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Abstract 9 

Alzheimer’s disease (AD), a neurodegenerative disorder marked by accumulation of extracellular 10 
amyloid-beta (Aβ) plaques leads to progressive loss of memory and cognitive function. Resting state 11 
fMRI (RS-fMRI) studies have provided links between these two observations in terms of disruption 12 
of default mode and task positive resting state networks (RSNs). Important insights underlying these 13 
disruptions were recently obtained by investigating dynamic fluctuations in RS-fMRI signals in old 14 
TG2576 mice (mouse model of amyloidosis) using a set of quasi-periodic patterns (QPP). QPPs 15 
represent repeating spatiotemporal patterns of neural activity of predefined temporal length. In this 16 
article, we used an alternative methodology of co-activation patterns (CAPs) that represent 17 
instantaneous and transient brain configurations that are likely contributors to the emergence of 18 
commonly observed resting state networks (RSNs) and QPPs. We followed a recently published 19 
approach for obtaining CAPs that divided all time frames, instead of those corresponding to supra-20 
threshold activations of a seed region as done traditionally, to extract CAPs from RS-fMRI 21 
recordings in 10 TG2576 female mice and 8 wild type littermates at 18 months of age. Subsequently 22 
we matched the CAPs from the two groups using the Hungarian method and compared the temporal 23 
(duration, occurrence rate) and the spatial (lateralization of significantly activated voxels) properties 24 
of matched CAPs. We found robust differences in the spatial components of matched CAPs. Finally, 25 
we used supervised learning to train a classifier using either the temporal or the spatial component of 26 
CAPs to distinguish the transgenic mice from the WT. We found that while duration and occurrence 27 
rates of all CAPs performed the classification with significantly higher accuracy than the chance-28 
level, blood oxygen level dependent (BOLD) signals of significantly activated voxels from individual 29 
CAPs turned out to be a significantly better predictive feature demonstrating a near perfect 30 
classification accuracy. Our results demonstrate resting-state co-activation patterns are a promising 31 
candidate for a diagnostic, and potentially, prognostic biomarker of Alzheimer’s disease. 32 

1 Introduction 33 

Alzheimer’s disease (AD) is a neurodegenerative disorder that causes progressive loss of learning 34 
abilities, memory, and overall cognitive function.  The characteristic features of the disease are the 35 
accumulation of extracellular amyloid-beta (Aβ) plaques and intracellular neurofibrillary tangles. In 36 
order to understand how the accumulation of plaques could contribute to the development of AD 37 
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symptoms, it is important to investigate changes in neural activities especially at the network or 38 
whole-brain level. Resting-state functional magnetic resonance imaging (RS-fMRI) has been 39 
instrumental in uncovering such global network-level changes across the whole-brain in several 40 
neurological and neuropsychiatric disorders such as stroke (Baldassarre et al. 2014; Siegel et al. 41 
2016; Carter et al. 2010), coma (Di Perri et al. 2018; Chennu et al. 2017), depression (Drysdale et al. 42 
2017). In case of AD, the disruption of the default mode and task-positive networks have been 43 
identified as promising markers of the disease. Specifically, alterations in the default-mode network 44 
(DMN) functional connectivity (FC) have been correlated with increases in amyloid-beta levels 45 
(Greicius et al. 2004; Li and Wahlund 2011). 46 

Traditional analyses of RS-fMRI signals have involved calculation of static (seed-based or pairwise 47 
between regions of interest) FC. FC estimates correlations of BOLD signals of regions from the 48 
entire scanning period disregarding the variations in FC during the scan. However, several recent 49 
studies (Hutchison et al. 2013; Deco and Kringelbach 2017; Hindriks et al. 2016) have shown that 50 
temporal fluctuations in FC within the scan can inform on interplay between various brain states. 51 
Several methods have been proposed to extract this dynamic information in the resting-state FC. The 52 
most-straightforward one uses a sliding window approach. Here, whole-brain FC is calculated in a 53 
time window of fixed duration that is then moved over the entire scan in order to obtain a series of 54 
FC values over the whole scan (Hutchison et al. 2013). Test-statistics are then calculated using this 55 
FC time series and compared against the null hypothesis of stationarity (Hindriks et al. 2016). 56 
Another approach consists of a point-process analysis (Liu and Duyn 2013; Liu et al. 2018) in which 57 
fMRI time frames where signal of a given region of interest (i.e. seed) crosses a specific percentile 58 
threshold, are clustered to identify different co-activation patterns (CAPs). Voxel-wise activation 59 
pattern, averaged across these selected frames (typically only 15% of the total) matches very closely 60 
with the seed-based correlation maps obtained using all frames. CAPs represent transient brain states 61 
that are believed to contribute to the emergence of resting-state networks (RSNs) found in the static 62 
FC estimation (Liu et al. 2018). Recently, Gutierrez-Barragan et al. used a modified approach in 63 
which they clustered all time frames from RS-fMRI scans in mice and found six robust CAPs in 64 
different datasets (Gutierrez-Barragan et al. 2019). 65 

