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Abstract  

In this investigation, a fan-beam photon attenuation based system, including one X-ray tube and 

two sodium iodide crystal detectors, combined with group method of data handling (GMDH) 

neural network is proposed to recognize type of flow regime and predict gas-oil-water volume 

fractions of a three phase flow. One GMDH neural network was considered for recognizing flow 

patterns and two GMDH networks were implemented to predict the volume fractions. The 

recorded photon energy spectra from the two sodium iodide detectors were defined as the inputs 

of the three GMDH neural networks. The type of flow pattern and volume fractions were the output 

obtained from the first and the other two GMDH neural networks, respectively. Through the 

application of the proposed methodology, all of the flow patterns were recognized correctly except 

one single case. The volume fraction was also predicted with RMS error of less than 3.1.  

Keywords: GMDH neural networks; X-ray tube; Flow pattern; Volume fraction; Gas-oil-water; 

Three phase flow. 

 

1. Introduction  



Determining flow pattern and volume fraction of gas-oil-water three phase flow has been one of 

the major areas of interest in petroleum industry. Flow pattern has a direct influence on the 

separating process efficiency while the volume fraction of the each phase provides indication as 

to whether the drilling process should be continued or stopped [1]. Radiation Based Multi-Phase 

Flow Meter (RBMPFM) is one of the well-known types of MPFMs. Improving the efficiency and 

precision of the RBMPFMs and decreasing the problems of working with RBMPFMs are the main 

objectives of this manuscript.  

Numerous studies have been devoted to investigating how to identify the flow regime in gas-oil-

water three phase flows using photon radiation. In 2010, Salgado et al. proposed a radiation based 

method for recognizing flow regime of a 3 components (oil, water and gas) multiphase flow [2]. 

They used Monte Carlo N-Particle version X (MCNPX) code to model the proposed detection 

system as well as three flow patterns of homogeneous, stratified and annular with different volume 

fractions. Their proposed detection system included 2 radioisotope sources and 3 NaI detectors. 

They implemented four Artificial Neural Networks (ANNs) for determining the type of flow 

regimes and the volume fractions. The recorded photon spectrum in the detector was used as the 

input of first ANN and flow pattern type was obtained as the output. Other 3 ANNs with input 

same as the first ANN and volume fractions of 2 components as the outputs, were employed to 

estimate the volume fractions of each recognized flow regime. In 2012, Arvoh et al., used gamma 

measurement combined with multivariate calibration techniques to carry out some experiments at 

a large scale multiphase flow test facility with the aim of predicting volume fractions and 

recognizing flow patterns of slug (stratified-wavy, annular and dispersed) in a three phase flow 

[1]. Their system included one barium-133 source with an activity of 1.1×108 Bq and a CnZnTd 

detector. In 2017, Roshani et al. proposed a method to recognize the flow patterns and predict 

volume fractions in a water-oil-gas multiphase system applying a dual energy fan-beam photon 

attenuation technique: the system included two radioisotopes of americium-241 and cesium-137 

and two sodium iodide detectors, combined with ANN [3]; the recorded counts under the photo 

peaks of 241Am and 137Cs in two detectors was defined as the inputs for the ANN while the flow 

pattern’s type was obtained as output. Using the above mentioned methodology, the authors 

succeeded to recognize all the flow patterns and also to determine volume fractions with mean 

absolute error of less than 5.68 %. Further researches in this field of study can be found in [4-20].  



In the cited studies, different hardware structures and software have been used in three phase flow 

meters: various radioisotopes and detectors with different kinds of algorithms and artificial 

intelligences have been presented in these years but the problems of working with RBMPFMs are 

still remaining. Systems with radioisotope sources have specific photon energy and cannot be 

switched off like X-ray machines; therefore there is a continuous radiation emission with stochastic 

effects and this causes reluctance to use this kind of meters in various industries.  

In this investigation, a fan-beam photon attenuation based system, including one X-ray tube and 

two sodium iodide crystal detectors, combined with GMDH neural network is proposed to 

recognize type of flow regime and predict water-oil-gas volume fractions of a three phase flow. 

