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A B S T R A C T

In this paper, we review the milestones in the development of heuristic methods for optimization over the
last 50 years. We propose a critical analysis of the main findings and contributions, mainly from a European
perspective. Starting with the roots of the area that can be traced back to the classical philosophers, we
follow the historical path of heuristics and metaheuristics in the field of operations research and list the
main milestones, up to the latest proposals to hybridize metaheuristics with machine learning. We pay special
attention to the theories that changed our way of thinking about problem solving, and to the role played by
the European Journal of Operational Research in the development of these theories. Our approach emphasizes
methodologies and their connections with related areas, which permits to identify potential lines of future
research.
1. Introduction

Optimization is the process of selecting or approximating the best
possible solution from a set of possible alternatives. In mathematical
terms, it involves determining the best configuration of an input (values
of decision variables) that corresponds to the best value (minimum or
maximum) of an output (the objective function), subject to a set of
constraints. This best possible solution is called the optimal solution of
the optimization problem.

For many optimization problems, efficient algorithms have been
developed that could also be proven to always find the optimal solution.
Famous examples include Kruskal’s (Kruskal, 1956) and Prim’s (Prim,
1957) algorithms for the minimum spanning tree problem, Dijkstra’s al-
gorithm for the shortest path problem (Dijkstra, 1959), Ford–Fulkerson’s
method for the max flow problem (Ford & Fulkerson, 1956), and the
Hungarian method for the assignment problem (Kuhn, 1955).

These problem-specific algorithms, however, were only able to solve
a single problem. To solve more general classes of optimization prob-
lems, mathematical programming models have been instrumental. Called
prescriptive models, they translate complex real problems in business
and industry into standard formulations that express the problem as a
set of decision variables, an objective function, and (often many) con-
straints. When the resulting mathematical programming model meets
certain criteria (e.g., when the objective function and constraints are all
linear functions of the decision variables), standardized optimization
methods can be used in order to find the optimal solution of the
problem they represent. This successful approach to represent a real
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problem as a mathematical optimization model, proposed by George
Dantzig together with the Simplex method around the 1950s (Dantzig,
1951), has lead to a large number of optimization methods to solve
them.

However, the approach to use standardized solution methods on
mathematical programming models that guarantee to find the optimal
solution, has important limitations. These limitations surface when
solving large-scale problems and problems that have some complicating
mathematical characteristics such as discrete variables (combinatorial
optimization problems), non-linear constraints, or a complex objective
function. In such situations, finding the optimal solution becomes in-
tractable, not because it is more complex to find it, but because it takes
too much time to be practically feasible. The study of the relationship
between the size and nature of an optimization problem and the time
required to solve it, called complexity theory has provided insights into
the deeper reasons why this is the case and why it is unlikely that, for
many practical combinatorial optimization problems, we will ever find
a fast algorithm to solve them in a reasonable amount of time.

Real problems require solutions, however, optimal or not. Research
on solving large-scale combinatorial optimization problems has there-
fore out of necessity focused on the only practical solution in such a
situation: to relax the requirement of finding the optimal solution and
resort to a solution method that does not guarantee that the optimal
solution will be found. Such a solution method is called a heuristic
optimization algorithm, or simply heuristic.
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Heuristics have been around long before we coined the term. In fact,
one could argue that one of the primary functions of the human brain is
to solve optimization problems using heuristics. Whether choosing the
best berries from a bush, determining the best way home from work,
or selecting a car to purchase, our mind invariably uses some form of
heuristic to make the decision. However, the specifics of these mental
shortcuts often remain elusive to us. While heuristics have been a part
of human decision-making for ages, their formal study is a relatively
new endeavor. Much like fish in water, we are so surrounded by opti-
mization processes and heuristics that it has proven to be a challenge
to recognize them as subjects worthy of study and formalization.

Modern heuristics endeavor to understand the process of solving
problems, especially the mental operations typically useful in this
process. A serious study of heuristic should take into account both
the logical and the psychological background, and should not neglect
what historical authors as Pappus, Descartes, Leibnitz, and Bolzano
have to say about the subject (Hertwig & Pachur, 2015), but it should
least neglect unbiased experience. Experience in solving problems and
experience in watching other people solve problems has traditionally
formed the basis on which a heuristic is built. Heuristics have become
a very popular family of solution methods for optimization problems
because they are capable of finding acceptable solutions in a reasonable
amount of time.

Researchers found out very early that simple problem-specific rules
of thumb, like the nearest neighbor heuristic for the traveling sales-
person problem, the best-fit and first-fit algorithms for bin packing
problems, the Clarke–Wright algorithm for the vehicle routing prob-
lem (Clarke & Wright, 1964), and many others, could often find satis-
factory solutions in far less time than their exact counterparts.

Exact methods, however, still had an advantage in the form of a
general methodology to model and solve optimization problems for
which no problem-specific methods were available. The equivalent of
the linear and integer programming paradigm, but with the resulting
algorithm being a heuristic, remained elusive. While mathematical
programming methods could always be truncated, i.e., stopped before
they either found or proved the optimal solution, this approach did not
necessarily yield a feasible solution. A gap therefore existed for general
purpose methods or frameworks, that could provide support to develop
heuristic optimization methods to solve problems for which no specific
heuristic existed.

In the last decades, algorithmic advances as well as hardware and
software improvements have provided an excellent environment on
which to build such general-purpose frameworks. From the 80s on,
several frameworks were proposed that could be used to develop
effective heuristic algorithms for a wide range of different optimization
problems. These frameworks were sometimes called modern heuristics,
and are now generally known as metaheuristics.

The term metaheuristic was coined by Fred Glover in his seminal
article ‘‘Future Paths for Integer Programming and Links to Artificial
Intelligence’’ (Glover, 1986). A metaheuristic can be seen as a method-
ology that includes master strategies capable of guiding the search for
the globally optimal solution. They are considered more complex and
efficient than simple heuristic algorithms because they explore areas
in the solution space that go beyond those explored by the simple
heuristics, which tend to focus on finding a single locally optimal
solution.

In this paper, we will adopt the definition of Sörensen and Glover
(2013): ‘‘A metaheuristic is a high-level problem-independent algorithmic
framework that provides a set of guidelines or strategies to develop heuristic
optimization algorithms’’. In this definition, a metaheuristic is itself not
an algorithm (i.e., a precisely defined series of steps), but plays a looser
role as a more or less consistent set of high-level ideas that can be
used to develop a problem specific heuristic optimization algorithm.
This means that the designer of a heuristic based on a metaheuristic
framework still has a large amount of freedom in choosing the specific

characteristics of their method, and that the degree of ‘‘engineering’’
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required to instantiate a metaheuristic framework so it can solve a
specific optimization problem, can be considerable.

Surveying the literature, one could be excused for thinking that
there exist dozens, if not hundreds or even thousands of different
metaheuristics. In the following sections, we classify those metaheuris-
tics in order to create some clarity, according to the way in which
the metaheuristic proposes to manipulate the solutions. Constructive
heuristics, described in Section 2 build solutions from their constituting
elements. Local search heuristics perform small changes to a single
solution iteratively to improve it as much as possible. Section 3 covers
these important methods that are at the core of many metaheuristics.
Finally, Population-based heuristics, described in 4, combine solutions
into new ones. We consider these categories to organize this paper,
since they provide a natural way to approach heuristics both from a
theoretical and a historical perspective. We do not try to cover all
existing metaheuristic methodologies, but we limit ourselves to those
that changed our way of thinking in problem solving, and in that sense
may be considered the most relevant ones.

During the last few decades an increasing number of ‘‘novel’’ meta-
heuristics have been proposed based on a metaphor of some natural
or man-made process that is often unrelated to optimization. The
range of sources from which inspiration has been drawn is simply
baffling (Sörensen, 2015). From African buffaloes to zombies, and from
black holes to bats, frameworks have been proposed whose novelty
seems to lie in the description of the source process that inspired them.
The arguments against the proliferation of these ‘‘novel’’ techniques
have been well documented (see e.g., Camacho-Villalón, Dorigo, and
Stützle (2023) for a scathing argument against several ‘‘well-known’’
metaphor based metaheuristics). We do not go in depth on this issue,
but just note that there is usually nothing ‘‘novel’’ about these proposals
(but that the use of metaphor-specific terminology obfuscates this
fact), and that even the metaphor itself more often than not does not
make sense. In summary: metaphor-based metaheuristics are simply
bad science, and it is good to see that a large majority of reputable
OR journals do not publish them anymore, and that several journals
even have an explicit policy against them (Aranha et al., 2021). In the
remainder of this paper, we therefore ignore these ‘‘contributions’’.

After the revision in Sections 2, 3, and 4 of the three heuristic
categories described above (constructive, local search, and population-
based respectively), we report on the history of heuristics. Section 5
provides a critical review of the main historical developments and their
impact on problem solving, and Section 6 focuses on the contributions
of the European Journal of Operational Research to the metaheuristic
field. Section 7 presents the ecosystem around the metaheuristic com-
munity. What is expected in the future with the next generation of
metaheuristics, including for example meta-analysis or hybridizations
with machine learning is introduced in Section 8. The paper concludes
summarizing this critical review in Section 9.

2. Constructive metaheuristics

As the name suggests, heuristics based on a constructive metaheuris-
tic construct solutions from their constituting elements. These elements
depend on the model that is being solved. Examples include: the items
in a knapsack problem, the arcs between nodes in a routing problem,
the order of the tasks in a scheduling problem, etc. Generally, the
constructive process starts from an empty solution, i.e., a solution in
which the status of each solution element, either part of the solution or
not, is undefined.

The construction process selects one element at a time from the
list of elements whose status (included in the solution or not) is still
undefined. This distinguishes them from local search heuristics, where
the status of each element is known at each step of the search process.
Generally one can order the potential elements in order of some mea-
sure of desirability. In a TSP, e.g., the potential arcs of the underlying

graph can be sorted in order of increasing distance. Items in the



R. Martí et al.

p
p
o
a
r
c
a
c
s

i
t
d
t

2

r
d
d

a
p

t
h
(
p
a
m
w
i
b
m
g

3

o
s
m
s
l
f
c
t
c
o
t
l
K

t
c

European Journal of Operational Research 321 (2025) 345–362 
knapsack problem can be ordered e.g., by increasing profit, decreasing
weight, or a combination of both. The element list is not necessarily
static and its ordering can change as the constructive process continues.
For example, in a nearest neighbor heuristic for the TSP the arcs are
sorted by increasing length, but arcs that do not depart from the current
node do not appear on the element list.

By adding one element at a time, the solution iteratively becomes
more complete. When the status of each potential element is deter-
mined, the process finishes and a complete solution has been generated.
Due to its nature, the constructive process only has a complete solution
at the end. Determining the value of the objective function is therefore
only possible after the construction process finishes. The same holds
true for determining the solution feasibility, i.e., whether all constraints
are satisfied, although it is often possible to ensure that the construction
process automatically leads to a feasible solution. E.g., a nearest-
neighbor heuristic for the VRP can ensure that the solution remains
feasible during the construction process by returning to the depot once
the capacity of the vehicle has been reached.

When the construction process always selects the ‘‘best’’ element,
i.e., the most desirable element on the element list, the heuristic is
called greedy. Greedy heuristics are both very natural to a human
roblem-solver and very common in practice. For some optimization
roblems, like the minimum spanning tree problem, they result in
ptimal solutions. They do come with some drawbacks, however. First,
lways choosing the ‘‘most desirable’’ element is not guaranteed to
esult in a good solution, for which reasons, greedy heuristics have been
alled myopic. Second, greedy heuristics are typically deterministic
nd generate the same solution every time they are executed. They
an therefore not be simply repeated in the hopes of finding better
olutions.