In this paper, we used the methodology of Gutierrez-Barragan et al., to identify CAPs in a cohort of 66 
old (18-months) TG2576 (mouse-model of  amyloidosis) mice and their age-matched control. In this 67 
cohort, Belloy et al. identified changes in a set of recurring spatio-temporal patterns of neural activity 68 
of predefined temporal length called the quasi-periodic patterns (QPPs) (Belloy et al. 2018).  We 69 
compared the spatial and temporal components of CAPs between the two groups. Subsequently, we 70 
hypothesized that the CAP properties will accurately distinguish the transgenic animals from healthy 71 
controls and argue that it could be effective in the development of a biomarker for Alzheimer’s 72 
disease. 73 

 74 

2 Materials and Methods 75 

All the data analyzed in this manuscript were originally acquired and published in an earlier 76 
manuscript (Belloy et al. 2018). The acquisition and processing steps are included here for 77 
completeness.  78 

Ethical statement 79 
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All procedures were performed in strict accordance with the European Directive 2010/63/EU on the 80 
protection of animals used for scientific purposes. The protocols were approved by the Committee on 81 
Animal Care and Use at the University of Antwerp, Belgium (permit number 2014-04) and all efforts 82 
were made to minimize animal suffering. 83 

Animals  84 

The TG2576 mouse model of amyloidosis overexpresses the human mutant form of amyloid 85 
precursor protein (APP), which carries the Swedish mutation (KM670/671NL), controlled by the 86 
hamster prion protein promoter (Hsiao et al. 1996). Aβ plaque development starts at the age of 9–11 87 
months (Hsiao et al. 1996), while plaque burden increases markedly with age (Kuo et al. 2000). The 88 
cohort used in this study consisted of 10 female TG2576 (henceforth referred to as TG) mice at the 89 
age of 18 months and 8 age-matched wild-type (WT) littermates. RS-fMRI data were collected while 90 
the animals were under an anaesthesia protocol comprising 0.4 % isoflurane, a bolus injection of 91 
medetomidine (0.3 mg/kg), and a subcutaneous infusion of medetomidine (0.6 mg/kg/h).  92 

MRI procedures and functional scan pre-processing 93 

MRI scans were acquired on a 9.4 T Biospec system, with a four-element receive-only phase array 94 
coil and a volume resonator for transmission. Structural images were acquired in three orthogonal 95 
directions, using Turbo Rapid Imaging with Refocused echoes (RARE), for reproducible slice 96 
positioning (repetition time 3000 ms, effective echo time 33 ms, 16 slices of 0.4 mm). B0 field maps 97 
were acquired, followed by local shimming. RS-fMRI scans were acquired with a gradient-echo 98 
echo-planar imaging (EPI) sequence (field of view (20x20) mm2, matrix dimensions [128x64], three 99 
slices of 0.4 mm, flip angle 55°, bandwidth 400 kHz, repetition time 500 ms, echo time 16 ms, 2400 100 
repetitions). High temporal resolution was required to investigate temporal fluctuations in the data. 101 
Due to resultant technical limitation, slice number was restricted to three. Slices were positioned 0.1 102 
mm caudally of bregma, according to the Paxinos and Franklink stereotaxic mouse brain atlas 103 
(Franklin and Paxinos 2013).  104 

Motion parameters for each functional scan were obtained using 6 rigid body parameters. Images 105 
were realigned and normalized to a user-defined reference subject, followed by smoothing (σ = 2 106 
pixels). During image normalization, intensities of outer slices are partially lost. Analyses were thus 107 
restricted to the single center slice (MATLAB2017b). Motion vectors were then regressed out of the 108 
image-series. These procedures were performed using Statistical Parametric Mapping (SPM12) 109 
software (Wellcome Department of Cognitive Neurology, London, UK). Images were then filtered 110 
using a 0.01-0.2Hz FIR band-pass filter, quadratic detrended and normalized to unit variance. 111 
Transient time points at the start and end of the image-series were removed before and after filtering. 112 
For the detection of CAPs, a brain mask was employed to exclude the contribution of the ventricles. 113 
Global signal regression was not carried out. 114 

Extraction of CAPs: 115 

As mentioned in the introduction, we followed the approach by Gutierrez-Barragan et al. 2019 to 116 
obtain the co-activation patterns in each group (WT and TG). Thus, we first concatenated the filtered 117 
images from each animal in the group to form a group-level image-series. We then clustered all time 118 
frames in this image-series using K-means++ algorithm by assessing their spatial dissimilarity with 119 
each other in terms of correlation distance (1 - Pearson’s correlation). Clustering was done for a 120 
range of clusters between 2 and 20 and in each case, we calculated across-subject variance explained 121 
by the clustering solution as follows (Goutte et al. 1999): 122 
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• Within cluster variance, 𝑉! =
!