In the present work one X-ray tube is utilized, while in all of the former studies one or some 

radioisotope sources were implemented in a radiation based three-phase flow meter to act as a 

photon emitter. It is important to highlight that X-ray tubes are of some advantages in comparison 

with radioisotope sources: for example the emitted photons have tunable energy, a much higher 

photon flux, an almost constant photon intensity over time and the possibility of turning on and 

off the photon emission etc. etc.  

In this paper, different regimes of three phase flow and presented metering system using X-ray 

tube are modeled using MCNPX code. The procedure of modelling is given in the “System 

modelling” subsection of “Methodology” section. Determining the appropriate architectures of 

Group Method of Data Handling (GMDH) networks is given in the “GMDH” subsection. Obtained 

results are presented in the “Results” section and finally, investigation of presented system and 

comparison between this work and other former studies are given in the “Discussion and Analysis” 

section. 

 

2. Methodology 

2.1. System modelling 

In the present work, Monte Carlo N-Particle code version X (MCNP-X) [21] has been used for 

physical modelling of the proposed measuring system. MCNPX code has the ability to consider 

three main photon interaction mechanisms with materials i.e photoelectron, Compton scattering, 

and pair production. This code has been widely implemented as a useful and powerful toolkit for 

modelling various radiation based systems. 



The proposed detection system in this study is composed of one X-ray tube as the photon emitter 

and two 2.54 mm x 2.54 mm sodium iodide crystal as the detectors. A Pyrex-glass pipe was also 

considered such that the various flow patterns and volume fractions are easily modelled inside it.  

To model the sodium iodide detector, a homogeneous cylinder with diameter and thickness of 

2.54 mm was considered. The first detector was positioned in front of the X-ray tube at a distance 

of 20 cm from that. The second one was positioned at the same distance from the X-ray tube but 

with an orientation of 15o respect to the connecting line of the tube and the first detector. Using 

tally type 8 (pulse-height tally), the energy spectra of transmitted photons were recorded in both 

detectors. To account for the photon spectrum broadening the FT8 Gaussian Energy Broadening 

(GEB) card in the MCNPX code’s input file was also utilized. The required inputs for the 

mentioned card were calculated in a previous work [22] for a sodium iodide crystal detector similar 

to the one used in this investigation (from point of view of dimensions as well as material). Tally 

energy card (E8) was defined in a way to separate the output into 100 bins (each bin is a fixed 

energy slot of 2 keV) with the aim of extracting transmitted photon’s energy spectrum. The 

simulated system and detectors’ position are schematically shown in Fig. 1. 

 



Fig. 1- The simulated detection system and locations of two detectors. 

In this investigation a conventional industrial X-ray tube was implemented as the X-ray radiation 

generator. Because photon tracking in MCNPX code takes less time compared to electron tracking, 

a photon source embedded in the shield of an X-ray tube was considered in this study instead of a 

cathode that emits electrons. TASMIC package presented by Hernandez et. al [23] was exploited 

for modelling the required photon source. A rectangular planner with width and length of 1 mm x 

10 mm and an inclination of 12o with respect to the connected line of source and detector was 

defined as the photon source, these dimensions were chosen in accordance with reference [23]. 

The MCNPX modelled energy spectrum of the photon source corresponded to an X-ray tube with 

200 kilovoltage peak (kVp) filtered by a 1 mm aluminium sheet. It is worth mentioning that 

filtering and removing low energy photons leads to a reduction in photon scattering. The photon 

source was placed within a cylinder that acts like an X-ray tube shield. 

As schematically shown in Fig. 2, three basic flow patterns of stratified, annular, and homogenous 

with different volume fractions were modelled in this investigation. Oil, gas, and water phases 

were substituted with gasoil, air, and water with densities of 0.826, 0.00125, and 1 g/cm3, 

respectively. In the case of stratified and annular flow patterns, different combinations of volume 

fractions were obtained by altering the portion of each phase. For homogeneous flow pattern, just 

one fluid (mixture of gasoil, air, and water) was considered inside the pipe. Different volume 

fractions were achieved by altering density of the mixture as well as the mass fraction of each 

component. Although the modelled homogenous flow pattern in this investigation is an ideal case 

and is slightly different from the real homogenous pattern that occurs in multiphase flows, this 

system is easy and suitable for simulation because of its symmetry; other researchers adopted this 

model to simulate the homogenous regime [2, 10, 24]. Different volume fractions in the range of 