For these reasons, several possible strategies have been proposed to
mprove the performance of a greedy heuristic. We will briefly discuss
he most important of them here. For each of these strategies, many
ifferent variants have been proposed, but an exhaustive overview of
hose is well beyond the scope of this paper.

.1. GRASP

GRASP (Feo & Resende, 1995; Resende & Ribeiro, 2016) adds
andomness to the greedy selection process by not selecting the most
esirable element at each step, but rather selecting one element ran-
omly from a restricted candidate list. The size of the restricted candidate

list determines the balance of greediness versus randomness of the
heuristic (a larger restricted candidate list means the algorithms be-
haves in a more greedy way). Typically, the constructive phase of the
search is followed by a local search phase in which the solution is
improved. Many variations on the idea of GRASP have been proposed,
such as reactive GRASP (Prais & Ribeiro, 2000) in which the size of the
restricted candidate list is dynamically varied.

2.2. The pilot method

The pilot method (Duin & Voß, 1999) uses a look-ahead strategy in
which the selection of the element from the list does not depend on that
element’s raw ‘‘value’’, but on its potential to find a good solution when
selected next. Like most constructive metaheuristics, the pilot method
assumes that a fast greedy heuristic is available. At each iteration,
the method determines a pilot for each possible element that can be
selected next, equal to the objective function value of the solution that
would be obtained by the greedy heuristic under the assumption that
the element is selected next. The element selected next is the element
with the best pilot. Of course, several variations on this theme are

possible. s
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2.3. Ant colony optimization

Ant colony optimization (Dorigo, Birattari, & Stutzle, 2006) uses a
parallel set of independent construction processes (called ‘‘ants’’) and
base the construction on a combination of randomness and information
gathered by the ‘‘ants’’ on the desirability of each element. The con-
structive processes are then allowed to update the desirability of each
element, based on the quality of the solutions that they have produced.
A ‘‘pheromone evaporation’’ mechanism is also in place to increase the
influence of more recently constructed solutions.

There is a interesting connection here between ant colony optimiza-
tion and tabu search. Note that several of the principal methods to
initiate tabu search make use of constructive search. For example, the
initial phase of the probabilistic tabu search (Glover, 1989) employs
a candidate list and selects moves probabilistically based on their ob-
jective function evaluations, accounting for sequential and cumulative
differences in the evaluations. Probabilities are increased for moves that
appear longer or more frequently on the candidate list. After a first
constructive pass, subsequent constructions introduce diversification
criteria as part of the evaluation process.

2.4. (Adaptive) Large neighborhood search

Large neighborhood search (Shaw, 1998) alternates a constructive
heuristic with a destructive heuristic. The latter partially destroys the
solution, so that it can be rebuilt by the constructive heuristic, and is
usually severely randomized so as to introduce sufficient diversification
in the construction process.

Adaptive large neighborhood search (Ropke & Pisinger, 2006) uses
a set of constructive (repair) operators and a set of destroy operators
nd adapts the probability of these heuristics being selected to their
erformance in previous iterations.

Constructive and destructive heuristics have received a lot of at-
ention and their alternation has been applied within different meta-
euristics, as in the iterated greedy approach of Ruiz and Stützle
2007). A more systematic alternation of constructive and destructive
hases was initiated in the context of tabu search in references such
s Glover and Laguna (1993) and has been a key accompaniment of
any tabu search approaches. Strategic oscillation operates not only
ith constructive and destructive moves, but more generally is defined

n terms of approaching, potentially crossing, and receding from a
oundary determined by feasibility or structure, or alternatively by
oving toward or away from a region where the search appears to

ravitate.

. Local search

Local search methods were very popular in non-linear (continuous)
ptimization in the eighties. We may find many papers applying multi-
tart methods to find a global solution by starting a local solver from
ultiple starting points in the solution space 𝑆. The most basic multi-

tart method generates uniformly distributed points in 𝑆, applying the
ocal solver from each of them. In the case of optimizing differentiable
unctions, the solver is usually based on the gradient vector. In any
ase, local search basically produces a sequence of solutions converging
o a local optimum. From a theoretical point of view, this process
onverges to a global solution with probability one as the number
f initial points approaches infinity (Solis & Wets, 1981). In practical
erms, these multi-start procedures are heuristics that produce a good
ocal optimum (see for example the multi-level single linkage by Rinnooy
an and Timmer (1987)).

When considering a combinatorial optimization problem in which
he solution space is usually defined in terms of integer variables, we
annot directly apply the concept of gradient that requires a continuous

pace. But we can adapt it. As a matter of fact, the adaptation of the
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local search to the integer domain has probably been the most powerful
heuristic tool to solve combinatorial optimization problems.

Local search for combinatorial optimization starts from an initial
solution 𝑆, obtained either randomly or with the application of a
constructive method (as shown in Section 2), and explores the solutions
obtained when applying a small change, called move, to 𝑆. The neigh-
borhood 𝑁(𝑆) contains all the solutions that are obtained applying a
move to 𝑆. In a first-improving variant, local search resets 𝑆 to be
the first improving solution 𝑆′ found in 𝑁(𝑆), i.e. 𝑆 ← 𝑆′ and local
is restarted at 𝑆. In a best-improving variant, local search resets 𝑆
to be the best improving solution found in 𝑁(𝑆) and restarts. If no
improving solution is found in 𝑁(𝑆), then we say that 𝑆 is a locally
optimal solution and the local search halts.

By applying local search from different starting solutions 𝑆, a
variety of locally optimal solutions may be found. Embedding local
search within a multi-start procedure where each local search starts
from a different starting solution will produce a set of locally optimal
solutions, the best of which could perhaps be a global optimum. Algo-
rithm 1 shows a pseudo-code of a standard local search algorithm for
a minimization problem.

Algorithm 1: Local search algorithm
Input : Current solution 𝑆
Result: Improved (local optimal) solution 𝑆′

1 Generate the neighborhood 𝑁(𝑆)
2 Improve ← true
3 while Improve do
4 Identify the best solution 𝑆′ ∈ 𝑁(𝑆)
5 if 𝑓 (𝑆′) < 𝑓 (𝑆) then
6 𝑆 ← 𝑆′

7 else
8 Improve ← false
9 Generate the neighborhood 𝑁(𝑆)

The effectiveness of local search depends on several factors, such
s the neighborhood structure, the function to be minimized, and the
tarting solution. Move definition plays a central role since the neigh-
orhood contains the solutions generated by applying the move. For
xample, in problems where solutions are represented as permutations,
uch as the well-known TSP, insertions are probably the most direct and
fficient way to modify a solution. Note that other movements, such as
waps, can be obtained by composition of two or more insertions. It is
lear that the cardinality of the neighborhood depends on the move
efinition, and it is difficult to determine before-hand which move
ould produce better local optimal solutions. As it is customary in
euristic optimization, to disclose the best strategy, we usually have
o resort to experimentation.

It is difficult to identify the first paper proposing a local search
ethod, but we can place the first ones in the late fifties. In par-

icular, Croes (1958) proposed a method for solving the traveling
alesman problem based on first computing a trial solution, and then
teratively improving it by performing what the author called inversions.
n this seminal paper, there is no explicit reference to local search,
ove or neighborhood, to mention terms common nowadays. Using the

tandard terminology, we would say that the method first constructs a
reedy solution and then applies a local search based on a move that
nverts a partial sequence of the permutation that represents the current
olution. Special attention is given to the incremental computation of
he objective function, what now we call the move value. The paper ends
ith some final remarks comparing the performance of the method
ith the previous one by Dantzig, Fulkerson, and Johnson (1954) on
20 × 20 matrix and with some tips for its implementation both by

and and in a mechanized way, which illustrates how much the field
as improved considering the current perspective.
 m
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Local search was originally based on a deterministic conception
n which the best way to optimize is to improve as much as possi-
le a given solution in a short term horizon. It computes a greedy
valuation function reflecting the objective function improvement, to
elect the best solution in the neighborhood of the current solution.
his simple mechanism, although relatively effective, turned out to be

imited to obtain high-quality solutions for large instances of difficult
roblems. Researchers in many different fields of operations research,
uch as routing, scheduling or graph theory, proposed different search
trategies in the seventies and eighties to overcome the limitations of
ocal search. They have been coined as Stochastic Local Search, or more
ecently as Metaheuristics.

The contrast between the meta-heuristic conception and the local
earch conception is significant. For many years, the primary objective
f a heuristic procedure (a conception that in some ways it is still
revalent today) was to envision an iterative rule that terminates as
oon as no solutions immediately accessible could improve the last
ne found. Consequently, the emergence of methods that departed
rom this classical design and that did so by means of an organized
aster design constituted an important advance. Metaheuristics in their
odern forms are based on different interpretations of what constitutes

‘intelligent’’ search that goes beyond the application of stochastic
lements to a local search.

Randomization usually plays an important role in stochastic local
earch methods, either to generate starting solutions or to improve
hem in a non-deterministic way. However, deterministic strategies are
lso the foundations of important methods that transformed our way of
hinking on problem solving. We now briefly describe tabu search and
ariable neighborhood search to illustrate very effective strategies that
ead to two of the most important local search based methodologies:
he use of memory and the systematic change in the move definition.

.1. Iterated local search

One popular metaheuristic based on local search is known as iterated
ocal search (ILS). In its basic form, the idea of ILS is to iteratively
estart the local search operator from a perturbed solution. The per-
urbation operator partially scrambles the last local optimum found,
nd then starts the local search operator from this scrambled solution.
he goal of the perturbation operator is to change the current solution
nough to end up in a different basin of attraction, i.e., a solution that
ill lead to a different local optimum. ILS can be considered as a

andom walk over local optima. An early example of ILS in EJOR can
e found in Lourenço (1995).

.2. Tabu search

Tabu search (Glover, 1986) begins in the same way as ordinary local
r neighborhood search, proceeding iteratively from one solution 𝑆 to

another one until a termination criterion is met. We may contrast tabu
search (TS) with a simple descent method that only permits moves to
neighbor solutions that improve the current objective function value,
and ends when no improving solutions can be found. TS permits moves
that deteriorate the objective function value of the current solution, but
the moves are chosen from a modified neighborhood, 𝑁∗(𝑆), which
s the result of keeping track information during the search. In the
S strategies based on short term considerations, 𝑁∗(𝑆) is usually a
ubset of 𝑁(𝑆), and the tabu classification serves to exclude some of
ts elements.

TS usually applies attributive memory for guiding purposes (i.e., to
ompute 𝑁∗(𝑆)). Instead of recording full solutions, attributive memory
tructures are based on recording attributes. This type of memory
ecords information about solution properties (attributes) that change
n moving from one solution to another. The most common attributive
emory approaches are recency-based memory and frequency-based
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memory. Recency, as its name suggests, keeps track of solutions at-
tributes that have changed during the recent past. Frequency typically
consists of ratios about the number of iterations a certain attribute
has changed or not (depending whether it is a transition or a resi-
dence frequency). The interplay (usually alternation) between recency
and frequency memories lead to intensification and diversification
strategies that permit to explore the search space in an efficient way.

3.3. Variable neighborhood search

The basic strategy in variable neighborhood search (Mladenović &
Hansen, 1997) is to systematically change the neighborhood of the
solution. This strategy is applied in the context of a standard descent
phase to find a local optimum and coupled with a perturbation phase
to get out of its basin of attraction.

Variable neighborhood search (VNS) is based on three well-known
principles:

• A local minimum with respect to a neighborhood is not necessar-
ily so for another one.

• A global minimum is a local minimum with respect to all possible
neighborhoods.

• Local minima with respect to one or several neighborhoods are
relatively close to each other for many problems.

Note that while the first two principles are theoretical, the third
ne is more an observation, that may or may not hold, and has been
bserved in different problems. The methodology exploits these three
rinciples combining deterministic and stochastic changes of neighbor-
oods. The deterministic part is provided by a local search heuristic
hile the stochastic comes from a random perturbation called shaking.