!
 𝑑

!
𝑧! ,  𝑐!!∈!

!

!!!  where, N is the total number of 123 

observations (time frames); K is number of clusters and d denotes the Euclidean distance 124 
between the centroid ck of the kth cluster and jth observation belonging to the kth cluster. 125 
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!!! 𝑐! ; where d is the 126 

distance between the global centroid c and the cluster centroid ck  and nk is the number of 127 
observations (time frames) in the kth cluster. 128 

• Explained variance = 
!!

!!!!!

 129 

We then plotted the explained variance as a function of partitions of the image-series with increasing 130 
number of clusters (in the range from 2 to 20) and identified the minimum number at which the 131 
variance reached a saturation level (elbow point) as the optimal number of clusters. We confirmed 132 
the elbow point by making sure that the fractional gain in the explained variance for this partition 133 
with k clusters when compared to the partition with k-1 clusters was less than 10% (Gutierrez-134 
Barragan et al. 2019). Voxel-wise BOLD signal intensities were averaged across all time frames 135 
within each cluster to produce group-level CAPs. One-sample T maps corrected for multiple 136 
comparisons using the Bonferroni correction (p<0.01) were subsequently obtained for each CAP. We 137 
then calculated temporal and spatial properties of CAPs for each subject within each group: 138 

1. Occurrence fraction: the ratio, for each CAP, of the number of time frames labelled with its id 139 
to the total number of frames within a subject. This is a subject-level measure. 140 

2. Duration: number of consecutive frames corresponding to a CAP, averaged across all 141 
occurrences of the CAP within a subject; also a subject-level measure. 142 

3. Laterality index: Difference in the average value of T-statistic per voxel, between left and 143 
right hemispheres, normalized by the average T-statistic per voxel in the entire brain. Here the 144 
T-statistic for each voxel is obtained by comparing its mean BOLD signal intensity, across all 145 
time frames within each subject belonging to the CAP, with zero using a one-sample T-test.   146 
Only voxels that whose activations (mean BOLD signal intensities) are significantly different 147 
from zero (p < 0.01; one sample T-test, Bonferroni corrected) were considered. The laterality 148 
index varies between -1 (completely right lateralized pattern) and 1 (completely left 149 
lateralized pattern) with 0 indicating a bilateral pattern with no preference for any 150 
hemisphere. We calculated two separate values of laterality for co-activations (T > 0) and co-151 
deactivations (T < 0) respectively. 152 

CAPs extracted from the image-series of both groups were spatially matched using the Hungarian 153 
method (Kuhn 1955) with 1- Pearson’s correlation taken as the distance metric. The strength of 154 
spatial similarity between every pair of matched CAPs was compared against a null hypothesis that it 155 
arises by chance. Thus, we shuffled randomly the CAP labels of all frames (thereby preserving the 156 
cluster size) from each group’s image-series and then obtained random surrogate CAPs by averaging 157 
across frames with the same CAP label. We then calculated the Pearson’s correlation between 158 
surrogate CAPs from each group while maintaining the matching found in the original datasets. We 159 
repeated this procedure 10000 times and built a surrogate distribution of correlation values and 160 
identified a threshold correlation value with p = 10E-5. All matched CAP pairs with canonical 161 
correlations falling below this value were not considered for further analyses/comparisons. 162 
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Statistical comparisons 163 

We compared for every pair of matched CAPs the medians, across subjects, of the properties 164 
mentioned above using a two sample rank-sum test, corrected for the number of comparisons using 165 
the Benjamini – Hochberg correction (Benjamini and Hochberg 1995) for controlling the false 166 
discovery rate (FDR). At first, we made these comparisons for every pair of matched CAPs (with 167 
Pearson’s correlation higher than the threshold from a null distribution of correlation values arising 168 
by chance) extracted from a specific partition of image-series with a fixed number of clusters. 169 
Subsequently, we compared the matched CAPs from all partitions with the number of clusters 170 
ranging between 2 and 20. 171 

