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Abstract 

 

Purpose 

To develop an objective severity scoring system for keratoconus for the use in clinical practice. 

 

Methods 

Corneal elevation and minimum thickness data of 812 subjects were retrospectively collected 

and divided into two groups: one control group with normal topography in both eyes (304 eyes), 

and one keratoconus group (508 eyes). Keratoconus cases ranged from suspect to moderate and 

had at least 1 examination in 1 of 2 recruiting centres. The elevation data were fitted to Zernike 
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polynomial functions up to 8th order. An adapted machine learning algorithm was then applied to 

derive a platform-independent severity scoring and identification system for keratoconus.  

 

Results 

The resulting logistic index for keratoconus (Logik) provided consistent and progressing scoring 

that reflected keratoconus severity. Moreover, the system provided an accurate classification of 

suspect keratoconus versus normal (sensitivity of 85.2%, specificity of 70.0%) when compared 

with  Belin/Ambrosio Display Deviation (BAD_D) (sensitivity of 75.0%, specificity of 74.4%) 

and the Pentacam Topographical Keratoconus Classification (TKC) (sensitivity of 9.3%, 

specificity of 97.0%). Logik also showed better accuracy for grading keratoconus stages with an 

average accuracy of 99.9% versus (98.2%, 94.7%) with BAD_D and TKC respectively.  

 

 

Conclusion 

Logik is a reliable index to identify suspect keratoconus and to score the severity of the disease. 

It shows an agreement with existing approaches while achieving better performance.  

Key words   

Grading system, Cornea, Machine learning, Keratoconus, Refractive surgery, Progression, 

Severity. 
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1. Introduction 

 

Keratoconus (KC) is a bilateral ectatic disease, characterized by a progressive thinning in the 

corneal stroma, resulting in an irregular astigmatism and a decrease of visual acuity [1]. The 

convex aspherical shape of healthy corneas is distorted in conditions such as keratoconus, 

causing the weaker stromal tissue to form a progressive protrusion at the anterior surface that 

looks like an inferior conical shape (Figure 1). 

 

The reported prevalence of keratoconus in the general population is  1:2000 [2], though a recent  

study reported that it could be as high as 1:375 [3]. While methods of optical correction, such as 

specialty contact lenses, may improve vision, they do not halt keratoconus progression. The only 

treatment known to stabilize the disease clinically is corneal collagen crosslinking (CXL) which 

was introduced in the early 2000s. In corneal refractive surgery, early diagnosis of keratoconus is 

of great importance to identify, and thereby avoid postoperative corneal ectasia [4]. There is no 

consensus among clinicians, however, on what constitutes progression, nor is there consensus on 

a valid detection and grading system [1]. This indicates a need for sensitive early diagnostic and 

scoring tools.  

 

Many studies have suggested efficient techniques for early identification [5–7], yet none have 

been universally accepted. In addition, various diagnostic scores and indices have been 

suggested, both to detect as well as to assess keratoconus progression [7–15]. Unfortunately, 

most did not correlate continuously with the disease severity [15–20], which reduced their 

usefulness in clinical practice. A more reliable and consistent system is needed if it is to be 
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utilised in the clinic. Topographical Keratoconus Classification (TKC) [12] and Belin-Ambrosio 

Deviation [21–25] (BAD_D) are considered high sensitive systems for keratoconus detection, 

therefore, a comparation with the implemented system is suggested.  

 

Recently, several mathematical and computational techniques were used to develop computer 

aided keratoconus diagnosis systems, from which machine learning (ML) algorithms have shown 

high performance [26,27]. ML consists of artificial intelligence algorithms capable of learning 

and extracting meaningful knowledge from data and has been used in the development of most 

keratoconus grading systems mentioned above. The ML outputs are often assigned as categorical 

variables associated with each KC group, which impairs its ability to score the severity of the 

condition continuously. However, an enhanced data design strategy to regulate the machine 

learning’s output, followed by a feedforward neural network could enable to continuous scoring 

the disease severity and provide a reliable identification system.  

 

This study therefore introduces a novel score-based machine learning system, named Logistic 

Index for Keratoconus (Logik), capable to (1) correctly classify keratoconus according to its 

severity, (2) to objectively discriminate suspect keratoconus from healthy eyes, and (3) to 

provide a consistent, time-continuous scoring system for keratoconus progression. 
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Figure 1: Example of the right (OD) corneal elevation maps (anterior surface (upper), posterior 

surface (lower)) of a healthy cornea (A), suspect KC (B), and moderate KC (C). The inferior 

distortion is visible in moderate KC (black circle). 

