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Summary 

Plants and soil microorganisms are the main components of every terrestrial 

ecosystem. They drive the cycle of carbon in nature and they form complex, often species-

specific interactions with each other shaping both aboveground and belowground communities. 

Soil is a medium that connects these two worlds and mediates all interactions between them.  

 

Grasslands are one of the largest terrestrial systems that sustain high levels of 

biodiversity and play an important role in global carbon sequestration. In this work, two 

coordinated distributed experiments in grasslands (Nutrient Network – NutNet and Herbaceous 

Diversity Network – HerbDivNet) were used to examine the role of soil properties as predictors 

of plant productivity and microbial community composition. The NutNet experiment included 

72 worldwide distributed grasslands and HerDivNet included 21 grassland sites around the 

world, most of which contained a local-scale plant productivity gradient. Besides experiments 

in grasslands, a large-scale heathland restoration experiment was used to investigate the 

importance of plant-soil interactions for the development of soil fungal community 

composition.  

 

 Plant biomass production has long been known to depend on the soil they grow on and 

the climate they live in. While the effects of climate have been widely studied, which of the 

multitude of individual soil properties and nutrients are the best predictors of global grassland 

productivity patterns has not been comprehensively assessed, nor has it been studied how much 

of the total variation they can explain.  

 

In the first part of the thesis, the NutNet and the HerbDivNet experiments were used 

to conduct two separate studies investigating the importance of a large set of soil properties 

and nutrients as predictors of global grassland productivity patterns. The results of our studies 

demonstrated that the most important soil predictors of plant productivity included soil organic 

matter, soil texture, cation exchange capacity and bulk density. These soil properties generally 

determine soil nutrients availability and water holding capacity. Regarding particular soil 

nutrients, Zn emerged as the most important predictor. Moreover, in the study that contained 

globally replicated gradients in productivity, we found that the same predictors identified at the 

global scale (soil organic matter, soil texture, bulk density) were consistently good predictors 

of local-scale variation in grassland productivity across different climates. Overall, both studies 

revealed that soil properties are better predictors of global grassland productivity than the 

commonly used climatic factors (soil properties explained 32% of the variation in biomass vs 

24% explained by climate in the NutNet study and 45% vs 32%, respectively in the HerbDivNet 

study).  
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The second part of the thesis used a heathland restoration experiment and the 

HerbDivNet experiment in grasslands to investigate the drivers of soil microbial community 

composition. 

The study conducted in the heathland restoration experiment simultaneously 

investigated the importance of three mechanisms structuring microbial community assembly 

(timing of colonisation, environmental filters and biotic interactions). The results demonstrated 

that, when the bare soil is inoculated with heathland fungal and plant communities from the 

beginning of the system development, they form strong links with each other leading to the 

convergence of fungal community composition under different environmental conditions. We, 

therefore, argue that the early stage presence of heathland soil and plant communities and the 

interactions they form can reinforce the development of a heathland system and alleviate the 

environmental filter. When the associated heathland soil communities are not present from the 

beginning, the environment exerts a strong influence on fungal community assembly. 

Furthermore, we used a network of globally distributed local-scale gradients in plant 

productivity from the HerbDivNet experiment in grasslands to examine i) if the same abiotic 

or biotic factors can predict both global and local-scale patterns in bacterial and fungal 

community composition, and ii) if community composition differs consistently with local plant 

productivity (low vs high) across different sites. We found that microbial community 

composition can be predicted by similar factors on the global and the local scale; with bacteria 

predominantly associated with soil properties (such as base saturation and pH) and fungi 

predominantly associated with plant community composition. Moreover, microbial community 

composition differed consistently at two plant productivity levels across different grassland 

sites. These findings suggest that there are universal forces that shape microbial community 

composition across different contexts.  

 

To conclude, this work demonstrates that soil properties are crucial predictors of plant 

productivity in global grasslands and that soil shapes microbial community composition both 

directly through providing particular abiotic conditions and indirectly through mediating plant-

microbial interactions. Moreover, it is shown here that some of the factors and interactions 

predicting both grassland plant productivity and microbial community composition are 

universal across contrasting climates suggesting that similar universality might also hold in 

other ecosystem types. These findings have implications for understanding and predicting 

global grassland carbon storage potential, management of grassland biodiversity, 

understanding current and predicting future local- and global-scale grassland microbial 

community composition patterns and restoration of heathland ecosystems.  
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Samenvatting 

 

Planten en bodemmicro-organismen zijn de belangrijkste componenten van elk 

terrestrisch ecosysteem. Zij sturen de koolstofcyclus in de natuur aan en vormen complexe, 

vaak soortspecifieke interacties met elkaar die zowel boven- als ondergronds gemeenschappen 

vormen. De bodem is een medium dat deze twee werelden met elkaar verbindt en alle 

interacties tussen hen bemiddelt.  

 

Graslanden zijn een van de grootste terrestrische systemen die een hoog niveau van 

biodiversiteit in stand houden en een belangrijke rol spelen in de wereldwijde 

koolstofvastlegging. In dit werk zijn twee gecoördineerde gedistribueerde experimenten in 

graslanden (Nutrient Network - NutNet en Herbaceous Diversity Network - HerbDivNet) 

gebruikt om de rol van bodemeigenschappen als voorspellers van de productiviteit van planten 

en de samenstelling van de microbiële gemeenschap te onderzoeken. Het NutNet experiment 

omvatte 72 wereldwijd verspreide graslanden en HerDivNet omvatte 21 graslandplaatsen over 

de hele wereld, waarvan de meeste een lokale gradient in plantproductiviteit bevatten.  

Naast experimenten in graslanden werd een grootschalig heideherstel-experiment 

gebruikt om het belang van plant-bodem interacties voor de ontwikkeling van de samenstelling 

van de bodemschimmelgemeenschap te onderzoeken.  

 

Het is al lang bekend dat de productie van plantaardige biomassa afhankelijk is van de 

bodem waarop ze groeien en het klimaat waarin ze leven. Hoewel de effecten van het klimaat 

op grote schaal zijn bestudeerd, is zelden nagegaan welke van de vele individuele 

bodemeigenschappen en voedingsstoffen de beste voorspellers zijn voor de 

productiviteitspatronen van het grasland op aarde, en is ook niet onderzocht hoeveel van de 

totale variatie in productiviteit zij kunnen verklaren.  

In het eerste deel van het proefschrift werden de NutNet en de HerbDivNet 

experimenten gebruikt om twee afzonderlijke studies uit te voeren die het belang van een grote 

set bodemeigenschappen en voedingsstoffen als voorspellers van wereldwijde 

graslandproductiviteitspatronen onderzochten. De resultaten toonden aan dat de belangrijkste 

voorspellers voor de productiviteit van planten onder meer bestaan uit organisch materiaal in 

de bodem, bodemtextuur, kationenuitwisselingscapaciteit en bulkdichtheid. Deze 

bodemeigenschappen bepalen over het algemeen de hoeveelheid beschikbare voedingsstoffen 

in de bodem en de capaciteit om water vast te houden. Wat specifieke voedingstoffen in de 

bodem betreft, kwam Zn naar voren als de belangrijkste voorspeller. Bovendien vonden we in 

de studie die globaal gerepliceerde productiviteitsgradiënten bevatte, dat dezelfde voorspellers 

die op wereldschaal werden geïdentificeerd (organische stof in de bodem, bodemtextuur, 

bulkdichtheid) consistent goede voorspellers waren voor de variatie in de productiviteit van 

grasland op lokale schaal in verschillende klimaten. Over het geheel genomen toonden beide 
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studies aan dat de bodemeigenschappen betere voorspellers zijn voor de wereldwijde 

productiviteit van grasland dan de algemeen gebruikte klimaatfactoren (de 

bodemeigenschappen verklaren 32% van de variatie in biomassa vs 24% in de NutNet-studie 

en 45% vs 32% in de HerbDivNet-studie).  

 

Het tweede deel van het proefschrift maakte gebruik van een heideherstel-experiment 

en het HergDivNet-experiment in graslanden om de drijvende krachten achter de samenstelling 

van de microbiële gemeenschap in de bodem te onderzoeken. 

De studie die in het heideherstel-experiment werd uitgevoerd, onderzocht tegelijkertijd 

het belang van drie mechanismen die de samenstelling van de microbiële gemeenschap 

structureren (timing van kolonisatie, milieufilters en biotische interacties). De resultaten 

toonden aan dat wanneer de kale bodem vanaf het begin van de systeemontwikkeling wordt 

geënt met geassocieerde heideschimmel- en plantengemeenschappen, deze sterke banden met 

elkaar vormen die leiden tot de convergentie van de samenstelling van de 

schimmelgemeenschap onder verschillende omgevingscondities. We stellen daarom dat de 

vroege aanwezigheid van heidegronden en plantengemeenschappen en de interacties die zij 

vormen, de ontwikkeling van een heidesysteem kunnen versterken en het milieufilter kunnen 

verlichten. Wanneer de bijbehorende bodemgemeenschappen niet vanaf het begin aanwezig 

zijn, oefent het milieu een sterke invloed uit op de samenstelling van de 

schimmelgemeenschap. 

Bovendien hebben we een netwerk van wereldwijd verspreide lokale gradiënten in 

plantproductiviteit van het HerbDivNet grasland gebruikt om te onderzoeken i) of dezelfde 

abiotische of biotische factoren zowel wereldwijde als lokale patronen in bacteriële en 

schimmelgemeenschapsamenstelling kunnen voorspellen, en ii) of de 

gemeenschapsamenstelling consistent verschilt met de lokale plantproductiviteit (laag vs. 

hoog) over verschillende locaties. We vonden dat de samenstelling van de microbiële 

gemeenschap kan worden voorspeld door vergelijkbare factoren op wereldwijde en lokale 

schaal. Bacteriën werden voornamelijk geassocieerd met bodemeigenschappen (zoals 

basisverzadiging en pH) en schimmels werden voornamelijk geassocieerd met de 

samenstelling van de plantengemeenschap. Bovendien verschilde de samenstelling van de 

microbiële gemeenschap consistent op twee niveaus van plantenproductiviteit op verschillende 

graslandplaatsen. Deze bevindingen suggereren dat er universele krachten zijn die de 

samenstelling van de microbiële gemeenschap in verschillende contexten vormgeven.   

 

Tot slot toont dit werk aan dat bodemeigenschappen cruciale voorspellers zijn voor de 

productiviteit van planten ingraslanden wereldwijd en dat de bodem de samenstelling van de 

microbiële gemeenschap vormgeeft, zowel direct door bepaalde abiotische omstandigheden te 

creëren als indirect door plant-microbiële interacties te bemiddelen. Bovendien wordt hier 

aangetoond dat sommige factoren en interacties die zowel de productiviteit van graslandplanten 

als de samenstelling van de microbiële gemeenschap voorspellen, universeel zijn in 

contrasterende klimaten, wat suggereert dat een soortgelijke universaliteit ook in andere 
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ecosysteemtypen zou kunnen gelden. Deze bevindingen hebben implicaties voor het begrijpen 

en voorspellen van het wereldwijde koolstofopslagpotentieel van graslanden, het beheer van 

de biodiversiteit van graslanden, het begrijpen van de huidige en het voorspellen van 

toekomstige patronen van de samenstelling van de microbiële gemeenschap van graslanden op 

lokale en wereldwijde schaal en het herstel van heide-ecosystemen. 
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CHAPTER I 

General introduction 

Plants and soil microorganisms are at the core of the functioning of every terrestrial ecosystem. 

While plants are the main producers of organic matter, soil microorganisms are the main 

decomposers that transform organic material back to minerals necessary for plant growth. 

Beyond this, plant and microbes are inseparably intertwined forming complex interactions, 

ranging from mutualism to parasitism and competition, that shape both above and below-

ground communities. Soil is a medium that connects these two worlds and mediates all 

interactions between them.  

In this work, we use coordinated distributed experiments in grasslands worldwide to examine 

the role of soil properties as predictors of plant productivity and microbial community 

composition. We focus on grasslands as one of the largest terrestrial systems occupying up to 

40% of the land (Blair et al., 2014) which sustain large levels of biodiversity (Nerlekar & 

Veldman, 2020). Given that they account for up to one-third of the net primary production on 

land (Vitousek, 2015) they also play an important role in global carbon sequestration (Squires 

et al., 2018). 

Besides grasslands, we performed a study in a developing heathland (as a relatively simple 

model system) to investigate the importance of plant-soil interactions for co-development of 

soil fungal communities and their associated plant communities. 

 

1.1 Part I: Grassland productivity  

1.1.1 Patterns and drivers of aboveground grasslands productivity – an 

overview 

Plant productivity is a key characteristic of grassland ecosystems. It determines their capacity 

to take up and store carbon (White et al., 2000), controls which plant species can (co-)exist in 

plant assemblages and shape their diversity (Fraser et al., 2015) and likewise influences the 

diversity of numerous animals that depend on plants for food and habitat (Huston, 1995; 

Squires et al., 2018) as well as the diversity and community composition of soil 

microorganisms (Zak et al., 2003; Chen et al., 2015; Waldrop et al., 2017). Understanding 

grassland productivity patterns has, thus, long been one of the central topics in ecological 



22 

 

research (e.g. Rosenzweig, 1968; Sala et al., 1988, 2012, Tilman et al., 1997, 2001, 2009; Grace 

et al., 2007; LeBauer & Treseder, 2008; Oehri et al., 2017). 

Climate is thought to be an overarching 

factor that determines the broad-scale 

patterns of productivity, not only for 

grasslands but also for other ecosystems 

(Rosenzweig, 1968; Huxman et al., 

2004; Sala et al., 2012; Hovenden et al., 

2014, 2019). For instance, different 

terrestrial biomes on Earth which are 

intrinsically related to the amount of 

plant biomass they can produce (which 

increases from deserts and tundra to 

grasslands, temperate forests and finally 

tropical forests) are largely a result of 

climatic conditions in which these 

biomes occur (Archibold, 1995) (Figure 

1.1). Large-scale productivity patterns in 

grasslands are found to be particularly 

strongly related to precipitation patterns; 

hence, water availability is thought to be 

one of the main limiting factors for plant 

growth in grasslands (Sala et al., 1988).  

 

However, besides climate, water availability is also determined by soil properties; i.e. soils 

with low capacity to retain water typically have low fertility and productivity (Bünemann et 

al., 2018), while soils with higher water holding capacity can buffer the effects of climate and 

produce more biomass even in the regions with lower levels of precipitation (Wang et al., 

2009). Moreover, soil properties also determine soil fertility and the amount of nutrients 

available for plant growth. The importance of soil fertility has been recognised by farmers for 

centuries; e.g. large amounts of fertile anthropogenic soil was found in the Amazonian basin 

dating back to the 5th century BC (Lehmann et al., 2003). The role of nutrients for soil fertility 

and the concept of nutrient limitations for plant growth were later described and universally 

acknowledged by scientists (Von Liebig, 1840; Chapin, 1980) and extensively studied in 

agricultural contexts. In the context of grasslands as (semi)natural systems, numerous 

fertilization experiments demonstrated that grassland productivity is often limited by two main 

macronutrients (nitrogen and phosphorus) (Elser et al., 2007; Craine & Jackson, 2010; Harpole 

et al., 2011; Ågren et al., 2012) while other experiments have demonstrated that multiple 

different nutrients can also co-limit grassland productivity (Cech et al., 2008; Fay et al., 2015; 

Lannes et al., 2016). Related to this is the effect of anthropogenic atmospheric nutrient 

Figure 1.1 Precipitation and temperature 
determine the distribution of biomes on 
Earth. Credit: “Climate influence on terrestrial 
biome” by Navarras is in the Public Domain. 
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deposition that can act as (primarily nitrogen) fertilizer thereby alleviating nutrient limitations 

and potentially increasing grassland productivity (Phoenix et al., 2012; Stevens et al., 2015).  

 

Finally, biotic factors also play a role in determining plant productivity. For instance, plant 

diversity could enhance community productivity through niche complementarity, i.e. the higher 

the plant species diversity, the better the capacity of the community to use different available 

resources which promotes overall productivity (Hector et al., 1999; Craven et al., 2016). Other 

biotic factors, such as herbivory, parasitism and mutualism can also exert an important control 

on grassland biomass production (van der Heijden et al., 1998; Frank et al., 2002; Maron et 

al., 2011) either by increasing plants’ capacity to survive (e.g. by providing them limiting 

nutrients as in the case of mycorrhizal fungi) or by decreasing their fitness by causing diseases 

and damages to tissues (in the case of plant pathogens and herbivores). 

1.1.2 Predicting grassland productivity patterns – state of the art, challenges 

and the way forward 

Climatic factors have almost exclusively been used as predictors of global grassland 

productivity (e.g. Fay et al., 2003; Huxman et al., 2004; Sala et al., 2012) given that they 

correlate very well with coarse productivity patterns and they are relatively easy to measure 

and compare across different sites. With the development of global models of N deposition, 

this factor has also been used to explain global grassland productivity (Stevens et al., 2015). 

However, using only broad-scale predictors such as climate and nitrogen deposition leaves a 

high amount of unexplained variation which, for example, can lead to increased uncertainty in 

the models aiming to predict plant productivity under changing climate (Folberth et al., 2016). 

Even though the importance of soil fertility for plant growth is undisputed, we know 

surprisingly little about whether and which soil physicochemical properties and nutrients 

determining soil fertility can contribute to predicting the variation in grassland productivity on 

a global scale. Thus far, few global-scale studies included any of the soil properties as 

predictors of grassland productivity (e.g. Stevens et al. (2015)), however, to the best of our 

knowledge, no study investigated a comprehensive set of soil predictors. Given that different 

soil properties interact to determine soil fertility (Larcher, 2003; Kirkham, 2005), it is necessary 

to simultaneously assess the importance of several key soil properties (including soil texture, 

soil organic matter and pH) as predictors of global grassland productivity. Moreover, it remains 

unclear to what extent the in-situ availability of different soil nutrients (other than nitrogen, 

phosphorus and potassium) and particularly micronutrients, can contribute to explaining global 

grassland productivity patterns.  

One major issue impeding the analyses of soil properties and nutrients as predictors of 

grassland productivity is a lack of comprehensive soil datasets. This is due to the fact that 
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important soil properties are not consistently measured and/or reported across studies; hence 

the number of predictors that can be used in meta-analyses is limited (Vicca et al., 2018). 

Moreover, different methodologies applied to measure biomass production and soil properties 

across studies may be difficult to compare, further complicating the syntheses studies. One 

emerging solution to this issue is the establishment of coordinated distributed experiments 

where standardized, controlled protocols are used to perform measurements at each site which 

allows for effective comparison of data across different sites (Fraser et al., 2013). These 

globally distributed experiments thus provide an excellent opportunity to elucidate the role of 

soil properties and nutrients as global-scale predictors of grassland productivity. 

 

1.2  Part II: Soil microbial community composition  

1.2.1 The importance of understanding microbial community composition 

Researchers have long been trying to explain the patterns of aboveground diversity. Until 

recently, similar studies were impossible for soil microorganisms, especially at larger spatial 

scales. This is due to the extreme complexity of soil microbial (primarily bacterial and fungal) 

communities with possibly thousands of different species in just one gram of soil (Daniel, 

2005). For microbial biogeography, the traditional view has held that “Everything is 

everywhere, but the environment selects” (Baas Becking, 1934). This long‐standing paradigm 

refers to the remarkable potential for dispersal of microorganisms (Fuhrman, 2009) suggesting 

that microorganisms can be found everywhere and environmental conditions entirely determine 

which species can thrive and reach high abundances. This means that if any species disappears 

from the system due to environmental changes, its role will be easily replaced by another 

species (because of a high degree of functional redundancy) leaving no substantial effect on 

the overall functioning of the system. Therefore, although it has been acknowledged that 

microbes are crucial players in the processes that sustain the life on Earth, including nutrient 

cycling, decomposition and soil formation (Prosser et al., 2007; Falkowski et al., 2008), the 

importance of soil microbial community composition has often been marginalised. 

However, recent research has disputed the theory of unlimited dispersal of soil microbes 

(Hanson et al., 2012) as numerous continental-scale studies have shown that soil microbial 

community composition exhibits predictable biogeographical patterns (Fierer & Jackson, 2006; 

Drenovsky et al., 2010; Nemergut et al., 2011; Tedersoo et al., 2014). These patterns are less 

clear for bacteria than fungi given that some common bacterial taxa are globally distributed 

(Delgado-Baquerizo et al., 2018a), however, dispersal limitation was found to contribute to 

bacterial community composition (Albright & Martiny, 2018) even at local scales (Martiny et 
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al., 2011). Likewise, the theory of strong functional redundancy in microbial communities was 

challenged (Reed & Martiny, 2007; Allison & Martiny, 2008) and numerous studies 

experimentally demonstrated that changes in community composition can alter the ecosystem 

functioning (Strickland et al., 2009; Reed & Martiny, 2013; Wagg et al., 2014). Moreover, 

many soil microorganisms were shown to form species-specific interactions with plants (van 

der Heijden et al., 2008; Bever et al., 2015) and they thus perform unique functions in the 

ecosystem. 

In light of these findings, it has become increasingly evident that understanding how soil 

microbial communities are shaped is necessary to better understand other components of the 

ecosystem and to improve the accuracy of global-change models. With the recent improvement 

of technologies that allow community profiling such as phospholipid fatty acid (PLFA) 

analysis and high-throughput DNA sequencing, there has been a growing amount of scientific 

literature examining and describing the patterns and drivers of soil microbial diversity and 

community composition (e.g. Fierer & Jackson, 2006; Fierer et al., 2009; Martiny et al., 2011; 

de Vries et al., 2012; Tedersoo et al., 2014; Thompson et al., 2017; Waldrop et al., 2017; 

Ramirez et al., 2018; Delgado-Baquerizo et al., 2018; Rasmussen et al., 2018; Chalmandrier 

et al., 2019). Moreover, large-scale initiatives such as the Earth Microbiome Project (Gilbert 

et al., 2014), the Global Soil Biodiversity Assessment Initiative and TerraGenome (Vogel et 

al., 2009) were established with the aim to construct a global catalogue of the microbial 

diversity on Earth and eventually elucidate relationships between diversity, community 

composition and ecosystem functions. 

1.2.2 Drivers of soil microbial community composition – state of the art 

Community assembly of species contained in an ecosystem is thought to depend on three main 

processes: i) environmental filters, ii) biotic interactions and iii) dispersal constraints and 

historical contingencies (Belyea & Lancaster 1999; Lortie et al., 2004).  

In the case of soil microbes, the environmental filter has been the main research focus, and on 

a global level, microbial diversity and community composition were found to be primarily 

influenced by soil abiotic factors (Fierer & Jackson, 2006; Tedersoo et al., 2014) and climate 

(Tedersoo et al., 2014; Chen et al., 2015). For instance, it is commonly acknowledged that soil 

pH is one of the most important drivers of soil bacterial community composition (Fierer & 

Jackson, 2006; Männistö et al., 2007; Lauber et al., 2009) which could be a result of the 

relatively narrow pH ranges for optimal growth of individual bacterial taxa (Rousk et al., 2010). 

Plant productivity was also found to affect microbial diversity and community composition 

(Zak et al., 2014; Chen et al., 2015; Waldrop et al., 2017; Delgado-Baquerizo et al., 2018a), 

likely because it determines the quantity and quality of labile carbon inputs (Waldrop et al., 

2017).  