. Population-based metaheuristics

Constructive methods and local search algorithms, as described in
he previous sections, may build and modify many solutions during the
earch process. But they have one big characteristic in common, they
nly work on one solution at a time.

Population-based metaheuristics are a class of optimization algo-
ithms that draw inspiration from natural processes to solve complex
roblems. They are designed to explore large solution spaces efficiently
y maintaining a population of candidate solutions and iteratively im-
roving them over multiple generations. These algorithms emulate the
arwinian principles of evolution to search for high-quality solutions,
nd fall under the banner of Evolutionary Algorithms (EA). More specif-
cally, the first known population-based methods are genetic algorithms
rom Holland (1975a) and made more usable by Goldberg (1989).

At the core of population-based metaheuristics is the concept of a
opulation, which consists of multiple solutions (called individuals).
he population evolves over time through a series of operations, such
s selection, reproduction, and mutation, which mimic the natural
rocesses of genetic variation and inheritance. A simple framework of
A is presented by Taillard (2023) and is reproduced here in Algorithm
. Each of the operations has a different contribution in the search for
iversification or intensification.

The main idea behind population-based metaheuristics is to en-
ourage exploration and exploitation of the search space. Exploration
nvolves searching a wide range of solutions to avoid getting trapped
n local optima, while exploitation focuses on intensively searching the
icinity of promising solutions to refine and improve them. As in every
etaheuristic, the balance between exploration and exploitation is

rucial to achieve a good trade-off between convergence to high-quality
olutions and maintaining diversity within the population.

Population-based metaheuristics often incorporate mechanisms for
valuating and comparing the objective function value (called fitness)
f candidate solutions. Fitness evaluation determines the quality of a
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Algorithm 2: Framework of evolutionary algorithms
Input : Parameters 𝜇 and 𝜆, selection for reproduction,

crossover, mutation and selection for survival operators
Result: Population of solutions 𝑃

1 Generate a population 𝑃 of 𝜇 solutions
2 repeat
3 Select individuals from 𝑃 with the selection for

reproduction operator
4 Combine the selected individuals with the crossover

operator and apply the mutation operator to get 𝜆 new
solutions

5 Among the 𝜇 + 𝜆 solutions, select 𝜇 individuals with the
selection for survival operator; these individuals constitute
the population 𝑃 for the next generation

6 until a stopping criterion is satisfied

solution and is used to guide the search process. Based on the fitness
values, individuals are selected for reproduction, and their genetic
material (the core components of the solution) is combined through
recombination or crossover to create new offspring. Mutation oper-
ators introduce small random changes to the offspring, introducing
exploration and diversification into the population.

The population evolves iteratively, with each iteration representing
a generation. The selection process, based on fitness, determines which
individuals survive to the next generation, while the reproduction and
mutation operators create new individuals. Over time, the population
tends to converge towards better solutions as the search progresses.

Genetic algorithms, considered to be the original EAs were decep-
tive because of premature convergence (all individuals are clones) and
more important they may miss the optimal solution. Other population
methods have been established to overcome there difficulties. Some
popular population-based metaheuristics include memetic algorithms
(MA), biased random key genetic algorithms (BRKGA), scatter search
(SS), and path relinking (PR). Each of these algorithms has its unique
characteristics, but they all share the fundamental principles of main-
taining a population of candidate solutions and iteratively improving
them through inspired search and interaction mechanisms.

An almost endless list of bio/nature-inspired metaheuristics has
emerged in recent years. Most of these methods are not bringing any
insight from the research point of view. This article is not the place to
debate again the pros and cons of such methods. The interested reader
should consult for example these two Aranha et al. (2021), Sörensen
(2015) to have a better understanding of the situation.

4.1. Memetic algorithms

The general idea behind memetic algorithms is to exploit all possible
knowledge of the problem being solved inside the solution process. This
is also where the name ‘‘memetic’’ takes its roots. The knowledge can
take different forms, but always in the goal of favoring the balance be-
tween exploration and exploitation. These mechanisms are designed to
overcome the difficulties encountered by traditional genetic algorithms.

Moscato (1989) designed the memetic algorithm as a population
method where a local search operator is applied to each offspring
generated. It would be oversimplifying to state that memetic algorithms
are simply adding a local search operator to a population method.
There is a lot more behind MAs and this is testified by the success of the
many applications that have been published since the 90’s. In the case
of MAs, the local search operator is clearly a mean for intensification
(getting closer to the optimal solution) whereas the crossover operator,
initially designed in GAs for intensification, could also play a role as a
diversification operator.

It is obvious that a memetic algorithm is at least as good as its

genetic algorithm counterpart and is also as good as the local search
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operator. The success of the MA design for a specific problem comes
from the right combination of its components.

4.2. Biased random-key genetic algorithms

Genetic algorithms with random keys (Gonçalves & Resende, 2011),
or random-key genetic algorithms (RKGA), were introduced in the
nineties for solving sequencing problems. In this method, chromosomes
are represented as vectors of randomly-generated real numbers in the
interval [0, 1]. RKGA rely on a decoder, which is basically a deter-
ministic algorithm that transforms a chromosome into a solution of the
combinatorial optimization problem at hand. In this way, the classical
evolution of a genetic algorithm, takes place here in the vectors with
the keys that code the solutions.

The search is initiated when each component of the solution vector,
or random key, is randomly generated in the real interval [0, 1]. Then,
after the fitness of each individual is computed by the decoder, the
standard GAs operators are applied to the random keys. In short, the
simulated evolution of the algorithm takes place on the keys instead of
on the solution themselves.

As described in Gonçalves and Resende (2011), a biased random-
key genetic algorithm (BRKGA) differs from an RKGA in the parents
selection for combination. Specifically, in the original RKGA both par-
ents are selected completely at random, but in BRKGA one of them
is selected at random from a restricted set only containing the best
individuals in the population (and the other one from the rest of
the population). This biases the search towards better regions of the
solution space. An application to job-shop scheduling can be found
in Gonçalves, de Magalhães Mendes, and Resende (2005).

4.3. Scatter search

Scatter search (Glover, 1998b) is a population-based metaheuris-
tic used to solve complex combinatorial and continuous optimization
problems. Compared to classical population methods (like genetic al-
gorithms), it maintains diversity in the population through a small
set of candidate solutions called the reference set, in which solutions
are all combined together in an extensive way. It standard imple-
mentation (Martí, Laguna, & Glover, 2006) follows the ‘‘five-method
template’’ according to:

• A Diversification Generation Method to generate a collection of
diverse trial solutions.

• An Improvement Method to transform a trial solution into one
or more enhanced trial solutions. This is typically a local search
method.

• A Reference Set Update Method to build and maintain a reference
set consisting of the best solutions found. Solutions gain mem-
bership to the reference set according to their quality or their
diversity (in a broad meaning of best).

• A Subset Generation Method to operate on the reference set, to
produce a subset of its solutions as a basis for creating combined
solutions.

• A Solution Combination Method to transform a given subset of
solutions produced by the Subset Generation Method into one or
more combined solution vectors.

The strength of this method relies on the reference set which is
omposed of local optima but all diverse. The tuning of the parameters
an be tricky and the user should pay attention to the exhaustive
ombination part which can be time consuming. Many examples of
catter search applications can be found in Martí, Corberán, and Peiró

2015). w
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4.4. Path relinking

In all population metaheuristics, the path relinking (PR) method
may have a particular role to play. Path relinking (Glover, Laguna, &
Martí, 2000) starts with two high-quality solutions, usually one from
the current search (the starting solution) and another from a reference
set (the target solution). A path is constructed between these two
solutions by transforming the current solution into the target solution,
applying modifications on the composition of the solution itself. Path
relinking can be thought of as a constrained neighborhood search,
where the search is limited to explore the solutions in the neighborhood
with characteristics of the guiding solution. The selected neighborhood
will determine the set of solutions visited by path relinking. If the two
solutions are distant enough, the path (and all intermediate solutions
built during the construction of the path) allows the exploration of
different parts of the solution space bringing an extraordinary diversity
in the search. To intensify the search, the intermediate solutions along
the path are improved by using a local search operator. Again, an effi-
cient path relinking implementation will find a good balance between
intensification and diversification. The importance of the local search
operator is then crucial.

The current solution as well as the solutions of the reference set
can be obtained by any method, including other metaheuristics. Laguna
and Martí (1999) proposed to apply PR to the best solutions obtained
with GRASP. This hybridization, simply known as GRASP with PR, is
very popular and has lead to many successful implementations. The
construction of the path is usually done in a deterministic manner,
although in the last few years randomized designs have been explored
as well (see for example greedy randomized path relinking). It may
exist a multitude of variants to change one solution into another, letting
the path relinking bring a large algorithmic flexibility based on problem
characteristics. For these reasons, the path relinking can be seen as a de-
terministic generalization of many population metaheuristics. Resende
and Ribeiro (2016) give many examples of path relinking applications.

Path relinking and scatter search are joined in a common per-
spective in the ‘‘template’’ paper of Glover (1997), which introduces
multiple strategies including diversification methods that have largely
been overlooked.

4.5. Combination of methods

The balance between intensification and diversification is a very sen-
sitive issue in the conception of efficient population-based metaheuris-
tics. The observation of the evolution from the simplest evolutionary
algorithm to the more complex path relinking shows that none a
single method can outperform any other and the combination of good
practices in one method can bring enhancement into another one. There
is no limit in the combination of these methods. But one should keep
in mind that the user of these metaheuristics need to be in control and
too many parameters may lead to unpredictable behaviors.

Overall, population-based metaheuristics provide a flexible frame-
work for solving optimization problems that are difficult or intractable
using traditional methods. They excel in addressing complex, multi-
modal, and combinatorial problems where the search space is vast, and
the objective function might be non-linear, discontinuous, or noisy.

5. Historical review

It is very difficult to find the origins of an area of knowledge
since in one way or another it probably has always been with us.
This is especially true in the case of heuristics, which are intimately
connected with the way in which human beings think. As a matter
of fact, the roots of the term heuristic are established in the ancient
Greek words eurika and heuriskein, which mean find or discover, and are
connected with the famous quote exclaimed by Archimedes, heúreka,
hen he discovered how to measure the volume of an object. There is
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Fig. 1. Timeline of the origins of heuristics.
an agreement however that the causal explanations introduced by the
French philosopher René Descartes in the 17th century established a
milestone in Science, since it permitted the rational formulation and
solving of problems. The Cartesian criterion of rationality is based on
two assumptions, representation (algebraic symbols) and organization
(mathematical systems), and Descartes formulated simple rules to guide
the solver toward relevant aspects of the problem. Operations research
practitioners can easily identify these assumptions as key components
of thinking about an optimization problem to devise a heuristic for it.

In its origins, heuristic was the name of a field of study, that was not
very clearly defined, belonging to logic and philosophy and meant to
study the methods and rules of discovery and invention. Following the
deductive principles of Descartes, we can find other mathematicians,
such as Bernard Bolzano (1781–1848), applying general procedures
mostly described in philosophical terms to solve problems. Mathematics
and philosophy were very connected, if not the same, in the early
times of Science. The term heuristic reasoning was introduced much
earlier than the so-called heuristic algorithm, which is very popular in
optimization at present. Heuristic reasoning refers to thinking strategies
that allow us to make judgments or even find solutions not in a rigorous
way, but quickly find the most plausible provisional solution. In an
effort to trace back to the origins of the heuristic optimization, and
draw a timeline of the principal moments of heuristics to our days,
we traverse different areas of knowledge, from philosophy, crossing
mathematics, psychology and operations research, to end in artificial
intelligence of today. Fig. 1 depicts the timeline with the milestones in
the origin of heuristics cited in this section.

