learners with random forests and gradient
boosting. AutoCATE uses a T -risk with 50 evaluation trials and BestMeta-
BestBase search spaces, with either Top 1 or Top 5 model selection.

tional T -Learner’s search is more efficient as it tunes models separately per
group. Figure 7.7 compares the two approaches: the µ-risk strategy per-
forms worse for Twins, but better for ACIC. Finally, Figure 7.8 compares
AutoCATE with S- and T -Learners using random forests and gradient boost-
ing. These approaches are conceptually simple, but represent common and
strong baselines. We observe that, for each data set, AutoCATE can obtain
at least competitive performance to the best approach. We include addi-
tional results on ranking treatment effects with data for uplift modeling in
Appendix E.4.4.

7.6 Conclusion

Despite the availability of ML methods for CATE estimation, their adoption
remains limited, due to the complexity of implementing, tuning, and vali-
dating them. We framed the problem of finding an ML pipeline for CATE
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estimation as a counterfactual CASH problem and proposed AutoCATE: the
first end-to-end, automated solution tailored for treatment effect estimation.
Based on this solution, we analyzed design choices for evaluation, estima-
tion, and ensembling, and identified best practices. The resulting approach
was validated, outperforming widely used strategies for CATE estimation.

To maximize AutoCATE’s practical impact, several limitations need to be
addressed. Although AutoCATE relies on standard assumptions for causal
inference, it is crucial to assess its robustness against violations of these
assumptions and potentially protocols for such scenarios. Additionally, most
of the data used in this work is semi-synthetic (IHDP, ACIC, and News),
which may not fully capture the complexities of real-world data. Although
validating CATE estimates remains inherently challenging, approaches from
related fields could offer inspiration [see e.g. 95].

AutoCATE enables a comprehensive analysis of existing methods (see Fig-
ure 7.1 and Appendix E.4.5), facilitating a better understanding of CATE
estimation and guiding the development of new approaches. We envision
opportunities for future research in all stages. For evaluation, advanced
multi-objective strategies could improve performance and robustness. Novel
methods for estimation could be automatically discovered using Neural Ar-
chitecture Search. Generally, efficiency can be improved with better search
algorithms or strategies (e.g., by re-using nuisance models across metalearn-
ers). Related to this, the optimal time allocation between the stages remains
an open question, where meta-learning could help by incorporating data set
characteristics [317]. Finally, more advanced ensembling could be developed
(e.g., combining different metalearners).
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Decision-Focused Causal
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8
Metalearners for Ranking
Treatment Effects

Knowing how an instance will respond to an action is crucial for
making informed decisions. In marketing, for example, knowing
how a customer will respond to a promotion can help to per-
sonalize offerings, target the right customers, and increase con-
versions. Whereas existing work mostly focuses on accurately
estimating treatment effects, operational decision-making often
exclusively relies on the ranking of the effects, as a means of pri-
oritizing instances for treatment (e.g., to target the customers
with the largest treatment effects). However, existing methods
for treatment effect estimation do not consider how the estimated
effects result in an effect ranking and, consequently, the quality of
resulting treatment policies. This mismatch between effect esti-
mation and the operational needs may lead to suboptimal treat-
ment allocation. Conversely, our work explores an alternative
approach, treatment effect ranking, which directly learns a treat-
ment allocation policy that prioritizes instances based on their
treatment effect. We introduce ranking counterparts for a wide
range of causal metalearners, building upon objective functions
from learning to rank. To scale our methodology to large-scale
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Table 8.1: Treatment Allocation Examples. We highlight several applica-
tions where treatment allocation is required, characterized by (1) an esti-
mated treatment effect, (2) an optimization objective, and (3) operational
constraints. In marketing, the goal is to target customer segments and drive
conversions, while adhering to budget constraints. In healthcare and epi-
demiology, optimal vaccine allocation during pandemics aims to minimize
population mortality, subject to vaccine supplies. In maintenance, tech-
nicians are assigned to maintain assets, prevent failures, and maximizing
operational uptime. Finally, in economics and policy design, subsidy usage
needs to be optimized by efficiently allocating public funds and maximizing
health care impact.

Application Allocation problem Treatment outcome Objective Constraints

Marketing Targeted advertising Conversion Incremental sales Marketing budget
Healthcare Pandemic response Infection Mortality reduction Vaccine supply

Maintenance Preventive maintenance Failure rate Asset uptime Available technicians
Policy design Targeted subsidies Bed net purchase Malaria prevention Public/policy budget

data sets, we propose an efficient sampling procedure for optimiz-
ing these objectives. Theoretically, we show how ranking met-
alearners directly maximize the area under a policy’s Qini curve.
Empirically, we validate our approach and illustrate its practical
efficacy through experiments on both synthetic and real-world
data.

8.1 Introduction

Decision-makers need to deal with uncertainty regarding the consequences of
their decisions. An increasingly popular paradigm to address this challenge
is the prediction-optimization framework. In a first prediction stage, data
is used to estimate the effect of possible actions. In a second optimization
stage, these predictions are integrated in an optimization problem with the
aim of assigning personalized treatment recommendations, i.e., allocating
treatments to instances to optimize an objective function, while satisfying
operational constraints. These problems are common in various domains:
e.g., marketing [338], healthcare [339], maintenance [10], or policy design
[340] (see Table 8.1 for some examples). We focus on a specific class of
treatment recommendation problems where instances need to be prioritized
for treatment (e.g., recommending whom to treat). Our goal is to learn a
treatment policy that prioritizes the optimal instances for treatment. A key
part of this problem is estimating each instance’s response to a treatment–
i.e., its treatment effect–from data using causal inference.
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Prediction-Focused Learning: Effect Estimation A common approach
to tackle treatment allocation problems is to first predict the effect of an
action for each instance. To this aim, causal inference can support many
decision-making problems: by analyzing the causal effect of past decisions,
future decisions can be optimized. A common approach is to first estimate
the causal effect of possible decisions using methods for treatment effect es-
timation. For example, in marketing, to estimate how different customers
would respond to a marketing incentive. The effect estimates can be in-
tegrated in an optimization problem to make the final decisions regarding
treatment allocation (e.g., to target a specific customer segment). This ap-
proach has been adopted to aid decision-making by a variety of technology
and e-commerce companies [341]–[343].

Decision-Focused Learning: Effect Ranking Recent work, referred to
as decision-focused learning, aims to integrate the learning and optimization
steps. This approach recognizes that the predictive task (i.e., estimating
treatment effects) is only part of a larger optimization problem (i.e., allocat-
ing treatments). By integrating the predictive model in the larger optimiza-
tion pipeline, decision-focused learning aims to learn a predictive model that
results in better performance for the downstream task [85]. The key idea is
to align the construction of the predictive model with the optimization task.

We analyze a common type of treatment allocation problem, where treat-
ments are allocated to the instances with the largest treatment effect. In
these settings, we argue that directly learning an effect ranking might be
more useful than effect estimation. As operational constraints might pre-
vent decision-makers from treating every instance, we require knowing how
to prioritize instances based on their treatment effect. Compared to inde-
pendently estimating each instance’s effect, we argue that directly learning
the ranking across instances may yield better results. Because effect estima-
tion prioritizes accurate and well-calibrated effect estimates, it overlooks the
estimates’ ranking and resulting decision quality (i.e., estimation and opti-
mization are not aligned). While successful when predictions are perfect,
this misalignment can result in suboptimal decision-making in reality. Con-
versely, our work demonstrates that effect ranking can directly optimize the
quality of the treatment assignment (i.e., the ranking objective is perfectly
aligned with the decision-making task). We contrast both approaches in
Table 8.2. Additionally, empirical risk minimization only guarantees model
generalization for the specific objective that was optimized for [344], further
motivating us to find objectives that are aligned to the final optimization
problem.
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Table 8.2: Comparing Pointwise Estimation and Effect Ranking for Treat-
ment Allocation. This illustrative example shows the true treatment effect
for several instances, ordered from largest to smallest. The first model es-
timates each instance’s treatment effect fairly accurately in terms of MSE.
However, the ranking of instances based on these estimates differs signifi-
cantly from their true order, which will result in suboptimal treatment al-
location when only some instances can be treated. For the second model,
we observe the opposite scenario: estimates are poor in terms of MSE, but
their ranking respects the true order.

Instances (e.g., customers) Performance
MSE Ranking

True treatment effect 0.20 0.17 0.16 0.15 0.11 0.10 — —

Effect estimation model 0.22 0.15 0.16 0.17 0.10 0.11 
Effect ranking model 0.25 0.22 0.20 0.15 0.10 0.05 

Contributions This work proposes decision-focused learning framework
for treatment recommendation problems. We formalize the class of prob-
lems that can be tackled using effect ranking and discuss the underlying as-
sumptions. We describe how learning to rank can be used for this task and
propose different causal metalearners for ranking effects. Our contributions
are as follows. (1) Conceptually, we formalize treatment allocation problems
that can be solved using ranking and analyze the underlying assumptions
(see Section 8.3). (2) Methodologically, we propose different metalearners for
ranking treatment effects, based on pairwise and listwise ranking objectives
that scale efficiently to large-scale data sets. We show how our proposed list-
wise objective directly optimizes the policy’s area under the Qini curve (see
Section 8.4). (3) Empirically, we compare our proposed effect ranking with
effect estimation using synthetic and real-world data sets (see Section 8.5).

8.2 Related Work

In the following, we discuss two areas of related work. First, causal inference
and, more specifically, estimating treatment effects. Second, learning policies
for treatment recommendation.

8.2.1 Prediction-Focused Learning: Effect Estimation

Understanding the impact of an action on an instance or individual is crucial
in a variety of domains where personalized decision-making is valuable, such
as marketing, healthcare, or education. Central to this is causal inference:
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using data to draw conclusions regarding causal relationships. Especially
relevant to our work is treatment (or causal) effect estimation, where the
aim is to learn how some treatment, action, or intervention will affect an
instance’s outcome of interest. For a comprehensive review, we refer to
Zhang et al. [345]. In the context of marketing, using machine learning (ML)
for treatment effect estimation is generally referred to as uplift modeling, as
discussed in several surveys [173], [345], [346].

Specialized methods have been proposed for estimating treatment effects.
First, general strategies exist for learning these effects. Causal metalearners
are modeling frameworks for effect estimation, compatible with various ML
algorithms [208], [209], [347]. Relatedly, response transformation approaches
transform an instance’s outcome so that it can be modeled using a standard
classifier [173], [348]. Second, ML algorithms have been adapted for effect
estimation, such as decision trees [206] or random forests [349], [350].

While uplift modeling has traditionally focused on optimizing conversion,
practitioners often seek to optimize other metrics related to their business
and operational context. Recent work explores cost-sensitive or profit-driven
uplift modeling, where the aim is to estimate and maximize profit and cost
resulting from targeting policies [175], [198], [351], [352]. For example, the
Incremental Profit per Conversion (IPC) has been proposed as a response
transformation approach for incremental profit [353].

All work in this category aims to estimate the effect of a treatment (e.g.,
a customer’s incremental conversion probability as a result of receiving a
marketing incentive). As discussed in the introduction, these estimates can
be used to design a treatment allocation policy (e.g., by targeting customers
with a large estimatd effect). In practice, operational constraints (such as
budget limitations) may call for more complex optimization procedures [338],
[354]–[356]. The resulting treatment allocation problem requires solving a
constrained optimization problem using the effect estimates as input.

8.2.2 Decision-Focused Learning: Effect Ranking

As argued before, the prediction-focused approach may suffer from a mis-
alignment between prediction and optimization, leading to suboptimal treat-
ment decisions. Additionally, empirical risk minimization only guarantees
model generalization for the specific objective that was optimized [344].
Decision-focused learning aims to align the two phases by using an integrated
approach and directly optimizing a predictive model for the final optimiza-
tion problem. Related to this insight, a handful of methods have recently
been proposed for treatment recommendation that aim to learn a ranking of
instances in terms of their treatment effect. Although these methods were
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Table 8.3: Literature Table. We categorize related work on effect ranking by
differentiating between different (1) ranking approaches (point-, pair-, and
listwise) and (2) metalearners.

Objective Metalearners
Ref. Point Pair List Z S T X DR R

[362] ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗
[363] ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✓
[95] ✓ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗
[344] ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗
[352] ✓ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗
[364] ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗
[365] ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗

Ours ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

originally proposed in the context of uplift modeling–framing targeted mar-
keting as a ranking problem–they are more generally applicable. Finally,
it has been noted that any score–even non-causal estimands–can be used
to prioritize instances for treatment, as long as it is a good proxy for the
treatment effect’s magnitude [357], [358].

Table 8.3 highlights related methods for ranking effects, describing the met-
alearners and objectives that were used, following the literature on learning
to rank [359], [360]. The first approach, pointwise ranking, relies on an esti-
mate of the treatment effect and corresponds to prediction-focused learning.
The second approach, pairwise ranking, aims to predict the relative ranking
between instances over all pairs of instances. The final approach, listwise
ranking, optimizes the ranking across all instances in the ranking simulta-
neously. In the literature on learning to rank, pairwise and listwise ranking
approaches have surpassed pointwise approaches, with listwise methods typ-
ically performing best [360], [361].

Most existing approaches for ranking effects rely on alternative objective
functions that integrate prediction and optimization using Lagrangian du-
ality [362]–[365] or gradient estimation techniques [366]. Alternatively, the
causal profit ranker [352] ranks instances in a post-processing stage using
pointwise estimates of the expected conversion. More advanced pairwise
[344] and listwise [95] learning to rank have also been explored in this con-
text. Conversely, our work explores pointwise, pairwise, and listwise objec-
tives, as well as a wide variety of metalearners. Finally, [367] similarly pro-
pose alternative objective functions inspired by learning to rank, but focus
on representation learning instead of metalearners, and combine pointwise
and listwise losses in a multi-objective framework.
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General methodologies have been proposed for learning a treatment policy,
directly mapping an instance’s characteristics to a recommended treatment
[171], [368]–[372]. In the context of our work, these can be seen as pointwise
approaches, as they do not consider the ranking structure of the optimization
task.

