

DEPARTMENT OF ENGINEERING MANAGEMENT

A demand-responsive feeder service with mandatory and

optional, clustered bus-stops

Bryan David Galarza Montenegro, Kenneth Sörensen & Pieter Vansteenwegen

UNIVERSITY OF ANTWERP
Faculty of Business and Economics
City Campus

Prinsstraat 13, B.226

B-2000 Antwerp

Tel. +32 (0)3 265 40 32

www.uantwerpen.be

http://www.uantwerpen.be/

FACULTY OF BUSINESS AND ECONOMICS

DEPARTMENT OF ENGINEERING MANAGEMENT

A demand-responsive feeder service with mandatory and

optional, clustered bus-stops

Bryan David Galarza Montenegro, Kenneth Sörensen & Pieter Vansteenwegen

RESEARCH PAPER 2020-006
NOVEMBER 2020

University of Antwerp, City Campus, Prinsstraat 13, B-2000 Antwerp, Belgium

Research Administration – room B.226

phone: (32) 3 265 40 32

e-mail: joeri.nys@uantwerpen.be

The research papers from the Faculty of Business and Economics

are also available at www.repec.org

(Research Papers in Economics - RePEc)

D/2020/1169/006

mailto:joeri.nys@uantwerpen.be
http://www.repec.org/

A demand-responsive feeder service with mandatory and

optional, clustered bus-stops

Bryan David Galarza Montenegro∗,1, Kenneth Sörensen1, and Pieter Vansteenwegen2

1ANT/OR - Operations Research Group,
Department of Engineering Management, University of Antwerp

2Mobility Research Centre - CIB, KU Leuven
∗Corresponding author:

bryan.galarzamontenegro@uantwerpen.be (B.D. Galarza Montenegro)
Prinsstraat 13, 2000 Antwerp, Belgium

November 14, 2020

Abstract

With the rise of smart cities in the near future, it will be possible to collect relevant
data from passengers in order to improve the quality of transport services. In this paper,
a mathematical model and algorithm are developed to plan the trips of the buses in a
demand-responsive feeder service. A feeder service transports passengers from a low-
demand area, like a sub-urban area, to a transportation hub, like a city center. The
feeder service modeled in this paper considers two sets of bus stops: mandatory stops
and optional stops. Mandatory stops are always visited by a bus, while optional stops
are only visited when a client nearby makes a request for transportation. Passengers
are assigned to a bus stop within walking distance. This in turn, gives the service
both flexibility through the changing timetables and routes of the buses and some
predictability due to the mandatory stops. To optimize the performance of the service,
mathematical modeling techniques to improve the model’s runtime are developed. It
is concluded that a combination of column generation and the separation of sub-tour
elimination constraints decreases the computing time of small and midsize instances
significantly.

Keywords: flexible bus services; on-demand transportation; feeder service; demand-
responsive transportation; combinatorial optimization; column generation

1 Introduction

Mobility is essential for the growth of a society as it enables accessibility to opportunities,
social networks, goods and services. Local public transport contributes greatly to urban
mobility. Over 57.6 billion public transport journeys were recorded in the European Union
in 2014, where 55.7% of these journeys were road-based services [1]. An adequate public
transport service is thus essential and can reduce social exclusion and poverty [2]. Over the
past few decades, mobility has increased substantially across many European cities. How-
ever, this has also resulted in an increase in congestion and pollution due to the preference
for private transport over the collective use of public transport ([3], [4]), underlying the

need to increase the attractiveness of public transport.

To become more market-oriented and competitive, the service quality of public transport
needs to improve, which can only be achieved through a clear understanding of travel behav-
ior, consumer needs and expectations [5]. Research has shown that reliability is a decisive
factor. Rather than waiting time, the uncertainty of when transport will arrive is of most
importance. Attributes such as frequency, comfort and arrival time at the destination are
also highly valued by consumers. These attributes are key elements of consumer satisfaction
([6], [7]). Other attributes may also have a positive effect on satisfaction and can represent
great potential for improvement. For instance, service providers should make clear and
simple information available to the public ([5], [8]).

In the future, most of the aforementioned issues regarding public transportation can be ad-
dressed. This is possible considering the rise of smart cities. A smart city is an innovative
city that uses information and communication technologies and other means to increase
the effectiveness of urban management and services, and consequently improve the living
standards of its citizens [9]. In a smart city scenario, it will be possible to collect real-time
data concerning the potential passengers, like their requested arrival time and their current
location etc. Service providers will also be able to communicate bus arrival times and other
information in real-time to their passengers and drivers through web or mobile interfaces as
well as through displays on-site. This will create a two-way communication system between
the passenger and the service providers, which offers a number of opportunities to improve
the latter’s service quality.

Traditional transport services (TTS) are composed of a set of lines that follow predefined
routes and timetables. One crucial advantage of TTS is their low operational costs, arising
from their ability to transport large groups of passengers collectively. Furthermore, TTS
are efficient in high demand areas as they can sufficiently meet the constant demand of
all passengers without requiring routes or timetables to be customized ([10], [11]). The
predictable nature of TTS due to fixed timetables makes them highly accessible to most
commuters. However, the inflexibility of TTS can also be viewed as a limitation, since
it renders TTS inadequate in settings where demand for transportation is sparse and/or
constantly changing. Furthermore, traditional bus services are developed using historical,
aggregate data and therefore might not cater to the requirements caused by less predictable,
ever-changing and more geographically and temporally dispersed travel patterns of citizens
today [12]. As such, service providers are unable to effectively handle this demand with
their current capabilities and resources. One of the consequences is that passengers utiliz-
ing TTS frequently experience long travel times which may result in frustration and client
dissatisfaction.

Due to the limitations of TTS, on-demand transportation services (ODTS) are popping up
to deal with this volatile demand for transportation. On the one hand, ODTS operate only
when there is demand for transportation and are thus better equipped to meet the passen-
ger’s expectations [13]. On the other hand, ODTS are often quite expensive and are not
applicable on a large scale due the high complexity of scheduling the passenger’s requests
for a ride and the routing of the vehicles. These services also do not offer a solution to deal
with unknown demand for transportation, i.e., passengers that do not request a ride because
they are unfamiliar with the service, but could still benefit from such a ride. There seems

2

to be a window of opportunity for public transport services that combine characteristics of
both TTS and ODTS.

This research will focus on developing an optimization model for a demand-responsive feeder
service (DRFS), integrating the positive characteristics of TTS as well as those of ODTS.
A feeder service is defined as a service that transports passengers, from typically sparsely
populated areas, to areas with a high demand for transportation, where the passengers can
continue their journey. All passengers will thus have the same destination, but different
origins. The DRFS can have one or multiple bus lines and each bus line serves two sets of
bus-stops: mandatory stops and (clustered) optional stops. The mandatory stops need to
be visited by each bus serving a certain line. The optional stops are only visited by a bus
when a client, with origin within walking distance of this stop, needs to be picked-up. The
service therefore assumes that users can order a ride on the bus line, like e.g., in a taxi.
This implies that the buses can have different routes and different timetables according to
the demand, while there is still a factor of predictability due to the mandatory stops. The
mandatory stops serve as a safety-net for the unknown demand, as potential passengers
may simply take the bus at one of the mandatory stops, even without making a formal
request for transportation.

In the DRFS, potential passengers make a request for transportation to the transportation
hub, by stating their current location and their latest arrival time. We assume that all
requests for transportation are known before the start of the first bus. It is further assumed
that each line can be optimized separately so only a single line is considered.

In conclusion, this paper proposes a new type of bus service. To optimize the performance
of the service, a Mixed Integer Problem (MIP) is developed. However, it was found that the
model could not be solved within a reasonable time for large, realistic instances. Therefore,
to shorten the runtimes, two techniques are implemented: separation of sub-tour elimina-
tion constraints (SSEC) and column generation (CG).

In the next section, a literature review on public transport services is presented. In Section
3, the optimization model related to the DRFS and a mathematical model are presented.
In Section 4, three different approaches to optimize the operation of the feeder service are
presented. Section 5 discusses the results for several instances, obtained by optimizing
the service. In the last section, conclusions are drawn and plans for future research are
discussed.