It seems that the famous book by the Hungarian mathematician
G. Polya, How to Solve It, published in 1945 by Princeton University
Press (Polya, 1945), is the first document where we may find the use
of heuristics to solve mathematical problems from a modern scien-
tific perspective. The way in which Polya presented and categorized
heuristics laid the foundations of our current approach to heuristic
algorithms. On one hand, the author recommends to follow the logical
principles, such as induction and analogy, and previous experience in
the mental process to solve a problem. On the other hand, he states that
we cannot take heuristic reasoning for proof, thus implicitly pointing
out the current distinction between exact versus heuristic optimization
methods. In Polya’s words, ‘‘What is bad is to mix up heuristic reasoning
with rigorous proof. What is worse is to sell heuristic reasoning for
rigorous proof’’.

The connection between heuristics and operations research (OR) can
be found in the article by Simon and Newell (1958) entitled Heuristic
Problem Solving: The Next Advance in Operations Research in which the
authors connected the use of heuristics with ill-structured problems,
in which classic OR methods cannot be directly applied since they
do not have a well-structured mathematical formulation. A search of
the OR journals published in the 60s, such as Operations Research
or Management Science, returns several papers with the first uses of
heuristics for specific optimization problems, such as Tonge (1960) for
line balancing or Karg and Thompson (1964) for the traveling salesman
problem.

When examining the European context, particularly the first publi-
cations of OR journals, we can find the Operational Research Quarterly
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(published from 1950), and the European Journal of Operational Re-
search (EJOR), in which heuristics have been a subject of interest
since its inaugural issue. Specifically, in the first volume of the journal,
published in 1977, we can find a heuristic for queueing systems, in
which approximate formulae were proposed for the average times
experienced by customers. Cosmetatos (1977) elaborated on Cobham’s
model with the assumption of exponential service times relaxed in a
multi-server priority system. Comparisons between approximate and
simulated results indicated a satisfactory performance of the heuristic.

Since this seminal paper, EJOR consistently published papers de-
voted to heuristic optimization. In the second volume, we can find
heuristics for scheduling problems (Mack & Smith, 1978) where com-
plicated sets of constraints render standard mathematical approaches
intractable. This paper illustrates how list processing and problem
oriented data structures were utilized to facilitate development of an
effective scheduling heuristic for itinerant teachers. The techniques
employed would prove to be extremely useful in solving many other
scheduling problems. The role of EJOR in the development of meta-
heuristics has been equally important, and we discuss this role in some
detail in the next section.

As described by Hjeij and Vilks (2023) in their brief history of
heuristics recently published, we have to take ‘‘problem solving’’ in a
broad sense that includes decision-making and judgements when re-
searching what has been termed as heuristics. In line with that, we must
highlight the work by Daniel Kahneman and Amos Tversky in cognitive
and social psychology. In 2016, the NewYorker magazine reviewed a
book on the life of these two economists (also labeled as mathematical
psychologists) who changed how people think about how people think.
Their paper ‘‘Judgement under uncertainty: heuristics and biases’’,
published in 1974, had a huge impact on behavioral economics, crossed
over from specialized literature to the general audience (Tversky &
Kahneman, 1974). The authors identified three types of heuristics to
process information when making judgements: availability, representa-
tiveness, and adjustment. A better understanding of these heuristics and
of the biases to which they lead could improve judgments and decisions
in situations of uncertainty.

Sörensen, Sevaux, and Glover (2018) in their History of Metaheuris-
tics distinguished among six periods of time, starting with the pre-
theoretical period (until c. 1940) in which heuristics were applied
but not theoretically studied in the specific context of mathematics.
This initial period was followed by the early period, starting with the
publication of Polya’s book commented above and ending around 1980.
After this period in which many heuristics were proposed for classic
optimization problems, follows the method-centric period (1980–2000)
that witnessed the proposal and development of several metaheuristics
such as simulated annealing, tabu search, or the popular genetic al-
gorithms (Holland, 1975b). The term metaheuristic was introduced by
Fred Glover in 1986, in the same paper that tabu search (Glover, 1986).
Metaheuristics refer to problem-independent frameworks, as opposed
to the previous heuristics specifically designed to solve a particular
problem. Although this vision of frameworks as opposed to methods
was conceived later (in the framework-centric-period after 2000), we
may say that metaheuristics substantially changed the optimization
area and permitted us to solve very complex problems with high-quality
solutions, optimal in most cases.
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In an attempt to establish the first papers proposing each meta-
heuristic methodology, we move back to 1966 when (Fogel, Owens,
& Walsh, 1966) proposed the first evolutionary algorithms. It is worth
mentioning that early approaches were not conceived for optimiza-
tion, but were meant to study the mechanics of the systems they
modeled. In particular, Fogel worked on the simulated evolution of
finite-state machines to forecast nonstationary time series. In line with
that, Holland (1975a) proposed the first genetic algorithms, although
we have to wait until 1989 when (Goldberg, 1989) clearly applied
them to solve combinatorial optimization problems. Holland’s theory
of adaptive systems was originally meant to understand complex forms
of adaptation in natural systems to design adaptive artifacts.

Table 1 shows a timeline with the main methodologies where we
can see in the third row corresponding to 1977 scatter search (SS).
This metaheuristic also belongs to the family of evolutionary methods
but from its origins has been successfully applied to hard optimization
problems. SS was first introduced by Glover (1977) as a heuristic for
integer programming and it was based on strategies presented at a
management science and engineering management conference held in
Austin, Texas in September of 1967.

Kirkpatrick, Gelatt, and Vecchi (1983) proposed simulated anneal-
ing, the first local search based metaheuristic. This method estab-
lished a connection between statistical mechanics modeling the thermal
equilibrium at a finite temperature and combinatorial optimization.
Simulated annealing was very popular at that time and the years
after. Its popularity seems to have dwindled with the advent of local
search metaheuristics that rely less on randomness (e.g., tabu search
and variable neighborhood search). On the other hand, this drop in
popularity ostensibly only occurred in the metaheuristics community
itself. In the wider world, thousands of papers that apply simulated
annealing are still published every year.

In the same paper that coined the term metaheuristic, Glover (1986)
proposed the tabu search methodology, combining principles of local
search with memory structures taken from learning principles. This
framework has had a tremendous impact in the field, and has dramati-
cally changed our way of thinking about heuristic problem solving. As
described above, the method was initially applied as an intelligent local
search, but rapidly included other search elements such as constructive
and combination methods.

In 1989 a very effective and easy-to-implement metaheuristic was
proposed with the acronym GRASP (greedy randomized adaptive search
procedure). Feo and Resende (1989) proposed to couple a greedy
randomized construction with a local search method and applied this
method to many combinatorial optimization problems. The publication
was followed by a tutorial in the ORSA/TIMS meeting in Nashville in
1991 and published as Feo and Resende (1995).

A further step in local search based methods was taken by VNS.
Mladenović and Hansen (1997) proposed the variable neighborhood
search methodology in which several neighborhoods are combined in
an efficient way. We observe nowadays an increasing application of this
metaheuristic — even though this is not always recognized as such —
and it is probably fair to say that many commercial and open source
solvers, general-purpose or problem-specific, also employ some variant
of this metaheuristic.

An analogy with the foraging behavior of ants in a colony sug-
gested the definition of a new computational paradigm called Ant Sys-
tem. Dorigo, Maniezzo, and Colorni (1996) proposed this new approach
to stochastic combinatorial optimization. The main characteristics of
this model are positive feedback, distributed computation, and the use
of a constructive greedy heuristic. In this metaheuristic, the inspiration
with a natural system plays an important role. The simulation of social
models is extended within the particle swarm paradigm, proposed by
Kennedy and Eberhart (1995) to optimize non-linear functions. In this
way, they opened a line of research based on the social metaphor that
resulted in a wide range of models, that in our opinion create confusion

in the field and are limited in terms of their contribution to heuristic
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optimization (Sörensen, 2015). As mentioned in the introduction, we
do not cover in our review these nature or social inspired methods,
since they are mainly devoted to explain how to adapt the concepts
from the analogy to the optimization problem, more than studying the
search elements and strategies that are effective for a given problem.

In the early 90s, Moscato (1993) proposed memetic algorithms
as a family of metaheuristics blending several elements from evolu-
tionary algorithms and simulated annealing: individual improvement,
population cooperation, and competition, as they are present in many
social/cultural systems. A memetic algorithm can be considered to be
a search strategy in which a population of optimizing agents cooperate
and compete. They can be considered as a bridge between metaphor
methods and search-based metaheuristics.

Our last methodologies in Table 1 are hyperheuristics, proposed in
2001, adaptive large neighborhood search (ALNS), proposed in 2006,
and Biased Random Key Genetic Algorithms, proposed in 2011. The
concept of a hyperheuristic was introduced by Cowling et al. (2001) as
an approach that operates at a higher lever of abstraction than current
metaheuristics. Hyperheuristics manage the choice of which lower level
heuristic method should be applied at any given time, depending upon
the characteristics of the region of the solution space currently under
exploration. On the other hand, ALNS is composed of a number of
competing subheuristics that are used with a frequency corresponding
to their historic performance. Both methodologies basically propose
frameworks to manage different heuristics that are selected depending
on the instance solved, which is an interesting approach that can be
described as intelligent problem solving. We can consider that they
operate in a higher decision level than the standard metaheuristics, but
due to their complexity, and associated running times (initially longer
than other simpler methods), it is still not clear nowadays if they will
constitute a standard approach in the future.

From a historical perspective, we must note that while mathemati-
cians and psychologists elaborated on the notion of heuristic reasoning
during the 50s and 60s, computer scientist were implementing the
first algorithms based on the seminal ideas of Alan Turing in the 40s.
Operations research embraces mathematics, economics, and computer
science, and it naturally merged heuristic reasoning and optimization
algorithms into heuristic algorithms. We devote this paper to the last
50 years of metaheuristic algorithms for optimization in this exciting
journey originating in the center of Europe a few centuries ago that
has turned into one the most crucial technologies in the development
of our modern societies.

Even though the field of metaheuristics has evolved into a thriving
research area within the broader area of operations research, with
dozens of journals devoting a considerable part of their pages to stud-
ies involving (meta)heuristics, it has so far resisted most attempts at
formalization and theorization, unlike e.g., the field of mathematical
programming. Early attempts to underpin the field with a coherent set
of theorems and conjectures have so far proven futile, or — to put it
mildly — not very practically useful. Some randomized algorithms, like
simulated annealing, e.g., have been proven to converge under some
mild assumptions, but convergence at infinity in itself is a rather trivial
conclusion in this context. Note that a ‘‘random walk’’ through the
solution space will eventually converge to the global optimum given
infinite time, as complete enumeration would do, which is not par-
ticularly relevant for a time-pressed practitioner. Out of necessity, the
field of metaheuristics has therefore adopted a more empirical approach
to research. Typically, research in metaheuristics is deamed of a high-
quality if it can demonstrate that it yields a ‘‘competitive’’ heuristic,
i.e., a heuristic that achieves results that are at least comparable to
the state-of-the-art. Not all authors agree that this approach necessarily
yields the most insights, and several have proposed better ways to turn
the field of metaheuristics into a more scientifically underpinned field.