8.3 Problem Formulation

In this work, we aim to learn a treatment policy that prioritizes instances for
treatment to maximize the aggregate effect. As opposed to the existing work,
which assumes a problem formulation implicitly, we explicitly formalize our
problem setting. In doing so, we reveal the underlying assumptions required
for our approach.

8.3.1 Notation and Optimization Problem

Let an instance (e.g., a customer) be described by a tuple (xi, ti, yi), rep-
resenting covariates X ⊂ Rd, an administered treatment t ∈ {0, 1}, and the
outcome to be optimized Y ⊂ R. We denote the potential outcome Y as-
sociated with a treatment t as Y (t) and an instances i’s treatment effect
as τi = Yi(1) − Yi(0) (e.g., a customer’s incremental conversion probability
resulting from receiving a discount). We aim to learn a policy π that assigns
treatments to instances and maximizes the overall treatment effect, while
respecting possible operational constraints. At test time, we assume n in-
stances can be treated, subject to a treatment budget B with B ≤ n. This
yields the following optimization problem:

max
ti

n

∑
i=1

τi(ti)

s.t.
n

∑
i=1

ti ≤ B

ti ∈ {0, 1} ∀ i ∈ {1, . . . , n}

At test time, treatment effects τ are unknown and need to be estimated.
To this end, we assume access to a historical data set D = {xi, ti, yi(ti)}mi=1
describing past treatment decisions and the resulting outcomes. These data
can be used to estimate the conditional average treatment effect (CATE):
τ̂ = E(Y (1) − Y (0) ∣ X = x).
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8.3.2 Assumptions
We make several assumptions regarding the causal structure of the data and
the operational constraint. To estimate the causal effect from historical data,
we require the standard assumptions for identifiability in causal inference
[163] (see Appendix F.1 for a more extensive discussion). Additionally, we
more formally define the operational constraint. Although we assume that
not all instances can be treated and, thus, instance prioritization is required,
we assume that the exact budget is not known to the decision-maker a priori.
More formally, we state there is no information regarding the budget B a
priori:

Assumption 13 (Operational constraint). We assume the exact budget is
unknown, but the expectation is uniformly distributed among {1, . . . , n}: B ∼

U(1, n).

We discuss how alternative assumptions regarding the budget would affect
our proposed solution below.

8.3.3 Evaluating a Treatment Policy
We assess the quality of a proposed policy using the Qini curve, illustrated
in Figure 8.1. This curve shows the cumulative total effect of a policy for a
number of treated instances [373], [374]. Given that we assume no informa-
tion regarding the budget, we measure a policy’s overall quality using the
area under the Qini curve (AUQC), quantifying the total cumulative effect
over the entire ranking. Formally, we define the (hypothetical) AUQC as

AUQC =

n

∑
k=1

k

∑
i=1

τi (8.1)

with τi the effect of the instance at position i in the ranking. The normalized
AUQC is obtained by comparing it with the expected AUQC of a random
ranking and AUQC of a perfect ranking. Typically, the normalized AUQC
ranges between zero and one ∈ [0, 1], though a worse than random policy
with AUQC < 0 is also possible. Because effects τ are not observed in reality,
Qini curves need to be estimated from data on past treatment allocations
[95], [374].

8.4 Methodology

Given the problem setup described above, we now present our proposed
methodology, which essentially learns a ranking (or sorting) of each in-
stance’s treatment effect. The optimality of this solution can be seen as
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Figure 8.1: Evaluating a Treatment Allocation Policy. We compare targeting
policies using a Qini curve, depicting the cumulative total effect of a policy
for a number of treated instances, summarized by the area under the Qini
curve (AUQC).

follows. If only one instance can be treated (i.e., B = 1), the optimal so-
lution is to assign the treatment to the instance with the largest treatment
effect τi. Given an unknown budget and uniform expectation regarding this
budget, the optimal solution is then to rank all instances by their treatment
effect τi and assign treatments to the top instances until the budget runs out.
Therefore, our goal is to predict an optimal ordering or assignment policy
π ∈ Πn that permutes the test instances {1, . . . , n} to the optimal ordering
based on descending treatment effects τ .

As previously discussed, most existing approaches first estimate the effects
τ̂ and then rank these estimates. However, as discussed above and in Ta-
ble 8.2, this approach has two drawbacks. First, the estimator’s objective
is not aligned with the optimization task, possibly resulting in suboptimal
decisions [85]. Second, the resulting model is only guaranteed to generalize
for the predictive objective that was used [344]. These issues motivate us to
directly learn a ranking policy π based on instance characteristics X, which
requires addressing two challenges. First, to find an objective that optimizes
a ranking of instances instead of a pointwise estimate (see Section 8.4.1).
Second, the ranking needs to be based on the treatment effect τ , which is
not observed. Therefore, we extend metalearners for effect estimation to
ranking (see Section 8.4.2).

8.4.1 Optimizing a Ranking Objective

In this section, we explore approaches for optimizing a ranking. We discuss
pointwise, pairwise, and listwise approaches. We propose a listwise objective
that optimizes the policy’s AUQC directly. Additionally, we propose a sam-
pling strategy to improve the efficiency of our proposed ranking objectives.
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Ranking objectives

We describe three objectives for learning a ranking policy π that can be used
by ML algorithms.

Pointwise The first approach, used by most existing work, is to learn
a pointwise estimate of the effect. As the treatment effect itself is never
observed, this corresponds to either learning the observed outcome y(t) or a
transformed outcome, depending on the metalearner used (see Section 8.4.2).
In this work, we use the mean squared error as a pointwise objective to learn
the estimand:

LPoint(y, ŷ) =
1
n

n

∑
i=1

(yi − ŷi)2 . (8.2)

While other objectives are possible [e.g. 364], pointwise approaches by defi-
nition ignore the instance ranking resulting from the point estimates. This
motivates our exploration of alternative objectives.

Pairwise The first ranking approach is the pairwise approach. The idea is
to predict, for each pair of instances, how both instances are ranked respec-
tive to each other. If all pairs are ranked correctly, the overall ranking will
also be correct. We build upon the approach proposed for RankNet [375].
Before we define the pairwise objective, we define the pairwise outcome yi,j
that specifies whether instance i or j should be ranked higher, for each pair
of instances i and j:

yi,j = {1 if yi ≥ yj

0 if yi < yj .

Similarly, we define a smooth pairwise prediction ŷi,j , combining two in-
stances’ predictions ŷi and ŷj as follows:

ŷi,j =
1

1 + exp (−σ(ŷi − ŷj))
, (8.3)

where the sigmoid parameter σ controls the smoothness of the comparison.
In the extreme σ = ∞, this becomes a step function. This way, we de-
fine pairwise ranking as a binary classification task with the pairwise cross-
entropy loss defined as:

LPair(y, ŷ) =
n

∑
i=1

n

∑
j=1

−yi,j log (ŷi,j) − (1 − yi,j) log (1 − (ŷi,j)). (8.4)

Other pairwise objectives exist [e.g. 344] which can be applied to our ap-
proach, though we consider this outside the scope of this work.
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Listwise A drawback of the pairwise approach is that it overlooks the
relative importance of correctly classifying one pair on the listwise ranking
quality. To address this issue, the LambdaMART objective [376] adds a
weight NDCGi,j to the pairwise objective, reflecting the increase in normal-
ized discounted cumulative gain (NDCG, see below) achieved by swapping
that pair:

LList(y, ŷ) =
n

∑
i=1

n

∑
j=1

( − yi,j log (ŷi,j)

− (1 − yi,j) log (1 − (ŷi,j)))∆NDCGi,j . (8.5)

The AUQC as a specific instance of the NDCG

The normalized discounted cumulative gain (NDCG) is a class of metrics
measuring the quality of a ranking [97]. Formally, we define a ranking π,
with πi representing the i’th instance in the ranking. An instance’s gain
gi represents its value independent of its position in the ranking (e.g., the
treatment effect τ). The NDCG decreases the gain for lower ranks, reflecting
their decreasing importance, by applying a discount function d(i) to the
instance’s gain gi. The discounted cumulative gain (DCG) is the sum of
all discounted gains over the ranking DCG = ∑n

i=1 d(i)gπi . Finally, the
normalized discounted cumulative gain (NDCG) is obtained by comparing
the DCG with the perfect ranking’s DCG to get a value between zero and
one.

We propose a specific instantiation of the NDCG1 that matches the AUQC.
More specifically, we define an instance’s gain gi as its treatment effect τ .
The discount function is a linearly decreasing function: for rank i, the dis-
count equals (n− i+ 1)2. In this specification, we can show that the listwise
objective that optimizes the NDCG allows us to learn an optimal ranking
policy π that optimizes the metric of interest, the AUQC (generalizing [95,
Section 3.2.2] from the Z-Learner to any model that estimates τ):

Proof. The area under the Qini curve (AUQC) is an instantiation of the
discounted cumulative gain (NDCG):

AUQC =

n

∑
k=1

k

∑
i=1

τπi =
n

∑
i=1

n

∑
k=i

τπi

1The standard formulation of the NDCG is ∑n
i=1

2Technically, we do not discount lower ranked instances (d(i) ≤ 1), but rather promote
higher ranked instances (d(i) ≥ 1) [see 95, eq. 25].
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=

n

∑
i=1

τπi

n

∑
k=i

1 =

n

∑
i=1

τπi(n − i + 1) = DCG

for the DCG with gain gπi = τπi and d(i) = n − i + 1. Both the AUQC
and DCG can similarly be normalized by the ideal ranking, showing that
the (normalized) AUQC equals the NDCG.

Given that the listwise objective described above can be shown to optimize
the NDCG [376], [377], this result proves that our proposed objective can
be used to directly optimize the metric of interest: the AUQC. There is one
remaining challenge: we do not know the instance’s treatment effect τ and
require a valid estimator τ̂ → τ . We will tackle this part in Section 8.4.2.

Efficiently scaling to large-scale data sets

Moving from pointwise to pairwise or listwise optimization requires address-
ing a challenge regarding computational efficiency. Optimizing over pairs of
instances results in an increase of the algorithm’s time complexity from O(n)
to O(n2). This complexity is not compatible with the large data sets com-
monly encountered in applications such as marketing or e-commerce [356].

To address this challenge, we propose an efficient sampling procedure that
finds a stochastic estimate of the gradient. Intuitively, instead of calculating
the gradient based on all possible pairs, we sample k pairs per instance:

LPair(y, ŷ) =
n

∑
i=1

∑
j∈J

−yi,j log (ŷi,j)−(1 − yi,j) log (1 − (ŷi,j))

with J ∼ (U[1,...,n])k, (8.6)

and equivalently for LList. This again makes the procedure scale linearly in
the number of instances with complexity O(kn). We observe good results
for k = 1, effectively obtaining the same computational complexity as the
pointwise objective. We present a sensitivity analysis for the number of
samples k below. We opt for this sampling procedure for its simplicity,
although more advanced sampling schemes are possible [see e.g. 361].

8.4.2 Ranking Metalearners
One challenge when learning a treatment assignment policy π is that de-
cisions need to be made based on the treatment effect τ . Indeed, the op-
timization of the AUQC presented above requires a model to predict the
treatment effect τ̂ . Predicting a treatment effect τ is a challenge. We never
observe the treatment effect itself, but only one potential outcome y(t) for
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each instance, i.e., the outcome when targeted or not targeted–also called
the fundamental problem of causal inference [182]. In other words, we never
actually observe what we are trying to estimate and optimize over.

To tackle this challenge, we implement the objective functions introduced
above for different causal metalearners–general strategies for using any ML
method for treatment effect estimation. Whereas metalearners have origi-
nally been proposed for effect estimation, we propose adaptations for effect
ranking below. In practice, this adaptation consists of integrating ranking
(i.e., pairwise or listwise) objectives in each training procedure–instead of
the traditional pointwise (regression or classification) objectives. In this sec-
tion, we describe each metalearner and introduce its ranking equivalent. We
focus on several established metalearners, but the extension to other met-
alearners could be done using a similar approach. While our optimization of
the AUQC requires metalearners that directly predict the treatment effect
τ , we also discuss adaptations of other metalearners–specifically, the S- and
T-Learner.

Z-Learner The first metalearner estimates a transformation z of the out-
come y–also called the class transformation approach [353], [378], [379]–
adjusting the outcome based on the instance’s propensity score3

ê(x) =

P (T = 1∣X = x) and the observed treatment:

zi = {yi/êi if ti = 1

−yi/(1 − êi) if ti = 0

The Z-Learner estimates the treatment effect using this outcome:

fZ(x) = E(Z∣X) with τ̂ = fZ(x)

Instead of training this final model fZ(x) with a pointwise objective, we
propose to optimize it using a pairwise or listwise objective.

S-Learner The S-Learner estimates a single model, which takes the treat-
ment as a (regular) feature:

fS(x, t) = E(Y ∣X = x, T = t) with τ̂ = fS(x, 1) − fS(x, 0)

Again, the model fS(x, t) can be trained with either a pointwise, pairwise, or
listwise objective. For the ranking objectives, the estimated treatment effect
τ corresponds to the increase in the ranking score resulting from receiving

3Given that we assume data comes from a randomized trial, we can estimate the
propensity score by the proportion of treated instances without fitting a model.
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the treatment. Importantly, however, because this metalearner does not
directly optimize for τ , the theoretical results of the previous section do
not apply. Nevertheless, although there is no guarantee that the listwise
objective optimizes the AUQC for the S-Learner, the difference in ranking
scores could provide a good heuristic for the treatment effect.

T-Learner The T-Learner trains two models: one model for each treat-
ment group— fT1 for the treatment (T = 1) and fT0 for the control group
(T = 0)—trained as follows:

fT1(x) = E(Y ∣X = x, T = 1), fT0(x) = E(Y ∣X = x, T = 0).

When combined, these can estimate the treatment effect as follows:

τ̂ = fT1(x) − fT0(x).