 

2. Subjects and Methods 

2.1 Patient data 

 

Schiempflug tomographic measurements obtained using the Pentacam HR (Oculus GmbH, 

Wetzlar, Germany) of 812 subjects (aged 33.9 ± 9.5 years) were used to create the Logik index. 

These Scheimpflug measurements were retrospectively collected from two centres, Antwerp 

University Hospital (UZA; Edegem, Belgium) and Ghent University Hospital (UZG, Ghent, 

Belgium). The UZA data consisted of 304 healthy control cases and 449 keratoconus cases and 
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the UZG data consisted of 59 keratoconus subjects. All keratoconus subjects had at least one 

measurement, with possible follow-up examinations spaced 6 months apart. Subjects with a self-

reported history of ocular surgery, relevant systemic or ocular diseases were excluded.  

 

The study was approved by the UZA and UZG Ethical Committees and adhered to the tenets of 

Declaration of Helsinki. The keratoconus subjects from UZG provided written informed consent 

before inclusion, while the UZA ethical committee deemed informed consent unnecessary for 

retrospective analysis, in accordance with prevalent Belgian law. The Scheimpflug 

measurements were screened by an experienced ophthalmologist and an optometrist for quality 

and validity. 

In this study five groups were considered: normal, suspect keratoconus, early, mild, and 

moderate to advanced keratoconus [6,28], defined as follows: 

•  Normal (n=304): eyes without slit-lamp findings suggestive of corneal ectasia and 

normal tomography. 

•  Suspect keratoconus (forme fruste keratoconus) (n=117): the contralateral, 

asymptomatic eye of a subject with clinical keratoconus in one eye, showing no clinical 

signs of ectasia or tomographic changes.  

•  Early keratoconus (n=34):  eyes with a subtle sign of keratoconus, such as localized 

steeping in anterior or posterior surface, without significant changes of the cornea in the 

slit lamp. 

•  Mild keratoconus (n=158): eyes with tomographic changes consistent with keratoconus 

(anterior and/or posterior corneal steepening, corneal thinning, stromal thinning), 



 

 

9 

 

Fleischer rings at the cone base, partial or circular Fleisher rings, but no visible Vogt’s 

striate.  

•  Moderate to advanced keratoconus (n=199) Clear cornea, corneal thinning at the apex, 

visible Vogt striae, clearly visible circular Fleischer ring) and corneal tomography 

findings compatible with keratoconus. 

 

Anterior and posterior corneal elevation data were exported as Pentacam CSV files, and 

imported into MATLAB (MathWorks, USA, version R2017a) as 141×141 matrices, 

corresponding with an area of 8 mm. Moreover, the minimum pachymetry value was extracted 

from the pachymetry map and imported into MATLAB as a scalar value.  

 

2.2 Methods  

2.2.1 Data pre-processing 

 

The Pentacam anterior and posterior elevation maps were fit to an 8th order Zernike polynomial 

expansion (equivalent to 45 coefficients) for each subject. These polynomials are orthonormal 

functions and widely used to represent optical abnormalities [29]. For both the anterior and 

posterior elevation maps, 45 Zernike polynomial coefficients were used without additional 

measures. Apart from these Zernike polynomial-derived features, the minimum corneal thickness 

was the only non-elevation-based value added to both the anterior and to the posterior 

polynomial fit. Therefore, each of the anterior and posterior elevation maps were structured into 

2 vectors of 46 anterior (anterior predictors) and 46 posterior (posterior predictors) parameters 
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(Figure 2). Finally, all features were normalized using Euclidian normalization procedure to 

optimize the computational cost later on.  

 

 

Figure 2: Representative example of feature extraction from anterior (upper) and posterior KC elevation 

maps (lower). 

 

2.2.2 Feedforward neural network algorithm 
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Feedforward Neural Network (FNN) is a supervised machine learning (ML) algorithm 

characterized by the capabilities of intelligent systems. Due to its ability to learn from data, as 

well as adapting to data and generalizing from new results, FNN is able to detect patterns within 

large amounts of data, map complex input/output relationships and is often used for classification 

and prediction problems. One major advantage of this algorithm is its ability to classify in 

continuous ranges, making it a good candidate for scoring keratoconus progression. In this work 

FNN was configured in MATLAB with one hidden layer (60 neurons), logistic activation 

function, learning rate of 0.001 and Levenberg-Marquardt training algorithm for the training.  