2 Literature Review

The planning of traditional transport services (TTS) happens in several stages, in which
many strategical, tactical and operational decisions are taken ([14], [15]). Figure 1 illustrates
this process. Clearly, the decisions in earlier stages influence the decisions in the next stages.
Long-term, strategical decisions are taken in stage 1. This stage deals with the design of the
infrastructure where, for example, the bus stop locations are defined and the type of vehicles
is determined. Tactical, mid-term decisions are taken in stage 2 and stage 3. In stage 2, line
planning and frequency setting are determined. Line planning consists of defining bus lines
such that a given demand for transportation is satisfied. A bus line is a sequence of bus

3

stops that is operated by a fleet of buses. Much research has been devoted to line planning,
an extensive overview is given by Schöbel [16], and Iliopoulou et al. [17] review applications
of meta-heuristics for line planning problems. Frequency setting determines how many
buses drive along each line during a certain amount of time. In stage 3, the exact arrival
times of the buses at every bus stop of the bus line are determined [10]. Decisions on an
operational level are made in stage 4 and stage 5. In stage 4, vehicle scheduling defines
the assignment of vehicles to bus lines in such a way that all planned trips can be fulfilled.
In stage 5, duty scheduling defines the assignments of drivers to vehicles. Finally, in stage
6, real time control deals with any unpredictability during operation, like traffic jams or
strikes for example. These stages are increasingly integrated and jointly optimized over
the years, in order to improve the global planning as a whole. Timetabling and vehicle
scheduling have been integrated by Carosi et al. [18] and solved with a meta-heuristic, for
example. Schöbel[19], on the other hand, develops an eigenmodel to optimize line planning,
timetabling and vehicle scheduling together.

Infrastructure
planning

Duty
scheduling

Vehicle
scheduling

TimetablingLine planning
Frequency setting

Real time
control

Stage
1

Stage
2

Stage
3

Stage
4

Stage
6

Stage
5

Strategical Operational Tactical

Figure 1: Planning in TTS

The popularity of on-demand transport services (ODTS) has been rising over the years,
with several services and models being developed in the last decades. Dynamic ride-sharing
services aim to bring together travelers with similar itineraries and time schedules. Agatz
[20] gives a review on different operations research models that have been developed in the
literature. Classic on-demand services are ordered through a phone call. The dial-a-ride
problem (DARP) is a prime example of an optimization model for such services. In the
DARP, vehicle routes need to be defined in order to pick-up and drop-off a number of pas-
sengers, with the objective to minimize the total cost of transportation. Generally speaking,
pick-ups and drop-offs can take place anywhere in the route, i.e., door-to-door service, and
each pick-up or drop-off has a time window. An extensive overview of the many variants
of the DARP are given by Molenbruch et al. [21]. ODTS also consist of services that are
not meant for public transport, for example the school bus routing problem (SBRP). Here,
a list of possible bus stops is given as well as a certain number of buses. Each student is
assigned to one bus stop and one bus. The objective is to transport students to school while
optimizing the bus routes that visit the assigned bus stops [22]. The SBRP can be seen as
a vehicle routing problem with stop assignment, which adds an extra layer of complexity to
the problem. In the literature, additional constraints are often considered as well, such as
bus route scheduling or school bell adjustment. The former specifically considers time win-
dows for arriving at schools and the latter considers the start time or end time of the school.

Services that combine some characteristics of ODTS and TTS have been gaining attention.
A large variety of such services exists. For example, passengers can be picked up either from
their homes or from serviced bus stops, and routes can be either partially or completely
fixed. In some cases, one vehicle is available to serve a dedicated low demand area to bring
the passengers to a terminal stop of the fixed-route public transport service [23]. In the

4

USA, such services have been successfully implemented in recent years [24]. A relevant
example of a service that integrates characteristics from TTS and ODTS is the Mobility
Allowance Shuttle Transit (MAST) service [25]. In this service, vehicles have a fixed set
of bus stops they always need to visit, i.e., a fixed path, and these stops also have fixed
timetables. However, the vehicles may deviate from the fixed path. The customers that are
served outside of the fixed path are served at their desired location and need to be within
a certain radius from the fixed path in a so-called “zone”. This service combines the high
flexibility of door-to-door services with a fixed main route. This concept has been applied
to feeder services as well [26]. Another type of feeder service with flexible characteristics is
the so-called demand responsive connector (DRC). In the DRC, buses transport passengers
from their origin location to transfer hubs within a pre-defined service area ([27], [28]). In
“customized bus” services, the planning of the service is an iterative and interactive pro-
cess strongly involving the potential passengers. Stops, lines, timetables, etc., are proposed
by an operator and then modified until passengers are satisfied [29]. In “variable-type”
services, a classical service operates during peak hours and an on-demand service, where
skipping fixed routes or portions of a fixed route is possible, operates during low-demand pe-
riods [30]. In the ‘variable-type” or “customized bus” services, the service provider decides
beforehand where, when and how a bus will respond to customer requests. Both services
ignore additional information and communication possibilities that are present in a smart
city. Fu et al. [31] implement a real-time scheduling model with dynamic stop skipping.
This model limits itself to optimizing the schedule of the vehicles just before departure
from the depot. The DRFS developed in this paper operates in the same way as Fu et al.
[31]. The routing and the schedules of the buses together with the bus stop assignment are
optimized a certain amount of time before the departure of the first bus.

Services with flexible characteristics, like MAST, the “variable-type” services and the “cus-
tomized bus”, have more success in low demand areas with a sparse population, while TTS
services on the other hand thrive in high-demand and densely populated areas. When and
where to use which service is further discussed by Li [11]. Furthermore, research has sug-
gested that an appropriate integration of these services could enhance mobility and increase
the use and efficiency of public transport [32].

The DRFS, which is presented in this research, resembles the SBRP and the MAST the
most. Just as in the SBRP, the location of the bus stops are predefined and all passengers
have the same destination. In the SBRP, however, all passengers in a single bus have the
same desired arrival time whereas in the DRFS the desired arrival times differ per passenger.
Just as in MAST services, the DRFS has a fixed route where it can deviate from. The main
difference is that MAST services provide a door-to-door service to some customers within a
certain radius, while the DRFS groups passengers in a number of bus stops. The schedules
for the fixed route are also predefined in MAST services, limiting the time they can devote
to deviating from the main route to provide the door-to-door service. This is not the case
for the DRFS. In contrast to the DRFS, most MAST optimization models do not consider
the capacity of the buses and not all passengers have the same destination.

5

3 Problem description

In this section, the demand-responsive feeder service (DRFS) is described in detail. First,
the feeder service is explained and the setting of the problem is determined. Next, an
optimization model is defined in more formal terms. Finally, a mathematical model of the
optimization problem is presented.

3.1 Description of the demand-responsive feeder service

The feeder service is situated in a residential area, or in general, an area with low demand
for transportation. The bus lines of this service are designated shuttle buses that bring the
inhabitants of this residential area to transportation hubs or to a nearby city center, i.e.,
the destination for all passengers is the same. Since all bus lines in such a feeder service
are independent, a single bus line is considered, operated by a fleet of vehicles. The set of
bus stops S of the bus line consists of: a set of N mandatory stops F = {m0,m1, . . .mN−1}
and a set of optional stops O = {o0,0, o0,1, . . . , oM−2,KM−2

, oM−1,KM−1
}. The mandatory

and optional stops of a single bus line are illustrated in Figure 2.

m0

m1

m2

mi

mN-2

mN-1

c0

c1

cM-2

cM-1

o0,0 o0,1o0,3

o0,4 o0,5

o0,2

o1,0

o1,1o1,2

oM-2,0

oM-2,2

oM-2,1

oM-2,3

oM-1,1

oM-1,0

oM-1,2

oM-1,3

oM-1,4
Cluster of

optional stops

Mandatory stops

Cluster of
optional stops

Cluster of
optional stops

Cluster of
optional stops

Figure 2: Bus stop structure of the demand-responsive feeder service

The mandatory stops need to be visited by each bus from the line. Mandatory stops can,
for example, be placed along some highway or main road. The optional stops are grouped
into different clusters. Typically, the optional stops in a cluster will be relatively close to
each other and scattered across a small town or neighborhood close to the main road on
which the mandatory stops are located. There are M ≤ N − 1 clusters and each cluster ck
has Kk stops. The number of stops in each cluster can vary from cluster to cluster. This

implies that there are |S|= N+
M−1∑
k=0

Kk bus stops in a bus line with N mandatory stops and

M clusters. There can be at most one cluster between two mandatory stops. An optional
stop can be written as ok,l, where k is the index of the cluster and l is the index of the stop

6

within the cluster ck.

The buses always start at the first mandatory stop m0 and end at last mandatory stop
mN−1. The buses visit the mandatory stops in the sequence of their index, i.e., a bus can-
not visit stop mi before visiting stop mi−1. A bus route can deviate from the route along
the mandatory stops and visit some optional stops in a cluster. From a cluster, the bus can
drive to the next mandatory stop, to an optional stop in the same cluster, or to an optional
stop in a neighboring cluster. The main restriction is that all mandatory stops have to be
visited. The set of buses is labeled B.