We propose to train both models fT1(x) and fT0(x) with a pairwise or list-
wise objective, instead of the traditional pointwise objective. This corre-
sponds to a separate optimization of the AUQCof the treatment (fT1(x))
and control (fT0(x)) groups (based on the outcome y instead of the effect
τ). An instance’s difference in ranking scores between both groups is used as
a proxy for its treatment effect. Similarly to the S-Learner, the theoretical
results from the previous section do not apply. Nevertheless, this separate
optimization could be a good heuristic for the AUQC [see also 173, eq. 26].

X-Learner The X-Learner first estimates an initial treatment effect by
imputing the counterfactual potential outcome using a T-Learner model as
follows [208]:

D
1
i = yi − fT0(xi) if ti = 1, D

0
i = fT1(xi) − yi if ti = 0.

The final two models are then trained on the imputed effects:

τ̂
0
= f

0
X (x) = E(D0

i ∣X = x), τ̂
1
= f

1
X (x) = E(D1

i ∣X = x).

To obtain the final predicted effect τ̂i, we combine these two models:

with τ̂ = g(x)f0
X(x) + (1 − g(x))f1

X(x).

For the weighting function g(x), we use the estimated propensity score
ê(x) = P (T ∣X = x) following [208]. Compared to the pointwise variant,
we propose to train the final models f

0
X (x) and f

1
X (x) with pairwise or list-

wise ranking objectives, with the initial models still trained using a pointwise
objective. The final ranking score τ̂ is a linear combination of two ranking
scores [see 376, note 7.1].
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DR-Learner The Doubly Robust or DR-Learner [380], [381] also relies
on a final model estimating a pseudo-outcome. In this case, the first stage
is based on pointwise estimates from a T-Learner and a propensity model
ê(x) = P (T ∣X = x). These estimates are combined to create a pseudo-
outcome ϕ as follows:

ϕi =
ti − ê(xi)

ê(xi)(1 − ê(xi))
(yi − fTti (xi)) + fT1(xi) − fT0(xi).

This pseudo-outcome is then used to learn a final model τ̂ = fDR(ϕ∣x), which
can be learned using a point-, pair-, or listwise objective.

R-Learner For the R-Learner [382], we first fit an outcome model m̂(x) =
E(Y ∣X = x) and propensity model ê(x) = P (T ∣X = x). These can then
be used to minimize the R-Loss, based on Robinson’s decomposition [383],
which can be seen as a weighted MSE:

LRMSE(y, ŷ) =
1
n

n

∑
i=1

((yi − m̂(xi)) − (ti − ê(xi)) τ(xi))2

=
1
n

n

∑
i=1

1

(ti − ê(xi))2
((yi − m̂(xi)

ti − ê(xi)
) − τ(xi))

2

.

Instead of this pointwise objective, we propose to use a weighted pair- or
listwise objective based on the same weights and labels.

For simplicity, we do not use out-of-fold estimates for any of the intermediary
models for any of the metalearners, but rather train all models on the same
train set.

8.5 Empirical Results

This section presents the empirical results, comparing our proposed (pairwise
and listwise) effect ranking metalearners with traditional (pointwise) effect
estimation metalearners. Our experiments aim to answer three research
questions. (RQ1 ) What is the treatment recommendation quality resulting
from the different methods, as measured in AUQC? (RQ2 ) What are the
performance trade-offs of the pointwise, pairwise, and listwise objectives,
in terms of MSE (i.e., pointwise accuracy), Kendall τ (i.e., pairwise rank
correlation), and AUQC (i.e., listwise ranking quality)? (RQ3 ) How sensitive
are our proposed methods to key hyperparameters? This section presents
the setup of our experimental evaluation and the empirical results. Upon
publication, all code will be made publicly available.
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8.5.1 Data and Benchmarks
To evaluate the performance of the proposed approaches, we use a total of
four data sets based on randomized trials: 1) a synthetic dataset; 2) Criteo
[341]; 3) Hillstrom (Male and Female) [384]; 4) a proprietary data set from
a promotion campaign at a global online travel agency.

We first simulate a Synthetic data set. Simulated data allows for a more
comprehensive evaluation than real data, as we know the treatment effect
for test instances. The data generating process is inspired by an e-commerce
setting and similar to existing work [353]. First, we generate customer char-
acteristics as follows: X ∼ N (0, 1)d. Then, we generate a sale (or conver-
sion) probability S based on these characteristics and random coefficients
Us ∼ U(−1, 1)d as S =

1
1+exp (−∑d UsX+ϵs)

, where ϵs ∼ N (0, 0.1). Similarly,

we generate a potential revenue R using random coefficients Ur ∼ U(−1, 1)d
as R = 1 + ∣∑d UrX∣ + ϵr, where ϵr ∼ N (0, 0.1). The cost of the treatment
C (the marketing incentive or discount) is defined as 10% of the revenue:
C = 0.1R. The observed outcome Y , the net revenue generated for that cus-
tomer, is the revenue for that customer minus the treatment cost–simulated
as follows:

yi =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ri − ci if ti = 1 and si = 1

−ci if ti = 1 and si = 0

ri if ti = 0 and si = 1

0 if ti = 0 and si = 0.

We generate 10, 000 instances with d = 10 characteristics.

Next, we also compare with three real-world data sets. The Criteo data
set [341] is the result of a randomized trial testing whether showing an ad-
vertisement increases a customer’s visit or conversion probability. For the
outcome, we follow [364] and take the net revenue y as conversion minus
visit. To reduce training times, we randomly sample 500, 000 instances from
this data set.

The Hillstrom data set was collected to test whether an e-mail campaign
resulted in additional sales. Two treatments were recorded: a Men’s and
Women’s e-mail. Therefore, we split the data in two data sets for both treat-
ments, and use the same control group for both. We calculate each cus-
tomer’s net revenue as revenue (conversion times spend) minus visit.

Finally, data from a Promotion campaign at a large online travel agency was
used as a randomized dataset to evaluate the offline performance of different
approaches in a real-world setting.

We compare the three objectives and metalearners for gradient boosting
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based on LightGBM [385]. We implement our proposed pairwise and list-
wise objectives as a custom objectives and metrics in LightGBM. For each
data set, we run a five-fold cross-validation procedure. We run hyperpa-
rameter tuning using 10 random sampling iterations over the following hy-
perparameters: “num_leaves” ∈ [10, 50], “learning_rate” ∈ [0.01, 0.20],
“max_depth” ∈ [3, 10], and “min_data_in_leaf” ∈ [10, 30]. We use 64% of
all instances for training, 16% for validation, and 20% for testing.

8.5.2 Comparing Performance for the Different Objec-
tives and Metalearners (RQ1)

For each metalearner, we compare a model trained with only a pointwise
objective to our proposed ranking alternatives, based on either pairwise and
listwise objectives. We evaluate the quality of each treatment allocation pol-
icy by looking at the cumulative treatment effect over the instance ranking,
measured using the AUQC presented above. We evaluate the performance
for each metalearner and objective over the different data sets (see Fig-
ure 8.2 and Appendix F.2.1). Across data sets and metalearners, we observe
that listwise metalearners generally result in better treatment prioritization.
Over all tested data sets and metalearners, a pointwise objective gives the
highest AUQC in only a minority of cases (7/30), while the listwise objective
obtains best in class performance in a majority of time (16/30) and the pair-
wise objective performs similar to the pointwise (7/30). A listwise approach
outperforms a pointwise one in a majority of cases (20/30). Only for the
Promotion data, the pointwise objective performs relatively well.

Interestingly, we observe differences across metalearners in terms of which
objective gives the best results. The listwise objective seems favorable for
some metalearners (Z-, X-, and R-Learner), while the pairwise objective
seems preferable for the S-Learner and the pointwise objective seems best
for the DR-Learner. Generally, we also observe that the choice of metalearner
is at least equally important as the choice of objective. This finding stresses
the importance of testing different metalearners–illustrating the value of our
contribution.

When learning a model using ranking objectives, the ranking scores are not
properly calibrated. This represents a possible challenge for metalearners
that do not directly learn the treatment effect, i.e., the S- and T-Learner.
For these metalearners, an instance’s predicted ranking score does not neces-
sarily correspond to its potential outcome. Rather, if one instance’s outcome
is larger than another instance’s (yi > yj), its predicted score will be larger
(ŷi > ŷj). Although the ranking might hold for both potential outcomes,
there are no guarantees for the rankings of the estimated treatment effects
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derived from these ranking scores (τi and τj). Because ranking scores are not
calibrated, arithmetic operations of the scores (as used by these two met-
alearners) may not be meaningful. Nevertheless, the ranking versions of the
S- and T-Learner perform relatively well in practice, illustrating that they
may provide a meaningful heuristic. While calibration methods for ranking
models exists, we leave this extension for future work (see conclusion).

8.5.3 Analyzing Alternative Metrics (RQ2) and Design
Choices (RQ3)

This section aims to provide a deeper understanding of our proposed ap-
proach. To this end, we highlight additional results using the Synthetic
data, which allows for a more comprehensive analysis as we know the ground
truth treatment effects for the test instances.

To answer (RQ2) regarding performance trade-offs of the different objec-
tives and metalearners, we can present additional metrics to allow for a
more holistic evaluation (see Figure 8.3 and Appendix F.2.2). Our main
metric of interest remains the AUQC: a listwise metric of ranking quality.
Additionally, we present two other metrics: a pointwise error metric (MSE)
and a pairwise rank correlation coefficient (Kendall τ). First, we observe
that ranking objectives give far worse performance in terms of MSE (Ap-
pendix F.2.2). In other words, the ranking score does not accurately reflect
the size of the treatment effect. In relation to this finding, Figure 8.3 shows
that the MSE is not a good predictor of performance in terms of AUQC.
Conversely, Kendall τ is a good predictor for AUQC for all models (ρ > 0),
particularly for the ranking models (ρ > 0.9). This finding underscores the
importance of ranking metrics for evaluating decision quality and highlights
the irrelevance of optimizing pointwise error for treatment prioritization.

Finally, to answer (RQ3), we analyze several design choices of our proposed
ranking metalearners in Figure 8.4 and Appendix F.2.3. We observe that
the default setting used in the experiments above (sampling iterations k = 1,
sigmoid σ = 1, normalizing ranking scores) generally performs well across
ranking objectives and metalearners. Interestingly, we observe little perfor-
mance benefits when training with more sampling iterations. This finding
shows that our sampled objective can estimate the ranking objective accu-
rately. Only for the S- and T-Learner without normalization, we observe
better performance for a higher k. Additionally, the stochasticity of our
sampled objectives may even provide a form of regularization [386].
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8.6 Conclusion

This work addressed the problem of optimally prioritizing instances for treat-
ment, an important problem for many applications where not all instances
can receive a treatment. Existing approaches typically tackle this problem
in a prediction-focused approach by first obtaining a pointwise effect esti-
mate for each instance’s treatment effect, and then ranking instances based
on these estimates. Conversely, we explore an alternative, decision-focused
approach: using objectives that learn to rank the treatment effects, we aim to
optimize the quality of the resulting treatment policy directly. Building on
the literature on learning to rank, we propose pairwise and listwise ranking
objectives and show that our proposed listwise objective directly optimizes
the policy’s AUQC. Moreover, we propose different ranking metalearners by
integrating these ranking objectives in the construction of each metalearner.
Empirical results show that our proposed effect ranking approach can out-
perform a pointwise, effect estimation approach. In conclusion, our proposed
ranking metalearners offer a valuable tool for applications where instances
need to be prioritized for treatment.

Our work opens up several exciting directions for future work. First, by
building upon advances in learning to rank, such as more advanced list-
wise objectives [e.g., 361] or calibration of ranking scores [e.g., 387]–[389].
Alternatively, we envision extensions of our approach to more complicated
settings. For example, we could consider more advanced operational con-
straints, such as top k targeting or uncertain treatment capacities [see e.g.,
390]; multiple, continuous, or even multidimensional treatments; or more
complex objectives (e.g., incremental return on investment). Additionally, it
would be insightful to analyze how our proposed ranking metalearners per-
form when learning from confounded observational data with non-random
treatment assignments. Finally, while theoretical results regarding conver-
gence or error bounds are out of the scope of this work, we believe that
extending the results obtained for the effect estimation models [e.g., 381],
[382] to effect ranking models is a fruitful area of future work.
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9
Conclusion

Recent advances in machine learning (ML) present exciting opportunities for
extracting information from data. This dissertation looks at the potential
of using ML not just as a predictive tool, but a prescriptive one: by using
data on past operational decisions to optimize future decision-making. To
maximize the impact of ML in this context, this dissertation has argued
that we can advance ML in two ways. First, ML models need to be decision-
focused–they have to be aligned with the operational context, which can
be formulated as a constrained optimization problem. Second, to isolate the
causal impact of potential decisions and ensure that interventions achieve the
desired outcome, ML has to incorporate causal reasoning. By fulfilling these
requirements, ML can leverage insights from operations research and causal
inference and achieve its fullest potential as a tool for optimizing decision-
making. This dissertation presented several contributions that bridging the
gaps between these fields.

This section provides a wider context for the presented contributions, in
terms of their significance and relevance towards practical applications. Ad-
ditionally, it will give an overview of the limitations of the current work and
outline opportunities for future research.
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9.1 Contributions and Managerial Implications

Methodological contributions. This dissertation presented several method-
ological advances in ML. In Chapter 2, the prediction-optimization frame-
work was used to categorize and analyze cost-sensitive learning strategies.
Next, Chapter 3 presented a novel decision-focused method for prioritizing
tasks under capacity constraints based on learning to rank. Additionally, this
dissertation presented methodological advances in causal ML. TESAR-CDE,
presented in Chapter 6, is the first ML method for causal learning in set-
tings with informative sampling. In Chapter 5, NOFLITE was introduced
as a novel method for predicting individual treatment effect distributions.
AutoCATE, presented in Chapter 7, represents the first AutoML solution tai-
lored to treatment effect estimation, based on automated protocols for evalu-
ation, estimation, and ensembling of causal ML pipelines. Finally, Chapter 8
presented ranking metalearners: a casual, decision-focused ML solution for
prioritizing treatments under capacity constraints, bridging the gap between
decision-focused learning and causal inference. Collectively, these contribu-
tions push the boundaries of how machine learning can be applied to optimize
decision-making in complex, real-world scenarios.