  

 

 

2.2.3 Training & validation sets 

 

A common standard for the training and the validation of a machine learning model consists of 

dividing data into 70% training and into 30% validation. Therefore, 70% of each of the control 

(212/304) and keratoconus (314/449) subjects from UZA were used to train the ML model. 

Meanwhile, a validation set was used based on 30% of data from UZA. The validation was based 

on 10 repetitive holdouts. Each time, the training and the validation sets were randomly selected 

to ensure the model reproducibility. The results were presented in term of averages of accuracies. 

The data collected from UZG (n =59) were never included in the training of the model, instead 

used to perform an additional, external validation using data collected at an external center under 

slightly different clinical protocols (Figure 3). The output of the machine learning system was set 
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as -1 to normal, 0 to suspect keratoconus, 1 to early, 2 to mild, and 3 to moderate-advanced 

keratoconus.  

 

 

 

 

 

Figure 3: Diagram of the training and the validations process based on UZA d UZG data. 

 

2.2.4 Implementation 

 

The implementation of the keratoconus grading and detection system was based on a 

combination of a FNN and a Moving Average Filter (MAF) algorithm [30]. MAF is an 

engineering technique for data regulation that adjusts data by creating a series of averages of 

subsets of the full data set. The implementation of the system is based on two steps, combine a 

hybrid FNN with MAF to design a new desired output, and a second step consists of retraining 

the hybrid FNN for KC scoring and detection. First, two FNNs were trained separately, one 

using the anterior predictors and the other using the posterior predictors. Next, the estimated 

anterior and posterior FNNs outputs were used as an input to train a third FNN and estimate a 
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combined final score. This score vector of the examinations of each keratoconus subject is 

regulated using MAF. The adjusted scores of each KC were used as a new desired output for the 

ML model, rather than the categorical outputs previously mentioned. The output regulation step 

was done one time, and no validation data were included. Finally, the FNNs were retrained for a 

second time to compute both the new anterior and the posterior score values, and subsequently 

the combined overall score. Training the ML model with the corrected desired outputs and a 

sigmoid logistic activation function resulted in the Logistic Index for Keratoconus (Logik). An 

implementation diagram is provided in Figure 4. 
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Figure 4: Diagram of Logik implementation algorithm. For each subject the process of training the 

network is repeated twice before obtaining the corresponding final Logik score. The number of iterations 

is represented by ‘i’ in the diagram. 
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2.2.5 Validation criteria 

 

Receiver Operating Characteristic (ROC) curves in terms of the Area Under the Curve (AUC) 

were used to determine the discriminative ability of the system for normal (negative class:-1) 

versus suspect keratoconus (positive class:0), and for normal versus early-advanced KC (positive 

class:1). The hold out validation technique was used to validate independently each time, and the 

average accuracies were computed in terms of sensitivity, specificity and validation standards as 

defined in Table 1. 

 

Table 1: Validation standards 

Hold out validation 

True positive TP Rate of keratoconus correctly identified  

True negative TN Rate of healthy correctly identified 

False positive FP Rate of keratoconus detected as healthy 

False negative FN Rate of normal detected as keratoconus  

Accuracy (TP+TN) / (TP + FP + FN 

+ TN) 

Percentage of individuals correctly classified 

in the data set. 

Sensitivity TP / (TP + FN) Percentage of keratoconus cases correctly 

classified. 

Specificity TN / (TN + FP) Percentage of normal cases correctly classified 

Receiver operating characteristic (ROC) curve 

AUC The performance of the machine learning to apply a binary classification 

between healthy and keratoconus 
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3. Results 

 

Logik index was evaluated for its ability to detect suspect keratoconus, its reproducibility, and its 

consistency. Moreover, the performance of the system was compared to existing approaches, 

such as BAD_D and TKC.   

 

3.1 Baseline Data description 

 

The results of ocular biometry of different study groups (normal, suspect KC, early KC, mild 

KC, and moderate to advanced KC) provided in Table 2  are in agreement with previous clinical 

studies for subgroup classification [7,31]. 