It is assumed that a travel matrix is given, containing the travel times between each pair
of bus stops, as well as a walking time matrix, containing the walking times between each
passenger’s origin location and all bus stops within walking distance. Furthermore, a dwell
time coefficient, a deceleration time and a acceleration time are given as well. The decel-
eration and acceleration parameters are the amount of time a bus loses by slowing down
to stop at a bus stop and speeding up to leave a bus stop respectively. The dwell time
coefficient is the amount of time a bus loses by picking up a single passenger at a bus stop,
i.e., if more passengers board the bus in the same bus stop, the dwell time at that bus
stop increases. Lastly, the capacity of the buses C is given as well. The total number of
passengers requesting a ride during the operating horizon is |P |.

A passenger makes a request for a ride via a website, or a mobile application. The passengers
state their origin location and desired arrival time at the destination mN−1. This can, in
theory, happen until the first bus of the fleet is dispatched from the depot. After all requests
are received, the route of each bus is optimized for the whole trajectory and the passengers
are notified regarding the departure time of their bus and which bus stop they should go
to for their journey. The return trips from the transportation hub to the different stops are
not explicitly considered in this paper, but it is easy to see that they result in the same
optimization problem.

3.2 Optimization model

Different interdependent decisions need to be made in the DRFS optimization problem. All
passengers need to be assigned to an departure bus stop, taking into account the walking
time matrix. Consequently, each passenger also needs to be assigned to a bus that will bring
him or her to the destination on time. The routing of each bus needs to be determined based
on the optional bus stops that are assigned to passengers and that are selected for each bus.
Furthermore, the departure time of each bus at the depot needs to be determined. This
departure time will then determine the departure time at each bus stop. All these decisions
are intertwined and affect one another. This problem can be viewed as an integration of a
routing problem, an assignment problem, and a timetabling problem.

These decisions are also subject to a number of restrictions. First, the buses can have dif-
ferent routes according to the demand for transportation but all mandatory stops need to
be visited by each bus. Secondly, the capacity of the buses is limited; no more passengers
can be accepted in a bus if this capacity is reached. Thirdly, the passengers are not allowed
to walk longer than a certain amount of time from their origin location to their assigned
departure bus stop. Fourth, given that the requests of the passengers are known before

7

the optimization process starts, it is assumed that all requests need to be served. As a last
restriction, all passengers need to arrive within a certain time window. This means each pas-
senger cannot arrive a certain amount of time earlier or later than his desired arrival time.
Arriving too early or too late is not allowed and arriving earlier or later than the desired
arrival time is penalized in the objective function. The arrival times of the passengers are
thus part of both the constraints and the objective function. This last restriction ensures
that the bus arrives at the destination before the latest and after the earliest desired arrival
times of all passengers onboard. It needs to be noted, however, that due to the arrival time
constraints, the problem can become infeasible if the desired arrival times are spread out in
time too much and not enough buses are available.

The objective of this problem is to optimize the service quality of the feeder service. This
is modeled by minimizing a weighted sum of three factors. Firstly, the travel time for all
buses is minimized. Shorter travel times for the buses will reduce the operating costs and
imply shorter ride times for the passengers and thus improve the service quality. Secondly,
the total walking time from the origin location of each passenger to the departure bus stop
needs to be as low as possible. Thirdly, the absolute time difference between the desired
arrival time and the actual arrival time at the destination, of each passenger, needs to be
as close to zero as possible. The weights of this sum can be determined depending on the
situation and on the preferences of the service provider.

The waiting time between the arrival of the passengers at their departure bus stop and the
scheduled departure time of the bus at that bus stop is not considered. In this model, it
is assumed that there are no significant delays and that the passengers will make a request
beforehand. This means passengers can plan to arrive at the bus stop on time without
incurring longer waiting times. Furthermore, the travel time of each bus is chosen over the
travel time of each passenger. This is done in order to optimize the routes of the buses rather
than the onboard time of each passenger individually. Optimal bus routes, however, also
imply shorter travel times for passengers onboard. As discussed in Section 1, the onboard
times are typically less important to customers compared to the reliability of the service
and arrival time at their destination. Service reliability is inherently part of this service as
it deals with passenger requests and a timely arrival at the destination is covered by the
third component of the objective function.

3.3 Mathematical Model

For the sake of clarity, the notations of the different sets, parameters and decision variables
are listed in Table 1.
The objective z of the mixed integer programming model is to minimize a weighted sum of
three terms related to the service quality. The parameters c1, c2 and c3 are weights given
to these terms and can be determined by the user. The first term (2) calculates the travel
time of each bus. It includes the acceleration and deceleration times of the buses when
they leave a bus stop and when they stop at a bus stop respectively. The dwell time of the
buses at a bus stop is also taken into account and is dependent on the number of passengers
that are picked up at the stop. The second term (3) minimizes the walking time of each
passenger from their origin location to their assigned departure bus stop. The last term (4)
is the time each passenger will arrive at the destination before or after his or her desired
arrival time.

8

Sets

B Set of buses
S Set of all bus stops
O Set of optional bus stops
F Set of mandatory bus stops
P Set of passengers using the service during the optimization horizon

Parameters

Kk Number of optional bus stops in cluster k
M Number of clusters
ttij Travel time from bus stop i ∈ S to bus stop j ∈ S
τ Dwell time per passenger boarding
wtpi Walking time of passenger p ∈ P to departure bus stop i ∈ S
datp Desired arrival time of passenger p ∈ P at the destination bus stop mN−1
δ Average acceleration and deceleration time of a bus
dw Maximum value for individual walking time
dlate Maximum value for arriving late
dearly Maximum value for arriving early
C Capacity of the buses
c1 Relative weight given to the travel time of the buses
c2 Relative weight given to the walking time of the passengers

c3
Relative weight given to the absolute difference in desired and actual
arrival time of the passengers

M0,1 Large natural numbers for the Big M constraints

Decision Variables

xbij
0-1 variables determining if bus b ∈ B visits bus stop j ∈ S
after visiting bus stop i ∈ S

ypbi
0-1 assignment variables which assume value 1 if passenger p ∈ P
is assigned to bus b ∈ B, with departure bus stop i ∈ S

ap Arrival time of passenger p ∈ P in destination bus stop mN−1
Db Departure time of bus b ∈ B at the first mandatory bus stop m0

lap ap − datp when passenger p ∈ P is late
eap datp − ap when passenger p ∈ P is early

Table 1: Notation for the MIP

9

Min (1)

z = c1

∑
b∈B

∑
i∈S

∑
j∈S

(ttij + δ)xbij + τ
∑
p∈P

ypbi

 (2)

+ c2

∑
b∈B

∑
i∈S

∑
p∈P

wtpiypbi

 (3)

+ c3

∑
p∈P

(lap + eap)

 (4)

The first group of constraints deals with the routing of the buses. Constraints (i) ensure
that, for optional bus stops, at most one arc enters or leaves any stop. Constraints (ii)
ensure that, for each mandatory stop, exactly one arc enters or leaves. If an arc enters
the stop, there must be an arc leaving the stop and vice versa (iii). The only exceptions
are m0, where exactly one arc leaves and none enter, and mN−1, where exactly one arc
enters and none leave. Constraints (iv) and constraints (v) ensure that no bus ever has
stop m0 as a successor or stop mN−1 as a predecessor. Constraints (vi) prevent buses
from returning to the same bus stop they have left from. Constraints (vii) are sub-tour
elimination constraints.

∑
j∈S

xbij ≤ 1 ∀ i ∈ O, b ∈ B (i)

∑
j∈S

xbij = 1 ∀ i ∈ F, b ∈ B (ii)

∑
l∈S

xbil =
∑
l∈S

xbli ∀ i ∈ S0,N−1, b ∈ B (iii)∑
i∈S

xbi0 = 0 ∀ b ∈ B (iv)∑
i∈S

xbN−1i = 0 ∀ b ∈ B (v)

xbii = 0 ∀ b ∈ B, i ∈ S (vi)∑
i∈St

∑
j∈St

xbij ≤ |St|−1 ∀ St ⊂ S, St 6= ∅, b ∈ B (vii)

A second group of constraints deals with capacities or threshold values. Constraints (viii)
ensure that no passenger needs to walk more than a predefined maximum value dw. Con-
straints (ix) regulate the number of passengers on each bus, so that buses cannot transport
more passengers than a given capacity. Constraints (x) and (xi) ensure that all passengers
arrive within the time window [datp − dearly, datp + dlate].