Extraction of CAPs from a combined image-series 172 

We also performed the CAP analysis on a combined image-series formed from a concatenation of 173 
both group-level image-series in order to avoid the necessity of matching. We compared the mean 174 
temporal and spatial properties between the groups for each combined CAP. 175 

Classification 176 

Temporal and spatial components of CAPs were used as features in a supervised learning approach to 177 
distinguish TG animals from WT. We used a multinomial logistic regression (MLR) as a classifier 178 
and trained it on CAP features from 80% of the subjects and tested its accuracy on the remaining 179 
20%.  The regularization parameter in the MLR classifier was set to 10 to control for over-fitting. We 180 
repeated the accuracy calculation on 100 trials of randomly sampled train and validation sets and 181 
compared the mean accuracy with chance-level accuracy, averaged across 100 surrogate trials in each 182 
of which the identities of the subjects were shuffled while maintaining the size of each group (8 WT 183 
and 10 TG animals). Mean chance-level accuracy was expected to be ~ 45% which is the ratio of the 184 
size of the smallest class (WT) to the total number of subjects. We also computed the confusion 185 
matrices that give the true and false positive rates for each class and hence inform about sensitivity 186 
and specificity of the classifier. The confusion matrices were obtained using the true and predicted 187 
labels pooled from validation sets of all 100 trials.  188 

We used the features of only those CAPs that showed a Pearson’s correlation of 0.5 and above 189 
between the two groups for training the MLR classifier. From all such CAPs within every partition, 190 
we pooled their (a) duration and occurrence rate, and, (b) BOLD intensities of voxels whose 191 
activations were found to be significantly different from zero in either the WT or the TG CAP. Each 192 
feature was z-scored across subjects so that their relative rankings were used for classification.  193 

As CAPs were obtained using all subjects, information on validation set subjects could bias the 194 
classifier to predict them more accurately than otherwise possible. In order to avoid this bias, we 195 
extracted the group-level WT and TG CAPs only from the training set and then spatially correlated 196 
them with the image-series for every subject. Local peaks of the correlation time series were 197 
identified and voxel-wise averaged to use as initial centroids for the K-means clustering of all frames 198 
in the scan. The frames belonging to the same cluster were voxel-wise averaged to construct either a 199 
WT-like CAP or a TG-like CAP for every subject. Thus for each subject we obtained, for every 200 
group-level WT and TG CAP, two sets of features belonging to a WT-like CAP and a TG-like CAP. 201 
This was necessary to mimic actual situations in which the identity of a new test subject would not be 202 
known. We then trained the classifier using the WT-like and TG-like spatial and temporal features of 203 
the training set and tested its accuracy on the validation set. The whole-procedure was repeated for 50 204 
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trials and comparison of mean accuracy, across trials, with chance-level accuracy and calculation of 205 
confusion matrices were done as described in the paragraph above. 206 

 207 

3 Results 208 

3.1 Identification of Group-level CAPs 209 

We began by partitioning the concatenated image-series of each group with the number of clusters 210 
ranging between 2 and 20. Following Gutierrez-Barragan et al. 2019, we calculated the across-211 
subject variance explained by each partition and calculated the elbow point. As Figure 1A shows, the 212 
elbow point turned out to be a partition with 7 clusters as this was the first partition at which the 213 
fractional gain in explained variance fell below 10% for both groups (Figure 1B). We then took 214 
voxel-wise averages of BOLD signal intensities across all time frames belonging to each of the 7 215 
clusters to obtain the group-level WT and TG CAPs. Figure 2 shows the T-statistic values for 216 
significantly (p < 1E-5, one-sample T-test, Bonferroni corrected) co-activated (T > 0) and co-217 
deactivated (T < 0) voxels for each of the 7 CAPs matched using the Hungarian method between 218 
groups. CAPs were ordered in the descending order of spatial correlation between WT and TG 219 
groups.  220 

CAP 1 was characterized by co- deactivations of cingulate (CG) and motor (MT) cortices and 221 
activations of dorsal and ventral caudate putamen (Cpu) of striatum. CAP 2 on the other hand was 222 
characterized by co-activations of mainly the CG and MT cortices along with co-deactivations of 223 
somatosensory (SS) cortices. Pearson’s correlation between CAP 1 and 2 was -0.36. CAPs 3 and 4 224 
were similarly an anti-correlated pair of patterns (r = - 0.4) characterized by simultaneous co-225 
activations and co- deactivations, respectively, of CG, MT as well as the CPu that were anti-226 
correlated with activations of somatosensory cortex. CAPs 5-7 displayed less commonly observed 227 
physiological configurations. Thus these CAPs featured characteristic regions – the CG and SS, 228 
respectively, that typically constitute the mouse DMN-like and latero-cortical RSNs (Liska et al. 229 
2015; Gozzi and Schwarz 2016) respectively.  230 