 

Table 2: Description of the Study Groups; Normal and Keratoconus at baseline 

(mean±Standard deviation (range)) 

 Kmax (D) Kmean (D) Pachymin (µm) Astig (D) I-S value (D) 

UZA data (Center 1) 

Normal 

(n=304) 

44.31±1.38 

(40.65-47.91) 

43.28±1.29 

(39.3-46.6) 

544.72±31.79 

(465-628) 

0.79±0.48 

(0.0-3.4) 

0.60±0.43 

(0,2-78) 

Suspect KC (n=108) 45.07±1.88 

(41.23-50.16) 

43.47±1.56 

(39.6-47.0) 

519.36±34.57 

(448-591) 

0.98±0.70 

(0-4.5) 

0.97±0.70 

(0.06-3.62) 

Early KC 47.24±1.64 43.78±1.53 500.38±34.33 1.812±0.88 2.51±0.74 

Cut-off Thresholds between the negative and the positive group. 
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(n=34) (44.33-53.32) (40.6-49.4) (434-569) (0.5-3.6) (0.52-3.79) 

Mild KC 

(n=133) 

51.46±3.44 

(43.42-67.88) 

45.18±2.83 

(39.10-60.8) 

478.45±38.83 

(278-565) 

2.92±1.53 

(0.10-7.9) 

2.92±1.53 

(3.95-8.30) 

Moderate to Advanced 

KC (n=174) 

60.20±5.81 

(50.72-81.44) 

49.29±4.34 

(40.1-63.6) 

446.11±41.73 

(306-535) 

4.13±2.25 

(0.0-12.6) 

10.21±2.88 

(2.63-19.52) 

UZG data (Center 2) 

Suspect KC (n=9) 46.16±1.16 

(45.04-47.45) 

44.26±1.57 

(42.4-45.9) 

517.60±45.25 

(461-583) 

1.10±0.36 

(0.5-1.4) 

1.49±0.61 

(0.83-2.39) 

Early KC (n=0) - - - - - 

Mild KC  

(n=25) 

50.88±2.84 

(45.16-56.92) 

45.52±2.25 

(40.70-50.8) 

476.16±23.17 

(433-528) 

2.88±1.36 

(0.5-5) 

4.89±1.76 

(0.48-7.13) 

Moderate to Advanced 

KC (n=25) 

60.48±7.52 

(54.30-80.97) 

51.69±6.81 

(44.70-69.30) 

429.00±67.06 

(230-505) 

4.31±2.87 

(0.2-10.9) 

9.21±2.88 

(4.18-14.14) 

Mean ± SD (range); I-S, inferior-superior value; KC, keratoconus; Kmax,, maximum keratometry; Pachymin, minimum 

pachymetry; Astig, anterior corneal astigmatism. 

 

 3.2 Keratoconus detection  

 

Using UZA data, Logik detected suspect keratoconus with an accuracy of 74.0% (AUC = 0.87, 

sensitivity = 85.2%, specificity = 70.0%). This compared to the 74.8% accuracy of BAD_D 

(AUC = 0.82, sensitivity = 75.0%, specificity = 74.4%) and the 73.9% accuracy of TKC (AUC = 

0.53, sensitivity = 9.3%, specificity = 97.0%) (Table 3-4 and Figure 5a).  Moreover, Logik, 

BAD_D, and TKC were nearly comparable in the identification of other stages of keratoconus, 

resulting in accuracies of (99.9%, 98.2%, 94.8%) with Logik, BAD_D, and TKC respectively. 

While Logik and BAD_D performed similarly in detecting early to advanced keratoconus, Logik 

performed better when identifying suspect keratoconus.  
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Based on the external validation from UZG data, Logik and BAD_D showed results consistent 

with the UZA dataset for both suspect KC and other stages of the condition, while TKC 

demonstrated low accuracies for suspect KC (Table 3-4, Figure 5b). However, the UZG group is 

not representative and it includes only 9 suspect KC subjects. While this group of data is not 

descriptive, the detection results were reported but not used to evaluate performances of the three 

systems. However, the external validation can be considered as a proof of concept of Logik 

generalizability and repeatability since it includes data collected from a different center.  

TKC also performed poorly for classifying suspect keratoconus using UZA data, nonetheless it 

was better for more advanced stages of the condition (Table 4). This is likely due to the strict 

definition of our suspect KC group which hampers the identification of the condition according 

to TKC grading criteria [12].  