10

∑
b∈B

∑
i∈S

wtpiypbi ≤ dw ∀ p ∈ P (viii)∑
p∈P

∑
j∈S

ypbi ≤ C ∀ b ∈ B (ix)

lap ≤ dlate ∀ p ∈ P (x)

eap ≤ dearly ∀ p ∈ P (xi)

Constraint (xii) defines the variables eap and lap as positive deviations between the actual
arrival ap time and the desired arrival time datp of the passengers. Given the objective
function, one of the two variables lap or eap will be zero for each passenger p in the optimal
solution.

datp − ap + lap − eap = 0 ∀ p ∈ P (xii)

Constraints (xiii) and (xiv) define the variable ap, the arrival time of a passenger p at
the destination. These constraints are big M constraints that link the passengers to the
buses. Constraints (xiii) define ap, in case the passenger arrives late or just on time, i.e.,
if ap − datp ≥ 0. Constraints (xiv) define ap, in the case the passenger arrives early, i.e., if
ap − datp < 0. Constraints (xv) are big M constraints that link the y and x variables. A
passenger with a certain departure bus stop i is only assigned to a bus that visits bus stop
i. This constraint is only valid for the optional stops since the mandatory stops are always
visited. If these stops were included in this constraint, it would always assign some people
to the mandatory stops.

ap −
∑
i∈S

∑
j∈S

(ttij + δ)xbij + τ
∑
c∈P

ycbi

−Db ∀ b ∈ B, p ∈ P (xiii)

≤
(

1−
∑
i∈S

ypbi

)
M0

∑
i∈S

∑
j∈S

(ttij + δ)xbij + τ
∑
c∈P

ycbi

+Db − ap ∀ b ∈ B, p ∈ P (xiv)

<

(
1−

∑
i∈S

ypbi

)
M0∑

p∈P
ypbi ≤M1

∑
l∈S

xbil ∀ i ∈ O, b ∈ B (xv)

Lastly, a set of constraints ensures that every passenger is assigned to exactly one bus and
one departure bus stop.∑
b∈B

∑
i∈S

ypbi = 1 ∀ p ∈ P (xvi)

11

The remaining constraints determine the domains of the variables.

ypbi ∈ [0, 1] ∀ b ∈ B, b ∈ B, p ∈ P (xvii)

xbij ∈ [0, 1] ∀ b ∈ B, i ∈ S, j ∈ S (xviii)

ap, lap, eap ∈ <+ ∀ p ∈ P (xix)

Db ∈ <+ ∀ b ∈ B (xx)

4 Solution methods

In this section, solution methods to solve the optimization model defined in Section 3.2 are
described. First, the model is solved using a commercial solver. Then, two improvements
are developed in order to reduce the runtime. The first improvement is a separation of con-
straints, that is utilized to eliminate sub-tours. The second improvement is a combination
of column generation and separation of constraints.

4.1 Using CPLEX to solve the MIP

The problem, mathematically modeled in Section 3.3, is solved using the commercial solver
CPLEX. Even though this is essentially a black-box procedure, it needs to be noted that
the choice of M0 and M1 i.e., the large constant values in the model, have a significant
impact on the time required to solve the MIP. If these “big M’s” are too large, the MIP
will have a weak linear relaxation and consequently, a weak lower bound. A weak lower
bound in turn, makes the branch-and-bound search that is required to solve this MIP with
CPLEX much more time consuming. For this reason, the big M’s in these constraints need
to be chosen with the lowest possible value while still being larger than any possible value
on the left-hand side of the inequality of these constraints [33]. To this end we choose the
values for the big natural numbers M0 and M1 as:

M0 = max
p∈P

datp + dlate −
(

min
p∈P

datp − dearly
)

(5)

M1 = C (6)

The reasoning behind formula (5), which sets the value for M0, is the following. In the case
a passenger p is not assigned to bus b, the left-hand side of constraints (xiv) and (xiii) will
be equal to the difference of the arrival time of passenger p and the arrival time of bus b,
otherwise they will equal to zero. When a passenger is not assigned to a bus, the largest
possible difference is the range of the time window any bus can arrive at the destination.
This is the difference between a bus arriving dearly too early for the passenger that needs
to arrive the earliest and a bus arriving dlate too late for the passenger that has the latest
desired arrival time. The large number M1 has a value equal to the capacity of the buses
(6), since the left-hand side of constraint (xiii) counts the number of passengers that board
bus b at bus stop i.

4.2 Separation of sub-tour elimination constraints

In integer programming formulations that involve routing, sub-tour elimination constraints
(SECs) are used to ensure connectedness of the routes. The number of SECs is exponential
in the size of the considered problem instance, since there are 2n SECs in a graph with n

12

nodes. As a result, the runtime of such a model increases considerably. A common strategy
to tackle this issue is to solve those SEC formulations with branch-and-cut algorithms. Here,
violated SECs are identified dynamically in the course of the branch-and-bound algorithm
and are subsequently added to the formulation. This identification process is commonly re-
ferred to as separation [33]. The separation of violated SECs (SSEC) is usually performed
by means of minimum cut algorithms [34]. This means that as few cuts as possible are
added to the formulation. The separation procedure in this research uses a minimum cut
approach as well. In the SSEC, the model will be solved as usual using CPLEX but without
the sub-tour elimination constraints (vii). At every instance where CPLEX finds a solution
that has integer values, i.e., a feasible solution ignoring the SECs, the sub-tour identification
algorithm is executed. In this algorithm, the sub-tours are identified and the corresponding
cuts are added in order to prevent these sub-tours.

Algorithm 1: Sub-tour identification algorithm

1 for each bus b ∈ B do
2 Calculate how many bus stops l were visited by bus b
3 Keep bus stops in an array Stops
4 Start in bus stop i = m0, delete i from Stops
5 Initialize array Sub, add i to Sub
6 Initialize the number of visited stops: v = 1
7 while a sub-tour is not detected or not all nodes in Stops are checked do
8 Identify successor bus stop j of bus stop i
9 Delete j from Stops

10 Add j to Sub
11 v = v + 1
12 if Stops does not contain j then
13 j has been visited already → sub-tour detected
14 Stop the loop

15 else if j = N − 1 then
16 if v = l then
17 Stop, there are no sub-tours
18 Clear Sub

19 else if v ≥ N − 1 then
20 There are sub-tours but not found yet
21 Clear Sub
22 Set i=Stops[0] and set v = 1

23 end

24 end

25 end
26 if a sub-tour was detected then
27 Add it to the model as a constraint using array Sub
28 end

29 end

The algorithm to dynamically identify and add SECs is given in Algorithm 1. In this
algorithm, the number of bus stops l visited by each bus b is calculated. Then, the algorithm
will start in stop m0 and follow the route in this intermediate solution in order to check

13

each stop that is visited in the solution. Once it encounters a bus stop that was already
checked, it will add this route as a SEC for bus b. If the route reaches the destination mN−1
and the number of stops that were visited v is equal to l, then there are no sub-tours and
this is a valid route. In case v 6= l, there is still a sub-tour in the solution, but it has not
been found yet. The algorithm then starts over from a stop that is visited in the solution,
but has not been checked yet. The algorithm runs until either it has checked all stops or
until it has determined all sub-tours.

4.3 Column Generation

As will be shown in Section 5.3, the SSEC greatly improves the runtime for some instances.
However, although the approach manages to find optimal or very good solutions quickly,
it still produces solutions with large integrality gaps due to poor lower bounds. In order
to remedy this issue, column generation (CG) can be utilized. In CG, only a subset of
variables is considered when solving the problem and this can greatly reduce the computa-
tional time. The idea underlying CG is that a problem can be restated as a master problem
(MP). The MP is a column-wise formulation of the original MIP, i.e., a formulation which
can be decomposed into several columns, each corresponding with a variable. The MP is
constructed in such a way that selecting the right columns, i.e., selecting which variables
are non-zero in the optimal solution, optimizes the original MIP. The MP is then split into
two problems; called respectively the restricted master problem (RMP) and the subproblem
(SP). The RMP is the same as the MP, with the difference that only a subset of columns
are included. Furthermore, the restricted master problem relaxes any integer variable. The
SP, on the other hand, is a new problem created to identify a new column corresponding
to a new variable.

The original MIP of the DRFS can be reformulated as MP as follows. The service provider
has an unlimited number of buses that each have a predetermined timetable, route and
a number of passengers onboard, and the problem is determining which buses are chosen.
The only restrictions to the MP is that exactly |B| buses need to be chosen and that each
passenger is assigned to exactly one bus. In this formulation, the columns correspond with
the buses, i.e., adding a new column to the MP is the same as adding an additional bus.
Each bus is subject to the same constraints as the buses in the original MIP and the same
objective is optimized. The routes, timetables, bus stop assignments and passenger assign-
ments of an initial set of |B| buses are determined using a heuristic. Afterwards, the column
generation procedure starts a loop. In the first iteration of the loop, the RMP is solved
using only the columns of the initial solution. Afterwards, the dual prices for each of the
constraints in the RMP are obtained and utilized in the SP to compute a new column. If
the reduced cost of this column is negative, it is added to the RMP in the next iteration
of the loop. If the reduced cost is positive, it means the algorithm has found an optimal
solution and the loop stops. After the loop stops, the MP is solved once in order to obtain
the final solution. The algorithm for column generation is given in Algorithm 2.