We will discuss some of these ideas later.
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Table 1
Timeline of the main metaheuristic proposals.
Year Methodology Citation

1966 Evolutionary Algorithms Fogel et al. (1966)
1975 Genetic Algorithms Holland (1975a)
1977 Scatter Search Glover (1977)
1983 Simulated Annealing Kirkpatrick et al. (1983)
1986 Tabu Search Glover (1986)
1989 Genetic Algorithms (for opt.) Goldberg (1989)
1989 GRASP Feo and Resende (1995)
1993 Memetic Algorithms Moscato (1993)
1995 Particle Swarm Kennedy and Eberhart (1995)
1995 Iterated Local Search Lourenço (1995)
1996 Ant Colony Dorigo et al. (1996)
1997 Variable Neighbor. Search Mladenović and Hansen (1997)
1998 Large Neighborhood Search Shaw (1998)
2001 Hyper-heuristics Cowling, Kendall, and Soubeiga (2001)
2006 Adaptive Large Neighborhood Search Ropke and Pisinger (2006)
2011 Biased Random Key Genetic Algorithms Gonçalves and Resende (2011)
6. The role of EJOR in the metaheuristics literature

EJOR can undoubtedly be described as a flagship journal of the op-
erations research community. As a general OR journal, EJOR obviously
has its biases (e.g., it has probably published more research on multi-
criteria decision making than the average OR journal). Nevertheless,
EJOR can be considered a cross-section of the operations research
literature and therefore a good barometer for the current trends in
the field, as well as many of its sub-domains, including the domain of
(meta)heuristics.

In this section, we intend to survey the field of metaheuristics as
viewed from the perspective of EJOR. Our methodology is simple:
we go through all issues of EJOR since its inception in 1977 and
include those articles that discuss metaheuristics. We focus mostly on
metaheuristics and skip papers that simply develop a heuristic for a
specific problem. In the beginning, we can include almost every paper
published. From the 80s on we have to be more selective, as research
on metaheuristics truly takes off. From around 2005, the number of
papers on metaheuristics explodes, and we have to skip most of them.

Even though EJOR has definitely played a role in the development
of the field of metaheuristics, and has published many papers that
develop and use heuristic methods to solve various optimization prob-
lems, the European Journal on Operational Research remains mostly
absent from the discussion on and the development of the field of
metaheuristics in the early days. None of the important early techniques
such as tabu search (TS), genetic algorithms (GA), and simulated
annealing (SA) were initially introduced in EJOR. This suggests that
the journal, although comprehensive in scope, has not been a primary
vehicle for groundbreaking innovations in the specialized domain of
metaheuristics.

Evidently, EJOR’s importance in the field of metaheuristics changes
rather dramatically from the early 2000s. From then on, and especially
after the EURO Winter Institute on Metaheuristics and the special issue
of EJOR that arises from it, both the number of articles and their
importance increases. The ‘‘new wave’’ of metaheuristics that arises in
these years (guided local search, variable neighborhood search, etc.)
find a home in EJOR. Importantly, unlike other top journals in the field
EJOR never succumbs to the tsunami of metaphor-based methods that
have flooded the research field (a few exceptions notwithstanding).

We have mentioned before that EJOR has published papers on
heuristics since its first issue in 1977. One of the first contributions
that does not simply present a heuristic method in the journal is a
tutorial article (Silver, Victor, Vidal, & de Werra, 1980) on heuristics. In
this article, the authors provide an introduction to the various heuris-
tic methods that exist around that time. Borrowing from Nicholson
(1971), the authors define a heuristic method as a procedure ‘‘...for
solving problems by an intuitive approach in which the structure
of the problem can be interpreted and exploited intelligently to ob-
tain a reasonable solution’’. Operationalizing the term ‘‘reasonable’’,
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the authors then develop the following desirable characteristics of a
heuristic: (1) the computational effort to obtain the solution should be
realistic; (2) the solution should be close to the optimum on average;
(3) the probability of obtaining a poor solution should be small; (4) the
heuristic should be as simple as possible. Clearly, these principles still
hold for all heuristics developed today.

Even though the term metaheuristic does not appear in Silver et al.
(1980), the authors touch upon the topic when classifying the various
existing heuristics. The authors, e.g., make the distinction between
constructive methods and local improvement methods, two categories that
reappear in Sörensen and Glover (2013)’s overview. Some of the prin-
ciples mentioned in Polya (1945) also appear here (heuristics based on
induction, decomposition, feature extraction, . . . ).

About a year later, Müller-Merbach (1981) classifies heuristics ac-
cording to six different characteristics, including the ‘‘organization
of the iteration tree’’, or the ‘‘determination of the sets of potential
candidate solutions’’ and the ‘‘selection of the candidates’’. Again, the
paper does not mention the term metaheuristic, but comes very close
to developing a general classification of these methods. After all, a
metaheuristic can be seen as a formalization of one or more specific
characteristics of a set of heuristics. In some sense, metaheuristics
can be claimed to reverse the process: rather than organizing existing
heuristic methods according to a set of characteristics, metaheuristics
determine a set of characteristics that define the heuristics developed
according to its framework.

In the 1980s we notice a steady increase in the number of articles
that describe heuristic algorithms and also explicitly (i.e., in the title)
recognize this. Papers on heuristic algorithms are still the exception
in EJOR, but their importance is clearly increasing. Metaheuristics,
however, are still not on the radar. Of course, the term would only
be coined in 1986 (Glover, 1986).

Probably the first paper published in EJOR that studies a metaheu-
ristic is Burkard and Rendl (1984). In this paper, the authors apply the
procedure of Kirkpatrick et al. (1983), that had appeared a year earlier
in the journal Science, to the quadratic assignment problem (QAP), and
find that it produces excellent results. The ‘‘thermodynamically moti-
vated simulation procedure for combinatorial optimization problems’’
mentioned in the title, is — of course — simulated annealing, one of the
earliest metaheuristics.

Near the end of the 1980s, the field of OR is ostensibly in cri-
sis. Ackoff (1979) publishes a paper in which the relevance of the entire
field of operations research is called into question. More specifically,
there was a growing concern that OR had become too theoretical and
mathematical, with a focus on complex models and methods that were
difficult to apply in real-world situations. This led to a perception that
OR was losing its relevance to business and industry, where practical,
implementable solutions were needed. This perceived crisis had its

repercussions, e.g., in OR education a sense grew that it was not
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adequately preparing students for the practical challenges they would
face in industry. The curriculum was often criticized for being too the-
oretical and not sufficiently focused on practical problem-solving skills.
As OR struggled to define its unique value proposition in a rapidly
changing world, there was an identity crisis within the community, and
many people questioned whether OR should continue to emphasize its
mathematical and theoretical aspects or pivot more towards practical
applications and consultancy.

In EJOR, Hansen (1989) discusses the OR crisis, essentially defend-
ing many novel innovations of the field and refuting the claims that OR
is in a true crisis. The author does mention that innovations in integer
programming have allowed researchers and practitioners to express all
optimization problems in mathematical notation, but agrees this does
not mean that they can also solve them. General-purpose tools that
could truly help to solve all optimization problems, no matter how large
or complex, would only appear with metaheuristics.

It is therefore probably not a coincidence that the increase in the
number of (meta)heuristic optimization techniques coincides with the
OR crisis, as many researchers start to see the benefits of solving
optimization problems without clinging to the guarantee of optimality.
The end of the 1980s is also when the first metaheuristics start to be
mentioned in EJOR papers.

Glover and Greenberg (1989) publish a survey on different types
of heuristic search methods, exploring several frameworks that would
later be known as metaheuristics, like simulated annealing, and neural
networks. Two metaheuristics make their debut appearance in this
article: genetic algorithms, and tabu search. The authors mention a fifth
metaheuristic, called Target Analysis. This metaheuristic is described
as ‘‘[. . . ] an integration of artificial intelligence with operations re-
search that gives a new strategy for solving combinatorial optimization
problems. One may use any conventional strategy, such as implicit
enumeration, and subordinate its control parameters to a learning
model patterned after classification problems’’. Target Analysis seems
to be an early forerunner of the methods integrating machine learning
models and heuristics, that are currently being studied.

In the same year, the first application of tabu search in EJOR
appears in Widmer and Hertz (1989). In this paper the authors develop
a heuristic method for the flow shop sequencing problem, relying on
a heuristic developed according to the framework of taboo search. The
alternative spelling does not have a long lifetime.

To end the 1980s, a survey on heuristics (but not on metaheuristics)
appears in one of the final issues of the decade. Zanakis, Evans, and
Vazacopoulos (1989) categorize a large number of heuristics found
in the literature in a number of categories: construction, improve-
ment, mathematical programming, decomposition, partitioning, solu-
tion space restriction, relaxation. All these ideas will later be general-
ized and developed into actual metaheuristic frameworks.

In 1990, Eglese (1990) publishes a paper on simulated annealing in
which the design choices are mentioned (such as the cooling scheme),
as well as some of the theoretical results that have been obtained
(such as convergence at infinity, but also exponential running times
to converge).

In this period, neural networks are also considered a metaheuristics,
even though it is clear at this point that this approach is more suit-
able for pattern recognition tasks. In EJOR, Másson and Wang (1990)
discuss different types of artificial neural networks, including some
applications.

Papers on algorithms that are explicitly based on a metaheuristic
are still few and far between in EJOR in this period, even though their
numbers are increasing. Two metaheuristics are at the forefront: tabu
search, and simulated annealing.

Taillard (1990) describes several algorithms for the flow shop se-
quencing problem, including the then new algorithm (which he also
calls taboo search). Interestingly, the author also shows that the al-
gorithm can be easily and successfully parallelized. Hertz (1991) in-
troduce a tabu search heuristic for large scale timetabling problems

(switching back to the now more common spelling of the framework).
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Simulated annealing is also rather popular. Jørgensen, Thomsen,
and Vidal (1992) presents a simulated annealing algorithm for the (real-
life) afforestation problem. Kouvelis, Chiang, and Fitzsimmons (1992)
introduce simulated annealing for machine layout problems in the
presence of zoning constraints, and Sofianopoulou (1992) present SA
for the process allocation problem (allocating communication processes
to a network of processors), and Jeffcoat and Bulfin (1993) present a
heuristic based on SA for resource constrained scheduling.

We also start to see papers in this period in which authors do not
simply present a metaheuristic, but (also) study its properties. Adenso-
Díaz (1992) investigate a feature of tabu search, i.e., the size of the
neighborhoods. He introduces a restrictive neighborhood based on the
observation that (1) in early stages of the search, jobs are exchanged
that are far away from each other in the solution, whereas (2) in
later stages of the search only jobs that are close to each other (or
even adjacent) are swapped. The number of solutions checked (i.e., the
size of the neighborhood) is decreased while the search progresses.
Dowsland (1993) presents some experiments on SA for packing prob-
lems, while Laursen (1993) experiments with SA on the QAP.

Probably the first evolutionary algorithm to be published in EJOR is
due to Tam (1992), who develop a genetic algorithm for facility layout
design.

A bit later, Skorin-Kapov and Skorin-Kapov (1994) presents a tabu
search heuristic for the location of interacting facilities, whereas Chen
and Srivastava (1994) discuss an application of simulated annealing for
forming machine cells in group technology.

Maniezzo, Dorigo, and Colorni (1995) make a comparison of eight
‘‘evolutionary’’ heuristic algorithms (these algorithms include tabu
search, simulated annealing and multi-start local search, frameworks
which we would no longer call ‘‘evolutionary’’ now) applied to the
Quadratic Assignment Problem (QAP) using a developed software
system called Algodesk. The focus of the study is not to determine the
best result achievable (since that data is already available) but to assess
the efficiency of the algorithms in producing good solutions within a
1-hour timeframe on identical IBM-PC machines. Key findings are (1)
Multigreedy approaches (we would call those multi-start local search
now), particularly those using local search operators, are very effective
for solving QAP. (2) Single-solution approaches are generally more
effective than population-based approaches, especially when the latter
are run on single-processor hardware and not coupled with local search
operators. (3) The study suggests that current communication operators
(i.e., the ‘‘crossover operators’’) in population-based heuristics may not
be worth their computational cost. Finally, (4) Boltzmann machines (a
variant of simulated annealing) are found to be inefficient for searches
of limited duration.

Laguna, Kelly, González-Velarde, and Glover (1995) introduce a
tabu search heuristic for the multilevel generalized assignment prob-
lem. This paper also sees the first appearance of ejection chains in
EJOR. Ejection chains are sequences of moves where each move ‘‘ejects’’
or displaces an element from its current position and possibly replaces it
with another. This creates a chain of changes across the solution space.