26 

 

Moreover, numerous studies have shown that plant diversity and community composition as 

well as plant community functional traits can influence soil microbial community composition 

(Chung et al., 2007; Orwin et al., 2010; Millard & Singh, 2010; Eisenhauer et al., 2011; de 

Vries et al., 2012; Zak et al., 2014; Prober et al., 2015; Sayer et al., 2017). Plant communities 

can affect soil microorganisms by increasing the diversity of environmental conditions, root 

exudates and litter, and by providing a diverse set of hosts for mutualistic and antagonistic 

microorganisms (Prober et al., 2015). This effect is likely to be particularly strong for 

microorganisms that engage in intricate, species-specific interactions with plants, such as 

symbiotic N fixing bacteria (van der Heijden et al., 2006), fungal plant pathogens (Bever et al., 

2015) and mycorrhizal fungi. Mycorrhizal fungi, for instance, form associations with up to 

90% of terrestrial plants helping them to access limiting nutrients while receiving organic 

carbon in return (Smith & Read, 2008). Therefore, direct and indirect plant-microbe 

interactions may play a central role in both plant and microbial community assembly processes 

(Wubs et al., 2019). 

Finally, dispersal limitation determines the order and timing of species immigration during 

microbial community assembly (Fukami, 2015). Incoming species and the interactions they 

form can cause historical contingency (also called priority effects) that can strongly shape the 

development of the system (Dickie et al., 2012; Vannette et al., 2014). For instance, Wubs et 

al. (2019) demonstrated that single introductions of soil and plant material generated long-term 

legacies in microbial community assembly in two contrasting systems. 

1.2.3 Emerging questions about soil microbial community assembly 

To explain local community composition, ecologists have typically been using a hierarchical 

structure where dispersal limitation determines a larger pool of species that can reach a certain 

habitat. This pool of species is then ‘filtered’ by the environment and the final pool is 

determined by interactions between the remaining species (Figure 1.2). The current use of the 

environmental filtering concept originates from the research on plant community assembly 

and dynamics (Nobel & Slatyer, 1977; van der Valk, 1981; Woodward & Diament, 1991) 

which described the environment as a metaphorical ‘sieve’ that allows species with particular 

traits to establish and persist under certain conditions, excluding all others. This paradigm of 

hierarchical filters has recently been criticized in several studies (Anderson et al., 2011; 

Cadotte & Tucker, 2017; Aguilar-Trigueros et al., 2017); more specifically, the importance of 

the environment as a primary “filter” is thought to be overestimated (Kraft et al., 2015) and it 

was proposed that historical legacies, and biotic interactions can determine the strength of  the 

environmental filter (Cadotte & Tucker, 2017). 
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While the individual predictors of 

microbial communities are well studied, 

it is currently poorly understood how 

different mechanisms – environmental 

filtering, biotic interactions and 

geographic barriers and other historical 

contingencies that limit dispersal – 

interact to shape microbial community 

assembly.  

 

Furthermore, even if the processes that 

shape microbial community assembly 

would be disentangled, the question 

remains about whether the mechanisms 

identified under certain environmental 

conditions would be valid under entirely 

different contexts, e.g. across 

contrasting climates and soil types. 

Several studies showed that that the 

predictors of microbial community 

composition are dependent on spatial 

scale and/or environmental conditions 

(Hendershot et al., 2017; Alzarhani et 

al., 2019; Chalmandrier et al., 2019) 

confirming the notion that generality in 

community ecology is exceptionally rare 

(Lawton, 1999). This calls to question 

whether any general predictors can be 

found for soil microbial communities at 

different contexts over large spatial 

ranges. 

  

Figure 1.2 The traditional concept of community 
assembly processes according to which a series 
of hierarchical “filters” determine community 
assembly. Modified from Cadotte & Tucker 
(2017). Drawing credit: Miguel Portillo-Estrada. 
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1.3 Aims and objectives 

1.3.1 Part I: The role of soil properties as predictors of grassland productivity 

In the first part of the thesis, we used two global-scale experiments in grasslands; the Nutrient 

Network – NutNet (Borer et al., 2014) and the Herbaceous Diversity Network – HerbDivNet 

(Fraser et al., 2015) to unravel the role of soil properties as predictors of grassland productivity. 

Specifically, we focussed on the following two research questions (Figure 1.3): 

Question 1 (Chapter II) 

• Which soil properties determining nutrient availability can best predict global-scale 

variation in aboveground grassland productivity and what is their contribution 

compared to broad-scale drivers such as climate and N deposition?  

To answer this question, we used the NutNet datasets including data on 72 worldwide 

distributed grassland sites where the concentrations of 12 different soil nutrients were measured 

in a standardized manner. 

Question 2 (Chapter III) 

• Which soil physicochemical properties can best predict local-scale variation in 

aboveground plant productivity within different grassland sites and how much they can 

contribute to explaining the global-scale variation in grassland productivity in addition 

to climate? 

Here, we used the HerbDivNet experiment which consists of 21 globally distributed grassland 

sites many of which contain a local-scale gradient in productivity (low, medium, high 

productivity); making it ideal for examining and comparing local- and global-scale predictors 

of grassland productivity. 

1.3.2 Part II: Soil microbial community assembly – mechanisms and predictors  

In the second part of the thesis, we used an experiment in developing heathlands and the 

HerbDivNet experiment in grasslands to explore the predictors and mechanisms driving 

microbial community assembly (Figure 1.3): 

Question 3 (Chapter IV) 
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• What are the most commonly used methods of soil microbial community assembly 

analyses? 

Question 4 (Chapter V) 

• What is the relative importance and interaction between ecological filters (timing of 

colonization/dispersal, abiotic conditions and biotic interactions) for the development 

of soil fungal community composition over multiple years? 

For this study, we made use of a multi-year, large scale heathland restoration experiment that 

included soil and plant inoculation treatments (creating historical legacies) crossed with pH 

manipulation treatments (creating environmental filters) to examine the development of plant-

fungal interactions (biotic filters). 

Question 5 (Chapter VI) 

• Is there generality in predictors of microbial (bacterial and fungal) community 

composition in grasslands across two different spatial scales (local and global)? 

Moreover, we investigate if plant productivity affects microbial community 

composition in a consistent manner across different grassland sites. 

To accomplish this, we used the HerbDivNet grassland experiment with globally replicated 

local-scale productivity gradients which allowed us to investigate and compare the predictors 

of microbial community composition at different spatial and ecological contexts. 
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Figure 1.3 Schematic representation of the questions examined in the thesis and 
overview of the topics covered in each chapter. The colours of lines and boxes 
correspond to the topics examined in different chapters. 
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CHAPTER II 

Soil nutrient availability as a predictor of global 

aboveground grassland productivity  

2.1 Abstract 

Plant productivity is a key determinant of biodiversity and carbon sequestration in grasslands. 

Previous research analysed the role of climate and atmospheric N deposition as predictors of 

global grassland biomass production but the possible contribution of various soil properties 

determining nutrient availability has not been comprehensively examined, despite their 

unquestionable importance for plant productivity. Using data on climate, N deposition, soil 

organic matter (SOM), pH, cation exchange capacity (CEC) and concentrations of different 

soil nutrients in 72 worldwide distributed grasslands, we investigated whether and which soil 

properties contribute to explaining the variation in global grassland aboveground biomass 

(AGB). Our results demonstrate that besides soil properties associated with soil fertility (SOM 

and CEC), soil zinc (Zn) concentrations predicted additional amount of variation in AGB (with 

a possible indirect influence of SOM through Zn). Soil properties together explained 32% of 

the unique (non-shared) variation, while climate (precipitation) and N deposition uniquely 

explained 16% and 4%, respectively. Moreover, the relationship between soil micronutrient Zn 

and AGB was absent in the sites with relatively low nitrogen (N) or phosphorus (P) availability, 

as well as in the subset of grasslands previously shown to be limited/co-limited by N/NP. These 

results suggest that in areas where N and P are not strongly (co)limiting plant growth, soil Zn 

availability might have an important influence on global grassland productivity. 

2.2 Introduction 

Climatic factors, particularly precipitation, have long been recognized as major determinants 

of grassland aboveground productivity at a global scale (e.g. Sala et al. 1988; Huxman et al., 

2004). The important role of soil nutrients in determining biomass production patterns has 

likewise long been acknowledged (Chapin, 1980) and extensively studied in agricultural 

contexts. In the context of grasslands as (semi)natural systems, numerous fertilization 

experiments demonstrated that grassland productivity is often limited by two main 

macronutrients (nitrogen, phosphorus) and sometimes also potassium (Olde Venterink et al., 

2001a; Elser et al., 2007; Craine & Jackson, 2010; Harpole et al., 2011; Ågren et al., 2012). In 

line with this, it has been shown that modelled anthropogenic N deposition patterns can predict 

16% of the variation in global grassland productivity patterns (Stevens et al., 2015). Besides 



36 

 

N, P and K, other nutrients (including calcium, magnesium, sulphur, iron, boron, copper, 

manganese, zinc) were found to co-limit grassland productivity, either added jointly (Cech et 

al., 2008; Fay et al., 2015; Lannes et al., 2016) or alone, e.g. in the case of the micronutrient 

boron (Lannes et al., 2020).  

Even though certain nutrients are needed in much smaller concentrations than the others (hence 

"micro" nutrients), their influence on plant growth is as important as that of macronutrients 

given that they are constituents of prosthetic groups that catalyse redox processes, form 

enzyme-substrate complexes, enhance enzyme reactions or play a role in protein synthesis 

(Fageria et al., 2002; Broadley et al., 2011). Therefore, the deficiency in any essential nutrient 

limits plant development and productivity. While various micronutrients have been shown to 

influence crop yield and limit the productivity of agricultural plants (e.g. Fageria et al., 2002; 

Dimkpa & Bindraban, 2016), they have rarely been investigated in (semi)natural systems. 

However, the study by Fay et al. (2015) has put micronutrients into the spotlight as potentially 

important limiting factors of plant productivity in non-agricultural grasslands worldwide. 

Although the role of soil nutrients in limiting grassland productivity is undisputed, a general 

assessment of the importance of different soil factors determining natural variation in nutrient 

availability as predictors of grassland productivity is currently lacking. This is particularly true 

for soil micronutrient availability which is not often (consistently) measured or reported in 

studies quantifying grassland productivity and to the best of our knowledge, it has never been 

used to predict productivity patterns across large spatial ranges. Besides the concentrations of 

different macro- and micro-nutrients, nutrient availability is also determined by soil 

physicochemical properties such as pH, the amount of organic matter and soil cation exchange 

capacity (Vicca et al., 2018; Van Sundert et al., 2020). For instance, soils with low CEC have 

limited capacity to retain cations which are therefore easily leached resulting in nutrient 

imbalances and reduced nutrient availability (Lehmann & Schroth, 2005). The question thus 

remains which soil properties determining nutrient availability can contribute to predicting 

global aboveground grassland productivity in addition to broad-scale drivers such as climate 

and atmospheric N deposition.  
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Here, we made use of the comprehensive and harmonized soil dataset from NutNet – a globally 

distributed network of (semi)natural grasslands (Borer et al., 2014) – to examine the 

relationship between the natural variation in soil properties and nutrient concentrations and the 

variation of global grassland biomass production. The data on biomass production, measured 

in a consistent manner in 72 sites around the globe (Figure 2.1), was collected along with the 

data on the concentrations of 12 different soil nutrients, soil pH, SOM and CEC, atmospheric 

N deposition and climatic conditions. This dataset thus contained information about a wide set 

of soil nutrients (including different macro- and micro-nutrients) across globally distributed 

grassland sites with contrasting climatic conditions. We hypothesised that, besides climate, soil 

physicochemical properties (pH, SOM, CEC) would show the strongest associations with 

biomass production due to their important effect on overall soil fertility. Moreover, given the 

experimental proof of widespread N limitation in terrestrial systems including grasslands 

(LeBauer & Treseder, 2008; Fay et al., 2015) as well as co-limitation by P (Elser et al., 2007; 

Harpole et al., 2011) and other nutrients (Fay et al., 2015), we expected that factors influencing 

N availability (C:N and atmospheric N deposition) and P availability would predict additional 

variation in AGB along with other macro- and/or micro-nutrients. The latter would particularly 

be expected in the regions where limitation by N/NP is less pronounced.  

 

 

Figure 2.1 The distribution of 72 NutNet grassland sites along the precipitation gradient. 
White points indicate the location of different sites and different sizes of points around 
them correspond to the amount of aboveground biomass (AGB) per site. 
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2.3 Materials and methods 

2.3.1 Data collection 

Plant aboveground biomass data was collected from 72 Nutrient Network (NutNet) grassland 

experimental sites (www.nutnet.org) (Table S2.1). Sites were located on six continents and 

spanned a wide range of peak biomass (58 – 1602 g/m2), mean annual precipitation (211 – 2813 

mm) and mean annual temperature (-2.7 – 27.8°C) values (Figure 2.1). At each site, standing 

crop (live biomass and recently senescent material) was estimated destructively by clipping 

aboveground vegetation at the peak of the growing season from two 0.1 m2 (10 x 100 cm) strips 

for a total of 0.2 m2 within 5 x 5 m permanent plots. More details on experimental design for 

NutNet sites are described in Borer et al. (2014). Total live biomass was then dried at 60°C and 

weighted to the nearest mg. Single-time-point biomass measurements were performed between 

2007 and 2017, depending on the site (Table S2.1). At each site, the data was collected from 

non-fertilized plots. Most sites contained 30 plots (i.e. pre-treatment plots), while 12 sites 

(control plots within fertilization experiment) contained less than 10 plots (a minimum of 

three). We calculated the average of standing biomass from all the plots within a site to obtain 

a proxy of aboveground grassland biomass – AGB [g/m2] production per site. While peak 

standing crop is not a perfect measure of grassland productivity, it has been shown that this 

method can be a fairly good indicator for the general ranking of grassland productivity 

(Scurlock et al., 2002) and that it can produce similar estimates compared to those obtained by 

more complex methods (Lauenroth et al., 2006). Given that 29 sites were exposed to certain 

disturbances (mowing, burning, grazing) that could affect biomass productivity estimates, we 

created disturbance scores for each site; mowing, burning and low-intensity grazing each had 

a score of one, medium intensity grazing a score of two and high-intensity grazing a score of 

three. The other 43 sites, which did not have any form of management within a period of more 

than a year before the biomass was collected, received a disturbance score of zero (Table S2.1). 

Soil sampling was conducted in the same 5 x 5 m plots by taking three soil cores (2.5 cm 

diameter) at a depth of 10 cm. The soil was subsequently pooled in one sample per plot, air-

dried and analysed for different nutrients (total N and total C, extractable soil P, K, Ca, Mg, 

Na, S, Zn, Fe, B, Cu, Mn), pH, SOM and CEC (except for the latter two at a few sites, all 

measurements were performed in the same years of biomass sampling). Total soil C and N 

[pct] were determined using dry combustion gas chromatography on an Elemental Analyzer 

(Costech ECS 4010 CHNSO Analyzer, Valencia, CA USA). pH was determined by a pH meter 

in 1:1 soil: water suspension (A&L Labs, Memphis, TN USA). The concentrations of 

extractable nutrients [ppm] were analysed using Mehlich-3 analysis (A&L Labs, Memphis, TN 

USA) which is considered to be suitable for the determination of both macro- and 

micronutrients in a wide range of soil types and pH conditions (Mehlich, 1984; Jones, 1990). 
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The measured concentrations were in all cases above the minimum detection level for different 

micronutrients. Cation exchange capacity [meq/100g] was calculated based on the 

concentrations of Ca, Mg and K using the method described by Ross & Ketterings (1995). The 

percentage of soil organic matter was determined using the loss on ignition method, by 

performing soil combustion at 400 °C. The values of soil parameters were averaged per site. 

Based on the site locations, we obtained climatic data using global databases. Mean annual 

precipitation (MAP) and temperature (MAT) estimates for the period between 1979 and 2013 

were derived using the ‘Climatologies at high resolution for the earth’s land surface areas’ 

database (Karger et al., 2017); hereafter referred to as ‘CHELSA’ for brevity. We also obtained 

long-term weather-station climate data from 41 sites and compared the values with those 

obtained by CHELSA. While CHELSA estimates were very similar to the weather station 

measurements in the majority of sites, we corrected the CHELSA precipitation values for nine 

sites for which the measured values differed by more than 15% (Figure S2.1). We further 

calculated the length of the growing season as the number of months with a mean monthly 

temperature higher than 5oC. This threshold is considered to be appropriate especially for mid-

latitudes (Frich et al., 2002), where the majority of our sites are located, but it was used here 

as a rough indicator of growing-season length for all the sites. Based on this, mean annual 

growing season precipitation (MAPgs) was calculated and included in the analyses in addition 

to MAP because it might better represent the amount of water available to plants during the 

period of their activity than annual means. The aridity and potential evapotranspiration (PET) 

data was obtained using CGIAR-CSI Global-Aridity and PET Database (http://www.cgiar-

csi.org; Zomer et al. 2008). Data on total inorganic nitrogen deposition [kg/ha/yr] was derived 

from (Ackerman et al., 2018). We used the average values over the period of years available 

in the database (1984-1986, 1994-1996, 2004-2006, and 2014-2016) in order to account for 

long-term patterns of N fertilization via atmospheric deposition. 

2.3.2 Statistical analyses 

Disentangling the predictors of AGB 

To disentangle the role of different climatic and soil properties as predictors of grassland AGB, 

a structural equation model (SEM) was built based on prior knowledge about the drivers of 

grassland productivity. The factors that were hypothesised to be overarching global drivers of 

grassland AGB were climate, N deposition, soil physicochemical properties determining soil 

fertility (SOM, CEC, pH) and disturbance intensity (Sala et al., 1988; Fay et al., 2003; Huxman 

et al., 2004; Stevens et al., 2015; Grace et al., 2016; Bünemann et al., 2018). Furthermore, the 

availability of main macronutrients (N and P) was expected to explain additional variation in 

addition to the hypothesised main drivers (or to reflect their indirect effect) due to their key 

role in (co)-limiting grassland productivity worldwide (Elser et al., 2007; Craine & Jackson, 

http://www.cgiar-csi.org/
http://www.cgiar-csi.org/
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2010; Harpole et al., 2011; Ågren et al., 2012); followed by other nutrients which have also 

been demonstrated to co-limit grassland productivity (Olde Venterink et al., 2001a; Fay et al., 

2015; Lannes et al., 2020). Apart from the direct effects, precipitation was additionally 

expected to have an indirect influence through atmospheric N deposition as it affects N 

deposition rates (Prado-Fiedler, 1990), particularly wet N deposition (Kryza et al., 2011; 

Wałaszek et al., 2013), while climate, in general, was expected to have additional indirect 

effects via its influence on SOM and pH (Zhao et al., 2019). All these factors were also 

expected to affect CEC and available soil nutrient concentrations. For example, CEC and 

availability of different soil nutrients are strongly determined by soil pH and SOM (Havlin, 

2004; Bünemann et al., 2018). Nutrient concentrations can also be influenced by atmospheric 

N deposition (which is more pronounced in the region of strong anthropogenic influences and 

can also indirectly indicate increased anthropogenic deposition of other nutrients).  

We built a SEM representing the influence of different variables in four steps based on the 

expectations described above. The ‘core’ SEM was constructed using the most important 

overarching drivers: climate (MAPgs, MAP, MAT, aridity, PET), N deposition, SOM, CEC, 

pH and disturbance intensity. We tested an indirect influence of climatic variables through N 

deposition (precipitation), SOM and CEC. Moreover, we examined an indirect influence of 

SOM and pH through CEC. The variables with significant paths (either direct or indirect; P < 

0.05) were retained in the model. In the following steps, groups of nutrients were sequentially 

added (in all cases, indirect paths from retained climatic factors, N deposition, SOM and pH 

were tested); main macronutrients were added first (total N, C:N and P) followed by other 

macronutrients (K, Ca, Mg, Na, S) and finally micronutrients (Zn, Fe, Mn, Cu, B). Only the 

nutrients with significant paths were retained in each step. The variables with significant paths 

in the preceding models were always retained even if with additional paths added in subsequent 

steps their direct effect was no longer significant. The rationale behind this approach is that the 

variables that are expected to have the most important role on AGB either directly or indirectly 

through other factors (e.g. climate through soil properties) were given the advantage in the 

model construction so that their potential direct and indirect influence could be fully explored.  

Structural equation models were constructed using the lavaan package (Rosseel, 2012). The fit 

was assessed using standard indices, where model chi-square (χ2) P > 0.05, comparative fit 

index (CFI) > 0.95, Tucker-Lewis index (TLI) > 0.95, root mean squared error of 

approximation (RMSEA) < 0.08, and standardised root mean square residual (SRMR) < 0.08 

were considered as indicators of a good fit (Hooper et al., 2008). In each step, the model with 

a good fit and the highest R2 was selected and reported. 

In additional analyses, we constructed a multiple regression model using the factors with a 

significant direct path on AGB in the final SEM. We examined if different two-way interactions 

between the selected variables in the best model would emerge as significant predictors of AGB 

by separately adding each interaction term to the multiple regression model and testing its 
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significance (using P < 0.05 as a significance threshold). The model performance was evaluated 

via repeated (100 times) k-fold (k = 10) cross-validation using the caret package. Finally, we 

performed variance partitioning between three distinct groups of variables in the best model 

(climatic variables, N deposition, soil variables) using the varPart function in the modEvA 

package to determine the percentage of unique vs shared variance explained by these groups.  

The variables were loge-transformed prior to analyses in case of a skewed distribution to 

improve normality and linearity. All analyses were performed in R (version 3.3.2) (R Core 

Team, 2015).  

Examining the influence of N and P availability levels and N/NP (co)limitation on the 

relationship between other selected nutrients and AGB 

We hypothesised that the influence of soil nutrients (other than N and P) selected as important 

predictors of AGB in the prior step would depend on the levels of N and/or P availability. To 

test the first hypothesis, we assigned each site to two groups according to their C:N levels (low 

and high) and N deposition levels (low and high) and combined them to obtain a variable with 

four categories (low C:N - low N deposition, low C:N - high N deposition, high C:N - low N 

deposition, high C:N - high N deposition). The threshold between ‘low’ and ‘high’ levels of N 

deposition and C:N was based on 50% quantiles (cut-offs of 3.64 kg/h/y and 13.2, respectively). 

The median value for C:N in our study was comparable to the average C:N value found in 

worldwide-distributed grasslands (Cleveland & Liptzin, 2007) supporting its use to contrast 

relatively low and high C:N. Nonetheless, to test the sensitivity of the threshold chosen, we 

also performed the analyses based on the mean values (N deposition = 5.1 kg/ha/y and C:N = 

14). This provided very similar results (Table S2.3). The group with high C:N and low N 

deposition is here considered as the ‘low N availability level’. This assumption is based on the 

general finding that C:N is a relatively robust indicator of spatial variation in N availability, 

where increasing C:N indicates decreasing N availability (Andrianarisoa et al., 2009; Wang et 

al., 2014; Alberti et al., 2015; Vicca et al., 2018), while atmospheric N deposition can 

substantially increase N availability but it can take very long for this effect to be translated in 

a decrease of soil C:N (Vicca et al., 2018). Similarly as for N, to test the effect of P availability, 

the dataset was divided into two parts using the median value of P (29 ppm) on low and high 

P availability and the relationship between selected nutrients and AGB was assessed for these 

two datasets.  

Given that soil C:N and N deposition may not be accurate indicators of soil N availability for 

different sites, to further examine if the relationship between selected soil nutrients and AGB 

is absent in grasslands with low N availability, we also explored this relationship for NutNet 

sites that had previously been demonstrated to be either N limited / NP co-limited or without 

N (co-)limitation according to the experiment by Fay et al. (2015). There were 38 sites from 

our dataset (out of 72 sites in total) for which N (co-)limitation had been assessed in the study 

by Fay et al. (2015), but these comprised only a few of sites in our ‘low N availability’ group 
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and it was therefore not possible to confirm that this group generally contained sites that are N 

limited.  