14

Algorithm 2: Algorithm for column generation

1 Generate |B| columns using a heuristic and add them to RMP
2 while reduced cost of a new column < 0 do
3 Solve RMP → dual prices
4 Generate a new column with SB using the dual prices
5 Add new column to RMP

6 end
7 Solve MP

In what follows, the algorithm for the construction of the initial solution, the RMP and the
SB are discussed in more detail.

4.3.1 Construction of an initial solution

To start the column generation algorithm, an initial solution is needed first. The algorithm
for the construction of the initial solution is given in Algorithm 3. The initial solution
is constructed by iteratively constructing a route, a timetable and a bus stop assignment
for each bus separately. The passengers are sorted according to their desired arrival time
datp and are added to a bus in this order. The algorithm will stop adding passengers to a
bus either when the bus reaches its capacity or when max

p∈P
datp + min

p∈P
datp < dlate + dearly.

The latter ensures that all passengers reach the destination within the given time window.
On each bus, passengers are then assigned to the closest stop to their location, as their
departure bus stop. Afterwards, the routes of each bus are determined, taking in mind any
optional stop that is assigned to a passenger in a bus. First, all the mandatory stops are
added to the route of the bus. Then, all the optional stops that are visited by the bus are
inserted in the existing route. Lastly, the departure time of the buses is determined so that
each bus arrives within the given time window. This means the bus must arrive within

the interval

[
max
p∈P

datp − dearly,min
p∈P

datp + dlate

]
= [LB,UB]. The best departure time is

determined through a discrete enumeration; all possible departure times, when a time step
of 30 seconds is utilized, are checked and the departure time that minimizes the objective
is chosen.

15

Algorithm 3: Construction of an initial solution

1 Order passengers according to desired arrival time
2 for each bus b ∈ B do
3 while

∑
i∈S

∑
p∈P

ybpi < C do

4 Add the next passenger p to bus b

5 if

(
max
p∈bus b

datp + min
p∈bus b

datp

)
< dlate + dearly then

6 Remove the last passenger p
7 Stop the loop

8 else
9 Determine and assign the closest bus stop to passenger p

10 end

11 end
12 Add a route to bus b: visit all mandatory bus stops m ∈ F
13 for ∀o ∈ O do
14 if optional stop o is assigned to a passenger onboard bus b then
15 Add o to the route
16 end

17 end

18 Calculate the best arrival time for bus b: ab = min
l∈[LB,UB]

∑
p∈P
|l − datp|

19 The best arrival time for each passenger p ∈ bus b is then: abp =
∑
i∈S

ybpia
b

20 Calculate total travel time TT b on bus b

21 The best departure time for bus b is then: Db = ab − TT b

22 end

4.3.2 Restricted master problem

The RMP for CG is given below. The variables λb are binary variables that determine
whether a bus b is selected or not. The model has two constraints: exactly |B| buses are
utilized (xxi), and each passenger must be transported to the destination and is assigned to
exactly one bus (xxii). The objective function of the MP is the same as the original MIP,
with the difference that there are now several buses and only a subset of these buses are
selected by the model. The variables λb are binary in the MP, but are relaxed in the RMP.
In the RMP, new columns, i.e., new buses generated by the SB, are added iteratively. The
number of buses that are present in the RMP at iteration it is Bit. It needs to be noted
that in the MP and in the RMP, the only variables are λb. The variables in the original
model are parameters here. The dual prices corresponding with constraints (xxi) and (xxii)
are σ and πp, ∀p ∈ P respectively.

Minimize

zRMP =
∑
b<I

∑
i∈S

∑
j∈S

c1 (ttij + δ)xbij +
∑
i∈S

∑
p∈P

ybpi (c1τ + c2wtpi) +
∑
p∈P

c3
(
labp + eabp

)λb

16

S.t.∑
b<Bit

λb = |B| (xxi)

∑
b<Bit

∑
i∈S

ybpiλ
b = 1 ∀ p ∈ P (xxii)

0 ≤ λb ≤ 1 ∀ b < Bit (xxiii)

4.3.3 Subproblem

The subproblem is given below. The SP calculates the route, timetabling and passenger
assignment of a single bus, i.e., a column of the RMP. In the objective, the reduced cost
of the new bus is calculated using the dual prices σ and πp. The SP has the same set of
variables as in the original problem, except for the fact that variables only pertain to a single
bus and thus do not have the b index anymore. The objective function uses the dual prices
of the RMP to calculate the reduced cost of this column. The constraints of the SP are
the same as in the original problem. The SP excludes the sub-tour elimination constraints
because it makes use of the same separation technique as in Section 4.2. Furthermore, some
additional constraints (xxxviii) and (xxxix), are added. These are big-M constraints that
ensure that passengers that are not picked up by the bus do not affect the objective function.
When a passenger p is not picked up by a bus b, abp will be equal to datbp and this will make

labp and eabp equal to zero. Consequently, the passenger does not have an impact on the
third component of the objective function. Due to the limits set in constraints (xxxii) and
(xxxiii), the big M numbers M2 and M3 are chosen as dlate and dearly respectively.

Minimize

zSP =
∑
i∈S

∑
j∈S

c1(ttij + δ)xij +
∑
p∈P

ypi (c1τ + c2wtpi − πp)

+
∑
p∈P

c3 (lap + eap)− σ

S.t.∑
j∈S

xij ≤ 1 ∀ i ∈ O (xxiv)

i<j∑
j∈S

xij = 1 ∀ i ∈ F (xxv)

∑
l∈S

xil =
∑
l∈J

xli ∀ i ∈ S0,N−1 (xxvi)∑
i∈S

xi0 = 0 (xxvii)∑
i∈S

xN−1i = 0 (xxviii)

xii = 0 ∀ i ∈ S (xxix)∑
i∈S

wtpiypi ≤ d ∀ p ∈ P (xxx)∑
p∈P

∑
i∈S

ypi ≤ C (xxxi)

lap ≤ dlate ∀ p ∈ P (xxxii)

eap ≤ dearly ∀ p ∈ P (xxxiii)

datp − ap + lap − eap = 0 ∀ p ∈ P (xxxiv)

17

∑
i∈S

∑
j∈S

(ttij + δ)xij + τ
∑
c∈P

yci

+D − ap ≤

1−
∑
j∈S

ypi

M0 ∀ p ∈ P (xxxv)

ap −
∑
i∈S

∑
j∈S

(ttij + δ)xij + τ
∑
c∈P

yci

−D <

1−
∑
j∈S

ypi

M0 ∀ p ∈ P (xxxvi)

∑
p∈P

ypi ≤M1

∑
l∈S

xil ∀ i ∈ O (xxxvii)

lap ≤M2

∑
i∈S

ypi ∀ p ∈ P (xxxviii)

eap ≤M3

∑
i∈S

ypi ∀ p ∈ P (xxxix)

ypi ∈ [0, 1] ∀ i ∈ S, p ∈ P (xl)

xij ∈ [0, 1] ∀ i ∈ S, j ∈ S (xli)

ap, lap, eap ∈ <+ ∀ p ∈ P (xlii)

D ∈ <+ (xliii)

5 Results

In this section, the results that are obtained with the solution methods defined in Section
4 are discussed. First, a set of instances is generated to test the optimization model. The
solution of a single small instance is explained in detail afterwards. Then, the runtimes of
the different solution methods are compared, including the original MIP which is solved
with CPLEX. Finally, different experiments are conducted in order to determine which
parameters of the instances contribute the most to the runtime of each solution method.

5.1 Test instances

To test the different models and algorithms, a set of instances is created. These instances
are randomly generated and are listed in Table 2. The instances vary in number of buses
|B|, requests |P | and bus stops |S|. Two further assumptions are that the number of
optional stops per cluster K is the same in each cluster and that there is exactly one clus-
ter in between two mandatory stops. In Table 2, the instances are ordered according to
the number of variables V in the model. This parameter V is an indication of the size of
the instances. The largest instance, I14, is considerably larger than the rest of the instances.

18

Instance |B| |F| K |S| |P| V

I1 2 3 3 9 12 1226
I2 3 3 3 9 12 1335
I3 2 4 3 13 16 3170
I4 3 4 3 13 16 3379
I5 2 5 3 17 20 6522
I6 3 5 3 17 20 6863
I7 4 5 3 17 20 7204
I8 3 6 3 21 25 12678
I9 4 6 3 21 25 13204
I10 3 6 3 21 30 15213
I11 4 6 3 21 30 15844
I12 4 7 3 25 30 21844
I13 5 7 3 25 30 22595
I14 5 10 3 37 40 62285

Table 2: Test instances of the DRFS

For all instances, the parameters that are used are listed in Table 3. All instances, as well
as the solutions discussed in this paper are available in detail online: https://www.mech.

kuleuven.be/en/cib/drbp#section-0.