Practical contributions. The contributions presented in this disserta-
tion represent significant progress towards solving various real-world prob-
lems across a variety of application areas. All contributions were inspired
by real-world problems and often resulted from collaborations with industry
partners. Chapters 2 and 3 were developed to support fraud detection at
BNP Paribas Fortis. Chapter 4 on preventive maintenance was motivated by
a real-world case at an anonymous industrial partner, who provided the data
to support this work. AutoCATE, presented Chapter 7, explicitly aimed to
facilitate more straightforward adoption and implementation of causal ML
in real-world settings. The work in Chapter 8 emerged from a collaboration
with Booking.com for personalizing their discounts offerings. Additionally,
the methods developed in this work are directly applicable to a variety of
adjacent applications areas, such as credit scoring or economics. These prac-
tical contributions underscore the real-world impact and applicability of the
methodologies developed in this dissertation.

Managerial implications. The findings of this dissertation highlight the
exciting potential of ML for optimizing decision-making. To fully realize
this potential, managers, and data science practitioners have to be mindful
of practical considerations and requirements that are crucial for data-driven
decision support. First and foremost, suitable data on past decisions needs
to be available. Not only are large amounts of data typically required for
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training modern ML models, causal inference additionally requires the ap-
propriate information to isolate the causal effect of the decision from other
confounding factors. For decision-focused learning, the operational context
needs to be formalized in terms of objectives and constraints in order to
align ML models with the decision-making context. To use ML for oper-
ational decision-making in practice, data practitioners need to collaborate
with domain experts to support their analyses. These experts provide the
contextual knowledge required for appropriate data collection and interpre-
tation, while data practitioners offer advanced ML techniques to best learn
from this data. As such, supporting decision-making with data requires a
coordinated and continued collaboration with different stakeholders in each
part of the ML lifecycle, from data collection to model deployment.

9.2 Limitations and Future Work

Despite the exciting recent progress, several challenges and limitations re-
main to be addressed. This section discusses some key limitations of the
presented work and describes potential avenues for future research.

Extending problem formulations and relaxing assumptions. Many
of the methods proposed in this work can improve upon conventional meth-
ods in certain settings and when certain assumptions are met. Each chapter’s
problem formulation defines the scope of problems that are addressed. An
exciting avenue for future work is to extend this scope: first by testing our
methods more generally, but also by generalizing them to address related
problems. Similarly, we have explicitly laid out the assumptions required
for each method where necessary. It would be interesting to assess the sen-
sitivity of our methods to these assumptions and to improve the robustness
to violations of these assumptions where possible. In causal inference, there
has recently been much progress in this area, such as sensitivity analyses for
hidden confounding [391] or methods that can deal with interference [392].

Extended validation of methods. A crucial direction for future work
is further practical validation of the proposed methods. In particular, most
work on causal inference is benchmarked and validated using semi-synthetic
data. Although this practice is standard in this field due to the unavailability
of a ground truth in real data, these types of experiments may not capture
certain characteristics encountered in the real-world. These complexities
can include low signal-to-noise ratios, categorical variables that need to be
encoded, or an abundance of irrelevant covariates. Practical validation of
causal ML models ideally involves an experimental approach, where differ-
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ent policies are implemented and compared in a trial. Although this ap-
proach is not straightforward to implement, it is the true test for assessing
a method’s practical utility. Finally, the experiments presented in this work
often focused on predictive accuracy or profit. Nevertheless, other perfor-
mance criteria such as interpretability or fairness remain equally essential
[393]. The intersections of these fields are fruitful areas for future research.

Causal ML lifecycle. As argued in Chapter 7, more research is needed
in overlooked parts of the causal ML lifecycle. AutoCATE aims to contribute
here, for example, by including preprocessing steps in the causal ML pipeline.
Nevertheless, several questions remain. For example, how should we adapt
standard methods for feature selection and preprocessing for causal effect
estimation? Additionally, data-centric approaches have only been developed
for supervised learning [394], but they could be equally beneficial for causal
methods. After deployment, methods need to be developed for dealing with
concept drift and for detecting changes in the underlying causal structure.
Moreover, better explainability techniques are necessary for auditing and
understanding causal ML models [395], [396]. By focusing on all phases of
the ML lifecycle, future research can help build more practical, performant
and robust causal models that can be implemented in practice.

Extending model capabilities. General advances in ML can enable
more capable models in the context of operational decision-making. Cur-
rently, we envision at least three dimensions along which models could be im-
proved. First, by extending methods presented for static settings to dynamic,
time series settings. Second, by allowing more complex, high-dimensional
treatments instead of binary choices or continuous doses. Third, by allowing
for more diverse data modalities, such as text (e.g., doctor’s notes), images
(e.g., medical scans), or audio (e.g., patient interviews). Given innovations
along these three dimensions, the end goal for an operational decision-model
should be a model that can integrate new data as it becomes available (e.g.,
a written report from a doctor’s visit or CT scan) and continuously update
its recommended high-dimensional, complex treatment plan.

Towards integrated decision support systems. A final opportunity
for ML models is embedding them in more advanced decision support sys-
tems. In these systems, models could reject making a recommendation [397]
or could defer recommendations to an expert when uncertain [398]. Inte-
grating causal and decision-focused ML models in such frameworks could
make their implementation more robust and, ultimately, more trustworthy.
Alternatively, models could play a more active role in data collection, by
probing for information in a chatbot-like setting or actively requesting tar-
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geted experiments to reduce uncertainty. Finally, it remains an open ques-
tion how to best incorporate the available domain knowledge within decision
support systems. Not only could the resulting decision support systems pro-
vide decision recommendations, they could continuously learn, interact and
collaborate with domain experts and the operational environment.
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Appendix A: An Empirical Evaluation of Cost-sensitive Learning Strategies

A.1 Data

The data sets that are used in the experiments presented in this paper are
publicly available online (names are clickable links for the online version):

• Kaggle Credit Card Fraud [107]
• Kaggle IEEE Fraud Detection
• UCI KDD98 Direct Mailing
• UCI Bank Marketing [106]
• Kaggle Telco Customer Churn
• TV Subscription Churn [59]
• Kaggle Give Me Some Credit
• UCI Default of Credit Card Clients [105]
• VUB Credit Scoring [399]

A.2 Training with instance-dependent or class-
dependent costs: results per dataset

Detailed results comparing training with instance-dependent and class-dependent
costs per dataset can be found in Tables B1 and B2.
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A.2. Instance- or class-dependent cost training: additional results

Table B1: Instance-dependent or class-dependent costs: cost-
insensitive metrics per dataset. Significantly better results are denoted
in bold (5%) and italic (10%).

Metric Costs KCCF GMSC KIFD KTCC KDD TSC UBM DCCC VCS

AUC ID 0.96 0.81 0.89 0.82 0.51 0.61 0.73 0.72 0.76
CD 0.96 0.81 0.90 0.82 0.53 0.62 0.76 0.75 0.77

AP ID 0.72 0.30 0.45 0.61 0.05 0.08 0.29 0.46 0.38
CD 0.77 0.31 0.51 0.60 0.06 0.08 0.37 0.49 0.39

Brier score ID 0.00 0.16 0.05 0.25 0.40 0.19 0.17 0.21 0.24
CD 0.00 0.17 0.06 0.25 0.42 0.19 0.16 0.23 0.25

F1 IDCS ID 0.41 0.22 0.27 0.54 0.10 0.12 0.31 0.43 0.40
CD 0.46 0.22 0.28 0.55 0.10 0.12 0.33 0.44 0.40

F1 IDCS* ID 0.40 0.30 0.28 0.57 0.06 0.12 0.28 0.37 0.40
CD 0.49 0.31 0.38 0.57 0.06 0.12 0.31 0.44 0.43

F1 CDCS ID 0.63 0.22 0.27 0.54 0.10 0.12 0.32 0.44 0.40
CD 0.74 0.22 0.27 0.55 0.10 0.12 0.32 0.45 0.39

F1 CDCS* ID 0.75 0.31 0.40 0.57 0.10 0.13 0.36 0.48 0.43
CD 0.81 0.31 0.45 0.57 0.10 0.14 0.42 0.51 0.44

F1 Emp ID ID 0.70 0.32 0.40 0.56 0.10 0.13 0.36 0.49 0.44
CD 0.81 0.31 0.45 0.57 0.10 0.14 0.42 0.51 0.44

F1 Emp CD ID 0.75 0.31 0.40 0.57 0.10 0.13 0.36 0.48 0.43
CD 0.81 0.31 0.45 0.57 0.10 0.14 0.42 0.51 0.44

F1 Emp F1 ID 0.77 0.39 0.49 0.61 0.10 0.13 0.37 0.49 0.44
CD 0.82 0.39 0.54 0.61 0.10 0.13 0.43 0.53 0.46

F1 CI ID 0.50 0.22 0.24 0.56 0.10 0.12 0.31 0.45 0.40
CD 0.53 0.22 0.23 0.57 0.10 0.12 0.31 0.45 0.40

F1 0.5 ID 0.74 0.33 0.43 0.59 0.10 0.13 0.37 0.49 0.44
CD 0.81 0.33 0.47 0.59 0.10 0.14 0.41 0.51 0.45

219



Appendix A: An Empirical Evaluation of Cost-sensitive Learning Strategies

Table B2: Instance-dependent or class-dependent costs: cost-
sensitive metrics per dataset. Significantly better results are denoted in
bold (5%) and italic (10%).

Metric Costs KCCF GMSC KIFD KTCC KDD TSC UBM DCCC VCS

AEC ID 0.08 458.90 2.53 82.05 0.72 60.22 0.52 15674.650.08
CD 0.08 460.81 3.05 81.32 0.72 60.42 0.67 16724.90 0.09

Spearman’s ρ ID 0.17 -0.04 0.09 0.12 0.03 -0.35 0.55 0.05 0.36
CD -0.07 -0.15 -0.17 0.12 -0.14 -0.30 0.18 -0.30 0.11

Savings IDCS ID 0.54 0.24 0.47 0.21 -0.01 -0.09 0.57 0.29 0.36
CD 0.68 0.23 0.42 0.22 -0.01 -0.09 0.51 0.21 0.34

Savings IDCS* ID 0.66 0.47 0.60 0.26 -0.08 0.07 0.61 0.32 0.42
CD 0.70 0.48 0.61 0.26 -0.09 0.06 0.62 0.36 0.43

Savings CDCS ID 0.62 0.23 0.38 0.21 -0.01 -0.10 0.45 0.22 0.34
CD 0.65 0.22 0.28 0.22 -0.01 -0.10 0.26 0.16 0.30

Savings CDCS* ID 0.67 0.47 0.59 0.26 -0.01 0.06 0.55 0.35 0.41
CD 0.67 0.47 0.50 0.26 -0.01 0.06 0.42 0.29 0.38

Savings Emp ID ID 0.67 0.47 0.59 0.26 -0.01 0.06 0.56 0.35 0.42
CD 0.67 0.47 0.50 0.26 -0.02 0.06 0.42 0.29 0.38

Savings Emp CD ID 0.67 0.47 0.59 0.26 -0.01 0.06 0.55 0.35 0.41
CD 0.67 0.47 0.50 0.26 -0.02 0.06 0.42 0.29 0.38

Savings Emp F1 ID 0.66 0.40 0.52 0.10 -0.03 0.05 0.54 0.35 0.39
CD 0.64 0.39 0.41 0.10 -0.08 0.05 0.38 0.30 0.33

Savings CI ID -2.58 0.23 0.24 0.22 -0.01 -0.10 0.43 0.25 0.35
CD -3.05 0.23 0.14 0.23 -0.02 -0.10 0.24 0.18 0.31

Savings 0.5 ID 0.66 0.47 0.59 0.20 -0.03 0.06 0.55 0.35 0.41
CD 0.66 0.47 0.49 0.21 -0.05 0.06 0.43 0.30 0.37
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Appendix B: Prescriptive Maintenance with Causal Machine Learning

B.1 Hyperparameter optimization

To make our work more transparent and facilitate the application of our
approach, we provide more information regarding the training and hyper-
parameter optimization of the neural networks used in this work. Table B1
shows training settings and ranges for the different hyperparameters that
were searched over, differentiating between general hyperparameters, hyper-
parameters for the GAN, and hyperparameters for the MLP. For the MLP
and MLP–ITE benchmarks, only the general and MLP hyperparameters
were searched over. For all models, hyperparameter optimization was done
using grid search based on the mean squared error on the observed outcomes
in the validation set. For more details regarding SCIGAN’s training and op-
timization, we refer to [169] and the accompanying repository available at
https://github.com/ioanabica/SCIGAN.

Table B1: Model training. We show the training settings and hyperparam-
eter ranges that were searched, differentiating between general, GAN-related
and MLP-related hyperparameters.

Name Range

General
Batch size [32, 64]
Optimizer Adam
Learning rate 0.001

GAN
Hidden neurons [16, 32]
Dosage samples 2
Training iterations 50, 000

MLP
Hidden neurons [32, 64]
Training iterations 10, 000
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Appendix C: Learning to Predict Individual Treatment Effect Distributions

C.1 Data sets and associated data generating
processes

This section gives more extensive details on the different semi-synthetic data
sets used in this work. We describe each data set and the underlying data
generating process that were used to simulate it.

IHDP [n = 747, d = 25; 205]. We use data based on the standard response
surface B. In this setting, potential outcomes are generated as

Y
(0)
i = exp((xi +A)β) + ε and Y

(1)
i = xiβ − ω + ε (C.1)

where ε ∼ N (0, 1), W is a (fixed) offset matrix with each value equal
to 0.5, β is a sparse coefficient vector with each element sampled from
(0, 0.1, 0.2, 0.3, 0.4) with corresponding probabilities (0.6, 0.1, 0.1, 0.1, 0.1).
For each iteration of the data set, ω is set to ensure that the conditional
average treatment effect for the treated (CATT) and conditional average
treatment effect on the controls (CATC) both equal 4 on average. We use
the 100 replications from github.com/clinicalml/cfrnet [201].