2.4 Results 

Disentangling the predictors of AGB 

 

The ‘core’ SEM model included a significant direct influence of MAPgs, N deposition, SOM, 

CEC as well as indirect effects of MAPgs, SOM and pH (Figure S2.5). This model explained 

47% of the variation in AGB. After adding macronutrients to the core model, the best model 

included C:N as an additional variable and this model explained 53% of the variation (Figure 

S2.5). When micronutrients were added in the final step, only Zn was retained in the best final 

model, with indirect paths from SOM, pH and N deposition (Figure 2.2). Adding Zn to the 

model, however, rendered the direct effect of SOM not statistically significant. None of the 

other soil nutrients were chosen, likely because their influence was already contained in the 

direct influence of other variables in the core model. The final model explained 61% of the 

variation in AGB with the highest direct factor loadings for Zn and MAPgs. 

 

A multiple regression model including the variables with a significant direct effect on AGB 

(MAPgs, N deposition, CEC, C:N and Zn; the individual relationship between these variables 

and AGB are shown in Figure S2.2) explained 56% of the variation in AGB with no significant 

two-way interaction effects (P > 0.05). Repeated K-fold cross-validation demonstrated that this 

model can predict 54% of the variation in the validation set. Variance partitioning revealed that 

the highest proportion of unique (non-shared) variation in the model was explained by soil 

properties (32%,) followed by climate (16%) and N deposition (4%) (Figure 2.3). 
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Figure 2.2 Final structural equation model depicting the direct (black lines) and indirect 
(grey lines) influence of different predictors of AGB. Full lines indicate significant paths 
and dashed non-significant paths. Factor loadings are indicated only for significant paths. 
SRMR = 0.06, RMSEA = 0.00, CFI = 1, TLI = 1.002, P (χ2) = 0.45, df = 11, R2 (AGB) = 0.61. 
The model has a good fit based on each of the goodness-of-fit criteria. 
 

 

 

Figure 2.3 Variance partitioning between climate (MAPgs), N deposition and 
soil properties (CEC, C:N and Zn). *Values lower than 0 are not shown.  
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The influence of N and P availability levels / N(P) limitation on the relationship between Zn 

and AGB 

 

According to Liebig’s law of the minimum (von Liebig, 1840), the potential important 

influence of Zn on AGB detected in the SEM may depend on the availability of the scarcest 

nutrients in relation to the need, i.e. N and P. To create different ‘N availability’ levels, we used 

the 50% quantiles as a threshold between low and high levels of C:N and N deposition, splitting 

the dataset into four classes where the group with high C:N ratio – low N deposition was 

considered as low ‘N availability’ group. Simple linear regressions performed for each of these 

four groups showed that in the ‘low N availability group’, there was no significant relationship 

between Zn and AGB, while in the other three groups, there was a significantly positive Zn-

AGB with comparable slopes and R2s ranging from 0.34 to 0.43 (Figure 2.4a, Table S2.2). 

Correspondingly, when ‘low N availability’ sites were excluded from the full dataset, Zn 

explained more variation in AGB (R2 = 0.37) than in the full dataset. Similarly, Zn-AGB 

relationship was significant at high P availability group (R2 = 0.36) and absent at low P 

availability group (Figure 2.4b, Table S2.2). 

 

To confirm that the Zn-AGB relationship is absent when soil N/P availability is low, we further 

explored the Zn-AGB relationship in the subset of sites that had previously been demonstrated 

to be N limited or NP co-limited compared to those that had no N limitation / NP co-limitation 

in the fertilization study by Fay et al. (2015). In line with the previous analyses, we found that 

the sites that were N limited / NP co-limited showed no relationship between Zn and AGB 

while this relationship was significantly positive for sites with no signs of N limitation / NP 

co-limitation (Table S2.4, Figure 2.5).  
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Figure 2.4 a) The relationship between log Zn and log AGB under different levels of C:N and 
N deposition; from top-left to bottom-right: low C:N - high N deposition, high C:N - high N 
deposition, low C:N - low N deposition, high C:N - low N deposition. The median values of 
C:N and N deposition were taken as thresholds based on which the dataset was split into 4 
equal groups. Different colours of the points represent different levels of growing season 
precipitation (which ranges from 160 mm to > 1500 mm per year); b) The relationship 
between log Zn and log AGB at two different P availability levels (low and high). The median 
value of available P was taken as thresholds based on which the dataset was split into 2 equal 
groups. 
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Figure 2.5 The relationship between Zn and AGB in the subset of NutNet sites (n=38) 
for which the effect of nutrient additions was assessed in the study by Fay et al. (2015). 
The relationship in the soils that were shown to be a) N limited (n = 9) or b) without N 
limitation (n = 29); c) NP co-limited (n = 23); d) without NP co-limitation (n = 15). Here, 
it is demonstrated that in the grasslands limited by N or co-limited by N and P, there 
was no relationship between AGB and Zn while in those that showed no signs of N 
limitation there was a significant, positive relationship between AGB and Zn.  
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2.5 Discussion 

Our findings demonstrate that the factors that determine soil nutrient availability i.e. CEC, C:N 

and particularly Zn (all of them likely strongly driven by SOM) are important predictors of 

global grassland productivity, together explaining 32% of the unique (non-shared) variation in 

addition to the effect of the broad-scale predictors, climate and N deposition. 

 

Soil nutrient availability as a predictor of global grassland AGB 

Soil organic matter and cation exchange capacity both determine the amount of nutrients that 

can be retained in soil and they are thus among the most important factors driving soil fertility 

and overall nutrient availability (Havlin, 2004; Bünemann et al., 2018). In this study, both CEC 

and SOM were strongly correlated with different soil nutrients but, in general, they were better 

predictors of grassland AGB than the concentrations of primary and secondary macronutrients. 

This suggests that these fertility indicators already largely incorporate the effect of soil 

macronutrients on AGB. Nonetheless, indicators of soil N availability (N deposition and C:N) 

were also selected in the best model in addition to the fertility indicators, where particularly N 

deposition contributed substantially to explaining the variation in AGB, as previously shown 

by Stevens et al. (2015). Surprisingly though, soil micronutrient Zn was the single best 

predictor of variation in AGB, and according to our SEM, much of the effect of SOM on 

biomass went through its effect on Zn. Indeed, SOM has been shown to play a critical role in 

the availability and transformation of Zn in soil (Obrador et al., 2003; Cakmak, 2008; Chen et 

al., 2017). 

Zn is a micronutrient essential for plant growth and, even though it is only needed in relatively 

small concentrations Zn deficiency is known to be widespread in agricultural systems 

(Sillanpää, 1982, 1990) where it was often found to strongly influence plant growth and limit 

plant yield (Rashid & Ryan, 2004; Alloway, 2009; Shukla et al., 2014). For instance, it has 

been shown that almost 50% of 190 agricultural soils investigated in the study by Sillanpää 

(1990) were deficient in plant-available Zn, which was more frequent than any other 

micronutrient. Zn serves as a structural component of a large number of proteins (Andreini et 

al., 2006) and is involved in important metabolic functions including photosynthesis and 

defence against drought and disease (Cakmak, 2000). When the amount of Zn in the soil is 

inadequate, plants can suffer due to dysfunction of different enzymes and changes in 

physiological processes resulting in inhibited plant growth and development and hence reduced 

productivity (Cakmak, 2000). Micronutrient deficiencies rarely occur due to low total 

concentrations of nutrients in soil (primary deficiencies) but they rather occur as a result of soil 

factors reducing the availability to plants of otherwise ample supplies of micronutrients 

(secondary deficiencies) (Sillanpää, 1982). For instance, alkaline soils, such as those rich in 

CaCO3, are often Zn deficient due to low Zn solubility at high pH and/or because Zn gets 
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adsorbed to carbonates and become unavailable to plants (Chen & Barak, 1982; Fageria et al., 

2002). Moreover, drylands have been found to have particularly low Zn availability due to their 

high soil pH that limits the formation and preservation of clay minerals and soil organic matter 

(Moreno-Jiménez et al., 2019). On the other hand, Zn can be toxic to plants in higher 

concentrations, but Zn toxicity is expected to be much less common in natural soils compared 

to Zn deficiency (Alloway, 2008) and there were no indications of possible Zn toxicity in the 

dataset used in this study.   

The potential importance of micronutrients for the productivity of non-agricultural grasslands 

on a global scale was previously hinted at in the synthesis study on fertilization experiments 

by Fay et al. (2015) where multiple nutrients (including micronutrients) co-limited productivity 

in many grasslands worldwide. Moreover, other experimental studies (Cech et al., 2008; 

Lannes et al., 2016) have also demonstrated the potential effect of micronutrient additions in 

non-agricultural grasslands but few studies examined additions of individual micronutrients. 

For example, a recent study in Brazilian Cerrado grasslands showed that a single micronutrient 

(boron) limits plant productivity in these grasslands (Lannes et al., 2020). As for other natural 

systems, Zn deficiency has been linked to fruit production in European forests (Fernández-

Martínez et al., 2014). Therefore, it seems plausible that micronutrient limitations of plant 

productivity, widely observed in agricultural systems, could likewise occur in natural systems 

including (semi)natural grasslands. Moreover, given that many grasslands are located in 

relatively arid areas and that aridity is expected to increase due to climate change, the 

availability of some micronutrients could decrease further (Moreno-Jiménez et al., 2019), 

potentially leading to stronger micronutrient deficiencies in future.  

 

The influence of N (co-)limitation on Zn-AGB relationship 

 

We find that the relationship between Zn and AGB prominent in the overall dataset, was 

entirely absent in the regions with high C:N and low N deposition (potentially indicating low 

N availability) as well as in the grassland with relatively low P availability. The same was 

found in the subset of NutNet grasslands previously shown to be N limited/ NP co-limited 

according to the fertilization study by Fay et al. (2015). The lack of the relationship between 

Zn and AGB under low N/P availability may be due to decreased uptake of Zn at low N 

(Cakmak et al., 2010) and/or because, in accordance with Liebig’s law of the minimum, 

grassland AGB is primarily constrained by the lack of the scarcest nutrients in relation to the 

need. It has previously been demonstrated that the effect of some micronutrients on 

productivity depends on soil N availability; the grain yield from plants grown on soils deficient 

in N and Zn only responded to Zn additions when N fertilizer was added (Loneragan & Webb, 

1993). Similarly, micronutrient additions (Zn and B) in relatively infertile agricultural regions 

of India had the strongest effect on crop yield when added together with N and P (Sahrawat et 

al., 2010). Moreover, numerous studies have shown that N is important for Zn uptake and 

translocation (Shi et al., 2010; Cakmak et al., 2010; Erenoglu et al., 2011; Gupta et al., 2016) 
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which is why higher concentrations of Zn were observed in plants treated with N compared to 

control (Kutman et al., 2010; Erenoglu et al., 2011). These results suggest that, besides NP co-

limitation, also N(P)-Zn co-limitations could be common in grasslands and that in addition to 

anthropogenic N/P deposition, also metallic micronutrient (Zn) deposition (which is likewise 

tightly related to human activities) may be important to consider when predicting the fate of 

grassland systems under environmental changes.   

2.6 Conclusion 

In this study, we demonstrate that soil properties determining soil fertility – soil organic matter 

and cation exchange capacity – can significantly improve the predictions of grassland 

productivity patterns given that they can integrate the effect of overall nutrient availability. 

Nonetheless, soil Zn was shown to explain additional variation in productivity indicating that 

Zn deficiency might be common in grasslands. While the effects of the widespread deficiency 

of micronutrients on plant productivity are well-documented for agricultural plants, the 

individual role of micronutrients, such as Zn has been rarely examined in natural ecosystems. 

The study by Fay et al. (2015) was the first to reveal the importance of micronutrients as 

limiting factors across non-agricultural grasslands worldwide and our findings demonstrate 

there is also a clear link between in-situ soil Zn concentrations and grassland productivity. We 

argue that it would be beneficial to measure and report the concentrations of micronutrients, 

particularly Zn, (both in plants and soil) in studies investigating grassland productivity, 

including nutrient fertilization studies. This would help to further examine the extent of 

deficiencies of these nutrients, their link with grassland productivity, as well as their role in 

grassland responses to environmental changes, such as increased anthropogenic nutrient 

depositions.  

 

No observational study can fully disentangle the effect of different correlated soil properties 

and nutrients (e.g. soil organic matter and Zn in this study). Our results, however, motivate 

future experimental studies in grasslands to focus more on micronutrient additions specifically, 

alone, together and in combination with organic matter (that can help increase the availability 

of added nutrients) and N(P) additions, to assess the potential interaction between N(P) and Zn 

limitation and to further unravel the role that nutrients play in determining grassland 

productivity.  
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CHAPTER III 

Soil physicochemical properties as key predictors of local 

and global variability in grassland aboveground biomass 

production 

3.1 Abstract 

Plant biomass production has long been known to depend on the soil they grow on and the 

climate they live in. While the effects of climate have been widely studied, which of the 

multitude of individual soil properties determining soil fertility are the best predictors of global 

grassland productivity patterns has been rarely assessed, nor has it comprehensively examined 

how much of the total variation in productivity they can explain. In this study, we used globally 

replicated local-scale gradients in plant productivity to examine which soil physicochemical 

properties contribute to explaining variation in aboveground biomass (AGB) production in 

(semi)natural grasslands on the local and the global scale. We found that the amount of soil 

organic matter, percentage of sand, bulk density and the amount of calcium in the soil were the 

best soil predictors of AGB production and this was consistent for both spatial scales. On the 

global scale, the variation of AGB was better explained by soil properties than by climate. Our 

results emphasize that these soil properties, which are generally associated with soil’s capacity 

to retain and provide nutrients and water, are critical to understand current and predict future 

grassland productivity patterns. 

3.2 Introduction 

Plant productivity is one of the main grassland ecosystem services and an important component 

of the global carbon budget (White et al., 2000). The drivers of grassland productivity patterns 

have thus been a long-standing topic of ecological research demonstrating the key role of 

climate, biotic factors and soil physicochemical properties (van der Heijden et al., 1998; Hector 

et al., 1999; Fay et al., 2003; Huxman et al., 2004; Elser et al., 2007; Sala et al., 2012).  

Soil physicochemical properties such as texture and structure, amount of organic matter, cation 

exchange capacity, pH and concentrations of different nutrients jointly determine nutrient 

availability (Vicca et al., 2018; Van Sundert et al., 2019) and water holding capacity (Kirkham, 

2005), both of which are of crucial importance for plant growth (Chapin, 1980; Kirkham, 2005; 

Vicca et al., 2012; Fay et al., 2015; He & Wang, 2019). For example, sandy soils with a low 
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amount of organic matter have a low capacity to retain water (Kirkham, 2005). They also have 

low cation exchange capacity, and cations are therefore easily leached from sandy soils 

(Lehmann & Schroth, 2005) typically resulting in suboptimal nutrient availability. Soil pH also 

determines plant nutrient availability as it influences the chemical composition of the soil; low 

pH favours leaching of base cations and the mobilization of iron (Fe) and aluminium (Al) 

further impedes their uptake. Low pH can also reduce phosphorus (P) availability by enhancing 

complex formation with Al and Fe compounds. In contrast, in alkaline soils, high 

concentrations of calcium ions (Ca2+) in soil solution limit plant uptake of ions like Fe2+ and 

magnesium (Mg2+) and promote the precipitation of calcium phosphates, thereby reducing P 

availability (Larcher, 2003).  

Soils can also affect the relationship between climate and productivity by buffering or 

aggravating climatic impacts (Sala et al., 1988; Fernández-Illescas et al., 2001; Wang et al., 

2009). Folberth et al. (2016) argued that the effect of climate changes on plant yield can 

strongly depend on soil texture where, for example, a moderate decrease in precipitation is 

expected to cause a more severe impact on yield in soils with lower water holding capacity, 

while the soils with fine texture might buffer the decrease in precipitation by storing water for 

longer periods. They stress that accounting for soil variability is essential to improve models 

assessing the impacts of climate change on biomass yield. 

Surprisingly though, few in-depth studies have attempted to assess the influence of soil 

properties and nutrients and determine the best soil-derived predictors of global grassland 

productivity. For instance, Stevens et al., (2015) included nitrogen, phosphorus and soil pH in 

their global study of predictors of grassland productivity where they found little support that 

global AGB was related to these soil properties. On the other hand, on a regional scale, Yang 

et al. (2009) and Sun et al. (2013) found that soil texture, moisture, nitrogen and organic carbon 

were important predictors of AGB productivity on the Tibetan Plateau while Olde Venterink 

et al. (2001) showed that AGB was related to the factors representing N and P availabilities 

and soil bulk density in wet meadows of the Netherlands and Belgium. Given that the main soil 

drivers of productivity – nutrient availability and water holding capacity – depend on the 

interplay of several soil properties and nutrients, ideally, they all need to be studied in concert 

(Vicca et al., 2018). The lack of harmonized, comparable databases containing plant biomass 

production data as well as comprehensive soil data has been a great challenge hampering the 

large-scale analyses of the importance of soil physicochemical properties as predictors of 

biomass productivity (Vicca et al., 2018). 

 

Here, we collected data on climate, aboveground biomass and 17 soil physicochemical 

properties measured in a standardized manner from worldwide distributed grassland sites 

within the Herbaceous Diversity Network (HerbDivNet) (Fraser et al., 2015). Most 

HerbDivNet sites contain a ‘productivity’ gradient, where the existing variation in plant AGB 

cannot be explained by climate (which is relatively stable within the sites). Hence, this setup 
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provides a unique opportunity to determine the influence of soil properties for both within-site 

(i.e. local-scale) and between-site (i.e. global-scale) variation in AGB. While the within-site 

variation enabled a detailed assessment of the relationship between soil properties and AGB 

for different sites exposed to contrasting climates, the between-site variation allowed us to 

disentangle the relative importance of soil properties and climate globally. Specifically, we 

aimed to investigate: i) which soil properties are the best predictors of local-scale variation in 

grassland AGB; ii) which climatic and soil factors are the best predictors of global-scale 

variation in grassland AGB and what is the relative contribution of climate versus soil 

predictors and iii) whether the local-scale relationships between AGB and soil properties 

persist on the global scale when climate is taken into account. 

3.3 Materials and methods 

3.3.1 Sampling sites and data collection 

Data was collected from 21 Herbaceous Diversity Network (HerbDivNet) sites located in 12 

countries distributed over six continents (Figure 3.1). All HerbDivNet sites are grassland areas 

dominated by vegetation representing the regional species composition. Each of the 21 sites 

contained between two and six plots of 8 x 8 m; nine sites contained six plots, three sites 

contained four plots, one site three plots and eight sites contained two plots (Table S3.1). In 

total the dataset thus contained 85 plots. The sites with six plots were chosen to represent an 

estimated gradient in productivity (low, medium and high) with two plots at each productivity 

level, while the sites with four plots normally had two levels of productivity and other sites did 

not contain a clear productivity gradient (Figure S3.1). More details on experimental design 

can be found in Fraser et al. (2015). All the plots within one site were subject to the same or 

very similar climatic conditions (Table S3.1). Mean annual temperature (MAT) across sites 

ranged from 1.5 °C to 20.1 °C and mean precipitation ranged from 294 mm to 1237 mm (Figure 

3.1). Peak annual AGB values spanned a wide range from 13 g/m2 to 1187 g/m2 (Figure S3.1). 
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Figure 3.1 a) The location of 21 HerbDivNet sites across a precipitation gradient (colours 
of points indicate the number of plots per site). b) The distribution of sites under different 
combinations of mean annual temperature (MAT) and mean annual precipitation (MAP) 
values. The size of points corresponds to mean AGB values per site. 

 

Biomass sampling 

Total aboveground biomass was harvested from each m2 of each 64 m2 plot at the peak of the 

growing season. Sampling was performed in the period between 2012 and 2017 in a single 

sampling event per site (Table S3.1). Litter was first excluded from the total biomass and live 

biomass was dried and weighed. Based on this, average peak AGB production [g/m2] was 

calculated for each plot. The sites were not fertilized, but most of them were subject to some 

form of low-intensity management (mowing, grazing, burning) and sampling was therefore 

performed at least three months after the last disturbance event (the plots were fenced before 

biomass collection).  

Soil sampling 

Soil samples were taken in a single sampling event at the peak of the growing season in the 

period between 2017 and 2018, depending on the site (Table S3.1). For each plot within a site, 

five samples were taken using soil corers from four corners and the centre of the plot at two 

soil depths (0-10 cm and 10-20 cm) Samples were pooled into one composite sample per soil 

depth (a total of 170 samples), air-dried and sieved at 2 mm after which they were sent to the 

University of Antwerp for further analyses. Besides this, additional samples were taken at two 

soil depths with corers of a known volume to determine the average bulk density (w/v) and 

gravel content (v/v) in the soil.  
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Climatic data 

Mean annual precipitation (MAP) and temperature (MAT) for the period between 1979 and 

2013 were derived from the CHELSA database (Karger et al., 2017) based on the geographical 

position (latitude and longitude) of each plot. We also calculated the mean growing season 

precipitation (MAPgs) by summing the monthly precipitation of the months with a mean 

monthly temperature higher than 5oC as in Chapter II. With this threshold, the growing season 

precipitation might be overestimated for two African sites that have short periods with drought 

(with a temperature higher than 5oC) during which plants are dormant, but given that 

precipitation in these months is very low compared to the other months, the overestimation is 

negligible. We derived data on aridity and potential evapotranspiration (PET) using CGIAR-

CSI Global-Aridity and PET Databases.  

3.3.2 Soil analyses 

Besides bulk density (BD) and gravel content, the following soil parameters were analysed: 

soil organic matter (SOM), total nitrogen (N), total carbon (C), total phosphorus (P), available 

P, exchangeable bases (including calcium - Ca, potassium - K, magnesium - Mg), base 

saturation (BS), cation exchange capacity (CEC), pH and soil texture (% sand, % silt, % clay). 

For each plot, it was estimated whether the soil was ‘shallow’ (< 20 cm) or deeper than 20 cm. 

These particular soil properties were chosen to be measured because they are known to be 

among the most important factors determining soil fertility and plant productivity (Vicca et al., 

2018; Van Sundert et al., 2020). Micronutrients were not measured in this study as it was 

initially assumed that their contribution would be negligible (but see the results of Chapter II; 

however, the analyses were later hampered by COVID restrictions).  

SOM [%] was calculated as the loss of dry matter at 550°C expressed as a percentage of dry 

matter (Heiri et al., 2001). Total soil N and total C [%] were determined on ground soil, dried 

48h at 70°C, using the Flash 2000 CN analyser (ThermoFisher Scientific, Waltham, MA, 

USA). Each sample was analysed in triplicate and averaged. Total P [ppm] was determined 

using acid digestion with H2SO4, salicylic acid, H2O2 and selenium, following the method of 

Novozamsky et al. (1983). Available P [ppm] was analysed following both the Olsen (Olsen et 

al., 1954) and the Bray (Bray and Kurtz, 1945) methods using a Continuous Flow Analyser 

(CFA) SAN++ (Skalar, Breda, The Netherlands). CEC [meq/100g] and BS [%] were estimated 

based on the exchangeable H+ and total exchangeable bases – TEB [meq/100g]. For this, 

cations in ammonium acetate extract were measured following Reeuwijk (2002) using an 

Inductively Coupled Plasma Spectrophotometer (ThermoFisher Scientific, Waltham, MA, 

USA) and acidity was determined following the method by Brown (1943). pH of air-dried soil 

was measured using a pH meter (Hanna HI 3222; Hanna Instruments, Woonsocket, RI, USA) 

in 1:2.5; soil : 1M KCl suspension (Blakemore et al., 1987). Soil texture was analysed by 
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determining the percentage of primary particles (sand: 2000-53 µm, silt: 53-2.0 µm, and clay: 

< 2.0 µm), following the method of Gee & Bauder (1986). Bulk density [kg/m3] was determined 

by dividing the dry (60°C) weight of soil (sieved at 2 mm) by in-situ soil volume. Given that 

gravel weight was excluded from soil weight, BD measured in this way was an indicator of the 

amount of fine-soil per total soil volume (this measure thus represents fine-soil bulk density). 