Parameter Value Unit

C 15 passengers
dlate 300 s
dearly 900 s
dw 1200 s
δ 30 s
τ 5 s

passenger

Table 3: Parameters

5.2 Analysis of a solution

To illustrate what a solution of the DRFS looks like, the optimal solution of instance I2 is
discussed. The routing of the buses, the assignment of passengers to buses and departure
bus stops are shown in Figure 3. The solid lines represent the routing of the buses. Each
bus has a different route and can be distinguished by the color of the line. Passengers
are denoted by a p followed by a number, for example, passenger 1 is denoted as p1. The
passengers walk from their origin location to their departure bus stop, which is displayed
as a dotted line. The color of the dotted line of a passenger has the same color as the bus
the passenger is boarding.

19

https://www.mech.kuleuven.be/en/cib/drbp#section-0
https://www.mech.kuleuven.be/en/cib/drbp#section-0

0 1 2 3 4 5

W (km)

1.0

1.5

2.0

2.5

3.0

3.5

4.0

L
(k
m
)

m0

m1
m2

p0

p1
p2

p3p4

p5

p6

p7

p8

p9

p10

p11

o0,0

o0,1

o0,2

o1,0

o1,1
o1,2

Bus 0

Passengers

Bus 1

Mandatory Stations

Bus 2

Optional Stations

Figure 3: Routes and assignment of passengers to buses and departure bus stops

The timetable for the solution of this instance is shown in Table 4. The departure time D
(in minutes), relative to an arbitrary reference point, of each bus is shown in the second
column. The passengers that are picked up at a certain bus stop are shown in column PU.

Bus 0 Bus 1 Bus 2

Stop D(min) PU Stop D(min) PU Stop D(min) PU

m0 2 m0 0 m0 11
o1,1 7 p6 o0,1 3 p4 o0,0 16 p5
m1 11 p8 o0,0 5 p3 o1,1 23 p7
m2 15 m1 11 p1, p10 o1,2 25 p11

o1,0 13 p0 m1 28 p2
o1,2 15 p9 m2 32
m2 21

Table 4: Timetable and passenger pick ups

In Figure 4, the difference between the desired arrival times datp and the actual arrival times
ap of the passengers is displayed. A negative value corresponds to the passenger arriving
later than he or she desired and positive values indicate early arrivals. It can be seen that
the upper limits dlate and dearly are fully respected in the solution. A characteristic of the
optimal solution is that, in each bus, at least one passenger arrives exactly on time.

20

p6 p8
−5

0

5

10

15
Bus 0

p0 p10 p9 p4 p1 p3

Bus 1

p7 p5 p2 p11

Bus 2

Passengers

d
a
t p
−
a
p
(m

in
)

Figure 4: Difference in actual arrival time and desired arrival time

The different walking times, the onboard ride times and the user journey times (UJT) for
each passenger are shown in table 5. The onboard ride time of a passenger is the time that
the passenger spends onboard the bus, the UJT is the sum of walking time and the onboard
ride time. Evidently, the threshold for walking time dw is respected and the walking times
are relatively small. Furthermore the UJT of any passenger never exceeds 24 minutes and
the lowest UJT is a little less than 10 minutes. The average UJT is 15.56 minutes.

Passenger Bus
Walking
time (s)

Onboard
ride time (s)

UJT (s)
datp − ap

(s)

p6 0
502 443 945 -138

p8 816 257 1073 0

p0

1

280 464 744 -81
p1 534 590 1124 225
p3 478 963 1441 250
p4 253 1096 1349 0
p9 357 364 721 -60
p10 50 590 640 -77

p2

2

522 258 780 2
p5 150 971 1121 0
p7 156 532 688 -220
p11 151 428 579 511

Table 5: Journey times of the passengers

With this information, one can determine the journey of each passenger. For example,
passenger p4 is assigned to bus stop o0,1, and has to arrive at this stop before minute 3. The
passenger is assigned to bus 1, and will arrive at the destination m2 at minute 21, making
his onboard time 18 minutes. Together with a walking time of around 4 minutes, the UJT
of p4 is 22 minutes. The passenger arrives exactly on time at the destination m3.

21

5.3 Comparison of the different approaches

The models are solved using CPLEX version 12.9 on a computer with a Windows 10 En-
terprise operating system, an Intel CoreTM i7-8850H, 2.60Ghz CPU and 16 GB of RAM.
All instances are solved with the original MIP, with the original MIP using the SSEC, and
with the restated model using CG and SSEC. All runtimes are limited to one hour, i.e.,
all algorithms stop either after the optimal solution is found, or after one hour of runtime.
In case the optimal solution is not found after one hour, the best feasible solution up until
that point in time is reported. If no feasible solution could be found after one hour, the
objective function value is and the gap are denoted as “/” in Table 6. For the first two
models, a gap is displayed as well. This is the ratio between the best feasible solution and
the best lower bound found thus far. The last model does not have a gap, due to the nature
of column generation; there is no way to calculate a fair lower bound using CG. In Table
6, the results of this experiment are displayed. Column rRC shows the ratios between the
number of requests and the number of available seats in the fleet of buses, in each instance.
Objective values that are not optimal after one hour of runtime, are displayed in italic.

MIP SSEC
CG +
SSEC

MIP SSEC
CG +
SSEC

MIP SSEC

Inst. rRC Runtime (s)
Objective function

value (s)
gap

I1 40,0% 1,2 0,3 4,3 3143,1 3143,1 3143,1 0,0% 0,0%
I2 26,7% 4,1 20,3 4,1 2932,4 2932,4 2932,4 0,0% 0,0%
I3 53,3% 27,8 1,1 27,6 4883,2 4883,2 4883,2 0,0% 0,0%
I4 35,6% 1398 186 19,8 4446,9 4446,9 4446,9 0,0% 0,0%
I5 66,7% 3600 2,2 74,2 7433,6 7294,8 7294,8 43,2% 0,0%
I6 44,4% 3600 908 81,0 6688,1 6117,0 6117,0 37,4% 0,0%
I7 33,3% 3600 3600 57,7 6403,00 5902,4 5902,4 32,0% 14,1%
I8 55,6% 3600 3600 487 / 7856,6 7826,3 / 12,8%
I9 41,7% 3600 3600 309 / 7307,5 7287,9 / 16,8%
I10 66,7% 3600 3600 1822 / 9488,8 9483,9 / 4,5%
I11 50,0% 3600 3600 1731 / 8824,3 8789,6 / 20,0%
I12 50,0% 3600 3600 2315 / 9071,1 9021,1 / 21,3%
I13 40,0% 3600 3600 1450 / 8998,0 8937,2 / 22,0%
I14 53,3% 3600 3600 3600 / 12644,4 12542,6 / 22,5%

Table 6: Results of the instances for the different approaches

It can be seen that the original MIP can only solve the problem to optimality until instance
I4. Larger instances cannot be solved with this model, within one hour. Furthermore,
instances larger than instance I7 are too large for the MIP to even find a gap value. This
means that the model could not find a feasible solution for the instances in one hour of run-
time. When separation is applied, the problem can be solved to optimality until instance
I6. The runtimes of the models also decrease considerably. The SSEC model did find the
optimal solution for instance I7, but was unable to prove that this solution is optimal and
ended with a gap of approximately 14% after one hour. The last model, using CG, could
solve all instances except the last one to optimality. The model did manage to find a better
feasible solution than the SSEC model for this instance.

22

In Figure 5, runtimes for the different models are displayed on a logarithmic scale. The
runtime of the original MIP increases exponentially and monotonically with the size of the
instances. The runtime of the SSEC model also increases exponentially, but the increase
is less steep and this allows the model to solve more instances. For the CG model, the
increase in runtime is much less steep. This allows the model to solve almost every instance
within one hour. The runtimes of the CG model and the SSEC model do not increase
monotonically. A possible cause for this non-monotonic increase can be found in the number
of buses: the number of ways in which passengers can be assigned to buses increases steeply
with the number of buses and this results in a less tight lower bound for the relaxed model.
This, in turn, leads to larger gaps and to a longer search in the branch-and-bound tree to
prove optimality. The separation of the SEC makes it relatively easy to obtain high-quality
feasible solutions or optimal solutions in a short amount of time, but due to the poor lower
bound, it takes longer to prove optimality. Further, the CG model only becomes faster
than the other models when the instances increase in size. The reason for this behavior
is the fact that the CG algorithm requires several iterations to converge and, in the small
instances, this additional time is not sufficiently compensated by the faster convergence.