The 1995 special issue on the 10th EURO Summer Institute, focused
on Combinatorial Optimization edited by C. Roucairol, H. Thiriez, J.
Krarup, G. Plateau, P. Tolla features a single paper that mentions a
metaheuristic in the title, Rego and Roucairol (1995) entitled ‘‘Using
Tabu search for solving a dynamic multi-terminal truck dispatching
problem’’. Other papers also use metaheuristics, but do not mention
them in the title.

In this special issue, an article (Bjorndal et al., 1995) is devoted
to the participants offering their views on combinatorial optimization.
Their views on the role of metaheuristics are interesting:

The observation that many heuristics have a similar structure has
led to the recent development of general meta-heuristics, such as
Simulated Annealing, Tabu Search, and Genetic Algorithms. These
meta-heuristics give algorithms with an essentially user-definable
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complexity, since the user has great flexibility in deciding whether
to trade solution quality for speed. Since these techniques are based
on local search, they frequently do not require much problem-
specific knowledge in order to generate good solutions.
We believe that this is an exciting time to be in the field of combi-
natorial optimization, since it seems likely that new and more pow-
erful meta-heuristics will emerge in the coming years. In particular,
we expect that meta-heuristics will become more widely available to
practitioners through commercial software packages and libraries,
in the same way as has happened for the meta-heuristic technique
of constraint-based reasoning.
Meta-heuristics also present a formidable theoretical challenge to
the mathematical community, since despite very promising results
from experimentation and practice, there are few papers addressing
the scientific reasons why these techniques should indeed be effec-
tive. It seems that the use of probabilistic techniques might provide
interesting results here, and we believe that significant strides will
be made in this area in the next few years.

A few new metaheuristics or variants of existing metaheuristics have
been proposed in EJOR, some of which did not gain traction, such
as Righini (1995).

From 1996, we find combinations of metaheuristics, such as Bölte
and Thonemann (1996), who use genetic programming to automati-
cally set the parameter values of a simulated annealing algorithm. This
type of parameter tuning algorithms can be seen as a precursor of the
state-of-the-art methods like irace. Adenso-Díaz (1992) use simulated
annealing to allow tabu search to be started from a better initial
solution in a SA/TS mixture algorithm for the scheduling tardiness
problem.

Pirlot (1996) presents a tutorial on the three most widely used meta-
heuristics. Simulated annealing, tabu search, and genetic algorithms.
Each method is described in detail and illustrated with an example
application. Additionally, the paper offers a preliminary assessment and
comparison of these methods from a practical standpoint. This paper
contains some very interesting conclusions and insights, that still drive
many of the overarching research questions of metaheuristics today,
almost two decades later.

• Comparing heuristics is difficult. Comparing heuristics involves
evaluating multiple factors such as ease of implementation, ro-
bustness, flexibility, computational burden, and solution quality.
Moreover, defining ‘‘solution quality’’ is challenging (e.g., do we
mean ‘‘average quality’’ or ‘‘worst-case quality’’?). The author also
highlights that heuristics can be sensitive to initial conditions and
parameter settings, and their performance can be highly vari-
able. Due to the non-standardized nature of heuristic algorithms,
direct comparisons can be misleading. One should test multiple
implementations and remain cautious in drawing conclusions. An
enlightening quote, attributed to Johnson, Aragon, McGeoch, and
Schevon (1989), is that ‘‘Although experiments are capable of
demonstrating that the approach performs well, it is impossible
for them to prove that it performs poorly. Defenders of SA can
always say that we made the wrong implementation choices’’.

• Metaheuristics (the author calls them ‘‘general heuristics’’) like
Tabu Search (TS), Simulated Annealing (SA), and Genetic Algo-
rithms (GAs) remain popular due to their analogy with natu-
ral processes and theoretical convergence. However, the author
suggests caution in relying too heavily on these features.

• There is a lot of experimentation in the field, with researchers
combining classical heuristics or developing new heuristic search
ideas. However, the author emphasizes the need for serious ex-
perimentation.

• TS is considered a foundational toolbox for heuristic search,
incorporating features like flexible memory structures. Short-term
memory effects are implemented via tabu lists, while long-term
memory guides the search through intensification and diversifi-
cation phases.
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• Hybridization: The author notices that SA algorithms can be en-
hanced by incorporating TS methods, such as altering the cooling
schedule or using ‘‘strategic oscillation’’ principles. The Genetic
Algorithm can be blended with TS, employing crossover operators
during collective search phases. Traditional techniques like Linear
Programming can also be combined with general heuristics.

• At this time, the author was surprised that few new general
heuristic methods were emerging, but some notable ones in this
period included the ‘‘Great Deluge’’,‘‘Record-to-Record’’, and ‘‘Ant
Algorithm’’. Another approach called ‘‘Noising’’ adds random
noise to the objective function, proving to be efficient and robust
in early applications. The author foresees the field evolving by
building toolboxes and libraries of well-tried heuristic search
methods, and suggests that the design of a heuristic can be seen
as an art due to the almost unlimited combinations possible.

Around this period, i.e., the late 1990s, the number of papers on
metaheuristics (still including neural networks) in EJOR keeps increas-
ing. There is even a special issue on Neural Networks and Operations
Research/Management Science (Sharda & Wang, 1996). The special
issue on the Thirteenth EURO Summer Institute: Stochastic Optimiza-
tion (Pflug & Ruszczyński, 1997), on the other hand, does not contain
a single paper on metaheuristics, demonstrating that the worlds of
(stochastic) mathematical programming and (meta)heuristics are still
very much separated.

An early integration of AI techniques and metaheuristics can be
found in Grolimund and Ganascia (1997). The paper discusses using
an AI-based Case-Based Reasoning approach to automate the configu-
ration of meta-heuristics like tabu search without user interaction. This
method, which is domain-independent and uses a first-order representa-
tion language for problem modeling, aims to enhance operator selection
in tabu search and is validated through experiments on facility location
benchmark problems.

Near the end of the 1990s, we notice a series of new metaheuristics
or combinations (hybrids) of existing metaheuristics. First, the combi-
nation of a constructive procedure to generate initial solutions and a
local search heuristic to improve them was proposed under the name
‘‘Jump Search’’ (Tsubakitani & Evans, 1998). Obviously, the name did
not catch on.

A more successful attempt to coin a new metaheuristic based on a
combination of a constructive procedure and local search was GRASP.
GRASP had the advantage over Jump Search because it specified a
novel way to perform a constructive procedure, combining randomness
and greediness. Arguably, this is the true innovation of GRASP, and the
local search procedure is optional. The first GRASP in EJOR was Mavri-
dou, Pardalos, Pitsoulis, and Resende (1998), followed in the same year
by Ríos-Mercado and Bard (1998).

A combination of evolutionary techniques and simulated annealing
(dubbed ‘‘Darwin and Boltzmann mixed strategy’’) is found in Tian, Ma,
and Zhang (1998).

A full special issue (containing 27 contributions) on tabu search
with a foreword by Glover (1998a), appears at the end of the 1990s.
This issue focuses on various applications and enhancements of tabu
search, a metaheuristic optimization technique. It includes articles
on topics such as flow shop scheduling, early/tardy scheduling prob-
lems, resource-constrained scheduling, production line optimization,
telecommunication network optimization, and audit scheduling. There
are also papers on more specialized applications like nurse schedul-
ing, forest harvest scheduling, feeder bus network design, and facil-
ity layout problems. Additionally, the issue explores the use of tabu
search in global optimization for artificial neural networks and various
problem-solving approaches in mixed integer programming, among
other topics.

The first article in EJOR on guided local search is due to Voudouris
and Tsang (1999). Guided local search is a new metaheuristic where
the core objective is to optimize the navigation through the extensive
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and complicated landscapes of NP-hard optimization challenges. This
optimization is facilitated by dynamically adjusting penalty terms to
the base objective function. These modifications serve to fine-tune local
search algorithms, allowing for a more targeted approach. Additionally,
this strategy enables the prioritization of search efforts towards specific
sectors of the search space, which are deemed more likely to offer high-
value solutions. This is not the first appearance of this metaheuristic
in the literature (it has been published in several proceedings), but it
seems that it is the second time for it to appear in a journal (the first
one was in Operations Research letters (Tsang & Voudouris, 1997)). The
authors claim: ‘‘In this paper, we present the technique to the wider
Operations Research (OR) audience by explaining its application to the
TSP, a widely known problem in the OR community’’.

From the turn of the millennium, the number of papers on meta-
heuristics published in EJOR increases rapidly, and surveying them all
becomes an impossible task. Some authors also try to create some order
and some structure in the different methods being proposed, like Hertz
and Kobler (2000) for evolutionary algorithms.

Traditionally, most metaheuristics have been applied to combina-
torial optimization problems. From the 2000s, we see that adaptations
of these frameworks are increasingly being introduced for other types
of problems. In that vain, Chelouah and Siarry (2000) present an
application of tabu search to continuous optimization. Jones, Mirrazavi,
and Tamiz (2002), on the other hand, presents an early metaheuristic
for multi-objective optimization In the same issue, Genetic Local Search
or multi-objective optimization is proposed by Jaszkiewicz (2002).
onclusions: multi-objective optimization (also using metaheuristics)
ecomes quite a thing in the early 2000s.

From 2000 on, the role of EJOR in the metaheuristics literature
ncreases in importance. Hansen and Mladenović (2001) cite some
arlier papers on VNS and variants, but seems to be the first general
ntroduction to this novel metaheuristic. Similarly, memetic algorithms
re also quickly picked up by EJOR (França, Mendes, & Moscato, 2001).

The article by Taillard, Gambardella, Gendreau, and Potvin (2001)
resents an integrated perspective on various memory-based meta-
euristic techniques like taboo search, scatter search, genetic algo-
ithms, and ant colonies. It observes that these different methods are
onverging in their implementation, leading to the proposal of a unified
ramework termed ‘‘Adaptive Memory Programming’’ (AMP). This pa-
er reviews several recent methods applied to problems like quadratic
ssignment, vehicle routing, and graph coloring, reinterpreting them
hrough the AMP lens. AMP is noted for its significant potential for
arallelization and its capability to handle real-world and dynamic
pplications.

The first paper on ant colony optimization in EJOR, applies this
ramework to a bi-objective problem (T’kindt, Monmarché, Tercinet,

Laugt, 2002) in a special issue on graphs and scheduling dedicated
o ECCO XIII conference, that contains many papers on heuristics and
etaheuristics.

Volume 151, issue 2 of EJOR, published in December 2003, deserves
special mention in this section. This issue was published after the 18th
URO Summer/Winter Institute (ESWI XVIII) that took place during
he spring 2000 in Switzerland (and which was attended by two of the
uthors of this paper). The topic of ESWI XVIII was ‘‘Meta-heuristics
n Combinatorial Optimization’’. Issue 151 was the first special issue
f EJOR devoted entirely to metaheuristics and contained an article
escribing some guidelines for the design of metaheuristics by the
rganizers of the winter institute (Hertz & Widmer, 2003). The Win-
er Institute also inspired the founding of EU/ME — the European
hapter on Metaheuristics (now called the EURO Working Group on
etaheuristics), the official working group on the topic supported by
URO.

Whether a coincidence or not, the number of papers on metaheuris-
ics in EJOR increases dramatically following the 2003 special issue

edicated to the EURO Winter Institute on Combinatorial Optimization.
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Regular issues now typically contain one or more papers on meta-
heuristics, and it becomes impossible to survey a reasonable fraction
of them. Several special issues and feature clusters on metaheuristics
appear in the 2000s and 2010s, such as the special issue on applications
of metaheuristics (Dullaert, Sevaux, Sörensen, & Springael, 2007), the
special issue on Scatter Search (volume 169, issue 2 Martí, 2006),
the special issue on the application of metaheuristics to continuous
problems (volume 185, issue 3 Michalewicz & Siarry, 2008), and on
multi-objective problems (volume 169, issue 3 Jaszkiewicz & Tuyttens,
2006).