Gravel volume was determined by submerging the gravel in a known volume of water in a 

measuring cylinder and subtracting that volume from the total volume read after adding the 

gravel. This value was then divided by in-situ soil volume to obtain the percentage of gravel 

volume. 

The soil properties measured here are relatively stable over time and they are recommended to 

be used when comparing the soil status across different sites (Vicca et al., 2018).  

3.3.3 Statistical analyses 

Local-scale (within-site) variation in AGB 

First, 17 soil variables measured from the soil depth 0-10 cm (d1) were considered as potential 

predictors of within-site variation in AGB: SOM, total N, total P, available P-Olsen, available 

P-Bray, Mg2+, Ca2+, K+, BS, BD, CEC, pH, C:N, % sand, % silt, % clay and % gravel. We also 

tested for potential non-linear effects of SOM and pH. Prior to the analyses, variables (besides 

pH and BS) were loge-transformed to reduce positive skewness and scaled and centred (mean 

= 0, sd =1) to allow the comparison of effect-sizes. 

Forward selection of the best linear mixed effect model (constructed using the lmer function 

from the package lme4), where ‘site’ was included as a random effect, was performed by 

starting from a single predictor with the lowest AICc (second-order AIC criterion). Variables 

were added sequentially until the decrease in AICc was smaller than 2. At each step, normality 

of the residuals of the model was tested using the Shapiro-Wilk test and the model was accepted 

only if the residuals did not significantly deviate from a normal distribution (W > 0.9, P > 0.05). 

R2 of selected models was calculated using the r.squaredGLMM function from the package 

MuMln. We used the lme function from the package nlme to examine if different variables 

included in the best mixed-effect models had a significant effect on AGB (P < 0.05).  

The model selection described above (conducted using the variables measured at soil depth d1) 

was repeated using the variables measured at the soil depth 10-20 cm (d2) to compare the 

predictive power of d1 versus d2 soil variables. All additional analyses were conducted using 

the surface (or subsurface) soil dataset that explained the greatest amount of variation in AGB. 

Given that shallow soils can constrain plant productivity, we performed sensitivity analyses to 

test if the findings were substantially affected by the differences in soil depth (i.e. very shallow 
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compared to deeper soils). To this end, another model selection was performed excluding the 

plots with very shallow soils (not deeper than 20 cm).  

Global-scale (between-site) variation in AGB 

To examine the most important global-scale predictors, we first subset the dataset 1000 times, 

where each subset contained exactly one randomly selected plot from each site (hence, n = 21 

for each subset). This way, we excluded the effect of within-site variability in AGB from the 

analysis.  

We analysed these subsets for climate variables and soil variables separately. To determine 

which climatic variables are important predictors of global variation in AGB we performed 

model selection for each of the subsets using the glmulti function based on the AICc (second-

order Akaike Information Criterion). Glmulti is a package for automated model selection and 

multi-model inference that fits all possible models based on the input variables (Calcagno & 

de Mazancourt 2010). Considering the small sample size per subset, to avoid overfitting, we 

constrained the number of variables that can be included in the model to a maximum of four 

variables. After obtaining the best models for 1000 subsets, for each of the input variables, we 

calculated the percentage of best models in which a variable was selected. We removed those 

variables that appeared in a small number of the best models (less than 20%) in order to obtain 

the most influential variables. We calculated the mean R2 of the model containing the retained 

variables. This way, we determined how much variation in global AGB could be explained by 

climatic variables alone.  

In the same manner, we selected the most important soil predictors. To reduce the number of 

input variables, we did not include four soil variables that were highly correlated other variables 

selected in the local-scale analysis; i.e. total N, CEC, silt/clay were not included given that they 

were highly correlated with SOM, Ca, sand, respectively (Figure S3.2) and they would thus not 

add much to the interpretation of the model. This was also done to avoid potential discrepancies 

between the local- and global-scale models that are merely due to strong correlations among 

some of the soil measurements in our dataset. Moreover, as an indicator of P availability, only 

P-Olsen was included given that it was highly correlated with P-Bray but is showed a slightly 

better correlation with AGB (Figure S3.2). The variables that were included in the model 

selection were: SOM, % sand, BS, Ca, K, Mg, C:N, pH, total P, P-Olsen, BD and % gravel. 

Finally, we combined the important climatic and soil variables and performed backward model 

selection by removing variables that increased model AICc until we obtained the model with 

the lowest AICc. From this model, we used mean linear regression coefficients as indicators of 

mean effect sizes for each variable. We also tested if including an interaction term between 

climatic factors and soil factors in the model would result in a better model (lower AICc). 
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To examine the direct and indirect effects (based on prior knowledge) of soil and climatic 

variables selected in the previous step, structural equation models (SEM) were created using 

the lavaan package in R (Rosseel, 2012). We tested both the direct influence of climatic factors 

on AGB and the indirect paths, through soil variables (Zhao et al., 2019). Regarding soil 

variables, direct links from indicators of soil texture (e.g. % sand, silt, clay, gravel) were tested 

as well as indirect links through other soil variables which can all be influenced by soil texture. 

For organic matter, both direct and indirect links through bulk density and soil nutrients were 

considered because organic matter content influences soil bulk density (Heuscher et al., 2005) 

and the amount of nutrients in the soil (Kononova, 1966). The model with a good fit, the highest 

R2 and all significant paths was reported. The fit was assessed using standard indices, where 

model chi-square (χ2) P > 0.05, comparative fit index (CFI) > 0.95, Tucker-Lewis index (TLI) 

> 0.95, root mean squared error of approximation (RMSEA) < 0.08, and standardised root mean 

square residual (SRMR) < 0.08 were considered as indicators of a good fit (Hooper et al., 

2008). An alternative SEM was created to test the potential causal relationship from AGB to 

SOM since aboveground plant inputs can determine the total amount of organic matter in the 

soil. This model was then compared with the original model (with a path from SOM to AGB) 

in terms of the strength of the path coefficients and the overall goodness-of-fit of the models. 

All statistical analyses were performed using the R software, version 3.6.1 (R Core Team 

2019). 

  



61 

 

3.4 Results 

Local-scale (within-site) variation in AGB 

 

Among 17 soil variables measured at depth d1, the best mixed-effect model explaining the 

variation in AGB included: SOM, Ca, BD, % sand and total P (marginal R2 = 0.52, conditional 

R2 = 0.74, AICc = 186) (Figure 3.2). Therefore, most of the variation in the model was 

explained by fixed factors (52%), and the remaining 22% was explained by differences between 

the sites (i.e., the random intercept accounting for between-site variation). Other models with 

AICc within 2 units difference included total N instead of total P, % silt instead of % sand and 

CEC instead of Ca. Given that silt/sand, CEC/Ca and N/P are strongly correlated (Pearson r >= 

0.8, Figure S3.2), we continued with the initial best model. In this model, SOM had the highest 

effect size (0.66), followed by Ca (-0.55), bulk density (0.36), % sand (-0.32) and P (0.30) 

(Figure 3.3). To investigate if soils with a high amount of Ca, that are potentially rich in CaCO3, 

are the reason for the unexpected negative coefficient of Ca in the model, we excluded the sites 

with high values of extractable Ca (Ca > 10 meq/100g according to Hazelton & Murphy 

(2019)). This analysis showed that the effect of Ca in the model was not significant for soils 

with Ca > 10 meq/100g (P > 0.05), while the effects of SOM and BD remained significant 

(Table S3.3). The plots with a high amount of soil Ca were dominant in our dataset (n = 50), 

indicating a potentially high prevalence of calcareous soils in these grassland sites.  

 

When using the soil predictors measured at the soil depth d2, the best model included SOM, 

Ca and % sand (Table S3.3). This model was comparable to the one with variables measured 

at soil depth d1, but fixed factors in this model explained less variation in total (marginal R2 = 

0.45, conditional R2 = 0.79). Hence, we continued with the d1 measurements. 

The model selection where the plots with shallow soils were excluded from the dataset showed 

that the most important predictors were again SOM, Ca and % sand (marginal R2 = 0.51, 

conditional R2 = 0.87), while BD and P were not selected in the best model (Table S3.3). 
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Figure 3.2 a) Relationship between a composite variable (sum of coefficient-weighted 
variables selected in the best mixed-effect model) and residuals of MAPgs-AGB 
relationship (aboveground biomass corrected for the effect of growing season 
precipitation). The graph demonstrates that this composite variable has a good global 
relationship with AGB across all the plots (n = 85). b) The same relationship focusing on 
the within-site (local-scale) patterns. Here, only the plots belonging to the sites that 
contained a substantial within-site variation of AGB (at least 50% difference between the 
plot with the lowest and the plot with the highest AGB value; n = 61) are shown; sites are 
depicted in different colours and connected with full lines of the same colour. The dashed 
line represents the association of the residuals of MAPgs-AGB with the composite 
variable across the sites. 

 

Global-scale (between-site) variation in AGB 

 

On the global scale, five climatic variables (MAP, MAPgs, PET, aridity and MAT) together 

explained 45% of the variation in AGB (sd. 11%). Out of these five variables, PET, aridity and 

MAT were selected in less than 20% of the best models and they were therefore excluded from 

further analyses. MAP and MAPgs each occurred in more than 20% of the best models (Figure 

S3.3) and together they explained on average 38% (sd. 10%) of global AGB variation.  

The model selection analysis for soil predictors of AGB (i.e. without accounting for the effect 

of climatic variables) resulted in seven out of 12 soil variables being selected in more than 20% 

of the best models. These were: SOM, Ca, BD, % sand, available P, pH and BS (Figure S3.3). 

When climatic and soil variables were combined, the best model following backward selection 

included MAPgs, SOM, Ca, BD and % sand (mean R2 = 0.77, sd. 0.08, mean AICc = 53). 

Variance partitioning demonstrated that out of 77% of the variation explained by this model, 
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7% of the unique variation could be attributed to MAPgs, 45% to soil properties and 25% was 

shared between the two (Figure S3.4). SOM had the highest mean effect size, followed by Ca, 

% sand, BD, and finally MAPgs (Figure 3.3). Adding an interaction term between MAPgs and 

different soil properties did not improve the model (all the models with an interaction term had 

a higher AICc than the initial model). 

Overall, these results demonstrate that almost the same set of soil variables were the best 

predictors of AGB both on the local scale and the global scale (Figure 2.3 & Figure 3.3). 

 

 
Figure 3.3 Effect sizes / mean effect sizes of different variables included in the best 
models explaining local- (within-site) vs global-scale (between-site) variation in AGB. 
Error bars for the global-scale models indicate the standard deviation of the mean effect 
sizes of each variable from 1000 best models. 

 

The best structural equation model (with an appropriate fit and all significant paths) showed 

that, while SOM had the highest direct factor loading on AGB, precipitation and % sand had 

an indirect influence through SOM and Ca, and SOM had an indirect influence through Ca and 

bulk density (Figure 3.4). Precipitation had a negative loading on Ca because sites with higher 

Ca levels were located in relatively arid areas. An alternative model with a path from AGB to 

SOM (Figure S3.5), had a very poor fit and although the path was significant, the loading was 

low compared to the effect of SOM on AGB (0.29 vs 0.77, respectively). Moreover, even 

though the alternative model contained the same paths to AGB as the original model (except 
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the one from SOM), the amount of variation in AGB explained by this model dropped 

substantially compared to the model with the path from SOM (from 64% to 44%).  

 

 
 

Figure 3.4 SEM depicting the direct (orange arrows) and indirect (grey arrows) influence 
of the most important climatic and soil variables on global-scale variation in grassland 
AGB (values on the arrows represent factor loadings). All paths were significant. SRMR = 
0.02, RMSEA = 0.00, CFI = 1, TLI = 1.04, P (χ2) = 0.76, df = 3, R2 (AGB) = 0.64. The model 
has a good fit based on each of the goodness-of-fit criteria. 
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3.5 Discussion 

Climatic factors, such as mean annual precipitation, have typically been used as key 

determinants of aboveground biomass patterns in grasslands worldwide (Sala et al., 1988; 

Jobbágy et al., 2002) and predictions regarding the influence of future global changes are 

primarily focused on the changes of future precipitation patterns on grassland productivity (Ma 

et al., 2010; Hsu et al., 2012). In this study, we examined which soil physicochemical 

properties measured at two soil depths (0-10 cm and 10-20 cm) can contribute to explaining 

additional variation in AGB production on a local and global scale. The amount of soil organic 

matter, percentage of sand, fine-soil bulk density and the amount of calcium in soil at 0-10 cm 

were the best predictors of AGB production and this was consistent for both spatial scales. On 

the global scale, these soil factors together had better predictive power and explained a higher 

amount of unique variation than climatic factors. This suggests that the variation in soil 

properties can outweigh the importance of climate for grassland productivity across different 

sites, which is line with the findings by Folberth et al. (2016) for modelled biomass yield in 

agricultural systems. 

The amount of soil organic matter was the strongest and most consistent predictor of both local- 

and global- scale variation in AGB. SOM has long been considered as the key indicator of soil 

fertility and soil health (Kononova 1966; Bünemann et al., 2018; Van Sundert et al., 2019) due 

to its impact on soil chemical, physical, and biological properties; it increases water holding 

capacity of the soil, affects nutrient availability by providing and retaining nutrients and 

provides a substrate for soil organisms that drive nutrient cycling (Reeves 1997; Oldfield et al., 

2018). In their meta-analysis of the predictors of aboveground biomass in alpine grasslands in 

Tibet, Sun et al. (2013) found that soil organic carbon (related to the amount of SOM) was 

strongly associated with productivity, while Oldfield et al. (2018) experimentally demonstrated 

the important direct role of SOM on plant productivity. 

The formation of SOM depends on the interactions between climate, inherent soil 

physicochemical properties (e.g. texture), and the nature of inputs (Bot & Benites, 2005). The 

inputs can partially come from aboveground plant biomass itself, but it has been argued that 

much of SOM derives from below-ground inputs (Schmidt et al., 2011; Cotrufo et al., 2013). 

Our SEMs also indicate that SOM likely had a much stronger influence on plant AGB than the 

other way around. However, it is probable that the observed relationship between SOM and 

plant AGB reflects, to some extent, the two-directional relationship between plant growth and 

soil organic matter content. 

Besides the direct link with AGB, we found that SOM had an indirect link through fine-soil 

bulk density and the amount of Ca in the soil. Ca was negatively associated with AGB in our 

models even though in itself it is one of the essential soil macronutrients that regulates and 

promotes plant growth (Hepler, 2005). However, the negative effect was not apparent for the 



66 

 

soils containing low and medium amounts of Ca (based on Hazelton & Murphy (2019)). Thus, 

the amount of Ca was likely indicative of calcareous soils that have high representation in many 

grasslands worldwide, particularly those located in arid and semi-arid areas (FAO, 2020). 

Many of the sites included in the current study had Ca-rich soils and high soil pH but did not 

sustain high productivity. This is possibly due to low water-holding capacity/high infiltration 

rate, poor structure, low availability of some nutrients (such as P) and/or decreased plant uptake 

of soil micronutrients, which are all typical for calcareous soils (FAO, 2020). For instance, 

soils such as calcareous rendzinas can be rich in clay and humus with a high amount of Ca but 

can still be relatively infertile due to nutrient imbalances and shallowness (Miechówka & 

Drewnik, 2018). 

Bulk density is another important indicator of soil fertility (Bünemann et al., 2018) as it affects 

soil aeration and water and nutrient movement through soil (Stirzaker et al., 1996). In our study, 

AGB was positively associated with fine-soil BD because lower fine-soil BD was found in 

relatively shallow soils with higher amounts of soil gravel. This was confirmed in the analyses 

excluding the plots with shallow soils, where fine-soil BD was omitted from the best model 

while the other original variables were retained. Low BD thus served primarily as an indicator 

of shallow and gravelly soils with limited amount of water and nutrients available for plant 

growth. Moreover, BD has shown to be positively related to soil N mineralisation (Olde 

Venterink et al., 2001b) indicating that the increase of AGB with increasing BD in our study 

may also be partly due to increased N availability. 

Soil texture (% sand) had a strong overall effect on AGB with both indirect effects through its 

influence on SOM and Ca as well as a direct effect. Along with precipitation patterns, soil 

texture is the most important determinant of soil water availability (Sala et al., 1988), where 

the decreasing sizes of soil particles generally indicate increased water holding capacity. Sala 

et al. (1988) showed that the influence of soil texture (as a proxy for water holding capacity) 

on biomass production in grasslands of central USA depended on the level of precipitation, but 

here we found no interaction between texture or other determinants of soil water availability 

(such as SOM and BD) and precipitation, suggesting that precipitation does not affect the 

relationship between water holding capacity and AGB production in our dataset. This is also 

apparent from the local-scale patterns where, in general, there was a consistent relationship 

between indicators of soil water holding capacity and AGB across contrasting climates. 

Finally, although this study included numerous different soil properties, there was of 48% of 

the unexplained variation in AGB on the local scale and 22% on the global scale. This 

unexplained variation might be attributed to the influence of biotic and/or other important 

factors that were not assessed in this study or it could be a result of differing past management 

practices which may have caused additional variation in biomass productivity estimates. 
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3.6 Conclusion 

This study demonstrated that soil properties are critical predictors of variation in both global-

scale and local-scale aboveground grassland productivity. Soil organic matter, soil texture and 

indicators of soil shallowness and calcareous soils, all of which are important determinants of 

the amount of nutrients and water that can be retained in the soil, explained up to 70% of the 

variation in aboveground biomass production. On the global scale, these soil factors were 

stronger predictors of aboveground biomass than commonly used climatic factors. 

We argue that modelling the effects of environmental changes on primary productivity, as one 

of the keystone ecosystem processes in grasslands, can hugely benefit from incorporating the 

main indicators of soil fertility and water holding capacity reported here. Furthermore, we 

stress the importance of measuring these soil properties in grasslands as well as other 

ecosystems such that their role can be fully explored in future synthesis efforts. 
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Protocols for analyses of soil microbial 

community composition 

 

Based on the protocol by Radujković & Verbruggen, 

published in Halbritter et al. (2020), Methods in Ecology and 

Evolution  
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CHAPTER IV 

Protocol for analyses of soil microbial community 

composition 

Based on the protocol by Radujković & Verbruggen, published in Halbritter et al. (2020), 

Methods in Ecology and Evolution  

4.1 Why to measure? 

The microbial community composition represents the number and relative abundance of 

microbial taxa in a given system. This measure provides insight into the diversity and 

variability of the relative abundances of microbial taxa and thus aspects of their community 

dynamics. Moreover, changes in overall soil microbial community composition may point to 

corresponding changes in the various processes in which these communities are involved (Zogg 

et al., 1997; Balser & Firestone, 2005; Strickland et al., 2009). Microbes in soil are essential 

for the decomposition of organic matter (Allison & Martiny, 2008), they can play a key role in 

long-term carbon storage (Clemmensen et al., 2013), and they are important drivers of 

biogeochemical cycling processes, including carbon and nitrogen cycling (Prosser et al., 2007; 

Falkowski et al., 2008). Specific microbial functional groups (such as nitrifying bacteria, 

mycorrhizal fungi, plant parasites) may affect ecosystem functioning by altering nutrient 

availability or plant productivity (van der Heijden et al., 2008). Mycorrhizal fungi, for example, 

are associated with up to 90% of terrestrial plants (Smith & Read, 2008) and they have 

important effects on plant productivity (Wilson et al., 2016; Yang et al., 2016) and carbon 

dynamics in soil. It has been demonstrated that changes in different environmental factors (e.g. 

precipitation, CO2, temperature, nutrient concertation) can cause shifts in microbial community 

composition (Zogg et al., 1997; Nemergut et al., 2008; Castro et al., 2010). These changes 

may, directly or indirectly, affect important ecosystem processes (e.g. carbon cycling), thereby 

mediating the feedback responses to global change (Davidson & Janssens, 2006; Pold & 

DeAngelis, 2013). 
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4.2 What and how to measure? 

4.2.1 Gold standard 

With the development of high-throughput DNA sequencing techniques, the composition of soil 

microbial communities can be studied in more detail at a lower cost than using traditional 

culture-dependent approaches (Shokralla et al., 2012). High-throughput molecular 

identification of microbial communities requires the isolation of nucleic acids from 

environmental samples, followed by DNA amplification using primers (small manufactured 

sections of DNA) that bind specifically to phylogenetically conserved regions of genes, which 

flank so-called barcode markers (Winsley et al., 2012). The accuracy of these analyses is 

strongly dependent on the choice of primers (Klindworth et al., 2013). Genes encoding 

components of the nuclear ribosomal units (small subunit, SSU; large subunit, LSU; internal 

transcribed spacer, ITS) are by far the most commonly used genetic markers for taxonomic 

identification of microorganisms (Lindahl et al., 2013). Current high-throughput sequencing 

techniques allow the simultaneous sequencing of millions of reads (Bartram et al., 2011), which 

are then typically clustered into operational taxonomic units (OTUs; typically at 97% sequence 

similarity) and assigned to taxonomic/functional groups using various bioinformatical tools 

and reference databases. These methods are semi-quantitative given that they provide 

information of relative abundances of taxa rather than absolute abundances, however, methods 

have been developed where absolute abundances of bacteria can be estimated by incorporation 

of internal standards into DNA pools (Smets et al., 2016; Harrison et al., 2020). The changes 

in microbial community composition exposed to certain climate treatments (e.g. warming, 

drought) compared to control communities, can be statistically assessed based on the 

differences in the number and (relative) abundance of OTUs between these communities and/or 

changes in the (relative) abundance of taxonomic/functional groups. 

4.2.2 Bronze standard 

Phospholipid fatty acid analysis (PLFA) is another culture-independent method that is 

commonly used to assess the changes in microbial community composition. It has been 

demonstrated that PLFA analyses and genetic sequencing can detect similar overall patterns in 

bacterial community composition (Orwin et al., 2010). However, compared to genetic 

sequencing, PLFA has a very limited taxonomic resolution, especially for groups other than 

bacteria, but it can provide quantitative information about microbial biomass (Brewer et al., 

2015). It can thus be used in cases when quantitative shifts in both biomass and broad functional 

groups (fungi, gram-positive v. gram-negative bacteria) are to be delineated. For a detailed 
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protocol and possible applications of PLFA see Frostegård et al. (1993) and Frostegård et al. 

(2011), respectively. 

4.2.3 Soil sampling and storage 

Soil samples are collected using soil corers, usually at depths of 0–5 cm and/or 5–10 cm (e.g. 

Rinnan et al., 2007; Kuffner et al., 2012; Hayden et al., 2012). The corers must be cleaned 

between the samples in order to avoid cross-contamination. When collecting samples for fungal 

analysis, it should be borne in mind that fungi can have very long mycelia and thus it is 

recommended to keep a minimum distance of 3 m between different samples when 

independence is required for statistical analysis (Lindahl et al., 2013). Typically, a few soil 

samples are taken per plot and pooled into a composite sample (e.g. for a good representation 

of a plot, samples can be taken in four corners and the centre). Depending on the study question, 

samples can be taken one time only (e.g. in the peak of the growing season, if the aim is to 

examine the effect of treatments at the peak of vegetation growth) or multiple times in the same 

plot (e.g. if the aim is to examine inter- or intra-annual changes in community composition). 