10-80 % with steps of 10% were replicated for all of the three flow patterns. Thirty-six modelled 

combinations of gas, oil, and water volume fractions for each flow pattern are shown in Fig. 3 

which presents a graphical representation called ternary. This Plot is a barycentric plot on three 

variables which sum is a constant. In total 108 simulations were carried out in this study. 

https://en.wikipedia.org/wiki/Barycentric_coordinates_(mathematics)
https://en.wikipedia.org/wiki/Plot_(graphics)
https://en.wikipedia.org/wiki/Summation


 

Fig. 2- Modelled flow patterns: a) annular b) stratified c) homogenous. 

 

Fig. 3- Different modelled combinations of gas, oil, and water volume fractions. 

 

2.2. GMDH  
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Group Method of Data Handling (GMDH) is a kind of Artificial Neural Networks (ANN) which 

has been presented by Ivakhnenko [25]. Nowadays, different kinds of Artificial Neural Networks 

are implemented in order to solve various engineering problems [26-27]. The GMDH ANN which 

was used in this study is a strong tool in prediction, data mining, optimization and pattern 

recognition problems. The network structure consists of several layers, several neurons in each 

layer and inputs that are selected in a self-organized manner. The input-output relation in GMDH 

method is described by the Kolmogorov-Gabor polynomial as follow: 𝑦 = 𝑎0 + ∑ 𝑎𝑖𝑥𝑖 + ∑  𝑚𝑖=1 ∑ 𝑎𝑖𝑗𝑥𝑖𝑚𝑗=1𝑚𝑖=1 𝑥𝑗 + ∑  𝑚𝑖=1 ∑  ∑ 𝑎𝑖𝑗𝑘𝑥𝑖𝑥𝑗𝑥𝑘𝑚𝑘=1 + ⋯     𝑚𝑗=1        (1) 

    

In Kolmogorov-Gabor polynomial; y, x (x1, x2,…, xm) and a (a1, a2,…, am) are network output, 

input vector and coefficient vector, respectively. GMDH approach is very strong tool for modelling 

but only one output is allowed using it. Mathematical structure of GMDH approach and usage of 

Kolmogorov-Gabor polynomial are reasons of this fact. 

In the training procedure, new variables are generated from old variables. In this study, the output 

spectra of the two detectors were divided to 200 energy bins and these energy bins were fed to the 

GMDH neural networks as 200 independent variables. The system was modelled by  pluggin-in in 

equation 2 every pair of two independent variables. 𝑉 = 𝑐1 + 𝑐2𝑥𝑖 + 𝑐3𝑥𝑗 + 𝑐4𝑥𝑖2 + 𝑐5𝑥𝑗2 + 𝑐6𝑥𝑖𝑥𝑗             (2) 

The differences between real output and predicted one for all input variables was minimized by 

applying the regression techniques for computing the coefficients ci in (2). The combinations with 

higher error rates were removed and the outputs of other combinations were considered as new 

independent variables. This procedure was continued until one output with minimum error rate 

was found. Obviously the network structure has direct influence on the results and using this 

presented self-organization manner the appropriate architecture could be obtained. The low error 

in the training procedure shows the precision of the model but in order to check the validity of the 

model also a low yesy data error is required. To test the presented neural networks, the designed 

networks were evaluated using testing data. In this study about 70% (76 samples) and about 30% 

(32 samples) of data were used to train and test the neural networks, respectively. The low error 

of the obtained model during the testing procedure shows the goodness of the model and proves 

its efficiency. 



The above described GMDH was then used to recognize the regime of three phase flow and 

measure the volume fractions of each component implementing X-ray tube as radiation source. 