The mid-2000s also sees the rise of matheuristics (i.e., combinations
of (meta)heuristics and exact methods), even though that term is only
coined later, e.g., by Nwana, Darby-Dowman, and Mitra (2005). Jour-
dan, Basseur, and Talbi (2009) try to create some order in this evolving
field by presenting a taxonomy of matheuristics.

Griffis, Bell, and Closs (2012) presents a comprehensive overview
on the use of metaheuristics in logistics and supply chain management.

We mention three more papers that underline the changed role of
EJOR from a modest ‘‘follower’’ in the domain of metaheuristics to
a flagship journal that is involved in the debate on the evolution of
the field. In a paper entitled ‘‘metaheuristics in the large’’, Swan et al.
(2022) emphasize the need for a formal framework to classify and
design metaheuristics, akin to other machine learning algorithms. The
authors highlight the necessity of a robust scientific and computational
infrastructure to support the development, analysis, and comparison
of new metaheuristic approaches, preventing fragmentation and repro-
ducibility issues. Additionally, they advocate for standardized, explicit,
machine-readable descriptions of metaheuristics to advance scientific
progress and ensure rigor in communication and reproducibility of
research results.

Secondly, Turkeš, Sörensen, and Hvattum (2021) introduce meta-
analysis into the metaheuristics literature (see Section 8.2).

Finally, in a recent paper (Karimi-Mamaghan, Mohammadi, Meyer,
Karimi-Mamaghan, & Talbi, 2022) present the state of the art on the
integration of metaheuristics and machine learning, a topic that will
definitely see more traction in the future (see Section 8.5).

7. Conferences and scientific associations

An important milestone in the metaheuristic field took place in
1995. In this year, a group of researchers from the University of
Colorado, lead by Fred Glover, launched two important initiatives. On
one hand, they celebrated the first conference specifically devoted to
metaheuristics under the name Metaheuristic International Conference
(MIC) in Breckenridge. On the other hand, the first issue of the Journal
of Heuristics was released that year, devoted to metaheuristic method-
ologies, heuristic algorithms and their applications, with an editorial
board in which most of the groups working on heuristics were somehow
represented. Since then, the MIC has been celebrated every other year,
totaling 15 conferences so far (the latest 15th edition was organized by
one of the authors of this chapter in Lorient, France on June 4–7, 2024),
and the Journal of Heuristics has published more than 100 issues.

As described in previous sections, many OR journals, including
EJOR, have been giving more space to heuristics, and what started as
a second option for researchers when the mathematical model failed,
has nowadays become the first alternative tested given an optimization
problem. Therefore, we may find heuristics in most operations research
journals, as well as many computer science journals. In any of the
86 journals listed in the ISI Web of Knowledge under the category
Operations Research and Management Science, we may find research
papers devoted to describing a heuristic for an optimization problem.

We now mention the conferences mainly devoted to heuristic meth-
odologies in line of the MIC. Genetic algorithms have been probably
the most applied metaheuristics to solve optimization problems and its
main conference GECCO is also one of the most popular conferences

in the field. The Genetic and Evolutionary Computation Conferences
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(GECCO) present the latest results in the growing field of genetic and
evolutionary computation. It is the largest peer-reviewed conference in
the field of Evolutionary Computation, and it is the main conference of
the Special Interest Group on Genetic and Evolutionary Computation
(SIGEVO) of the Association for Computing Machinery. Starting in 1999
in cooperation with the European Network of Excellence in Evolution-
ary Computing (EvoNet), their main topics include: genetic algorithms,
genetic programming, evolution strategies, evolutionary programming,
and their real-world applications.

In many cases, scientific conferences and journals are promoted by
scientific societies. This is also true in optimization and operations
research. EURO, the Association of European Operational Research
Societies promotes operations research within Europe. Its American
counterpart, INFORMS, is an international association for professionals
in operations research, analytics, and management science. Similarly,
IFORS is the International Federations of OR Societies, and ALIO fo-
cuses on their Latin American counterparts. These scientific societies
organize large conferences in OR, usually with the same name as the as-
sociation, and in all of them heuristics play an important role. General
conferences in operations research, optimization or even artificial intel-
ligence, more and more devote sessions, streams or mini-conferences to
metaheuristics. For example, the annual IEEE Congress on Evolutionary
Computation is one of the leading events in the field of evolutionary
computation, and includes a stream on heuristics, metaheuristics and
hyper-heuristics.

Special mention deserves the EURO Working Group on Metaheuris-
tics called EU/ME — the metaheuristics community. It is a working group
officially sanctioned and financially supported by EURO with the main
purpose of providing a platform for communication among researchers,
practitioners, and software developers in the field of metaheuristic
optimization. EU/ME is the largest working group on metaheuristics
worldwide, uniting over 1400 members from over 80 countries.

The European Conference on Evolutionary Computation in Combi-
natorial Optimization — EvoCop has also a long tradition supporting
and promoting metaheuristics. It is organized by SPECIES, the Society
for the Promotion of Evolutionary Computation in Europe and its
Surroundings. Starting in 2004, EvoCop is a multidisciplinary con-
ference that brings together researchers working on applications and
theory of evolutionary computation methods and other metaheuristics
for solving difficult combinatorial optimization problems appearing in
various industrial, economic, and scientific domains. This conference is
usually held together with EuroGP (devoted to Genetic Programming),
EvoMUSART (evolutionary and biologically inspired music, sound, art
and design), and EvoApplications (on the Applications of Evolutionary
Computation), in a joint event collectively known as EvoStar (Evo*).

Several conferences devoted to particular aspects of metaheuristics
have been also established during the last 20 years. The International
Conference on Parallel Problem Solving From Nature (PPSN) brings to-
gether researchers and practitioners in the field of Natural Computing,
the study of computing approaches which are gleaned from natural
models. In their 18 editions since 1990, PPSN has evolved widening its
scope, and it accepts nowadays any contribution in metaheuristics. The
Learning and Intelligent Optimization Conference LION and the Hybrid
Metaheuristics (HM) conference series are acting similarly.

On the other hand, there are some relatively small conferences
devoted to specific methodologies that stick to their original design
and limit their scope. This is the case of ANTS, an event dealing
with swarm intelligence, behavioral models of social insects or other
animal societies that can stimulate new algorithmic approaches. This
is also the case of ICVNS specifically devoted to the variable neighbor-
hood search metaheuristic and regularly co-organized with the EURO
Working Group EU/ME.

8. What is next?

Previous works and analysis have shown that there is still a lot to do
for the future of metaheuristics. This section presents some interesting

directions and is, of course, far from being exhaustive.
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8.1. The science of metaheuristics

The development of metaheuristics, despite its progress and prac-
tical successes, can still be considered more of a craft than a fully es-
tablished scientific discipline. While metaheuristics have demonstrated
their effectiveness in solving complex optimization problems, there are
several reasons why they are perceived as lacking formal guidelines and
a solid scientific foundation.

Lack of theoretical foundations. Metaheuristics are often developed
based on intuition, heuristics, and trial-and-error approaches rather
than being rooted in rigorous mathematical theories. Some metaheuris-
tics draw inspiration from human intelligence, natural phenomena, or
biological processes, yet the translation of these concepts into effective
algorithms is often done in an informal and ad hoc manner.

Limited analytical understanding. Due to the complex nature of opti-
mization problems and the complexity of the solution space of many
(combinatorial) optimization problems, it is challenging to provide
analytical proofs or guarantees of performance for metaheuristic algo-
rithms. Unlike classical optimization methods that have well-defined
convergence properties and theoretical analysis, metaheuristics rely
more on empirical validation and experimental results. Moreover, ex-
isting mathematical analyses and/or theoretical proofs fall short of
providing useful guidelines for the development of heuristics and meta-
heuristics. A proof of convergence given an infinite amount of time, e.g., is
ot particularly useful in practice.

roblem-specific tuning. Metaheuristics often require careful parameter
tuning to achieve optimal performance on specific problem instances.
The selection of appropriate parameter values typically relies on the
experience and expertise of the practitioner, making it more of an art
than a science. These parameters control the exploration–exploitation
trade-off, and finding the right balance can be a challenging task. Of
course, specialized tools exist to perform parameter tuning, but their
benefits are still open for debate and their use is not very widespread.

Lack of standardized benchmarking protocols. Unlike in many scientific
disciplines, there is no widely accepted set of benchmark problems
for evaluating and comparing the performance of metaheuristic al-
gorithms. While some problem domains have established benchmark
suites, the coverage is often limited, and the results may heavily depend
on the specific problem instances used. This lack of standardized bench-
marking makes it difficult to objectively assess and compare different
metaheuristic approaches. Moreover, the absence of benchmarking pro-
tocols allows researchers to cherry-pick the results that puts their own
algorithm in the best possible light. It is still unclear, despite several
research efforts, what it means to ‘‘outperform’’ a competing algorithm.

Absence of general guidelines. Metaheuristics are typically problem-
agnostic, meaning they can be applied to a wide range of optimization
problems. However, there are few general guidelines or rules-of-thumb
that can guide practitioners in selecting the most suitable metaheuristic
for a given problem. The choice of metaheuristic often relies on intu-
ition, prior experience, or even personal preference, rather than being
based on solid scientific guidelines.

Despite these limitations, it is worth noting that progress is being
made in formalizing and advancing the field of metaheuristics. Re-
searchers are working on developing theoretical foundations, creating
standardized benchmark suites, and proposing methodologies for algo-
rithm comparison and evaluation. As more studies and insights emerge,
the craft of metaheuristics is gradually evolving into a more rigorous
scientific discipline. However, it will still take time and further research
to establish well-defined guidelines and a solid theoretical framework

for metaheuristics.
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8.2. Meta-analysis

From the domain of medicine comes a promising methodology
called meta-analysis, a technique that is often used to establish the
fficacy of a treatment. It involves systematically combining the results
f multiple independent studies on a specific research question or topic.
he primary goal of meta-analysis is to provide a more comprehensive
nd precise estimate of the effect or outcome being investigated than
hat individual studies alone can provide.

In a meta-analysis, researchers identify relevant studies from the ex-
sting literature through comprehensive literature searches. They then
xtract relevant data from each study and analyze them collectively.
y pooling the data from multiple studies, meta-analysis increases the
tatistical power and reduces the impact of random variation and bias
hat may exist in individual studies.

Through statistical analysis, meta-analysis quantifies the overall
ffect size or magnitude of the relationship between variables or the
ffectiveness of a particular intervention or treatment. It can also
xplore factors that may influence the results, such as study charac-
eristics or participant characteristics, through subgroup analyses or
eta-regression.

Meta-analysis in medicine plays a crucial role in evidence-based
ractice and decision-making. It helps to synthesize existing research
indings, resolve inconsistencies or controversies among individual
tudies, identify sources of heterogeneity, and provide more reliable es-
imates of treatment effects or associations between variables. By com-
ining data from multiple studies, meta-analysis provides a broader and
ore robust perspective on the research question at hand, enhancing

he overall understanding of a particular topic or intervention.
In a recent paper, Turkeš et al. (2021, 2020) present the first meta-

nalysis in the field of metaheuristics. The authors use this technique
o gain insights into the importance of the adaptive layer in adaptive
arge neighborhood search (ALNS). ALNS is a widely used metaheuris-
ic for solving various problems, but it remains unclear whether the
daptiveness of the algorithm actually contributes to its performance.