The samples can be stored in sterile plastic ziplock bags. After sampling, the soil is sieved (2 

mm mesh size is a standard in soil science), taking care to prevent contamination. The samples 

should be kept in a cold place and processed as soon as possible to avoid the degradation of 

DNA and microbial growth (Rochelle et al., 1994). Over longer periods, samples can be 

optimally stored by freezing at -20 °C or -80 °C (Song et al., 2016). Alternatively, they can be 

freeze-dried (Lindahl et al., 2013) or stored in pure ethanol (Hale et al., 2015) or commercially 

available preservation solutions. 

4.2.4 DNA extraction 

Most extraction methods are based on direct cell lysis which generally provides high yields of 

DNA with relatively short processing times (Robe et al., 2003). Commercially available soil 

DNA extraction kits provide detailed protocols for extraction procedures. Because of the 

typical low sample size for extraction (0.25–0.5 g dry weight), care should be taken to 

thoroughly homogenise material for subsampling, or isolate DNA from multiple technical 

replicates. Ideally, extraction should yield high and uniform amounts of DNA and minimal 

concentrations of amplification inhibitors (Lindahl et al., 2013). DNA yield can be assessed 

and concentrations can be adjusted through dilution. The same DNA extraction protocol should 

be used for all samples (Tedersoo et al., 2010) ensuring that potential extraction-related biases 

are equally distributed across all samples. 
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The procedures described next are sometimes outsourced to a commercial laboratory (even 

including taxonomic annotation of obtained sequences) or can be performed in-house when 

facilities are available. 

4.2.5 DNA amplification – PCR 

Following extraction, DNA is amplified using primers that target a barcode marker region 

which is conserved within a particular microbial group (prokaryotes, eukaryotes, fungi, 

arbuscular mycorrhizal fungi), but includes variable regions that allow the distinction at the 

phylogenetic level of interest (Lindahl et al., 2013). The primers also include artificial barcode 

sequences that allow identification of different samples after sequencing, or these barcodes are 

added in a second step. Amplification of the marker is accomplished by the successful binding 

of the two primers to the flanking sections and generating copies of it through a "polymerase 

chain reaction" (PCR). In order to assess the variation resulting from stochastic processes 

during laboratory work, replicate PCR reactions can be performed using independently 

obtained DNA extractions from the same sample (Kauserud et al., 2012). PCR conditions (see 

e.g. Bartram et al., 2011; Klindworth et al., 2013; Zhang et al., 2016) need to be optimised to 

the marker region and lab conditions (e.g. enzymes and thermal cycler), where the annealing 

temperature, in particular, deserves attention. Optimal annealing temperatures range between 

45 and 68 °C depending on primer sequence and are, as a rule of thumb, set at 5 °C below the 

calculated temperature of the lowest primer melting point (Tm) (Roux, 2009). 

To assess the success of a PCR, the products are visualised on an agarose gel where the 

presence and length of a product can be determined. If the annealing temperature is too low 

(primers do not anneal specifically to the target region) there will be more bands visible on the 

gel (more than expected based on natural length variation of the marker); if it is too high 

(primers do not anneal to target region at all) there will be no bands on the gel. The optimal 

annealing temperature for a particular primer pair can be determined by gradually increasing 

the annealing temperature (gradient PCR). PCRs can also fail due to different inhibitors present 

in the starting template. A 5–100-fold dilution of the template may dilute out the inhibitor 

(Roux, 2009). Other possible solutions in case of PCR failure include re-extraction, re-

amplification, ethanol precipitation, changing the number of PCR cycles, or adding stabilising 

proteins such as bovine serum albumin (BSA) (see Roux, 2009 for more details on optimisation 

of PCR process). 

4.2.6 Primer choice 

There are multiple valid reasons to choose one primer-pair over another for a particular group 

of microbes. Main reasons are i) the sequencing technology used: some instruments (e.g. 



75 

 

Illumina MiSeq) work optimally with DNA sequences between 250–500 base pairs (bp) in 

length, while others (e.g. PacBio) can sequence whole DNA strands with thousands of bp; ii) 

sequence variability: ideally there should be a so-called "barcode-gap" (Schoch et al., 2012) 

making it easy to delineate within-species vs between-species variability, however, this varies 

between taxonomic groups and markers and so the choice will often be a trade-off where higher 

quality data for one group will come at a cost of another group; and iii) historical reasons will 

cause a marker for a group of interest to have a much better representation in databases (e.g. 

16S/18S rRNA for many microbial groups), which means that even when in principle other 

regions would be more suitable, having a well-filled database to compare against will improve 

the quality of the eventual data. 

Bacteria. The 16S rRNA gene (encodes SSU in prokaryotes) has been by far the most 

commonly used genetic marker for analyses of bacterial communities (Klindworth et al., 2013) 

for a number of reasons: it is present in all bacteria; it contains both highly conserved regions 

and hypervariable regions; and it is sufficiently long (1,500 bp) for bioinformatic purposes 

(Janda & Abbott, 2007). 515F-806R primer (Caporaso et al., 2011) pair is often used to amplify 

bacterial V4 region of 16s rRNA gene (Chapter VI), while the combination of Bakt_341F and 

Bakt_805R primers (Herlemann et al., 2011) can be used to amplify both V3 and V4 variable 

regions. The latter primer set was evaluated by Klindworth et al. (2013) as one of the most 

efficient in amplifying a wide range of bacterial phyla. 

Fungi. Molecular analyses of fungal communities mainly rely on amplification of the ITS 

region (spanning the ITS1, 5.8S, and ITS2 regions), which was selected as the universal genetic 

barcode for fungi (Schoch et al., 2012). However, whether the ITS1, ITS2, or a combination 

of these two regions is better suited for characterisation of fungal communities is still under 

debate (Blaalid et al., 2013). The ITS1 region is frequently amplified using the combination of 

ITS1f and ITS2 primers (Op De Beeck et al., 2014; Smith & Peay, 2014) (Chapter V and 

Chapter VI). fITS7, gITS7, and fITS9 primers target binding sites in the 5.8S region and 

together with the ITS4 primer, they can be used to amplify the ITS2 region (Ihrmark et al., 

2012). The combination of ITS1f and ITS4 primers span both ITS regions together with 5.8S 

region (Smith & Peay, 2014). 

Arbuscular mycorrhizal fungi (AMF) – Glomeromycota. For AMF analysis, the most 

commonly used marker region is SSU (18S rDNA in eukaryotes), followed by LSU(28S 

rDNA) and ITS rDNA region (Öpik et al., 2014). The SSU rDNA region alone is not suitable 

for identification of species (Öpik et al., 2014), but in the cases when species resolution is not 

the primary goal, primers that target SSU region, for example, AML1 and ALM2, designed by 

Lee et al. (2008), can provide useful information regarding the overall AMF community 

composition. Primer set SSUmAf–LSUmAr (1800 bp) and SSUmCf–LSUmBr (1500 bp) 

developed by Krüger et al. (2009) spans a fragment covering the partial SSU, the entire ITS, 

and the partial LSU rDNA region. This combination of primers enables the detection of 



76 

 

additional AMF, but the sequences are too long for some high-throughput sequencing and 

alternative sequencing methods must be used (Schlaeppi et al., 2016). 

Protists. A comprehensive overview of different SSU primers designed to target protists is 

provided by Adl et al. (2014). The combination of primers TAReuk454FWD1 and 

TAReukREV3 (Stoeck et al., 2010) that targets the V4 region of SSU, can be used for the 

detection of a wide range of eukaryotic lineages (Mahé et al., 2017). A recently developed 

combination of primers (ITS3 primer mixes, ITS4ngs) described in Tedersoo et al. (2015) that 

target ITS2 region can be used to characterise certain protist groups: Cercozoa, Ciliophora, and 

Chlorophyta, as well as soil animals (Acari, Nematoda, Collembola, Rotifera, Annelida) which 

are thought to be the most abundant and species-rich eukaryotic taxa in soil (Tedersoo et al., 

2015). Given the paraphyletic nature of protists (spanning the entire eukaryotic phylogenetic 

tree), no primers specifically targeting this group as a whole can be designed. For this reason, 

samples containing a high concentration of plant, fungal, or animal DNA, such as when one 

aims to elucidate protists that are part of their "microbiomes", are at risk of primarily generating 

non-target sequences. 

4.2.7 Library preparation and sequencing 

Following purification from PCR artefacts (primers and primer-dimers), different samples with 

specific barcodes are equimolarly pooled into a single library ready for sequencing. The 

Illumina MiSeq platform (Illumina Inc; San Diego, CA, USA) is currently the most commonly 

used platform for high-throughput sequencing of environmental microbial samples (see 

Chapter V and Chapter VI). This platform enables sequencing of 200–550 bp-long paired-end 

reads (forward and reverse) which is, in most cases, enough to cover the entire marker region 

for different microbial groups. Longer reads can be sequenced using single-molecule real-time 

(SMRT) methodology (PacBio; Manlo Park, CA, USA). 

4.2.8 Quality control and bioinformatics analyses 

UPARSE (Edgar, 2013), QIIME (Caporaso et al., 2010), and mothur (Schloss et al., 2009) are 

some of the most commonly used bioinformatics pipelines that allow quality filtering and 

construction of OTUs from next-generation sequencing reads. The main result of these analyses 

is an OTU table (Figure 4.1). The downstream analyses (e.g. standardisation of read number 

through downsampling (Weiss et al., 2017), calculation of alpha and beta diversity) can be 

performed using QIIME and mothur, but also in statistical programs such as R (e.g. using the 

‘vegan’ or ‘phyloseq’ packages). Typically, OTU tables are used to create distance matrices, 

which include pairwise distances between the microbial communities of different samples 
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(Figure 4.1). It should be noted that for bacterial sequences, it is common to create phylogenetic 

trees and use phylogenetically informed distance metrics (i.e. UniFrac).  

Taxonomic identification is performed by aligning sequences to the reference sequences (using 

BLAST or other methods implemented in UPARSE/QIIME/mothur) deposited in publicly 

available databases. An overview of different databases is given by Santamaria et al. (2012). 

For instance, the Greengenes database contains a collection of bacterial 16s rDNA sequences 

(DeSantis et al., 2006), UNITE is a comprehensive reference database for fungal ITS sequences 

(Abarenkov et al., 2010), and PR2 (Protist Ribosomal Reference) database is suitable for 

annotation of protist SSU sequences (Guillou et al., 2013). Other databases, such as Silva 

(Quast et al., 2013) and Ribosomal Database Project (Cole et al., 2014) contain collections of 

SSU and LSU sequences for various groups of prokaryotic and eukaryotic microorganisms. 

Following the taxonomic assignment, fungal OTUs can also be assigned to different functional 

categories (i.e. saprotrophic fungi, white rot decomposers, yeasts, plant pathogens, 

mycoparasites, animal parasites, arbuscular mycorrhizal fungi – AMF, ectomycorrhizal fungi 

– EcM) by matching their genus/family level with the known lifestyles (e.g. as in Tedersoo et 

al., 2014) using specialised tools such as FUNGuild (Nguyen et al., 2016). 

 

4.2.9  Statistical analyses 

Statistical analyses on distance matrices or OTU tables can be performed using various 

multivariate types of analyses such as PERMANOVA, ANOSIM, and ordination methods (e.g. 

PCoA, (G)NMDS, CCA, an example is depicted in Figure 4.1 and Figure 5.1). Moreover, 

network analyses can be performed to investigate potential interactions between species (see 

Chapter V). Although correlation networks do not necessarily represent the real biological 

interactions, they can provide valuable insights in species co-occurrence patterns and elucidate 

the mechanisms driving their community assembly and functioning (Barberán et al., 2012). For 

instance, examining the architecture of ecological networks (e.g. the number and strength of 

connections, network connectedness, network modularity) and identifying the taxa that are key 

players in these networks can be used to predict community stability (Thebault & Fontaine, 

2010) examine functional redundancy (Banerjee et al., 2016) and reveal the taxa driving 

microbiome functioning (Banerjee et al., 2018). Numerous network analysis methods have 

been developed and used in different studies: from simple correlation-based methods (e.g. in 

Encinas-Viso et al. (2016) and de Vries et al. (2018)) to more complex methods such as 

hierarchical modelling of species communities (Ovaskainen et al., 2017) and extended local 

similarity analysis (Xia et al., 2011).  

  



78 

 

 

 

Figure 4.1 Main output of microbial genetic sequencing. Simplified representation of an OTU 
table containing the number of fungal OTUs in soil samples (s1–6) exposed to 3 different 
treatments (depicted in different colours). Different OTUs are assigned to taxonomic and/or 
functional groups by comparing them against a database. ii) Based on the OTU table, it is 
possible to quantify the dissimilarities between the samples and summarise them in a distance 
matrix. Lower panels show the differences between soil fungal communities exposed to 
different intensities of natural warming, based on a subset of actual data from the ForHot 
natural experimental site (microbial data: Radujković et al. (2018); ForHot experiment: 
Sigurdsson et al. (2016). iii) The relative abundance (% of the total amount of sequences in a 
sample) of filamentous saprotrophic fungi exposed to different intensities of warming and iv) 
the multidimensional ordination of samples based on Bray-Curtis distances. Points and the 
corresponding polygons are coloured according to temperature elevations (Te): blue – 
ambient temperatures; orange – medium temperature elevation; (+3 °C to +5 °C); red – high 
temperature elevation (+7 °C to +11 °C). 
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4.3 Special cases, emerging issues and challenges 

The methods of molecular analysis of microbial communities are evolving very rapidly with 

the development of new technologies. Previously commonly used 454 pyrosequencing is now 

almost entirely replaced by Illumina sequencing by synthesis. SMRT technology, such as 

PacBio, is now being increasingly used since it can provide longer reads (albeit with high error 

rates). The choice of sequencing platform is therefore currently a trade-off between the quality 

of the produced reads and the maximum length of the reads (Kennedy et al., 2018), but these 

or other platforms will likely become cost-efficient at low error rates in the near future. 

Recently, there has been a lot of discussion regarding the common practices for bioinformatics 

analysis of sequencing data. The conventional approach is to perform the clustering of OTUs, 

usually based on 97% similarity. However, this approach has been challenged and it has been 

proposed that instead of OTU clustering, amplicon sequence variants (ASVs) should be used. 

It is argued that, compared to OTUs, ASVs represent a biological reality independent of the 

data analysis, they have a better taxonomic resolution and they can be validly compared across 

different studies (Callahan et al., 2017). However, ASVs are highly sensitive to the quality of 

the data and this approach could be problematic for downstream analysis due to significantly 

increased diversity. While OTU clustering still remains the most common approach in 

ecological studies, it would be useful to also report the sequence variants in order to enable the 

effective comparison between different studies. 
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CHAPTER V 

Mechanisms driving the development of soil fungal 

community composition in restored heathlands  

Based on the paper by Radujković et al. (2020), New Phytologist. 

5.1 Abstract 

Dispersal limitation, biotic interactions and environmental filters interact to drive plant and 

fungal community assembly, but their combined effects are rarely investigated. This study 

examines how different heathland plant and fungal colonization scenarios realized via three 

biotic treatments - addition of mature heathland derived sod, addition of hay and no additions 

- affect soil fungal community development over six years along a manipulated pH gradient in 

a large-scale experiment starting from an agricultural, topsoil removed state. Our results show 

that both biotic and abiotic (pH) treatments had a persistent influence on the development of 

fungal communities, but that sod additions diminished the effect of abiotic treatments through 

time. Analysis of correlation networks between soil fungi and plants suggests that the reduced 

effect of pH in the sod treatment, where both soil and plant propagules were added, might be 

due to plant-fungal interactions since the sod additions caused stronger, more specific, and 

more consistent connections compared to no addition treatment. Based on these results, we 

suggest that the initial availability of heathland fungal and plant taxa, that reinforce each other, 

can significantly steer further fungal community development to an alternative configuration, 

overriding otherwise prominent effect of abiotic (pH) conditions. 

5.2 Introduction 

The incidence and abundance of local above- and below-ground species in an ecosystem are 

dependent on three main processes or ‘filters’: i) dispersal constraints ii) environmental 

(habitat) filters, and iii) biotic interactions (Belyea & Lancaster 1999; Lortie et al. 2004). 

Contrary to the traditional view that biotic interactions only operate after environmental 

filtering has taken place (Belyea & Lancaster, 1999; Raevel et al., 2013), it is increasingly 

recognized that biotic interactions can significantly mediate species’ responses to the 

environment and therefore determine the strength and extent of this filter (Wisz et al., 2013; 

Cadotte & Tucker, 2017; Aguilar-Trigueros et al., 2017). The same is true for dispersal, where 

the timing of arrival may dictate which biotic interactions prevail, with a cascading effect on 
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future community assembly through priority effects (Fukami et al., 2005; Fukami, 2015). 

Understanding and predicting the development of communities thus requires knowledge of 

how these three processes act in concert (Wisz et al., 2013). 

Numerous studies have demonstrated that plant-soil interactions (particularly those between 

soil fungi and plants) are key biotic interactions that can shape above- and below-ground 

communities (Kardol et al., 2006; Smith & Read, 2008; Wagg et al., 2014; van der Putten, 

2017). For instance, they have been shown to be major drivers of plant community composition 

patterns in restored tallgrass prairies (Bauer et al., 2015) and pristine tropical forests (Mangan 

et al., 2010). Moreover, manipulation through soil inoculation promoted the development of 

heathland and grassland systems, possibly through positive feedbacks among plants and their 

associated soil biota (Wubs et al., 2016, 2019, van der Bij et al., 2018). Studies investigating 

plant-soil interactions have particularly emphasised the importance of mycorrhizal fungi as 

mediators between below- and aboveground communities (Bauer et al., 2015) showing, e.g. 

that the presence and identity of mycorrhizal fungi determined whether late or early 

successional plant species came to dominate in a prairie restoration experiment (Koziol & 

Bever, 2017). Characterization of plant-soil interactions and the mechanisms by which they 

steer community assembly has been very challenging, particularly in field conditions, 

considering the myriad of interactions between plant and soil organisms (Toju et al., 2018). 

Nevertheless, incorporating real-life complexity is crucial to accurately characterize the 

influence of the environment on plant-soil interactions (Lekberg et al., 2018).  

The complexity of plant-soil interaction can be captured by network approaches since they 

incorporate the whole community rather than limited number of preselected taxa (Ramirez et 

al., 2018; Toju et al., 2018). Several recent studies have utilized the network approach to 

examine putative biotic interactions (Banerjee et al., 2016; Encinas-Viso et al., 2016; 

Tylianakis et al., 2018; de Vries et al., 2018), showing for instance that the architecture of 

ecological networks is related to community stability (Thebault & Fontaine, 2010) and that 

hubs of highly connected soil microbes mediate interactions between plants and microbes 

(Agler et al., 2016). Characterizing plant-soil network structure (e.g. the number and strength 

of connections) and identifying the taxa that are key players in these networks can thus help us 

understand how plant-soil interactions influence community development.  
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The present study examines the importance of plant-soil interactions for soil fungal community 

development in a large-scale heathland restoration experiment. Heathlands are species-poor 

systems thriving on nutrient-poor, acidic soils, with high dominance of ericaceous plants and 

associated ericoid mycorrhizal (ERM) fungi (Gimingham, 1989; Webb, 2008). Therefore, they 

represent a relatively tractable model system to explore typically complex plant-fungal 

interactions. In our study system, the upper soil layer from an ex-arable field was removed and 

different plots were subjected to three biotic addition treatments crossed with three pH 

manipulation treatments. Biotic treatments represent different dispersal scenarios (different 

timing of colonization): an initial presence of both soil and plant propagules derived from a 

heathland system, an initial presence of primarily plant propagules only, or "natural" 

colonization through gradual dispersal in the control. The abiotic – pH – treatments created a 

gradient with the potential to act as an environmental filter within each of the biotic treatments. 

pH is known to strongly influence the success of heathland restoration (Marrs et al., 1998) 

since it affects the germination of heathland plants and the development of their interactions 

with ERM fungi (Díaz et al., 2008). By censusing the plant and soil fungal community 

composition through time, we followed the development of plant-fungal correlation networks 

under different treatments. 

This experimental setup, therefore, allowed us to investigate the combined effect of three 

different mechanisms (timing of colonization, abiotic conditions, biotic interactions) on the 

development of soil fungal communities over multiple years. We hypothesized that (1) initial 

biotic manipulations had a lasting effect on fungal community development, as evidenced by 

significant differences in community composition at the end of the experiment; (2) that the 

effect of different biotic treatments and abiotic conditions were contingent on each other, as 

evidenced by interactions between biotic and abiotic treatments and variation in within-group 

dispersions between biotic treatments. Furthermore, we explored (3) whether and in what way 

the interactions between fungi or between plants and fungi may have contributed to fungal 

community development through co-occurrence and network analyses. Together, these 

approaches shed light on the relative importance and interaction between the ecological filters 

operating in heathland fungal community assembly. 
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5.3 Materials and methods 

5.3.1 Study sites and sampling 

Study sites were located at Dwingelderveld National Park (lat: 52.7810, long: 6.3709, alt: 10 

m) in the Netherlands. The study area had previously been used for intensive agriculture. In 

2011, the top-soil layer (30-40 cm) was removed to eliminate the excess of nutrients and other 

legacies (e.g. seed bank) of agricultural land as an attempt to restore a typically nutrient-poor 

heathland ecosystem. Subsequently, 27 large plots (15m x 15m) were established with nine 

different treatments, three biotic treatments crossed with three abiotic treatments, each in three 

replicates in a randomized block design. The biotic treatments included biotic control = no 

additions, addition of hay material or addition of sod material, from well-developed heathlands. 

The abiotic treatments consisted of: no additions = abiotic control, addition of dolomite 

CaMg(CO3)2 = liming, or addition of elemental S = acidification. The donor heathland sites for 

sod and hay material was a dry mature heathland dominated by Calluna vulgaris L, located 

100 – 200 m from the experimental site. For all treatments, the material was added in late 

autumn 2011 (first abiotic then biotic additions), except for hay material which was not 

available in late autumn and was added in early autumn 2012. For the hay / sod treatment, 1 m2 

of fresh heathland hay / sod material (the vegetation and soil down to 5-6 cm depth) was added 

per 2 m2 and 15 m2 of experimental site, respectively. For the liming / acidification treatment 2 

t of dolomite / 1.5 t of elemental sulphur were added per hectare of experimental site, 

respectively. None of these treatments significantly altered the amount of organic matter in the 

soil, and except for the abiotic treatments, none altered the soil chemistry (Van der Bij et al., 

2018), including pH (Figure S5.1, Table S5.7). Initially, liming increased soil pH by 

approximately 0.3-0.5 units and acidification decreased it by 0.3 units (averaged across biotic 

treatments). Six years after the additions, soil pH under different abiotic treatments still differed 

significantly (mean pH2017: control = 4.7, liming = 5.2, acidification = 4.5) (Figure S5.1). 

Every year from 2012 to 2017, plant cover in the centre 10 x10 m of each plot was estimated 

according to the Tansley scale, and three soil samples were taken at a depth of 0-5 cm from 

each of the 27 plots and pooled into one composite sample per plot for microbial analysis and 

measurements of soil pH. In addition, three soil samples were taken in three different well-

developed (reference) heathland plots in the same area in 2017 and pooled in one sample per 

reference. Samples taken in the first five years were immediately air-dried, homogenized and 

kept under cool, dark and dry storage conditions before the DNA was isolated in 2017, while 

the samples from 2017 were immediately frozen, shortly after which DNA was isolated. 