 

                                               Table 3: Holdout validation of Logik 

  

UZG data (Center 2) UZA data (Center 1) 

Suspect 

KC 

vs 

Normal 

KC 

vs 

Normal 

Suspect KC 

vs 

Normal 

KC 

vs 

Normal 

 

Accuracy 73.3% 99.1% 74.0% 99.9% 

Logik Sensitivity 99.9% 94.0% 85.2% 99.1% 

 Specificity 75.5% 99.9% 70.0% 99.9% 

  Cut-off -0.9810 0.5 -0.9839 0.5 

 

Accuracy 63.0% 57.0% 74.6% 98.2% 

BAD_D Sensitivity 88.9% 99.9% 75.00% 97.0% 

 Specificity 62.9% 50.0% 74.4% 99.7% 
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  Cut-off 0.8150 2.11 0.824 2.95 

 

Accuracy 93.7% 99.9% 73.9% 94.8% 

TKC Sensitivity 0.0% 99.9% 9.3% 90.0% 

 Specificity 96.3% 99.9% 97.0% 99.9% 

  Cut-off 0.25 1.25 0.25 1.25 

 

 

Figure 5: ROC curves for suspect KC detection based on UZA (a) and UZG (b) data. 

 

Table 4: Area under Curves of TKC, BAD_D, Logik for suspect KC 

versus Normal 

 Suspect KC 

versus Normal 

KC versus Normal 

AUC (UZA) AUC (UZG) AUC (UZA) AUC (UZG) 

Logik 0.87 0.97 0.99 0.99 

BAD_D 0.82 0.85 0.99 0.98 

TKC 0.53 0.48 0.99 0.97 
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3.3 Consistency of Logik for Keratoconus Progression 

A consistent quantitative system for keratoconus progression remains lacking. As BAD_D is a 

performant system for suspect keratoconus detection, and it correlates with the most widely used 

markers of progression such as minimum pachymetry, [21] maximum anterior sagittal curvature, 

and mean keratometry, posterior ectasia, it can be used as an index for keratoconus staging. 

Therefore, BAD_D was considered as a reference system and it was compared with Logik for 

keratoconus severity grading. Since based on our data TKC was less reliable for the detection of 

suspect keratoconus and it provides categorical rather than continuous scoring, this was not 

assessed. 

In addition to the accurate classification of normal versus keratoconus at different stages, Logik 

was found to be a consistent scaling system (Figure 6). The index is following a nearly constant 

horizontal curve y = –1 for controls, whilst it tends to follow a continuous and logistic 

progressive trend for keratoconus subjects. Figure 6 displays a discrete cut-off of keratoconus 

severity such that, Logik ≤ -0.8 corresponds to a normal eye, >-0.8 and ≤ 0.5 corresponds to 

suspect KC, >0.5 and ≤1.5 is early KC, >1.5 and ≤2.5 is mild KC, >2.5 and ≤3.5 is moderate KC 

and Logik >3.5 represents advanced keratoconus. Logik therefore showed good agreement for 

the staging of early, mild, moderate and advanced keratoconus of the original data classification, 

and most keratoconus subjects ranging, from suspect to moderate, were classified correctly 

according to severity.  
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The BAD_D cut-offs values proposed  in the literature [23], (i.e., BAD_D < 1.65 corresponds to 

normal , 1.65 ≤ BAD_D ≤ 3.5  to suspect keratoconus and BAD_D >3.5 to abnormal) lead to a 

lower sensitivity and specificity. Therefore, other optimum cut-offs were suggested in this paper 

based on the statistical analysis results (Table 3-4) and ROC curves (Figure 5), by maximizing 

the sensitivities and specificities and keeping a balance superior of 50% for all BAD_D, TKC 

and Logik. Consequently, the discrete cut-offs of BAD_D were set such that BAD_D ≤ 0.8 was 

normal, >0.8 and <2.95 was suspect keratoconus, and BAD_D ≥ 2.95 was abnormal.  

Even though BAD_D demonstrated nearly similar results to Logik index for early to advanced 

keratoconus detection, it was found that BAD_D was less consistent in describing keratoconus 

severity, because it showed larger overlaps between early stage and more advanced stages (Black 

boxes in Figure 6). Even though both systems showed some degree of overlap between suspect 

keratoconus and normal, (circles on Figure 6), this was less in the case of Logik than for 

BAD_D. The number of misclassifications for suspect keratoconus (Table 3) was 14.8% for 

Logik (blue circle in Figure 6) and 25% for BAD_D (red circle in Figure 6). The 

misclassifications area included the overall examinations of KC follow ups, while the 

misclassification percentages in Tables 3-4 are associated with undetected subjects at the 

baseline. These misclassifications can result from the limited data sets for suspect keratoconus 