I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12 I13 I14

Instances

100

101

102

103

R
u

n
ti

m
e

(s
)

MIP SSEC CG+SSEC Threshold

Figure 5: Runtimes of the different instances

5.4 Influence of instance parameters on runtime

In this section, the influence of the different instance parameters on the runtime are dis-
cussed. Several experiments are conducted in which four to five instances are solved with
the original MIP and the two improvements. Each instance has the same set of parameters
except for the parameter in question, which varies from instance to instance in order to
isolate the influence of said parameter. The “base instance” Ibase has 2 buses, 4 mandatory
stops, 3 optional stops per cluster, 3 clusters, 16 requests and a capacity of 15 passengers
per bus. This instance is modified to create four sets of instances. In each set, either the
number of passenger requests, the number of buses, the bus capacity, or the number of
optional stops per cluster varies, while the other instance parameters are constant. The
choice of Ibase is arbitrary since we are only interested in the relative increase or decrease

23

of runtime.

In Table 7, the influence of the number of requests on the runtime is shown. It can be
seen that the runtimes of the SSEC and CG solution methods increase with the number of
requests. The increase in runtime is, however, greater for the CG improvement. It needs
to be noted that, in these small instances, the SSEC solution method has lower runtimes
than the CG solution method. This is explained by the low number of buses: the number
of ways in which passengers can be assigned to buses is limited and this results is tight
lower bounds for the relaxed model. Tight lower bounds result in a fast convergence for
the SSEC, while the CG still needs several iterations to converge. Results, which are not
displayed in this paper, show that when the number of buses for these instances is raised
from two to three, the CG becomes faster than SSEC in all instances.

MIP SSEC
CG +
SSEC

Inst. |P| V Runtime (s) rRC

Ir,1 12 2378 25,87 0,39 6,50 40,00%
Ir,2 16 3170 27,83 1,05 27,55 53,33%
Ir,3 20 3962 32,18 1,05 52,67 66,67%
Ir,4 26 5150 28,78 1,60 226,00 86,67%

Table 7: Runtimes for instances with different number of requests

In Table 8, the influence of the number of buses on the runtime is shown. Remarkably,
the runtimes of the CG solution method decrease with the number of buses even though
the number of variables increases. This is likely due to the nature of the restated model,
in which a specific number of buses needs to be chosen among a large number of buses.
When more buses are used, the number of non-zero variables in the solution of the RMP
is higher, which means that it is less likely to obtain degenerate solutions in the RMP that
slow down the convergence of the CG algorithm. The runtimes of the MIP and the SSEC
increase steeply with the number of buses. It can be seen that CG is faster than the MIP
and SSEC when 3 or more buses are utilized.

MIP SSEC
CG +
SSEC

Inst. |B| V Runtime (s) rRC

Ib,1 2 3170 27,83 1,05 27,55 53,33%
Ib,2 3 3379 485,47 45,16 17,35 35,56%
Ib,3 4 3588 3600 245,61 12,30 26,67%
Ib,4 5 3797 3600 3600 10,20 21,33%
Ib,5 6 4006 3600 3600 8,40 17,78%

Table 8: Runtimes for instances with different number of buses

In Table 9, the influence of the bus capacity is shown. It is clear that the capacity does
not have a significant impact on the runtime of MIP and SSEC. CG is, however, affected
by the capacity, higher capacities make the runtime increase. This can be explained by the

24

fact that more capacity implies more possibilities to distribute the passengers among the
buses and thus more options need to be explored.

MIP SSEC
CG +
SSEC

Inst. C V Runtime (s) rRC

Ic,1 9 3170 29,84 0,86 3,68 88,89%
Ic,2 12 3170 29,38 1,16 6,47 66,67%
Ic,3 15 3170 27,83 1,05 27,55 53,33%
Ic,4 20 3170 28,84 0,81 53,56 40,00%

Table 9: Runtimes for instances with different bus capacities

In Table 10, the influence of the number of optional bus stops is shown. It can be seen that
the SSEC model deals well with an increase in optional bus stops, and is faster than the
CG algorithm for most of the instances. The SSEC was implemented to deal with SECs
and thus to deal with an increase in bus stops. However, beyond two bus stops, the CG
becomes faster than the SSEC.

MIP SSEC
CG +
SSEC

Inst. K V Runtime (s) rRC

Is,1 1 1058 0,32 0,28 3,89 53,33%
Is,2 2 1970 2,02 0,36 13,88 53,33%
Is,3 3 3170 28,41 1,05 28,32 53,33%
Is,4 4 4658 3600 27,14 93,26 53,33%
Is,5 5 6434 3600 3600 219,97 53,33%

Table 10: Runtimes for instances with different number of optional bus stops per cluster

It is clear that the largest influencing factors for the runtime of CG are the number of buses
and the number of requests. More requests slow down the CG algorithm while more buses
increase its speed. For the MIP and the SSEC, its the number of stops and the number
of buses are the biggest contributors to an increase of runtime. On the other hand, the
capacity and the number of requests do not have an effect on MIP and SSEC but do have
an influence on the runtimes of CG.

6 Conclusion

In this paper, a new type of feeder service with both optional and mandatory bus stops
is proposed together with three different exact approaches to optimally plan the operation
of the buses in this service. The service is demand-responsive since it selects which of the
clustered optional bus stops to visit, based on passenger requests. On the other hand, there
is predictability in the mandatory bus stops, which are always visited by each bus. While
passengers can have a customized service by making requests, passengers that do not make
such requests can still catch a bus at a mandatory stop. The service incorporates positive
characteristics from both traditional transport services and on-demand transport services,

25

with the aim of improving service quality.

In order to plan the operation of the buses in such a feeder service, a mixed integer pro-
gramming model is developed. Solving this mathematical model with CPLEX, however,
results in large runtimes for non-trivial instances of the problem. To reduce the runtimes,
two different techniques are proposed: a separation of sub-tour elimination constraints and
a column generation algorithm. Separation allows the model to find good, feasible solutions
in a short amount of time, in comparison to the original mixed integer programming model.
However, in some cases, the algorithm does not converge quickly, due to bad lower bounds,
leading to high integrality gaps. To redirect the gap difficulty towards a number of variable
difficulty, the column generation procedure is developed, which requires a reformulation of
the problem. The separation algorithm is still used in the subproblem to increase the speed
of the algorithm. All models are tested on a set of instances, with varying sizes. It is found
that the column generation model outperforms the other models in most cases, and is able
to successfully solve larger instances.

The main contribution of this paper is the design of a new type of feeder service. This service
could improve service quality in a future, smart city scenario. Different methods to optimize
this service were presented. With techniques like separation and column generation, mid-
sized instances of this problem can now be solved within reasonable time. This paper limits
itself to exact methods. However, further research should focus on developing heuristics to
solve larger, more realistic instances. The results of the exact methods in this paper will
serve as benchmarks for the solutions obtained by heuristics. Further research will focus
on developing algorithms to solve this problem in a dynamic environment, where not all
requests are known during the planning phase.

Acknowledgments

This project was supported by the FWO (Research Foundation Flanders) project G.0759.19N.

References

[1] M. Steriu, Statistics brief - Local public transport trends in the European Union,
2016. [Online]. Available: https://www.uitp.org/statistics-brief-public-
transport-in-the-EU (visited on 02/04/2020).

[2] J. Hine and F. Mitchell, “Better for everyone? Travel experiences and transport exclu-
sion,” Urban Studies, vol. 38, no. 2, pp. 319–332, 2001. doi: 10.1080/00420980020018619.

[3] J. Anable, “’Complacent Car Addicts’; or ’Aspiring Environmentalists’? Identifying
travel behaviour segments using attitude theory,” Transport Policy, vol. 12, no. 1,
pp. 65–78, 2005. doi: 10.1016/j.tranpol.2004.11.004.

[4] S. Handy, L. Weston, and P. L. Mokhtarian, “Driving by choice or necessity?” Trans-
portation Research Part A: Policy and Practice, vol. 39, no. 2-3 SPEC. ISS. Pp. 183–
203, 2005. doi: 10.1016/j.tra.2004.09.002.

[5] G. Beirão and J. A. Sarsfield Cabral, “Understanding attitudes towards public trans-
port and private car: A qualitative study,” Transport Policy, vol. 14, no. 6, pp. 478–
489, 2007. doi: 10.1016/j.tranpol.2007.04.009.

26

https://www.uitp.org/statistics-brief-public-transport-in-the-EU
https://www.uitp.org/statistics-brief-public-transport-in-the-EU
https://doi.org/10.1080/00420980020018619
https://doi.org/10.1016/j.tranpol.2004.11.004
https://doi.org/10.1016/j.tra.2004.09.002
https://doi.org/10.1016/j.tranpol.2007.04.009

[6] L. Dell’Olio, A. Ibeas, and P. Cecin, “The quality of service desired by public transport
users,” Transport Policy, vol. 18, no. 1, pp. 217–227, 2011. doi: 10.1016/j.tranpol.
2010.08.005.