EDU [n = 8,627, d = 32; 219]. For each treatment group, a neural network
fy(t) is trained based on the observed outcomes. The potential outcomes are
then simulated as

Y
(0)
i = fy(0)(xi) + (2 − x

23
i )ε0 and Y

(1)
i = fy(1)(xi) + (2 − x

23
i )ε1, (C.2)

with ε0 ∼ N (0, 0.52) and ε1 ∼ exp(2). x23 refers to the 23
rd covariate, which

is a binary covariate indicating whether the instance’s mother has received
previous education.

News [n = 5,000, d = 3,477; 200]. First, based on a topic model z, two
treatment-specific centroids zc0 and z

c
1 are estimated in the topic space z(x).

Each potential outcome is then generated as the similarity between z(xi)
and z

c
t as

Y
(t)
i = C(z(xi)⊺zc0 + ti ⋅ z(xi)⊺zc1) + ε,

with scaling factor C and ε ∼ N (0, 1). Treatment assignment is modeled as
p(ti = 1∣xi) = exp(κ⋅z(xi)⊺zc1)

exp(κ⋅z(xi)⊺zc1)+exp(κ⋅z(xi)⊺zc1)
with κ = 10.

C.2 Hyperparameter optimization

We add more information on the chosen hyperparameters in Table B1. Given
the absence of the ground truth in observational data, hyperparameter tun-
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C.2. Hyperparameter optimization

ing was done using wandb [400] using the potential outcome’s loglikelihood,
PEHE, and IoU of a validation set. Additionally, to tune the hyperparameter
λ for the de-biasing term, we use an inverse propensity weighted loglikeli-
hood, allowing us to assess performance under covariate shift. Training is
done using gradient descent with the Adam optimizer [401]. We use several
types of regularization: ℓ1, ℓ2, and noise regularization [402]. The encoder
networks uses exponential linear units (ELU) as activation functions [403].

Table B1: Hyperparameter tuning. We show the optimal hyperparame-
ters for the different data sets. The flow type ‘SigmoidX’ refers to the deep
sigmoidal flow (DSF) of [258] conditioned on the balanced representation ϕ
of x. During inference, drawing samples from a truncated normal distribu-
tion was observed to be more stable for the News data.

Hyperparameter IHDP EDU News

— General —
Metalearner T T T

— Encoder —
Hidden layers balancer 2 1 3
Hidden layers encoder –
shared

3 0 0

Hidden layers encoder –
separate

2 2 3

Hidden neurons encoder 8 8 32
— Flow —

Number of flow
transformations k

0 4 1

Flow type — SigmoidX SigmoidX
Hidden neurons transformer — 4 2
Hidden neurons conditioner — 16 32
Hidden layers conditioner — 2 1

— Training settings —
Learning rate 5e-4 5e-4 5e-4
Batch size 128 512 128
Training steps 5,000 5,000 10,000
Regularization λℓ1 1e-3 0 5e-4
Regularization λℓ2 5e-4 1e-3 5e-3
λmmd 1 1e-2 1e-2
Noise regularization x 0 0 1
Noise regularization y 5e-1 1e-1 5e-1
Truncation probability 0 0 1e-2
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Appendix C: Learning to Predict Individual Treatment Effect Distributions

The optimal hyperparameters additionally give some insights into how NOFLITE
can deal with a diversity of data generating processes. For instance, the best
metalearner was the T-learner for all data sets. The potential outcomes were
generated separately for all data sets under consideration, which corresponds
more closely to the T-learner’s hypothesis space. Moreover, the complexity
of the distribution can be tweaked depending on the data generating process:
NOFLITE does not use any flows for IHDP, uses only one flow for News, and
uses four flow transformations for EDU. These settings match the increas-
ingly more complex distributions being used in the corresponding the data
generating processes.
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Appendix D: Accounting for Informative Sampling

D.1 Extended Related Work

This section provides a more extensive discussion of several related areas of
work.

D.1.1 Forecasting treatment effects over time
There is a growing interest in the ML literature in estimating personalized
treatment effects over time. To this aim, different types of neural networks
have been explored, including RNNs [272], [285]–[287], transformers [288],
and Neural ODEs [289], [290] or Neural CDEs [291]. All existing work in
this area has implicitly relied upon assumptions of the observation process,
assuming regular observations or completely random observation intervals,
see Table B1. Conversely, our work relies on the less strict SAR assumption.

Table B1: An overview of existing work. We categorize the related
work according to the assumptions made regarding the observation process.
Sampling is either assumed to be regular, completely at random (SCAR), or
at random (SAR).

Reference Sampling

Lim, Alaa, and Schaar [285] Regular
Bica, Alaa, Jordon, et al. [272] Regular
Berrevoets, Curth, Bica, et al. [287] Regular
Li, Shahn, Li, et al. [286] Regular
Melnychuk, Frauen, and Feuerriegel [288] Regular

Gwak, Sim, Poli, et al. [289] SCAR
Seedat, Imrie, Bellot, et al. [291] SCAR
De Brouwer, Gonzalez, and Hyland [290] SCAR

This work SAR

In addition to existing work leveraging neural networks, there is another
line of work in the ML literature that uses Gaussian processes to estimate
treatment effects over time in the presence of irregular samples [404]–[407].
Other work has looked at using synthetic controls to estimate the effect of a
(single) intervention over time [408], [409]. Similar to the ML literature on
estimating treatment effects over time using neural networks discussed above,
these also rely on regular samples or SCAR. To the best of our knowledge,
no existing work in the ML literature has studied the problem of estimating
treatment effects given SAR, which is the focus of this work.

Outside the ML literature, several approaches have been proposed for es-
timating average treatment effects over time, most notably the seminal
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D.1. Extended Related Work

work using g-computation and marginal structural models [410]–[412]. More
specifically, several approaches have been proposed in the (bio)statistics lit-
erature to learn causal effects under informative sampling, see Gasparini,
Abrams, Barrett, et al. [280] for an overview. Existing work on estimating
causal effects under SAR can be categorized based on (1) whether they use
inverse visiting weights or random effects, and (2) whether they assume dis-
crete or continuous time. (1) The first group uses the inverse probability
of visiting or its continuous-time equivalent, the inverse intensity of visit-
ing, as weights in the objective function of the estimator [274], [277], [294].
(2) The second uses shared random effects to jointly model the observation
and outcome processes [279]. However, these approaches assume a certain
parametric form or latent variable(s), which might not reflect the actual (un-
known) data generating procedure and usually focus on population average
effects. Conversely, our approach is conceptually similar to inverse intensity
of visit weighting, but leverages the use of flexible ML methods that do not
require these assumptions.

D.1.2 Informative sampling in ML

Various other works in ML consider related problem settings. For example,
informative sampling has been considered as a source of information for
prognosis in health care [413] and as a challenge to robustness of predictive
models to distribution shifts [414], though this line of work does not consider
the estimation of treatment effects. Moreover, the literature on active sensing
views takes observing as an active role in which the decision-maker controls
the sampling mechanism [415]. The key question addressed in this line of
work is what and when to measure [416] and, potentially, also when to stop
measuring [417]. This is in contrast to our setting, where data is not actively
sampled, but observed over time and the observer has a passive role.

D.1.3 Neural ODEs

Neural ordinary differential equations (ODEs) have recently emerged as a
novel class of machine learning models combining neural networks and differ-
ential equations [418]. Due to their ability of handling irregular observations,
Neural ODEs have been applied for time series, either directly or combined
with a recurrent neural network [e.g., 419]. Neural controlled differential
equations (CDEs) additionally allow for modeling covariates as a control,
making them suitable for dealing with irregularly sampled time series [303],
[420], as in the setting considered in this work.
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D.1.4 Missing data
Dealing with missing data is an important and established field in statistics
and machine learning [295], [421]. This literature is related to our setting,
as we are interested in learning a continuous latent path based on irregular
observations over time, which could also be seen as a form of missing data
imputation. Moreover, the sampling mechanisms considered in this work are
similar to missing data mechanisms. Several recent works explore dealing
with missing data in the context of treatment effect estimation [329], [422].
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D.2 List of Mathematical Symbols

We compile a list of mathematical symbols and their explanation in Ta-
ble B2. Moreover, we use a real-world example of a health care application
to illustrate their meaning.

Table B2: List of symbols. We compile a list of the main mathematical
symbols used and their explanation. The final column illustrates each symbol
for the case of a cancer patient.

Symbol Explanation Cancer patient example

X Covariate path Blood pressure, heart rate, etc.
A Treatment path Chemotherapy, radiotherapy, etc.
Y Outcome path Tumor size
t Time

N(t) Counting process over time Five observations after two weeks
λ(t) Observation intensity over time Probability of observing tumor

size at time t
µa,t(τ) Expected outcome at time t + τ

given treatment path a
Tumor size next week absent any

treatment
µa,t(τ) Expected outcome at time t + τ

given treatment path a
Tumor size next week absent any

treatment
ŷi,t(t′) Instance i’s predicted treatment

outcome at time t
′
= t + τ

Patient i’s tumor size next week

λ̂i,t(t′) Instance i’s predicted observation
intensity at time t

′
= t + τ

Patient i’s observation intensity
next week
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D.3 TESAR-CDE: Multitask Training Proce-
dure

We include a more detailed training procedure for the multitask configura-
tion of TESAR-CDE in Algorithm 1.
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Algorithm 2: Pseudo-code for the TESAR-CDE (Multitask) train-
ing procedure

Input: Observational data D = {t(i)j , x
(i)
tj , a

(i)
tj , y

(i)
tj } for i ∈ {0, . . . , n} and

j ∈ {0, . . . ,mi}, weighted MSE loss LWMSE, cross-entropy loss LCE, total
epochs E, learning rate η, and batch size b. TESAR-CDE architecture
consisting of four networks: an embedding network g with weights Wg,
an encoder CDE function fθ with weights Wθ, a decoder CDE function
fϕ with weights Wϕ, a final intensity map f

λ
ψ with weights W

λ
ψ , and a

final outcome map f
y
ψ with weights W

y
ψ .

for epochs = 1 to E do
Sample batch i0, i1, . . . , ib ⊂ {0, . . . , n}
Encode the first observation z(t0)(i) = g(t(i)0 , x

(i)
t0 , a

(i)
t0 , y

(i)
t0 ) for each i in

batch
Encode the history up to time t:
z(t) = ODESolve(fθ, z(t0), X̄(t), Ā(t), Ȳ (t))
Decode the history up to time t + τ :
zt(t + τ) = ODESolve(fθ, z(t), Āt(t + τ))
Map to forecast the outcome at t + τ : ȳt(t + τ) = f

y
ψ(zt(t + τ))

Map to forecast the intensity at t + τ : λ̄t(t + τ) = f
λ
ψ(zt(t + τ))

Compute gradg = Wg

1
n
∑n
i L

WMSE
i

Compute gradθ = Wθ

1
n
∑n
i L

WMSE
i

Compute gradϕ = Wϕ

1
n
∑n
i L

WMSE
i

Compute gradψy = Wψy
1
n
∑n
i L

WMSE
i

Compute gradψλ = Wψλ

1
n
∑n
i L

CE
i

Update weights Wg ← Wg − η gradg
Update weights Wθ ← Wθ − η gradθ
Update weights Wϕ ← Wϕ − η gradϕ
Update weights W

y
ψ ← W

y
ψ − η gradϕ

Update weights W
λ
ψ ← W

λ
ψ − η gradλψ

if If 1
n
∑n
i L

MT
i =

1
n
∑n
i ((1 − α)LWMSE

i + αLCE
i ) did not improve for

50 epochs then
Break {Early stopping}

end if
end for
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D.4 TESAR-CDE: Implementation

This section provides more details on the implementation of TESAR-CDE.

D.4.1 Weight truncation
For more stable training, we truncate the estimated intensities at cmin =

0.001, such that the maximal importance weight is equal to 1000. This is
similar to what is typically done with propensity scores when adjusting for
confounding bias. The truncation constant cmin allows for trading off bias
and variance, with cmin = 1 corresponding to the unweighted variant [423].
We did not tune the cutoff rate cmin.

D.4.2 Hyperparameter optimization
To allow for a fair comparison between the models, we do not tune hyper-
parameters for each model separately, but rather find the best configuration
for the baseline TE-CDE model at a level of informativeness γ = 0 and use
this for all models. We show the ranges and final values for all hyperparam-
eters in Table B3. Hyperparameter optimization was done using wandb’s
Bayesian optimization [400]. For each network in the CDE (fθ and fϕ), we
use a final tanh activation layer, as recommended by Kidger, Morrill, Foster,
et al. [303]. All models are trained with a batch size of 128 and learning rate
of 5e − 4 for a maximum of 1000 epochs. Learning was terminated if the
training loss did not improve for 50 epochs. For the multitask configuration,
we use α = 0.8 to balance the loss terms, though this is only used for early
stopping as each part of the network has a different optimizer, see also ?? 2.
For all models, we construct a control path for the Neural CDEs using a
cubic interpolation.

Table B3: Hyperparameter optimization. We show the range for each
hyperparameter that was optimized. The optimal value is shown in bold.

Parameter Range

Latent state z dimension {8, 16,32}
Encoder layers {1, 2,3}
Decoder layers {1,2, 3}
Map layers {1, 2}
Encoder hidden neurons {4,8, 16}
Decoder hidden neurons {4,8, 16}
Map hidden neurons {4,8, 16}
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D.4.3 A note on adding counts
A frequent practice in time series forecasting when observation times may be
informative is to add observation counts to the data [303], [424]. However, in
the context of estimating treatment effects, this is problematic. First, adding
counts is complicated because estimating counterfactual treatments would
then require counterfactual count data, which is not observed. Moreover,
adding count data may itself introduce confounding or collider bias [273].
Therefore, we do not add observation counts in this work.
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D.5 Tumor Growth Simulation

We use the tumor growth simulation of Geng, Paganetti, and Grassberger
[310], which was also used in the previous ML literature on estamating treat-
ment effects over time [e.g., 272], [285], [288], [291]. We refer to these works
for more details.