(n=108) versus (n=304) for early-advanced keratoconus. The big similarities between normal 

and suspect keratoconus, require a larger data set which could reduce the number of 

misclassifications. Moreover, 35% of UZA suspect keratoconus data (n=38) with more than 4 

measurements were  detected normal with both Logik and BAD_D and remained stable for 

2 years as apparently suspect KC.  
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Figure 6: Distribution of data samples of normal and baseline KC according to the detected severity 

(UZA datasets). Blue and red circles indicate the area of overlap between healthy and suspect 

keratoconus eyes, the larger the circle, the larger the number of misclassified suspect cases. Black 

boxes indicate the overlap between early and more advanced KC cases, the larger the area the more 

misclassifications 

 

3.4 Longitudinal follow-up 

 

For the longitudinal assessment, 308 keratoconus patients with at least 4 measurements were 

assessed, each spaced 6 months apart. Here, an index (Logik or BAD_D) was considered to 

increase if the last visit showed a higher score than the first visit and was considered to decrease 

otherwise. A reliable keratoconus follow-up system, in absence of treatment, would not show a 

decrease over time. The Logik increased over time for 220 subjects and decreased for 88 

subjects, compared to 93 decreasing with BAD_D (Table 5). Logik showed a progressively 
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increasing trend over time, with mostly positive and steeper slopes than BAD_D between 

sequential values (Figure 7). Consequently, Logik was more discriminative over time. The 

confusion matrix (Table 5) demonstrated that generally both systems agree, if the slow (nearly 

constant) trend of BAD_D is considered progression.  

 

 

 

Figure 7: Longitudinal evolution of Logik (left) and BAD_D (right) for the common increasing 100 KC 

subjects with at least 4 measurements. The graphs of Logik and BAD_D are adjusted according to 

MAF. 

 

Table 5: Confusion matrix of the agreement 

level of Logik and BAD_D (n=308) 

    BAD_D 

  Increase Decrease Total 

 

Logik 

Increase 177 43 220 

Decrease 38 50 88 
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Total 215 93  

 

 

4. Discussion 

 

Reliable identification and severity scoring system of keratoconus is of great importance in 

ophthalmology, since it allows adequate diagnosis and assessment of disease progression. For 

this purpose, we developed an objective, consistent, time-continuous system for keratoconus 

identification and severity scoring, named Logistic Index for Keratoconus (Logik). Currently, 

there is no consistent or clear definition of progression [1] and many researchers assessed the 

longitudinal variations of quantitative parameters for this purpose [15–20]. Mostly, these 

parameters have been acknowledged as unreliable and poorly associated with disease severity 

[18]. Logik is an automated time continuous system for severity scoring, as well as for the 

detection of suspect keratoconus. 

 

Even though Amsler-Krumeich [32] is the most widely  used classification system for 

keratoconus, many researchers and clinicians consider it insufficient or even outdated [1]. 

Longitudinal observations such as corneal thinning and corneal steepening as sign of progression 

as well as a decline in visual acuity are traditionally considered [33]. These indications, however, 

are subjective and rely on longitudinal observation of corneal changes, which requires time to 

assess whether a given patient would progress or not. Later studies have suggested computer 

assisted diagnostic scores for disease staging [10,11,15,34,35], these systems, however, were 

based on an old screening method (videokeratoscopy), and provide discrete time scoring values, 
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with no progress between dissimilar cases within the same stage. Recent systems have 

demonstrated the same inconsistency limitations for scoring the disease continuously [36–40]. 

Moreover, the longitudinal follow-up of keratoconus patients, often show inherent variabilities. 

Therefore, Logik overcomes the previous limitations by providing an objective, consistent time 

continuous severity scoring system for keratoconus. Logik classifies keratoconus severity into 

five main stages (suspect, early, mild, moderate, advanced) in addition to the normal healthy 

stage. The system showed a continuous logistic trend with the disease severity (Figure 6) and 

was consistent with the previously defined keratoconus stages (Table 2). As BAD_D is also 

considered as an accurate parameter for keratoconus, it was used here as a reference to assess the 

consistency of Logik for measuring the severity, even though it was not originally intended for 

this purpose. The comparison demonstrated that Logik was able to score the disease impact and 

showed an increase even within the same category. In following up KCs patients (Figure 7), 

Logik showed less variability than BAD_D (Table 5). A comparation of Logik or BAD_D with 

the keratoconus ABCD grading system [8] was not possible as ABCD relies on four metrics 

where each consider a different aspect of keratoconus progression. 