Further tests indicated that storage conditions and storage time did not affect perceived 

variation in fungal community composition. See Supplementary material (Annex S5.1, Figure 

S5.2) for more details on additional tests and analyses concerning sample preservation. 
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5.3.2 Sample preparation and sequencing  

DNA was isolated from 0.25-0.35 g of soil using the DNeasy PowerSoil Kit according to the 

manufacturer’s protocol (Qiagen, Venlo, the Netherlands). The ITS1 region was amplified 

using fungal primers ITS1f (Gardes & Bruns, 1993) and ITS2 (White et al., 1990), modified 

according to (Smith & Peay, 2014). In the first PCR, primers were amended with Illumina 

Nextera labels (Illumina Inc; San Diego, CA, USA). Each 25 µl reaction mixture contained 2 

µl of the sample, 0.5 µM of each forward and reverse primer, 1X PCR buffer, 200 µM dNTPs 

and 1 U Phusion High-Fidelity DNA polymerase (New England Biolabs, Ipswich, MA, USA). 

PCR conditions were as follows: initial denaturation at 98°C for 60 s, followed by 35 cycles 

of: denaturation at 98°C for 30 s, annealing at 55°C for 30 s, extension at 72°C for 30 s; and an 

additional extension of 72°C for 10 min. A second PCR was performed using dual barcoded 

primers with Illumina adapters (2.5 µl of 50 x diluted PCR products template and 0.1 µM of 

each primer). The conditions were: 98°C for 60 s, 12 cycles: at 98°C for 10 s, 63°C for 30 s, 

72°C for 30 s; and 72°C for 5 min. PCR products were run on an agarose gel to confirm 

successful PCR amplification and successful amplicons were normalized and purified from 

primers and primer-dimers using the SequalPrep Normalization Plate Kit (ThermoFisher 

Scientific). Samples were then pooled into a single library, and subjected to a gel extraction 

using QIAquick Gel Extraction Kit (Qiagen, Venlo, the Netherlands). The library was 

quantified with qPCR (KAPA Library Quantification Kits, Kapa Biosystems, Wilmington, 

MA, USA) and sequenced on the Illumina MiSeq platform (Illumina Inc; San Diego, CA, USA) 

with 300 cycles for forward and reverse reads. Several negative controls and technical 

replicates were also sequenced in order to test the reproducibility of sample preparation and 

the sequencing procedure (Figure S5.3). The raw sequences were deposited in SRA-NCBI 

database under the accession number: PRJNA566105. 

5.3.3 Quality filtering and bioinformatics analyses 

Fungal sequences were analysed using the USEARCH (v8.1.1861) and VSEARCH (Rognes et 

al., 2016) software following the UPARSE pipeline (Edgar, 2013). After trimming to 250 bp 

the paired-end reads were merged and primers were removed. This trim length was chosen 

because it was the optimal length for merging pairs by removing the low-quality bases at the 

end. Merged sequences were quality filtered using expected number of errors (E) as a measure 

of read quality, as implemented in UPARSE. We imposed a relatively stringent criterion of 

Emax = 0.5, keeping the reads that have a maximum 50% chance to contain one erroneous base 

(Edgar & Flyvbjerg, 2015), leaving 3.01 M sequences. Following singleton removal, the 

sequences were clustered into OTUs (operational taxonomic units) based on 97% similarity 

using the UPARSE-OTU algorithm (Edgar, 2013) which automatically detects and filters out 

chimeras with high efficiency. All original reads were mapped to the OTUs with an identity 
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threshold of 0.97, yielding an OTU table with a total of 2,192 OTUs and 3.5 M reads. Using 

all original reads does not compromise quality of OTUs but allows sequences erroneously 

labelled as low-quality to be counted. Further steps were performed using R software (R Core 

Team, 2015). The number of reads per sample was rarefied to 1,275. This rarefaction depth 

was chosen because it included almost all samples (except for four which were omitted), and 

although it does not represent the entire diversity, rarefaction curves showed that the number 

of taxa was levelling off for most samples at this depth. We also calculated Chao coverage 

(entropart package (Marcon & Herault, 2015)) as an indication of the amount of unsampled 

taxa, which was the same for different biotic treatments (Figure S5.4, Table S5.1). 

Representative OTUs were aligned to the fungal sequences in the UNITE database (Kõljalg et 

al., 2005) (release date 10.10.2017), using the NCBI’s BLAST algorithm with default settings. 

OTUs were retained and assigned to particular taxa if they had a minimum alignment length of 

75 bp. and a maximum E-value of 10−36 (as in Waring et al., (2016)). 

5.3.4 Statistical analyses 

The differences in fungal community composition were examined with PERMANOVA 

analysis (Anderson, 2001) using adonis function in vegan (Oksanen & et al., 2018), based on 

Bray-Curtis (BC) distances and visualized using Nonmetric multidimensional scaling (NMDS, 

metaMDS in vegan). First, PERMANOVA analysis was performed 1) on the entire dataset 

using year as a continuous variable and plot as strata to assess the effect of time and 2) using 

biotic and abiotic treatments and their interaction as explanatory variables and year as strata. 

In addition, a separate PERMANOVA analysis was performed for the last year of the 

experiment to assess whether the effect of different biotic and abiotic treatments was present 

at the end of the experiment. Data was loge-transformed prior to analyses to reduce the impact 

of abundant taxa (Anderson et al., 2006) which are typically overestimated due to the 

exponential nature of PCR, but the results were similar using different types of transformations 

(Table S5.2). To assess general trends in fungal OTU richness, the effect of time and different 

biotic and abiotic treatments (as well as their interactions) on fungal OTU richness was tested 

using the lmer function from lme4 package with plot as a random effect.  

Multivariate dispersion (distances from group-centroids) within different biotic treatments for 

each year was calculated using the betadisper function in the vegan package and by calculating 

the mean distance between each pair of samples within a treatment (using the actual BC 

distances between samples). Based on the results from betadisper, a posthoc test was performed 

to examine if dispersion was significantly different between different biotic treatments and P 

values were corrected for multiple testing (Benjamini & Hochberg, 1995). The rationale for 

this analysis is to explore whether there is fungal community convergence within biotic 

treatments (i.e. if the dispersion within treatment decreases), which we take as evidence that 

the relative influence of abiotics or random variation decreases. We also calculated the BC 
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distances contrasting biotic treatments (sod vs control, hay vs control and sod vs hay) to 

visualize change through time. 

We used dissimilarity overlap curve (DOC) analysis (Bashan et al., 2016) to test whether the 

interactions between fungal taxa were important drivers of fungal community composition in 

different biotic treatments across all the years. Bashan et al. (2016) demonstrated that 

communities with high overlap also become increasingly similar in abundance-patterns (so 

reduced dissimilarity) when their constituent taxa interact predictably. Following Bashan et al. 

(2016) and Verbruggen et al. (2018), a significant negative relationship between community 

overlap and dissimilarity of the 50% of data points with highest overlap was here taken as 

support that interactions between fungal taxa substantially influence fungal community 

composition. Null models were constructed to additionally confirm that no relationship was 

found in randomized data (see Bashan et al. (2016) for more details on the analysis). 

DOC analysis was performed in MatLab v.9.0 (The MathWorks, Inc., Natick, Massachusetts, 

United States). All other analyses were performed in R (version 3.3.2) (R Core Team, 2015).  

5.3.5 Network analysis  

While numerous network analyses have been developed (see Chapter IV), due to the specific 

nature of our data, we followed a procedure that first calculates a general relationship between 

taxa based on the full dataset, and then estimates the extent to which this relationship is realized 

in each sample. By first calculating the relationship between taxa in the full dataset we 

circumvent the problem of few replicates for each treatment-time combination and the issue of 

high within-group variance of fungal abundances and low within-group variance of plant cover 

data which would otherwise be very difficult to correlate. This is done by assigning higher 

weights to 1) better fit and 2) higher relative abundance / percentage cover compared to all 

other occurrences of the two queried taxa. This procedure is detailed below. 

First, 65 dominant fungal OTUs (containing a minimum of 500 reads across samples) and 25 

dominant plant species (occurring in more than 8% of plots) were selected and the Pearson 

correlations between taxa were calculated. Rare taxa were removed to reduce the effect of zero 

occurrences, but more than 60% of total plant cover/fungal sequences for each treatment/year 

were included (Table S5.3). Correlations with Pearson r higher than 0.2 were further considered 

for the construction of correlation networks. We imposed this threshold as an initial filter 

against spurious correlations but set it low enough to account for inherent error due to low 

precision of actual plant cover estimates and noise due to random variation. A sensitivity 

analysis with different thresholds and different cut-offs of the number of OTUs and plant 

species showed that these alternative choices did not substantially influence overall network 

structure (Figure S5.5). Next, a simple linear regression between each pair of fungal OTUs and 

plant species was performed to estimate the study-wide slopes and intercepts using ordinary 
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least squares (OLS) regression. In order to estimate the realization of these relationships in 

different samples, the values for slopes and intercepts were then used to calculate the explained 

variation (EV) of the abundance of one taxon based on the abundance of the other for each 

sample in each year. More specifically, EV for a given pair of taxa (cases with double zeros 

were excluded) was calculated by subtracting the residual variation – RV (the difference 

between the actual abundance of a taxon (y) and the abundance predicted by the abundance of 

the other taxon (x) when using the slope (a) and intercept (b) as calculated above) from the 

total variation – TV (the difference in abundance of a taxon (y) and the mean abundance of that 

taxon (𝑦′̅) across all the data) (Equation 1). This value was then multiplied by an index 

calculated as the square root of the product between the abundance of each taxon in a pair per 

plot per year, as a fraction of their maximum abundance in the dataset (x’ and y’) to obtain EV’ 

(Equation 2). EV’ was used as an indicator of connection strength. This means that the higher 

the abundances of both taxa relative to their maximum abundance, the score gets a higher 

weight. The reasoning behind this is that under lower abundances, which are less variable, the 

scores would be inherently higher than the scores at higher abundances (due to the positive 

correlation between mean and variance). Finally, this calculation was performed for each year 

and obtained values were averaged: i) per biotic treatment and ii) per each combination of 

biotic and abiotic treatments. Negligibly low coefficients (< 0.001) and those lower than zero 

were set to zero.  

 

𝐸𝑉 =
TV − RV

TV
=  

|𝑦−𝑦′̅̅ ̅| − |𝑦−(𝑎𝑥+𝑏)|

|𝑦−𝑦′̅̅ ̅|
 (1) 

𝐸𝑉′ = 𝐸𝑉 ×  √
𝑥

max (𝑥′)
×

𝑦

𝑚𝑎𝑥(𝑦′)
 (2) 

 

To further investigate the development of typical heathland community networks, all taxa were 

divided into two groups: i) heathland plants (i.e. Calluna vulgaris L., Erica tetralix L., Rumex 

acetosella, L., Betula pendula Roth, Molinia caerulea L., Carex pilulifera L. and Juncus sp.; 

often found in mature heathland vegetation), and heathland-related fungi belonging to the order 

Archaeorhizomycetales, Helotiales and the genus Clavaria, based on that they were found in 

high abundance in reference heathlands in the current study and/or that they are known to be 

abundant in heathlands (Englander & Hull 1980; Rosling et al., 2011) or to contain ERM fungal 

taxa (Zijlstra et al., 2005); ii) non-heathland taxa including all other plant species and fungal 

taxa. The list of all plant species included in the network analysis is shown in the Supporting 

Information (Table S5.4).  

The change in the total strength of heathland vs non-heathland links between plants and fungi 

over time (from 2013 to 2017) was plotted for biotic and abiotic treatments. The first year 
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(2012) was not included since the hay treatment had only been established earlier that year. 

The links between fungi and plants in the early (2013) and the late phase of the experiment 

(2017) were visualized and overall network properties (number of connections, strength and 

modularity) were calculated. The strengths of links for individual taxa were normalized to a 0-

1 range by dividing them with the highest overall strength value in the dataset. Weighted 

modularity was calculated based on the Walktrap algorithm (Pons & Latapy, 2005) which 

assesses the extent to which the network is divided into modules or clusters. It can range from 

-1 to 1, where positive values indicate that the number of edges within groups exceeds the 

number expected based on a randomly connected network, whereas higher values indicate 

stronger clustering (i.e. dense connections within and sparse connections between the clusters).  

All calculations and network visualizations were performed in R using base functions and the 

igraph package. 
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5.4 Results 

Fungal community composition  

 

Over the six years of the ecosystem development, there was a clear directional change in fungal 

community composition (Figure 5.1) where time explained 12% of the variation (F1,153 = 21.67, 

P = 0.001). When controlling for the effect of time, both biotic and abiotic treatments 

significantly influenced the fungal community composition (R2 = 0.06, F2,146 = 4.92 P = 0.001 

and R2 = 0.05, F2,146 = 4.41, P = 0.001, respectively) and there was a significant interaction 

between them (R2 = 0.04, F4,146 = 1.81 P = 0.001). The direction of fungal community change 

was orthogonal to the reference heathlands community composition, indicating that overall 

community development across treatments was not directed towards the local reference 

communities (Figure 5.1). 

 

In the reference heathlands, the most dominant orders were Archaeorhizomycetales and 

Helotiales comprising 57% and 15% of total reads, respectively. The relative abundance of 

these fungi consistently increased in experimental plots over time in all treatments (Figure 

S5.6). This increase was fastest and reached the highest levels in the sod treatment where the 

sum of the relative abundances of Archaeorhizomycetales and Helotiales in 2017 was 

comparable to that in the reference heathlands (mean = 69%, sd = 16 vs mean = 72%, sd = 6, 

respectively).  
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Figure 5.1 NMDS ordination showing the change in fungal community composition over 
the course of six years (from 2012 to 2017) compared to the reference heathland 
communities (ref). Different colours represent different years and dotted lines connect 
the samples from the same year with their group centriod. First two dimensions are 
shown (stress: 0.15). The ordination with the third dimension is presented in Figure S5.9. 

 

In the last year of the experiment, both biotic and abiotic treatments still had a significant 

influence on fungal community composition (P < 0.001), with a slightly higher effect size of 

the former than the latter (R2 = 0.15 and R2 = 0.13, respectively), and a significant interaction 

between them (R2 = 0.17, P < 0.05) (Figure 5.2a). Within biotic treatments, both hay and sod 

treatments differed from the control (R2 = 0.11, P = 0.01 and R2 = 0.14, P = 0.003; respectively), 

to a similar extent as in previous years (see Figure 5.3 for temporal development of between-

treatment differences). In the case of abiotic treatments, fungal community composition 

significantly differed between the liming and the acidification treatment in 2017 (R2 = 0.12, P 

= 0.006). The interaction between biotic and abiotic treatments is related to a larger response 

of fungal communities to abiotic treatments in the biotic control (grey symbols in Figure 5.2a) 

than in the sod treatment; there was a steadily decreasing dispersion (dissimilarity between 

samples across abiotic treatment levels) of fungal communities under sod treatment over time 

(Figure 5.2b), that was significantly lower than that of the control communities in 2017 (Padj. 

< 0.05).  
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Figure 5.2 a) NMDS ordination of fungal community composition throughout six years (2012 
– 2017) where each year is presented separately to emphasize biotic and abiotic treatments. 
The first two dimensions are shown (stress: 0.15). The ordination with the third dimension 
is presented in Figure S5.10. Different colours represent biotic (control, hay, sod) and shapes 
abiotic treatments (control, acidification, liming). b) Bray-Curtis distance (dissimilarity) 
between each fungal community in the biotic treatment to any other sample from that 
treatment (i.e. dispersion within biotic treatments but across abiotic treatments) over the 
same six years as in (a). Values are slightly shifted to increase visibility.  
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Fungal OTU richness was also significantly affected by time (F = 15.9, P < 0.001), biotic 

treatments (F = 6.4, P < 0.01), interactions between biotic and abiotic treatment (F = 3.3, P < 

0.05) and interaction between biotic treatment and time (F = 5.9, P < 0.001). OTU richness 

tended to decrease over time in all treatments (with high variation between replicate plots), and 

this decrease was the most prominent in the sod treatment, in that it had the highest mean 

richness in 2012 and the lowest in 2017 of all biotic treatments. The other significant effects 

(interaction between biotic and abiotic treatments, and biotic main effect) are more complex 

and not straightforward to discern (Table S5.5).  

 

 
 

Figure 5.3 Mean Bray-Curtis dissimilarity between fungal communities exposed to 
different biotic treatments through time. Different colours represent different 
combinations of biotic treatments (sod vs hay = grey, hay vs control = green, sod vs 
control = red). 75 percentiles are shown as error bars. If values decrease with time there 
is a tendency for fungal communities in treatment-pairs to become more similar, and 
vice-versa. 
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DOC analysis 

 

We used DOC (dissimilarity overlap curve) analyses to test whether biotic interactions between 

fungal taxa were important factors in shaping their community composition for each biotic 

treatment. The results indicate that biotic interactions had a significant influence in shaping 

fungal community composition in the sod and the hay treatment, evidenced by a negative 

relationship between community overlap and dissimilarity at high overlap region (sod: slope = 

-0.24, Preal = 0.005, Pnull = 0.3, hay: slope = -0.18, Preal = 0.02, Pnull = 0.8). For the control 

treatment, there was no significant relationship between community overlap and dissimilarity 

(slope = -0.02, Preal = 0.47, Pnull = 0.7) (Figure S5.7). 

 

Plant-fungal correlation networks 

 

In 2013 (one year after all treatments were in place), the structure of plant-fungal correlation 

networks was very similar in the control and the hay treatment, consisting of relatively strong 

links between non-heathland taxa. In the sod treatment, however, the overall network strength 

was very low, with a relatively high number of links (Figure 5.4a). During the course of the 

experiment, the strength of links between heathland taxa increased while the strength of links 

between non-heathland taxa decreased, particularly in the hay and the sod treatment (Figure 

5.4b).  

 

The increase in strength of heathland taxa links occurred in the early stages of development for 

the sod treatment and was consistent across each abiotic treatment (Figure 5.4b). Furthermore, 

while the overall strength of connections increased by approximately 200%, the number of 

connections decreased by half (from 77 to 36). The core (most strongly connected) plant 

species was C. vulgaris with 12 links and a normalized strength of 1 (the highest strength for 

any taxon in any treatment). Modularity, which represents the extent of division of a network 

into modules or groups, decreased from 0.5 to 0.2 from 2013 to 2017. These results demonstrate 

that the taxa in the sod treatment became more interconnected over time, and the connections 

became stronger and more specific (i.e. occur almost exclusively between heathland taxa). 
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Figure 5.4 a) Positive plant-fungal interaction networks for 2013 and 2017 for three biotic treatments 
(control hay, sod). Green and red circles represent plant and fungal taxa, respectively. The size of the 
circles is proportional to the percentage cover for plant species and relative abundance for fungal 
OTUs. Lines represent the edges (connections) between the taxa and their width is proportional to the 
strength of connections. Darker lines represent links between the heathland taxa and lighter represent 
links between other taxa (note: this includes the links between the pairs where one or both taxa were 
classified as non-heathland and those that could not be classified). b) Change in the strength of links 
between heathland – H (full lines) and non-heathland – NH (dashed lines) taxa in time for control, hay 
and sod treatment. Different line colours represent abiotic treatments (grey – abiotic control, blue – 
liming, red – acidification). * = values higher than the maximum presented here are set to one for 
visibility. 
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Overall network structure in the hay treatment in 2017 was similar to the one in the sod 

treatment, consisting primarily of strong links between heathland taxa (Figure 5.4a) with C. 

vulgaris as a central species (12 links, strength 0.7). During previous years, the increase in 

heathland taxa in the hay treatment was 2-3 years delayed compared to the sod treatment and 

was altogether diminished in the liming treatment, where the strength of links between non-

heathland taxa was still relatively high (Figure 5.4b).  

In the biotic control treatment, the increase in the strength of links between heathland taxa 

started only in 2016 and was weaker than in the two other treatments, particularly under liming 

conditions. Therefore, the network structure in 2017 (Figure 5.4a) was still substantially 

different from the network structure in the sod and the hay treatments, with positive links both 

within heathland and non-heathland taxa (therefore higher modularity of the network = 0.5). 

Moreover, there were multiple core plant species; one from the heathland group – C. vulgaris 

with 7 connections (strength 0.4) and the other from the non-heathland group – P. lanceolata 

with 5 connections (strength 0.3). 

Finally, given that most plant and fungal taxa in the network analysis occurred in all biotic 

treatments in 2013 at least once (Table S5.6), we expect there was no absolute dispersal 

limitation hindering the development of communities in the control treatment. Moreover, 

heathland taxa (plant and fungal) were present with similar frequencies in the control and the 

hay treatment at the beginning of the experiment (Figure S5.8). 

5.5 Discussion 

In the current study, we used a large-scale heathland restoration experiment to estimate the 

combined effects of different drivers of fungal community assembly. We found that 1) the 

initial presence of heathland soil communities and plant seeds had a persistent influence on 

fungal community composition and plant-fungal correlations networks after six years; 2) the 

early presence of the soil communities diminished the effect of abiotic (pH) conditions on both 

of these community aspects compared to the treatments without sod additions. 

Timing of colonization alters the development of fungal communities – the role of biotic 

interactions 

It has previously been shown that soil inoculation can significantly affect heathland community 

composition (Wubs et al., 2016; van der Bij et al., 2018), indicating that plant-soil biotic 

interactions are important in this ecosystem type. Here, we present three further lines of 

evidence to demonstrate the dynamic and nature of biotic interactions in the development of 

fungal community composition over a six-year time-scale. Firstly, there was a persistent 

difference in fungal community composition between biotic addition treatments and the 

control. This was true despite that biotic additions did not alter the initial soil abiotic conditions, 



99 

 

and fungi could easily colonize the non-inoculated plots from the adjacent inoculated plots. 

Similar findings were reported by Wubs et al., (2019), where single introductions of soil biota 

and plant seeds led to long-term legacies on the trajectory of community assembly. Secondly, 

the DOC analysis indicates consistent biotic interactions among fungal taxa under sod additions 

and to a lesser extent hay additions, but this signal was absent in control communities. Thirdly, 

at the end of the experiment, the structure of plant-fungal correlation networks in the sod and 

in the hay treatment was clearly different from that in the control. In the first two treatments, 

the networks contained strong connections between "typical" heathland plant and fungal taxa 

whereas the control treatments exhibited relatively loose connections for either heathland and 

non-heathland taxa. Morriën et al. (2017) have previously shown that during the course of 

primary succession soil networks can become more tightly connected. Here, we show that after 

six years of development such connectivity is highly dependent on the initial biotic community, 

as only the networks formed under biotic additions become more strongly connected and more 

specific. 

The importance of the initial presence of not only plant but also soil fungal partners is further 

corroborated by the slower development of links between heathland plants and fungi in the hay 

treatment compared to the sod treatment. Such dependence of plant community composition 

on soil biota is in line with many previous reports in greenhouse (van der Heijden et al., 1998; 

Koziol & Bever, 2017) and field (Wubs et al., 2019) settings. Specifically for heathlands, van 

der Bij et al. (2017) found that typical heathland vegetation developed much faster and typical 

heathland plants reached a much higher cover when a heathland soil community was already 

present. Our results suggest that when heathland seeds are present from the beginning, but a 

matching soil fungal community is absent or present at low abundance, it is more difficult for 

heathland plants and their associated fungal communities to develop. Apparently, additional 

heathland-related fungi first have to disperse into the plots and become established, causing 

heathland plant-fungal links to develop later as compared to the sod treatment. However, once 

their abundance reaches a certain threshold, further development of the heathland system is 

relatively fast and ultimately resembles the sod treatment. This means that, in terms of 

heathland restoration, hay additions can in longer-term provide similarly successful results as 

sod additions. 