200 features were extracted from output spectra of both sodium iodide crystal detectors. The 

spectra were divided to 200 bins, from 0 to 200 keV with the 2 keV steps. These features were 

named Bin1 to Bin100 for first detector and Bin101 to Bin200 for second detector. The extracted 

features were considered as the inputs of GMDH neural networks. Three different networks with 

the aim of recognizing the flow pattern, predict the oil fraction and predict the gas fraction were 

designed. The architectures of the three presented GMDH networks were illustrated in Fig. 4. Each 

neuron was plotted by a circle and connection of neurons was illustrated by lines.   
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Fig. 4- The designed GMDH neural network’s architecture for a) Flow regime identification b) Gas 

fraction measurement  c) Oil fraction measurement 

 

The output polynomials of each hidden layer are tabulated in Table 1. This table indicates the 

output equation and coefficients of each neuron. 

Table 1- The output polynomials of each hidden layer for three presented GMDH models. 

GMDH neural network for flow regime identification 

The output equation of each neuron The coefficients of each equation 

Y1=C1+C2.Bin98+C3.Bin187+C4.Bin98
2

+C5Bin187
2+C6.Bin98.Bin187 

C=[ 2.35,-273.48,51.62,-5493.86,-328.46,2849.63] 

Y2=C1+C2.Bin181+C3.Bin187+C4.Bin181
2+C5Bin187

2+C6.Bin181.Bin187 

C=[ 5.99,-7.89,-60.92,1411.07,3957.90,-4555.22] 

Y3=C1+C2.Bin58+C3.Bin70+C4.Bin58
2+

C5Bin70
2+C6.Bin58.Bin70 

C=[ 6.28,50.09,-98.95,179.13,556.37,-622.66] 

(c) 



Y4=C1+C2.Bin60+C3.Bin90+C4.Bin60
2+

C5Bin90
2+C6.Bin60.Bin90 

C=[ 4.00,-51.43,291.91,138.65,3699.95,-1447.13] 

Regime=C1+C2.Y3+C3.Y4+C4.Y3
2+C5

Y4
2+C6.Y3.Y4 

C=[ -0.24,0.20,0.98,0.21,0.02,-0.28] 

GMDH neural network for gas fraction measurement 

The output equation of each neuron The coefficients of each equation 

Y1=C1+C2.Bin125+C3.Bin131+C4.Bin125
2+C5Bin131

2+C6.Bin125.Bin131 

C=[-80.68,169.00,-47.28,-934.88,-391.76,1203.24] 

Y2=C1+C2.Bin1+C3.Bin82+C4.Bin1
2+C

5Bin82
2+C6.Bin1.Bin82 

C=[-73.14,131.30,428.07,-1241.66,-905.56,2190.89] 

Y3=C1+C2.Bin149+C3.Bin150+C4.Bin149
2+C5Bin150

2+C6.Bin149.Bin150 

C=[-94.23,451.00,-231.96,5358.13,5983.81,-11408.36] 

W1=C1+C2.Y1+C3.Y2+C4.Y1
2+C5Y2

2+

C6.Y1.Y2 

C=[-3.00,0.34,0.78,0.02,0.02,-0.05] 

W2=C1+C2.Y2+C3.Y3+C4.Y2
2+C5Y3

2+

C6.Y2.Y3 

C=[-4.52,0.59,0.63,0.01,0.00, -0.02] 

Gas=C1+C2.W1+C3.W2+C4.W1
2+C5W

2
2+C6.W1.W2 

C=[-0.98,0.41,0.67,-0.02,-0.04,0.07] 

GMDH neural network for oil fraction measurement 

The output equation of each neuron The coefficients of each equation 

Y1=C1+C2.Bin121+C3.Bin150+C4.Bin121
2+C5Bin150

2+C6.Bin121.Bin150 

C=[78.91,802.53,-1614.06,-5.77,1429.72,-725.93] 

Y2=C1+C2.Bin15+C3.Bin43+C4.Bin15
2+

C5Bin43
2+C6.Bin15.Bin43 

C=[221.38,577.31,-929.78,183.03,793.21,-835.49] 

Y3=C1+C2.Bin20+C3.Bin43+C4.Bin20
2+

C5Bin43
2+C6.Bin20.Bin43 

C=[166.31,775.97,-1434.51,411.87,2041.99,-1898.94] 