 

Compared to BAD_D and TKC, Logik proved to be an accurate identification system for suspect 

keratoconus and achieved an accuracy of 74.0% (AUC = 0.87, sensitivity = 85.2%, specificity = 

70.0%) versus BAD_D 74.6% (AUC = 0.82, sensitivity = 75.0%, specificity = 74.4%) and TKC 

73.9% (AUC = 0.53, sensitivity = 9.3%, specificity = 97.0%).  The low sensitivity of TKC could 

be due to the strictness of our KC group definition. A study [41] that followed the same 

definition demonstrated that TKC shows no significant difference between healthy cornea and 

suspect KC. Similarly, the three systems achieved comparable results for other corneas with 
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varying keratoconus severity with accuracies of 99.9%, 98.2%, 94.8% for Logik, BAD_D, and 

TKC respectively (Tables 3-4, Figure 5). An external validation of the systems also confirmed 

the efficiency and the repeatability of Logik (Tables 3-4).   

 

Earlier computer-aided diagnosis systems were based on videokeratoscopy and topography 

profiles. However, subsequent studies based on pachymetry indices and tomography were much 

better at differentiating healthy from keratoconus eyes [10,22,36]. Of note is the work by 

Arbelaez et al. [42], who applied support vector machine (SVM)  to corneal tomography and 

allowed  detecting subclinical keratoconus with an accuracy of 97.7% (sensitivity = 92.0%, 

specificity = 97.7%) and clinical keratoconus with an accuracy of 98.2% (sensitivity = 95.0%, 

specificity = 99.3%). The subclinical keratoconus group of Arbelaez’s study included patients 

with topographical signs of ectasia, this does not match our definition of suspect keratoconus, 

however, higher sensitivity (99.9%) and specificity (99.9%) were achieved with Logik for 

clinical keratoconus (Table 2). Due to the lack of a universal definition of ‘suspect’ and ‘early’ 

keratoconus, a direct comparison of accuracies is difficult to establish. One study that adopted 

similar definition as this paper was  by Smadja and associates [6], applying decision trees to 

tomographic data and resulted in sensitivity (93.6%) and specificity (97.2%) for early 

keratoconus detection. However, the generalizability performance of this study needed further 

independent validation using unseen data, which was cited as one of study’s limitations. In this 

work, the accuracies were computed with independent data, both from internal and external 

centers. Independent validation data tends to reduce the sensitivity and specificity to more 

reliable and realistic values, which may explain the difference between the respective findings. 
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Saad and Gatinel [37] described a linear discriminant based model using another corneal 

Tomographer (Orbscan II; Technolas, Munich, Germany) and founded higher sensitivity (93.0%) 

and specificity (92.0%) for suspect keratoconus, which was further validated based on 

independent data [37]. Gatinel’s study used predictors that are device-dependent, which has a 

great potential to enhance the accuracies, but making it difficult to directly compare their results 

to the current analysis. A previous study by our team [7], however, used  Pentacam HR device 

dependent metrics analysed by a SVM, leading to an accuracy of  93.0% (sensitivity = 79.1%, 

specificity = 97.9%) for detecting suspect keratoconus. In our opinion, including platform 

dependent parameters increases the result accuracies. Logik was based only on anterior and 

posterior corneal surfaces and the value of minimum pachymetry, which we think is one of its 

major strengths, since it enhances the chance of the platform independency and the 

reproducibility. Yet this requires a further validation. The restriction manifested in using only 

elevation data and minimum pachymetry, while implementing Logik causes a decrease of the 

sensitivity and the specificity. Our group also developed a novel hybrid computer aided 

diagnosis system (CAD) [31] based on tomographic profile and a hybrid machine learning 

algorithm achieved higher sensitivity (97.8%) and specificity (99.6%) for suspect keratoconus 

detection. Although, CAD showed an important and competitive detection ability for suspect 

keratoconus compared with the last AI/automated systems for KC detection, it was not adequate 

for disease severity scoring, and incorporate hybrid complex ML. Whereas, Logik is based on a 

simple algorithm with greater potential for clinical implementation. Since Logik is mainly 

developed to provide a severity scoring system, a further extension to combine a simplified CAD 

and Logik will be considered.  Other advantages of Logik are its time continuity and the 

combining of abilities to detect suspect keratoconus and to score the disease to varying levels of 
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severity. Kovács et al, [43] reached a best accuracy in terms of AUC of 0.88 and AUC of 0.96  

for discriminating healthy corneas from suspect keratoconus, defined as the “normal” fellow 

cornea of an eye diagnosed as KC, and healthy corneas from keratoconus. Logik obtained a 

similar result for suspect keratoconus detection (AUC = 0.87), and an AUC of 1 for clinical 

keratoconus detection.  