3.2 Comparisons of properties of matched CAPs 231 

One-sample T-maps of CAPs in Figure 2 showed that while the matched CAPs had high spatial 232 
similarity, the co-activations and co deactivations were not necessarily symmetrical across 233 
hemispheres. Therefore, we used lateralization of co-activation and co- deactivation of voxels as a 234 
quantifiable metric to assess spatial dissimilarity of CAPs between groups. Figure 3 shows the 235 
comparison of temporal and spatial properties of matched CAPs between the WT and TG. Only the 236 
first CAP displayed a higher median occurrence in the TG as compared to WT while the duration and 237 
occurrence rates of all other CAPs didn’t show any significant difference. CAPs 2, 3, 5 and 6 showed 238 
a significantly altered lateralization of average positive activation per voxel between the groups.  239 

Next, we compared the properties of matched CAPs between the two groups in all partitions with 240 
number of clusters ranging between 2 and 20. Figure 4 plots the p-values of comparison of temporal 241 
(panels A and B) and spatial (panels C and D) properties. While very few CAPs, across partitions, 242 
showed significant difference in either the duration or the occurrence, 57 and 52 CAPs across 243 
multiple partitions showed significant between-group difference in the lateralization of the average 244 
positive and negative activation per voxel respectively (p < 0.05, FDR corrected for number of 245 
comparisons within each partition). We identified two prototype patterns with spatially similar 246 
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representations in 7 different partitions that showed significantly higher right-hemisphere 247 
lateralization of positively activated voxels in the TG group (Figure 5).  CAP 3 of 7 (Figure 2C) 248 
belonged to the first prototype pattern (Figure 5A) while CAP 2 of 7 belonged to the second group 249 
(Figure 2B, 5B). Similarly, two prototype patterns with spatially similar representations in 6 different 250 
partitions displayed significantly higher right-hemisphere lateralization of co-deactivated (T < 0) 251 
voxels in the TG animals in comparison with WT (Figure 6). The first prototype pattern (Figure 6A) 252 
was highly similar to CAP 3 of 7 (Figure 2C) while the second pattern closely matched CAP 1 of 7 253 
showing co-deactivation of DMN-like network. 254 

Finally, we tested an alternative strategy to extract CAPs. Instead of extracting CAPs separately for 255 
each group’s image-series, we concatenated both group-level image-series into a single one and 256 
applied the clustering algorithm to it. The rationale behind this data-driven approach was to identify 257 
CAPs without specification of group identity. This approach clearly didn’t require any matching as 258 
each CAP would have representations in each group. After extracting the CAPs in this manner we 259 
compared their properties between groups as before and found that both the temporal and the spatial 260 
properties of most CAPs didn’t show any significant difference (Figures 7 and S5). The failure of this 261 
approach to identify any inter-group differences can be attributed to the low statistical power in our 262 
dataset and to the fact that the clustering puts relatively more emphasis on capturing the inter-group 263 
variance than the within-group variance. 264 

3.3 Classification using CAP metrics 265 

Finally we turned our attention to investigating the predictive power of CAP metrics to distinguish 266 
TG animals from WT. As mentioned in the methods, at first, we considered the properties of training 267 
subjects’ CAPs, extracted from the image-series of all subjects, as features to train the classifier. 268 
Figure 8A-B show the mean classification accuracy with temporal and spatial properties of CAPs 269 
respectively and their comparisons with mean chance-level accuracy as a function of partitions of the 270 
image-series. Occurrence rates and durations of strongly (r > 0.5) spatially matched CAPs performed 271 
better than the chance-level only in a few partitions. On the other hand, the spatial component 272 
performed significantly better than the chance level for all partitions with an average accuracy of 273 
90% in all cases barring two partitions. Figure 8C-D show the confusion matrices for each of the 19 274 
partitions. We find that the significantly greater than the chance-level accuracy observed with the 275 
temporal features of matched CAPs in 8 partitions can be attributed to primarily the WT class being 276 
better predicted. In these partitions, the prediction scores for the transgenic animals is typically lower 277 
than that for WT. On the other had, the high classification accuracy of the spatial component of 278 
matched CAPs is due to excellent predictions of both classes, albeit, it’s the TG that is predicted 279 
perfectly while some of the WT subjects are incorrectly predicted as TG. This observation could be 280 
explained by the fact that these animals are very old and hence, the some of WT animals could show 281 
patterns that are spatially very similar to the TG subjects.  282 