W1=C1+C2.Y1+C3.Y2+C4.Y1
2+C5Y2

2+

C6.Y1.Y2 

C=[-2.31,0.70,0.42,-0.01,-0.00,0.02] 

W2=C1+C2.Y2+C3.Y3+C4.Y2
2+C5Y3

2+

C6.Y2.Y3 

C=[-1.72,0.43,0.71,-0.04,-0.05,0.09] 

Oil=C1+C2.W1+C3.W2+C4.W1
2+C5W2

2+C6.W1.W2 

C=[0.20,0.98,0.01,-0.02,-0.02,0.05] 

 

 

 

 

 

 

 



The process flow of this study is shown in Fig. 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5- The process of presented study 

It was mentioned previously that the Monte Carlo code MCNPX code was used to simulate the 

metering system and MATLAB software was used to implement the mathematical equations of 

GMDH models. 
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3. Results  

Figure 6 reports an example of recorded spectra from both detectors in a simulated anular regime 

with different volume fractions of oil-water-gas. Comparing the detectors, it can be seen that the 

spectrum intensity from the first detector as well as the discrepancy between spectra related to 

different volume fractions is higher than in the second one. Comparing Fig. 6(a) with Fig. 6(b) and 

with Fig. 6(c), it can be observed that discrepancy between spectra when gas volume fraction is 

kept fixed and liquid phases (oil or water) volume fractions are changed (Fig. 6(a)), is less than 

when liquid phases volume fractions are kept constant and gas volume fraction is changed (Fig. 

6(b) and Fig. 6(c)). In other words, the sensitivity of this system in distinguishing between gas 

phase and liquid phases is much higher than recognizing oil from water phase. The reason resides 

in the fact that the photon mass attenuation coefficients of oil and water phases are close to each 

other, while both values are are much higher compared to the coefficient for the gas phase.  



 

(a) 



 

(b) 



 

(c) 

Fig. 6- Recorded photon energy spectra in both detectors for annular regime: a) Gas volume fraction is 10 

%, water and oil volume fractions are in the range of 10-80 % b) Oil volume fraction is 10 %, water and 

gas volume fractions are in the range of 10-80 % c) Water volume fraction is 10 %, gas and oil volume 

fractions are in the range of 10-80 %. 



The difference between actual and predicted data as well as regression diagrams for training and 

testing data sets is shown in Figs. 7 and 8 to illustrate the performance of the implemented 

networks. Fig. 9 resumes the performance of the presented network in identifying the flow regime. 

The targets of GMDH model were 1 for annular regime, 2 for homogenous regime and 3 for 

stratified regime but it is clear that there is a small mismatch between outputs and targets. Hence 

at the end of GMDH model network outputs of less than 1.5, between 1.5 and 2.5 and higher than 

2.5 were defined to correspond respectively to a flow regime of annular, homogenous and 

stratified. Fig. 9 illustrates that all of the regimes have been determined correctly except one. In 

fact only one mistake occurred in 108 cases which shows the precision of presented network for 

flow regime identification. To evaluate the proposed networks, Root Mean Square Error (RMSE), 

Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE) were obtained 

according to equations 3, 4 and 5. RMSE and MAE results have been reported in Table 2. 

𝑅𝑀𝑆𝐸 =  [∑ (𝑋𝑗(𝑎𝑐𝑡𝑢𝑎𝑙)−𝑋𝑗(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑))2𝑁𝑗=1 𝑁 ]0.5                                            (3) 
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Fig. 7- Performance of GMDH neural network for measuring the gas fraction: a) training, b) testing 
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Fig. 8- Performance of GMDH neural network for measuring the oil fraction: a) training, b) testing 
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Fig. 9- Performance of GMDH neural network for recognizing flow pattern in both training and testing 

sets 

 

Table 2- Obtained errors of GMDH networks 

Output RMSE Train RMSE Test MAE Train MAE Test MAPE 

Train 

MAPE 

Test 

Gas Fraction 3.76 3.88 2.57 3.00 0.09 0.11 

oil Fraction 5.39 4.89 3.92 4.22 0.19 0.23 

 

4. Discussion and Analysis  

X-ray technology is now used in a wide variety of applications and settings. In this study, it was 

tried to use X-ray technology in another way. Regime identification and volume fraction 

measurement were obtained using combination of X-ray attenuation technique and Artificial 

Intelligence. In fact, the changes in volume fractions and flow patterns were related to output 
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spectrum of detectors using X-ray attenuation technique. This relation was obtained using AI and 

consequently a novel measuring system was presented. 