The Pentacam Random Forest Index (PRFI), developed by Lopez et al.[38], is an enhanced 

tomographic index for detecting corneal ectasia, with a reported comparable sensitivity of 85.2% 

to Logik but higher specificity of 96.6% versus 70.9%. The PRFI, however, was trained based on 

a much larger group of controls (n = 2980) versus (n = 304) in our study, which justifies the 

lower specificity. When PRFI was compared with BAD_D, the latter showed nearly similar 

results to PRFI in term of specificity (95.5%), while in, the current study, BAD_D gave a 

specificity of (74.4%), nearly similar to that of Logik, suggesting that increasing the data of the 

control group would likely lead to comparable specificity values for Logik and PRFI. Increasing 

the sample of controls might also lead to an improved accuracy. Since the current 

implementation of PRFI in the Pentacam software requires both a Corvis and a Pentacam 

measurement, even though PRFI does not use any biomechanical data, no direct comparison with 

PRFI could be made as no Corvis data was available for the patients included in this work. 

 

In a recent platform-independent study by Castro-Luna et al.[44] the detection of KC was 

assessed based on Placido disk indices using a Bayesian network classifier, achieving a 

sensitivity and specificity of 100% for the classification of early to moderate KC. The data 

samples were small (control=30, KC=30), and their keratoconus group included cases with 

subclinical signs of the disease. Similarly, another platform independent study [45] reported 
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100% sensitivity and specificity from analysing anterior wave front aberrations derived from 

Placido disk tomography based on the same inclusion criteria of KC. In the current study, Logik 

demonstrated a sensitivity of 99.1% and specificity of 99.9% for the groups that include 

subclinical signs of KC. While it is a challenge to obtain high accuracies from platform 

independent data, the sensitivity and the specificity in our study were similar to the reported 

results. Finally, there is one more KC grading system proposed based on anterior corneal 

elevation [46]. This system was not considered in the analysis, however, because it does not 

include the contributions of the posterior surface, and its discrete steps do not correlate 

continuously with the disease’s severity, thus hampering its ability to accurately track 

progression. Moreover, their study group was based on a small sample (40 normal eyes and 40 

KC eyes), the KC eyes had at least 1 clinical sign (KISA% index≥100) confirmed by the 

videokeratoscopy. Logik achieved 99% accuracy for the same category. 

 

There are some limitations to this study that need to be acknowledged, most notably the modest 

overlap between the healthy cases and suspect keratoconus. This may be caused by the larger 

tomographic similarities between both groups, and the limited sample size of the suspect 

keratoconus group compared to the normal group. Moreover, the unclear definition of suspect 

keratoconus, which is still not well established in the literature, makes it difficult to make a direct 

comparison with previous publications. This study considered suspect keratoconus as the 

symptomatic fellow eye of a keratoconus cornea, as previously proposed [36], the strictest 

possible definition. However, a recent study [47] suggests the possibility to develop a promising 

staging system based on biomechanical data combined with tomographic data, which can be 

considered as a perspective to improve the current study. Finally, although Logik is a system that 
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allows keratoconus identification and severity scoring continually tracks progression, it is still 

unable to predict future progression.   

 

In conclusion, Logik presents two major improvements in comparison with the existing systems 

for keratoconus detection and classification: it identifies suspect keratoconus with a higher 

performance than the existing alternatives, and it provides an objective, consistent severity 

scoring system. The proposed framework can be used to assist ophthalmologists in the process of 

decision-making alongside other diagnostic criteria. The principles of the followed strategy can 

also be used to improve other scaling systems previously suggested in the literature. 
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Highlights  

•  A logistic index for keratoconus identification and severity scoring is presented. 

•  The system is based on a new data design strategy. 

•  The data design strategy improves the performance of a feedforward neural network to 
score keratoconus severity. 

•  The developed approach is platform independent and reproducible. 
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