The tumor size is modelled as:

dY (t)
dt

= [1 + ρ log ( K

Y (t))
ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
Tumor growth

− βcCtÍ ÒÒÒÒÒÒÒÑ ÒÒÒÒÒÒÒ Ï
Chemotherapy

− (αrd(t) + βrd(t)2)
ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï

Radiotherapy

+ ϵtÍÑÏ
Noise

]Y (t).

Parameters are obtained as follows. Carrying capacity K is set equal to 30.
Growth parameter ρ is sampled from a normal distribution ρ ∼ N (7.00 ×
10

−5
, 7.23 × 10

−3). βc is also sampled from a normal distribution βc ∼

N (0.028, 0.0007). Finally, αr and βr are obtained as αr ∼ N (0.0398, 0.168)
and β =

α
10

. Noise is added by sampling ϵ(t) ∼ N (0, 0.01).
Following earlier work [272], [285], [291], we create heterogeniety in the treat-
ment effects by creating three patient groups. Patient group 1 has a larger
radiotherapy effect, achieved by multiplying µ(αr) with 1.1. Similarly, pa-
tient group 3 has a larger chemotherapy effect by increasing αc with 10%.

We consider two types of treatment plans: a sequential and a concurrent plan
[307]–[309]. We show simulated tumor paths and intensities for several pa-
tients in Figure D.1. For the informative observation process Equation (6.7),
we visualize the intensity distribution at different levels of γ in Figures D.2
and D.3. For the uninformative observation process, we show the intensity
distributions in Figure D.4.

For all experiments, we generate patient trajectories over 120 days. For
training, we split the data for forecasting to have a lookback window of
seven days and a maximum forecasting horizon of five days.
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Figure D.1: Tumor and intensity evolution. We show the simulated
tumor size and corresponding intensity over time for several (randomly se-
lected) patients. The intensity is simulated is based on Equation (6.7) with
an informativeness γ = 4.
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Figure D.2: Informative sampling – intensity distribution. We show
the distribution of intensities λ(t) over all patients for different levels of
informativeness γ. At γ = 0 (not shown), all intensities are equal λi(t) = 0.5.
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Figure D.3: Informative sampling – expected observations. We show
the expected observations over the entire time period considered over all
patients for different levels of informativeness γ. At γ = 0 (not shown), all
intensities are equal λi(t) = 0.5 and all patients have 60 expected observa-
tions.
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Figure D.4: Uninformative sampling – intensity distribution. We
show the distribution of intensities λ(t) over all patients for different levels
of “informativeness” γ. At γ = 0 (not shown), all intensities are equal λi(t) =
0.5.
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D.6 Additional Results

In this section, we present additional results to further validate the proposed
TESAR-CDE. First, we evaluate the predicted observation intensities. Sec-
ond, we analyze the sensitivity of the multitask model to hyperparameter
α.

We evaluate how accurate TESAR-CDE predicts the observation intensi-
ties in terms of the Brier Score: BS = ∑T

t=0∑τmax
τ=0 (λi(t + τ) − λ̂i,t(t + τ))2,

see Figure D.5. Generally, both versions of our method can learn to accu-
rately predict the observation intensities, with the two-step TESAR-CDE
performing slightly better than the multitask configuration. These findings
are consistent with our motivation of the multitask setup: while the two-step
model learns a (generally better) model of the intensity itself using all avail-
able information, these more accurate intensities do not help with potential
outcome prediction. Additionally, we find that the Brier score increases with
informativeness for both models. This trend indicates that more informa-
tiveness makes it harder to learn to predict the observation intensity. We
hypothesize that this is due to observing in general becoming more rare as
increases.
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Figure D.5: Evaluating the intensity prediction at varying informa-
tiveness γ. We show the Brier Score ± SE (lower is better) over ten runs at
increasing levels of informativeness γ, keeping the forecasting horizon τ = 1.

Next, we evaluate performance for the multitask TESAR-CDE for different
values of its hyperparameter α, see Figure D.6. As the shared representation
is only trained for outcome prediction, the only point of having the hyper-
parameter is to scale both terms such that they roughly influence the early
stopping in the same way. We see that our method is robust to different
values of this hyperparameter and that scaling them to approximately the
same magnitude (using 0.8) results in good performance in practice. (Note
that the loss terms are weighted by α and (1− α), which is why we restrict
to be strictly between 0 and 1.)
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Figure D.6: Evaluating the multitask configuration’s outcome pre-
diction for different levels of hyperparameter α. We show the RMSE
± SE over ten runs, while keeping the level of informativeness fixed at γ = 6
and averaging over τ ∈ {1, . . . , 5}.
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The appendix starts with a more detailed introduction and background to
CATE estimation in Appendix E.1. The next sections provide more de-
tails on AutoCATE (Appendix E.2), describe the data sets used in this work
(Appendix E.3), and present additional empirical results (Appendix E.4).
Finally, we compare AutoCATE with other packages for CATE estimation in
Appendix E.5.

E.1 Background on CATE Estimation

This section provides a more detailed introduction and background on treat-
ment effect estimation. In accordance to the main body, we denote an
instance by a tuple (x, t, y), with covariates X ∈ X ⊂ Rd, a treatment
T ∈ T = {0, 1}, and an outcome Y ∈ Y ⊂ R. Following the potential out-
comes framework [163], [181], we describe an instance’s potential outcome
Y for a given treatment T = t as Y (t). The Conditional Average Treat-
ment Effect (CATE) is then defined as the expected difference in outcomes
between treating and not treating:

E[Y (1) − Y (0)∣X]. (E.1)

Knowing this effect is crucial in a variety of domains, such as education
[199], healthcare [425], and maintenance [10]. Estimating the CATE from
observational data involves significant challenges (Appendix E.1.1), requires
standard assumptions (Appendix E.1.2), and tailored ML methods (Ap-
pendix E.1.3). We explain these in the following.

E.1.1 Challenges: The Fundamental Problem and Con-
founding

The fundamental problem of causal inference [7] is that, for each instance,
we only observe either Y (0) or Y (1), depending on what treatment was
administered. We refer to the observed outcome as the factual outcome
and the unobserved outcome as the counterfactual outcome. Because one
outcome is always unobserved, we never know the true CATE τ , which means
that there is no ground truth CATE available for training or validation.

In observational data, the outcome that was observed is typically not ran-
dom: some instances were more likely to be treated, while other instances
were more likely not to receive treatment. For example, in healthcare, pa-
tients may be more likely to receive a new treatment if they have access to
better healthcare, have no pre-existing conditions, and are younger. The
covariates that influence both the outcome and treatment assignment are
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called confounders, with the resulting non-random treatment assignment
sometimes referred to as confounding.

Confounding presents an additional challenge for CATE estimation and val-
idation as it results in covariate shift. Some instance-treatment pairs (the
counterfactuals) will be absent in the observational training data compared
to the hypothetical test data that contains all instance-treatment pairs (both
factuals and counterfactuals). Because of this, an ML model may focus too
much on the observed data points at the cost of worse predictions for the
counterfactuals and, as such, the test data overall.

E.1.2 Assumptions For Identifiability
Identifying the causal effect from observational data requires making stan-
dard assumptions: consistency, overlap, and unconfoundedness. This section
explains these assumptions in more detail.

Assumption 14 (Consistency). The observed outcome given a treatment is
the potential outcome under that treatment: Y ∣X, t = Y (t)∣X.

Assumption 15 (Overlap). For each instance, there is a non-zero proba-
bility of receiving each treatment given their covariates: ∀ x ∈ X and t ∈

T ∶ P (T = t∣X = x) > 0. This condition ensures that there is sufficient
variability in the treatment assignment.

Assumption 16 (Unconfoundedness). Given an instance’s covariates, its
potential outcomes are independent of the treatment assignment: Y (0), Y (1) ⊥
⊥ T ∣X. This condition implies that all factors influencing both the treat-
ment assignment and outcome are included in X. In other words, there are
no unobserved confounders.

There has recently been much interest in CATE estimation under violation
of these assumptions. For example, by quantifying the uncertainty or sensi-
tivity of an estimate to a possible violation [190], [193], [426], characterizing
overlap violations [188], or developing metalearners that can deal with unob-
served confounders [271]. We believe that extending AutoCATE to deal with
these settings and to incorporate these methods will improve its potential for
real-world applicability even further. As such, we consider it an important
direction for future versions.

E.1.3 CATE Estimation: Meta- and Baselearners
We briefly describe the approach of estimating the CATE with a metalearner
here. A straightforward way of estimating the CATE is using a single ML
model, where the treatment variable is considered an ordinary input variable.
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This metalearner is called the S-Learner and can be implemented with a wide
variety of baselearners (i.e., ML algorithms that predict an outcome based on
data, such as a decision tree or neural network). An alternative metalearner,
the T -learner, fits two models–one model for each treatment group. Both
models can use the same baselearner or a different one. More information
on the metalearners in AutoCATE is provided in Appendix E.2.1. For more
extensive overviews, we refer to [173], [345], and [425].

E.2 AutoCATE: Additional Information

This section presents information on metalearners (Appendix E.2.1), risk
measures for evaluation (Appendix E.2.2), and AutoCATE’s search spaces for
preprocessors and baselearners (Appendix E.2.3).

E.2.1 Metalearners

We describe the metalearners implemented in AutoCATE in more detail below.
We first define the estimates that make up the building blocks of these
models: the estimated propensity score ê(x) = E(t∣x), the treatment-group
specific outcome ŷ0(x) = E(y∣x, t = 0) and ŷ1(x) = E(y∣x, t = 1), and the
treatment-unaware outcome µ̂(x) = E(y∣x). In the following, the function
f describes a model that is learned with a base learner such as a neural
network or gradient boosting.

S-Learner. The S-Learner, or single learner, simply uses the treatment
as a variable: fS(x, t) = E(y∣x, t). The CATE τ is then estimated as τ̂ =

ŷ1 − ŷ0 = fS(x, t = 1) − fS(x, t = 0).

Lo-Learner [427]. The Lo-Learner is similar to an S-Learner, in the sense
that it uses the treatment as a variable, but it adds interaction terms between
the covariates x and treatment t: fLo(x, t) = E(y∣x, t, x ⋅ t). The CATE τ is
then estimated as τ̂ = ŷ1 − ŷ0 = fLo(x, t = 1) − fLo(x, t = 0).

T -Learner. The T -Learner constructs two models–one per treatment group:
f
0
T (x) = E(y∣x, t = 0) and f

1
T (x) = E(y∣x, t = 1), and predicts the CATE as

τ̂ = ŷ1 − ŷ0 = f
1
T (x) − f

0
T (x).

X-Learner [208]. The X-Learner first learns two treatment-specific out-
come models: ŷ0(x) and ŷ1(x). It then uses these to impute the counter-
factual outcome for each instance and, as such, obtain a pseudo-outcome
τ̃X for the treatment effect: τ̃

0
X = ŷ1(x) − y if t = 0, and τ̃

1
X = y − ŷ0(x)
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else. For each treatment group, a model is then learned on these pseudo-
outcome: f

0
X(x) = τ̃

0
X and 0

X(x) = τ̃
1
X . The final effect model then esti-

mates fX(x) = g(x)f0
X + (1 − g(x))f1

x and predicts the treatment effect as
τ̂ = fX(x). g(x) ∈ [0, 1] is a weighting function, typically the estimated
propensity score g(x) = ê(x).

RA-Learner [209]. The RA-Learner or regression-adjusted learner is sim-
ilar to an X-Learner, but directly learns the final model on the pseudo-
outcomes: fRA(x) = E(τ̃X∣x), predicting the treatment effect as τ̂ = fRA(x).

Z-Learner. The transformed outcome approach [378], [428] or inverse
propensity weighted estimator [209] uses a pseudo-outcome based on the
Horvitz-Thompson transformation [429]: τ̃Z = ( t

ê(x) −
1−t

1−ê(x)) y. The Z-
Learner then estimates fZ(x) = E(τ̃Z∣x) and predicts the treatment effect
as τ̂ = fZ(x).

U-Learner. The U -Learner is based on a pseudo-outcome τ̃U =
y−µ̂(x)
t−ê(x) .

The final model fits fU(x) = E(τ̃U ∣x) and predicts the treatment effect as
τ̂ = fU(x).

F -Learner [430]. The F -Learner uses the pseudo-outcome τ̃F =
t−ê(x)

ê(x)(1−ê(x))y.
The final model fits fF (x) = E(τ̃F ∣x) and predicts the treatment effect as
τ̂ = fF (x).

DR-Learner [381]. The DR-Learner is a robust version of the Z-Learner,
based on the pseudo-outcome τ̃Z = ( t

ê(x) −
1−t

1−ê(x)) y + (1 − t
ê(x)) ŷ1(x) +

(1 − 1−t
1−ê(x)) ŷ0(x). The final model is fDR(x) = E(τ̃DR∣x) and predicts the

treatment effect as τ̂ = fDR(x).

R-Learner [382]. The R-Learner, based on Robinson’s decomposition
[383], fits a model fR(x) using a weighted loss function with pseudo-outcomes
τ̃R =

y−µ̂(x)
t−ê(x) and weights w = (t − ê(x))2. The treatment effect is then pre-

dicted as as τ̂ = fR(x).

E.2.2 Evaluation Risk Measures
Metalearner pseudo-outcomes. An instance’s true CATE τ is unknown,
but we can use the pseudo-outcomes τ̃ used by the T -, Z-, U -, F -, DR-, and
R-Learners (see above) as ground truth.
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Table B1: Preprocessor search spaces. We describe the search spaces
for the different preprocessors. If a hyperparameter is not mentioned, we use
its default. All preprocessors are implemented with scikit-learn [335]; we
refer to their documentation for more information.