In the control treatment, both plant seeds and soil microbes were introduced gradually through 

dispersal. These plots were situated next to the inoculated plots and close to a larger area of 

abundant heathland vegetation, which poses a significant source of heathland taxa available to 

colonize them. It has been shown that the vicinity of source sites is an important factor 

promoting heathland community development (Torrez et al., 2016; van der Bij et al., 2017). 

Surprisingly though, despite the fact that control plots collectively contained the majority of 

plant and fungal taxa observed in other treatments, including heathland taxa, the increase in the 

strength of links between heathland plants and fungi was notably delayed or absent compared 

to the sod-inoculated plots. A small-scale mismatch between heathland plants and fungi in time 
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and space is likely the reason that links between them are not often formed, leaving 

opportunities for non-heathland plants and fungi to establish. This could result in the local 

development of competing plant-microbe systems, as evidenced by higher network modularity 

in the control treatment; one consisting of heathland and the other of non-heathland plant and 

fungal taxa, with relatively weak positive links within these modules. Whether these links 

between plants and fungi are strong enough to fuel positive feedback will likely determine the 

long-term trajectory of the non-inoculated plots, and whether the heathland system can 

successfully be restored or an alternative one will eventually prevail. The stochastic processes 

operating in this heathland system are likely to contribute to the 50% of variance not accounted 

for by different biotic and abiotic treatments or time. 

Together, these observations suggest that initial simultaneous presence of a relatively large 

pool of heathland fungi and plant seeds in the sod treatment promotes the early formation of 

strong positive plant-fungal feedbacks between heathland taxa, thus reinforcing their further 

development. These early feedbacks can create priority effects (Kardol et al., 2007) and hamper 

the successful development of non-heathland fungi, leading to lower overall OTU richness 

observed in the sod treatment. Mechanisms behind these feedbacks could be both symbiosis, 

such as between plants and mycorrhizal fungi (Kerley & Read, 1998) but also competition for 

limiting nutrients or direct antagonism between plants or fungi, as has been shown to elicit 

priority effects in nectar-yeasts (Vannette et al., 2014; Fukami, 2015). That plant-fungal soil 

interactions have indeed a high potency in creating priority effects has previously been 

demonstrated by Peay (2018), where the timing of ectomycorrhizal inoculation had a strong 

effect on the development of pine seedlings and on their success against competitors associated 

with AMF. 

Which fungi would be responsible for the differences between treatments and control? 

Members of two dominant fungal orders, Archaeorhizomycetales and Helotiales strongly 

increased under biotic additions, particularly in the sod treatment, where they reached an 

abundance similar to that in the reference heathlands. Therefore, even though soil communities 

in the experimental site did not move towards those in the reference in terms of OTU identities, 

they became similar in terms of dominant fungal groups, which might play similar roles in the 

ecosystem. It is well known that Helotiales contain taxa that are associated with heathland 

plants (Zijlstra et al., 2005; Leopold, 2016). Archaeorhizomycetales are relatively poorly 

investigated fungi that are typically found in roots and rhizosphere (Rosling et al., 2011, 2013) 

and might depend on root-derived carbon (Schadt et al., 2003). Given that these fungi are very 

abundant in the reference heathlands, they potentially form important associations with 

heathland plants as symbionts or decomposers. Further research is needed to reveal more about 

the nature of connections of these fungi with heathland plants and their possible importance in 

heathland restoration. 
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Convergence of communities under sod additions – biotic interactions override the effect 

of pH 

The factorial experiment with a crossed abiotic and biotic additions allows us to test whether 

this abiotic filter has precluded biotic interactions to play out, as a hierarchical model of 

community assembly would suggest (Belyea & Lancaster, 1999). Under this model, we should 

expect communities to increasingly sort according to the environmental gradient as species 

disperse in, where the biotic addition treatments are given a head start. In contrast, the 

multivariate dispersion analyses show that fungal communities in the sod treatment converge 

over time, regardless of abiotic differences. Furthermore, the plant-fungal correlation networks 

in this treatment were also not influenced by the differences in abiotic conditions. These results 

indicate that environmental and biotic filters interact with each other and do not influence 

heathland communities in a solely hierarchical way. In the absence of initial "target" soil 

communities, abiotic pressures were apparently more influential, and liming in particular 

favoured stronger positive links between non-heathland plants and fungi, which are typically 

generalist that are less successful on acidic soils. In contrast, the links between heathland taxa 

were promoted under acidification because heathland plants thrive under acidic conditions 

(Lawson et al., 2004; Díaz et al., 2008, 2011) and likely heathland fungi too, as known to be 

the case for Helotiales (Rousk et al., 2010). 

This, however, raises the question of why the development of connections between heathland 

taxa in the sod treatment was not affected by sub-optimal (increased pH) conditions. It is 

possible that plant-associated heathland fungi can strengthen the heathland plant performance 

(and vice-versa) even under sub-optimal conditions through positive feedbacks, and hinder the 

establishment of other, otherwise competitively superior species that are developing in the 

control plots. Research on facilitation has highlighted that positive interactions between species 

- particularly mutualistic ones - can expand their tolerance to the abiotic environment 

(Callaway & Walker, 1997; Bruno et al., 2003; Poisot et al., 2011; Kazenel et al., 2015; Peay, 

2016; Gerz et al., 2018). For instance, it has been shown that ectomycorrhizal fungal symbionts 

can help seedlings establish and persist under suboptimal conditions (Simard, 2009). Our 

results strongly suggest that, in heathland systems, biotic links can override "environmental 

filters" supporting the proposal of Cadotte & Tucker (2017) and Aguilar-Trigueros et al. (2017) 

that these are much less rigid than previously thought. 
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5.6 Conclusion 

The findings presented here suggest that the timing of colonization has an important effect on 

the development of fungal community composition in heathland systems through shaping 

plant-fungal interaction networks. We propose that the early stage presence of heathland soil 

communities and the interactions they form can reinforce the development of a heathland 

system and alleviate the abiotic filter imposed in the absence of these interactions. If the system 

is exposed to slow dispersal, other incoming plant and fungal species establish their own, 

alternative interactions possibly leading to a strongly altered community trajectory that is more 

sensitive to the abiotic context. These results have clear implications for our capacity to steer 

community development, for instance in the context of heathland restoration, through 

manipulation of keystone plants and fungi.  
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CHAPTER VI 

Consistent predictors of bacterial and fungal community 

composition in grassland soils worldwide 

6.1 Abstract 

Potential drivers of soil microbial community assembly have been extensively studied, but it is 

currently unclear whether a consistent set of predictors operates in different soils, or whether 

context-dependency prevails. In this study, we used a network of globally distributed local-

scale gradients in grassland plant productivity to examine i) if the same abiotic or biotic factors 

can predict both global- and local-scale patterns in bacterial and fungal community composition 

and ii) if community composition differs consistently with local plant productivity (low vs 

high) across different sites. We found that microbial community composition can be predicted 

by similar factors on the global and the local scale; with bacteria predominantly associated with 

soil properties (such as base saturation and pH) and fungi predominantly associated with plant 

community composition. Moreover, there was a microbial community signal that distinguished 

high and low productivity levels that was shared across worldwide-distributed grasslands. 

However, the relationship among dominant bacterial and fungal groups, and between these 

groups and plant functional groups and soil properties, differed substantially between 

productivity levels; there were many more significant relationships at low compared to the high 

productivity level. These findings suggest that while the predictors of overall microbial 

community composition in grasslands are consistent across two important contexts (spatial 

scales and productivity levels), the abundance of bacteria and fungi and the relative abundance 

of their dominant groups are likely influenced by different factors that vary with local grassland 

productivity and the amount of resources.  

6.2 Introduction 

Variation in the strength and direction of ecological relationships under different conditions 

(i.e. context-dependency) is common in nature (e.g. Maestre et al., 2005; Chamberlain et al., 

2014; Tedersoo et al., 2015; Song et al., 2020). Biotic and abiotic predictors of microbial 

community composition at particular spatial scales and under specific environmental contexts 

have been thoroughly studied (e.g. Fierer & Jackson, 2006; de Vries et al., 2012; Tedersoo et 

al., 2014; Delgado-Baquerizo et al., 2018), but it is currently not well understood whether there 

is generality in how these drivers operate across different contexts. Context-dependency in the 

processes that structure microbial communities arises for several reasons, including altered 
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plant-soil interactions, different historical legacies (Fukami, 2015), stochastic events in 

community assembly processes (Beck et al., 2015), dispersal limitation (Peay et al., 2010) all 

possibly leading to different main drivers to dominate microbial community assembly in 

different regions (Hendershot et al., 2017). 

Several studies have indeed shown that the drivers of microbial community composition might 

not be consistent at different spatial scales (Shi et al., 2018; Martiny et al., 2011; Chalmandrier 

et al., 2019; Guo et al., 2020). For instance, Alzarhani et al. (2019) investigated community 

composition of root-associated fungi in salt marshes in two geographical regions and identified 

different abiotic and biotic predictors depending on the site and spatial scale, indicating that 

the drivers of these communities are strongly context-dependent. Similarly, Chalmandrier et 

al. (2019) and Shi et al. (2018) found that at the landscape (regional) scale, soil microbial 

community composition was predicted by either environmental factors or plant community 

composition, but these relationships were weak or absent at the local scale.  

To what extent, then, there is any commonality in processes shaping microbial community 

composition across different contexts has been challenging to examine because most studies 

up to now have either been restricted in spatial range or their sampling design did not allow to 

distinguish context-dependency from either noise or generality. For instance, while global-

scale studies have found that microbial community composition can be strongly related to soil 

abiotic properties, such as pH (Fierer & Jackson, 2006; Delgado-Baquerizo et al., 2018a) and 

plant community composition (Prober et al., 2015), it remains unclear to what extent the 

observed correlations are due to the fact that microbial and plant communities, as well as soil 

properties, covary strongly with climate and geographical distance (Steidinger et al., 2019). On 

the other hand, regional- and local-scale studies have a better potential to assess the effect of 

soil properties and plant communities along an environmental gradient, but their findings may 

not generalize across different places (Alzarhani et al., 2019).  

Here, we used a global network of grassland sites that contain local-scale plant productivity 

gradients (Fraser et al., 2015) to examine whether soil bacterial and fungal community 

composition in grasslands can be predicted by the same factors under different contexts, or 

whether to the contrary context-dependency prevails. Given that grassland productivity is 

intrinsically related to biodiversity, soil fertility and plant-soil interactions (Craven et al., 2016; 

Delgado-Baquerizo et al., 2017; Guerrero‐Ramírez et al., 2019), and therefore to the overall 

functioning of the system, different local-scale productivity levels provide entirely different 

underlying environmental contexts for the development of soil microbial communities. For 

instance, plant competition for light is expected to increase with productivity (Grace et al 2016) 

favouring acquisitive fast-growing plant species (DeMalach et al., 2016). Such development is 

mirrored in soil, where the high input of easily decomposable plant litter may select for more 

acquisitive biota such as many gram-negative and other bacteria (Marschner et al., 2011), to 

the detriment of fungi and microbes engaged in nutritional symbioses with plants (de Vries et 
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al., 2007, 2012; Johnson et al., 2008). The question remains if these processes structuring 

microbial assembly would play out in a similar manner across different sites and different (e.g. 

climatic) conditions. 

To address this question, we first analysed the importance of climate, geographical distances, 

nitrogen deposition, plant biomass, plant community composition and 15 soil properties in 

explaining global bacterial and fungal community composition patterns. We then tested if 

locally varying factors such as soil properties, plant biomass and plant community composition 

can consistently predict bacterial/fungal community composition across different sites and 

climatic conditions. Further, we examined whether two different grassland productivity levels 

(low and high) had globally consistent effects on microbial communities across different sites. 

Given that consistent relationships across different contexts might be more apparent at high 

taxonomic levels or functional groups than in the overall community (Alzarhani et al., 2019), 

we also explored if the dominant bacterial taxa and fungal functional groups, as well as 

bacterial and fungal abundances, form different correlations with soil properties and plant 

biomass/functional groups at different productivity levels.  

If context-dependency is strong, we expect to find different, site-specific, local-scale drivers of 

microbial communities. In that case, the predictors identified on the global scale would not 

predict well the local-scale variability across different sites. For instance, we anticipate that at 

the global scale, climate and geographical distances would be dominant predictors while on the 

local scale, microbial communities would be determined by different soil properties and/or 

plant community composition. Furthermore, we would expect no common signal in the way 

community composition is shaped between two productivity levels because the effect of plant 

productivity on microbial community composition would vary across globally distributed 

grassland sites (e.g. depending on the climatic conditions, biogeography, or soil type). 

6.3 Materials and methods 

6.3.1 Sampling sites and data collection 

Data was collected from 18 Herbaceous Diversity Network (HerbDivNet) grassland sites 

(Fraser et al., 2015) located in 12 countries distributed over six continents (Figure 6.1). Each 

of the 18 sites contained between two and six plots of 8 x 8 m: 11 sites contained six plots, one 

site contained four plots, one site three plots and five sites contained two plots (Table S6.1); 83 

plots in total. Most sites were chosen to represent an estimated gradient in productivity (low, 

medium and high) with six plots; two per each productivity level. However, some sites 

contained fewer plots and did not show a prominent productivity gradient. A clear gradient in 
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biomass productivity was accomplished in 11 sites; including ten with six plots and one with 

four plots (Figure 6.1). Other general site characteristics are described in Chapter III. 

 

 
 

Figure 6.1 The location of 18 HerbDivNet sites across a precipitation gradient. Red 
diamonds indicate 11 sites that contained a clear productivity gradient and yellow circles 
indicate other sites (containing from 2 to 6 plots but with no clear productivity gradient). 
All the sites and plots were used in the analyses of global and local-scale predictors of 
microbial community composition while 11 sites with the productivity gradient were 
used in the analyses of microbial community composition at high and low productivity 
levels. *This site consists of 3 relatively close sites (each with 2 plots) that were kept 
separate in Chapter III to take into account small, but relevant, differences in 
precipitation between them.  

 

6.3.2 Soil and plant sampling  

Soil was sampled in a single sampling event at the peak of the growing season in the period 

between 2017 and 2018, depending on the site (Table S6.1). For each plot within a site, five 

samples were taken using soil corers from four corners and the centre of the plot at 0-10 cm 

depth. Subsamples for microbial analyses were taken and stored in pure ethanol and the rest of 

the sample was pooled into one composite sample (a total of 83 samples), air-dried and sieved 

at 2 mm. All samples were further analysed at the University of Antwerp. Samples for 

microbial analyses stored in ethanol were kept cool until the DNA extraction (see below). 

Although soil samples for DNA analysis should ideally be frozen shortly after sampling, due 

to practical constraints they were preserved in ethanol which was shown to yield similar DNA 

recovery as cold conservation (Harry et al., 2000). 
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Total aboveground biomass was harvested and plant species from each m2 of each 64 m2 plot 

were identified at the peak of the growing season. Sampling was performed in the period 

between 2012 and 2017 in a single sampling event per site (Table S6.1). Litter was first 

excluded from the total biomass and live biomass was dried and weighed. Based on this, 

average peak AGB production [g/m2] was calculated for each plot as in Chapter III.  

The data on the presence of different plant species at each m2 of the plot was used to derive the 

‘frequency’ of different species per plot (with the highest possible value of 64 – for species 

present at each m2 of the 64 m2 plot) which was used as a measure of relative abundance. 

Further analyses of plant community composition distances were based on species aggregated 

to genera (as in Prober et al. (2015)) rather than to the species level given the plant species 

turnover across different plots and sites would often be 100% and thus produce continuous data 

at highly similar communities only, reducing information content. 

6.3.3 Climatic and N deposition data 

Mean annual precipitation (MAP) and temperature (MAT) were derived from the CHELSA 

database (as in Chapter III) based on the geographical position (latitude and longitude) of each 

plot which was also used to derive geographical distances [km] between the plots. Data on 

aridity and potential evapotranspiration (PET) were obtained using CGIAR-CSI Global-Aridity 

and PET Databases. Data on total inorganic nitrogen deposition [kg/ha/yr] were derived from 

Ackerman et al. (2018). 

6.3.4 Analyses of soil physicochemical properties 

The following soil parameters were analysed for each of the 83 plots: soil organic matter 

(SOM), total nitrogen (N), total carbon (C), total phosphorus (P), available P (Olsen), base 

saturation (BS), cation exchange capacity (CEC), pH, soil texture (% sand, % clay, % silt), 

bulk density (BD) and extractable Ca, Mg and K. The methods of analyses of soil properties 

are described in Chapter III. 

6.3.5 Analyses of microbial communities 

Sample preparation and sequencing 

DNA was isolated from 415 soil samples (5 samples for each of 83 plots) using 0.25-0.35 g of 

soil with the DNeasy PowerSoil Kit according to the manufacturer’s protocol (Qiagen, Venlo, 

the Netherlands). The bacterial 16s V4 region was amplified using the 515F-806R primer pair 
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and the fungal ITS1 region was amplified using general fungal primers ITS1f and ITS2 (see 

Chapter IV). The preparation of PCR mixture was identical as in Chapter V. PCR conditions 

were as follows: initial denaturation at 98 °C for 60 s, followed by 30 (35 for fungi) cycles of: 

denaturation at 98 °C for 30 s, annealing at 55 °C for 30 s, extension at 72 °C for 30 s; and an 

additional extension of 72 °C for 10 min. The success of amplification was tested on 1.5% 

agarose gel. For the samples that did not amplify successfully, amplification was attempted 

again with a modified mixture that contained 2 µl of the sample and 1 µM of forward and 

reverse primer. Successful PCR products were diluted 50 x and a second PCR was performed 

using dual barcoded primers with Illumina adapters (2.5 µl of diluted PCR products and 0.1 

µM of each primer). The conditions were: 98 °C for 60 s, 12 cycles: at 98 °C for 10 s, 63 °C 

for 30 s, 72 °C for 30 s; and 72 °C for 5 min. PCR products were run on an agarose gel and 

successful amplicons were purified and normalized using the SequalPrep Normalization Plate 

Kit (ThermoFisher Scientific) and pooled into a single library. The library was purified through 

gel extraction using QIAquick Gel Extraction Kit (Qiagen, Venlo, the Netherlands) and 

quantified using qPCR. The sequencing was performed using the Illumina MiSeq platform 

(Illumina Inc; San Diego, CA, USA) with 300 cycles for forward and reverse reads.  

Quality filtering and bioinformatics analyses 

The sequences were analysed using the USEARCH (v8.1.1861) and VSEARCH (Rognes et 

al., 2016) software following the UPARSE pipeline (Edgar, 2013). After trimming to 280 bp 

and 250 bp for bacteria and fungi respectively, the paired-end reads were merged and primers 

were removed. This trim length was chosen because it was the optimal length for merging 

paired reads by removing the low-quality bases at the end. Merged sequences were quality 

filtered using the expected number of errors (E) as a measure of read quality, with a threshold 

of Emax = 0.5. This yielded 10.8 M and 4.02 M of good-quality reads, for bacteria and fungi, 

respectively. Following singleton removal, the sequences were clustered into OTUs 

(operational taxonomic units) based on 97% similarity using the UPARSE-OTU algorithm 

(Edgar, 2013) which automatically detects and filters out de novo chimaeras with high 

efficiency. Filtered reads were then mapped to the OTUs with an identity threshold of 0.97, 

yielding an OTU table for bacteria and fungi. The raw sequences from this study will be 

deposited in SRA-NCBI database. 

Representative OTUs were aligned to bacterial sequences in the SILVA database (Quast et al., 

2013) (release date 13.12.17) and fungal sequences in the UNITE database (Kõljalg et al., 

2005) (release date 10.10.2017), using the sintax command in USEARCH with 0.8 cut-off. 

Non-bacterial and non-fungal sequences were removed from OTU tables resulting in a total of 

19,248 and 13,967 OTUs for bacteria and fungi, respectively. 

Further steps were performed using R software. The number of reads per sample was rarefied 

using the rrarefy function in vegan (Oksanen & et al., 2015) to 6,046 for bacteria and 1,231 

reads for fungi as rarefaction curves showed that the number of taxa was levelling off for most 
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samples at these depths (Figure S6.1). Most bacterial samples had a higher amount of sequences 

that the chosen rarefaction depth but 60 samples had fewer sequences than this threshold. Out 

of these, 13 samples had too few sequences or they were outliers and they were therefore 

discarded and 47 (with the minimum amount of sequences of 3571) were normalized to contain 

6046 sequences, leaving 402 samples for bacteria. For each of these samples, it was verified 

that they do not notably deviate from the other samples in their group (i.e. those sampled from 

the same plot). For fungi, all but 13 samples had more sequences than the chosen rarefaction 

depth, and the letter were therefore omitted leaving 402 samples in total. Both for bacteria and 

fungi, no less than 3 samples per plot were retained in any plot. 

To annotate sintax-assigned fungal sequences to known genera in the UNITE database, we 

used NCBI’s BLAST algorithm with default settings. OTUs were then assigned to particular 

taxa if they had a maximum E-value of 10-36
 (as in Chapter V) and from this, the lowest E-value 

hit with a known genus was selected. If there were none, the genus level was left unassigned. 

OTUs were subsequently assigned to functional groups if the genus was successfully matched 

with one of the genera with known lifestyles in Tedersoo et al. (2014) and Liu et al. (2016a). 

6.3.6 Analysis of microbial abundance 

DNA extracts of the five replicate samples per plot were first pooled into one sample, leaving 

83 samples in total. The abundance of bacterial and fungal genes per sample was quantified 

using qPCR targeting 16s V4 region (with the 515F–806R primer pair) for bacteria and 18s 

region for fungi (primer set FR1 / FF390 (Chemidlin Prévost-Bouré et al., 2011)). Each 20 µl 

reaction mixture contained 4 µl of the sample, 0.5 µM of each forward and reverse primer, 1 x 

ROX high and 10 µl of KAPA SYBR FAST qPCR master mix (Kapa Biosystems, Wilmington, 

MA, USA). qPCR conditions were as follows: initial denaturation at 95°C for 3 min, followed 

by 40 cycles of: denaturation at 95 °C for 3 s, annealing at 57 °C (52 °C for fungi) for 20 s, 

extension at 72 °C for 12 s; finishing with 35 s at 50 °C. Prior gel-electrophoresis with these 

primers and reaction conditions showed the reactions were highly specific. Melting curve 

analysis of all amplicons was conducted to confirm that fluorescence signals originated from 

specific amplicons and not from primer-dimers or other artefacts. Standard curves were 

generated using duplicates of 10-fold dilutions of amplicons derived using the same primers, 

isolated from the gel using QIAquick Gel Extraction Kit (Qiagen, Venlo, the Netherlands) and 

quantified using Qubit fluorometer (Invitrogen GmbH, Karlsruhe, Germany). Fungal and 

bacterial gene copy numbers were derived from a regression equation based on the standard 

curves (with minimal R2 > 0.99) by relating the quantification cycle (Cq) value of each sample 

to the Cq values of standards with the known number of copies. All reactions were performed 

in duplicate and the number of bacterial and fungal copies was then averaged (a deviation of 

Cq between replicates < 1 was used as a passing criterium) and expressed per g of dry weight 

soil. 