As described in the methods section, the fact that all subjects’ image-series were used in the 283 
extraction of the CAPs could influence the classifier to predict the validation set subjects more 284 
accurately than in the case when only training set subjects’ images were concatenated to extract the 285 
CAPs. Therefore, we extracted the WT and TG group-level CAPs from the image-series of only the 286 
training set subjects and then, for every group-level CAP, obtained the WT-like and TG-like CAP for 287 
each subject (see Methods for details). Taking the spatial and temporal components of WT-like and 288 
TG-like CAPs as features we trained the classifier and tested on the validation set. As figure 9A 289 
shows, the classification accuracy with temporal features of WT-like and TG-like CAPs was close to 290 
the chance level for all partitions. Only in six partitions, the mean accuracy was significantly higher 291 
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than the chance-level while never crossing a 60% mark. In contrast, the prediction accuracy of spatial 292 
features was near 100% in case of all partitions except the first two (Figure 9B).  293 

4 Discussion 294 

In this article, we investigated spatial and temporal properties of resting-state co-activation 295 
patterns extracted in a mouse model of Alzheimer’s disease at a very old age. We found very few 296 
inter-group differences in the temporal component of CAPs. More robust differences were found in 297 
the hemispheric lateralization of co-activations and co-deactivations of brain regions in multiple 298 
CAPs. Typically, both the co-activations and co-deactivations were significantly more right 299 
lateralized in the diseased animals as compared to the healthy. These differences, especially in the 300 
spatial features of CAPs, suggested that they could serve as accurate predictors of the disease. We 301 
therefore tested the predictive ability of both the spatial and temporal features of CAPs using a 302 
supervised learning approach. The prediction accuracy of temporal features was near the chance level 303 
while the spatial features distinguished the diseased animals from healthy control with near 304 
perfection. 305 

Methodological considerations: 306 

CAPs were obtained using a recently developed approach (Gutierrez-Barragan et al. 2019) in 307 
which all time-frames, as opposed to only those corresponding to the supra-threshold BOLD signal in 308 
a seed region, are clustered in each group separately, followed by identifying the optimal number of 309 
clusters at which the across-subject variance saturates. In our case, the identification of elbow point 310 
in the plot of explained variance versus the number of clusters was sub-optimal as the variance 311 
increased monotonically with the number of clusters and the fraction of variance gain didn’t drop 312 
significantly after a specific partition as was the case in the article by Gutierrez-Barragan et al. This 313 
could be due to lower statistical power in our cohort (8 WT and 10 TG animals). We therefore 314 
continued identification of CAPs for all partitions with number of clusters ranging between 2 and 20 315 
and compared the properties of only those CAPs that showed significantly higher spatial similarity 316 
between the WT and the TG group than that arising by chance.  317 

We also extracted CAPs in the same range of partitions from a combined image-series formed 318 
by concatenating images from animals of both groups. Here, we did not find significant differences 319 
in either the temporal or spatial features of CAPs. This finding could be attributed mainly to the 320 
nature of the clustering algorithm; K-means appears to identify clusters that are similar across both 321 
groups thereby putting more emphasis on explaining across group variance than within group. Low 322 
statistical power in each group could also explain this observation as insufficient variability within 323 
group would mean the clustering would fail to find a group-specific pattern as a separate cluster and 324 
combine it instead with a larger cluster of similar observations across groups. It would be interesting 325 
to test, in a cohort of sufficiently large datasets, if both group-level and combined approaches yield 326 
similar results. 327 

In order to do the classification we used, as a classifier, multinomial logistic regression with 328 
regularization. MLR has been shown to be efficient classifier for categorical variables as was the case 329 
in this study (Pallarés et al. 2018). At first, we performed the classification by using just the 330 
representations of group-level CAPs, obtained by analyzing data from all subjects, in each individual 331 
subject. However, in order to mimic a more clinical setting in which only the training data would be 332 
available to identify group-level CAPs and the purpose of the marker would be to diagnose a test 333 
participant, we used only the training set animals’ data to extract the group-level WT and TG CAPs. 334 
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Subsequently we obtained the subject-level CAPs in training as well as the test-set subjects by 335 
seeding the clustering algorithm with initial centroids formed by averaging over local peaks of 336 
correlation with the corresponding group-level CAPs. 337 