[7] D. A. Hensher, P. Stopher, and P. Bullock, “Service quality - developing a service
quality index in the provision of commercial bus contracts,” Transportation Research
Part A: Policy and Practice, vol. 37, no. 6, pp. 499–517, 2003. doi: 10.1016/S0965-
8564(02)00075-7.

[8] M. Friman, B. Edvardsson, and T. Gärling, “Frequency of negative critical incidents
and satisfaction with public transport services. I,” Journal of Retailing and Consumer
Services, vol. 8, no. 2, pp. 95–104, 2001. doi: 10.1016/S0969-6989(00)00003-5.

[9] D. van den Buuse and A. Kolk, “An exploration of smart city approaches by inter-
national ICT firms,” Technological Forecasting and Social Change, vol. 142, no. May
2018, pp. 220–234, 2019. doi: 10.1016/j.techfore.2018.07.029.

[10] A. Ceder and N. H. M. Wilson, “Bus Network Design,” Transportation Research Part
B: Methodological, vol. 208, no. 4, pp. 331–344, 1986.

[11] X. Li and L. Quadrifoglio, “Feeder transit services: Choosing between fixed and de-
mand responsive policy,” Transportation Research Part C: Emerging Technologies,
vol. 18, no. 5, pp. 770–780, 2010. doi: 10.1016/j.trc.2009.05.015.

[12] J. D. Nelson, S. Wright, B. Masson, G. Ambrosino, and A. Naniopoulos, “Recent
developments in Flexible Transport Services,” Research in Transportation Economics,
vol. 29, no. 1, pp. 243–248, 2010. doi: 10.1016/j.retrec.2010.07.030.

[13] M. J. Alonso-González, T. Liu, O. Cats, N. Van Oort, and S. Hoogendoorn, “The
Potential of Demand-Responsive Transport as a Complement to Public Transport:
An Assessment Framework and an Empirical Evaluation,” Transportation Research
Record, vol. 2672, no. 8, pp. 879–889, 2018. doi: 10.1177/0361198118790842.

[14] A. Ceder, “Introduction into transit service planning,” in Public transit planning and
operation: modeling, practice and behavior, second, Boca Ranton: CRC Press, 2016,
ch. 1, pp. 1–21.

[15] R. M. Lusby, J. Larsen, and S. Bull, “A survey on robustness in railway planning,”
European Journal of Operational Research, vol. 266, no. 1, pp. 1–15, 2018. doi: 10.
1016/j.ejor.2017.07.044.

[16] A. Schöbel, “Line planning in public transportation: Models and methods,” OR Spec-
trum, vol. 34, no. 3, pp. 491–510, 2012. doi: 10.1007/s00291-011-0251-6.

[17] C. Iliopoulou, K. Kepaptsoglou, and E. Vlahogianni, “Metaheuristics for the transit
route network design problem: a review and comparative analysis,” Public Transport,
vol. 11, no. 3, pp. 487–512, 2019.

[18] S. Carosi, A. Frangioni, L. Galli, L. Girardi, and G. Vallese, “A matheuristic for inte-
grated timetabling and vehicle scheduling,” Transportation Research Part B: Method-
ological, vol. 127, pp. 99–124, 2019. doi: 10.1016/j.trb.2019.07.004.

[19] A. Schöbel, “An eigenmodel for iterative line planning, timetabling and vehicle schedul-
ing in public transportation,” Transportation Research Part C: Emerging Technolo-
gies, vol. 74, pp. 348–365, 2017. doi: 10.1016/j.trc.2016.11.018.

27

https://doi.org/10.1016/j.tranpol.2010.08.005
https://doi.org/10.1016/j.tranpol.2010.08.005
https://doi.org/10.1016/S0965-8564(02)00075-7
https://doi.org/10.1016/S0965-8564(02)00075-7
https://doi.org/10.1016/S0969-6989(00)00003-5
https://doi.org/10.1016/j.techfore.2018.07.029
https://doi.org/10.1016/j.trc.2009.05.015
https://doi.org/10.1016/j.retrec.2010.07.030
https://doi.org/10.1177/0361198118790842
https://doi.org/10.1016/j.ejor.2017.07.044
https://doi.org/10.1016/j.ejor.2017.07.044
https://doi.org/10.1007/s00291-011-0251-6
https://doi.org/10.1016/j.trb.2019.07.004
https://doi.org/10.1016/j.trc.2016.11.018

[20] N. Agatz, A. Erera, M. Savelsbergh, and X. Wang, “Optimization for dynamic ride-
sharing: A review,” European Journal of Operational Research, vol. 223, no. 2, pp. 295–
303, 2012. doi: 10.1016/j.ejor.2012.05.028.

[21] Y. Molenbruch, K. Braekers, and A. Caris, “Typology and literature review for dial-
a-ride problems,” Annals of Operations Research, vol. 259, no. 1-2, pp. 295–325, 2017.
doi: 10.1007/s10479-017-2525-0.

[22] W. A. Ellegood, S. Solomon, J. North, and J. F. Campbell, “School bus routing
problem: Contemporary trends and research directions,” Omega (United Kingdom),
vol. 95, p. 102 056, 2020. doi: 10.1016/j.omega.2019.03.014.

[23] M. G. Speranza, “On-demand public transportation,” no. January, pp. 1–26, 2015.

[24] J. F. Potts, M. A. Marshall, E. C. Crockett, and J. Washington, “Best Practices of
Successful Flexible Public Transportation Services,” in Transit Cooperative Research
Program (TCRP) Report 140: A Guide for Planning and Operating Flexible Public
Transportation Services, Washington, D.C.: Transportation Research Board, 2010,
ch. 4, pp. 42–88.

[25] L. Quadrifoglio, M. M. Dessouky, and F. Ordóñez, “Mobility allowance shuttle tran-
sit (MAST) services: MIP formulation and strengthening with logic constraints,”
European Journal of Operational Research, vol. 185, no. 2, pp. 481–494, 2008. doi:
10.1016/j.ejor.2006.12.030.

[26] X. Lu, J. Yu, X. Yang, S. Pan, and N. Zou, “Flexible feeder transit route design
to enhance service accessibility in urban area,” Journal of Advanced Transportation,
no. 50, pp. 507–521, 2015.

[27] X. Li, “Optimal design of demand-responsive feeder transit services,” Ph.D. disserta-
tion, Texas A&M University, 2009.

[28] A. Ceder, “Integrated smart feeder/shuttle transit service: simulation of new routing
strategies,” Journal of Advanced Transportation, vol. 47, no. June 2010, pp. 595–618,
2013.

[29] T. Liu and A. Ceder, “Analysis of a new public-transport-service concept: Customized
bus in China,” Transport Policy, vol. 39, no. 2015, pp. 63–76, 2015. doi: 10.1016/j.
tranpol.2015.02.004.

[30] M. Kim and P. Schonfeld, “Conventional, flexible and variable-type bus services,”
Journal of Transportation Engineering, pp. 263–273, 2012.

[31] L. Fu and Q. Liu, “Real-Time Optimization Model for Dynamic Scheduling of Transit
Operations,” Transportation Research Record, no. 1857, pp. 48–55, 2003. doi: 10.
3141/1857-06.

[32] M. Stiglic, N. Agatz, M. Savelsbergh, and M. Gradisar, “Enhancing urban mobility:
Integrating ride-sharing and public transit,” Computers and Operations Research,
vol. 90, pp. 12–21, 2018. doi: 10.1016/j.cor.2017.08.016.

[33] L. Wosley, Integer Programming. New York, United States: John Wiley & Sons Inc,
1998.

[34] M. Fischetti and P. Toth, “A polyhedral approach to the asymmetric traveling sales-
man problem,” Management Science, vol. 43, no. 11, pp. 1520–1536, 1997. doi: 10.
1287/mnsc.43.11.1520.

28

https://doi.org/10.1016/j.ejor.2012.05.028
https://doi.org/10.1007/s10479-017-2525-0
https://doi.org/10.1016/j.omega.2019.03.014
https://doi.org/10.1016/j.ejor.2006.12.030
https://doi.org/10.1016/j.tranpol.2015.02.004
https://doi.org/10.1016/j.tranpol.2015.02.004
https://doi.org/10.3141/1857-06
https://doi.org/10.3141/1857-06
https://doi.org/10.1016/j.cor.2017.08.016
https://doi.org/10.1287/mnsc.43.11.1520
https://doi.org/10.1287/mnsc.43.11.1520

	Introduction
	Literature Review
	Problem description
	Description of the demand-responsive feeder service
	Optimization model
	Mathematical Model

	Solution methods
	Using CPLEX to solve the MIP
	Separation of sub-tour elimination constraints
	Column Generation
	Construction of an initial solution
	Restricted master problem
	Subproblem

	Results
	Test instances
	Analysis of a solution
	Comparison of the different approaches
	Influence of instance parameters on runtime

	Conclusion