Hyperparameter Range

VarianceThreshold
threshold [0, 0.04]

SelectPercentile
k [5, n_dim]
score_func mutual_info_{regression, classif}

(a) Feature Selection

Hyperparameter Range

StandardScaler
—

RobustScaler
—

(b) Feature Scaling

Influence Function (IF) [185]. The influence function criterion gives
an estimate of an ML pipeline’s estimation error. It is based on a pseudo-
outcome of the treatment effect τ̃ , estimated with a T -Learner. This pseudo-
outcome is then debiased using the influence function. The final criterion
is:

(1 −B) τ̃2 +By(τ̃ − τ̂) −D(τ̃ − τ̂)2 + τ̃
2

with D = t − ê(x), C = ê(x)(1 − ê(x)), and B = 2tDC
−1.

k-Nearest Neighbor (kNN) [431]. The nearest neighbor matching mea-
sure finds the nearest neighbor in the opposite group, defined using the Eu-
clidean distance, and uses its outcome as the counterfactual outcome. As
such, it is essentially a T -Learner pseudo-outcome where the baselearner is
restricted to a nearest neighbor model. We extend upon this by allowing
alternative versions to be constructed by increasing k.

E.2.3 Preprocessor and Baselearner Search Spaces

Preprocessors. ML pipelines include three (optional) steps to prepro-
cess the data before being fed to a model: feature selection, transforma-
tion, and scaling. For feature selection, include VarianceThreshold, Select-
Percentile, or no selection. For feature scaling, we include StandardScaler,
RobustScaler, or no scaling. Finally, we include feature transformation al-
gorithms in our software package (SplineTransformer, PolynomialFeatures,
KBinsDiscretizer), but do not include them in the experiments as they sig-
nificantly slowed down training times. Other steps for feature selection and
scaling from scikit-learn are similarly supported, but not included in the
experiments, which is why we do not discuss them here. Table B1 provides
detailed information on the search spaces.
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Table B2: Baselearner search spaces. We describe the search spaces for
each baselearner. If a hyperparameter is not mentioned, we use its default.
All baselearners are implemented with scikit-learn [335]; we refer to their
documentation for more information.

Hyperparameter Range

Gradient Boosting
n_estimators [50, 2000]
subsample [0.4, 10]
min_samples_split [2, 500]
learning_rate [0.05, 0.5]
n_iter_no_change [5, 100]
max_leaf_nodes None
max_depth None

Random Forest
n_estimators [50, 500]
max_depth None
min_samples_split [2, 100]
max_features [0.4, 1.0]

Extra Trees
n_estimators [50, 500]
max_depth None
min_samples_split [2, 100]
max_features [0.4, 1.0]

Decision Tree
max_depth [1, 2000]
min_samples_split [2, 500]
min_samples_leaf [1, 500]
max_features [0.4, 1.0]

Hyperparameter Range

Linear/Logistic Regression
alpha [1e−6, 1e6]

Gaussian Process
n_restarts_optimizer [0, 5]
normalize_y [True,False]
alpha [1e−5, 1e2]
max_iter_predict [100, 1000]

Support Vector Machine
C [1e−6, 1e6]
kernel [linear, poly, rbf, sigmoid]
degree [1, 10]

k-Nearest Neighbors
n_neighbors [1, 30]
weights [uniform, distance]

Neural Network
hidden_layers [1, 3]
hidden_neurons [8, 64]
alpha [1e−6, 1e1]
learning_rate_init [5e−4, 1e−2]
batch_size [16, 64]
activation [tanh, relu]
max_iter 200
solver adam
early_stopping True

Baselearners. We present the search spaces for all baselearners’ hyper-
parameters in Table B2. These are based largely upon existing AutoML
packages (e.g., FLAML [323]) and some (limited) experimentation, so these
may be improved in future versions.

AutoCATE’s resulting search space of ML pipelines for CATE estimation is
vast, with 2,187 possible pipelines even without considering hyperparameters:

3 feature selection×3 scaling×27 metalearner-baselearner configurations×9 baselearners
(E.2)

with 27 = 1 (S)+2 (T )+4 (DR)+5 (X)+4 (R)+3 (RA)+1 (Lo)+2 (Z)+
3 (U) + 2 (F ), i.e., the sum of all baselearners required per metalearner.
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E.2.4 Example ML Pipeline

We give an example of a pipeline built by AutoCATE, excluding baselearner
hyperparameters. Evaluation using a T -Risk evaluation, with control out-
comes estimated with gradient boosting and treatment outcomes estimated
using a neural network. Estimation by first selecting a top percentile of
features based on the F-value between the label and feature, followed by
a DR-Learner where propensity scores are estimated with a support vector
machine, control outcomes with gradient boosting, treatment outcomes with
a linear regression, and the final effect with a random forest. This example
illustrates the complexity of an ML pipeline for CATE estimation–in this
case, there are six different ML models with several hyperparameters each.
If an ensemble is used for estimation, this complexity increases even more.

E.2.5 AutoCATE’s API: Additional Information

We give more information on AutoCATE’s initialization arguments in Listing
E.1.
1 class AutoCATE:
2 def __init__(
3 self ,
4 # evaluation_metrics: Risk measures to evaluate the

performance
5 evaluation_metrics=None ,
6 # preprocessors: Preprocessors to try (defaults added

later)
7 preprocessors=None ,
8 # base_learners: Baselearners to try (defaults added

later)
9 base_learners=None ,

10 # metalearners: Metalearners to try (defaults added
later)

11 metalearners=None ,
12 # task: Type of task (’regression ’ or ’classification

’)
13 task="regression",
14 # metric: Metric used to evaluate the model (e.g., ’

MSE ’)
15 metric="MSE",
16 # ensemble_strategy: Strategy for selecting a final

model
17 ensemble_strategy="top1average",
18 # single_base_learner: Use only one base learner
19 single_base_learner=False ,
20 # joint_optimization: Same hyperparameters for

baselearners
21 joint_optimization=False ,
22 # n_folds: Number of folds for cross -validation
23 n_folds=1,
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24 # n_trials: How many trials to optimize the estimation
pipeline

25 n_trials =50,
26 # n_eval_versions: Number of versions of each risk

measure
27 n_eval_versions =1,
28 # n_eval_trials: Number of trials for evaluating the

model
29 n_eval_trials =50,
30 # seed: Random seed for reproducibility
31 seed=42,
32 # visualize: Whether to visualize results
33 visualize=False ,
34 # max_time: Maximum time allowed for fitting the model
35 max_time=None ,
36 # n_jobs: Number of parallel jobs to run
37 n_jobs=-1,
38 # cross_val_predict_folds: Folds for cross -validated

estimates
39 cross_val_predict_folds =1,
40 # holdout_ratio: Ratio of data for validation (if

single fold)
41 holdout_ratio =0.3
42 ):
43

44 # Initialization code (not included here)
45 ...

Listing E.1: Arguments for the AutoCATE class initialization. We
describe each argument and its default initialization.

E.3 Data: Additional Information

This section describes the data used in this work in more detail.

IHDP [205]. The data come from the Infant Health and Development
Program, describing the impact of child care and home visits on children’s
cognitive development. Treatments and outcomes were simulated for a total
of 100 data sets. Each version contains n = 747 instances and d = 25
covariates.

ACIC [337]. The data from the ACIC 2016 competition was based on data
from the Collaborative Perinatal Project, studying drivers of developmental
disorders in pregnant women and their children. 77 distinct data sets were
created, each with n = 4,802 instances and d = 58 covariates. 100 iterations
were originally created for each data set, but we use only the first one for
each.
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Twins [217]. The Twins data studies the effect of being the heavier twin
on mortaility. n = 11,984 pairs of twins are included, with d = 46 features
each. Only one version of this data set exists, so we run 10 iterations of each
experiment.

News [200]. This data simulates a reader’s reading experience (y) based
on the device they use for reading (t) and the news article (x). There are
50 distinct data sets, each with n = 5,000 instances with and d = 3,477
covariates.

Below, we include results for two data sets on uplift modeling:

Hillstrom [384]. This data contains records of customers (n = 64,000)
that were contacted by a marketing campaign over e-mail. Originally, cus-
tomers received either no mail, a mail with men’s merchandise, or one with
women’s merchandise, but we convert it to not contacted (t = 0) or con-
tacted (t = 0). For each customer, d = 10 covariates are available. As the
outcome y, we consider whether the customer visited the website or not.

Information [432]. The information data set comes from the R Informa-
tion package. It describes customers (n = 10,000, d = 68) in the insurance
industry, as well as whether they were contacted with a marketing campaign
and whether they made a purchase.

E.4 Additional Results

E.4.1 Stage 1: Evaluation

Table B3 shows results for evaluating with k-fold cross validation for different
values of k.

Table B3: The effect of k in k-fold cross validation. For each data set,
we show result for a varying number of cross-validation folds. Results for
50 evaluation trials with a T -risk and 50 estimation trials with a T -Learner
and gradient boosting.

1 2 3 4 5 10

IHDP 2.15±.35 2.16±.35 2.10±.35 2.07±.33 2.29±.42 2.25±.41

ACIC 1.52±.09 1.58±.08 1.48±.08 1.51±.09 1.50±.08 1.53±.09

Twins .323±.00 .324±.00 .322±.00 .324±.00 .344±.00 .346±.00

News 2.42±.07 2.40±.07 2.41±.06 2.41±.07 2.45±.07 2.45±.07
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E.4.2 Stage 2: Estimation

Figure E.1 shows how often each metalearner gets picked in AutoCATE’s
BestMeta configuration. The difference in metalearner selection rates il-
lustrates the importance of data-driven metalearner selection, as facilitated
by AutoCATE. Interestingly, other metalearners are preferred for a binary
outcome (Twins) than for continuous outcomes (all others). This finding
suggests that different BestMeta configurations may be optimal for different
outcomes.
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Figure E.1: Metalearner selection. We show how many times a met-
alearner gets picked (in % of all data set iterations) for a given data set.
Results for AutoCATE’s BestMeta configuration, including the S-, T -, Lo-,
X-, RA-, DR-, and U -Learners, with 50 evaluation and 500 estimation trials.

We compare different metalearners in terms of
√

PEHE in Table B4. These
results show that searching across metalearners typically significantly im-
proves precision compared to using only one metalearner. Moreover, some
metalearners can result in very poor performance even after 200 optimization
trials. Typically, these results are due to exceptionally poor performance in
some iterations (e.g., the R-Learner). Additionally, we compare the per-
formance trade-off in terms of time and precision for best metalearners in
Figure E.2. These results show that the S-, T -, and Lo-Learner are often the
fastest to train and the most precise in terms of

√
PEHE. These results il-

lustrate the potential of improving AutoCATE’s time efficiency by considering
these trade-offs.

We can also apply explainability techniques to understand what drives a
pipeline’s predictions. Figure E.3 illustrates this and shows how permutation
feature importance can be used with AutoCATE.

E.4.3 Stage 3: Ensembling

The ensemble built by AutoCATE can be used to gauge the uncertainty re-
garding a prediction, by highlighting the spread of predictions. We illustrate
such an analysis in Figure E.4.
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Table B4: Comparing metalearner precision. For each data set, we
compare the different metalearner’s performance in terms of

√
PEHE, with

the best result highlighted in bold. We also include a comparison with
searching over all metalearners (AllMeta) and, in brackets, show how much
this outperforms the best single metalearner. For each result, AutoCATE uses
a T -risk with 50 evaluation trials, 200 estimation trials, and top 1 average
model selection.

S T DR X R RA Lo Z U F AllMeta

IHDP 4.52±.74 2.52±.37 5.91±.98 5.46±.87 2752.36±1613.91 5.80±.89 2.47±.34 50.09±6.21 7.45±1.12 9.58±.95 1.54±.25 (−37.5%)
ACIC 4.00±.24 4.26±.14 3.61±.22 3.09±.16 477325.02±87957.53 3.27±.19 3.07±.13 150829.14±56790.59 5.75±.43 4.65±.35 1.62±.09 (−47.3%)
Twins .318±.00 .345±.01 .320±.00 .333±.00 77.408±33.07 .323±.00 .360±.00 .546±.01 .418±.01 .376±.00 .321±.00 (+00.9%)
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Figure E.2: Comparing metalearner precision and time efficiency.
We show each metalearner’s performance in precision (

√
PEHE) and time

(excluding outliers, see Table B4). For each, AutoCATE uses a T -risk with 50
evaluation trials, 200 estimation trials, and top 1 average model selection.

E.4.4 Benchmarking AutoCATE

Table B5 presents results for additional benchmarks: S- and T-Learners
based on linear or logistic models (without regularization).

Figure E.5 shows additional results for two data sets for uplift modeling
(see Appendix E.3 for more information on the data). The effectiveness
of AutoCATE is related to at least three factors. First, by using the AUQC
metric, the search is aligned with the downstream task: prioritizing instances
for treatment [13]. Second, the search space for AutoCATE includes more
meta- and baselearners than the benchmarks. Third, the top five ensemble
seems to improve the stability and accuracy of the predicted ranking.

E.4.5 Analyzing AutoCATE’s Results

We analyze the results of AutoCATE’s optimized pipelines in Figure E.6.
These results illustrate how AutoCATE can facilitate a higher-level, compre-
hensive analysis of methods for CATE estimation and model validation.
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Figure E.3: Analyzing AutoCATE’s feature importance. We can analyze
how much each feature contributes to treatment effect heterogeneity. We
illustrate this analysis for the first iteration of IHDP using permutation
feature importance, showing the squared distance to the original prediction
when permuting a feature column.
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Figure E.4: Assessing uncertainty with AutoCATE. The ensemble re-
turned by AutoCATE can be used to analyze uncertainty regarding the pre-
diction. We illustrate this for the first 20 instances of the first iteration of
the IHDP data. For each instance, the (usually unknown) ground truth is
shown in green, while the predictions from the top five pipelines are shown
in blue and with a violinplot.

E.5 Comparing Software Packages for CATE
Estimation

Table B6 lists software packages for CATE estimation, comparing their func-
tionalities with AutoCATE. Notably, no other package is focused on auto-
mated, end-to-end CATE estimation.
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Table B5: Comparing AutoCATE with common benchmarks on CATE
estimation. We compare performance in terms of

√
PEHE, with the best

result highlighted in bold. AutoCATE results for a T -risk with 50 evaluation
trials and 50 estimation trials with the BestMeta–BestBase configuration.