The following Table 3 presents a comparison between the current investigation and other former 

studies. 

 

Table 3- Comparison between current investigation and former studies 

Refe

renc

e 

Flow 

regime 

Numb
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Feature 

Extractio

n 
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Regi

me 

Dete

ction 

Volu

me 

Fract

ion 

Meas

urem

ent 

Type 

of 

Networ

k 

MRE

% 

Train 

MA

E 

Train 

RMS

E 

Train 

MRE

% 

Test 

MA

E 

Test 

RMS

E 

Test 

[2] Three 

Phase 
(Annular, 

Stratified 

and 

Homogeno

us) 

2 Whole 

Spectru

m as 

Input 

Cs-137 & Am-

241 

  MLP 3.5 - - 3.5 - - 

[28] Three 

Phase 

(Stratifie

d) 

1 Full 

energy 

Peaks 

Cs-137 & Eu-

152 

-  Jaya- 

ANFI

S 

0.40 - 0.39 1.31 - 0.56 

[29] Three 

Phase 

(Annular

) 

1 Full 

Energy 

Peaks 

Cs-137& Eu-

152 

-  ANFI

S 

0.34 - - 2.73 - - 

[30] Three 

Phase 

(Annular

) 

1 Full 

Energy 

Peaks 

(Am-241&Cs-

137), (Co-

60&Cs-137), 

(Ba-133&Cs-

137), (Ba-

133&Am-241), 

(Am-241&Co-

60) and (Ba-

133&Co-60) 

-  Jaya-

MLP 

0.47 - 0.00 0.97 - 0.23 

[31] Three 

Phase 
(stratified ) 

1 Whole 

Spectru

m as 

Input 

Cs-137 -  MLP 6.47 - 1.6 6.47 - 1.6 

[32] Three 

Phase 
(stratified ) 

1 Whole 

Spectru

m as 

Input 

Co-60 -  MLP 4.64 - 1.49 4.64 - 1.49 

[33] Three 

Phase 
(stratified ) 

1 Whole 

Spectru

m as 

Input 

Cs-137 -  MLP 7.08 - 2.48 7.08 - 2.48 

Thi

s 

stud

y 

Three 

Phase 
(Annular, 

Stratified 

and 

2 Whole 

Spectru

m as 

Input 

X-Ray Tube   GMD

H 

- 3.92 5.39 - 4.22 4.89 



Homogeno

us) 

 

As it appears from Table 3, various radioisotope sources in the form of single or dual energy 

emitters such as Cs-137, Co-60, (Am-241&Cs-137), (Co-60&Cs-137), (Ba-133&Cs-137), (Ba-

133&Am-241), (Am-241&Co-60), (Ba-133&Co-60) and (Cs-137 & Eu-152) have been used so 

far in three phase flow measuring. In the presented system, radioisotope sources were replaced by 

an X-ray tube which has several advantages in comparison with radioisotope sources. Radioisotope 

sources cannot be switched off like X-ray machines; therefore there is continuous radiation dose 

in specific area. Consequently, there is reluctance to use this kind of meters in various industries. 

Tunable energy for emitted photons, much higher photon flux, constant photon intensity over time 

and etc are some of the other benefits of an X-ray tube. Combination of X-ray tube, GMDH 

network and two scintillation detectors is a powerful tool in three phase flows which helps in 

determining the flow regime and metering the volume fractions simultaneously. Generally 

speaking the presented system is robust on recognition and prediction because the applied artificial 

intelligence, with low testing set error, offers the possibility of interpolation. The proposed method 

is stable also because the source, detectors and computational process are stable. Although the 

precision of presented system is high it could be improved using different techniques: optimizing 

the voltage of X-ray tube, optimizing the applied artificial intelligence and usage of optimized 

feature extraction method can improve the precision of this presented system. These topics are the 

basis for further researches.  