CAPs Topology 338 

Out of the seven CAPs, we found two pairs of spatially anti-correlated CAPs. The first pair showed 339 
co-activation and co-deactivation of cingulate and motor cortices that were anti-correlated with 340 
activations and deactivations of the striatum and somatosensory cortices. Both these pairs of CAPs 341 
were similar to the first four CAPs obtained by Gutierrez-Barragan et al. (2019) although the extent 342 
of significantly co-activated voxels was much less. This observation could be attributed to the lower 343 
statistical power in our cohort. Cingulate cortex is a prominent region in the mouse DMN-like 344 
network while somatosensory cortices belong to the LCN (Gozzi and Schwarz 2016). The 345 
explanation for co-activation of motor cortices with DMN-like network, also found in the QPPs 346 
extracted in this cohort (Belloy et al. 2018), could lie in the age of the animals as human studies have 347 
shown that resting-state network segregation is reduced with ageing (Chan et al. 2014; Vidal-Piñeiro 348 
et al. 2014). 349 

Resting-state markers of Alzheimer’s disease 350 

Human studies of the resting-state in patients with Alzheimer’s disease have mostly focused on static 351 
functional connectivity (FC) analyses (Badhwar et al. 2017). Altered DMN FC has been the most 352 
consistent finding in these studies (Mevel et al. 2011). Since regions constituting the DMN (posterior 353 
cingulate cortex, in particular) are also the targets of AD in terms of deposits of amyloid-beta 354 
plaques, alterations in RSN-FC have been shown to correlate with these deposits especially in 355 
patients with high amyloid burden(Sperling et al. 2009; Koch et al. 2015; Myers et al. 2014). These 356 
changes in the DMN-FC of animal cohort used in our study, were observed and confirmed in the 357 
previous work by Belloy et al.(2018). Going beyond the static FC, Belloy et al. showed that short 358 
(3s), spatio-temporal patterns of recurring neural activity called the quasi-periodic patterns (QPPs) 359 
contributed to the FC changes. They also found that group-specific QPPs occurred less frequently in 360 
the other group’s image-series and that the dominant QPPs from each group were anti-correlated to 361 
each other. A recent study (Ma et al. 2020)  investigated co-activation patterns in healthy elderly 362 
participants, patients with mild cognitive injury (MCI) and AD patients and found that average dwell 363 
time in the DMN was reduced in AD. In contrast to both these studies, we found significant 364 
differences in the spatial, rather than temporal, component of CAPs in terms of hemispheric 365 
lateralization of co-activation and co-deactivation. We found significantly higher right-lateralization 366 
in the TG animals for both co-activated as well as co-deactivated voxels. In humans, several resting-367 
state networks show lateralizations that depends on age and gender (Agcaoglu et al. 2015). In fact, 368 
significant reduction in the lateralization of the DMN has recently been reported for groups of 369 
amyloid beta positive patients of MCI or dementia when compared with a group of amyloid beta 370 
negative participants with no cognitive impairment (Banks et al. 2018). In mice, a strong bilateral 371 
organization of resting-state networks, found using independent component analysis, has been 372 
reported (Grandjean et al. 2020). Our finding in WT mice that shows mostly bilateral CAPs is in line 373 
with this observation. On the other hand, in mouse models of autism spectrum disorder, brain 374 
lateralization, especially in the striatum, has been reported using MRI and immunohistochemistry 375 
(Grabrucker et al. 2018). Therefore, right-lateralization of prominent CAPs in TG mice is an 376 
interesting finding that needs to be further investigated.  377 

 378 
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Potential of CAPs as a biomarker 379 

 Spatial features of CAPs, although similar at a group-level, were sufficiently different at the 380 
subject-level as evidenced by inter-group differences in the hemispheric lateralization of activations. 381 
These differences were robust enough to make CAPs a highly accurate predictor of the disease at this 382 
late manifest stage. As mentioned before, we used two strategies with the latter being more 383 
appropriate for a clinical setting in which the classifier could be trained using CAPs extracted out of 384 
only the training dataset with the aim of diagnosing new “un-seen” participants. We found that the 385 
spatial features of CAPs predicted the identity of test-set subjects perfectly with above 99% accuracy. 386 
This result suggests that CAPs could also predict more complex scenarios such as behavioral deficits 387 
of patients at different stages or outcome of treatments thereby making resting-state CAPs a very 388 
promising candidate for a biomarker for Alzheimer’s disease as well as other neurodegenerative 389 
diseases. 390 

 391 
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Figures 544 

 545 

Figure 1:  (A) Across-subject variance explained as a function of number of clusters in the partition 546 
of group-level image-series without global signal regression. The elbow point here beyond which the 547 
explained variance saturates is found to be at the partition with 7 clusters. (B) Fraction of gain in the 548 
explained variance as the number of clusters in the partition increase from k to k+1, as a function of 549 
partitions. The elbow point of 7 clusters is the first instance for both groups at which the fractional 550 
gain in explained variance falls below 10%.  551 