To conduct the meta-analysis, the authors identified a total of 134
elevant studies, out of which 63 met the eligibility criteria. They
btained results for 25 different implementations of ALNS by requesting
ata from the authors of the eligible studies. The collected data was
hen analyzed using a random-effects model.

The findings of the meta-analysis reveal that, on average, the addi-
ion of an adaptive layer in an ALNS algorithm improves the objective
unction value by a mere 0.14%. While the adaptive layer can pro-
ide added value in specific situations, it also introduces considerable
omplexity. The authors therefore conclude that its recommendation is
imited to certain contexts.

Overall, this study emphasizes the importance of evaluating the con-
ribution of metaheuristic components and the significance of knowl-
dge gained through meta-analysis over solely relying on competitive
esting. Nevertheless, few authors seem to be aware that such tech-
iques exist, and/or are reluctant to apply them to understand the
ontribution of some metaheuristic components.

.3. Instance space analysis

An early work from Rice (1976) reported the algorithm selection
roblem where a framework was given to select the most appropriate
olving method for a specific problem. The Instance Space Analysis
ISA) (Smith-Miles & Muñoz, 2023), extending this initial work, is

novel approach that serves two main purposes: first, aiding the
mpartial evaluation of algorithms, and second, assessing the diversity
f test instances used for evaluation of the different methods.

ISA, by using a vectorized representation of features, visualizes the
ntire space of possible test instances. ISA shows how algorithm per-
ormance is influenced by the characteristics of each instance. Rather

han simply presenting algorithm performance based on average results
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over a selected set of test problems (the conventional method), ISA
provides a more detailed comprehension of the unique strengths and
weaknesses of algorithms across various sections of the instance space.
These nuances might remain concealed when viewed solely through an
average lens.

Additionally, ISA aids in the objective assessment of biases within
the chosen test instances and offers guidance on the sufficiency of
benchmark test suites.

8.4. Heuristic solvers

Exact solvers that attempt to find the optimal solution and that are
generally based on linear and integer programming paradigms have a
long history. Commercial solvers like CPLEX, Gurobi, etc. are house-
hold names, as are open source tools like GLPK and COIN-OR. All of
these solvers rely on traditional simplex and other linear programming
methods combined with advanced branch-and-cut or other methods for
Integer Programming problems.

Recent years have seen the advent of a limited number of solvers
that rely on heuristics, such as Andrade, Toso, Goncalves, and Resende
(2021), Oliveira, Carravilla, Oliveira, and Resende (2022), Toso and
Resende (2015). Given the flexibility of metaheuristic frameworks and
paradigms like local search, combined with their success in solving
combinatorial optimization problems both in research and in practice,
this is perhaps a bit surprising.

A possible explanation for the lack of general-purpose heuristic-
based solvers could be the absence of a commonly accepted formal
paradigm to express different types of optimization problems. The
paradigm of linear and integer programming requires the user to shoe-
horn every optimization problem into a strictly defined formal model
structure, in which all decisions are defined in terms of either contin-
uous or integer variables, and all objectives and constraints are either
linear or linearized functions of these variables (with a few exceptions,
like quadratic relationships, which can usually be handled directly).

Not all optimization problems, however, are naturally expressed
in this way. A notable category of optimization problems for which
the paradigm of linear and integer programming results in especially
convoluted models, is the category of problems in which decisions are
made on the order of a set of items. This category includes virtually all
routing problems and all machine scheduling problems. Such problems
are typically expressed in MIP models using binary variables that
express whether an item 𝑖 is immediately followed by another item 𝑗.
Consider, e.g., the Miller–Tucker–Zemlin formulation for the TSP.

Minimize
𝑛
∑

𝑖=1

𝑛
∑

𝑗≠𝑖,𝑗=1
𝑐𝑖𝑗𝑥𝑖𝑗 (1)

subject to
𝑛
∑

𝑖=1,𝑖≠𝑗
𝑥𝑖𝑗 = 1, ∀𝑗 ∈ {1,… , 𝑛}, (2)

𝑛
∑

𝑗=1,𝑗≠𝑖
𝑥𝑖𝑗 = 1, ∀𝑖 ∈ {1,… , 𝑛}, (3)

𝑢𝑖 − 𝑢𝑗 + 𝑛 ⋅ 𝑥𝑖𝑗 ≤ 𝑛 − 1, ∀𝑖, 𝑗 ∈ {1,… , 𝑛}, 𝑖 ≠ 𝑗, (4)

𝑥𝑖𝑗 ∈ {0, 1}, ∀𝑖, 𝑗 ∈ {1,… , 𝑛}, 𝑖 ≠ 𝑗, (5)

𝑢𝑖 ≥ 1, ∀𝑖 ∈ {1,… , 𝑛}. (6)

This model uses variables 𝑥𝑖𝑗 ∈ {0, 1} to express the fact that city
𝑗 is the immediate successor of city 𝑖 in the solution. This requires
constraints (2) and (3) simply to ensure that each city is visited exactly
once. Additionally, it requires an entire set of auxiliary variables 𝑢𝑖 and
an entire set of additional subtour elimination constraints (Eq. (4)) just
to ensure that all cities are visited in a single tour, and not in a set of
disjoint subtours.

The formulation of the TSP in the Hexaly Modeler language requires
just three lines, each of which are easy to understand:
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x <- list(n);
constraint count(x) == n;
minimize sum(1...n, i => c[x[i - 1]][x[i]])
+ c[x[n- 1]][x[0]];

The first line introduces x as a variable of type list. A list variable
f size 𝑛 is defined as a vector of variable size that contains each integer
alue between 0 and 𝑛 − 1 at most once. The only constraint necessary
line 2) restricts the size of this list to exactly 𝑛 which, combined with
he definition of the list variable, ensures that each city appears only
nce in the list. The last line minimizes the sum of inter-city distances.

The introduction of list variables (permutations) makes Hexaly mod-
ls more expressive, and allows for more natural formulations of rout-
ng and scheduling problems. It also makes the model easier to read,
s it does not require subtour elimination constraints and/or auxiliary
ariables. Similarly, other types of constraints that are difficult to ex-
ress in the MIP paradigm (e.g., logical constraints), and that typically
equire a big-M constraint formulation, can be expressed and handled
irectly in Hexaly.

Hexaly is not unique, since other heuristic-based solvers exist (e.g.,
he open source TimeFold, formerly called OptaPlanner). There are also
any software libraries available, of rather variable quality.

Moreover, some level of convergence is noticeable between exact
nd heuristic solvers: exact solvers like Gurobi and CPLEX extensively
se heuristics in various parts of the solution process, while heuris-
ic solvers like Hexaly also have exact techniques in their repertoire
e.g., to calculate bounds on the solution quality or determine that a
olution is optimal).

.5. Machine learning and metaheuristics

Machine learning has attracted significant attention for its potential
n solving optimization problems due to its ability to learn patterns
rom data and find optimal solutions in complex scenarios. There are
wo ways of seeing the interaction of metaheuristics and machine
earning.

First of all, many problems faced by designers of machine learning
lgorithms are essentially optimization problems for which heuristic
ptimization techniques can be (and have been) developed. A recent
ook shows this importance (Eddaly et al., 2023). Given the hype and
nterest of machine learning as a field of study, it is clear that this field
ould become one of the prime application areas for metaheuristics.

Another interest has taken roots in the seminal paper from Bengio,
odi, and Prouvost (2021). It is however more concerned with the
se of machine learning to support the development of metaheuristics,
ather than the reverse. As mentioned, the development of heuristics
emains a craft that requires experience by what we could call a
‘heuristic engineer’’. In recent years, several researchers have lever-
ged the potential of machine learning algorithms to essentially learn
ow to develop, guide or perfectly tune a metaheuristic.

Recent work by Lucas, Billot, Sevaux, and Sörensen (2020), as
xpected by Bengio, has shown that combination machine learning
ethods and metaheuristics could give a potential advantage in the

earch of solutions. But, as also expected, those methods are time
onsuming and in the hypothesis of a race for the best solutions, the
etaheuristics might largely win.

.6. Quantum metaheuristics

Quantum metaheuristics utilize principles from quantum computing
o improve traditional metaheuristics algorithms. These new methods
re inspired by quantum phenomena such as superposition, entan-
lement, and interference to potentially improve the efficiency and
ffectiveness of optimization algorithms.

D-Wave systems, a pioneer in this field, has developed quantum

nnealing machines. This technique searches the global minimum of
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a given function by exploiting quantum tunneling. Quantum anneal-
ing or quantum-inspired evolutionary algorithms, aim to mimic the
idea of tunneling to efficiently explore and traverse vast solution
spaces normally unexplored with classical metaheuristics. In addi-
tion, quantum-inspired evolutionary algorithms mimic superposition
and entanglement within classical computing frameworks. They adapt
classical metaheuristics, such as genetic algorithms or particle swarm
optimization, to introduce quantum-inspired operators that might offer
advantages in exploration and exploitation. Other algorithms, like the
quantum approximate optimization algorithm (QAOA), leverage quan-
tum circuits to solve combinatorial optimization problems. They aim
to find approximate solutions using variational approaches, potentially
applicable to metaheuristic optimization.

Quantum-inspired metaheuristics represent a burgeoning field in-
vestigating the integration of quantum computing principles into clas-
sical optimization methods. Despite the early stages of quantum com-
puting, these techniques hold great promises for efficiently addressing
intricate optimization problems.

9. Conclusions

In this paper we have presented a historical review of metaheuristic
frameworks to guide the design of heuristic optimization algorithms.
Most of these frameworks resulted from the adaptation of heuristic
reasoning, developed in the 40s in mathematical psychology, to op-
erations research in the late 50s. The need of OR practitioners to
solve hard optimization problems, for which classic methods based on
mathematical models were not able to produce practical solutions, was
the context in which heuristics emerged as the scientific solution.

Simple heuristics were introduced for combinatorial optimization
problems in the 60s and 70s, and most of the metaheuristic frame-
works were proposed in the 80s and 90s, in the period now known
as the method-centric. We have seen how the advent of metaheuristics
coincides with the ‘‘OR crisis’’ of the same period, in which there was
a general sentiment that OR as a science was not achieving its goals
and was more focused on building ever more intricate methods than
on developing practical solution methods. Metaheuristics introduced
the idea of following a set of rules (framework) to efficiently explore
the solution space when creating a heuristic. Even though this lead
to a significantly improved workflow and to better heuristics, this
came with the downside that some researchers felt that describing a
methodology inspired in natural or social behavior would constitute
a contribution in itself. As a result, the mimicking of natural models
has created confusion in the field with little contribution in terms of
problem solving.

In our discussion, we also highlighted the role of EJOR, publishing
solid heuristic papers during the last 40 years, but taking its time to
enter in the field.

In our view, the field of heuristic optimization has reached a ma-
turity that permits nowadays to solve very complex problems, with
a growing number of researchers applying them, as shown in the
numerous conferences and related events. On the other hand, there are
some deficiencies that reveal areas of improvement. We observe a lot
of fragmentation, and each group of research usually applies the same
methods regardless the type of problem being solved. We do not know
yet which method performs better in which type of problem.

The No Free Lunch (NFL) theorem (Wolpert & Macready, 1997) in
the context of metaheuristics essentially states that there is no single
metaheuristic that universally outperforms all others across all types
of problems. This theorem highlights the importance of understanding
problem-specific characteristics and selecting or designing appropriate
metaheuristics based on these characteristics. For practitioners in the
field of metaheuristics, this theorem emphasizes the need to experiment
and adapt algorithms to suit specific problem instances, rather than
relying on a one-size-fits-all approach. It encourages researchers and

practitioners to develop a diverse set of algorithms and to understand
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the problem domain to choose or design the most effective metaheuris-
tic for a given problem and for a given set of instances. We hope
that this review helps researchers in understanding the metaheuristic
field and in using these frameworks to develop powerful optimization
algorithms.
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