 

5. Conclusions   

In this paper, applicability of X-ray tube combined with GMDH neural network as a strong 

metering device in three phase flows, was investigated. GMDH was implemented to recognize the 

regime of three phase flow and measure the volume fraction of each component using X-ray tube 

as radiation source. Two transmitted detectors, a pipe, three different regimes with various volume 

fractions of oil, water, and gas, X-ray tube and other details were simulated using MCNPX code. 

The networks were simulated using MATLAB software. 200 features were extracted from output 

spectra of both sodium iodide crystal detectors. The spectra were divided to 200 bins which were 

regarded as the GMDH neural network’s inputs. Three different networks were designed with the 

aim of recognizing the flow pattern, predicting the oil fraction and predicting the gas fraction. Only 



one mistake occurred in 108 tests which indicates the precision of the proposed network for flow 

regime identification. The maximum MAE of this network for predicting the volume fractions was 

4.22 which shows the precision of presented system. The system with radioisotope sources cannot 

be switched off like a system with X-ray tube; therefore there is continuous radiation emission and 

this creates reluctance in various industries that limits its use. Hence by replacing the radioisotope 

source with an X-ray tube some safety and regulatory concerns are removed and this should benefit 

the acceptance of these multiphase flows meters. Tunable energy for emitted photons, much higher 

photon flux, constant photon intensity over time and etc. are some of other benefits of the presented 

system.  

 

Appendix A: Simulated and Predicted Data 

The comparison of simulated and estimated values of gas and oil volume fraction percentages for 

testing data samples were tabulated in Table A1. 

 

Table A1 – Comparison of simulated and predicted values of gas and oil volume fraction 

percentages for testing data samples 

Data 

number 

Simulated 

gas volume 

fraction 

Predicted gas 

volume fraction 

percentages 

using GMDH 

Absolute error 

between 

simulated and 

predicted gas 

volume 

fractions 

Simulated 

oil volume 

fraction 

 

Predicted oil 

volume fraction 

percentages 

using GMDH 

Absolute error 

between 

simulated and 

predicted oil 

volume 

fractions 

1 50 41.97 8.02 70 65.44 4.55 

2 60 62.21 2.21 20 14.71 5.28 

3 30 28.27 1.72 30 26.83 3.16 

4 30 30.94 0.94 10 17.73 7.73 

5 40 42.89 2.89 10 13.90 3.90 

6 10 10.04 0.04 10 3.94 6.05 

7 20 18.67 1.32 50 42.39 7.60 

8 10 2.73 7.26 40 31.06 8.93 

9 10 11.20 1.20 80 75.27 4.72 

10 80 69.09 10.90 40 32.70 7.29 

11 60 56.80 3.19 10 16.38 6.38 

12 10 8.10 1.89 10 17.50 7.50 

13 20 19.01 0.98 30 33.57 3.57 

14 50 45.61 4.38 80 77.88 2.11 

15 70 68.99 1.00 20 19.14 0.85 

16 50 49.70 0.29 30 29.99 0.00 

17 70 62.86 7.13 20 23.35 3.35 



18 10 13.45 3.45 30 31.95 1.95 

19 20 24.74 4.74 30 32.28 2.28 

20 60 58.90 1.09 10 13.14 3.14 

21 10 9.09 0.90 70 65.72 4.27 

22 20 19.43 0.56 20 17.78 2.21 

23 80 77.26 2.73 20 22.05 2.05 

24 60 54.23 5.76 30 24.31 5.68 

25 30 31.99 1.99 60 61.53 1.53 

26 10 8.63 1.36 10 18.72 8.72 

27 30 33.11 3.11 60 53.98 6.01 

28 40 37.47 2.52 40 39.30 0.69 

29 20 24.07 4.07 70 70.41 0.41 

30 60 57.08 2.91 10 15.96 5.96 

31 20 16.74 3.25 30 27.31 2.68 

32 10 7.67 2.32 10 14.34 4.34 
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