 552 

 553 
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 554 

Figure 2: One-sample T-test maps showing significantly (p < 1E-5; Bonferroni corrected) co-555 
activated (T > 0) and co- deactivated (T < 0) voxels for 7 WT CAPs and their corresponding matched 556 
patterns in the TG. CAPs are ordered in the descending order of spatial similarity between matched 557 
CAPs expressed in terms of Pearson’s correlation mentioned in the title of each pattern. CG: 558 
Cingulate cortex, CPu: Caudate Putamen, VP: Ventral Pallidum, SS: Somatosensory cortex, MC: 559 
Motor cortex. 560 
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 561 

Figure 3: Comparison of median occurrence rate (A), duration (B), hemispheric lateralization of 562 
average positive activation per voxel (C), and hemispheric lateralization of average negative 563 
activation per voxel (D) between WT and TG for each of the 7 CAPs extracted from group-level 564 
image-series. Black asterix indicates significant difference (p < 0.05, two sample rank sum test; FDR 565 
corrected for multiple comparisons with Benjamini-Hochberg correction). Most significant 566 
differences are found for the lateralization of co-activation (T > 0) in case of 4 out of 7 CAPs.  567 
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 568 

 569 

Figure 4: Each panel of the figure shows the p-values of comparison of mean duration (A), 570 
occurrence rate (B), laterality of average positive activation per voxel (C), and, laterality of average 571 
negative activation per voxel (D) between WT and TG groups for each CAP in each partition with 572 
number of clusters ranging from 2 to 20. Thus each black marker represents a CAP. The red dashed 573 
line represents a p-value of 0.05, uncorrected. The green marker represents Bonferroni corrected 574 
threshold p-value for each partition. The blue dashed line represents the Bonferroni corrected 575 
threshold p-value across partitions. Here, CAPs are extracted from the group-level image-series.  576 

 577 
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 578 

Figure 5: One-sample T-test map of an example CAP for two patterns (A, C respectively) with 579 
representations in 7 different partitions that show significantly higher right-lateralization (B, D 580 
respectively) of significantly (p < 1E-5; Bonferroni corrected) co activated (T > 0) voxels.  581 

 582 

 583 
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Figure 6: One-sample T-test map of an example CAP for two patterns (A, C respectively) with 584 
representations in 7 different partitions that show significantly higher right-lateralization (B, D 585 
respectively) of significantly (p < 1E-5; Bonferroni corrected) co deactivated (T < 0) voxels.  586 

 587 

 588 

Figure 7: Each panel of the figure shows the p-values of comparison of mean duration (A), 589 
occurrence rate (B), laterality of average positive activation per voxel (C), and, laterality of average 590 
negative activation per voxel (D) between WT and TG groups for each CAP in each partition with 591 
number of clusters ranging from 2 to 20. Thus each black marker represents a CAP. The red dashed 592 
line represents a p-value of 0.05, uncorrected. The green marker represents Bonferroni corrected 593 
threshold p-value for each partition. The blue dashed line represents the Bonferroni corrected 594 
threshold p-value across partitions. Here, CAPs are extracted from a single image-series formed by 595 
concatenating both group-level image-series. 596 
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 597 

Figure 8A, B: Mean accuracy of classification (blue) and mean chance-level accuracy (grey) as a 598 
function of partitions with number of clusters ranging between 2 to 20. MLR classifier is trained 599 
using duration and occurrence rates of matched CAPs (with Pearson’s correlation higher then 0.5) 600 
(A), and, BOLD signal intensities of voxels with activations significantly different from zero found 601 
in the group-level WT or TG CAP (B). Red asterix indicates significantly higher mean accuracy than 602 
the chance level, FDR corrected for 19 comparisons using Benjamini-Hochberg correction. C, D: 603 
Confusion matrices showing the scores of prediction of validation set labels of each group, pooled 604 
across 100 validations sets, for each of the 19 partitions with temporal (C) and spatial (D) aspects of 605 
CAPs.  606 

 607 
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 608 

Figure 9A, B: Mean accuracy of classification (blue) and mean chance-level accuracy (grey) as a 609 
function of partitions with number of clusters ranging from 2 to 20. MLR classifier is trained using 610 
duration and occurrence rates of WT-like and TG-like CAPs (A), and, their BOLD signal intensities 611 
of voxels with activations significantly different from zero found in the group-level WT or TG CAP 612 
(B). Red asterix indicates significantly higher mean accuracy than the chance level, FDR corrected 613 
for 19 comparisons using Benjamini-Hochberg correction. Here the group-level WT and TG CAPs 614 
are extracted from group-level image-series formed from only the training set of subjects.   615 
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