AutoCATE Benchmarks
Top 1 Top 5 S–RF T–RF S–GB T–GB S–LR T–LR

IHDP 1.25±.18 1.38±.21 3.30±.57 2.61±.45 3.02±.52 1.86±.29 5.73±.0.89 2.41±.39

ACIC 1.52±.09 1.45±.10 1.67±.08 1.65±.09 1.48±.10 1.38±.09 4.13±.25 3.08±.15

Twins .315±.00 .314±.00 .318±.00 .331±.00 .319±.00 .334±.00 .320±.00 .335±.00

News 2.33±.06 2.29±.06 2.46±.09 2.39±.07 2.68±.11 2.40±.06 3.68±.17 2.93±.12
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Figure E.5: Benchmarking AutoCATE for treatment prioritization. We
present additional results in terms of AUQC for two uplift data sets, Hill-
strom and Information. These show that AutoCATE is a useful tool for pri-
oritizing instances for treatment, and highlight that its optimization is more
effective at optimizing AUQC compared to the benchmarks based on µ-risk.
AutoCATE uses a T -risk with 50 evaluation trials and the AUQC metric, the
BestMeta-BestBase search space, and Top 1 or Top 5 ensembling.
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Figure E.6: Analyzing AutoCATE’s results. We present results analyzing
pipelines optimized by AutoCATE. Figure (a) shows the correlation between
risk measures for a single IHDP iteration. Surprisingly, risk measures can be
strongly negatively correlated, suggesting potential for more advanced multi-
objective approaches that adaptively learn which objectives are reliable for
a given data set. Figure (b) visualizes the optimal pipelines learned across
ten iterations for the Twins data.

Table B6: Software package comparison. We provide an overview of
commonly used packages for CATE estimation and compare their function-
alities with AutoCATE, showing whether they support (1) evaluation, (2)
estimation, (3) ensembling, and (4) automated, end-to-end optimization—
as provided by AutoCATE or similar.

Package Functionalities General Information
Name (1) (2) (3) (4) Language Reference Link

CausalML ✗
*

✓ ✗ ✗ Python [334] GitHub
EconML ✓

§
✓ ✓

§
✗ Python — GitHub

DoWhy ✗
†

✓ ✗ ✗ Python [433] GitHub
Causica ✗ ✓ ✗ ✗ Python [434] GitHub

UpliftML ✗ ✓ ✗ ✗ Python [435] GitHub
scikit-uplift ✗ ✗ ✗ ✗ Python — GitHub

grf ✗ ✓ ✓
‡

✗ R [207] CRAN

AutoCATE ✓ ✓ ✓ ✓ Python This work GitHub
*CausalML offers provides some tools for internal validity, such as comparing results across segments.
§EconML includes an R-risk and can provide an ensemble based on this risk measure.
†DoWhy includes robustness checks for assumption violations.
‡The grf package allows for evaluation based on the Targeting Operating Characteristics curve.
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F.1 Problem Formulation: Identifiability As-
sumptions

As introduced in the main body, we require the standard assumptions from
causal inference to identify the causal effect. In this work, we assumed that
historical data comes from a randomized controlled trial:

Assumption 17 (Consistency). When Y = y and T = t, we assume that
Y (T = t) = y. This implicates that, for each instance, when given treat-
ment t, the outcome we observe is the potential outcome associated to that
treatment Y (t).

Assumption 18 (No interference). An instance’s outcome given a treatment
is independent of treatments administered to other instances: Yi(t0, . . . , ti, . . . , tn) =
Yi(ti).

Assumption 19 (Unconfoundedness). We assume Y (T ) ⊥⊥ T , i.e., past
treatment decisions were made at random, i.e., not based on the instance’s
characteristics.

If we do not have data from a randomized trial, we require a stronger assump-
tion called strong ignorability or no hidden confounding: Y (T ) ⊥⊥ T ∣x, i.e.,
past treatment decisions were exclusively based on the instance’s observed
characteristics x. In this case, we also require positivity: for each instance,
the probability of administering each treatment has to be larger than zero,
i.e., P (T ∣x) > 0. We do not consider this scenario in our work. However,
our ranking metalearners can easily be extended to these scenarios: while
some metalearners already integrate the propensity score in their construc-
tion, others may be improved by inverse propensity score weighting [429],
[436].

F.2 Empirical Results: Additional Experiments

This section presents additional experimental results. We describe additional
results for RQ1 in Appendix F.2.1, and for RQ2 and RQ3 in Appendix F.2.2
where we analyze the effect of several design choices and hyperparameters.
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Table B1: Ranking Quality for Different Objectives and Metalearners. For
each metalearner, we compare three different objectives: point-, pair-, and
listwise. We show performance in terms of AUQC (with standard error in
brackets), for the Synthetic, Criteo, and Hillstrom (Women (♀) and Men
(♂) e-mail), and Promotion data.

Meta Objective Data

Point Pair List Synthetic Criteo Hillstrom|♀ Hillstrom|♂ Promotion*

Z
✓ ✗ ✗ +0.183 (0.027) +0.038 (0.018) +0.057 (0.030) +0.013 (0.033) +0.407 (0.111)
✗ ✓ ✗ +0.137 (0.016) −0.014 (0.010) +0.016 (0.039) +0.022 (0.044) +0.370 (0.296)
✗ ✗ ✓ +0.242 (0.026) +0.048 (0.009) +0.092 (0.018) +0.027 (0.033) +0.593 (0.037)

S
✓ ✗ ✗ +0.051 (0.050) +0.030 (0.020) +0.011 (0.048) +0.025 (0.041) +0.370 (0.074)
✗ ✓ ✗ +0.052 (0.039) +0.002 (0.008) +0.042 (0.014) −0.021 (0.039) +0.593 (0.296)
✗ ✗ ✓ +0.037 (0.027) +0.048 (0.016) +0.039 (0.054) +0.021 (0.035) +0.222 (0.148)

T
✓ ✗ ✗ +0.054 (0.049) +0.043 (0.021) −0.004 (0.036) +0.015 (0.009) +0.333 (0.148)
✗ ✓ ✗ +0.046 (0.044) −0.015 (0.010) +0.044 (0.014) −0.017 (0.045) +0.630 (0.185)
✗ ✗ ✓ +0.058 (0.043) +0.039 (0.013) +0.021 (0.037) +0.032 (0.028) +0.556 (0.222)

X
✓ ✗ ✗ +0.052 (0.049) +0.034 (0.017) +-0.000 (0.031) −0.028 (0.039) +1.000 (0.296)
✗ ✓ ✗ +0.054 (0.042) +0.002 (0.009) +0.028 (0.039) +0.029 (0.034) +0.704 (0.259)
✗ ✗ ✓ +0.061 (0.038) +0.036 (0.012) +0.033 (0.051) +0.018 (0.033) +0.852 (0.111)

DR
✓ ✗ ✗ +0.055 (0.046) +0.044 (0.007) −0.101 (0.044) +0.043 (0.025) +0.667 (0.111)
✗ ✓ ✗ +0.048 (0.047) +0.022 (0.012) +0.027 (0.019) +0.006 (0.054) −0.481 (0.222)
✗ ✗ ✓ +0.056 (0.038) +0.039 (0.014) +0.005 (0.055) +0.039 (0.033) −0.148 (0.222)

R
✓ ✗ ✗ +0.054 (0.046) +0.029 (0.018) −0.034 (0.042) +0.033 (0.028) +0.593 (0.222)
✗ ✓ ✗ +0.050 (0.047) +0.021 (0.022) +0.036 (0.013) +0.012 (0.043) −0.296 (0.111)
✗ ✗ ✓ +0.056 (0.039) +0.038 (0.014) +0.048 (0.048) +0.034 (0.031) −0.259 (0.259)

*For the Promotion data, we only present scaled results such that the best AUQC = 1 due to
reasons of confidentiality.

F.2.1 Comparing Performance for the Different Objec-
tives and Metalearners (RQ1): Additional Re-
sults

We display the results presented in the main body of the text without nor-
malizing the best value to 1 in Figure F.1 and provide them in table format
in Table B1.

F.2.2 Analyzing Alternative Metrics (RQ2) and Design
Choices (RQ3): Additional Results

First, we present additional results to support our investigation surrounding
RQ2. For each metalearner, we visualize the trade-off between different
metrics: the MSE (i.e., pointwise accuracy), Kendall τ (i.e., pairwise rank
correlation), and AUQC (i.e., listwise ranking quality). This shows that
models that perform well in terms of AUQC, also perform well in terms of
Kendall τ . Conversely, performance in terms of MSE does not seem related
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Table B2: Analyzing Performance Trade-offs on Synthetic Data. For each
metalearner, we compare three different objectives: pointwise, pairwise, and
listwise. Using the Synthetic data set, we compare performance in terms of
MSE (measuring pointwise accuracy), Kendall τ (measuring pairwise rank
correlation), and AUQC (measuring global, listwise decision quality). For
each, we show the standard error in brackets.

Meta Objective Metric

Point Pair List MSE Kendall τ AUQC

Z
✓ ✗ ✗ +2.474 (0.255) +0.128 (0.021) +0.183 (0.027)
✗ ✓ ✗ +2.867 (0.263) +0.101 (0.013) +0.137 (0.016)
✗ ✗ ✓ +6.465 (1.260) +0.164 (0.020) +0.242 (0.026)

S
✓ ✗ ✗ +37.916 (3.557) +0.044 (0.033) +0.051 (0.050)
✗ ✓ ✗ +483.712 (159.054) +0.050 (0.028) +0.052 (0.039)
✗ ✗ ✓ +562.509 (300.946) +0.038 (0.022) +0.037 (0.027)

T
✓ ✗ ✗ +41.014 (3.852) +0.045 (0.033) +0.054 (0.049)
✗ ✓ ✗ +213.265 (30.716) +0.049 (0.030) +0.046 (0.044)
✗ ✗ ✓ +513.908 (94.592) +0.057 (0.030) +0.058 (0.043)

X
✓ ✗ ✗ +40.417 (3.697) +0.043 (0.033) +0.052 (0.049)
✗ ✓ ✗ +88.987 (16.651) +0.054 (0.030) +0.054 (0.042)
✗ ✗ ✓ +162.146 (40.750) +0.058 (0.028) +0.061 (0.038)

DR
✓ ✗ ✗ +42.007 (4.017) +0.043 (0.031) +0.055 (0.046)
✗ ✓ ✗ +61.014 (10.268) +0.049 (0.032) +0.048 (0.047)
✗ ✗ ✓ +311.236 (105.607) +0.055 (0.028) +0.056 (0.038)

R
✓ ✗ ✗ +41.263 (4.760) +0.042 (0.031) +0.054 (0.046)
✗ ✓ ✗ +51.008 (12.094) +0.051 (0.032) +0.050 (0.047)
✗ ✗ ✓ +124.400 (18.588) +0.055 (0.028) +0.056 (0.039)

to AUQC or Kendall τ . Finally, we also display these results in table format
in Table B2.

F.2.3 Sensitivity Analysis

To single out the effect of the analyzed design choice, we train with default
hyperparameters for each training objective and metalearner. We explore
three hyperparameters: (1) the number of sampling iterations k, i.e., the
number of sampled pairs per instance, (2) the sigmoid parameter σ con-
trolling the steepness of the comparison in the construction of the pairwise
score (see Equation (8.3)), and (3) whether we normalize the ranking score
by feeding it to a logistic sigmoid and constraining it to [0, 1]. Related
work has shown that this normalization might effectively serve as a form of
regularization and help with overfitting [362].
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In Figure F.3, we vary the number of sampled pairs k in the ranking objec-
tives, for each ranking metalearner, and compare it to the pointwise model
on the Synthetic data. We also show results for the metalearners with nor-
malization of the score (i.e., constraining the model to outputs between zero
and one) and without normalization. Somewhat surprisingly, with normal-
ization, we see that increasing k does not yield better results. Conversely,
without normalization, increasing k does in fact improve performance for
most metalearners. Nevertheless, for the Z-, X-, DR-, and R-Learner, the
best performance is achieved with normalization and k = 1–the same set-
tings used in the experiments in the main body (i.e., Table B1). For the S-
and T-Learner, deviating from these settings might improve performance.
Overall, we see that for each metalearner and objective, we can obtain the
same performance or better than the pointwise equivalent given that the
right hyperparameters are chosen. This insight provides another validation
of our proposed approach.

In Figure F.4, we vary the sigmoid parametere σ, controlling the steepness
of the comparison of the instance scores in the construction of the pair-
wise score (see Equation (8.3)). Generally, we obtain good performance for
smaller values (σ ≤ 1). When using normalization, our method seems more
sensitive to this hyperparameter compared to training without score normal-
ization. Although there may be some benefit of tuning this hyperparameter,
we observe that fixing the sigmoid parameter at σ = 1 seems like a good
choice overall–this was the setting used to generate the experimental results
in the main body.
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Figure F.1: Ranking Quality for Different Objectives and Metalearners. For
each metalearner, we compare three different objectives: point-, pair-, and
listwise. We show performance in terms of AUQC ± one standard error, for
five different data sets. As opposed to the figure in the main body, we do
not scale the results here. Due to confidentiality reasons, we cannot share
the raw results for the Promotion data set.
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Figure F.2: Analyzing Performance Trade-offs on Synthetic Data. For each
metalearner, we compare three different objectives: pointwise, pairwise, and
listwise. Using the Synthetic data set, we compare performance in terms of
MSE (measuring pointwise accuracy), Kendall τ (measuring pairwise rank
correlation), and AUQC (measuring global, listwise decision quality).
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Figure F.3: What Is the Effect of the Number of Sampling Iterations k?
We show performance in terms of AUQC (higher is better) for the different
metalearners on the Synthetic data set. We fix the sigmoid parameter σ = 1
and train with default hyperparameters.
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Figure F.4: What Is the Effect of the Sigmoid Parameter σ? We show per-
formance in terms of AUQC (higher is better) for the different metalearners
on the Synthetic data set. We fix the number of sampling iterations k = 1
and train with default hyperparameters.
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E.5 Benchmarking AutoCATE for treatment prioritization.
We present additional results in terms of AUQC for two up-
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