114 

 

6.3.7 Statistical analyses 

Global- and local-scale predictors of microbial community composition  

 

First, we averaged the OTU relative abundances of five samples taken at the centre and the 

corner of each plot (83 plots from 18 sites) to obtain one community measure per plot. We 

further analysed the influence of variation in geographical distance, abiotic environmental 

factors, plant biomass and plant communities on the global-scale variation in bacterial and 

fungal community composition using multiple regression on distance matrices (MRM) in the 

ecodist package (Goslee & Urban, 2007). Environmental variables included: two climatic 

variables (MAT and MAP), N deposition, plant biomass and 15 soil variables (pH, total N, 

total P, available P, CEC, BS, BD, % sand, % clay, % silt, SOM, Ca, Mg, K and C:N ratio). 

All variables (except pH and BS) were transformed using square root transformation, centred 

and scaled to reduce positive skewness and to allow for the comparison of effect sizes. 

Community data (fungi, bacteria plants) were transformed with Hellinger transformation using 

the decostand function in the vegan package. Distance matrices for communities were created 

using the Bray-Curtis (BC) distances, and distance matrices for each of the environmental 

factors (and plant biomass) were created using Euclidean distances.  

  

For the global-scale analysis, a multiple regression model on distance matrices was first fit 

using bacterial/fungal distances as response variables and all variables (except plant 

community composition) as independent variables. Subsequently, a backward model selection 

was performed, where the variables that did not significantly contribute to the model were 

sequentially removed and the final model included only the remaining variables that had a 

significant effect (P < 0.05). In this way, all available environmental variables that explained 

unique variation in global community composition were taken into account. To test if and how 

much plant communities can add to the variation explained by geographic distances and the 

environment, we added plant community distances to the best model.  

In order to partition the variance explained between predominantly broad-scale predictors, 

ecosystemic environmental predictors and community-related predictors we created three 

groups of variables: i) climate + N deposition + geographical distance; ii) soil parameters + 

plant biomass; iii) plant community composition; and assessed how much of unique and shared 

variation each of these three groups explained.  

 

To examine if the observed global-scale relationships (across all the plots and all the sites) 

persist on the local scale (i.e. between the plots within each site; these share the same climate 

and are part of the regional species pool), we created a common variable that represents the 

influence of the selected ecosystemic environmental factors (soil and plant biomass) by first 

multiplying each selected variable by its coefficient in the best MRM model and then summing 

them into one variable. The within-site (Euclidean) distances in the environmental variables 
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were then plotted against the within-site distances in bacterial and fungal communities. In the 

same way, we plotted the within-site microbial distances against the within-site plant 

community distances to examine how well plant community dissimilarities can predict 

microbial community dissimilarities at the local scale. To assess the consistency of these 

relationships (environment – bacteria, plants – bacteria, environment – fungi, plants – fungi) 

across sites that contained more than three plots, we calculated the variance in their slope values 

and we reported their mean R2 values as well as the standard deviations. 

 

Microbial community composition at different local relative productivity levels 

 

Our local productivity gradients allowed us to test whether there is a general difference between 

relatively low-productivity and high-productivity grasslands replicated at a global scale. For 

this analysis, the dataset was divided into two parts: one containing two plots with low 

productivity and the other containing two plots with high productivity from each site. 11 sites 

that had a clear productivity gradient were considered. These sites were selected because they 

had a strong difference in plant biomass between the plots of low and high productivity (where 

the average of two plots with the highest productivity was at least 100% higher than the average 

of two plots with the lowest productivity). This yielded two datasets, each containing 22 plots.  

 

In order to examine if bacterial and fungal communities differed significantly between the two 

productivity levels with a consistent pattern across sites distributed all over the globe, we 

performed PERMANOVA analysis using the adonis function in vegan adding ‘site’ as strata 

to account for site differences. We used multidimensional scaling (MDS) ordination to 

visualise the BC distance in bacterial and fungal communities at different productivity levels 

after removing the effect of ‘site’ differences (to control for inherent community differences 

between sites) using the dbrda function in vegan. To examine if the best predictors of bacterial 

and fungal community composition differed at different productivity levels, we repeated model 

selection described above (using the MRM function) for microbial communities at each of the 

productivity levels.  

Furthermore, we examined if there was a significant change (P < 0.01) in the relative 

abundances of bacterial and fungal taxonomic/functional groups and bacterial and fungal 

abundances (number of gene copies) at low compared to high productivity levels using the lme 

function in nlme package with ‘site’ as a random effect.  

Finally, we examined whether the correlation networks between microbial groups/microbial 

abundances, plant functional groups and soil properties across different sites differed between 

low and high productivity levels. To this end, we analysed the pairwise correlations (using 

corr.test in the ‘psych’ package) between the three most dominant bacterial taxa, three most 

dominant fungal functional groups, plant aggregated to three plant functional groups (grasses, 

forbs, legumes), fungal and bacterial abundances (including fungal to bacterial ratio), plant 
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biomass and the most important, non-redundant soil properties (SOM, CEC, BS, pH, total N, 

C:N, total P, available P and % sand) for low and high productivity datasets. Only the 

correlations with Spearman r > 0.5 and P-value < 0.01 were retained and visualised in the form 

of correlation networks.  

All statistical analyses were performed using the R software, version 3.6.1 (R Core Team 

2019). The results were visualized using the ggplot2 package in R (Wickham, 2016). 

6.4 Results 

Global-scale predictors of microbial community composition  

 

Environmental variables and geographical distance explained 65% of the global-scale variation 

in bacterial community composition, where the strongest individual predictors were base 

saturation and pH (Table 6.1). When plant distances were added to this model, they increased 

the variance explained from 65% to 72%. Overall, in the model including plant community 

composition, ecosystemic environmental factors (particularly soil base saturation and pH) were 

the best predictors of bacterial community composition explaining 35% of the unique variation 

(Figure 6.2). The best model with environmental variables and geographical distances 

explained 44% of the variation in fungal community composition, where broad-scale predictors 

(climate, N deposition and geographical distances) played the most important role (Table 6.1). 

Adding plant communities to this model increased the explained variation to 59% (Figure 6.2). 

Plant community distances alone explained more variation in fungal communities than all other 

factors combined (51% compared to 44%) and they explained a relatively high amount of 

unique variation in the model together with environmental factors and geographical distances 

(15%). 
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Table 6.1 Global-sale predictors of bacterial and fungal community distances. The upper part of 
the table shows the broad-scale variables and ecosystemic variables that were selected in the 
best model. R2 values of the individual relationships between the variables and bacterial/fungal 
community composition are shown together with the coefficients and P values for each of the 
variables in the model. The coefficients of variables shaded in grey were used to weigh these 
variables before summing them to obtain a single representative ecosystemic environmental 
variable for bacteria and fungi in Figure 6.3. The lower part of the table shows the variation 
explained by community-related variable alone. 

  Bacterial communities 

Best model R2 = 0.65 

Fungal communities 

Best model R2 = 0.44 

 

  

Individual 

R2 

Coeff. 

(model) 

P-value 

(model) 

Individual 

R2 

Coeff. 

(model) 

P-value 

(model) 

Broad-scale  

variables 
Geo. dist. 0.04 0.02 0.002 0.15 0.003 0.001 

MAT 0.03 0.01 0.003 0.13 0.02 0.001 

MAP - - - 0.03 0.006 0.001 

N deposition 0.18 0.04 0.001 0.13 0.02 0.001 

Ecosystemic 

variables 
Plant biomass 0.02 0.01 0.001 0.05 0.006 0.008 

pH 0.27 0.04 0.001 0.09 0.02 0.001 

CEC 0.16 0.02 0.001 0.06 0.01 0.001 

N total 0.10 0.02 0.001 - - - 

C:N - - - 0.02 0.005 0.013 

BS 0.34 0.04 0.001 - - - 

Sand 0.05 0.01 0.001 0.02 0.006 0.008 

Community-  

related 

variable 

Plant 

community 

composition 

0.27 NA NA 0.51 NA NA 
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Figure 6.2 Variance partitioning between selected variables in the best model explaining 
bacterial and fungal community distances. The variables were grouped in 3 categories: i) 
predominantly broad-scale drivers (climate, N deposition and geographical distance); ii) 
ecosystemic environmental drivers (soil properties and biomass) and iii) plant-
community composition. 

 

Local-scale predictors in microbial community composition  

 

To examine to what extent global scale predictors can predict microbial community 

composition at different grassland sites, the within-sites distances in the environmental 

variables (created using the most important ecosystemic environmental predictors in the global 

model for bacteria/fungi, as presented in Table 6.1) and plant community composition were 

regressed against the within-site distance in bacterial/fungal community composition. We 

found positive relationships between the environmental variables and bacterial and fungal 

communities in all the sites (Figure 6.3a and Figure 6.3c), but these relationships were much 

more consistent for bacteria than for fungi (slope variance values were 0.05 versus 0.16, 

respectively). The average amount of variation explained by the environment was 58% (sd = 

32%) and 50% (sd = 32%), for bacteria and fungi, respectively. Moreover, the relationships 

between plant communities and bacterial/fungal communities were also positive for majority 

of the sites (Figure 6.3b and Figure 6.3d), but they were slightly more consistent for fungi than 

for bacteria (slope variance values were 0.05 versus 0.06, respectively). The average amount 

of variation explained by plant community composition was 64% in both cases (sd = 28% and 

sd = 26%; for bacteria and fungi, respectively).  
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Figure 6.3 a) Within-site Euclidean environmental distances (pH, BS, N, CEC, sand and 
plant biomass weighted by their coefficient in the best MRM model and summed) against 
within-site bacterial BC distances; b) within-site plant BC distances against within-site 
bacterial BC distances; c) Within-sites Euclidean environmental distances (pH, C:N, CEC, 
sand and plant biomass weighted by their coefficient in the best MRM model and 
summed) and within-site fungal BC distances; d) within-site plant BC distances against 
within-site fungal BC distances. Colours of points and corresponding regression lines 
correspond to 18 different sites. Dashed lines represent general regression lines. The 
relationship between geographical distances and bacterial/fungal distances per site are 
shown in Figure S6.2. 
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Microbial community composition patterns at different plant productivity levels 

 

Across sites, bacterial and fungal community composition differed significantly between low 

and high productivity levels (P < 0.001; Figure 6.4). Nonetheless, the predictors of bacterial 

and fungal community composition at low and high productivity level were similar to each 

other and to those selected for the entire dataset; i.e. environmental factors (particularly base 

saturation and pH) were the most important predictors of bacterial community composition, 

whereas fungal community composition was best predicted by plant community composition 

(Table S6.2, Appendix 6.1). Therefore, while distinct microbial communities were associated 

with different productivity levels, their relationship with plant communities and (a)biotic 

environment was largely consistent at different productivity levels. 

 

 
 

Figure 6.4 The MDS ordination showing bacterial and fungal BC distances (corrected for 
the effect of the site) at the high and the low productivity levels. 
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Dominant microbial groups and their correlations with plant groups/biomass and soil 

properties at different productivity levels 

 

The most abundant bacterial phyla in the dataset were: Actinobacteria (42%), Firmicutes 

(16%), Proteobacteria (14%), Chloroflexi (8%), Acidobacteria (6%), Verrucomicrobia (3%), 

Bacteroidetes (3%), Planctomycetes (2%), and other phyla each contained less than 2% of the 

total number of bacterial sequences (Figure S6.3, Table S6.3). Saprotrophs were the most 

dominant fungal functional group with 54% of sequences followed by 14% of potential plant 

pathogens, 7% of arbuscular mycorrhizal fungi (AMF) and the other groups (such as lichens, 

ectomycorrhizal fungi, animal parasites, mycoparasites) together accounted for 4% of the total 

number of sequences (Figure S6.3).  

When considering the three most dominant fungal and bacterial groups, at the high productivity 

level, there was a significantly higher relative abundance of Firmicutes and a lower relative 

abundance of Actinobacteria compared to the low productivity level (Figure 6.5b). The relative 

abundances of Proteobacteria, saprotrophs and AMF did not differ significantly between the 

two productivity levels.  

Total fungal abundance was, however, significantly lower at the high productivity level, while 

bacterial abundance and fungal to bacterial ratio did not differ significantly. 

 

The correlation networks between the three most dominant bacterial and fungal groups with 

plant functional groups, soil properties and total fungal and bacterial abundance differed 

strongly between two productivity levels. At high productivity, there were only a few 

correlations; e.g between C:N and both Actinobacteria and Proteobacteria, base saturation and 

bacterial/fungal abundance and a relationship between legumes and Firmicutes (Figure 6.5a). 

On the other hand, the number of associations was much higher at the low productivity level 

(Figure 6.5a) where different soil properties (including SOM, N, P and CEC) were related to 

fungal and bacterial groups. Moreover, there were negative correlations between putative plant 

pathogens and forbs as well as between Firmicuets and bacterial and fungal abundances. 
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Figure 6.5 a) Correlation networks between three most dominant bacterial phyla 
(Actinobacteria, Firmicutes, Proteobacteria), three most dominant fungal functional groups 
(saprotrophs, putative plant pathogens, AMF), three main plant functional groups (grasses, 
forbs, legumes), total bacterial/fungal abundance (number of copies per g soil) and their 
ratio and soil properties at high and low productivity. Only the soil variables that had at least 
one significant correlation were shown. The red lines demonstrate significant negative 
correlations, while the blue lines demonstrate significant positive correlations (P < 0.01 and 
Spearman r > 0.5). Soil variables included C:N (carbon to nitrogen ratio), N (total nitrogen), 
CEC (cation exchange capacity), percentage sand, P (available phosphorus), BS (base 
saturation). N* = the same links as for total N were observed for total P and SOM, which 
were all strongly correlated to each and therefore only one of them was shown in the figure. 
The correlations between soil properties were not of interest and were therefore not 
included. b) Boxplots show the mean values of the three microbial variables that differed 
significantly between the productivity levels (Actinobacteria, Firmicutes and fungal 
abundances). The grey area depicts the distribution of samples. 
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6.5 Discussion 

Despite a considerable amount of literature describing the most important predictors of 

microbial community composition in grassland soils, it remains unclear whether any general 

predictors across different spatial scales and environmental contexts can be identified or 

whether the context-dependency prevails, rendering microbial community composition largely 

unpredictable. In this study, we demonstrate that there is generality in the way bacterial and 

fungal communities are shaped across two spatial scales and two plant productivity levels in 

globally-distributed grasslands. 

 

Generality in the predictors of microbial community composition at different spatial 

scales 

The strongest predictors of bacterial community composition globally were soil abiotic factors, 

particularly base saturation and pH. While pH is known to be a major driver of bacterial 

community composition (Lauber et al., 2008; Rousk et al., 2010), the effect of base saturation 

is less often investigated, but was earlier also found to be one of the most important predictors 

of bacterial community composition across three different land-use types (Zheng et al., 2019). 

On the other hand, plant community composition was the strongest predictor of fungal 

community composition, explaining more variation than all other predictors combined; a 

finding in line with that from another global-scale study in grasslands (Prober et al., 2015). 

Similar patterns were found on the local scale, where environmental distances were 

consistently related with the variation in bacterial community composition across sites while 

fungal community composition had a more consistent relationship with plant community 

composition. These relationships are thus not just a matter of coincident community turnover 

at global scales between fungi and plants, but rather indicate a direct influence on each other 

and/or a high similarity in ecological niches.  

Therefore, contrary to what has previously been found for bacterial communities in salt marsh 

sediments (Martiny et al., 2011) and wheat fields (Shi et al., 2018), root-associated fungal 

communities in salt marshes (Alzarhani et al., 2019) and microbial communities in pastures 

along an elevation gradient (Chalmandrier et al., 2019), our findings imply that the drivers of 

soil bacterial and fungal community composition in globally distributed grasslands do not 

strongly depend on the spatial scale (excluding broad-scale drivers, such as climate that only 

operate at large spatial scales) and that they are consistent across different grassland sites.  
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Moreover, our results overall indicate that plant community composition is strongly related to 

microbial community composition (particularly fungal, but also bacterial) across different 

grassland sites. Plant communities can affect soil microorganisms both directly by providing a 

diverse set of hosts for mutualistic and antagonistic microorganisms, and indirectly by altering 

edaphic factors and providing different quantity and quality of root exudates and litter (Wardle 

et al., 2004; van der Heijden et al., 2008; Berg & Smalla, 2009). For instance, productive, fast-

growing plant communities create litter rich in labile carbon that is preferentially decomposed 

by acquisitive groups of microbes such as many heterotropihc bacteria and certain types of 

saprotrophic fungi (Marschner et al., 2011) to the detriment of microbes specialized in the 

decomposition of more recalcitrant material (e.g. many other groups of fungi) which are 

predominantly associated with low-productive plant communities. Local experiments have 

confirmed that plant community composition can shape microbial communities (Schlatter et 

al., 2015; Reese et al., 2018; Heinen et al., 2020) and that plant-soil biotic interactions might 

play a central role in microbial community assembly processes (Wubs et al., 2019; Radujković 

et al., 2020). It is thus likely that plant communities exert important control over bacterial and 

fungal community composition regardless of the spatial context. 

 

Universal influence of plant productivity on microbial community composition  

 

Consistent with the previous conclusions, we found that bacterial and fungal community 

composition differed significantly between low and high productivity levels when site-specific 

differences were taken into account. This suggests that plant productivity, as an integrator of a 

myriad of factors that are related to it (including soil fertility, plant diversity, plant-soil 

interactions (Craven et al., 2016; Delgado-Baquerizo et al., 2017; Guerrero‐Ramírez et al., 

2019), etc.) shapes community composition in a predictable manner regardless of differences 

in climate and the variability of grassland types (e.g. xeric, mesic and hydric) within this study. 

Several experimental studies have previously suggested that soil microbial community 

composition often exhibits consistent responses to environmental changes across different 

systems. For instance, it has been shown that soil microbial communities responded in a 

consistent manner to land-use changes in tropical forests (Petersen et al., 2019), to nutrient 

inputs in contrasting systems (Ramirez et al., 2010) and nutrient inputs across different 

grasslands (Leff et al., 2015). Our results imply that the drivers of overall soil microbial 

community composition in grassland soils are likely universal across different environmental 

contexts.   

The differences in bacterial community composition between the two productivity levels are 

corroborated by a higher relative abundance of Firmicutes and lower relative abundance of 

Actinobacteria (two dominant bacterial phyla) at high compared to low productivity, with a 

similar total bacterial abundance between these productivity levels. Both Firmicutes (Ramirez 

et al., 2010; Wakelin et al., 2013; Yao et al., 2014; Ling et al., 2017) and Actinobacteria 

(Ramirez et al., 2010; Wakelin et al., 2013; Leff et al., 2015) were previously found to increase 
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under elevated nutrient inputs suggesting that they might be more dominant in fertile soils with 

higher plant productivity. It is possible that in our study, Firmicutes were more strongly 

dependent on high soil fertility conditions than Actinobacteria; hence, the increased relative 

abundance of Actinobacteria at the low productivity level might be caused by a substantially 

lower abundance of Firmicutes. 

As for fungal communities, the relative abundance of the three dominant functional groups 

(saprotrophs, AMF and potential plant-pathogens) did not differ significantly between 

productivity levels, indicating that the shift in the overall fungal community composition is a 

result of changes in OTU abundances within these functional groups. However, total fungal 

abundance was significantly higher at low compared to high productivity levels. Higher fungal 

abundance is often found in less fertile soils (Bardgett & McAlister, 1999; Innes et al., 2004), 

which typically have low plant productivity, where fungi are favoured over bacteria as the 

predominant decomposers due to the higher recalcitrance of plant litter (Marschner et al., 

2011). Moreover, plant reliance upon, and allocation to AMF is often higher to provide 

sufficient P, N and other nutrients (Johnson et al., 2013). We did not observe a significantly 

higher relative abundance of symbiotrophs at low compared to high productivity, but since total 

fungal abundance was higher at low productivity levels, the same should be true for 

symbiotrophs. 

 

The correlation networks between microbial groups and the environment vary with plant 

productivity  

 

The correlations among microbial groups and abundances and their associations with plant 

functional groups and soil properties differed markedly at different productivity levels and they 

were much more numerous at low compared to the high productivity level. For instance, at low 

productivity, the relative abundance of putative plant pathogens was negatively associated with 

the abundance of forbs and tended to increase with increasing grass abundance, possibly 

because grass species typically host a larger variety of pathogens than forbs (Heinen et al., 

2020). Also, their denser fine root system may offer less defence and higher abundance of 

substrate to pathogens than the less dense roots of forbs do (Laliberté et al., 2015). The increase 

in the relative abundance of putative plant pathogens with decreasing total N and SOM, i.e. in 

the soils with lower fertility, could also (partly) be due to the increased relative abundance of 

saprotrophic fungi, which were negatively correlated with plant pathogens. At the high 

productivity level, plant pathogens and saprotrophs were not correlated with other groups of 

biota or with soil properties, presumably because nutrients were generally ample.  

These examples suggest that, due to sufficient amounts of resources, microbial groups at high 

productivity might not be substantially affected by a further increase in resource availability 

and they might be forming fewer consistent interactions (symbiotic or competitive) with each 

other or with plant groups. This has been demonstrated in agricultural settings where soil 

fertilization reduced rhizosphere microbiome dependency on plant-derived carbon leading to 
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simpler plant-microbe associations (Ai et al., 2015). Similarly, it has been shown that 150 years 

of soil fertilization has weakened the complexity of plant-microbiome networks in a managed 

grassland (Huang et al., 2019). We here show that these tendencies also hold for natural 

grasslands on a global scale. Therefore, unlike for the overall bacterial and fungal community 

compositions, the drivers of higher bacterial taxonomic groups and fungal functional groups in 

grassland ecosystems may be strongly dependent on resource availability. 

6.6 Conclusion 

Several studies have argued that there are perhaps very few if any general drivers of microbial 

community composition suggesting that microbial communities are not structured in a 

predictable manner under different conditions. If that is the case, predictions on the fate of soil 

microbial communities and processes they drive under altered environmental conditions 

derived from one system or spatial scale cannot be extrapolated to another. Our findings, 

however, imply that although the drivers of microbial abundance and relative abundance of 

high taxonomic/functional groups might depend on the context, the factors that shape overall 

microbial community composition in grasslands operate in a consistent manner, regardless of 

the spatial scale, productivity levels or exposure to very different historical legacies and varying 

climatic conditions. Omitting some of the crucial drivers of microbial community assembly in 

the analyses may lead to apparent context-dependency and our study emphasises the need to 

consider the combination of plant community and edaphic factors. We thus argue that there is 

a substantial universality in the way in which microbial community assembly processes operate 

across different contexts in grassland systems. This has important implications for modelling 

of soil microbial community composition in global grasslands under environmental changes 

which is, according to the findings of this study, a feasible task. 
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CHAPTER VII 

General discussion 
 

7.1 Part I: Soil properties and nutrients as predictors of global 

grassland productivity 

7.1.1 Predictors of grassland productivity – synthesis  

Understanding the patterns of grassland productivity has long been an important topic of 

ecological research. While much is known about soil properties as drivers of plant productivity, 

the predictions of grassland productivity over broad spatial ranges have predominantly been 

based on climatic factors (Sala et al., 1988; Huxman et al., 2004; Hovenden et al., 2014, 2019). 

The primary reason for this is that climatic data have been easier to collect than the data on soil 

properties. Moreover, it could be assumed that soil properties would not necessarily add much 

to the variation already explained by climate which is thought to be a principal factor affecting 

both soil properties and plant productivity. It is argued in this work that soil properties 

determining nutrient availability and overall soil fertility can contribute substantially to 

explaining global-scale patterns in grassland productivity on top of the effect of climatic 

predictors. Our two studies on predictors of grassland productivity both support and 

corroborate this hypothesis. 

The role of soil nutrient availability in predicting global patterns of grassland biomass 

production 

Chapter II (the study conducted within the NutNet experiment) enabled us to investigate the 

importance of soil properties as predictors of productivity patterns across a wide range of 

globally-distributed grassland sites focusing on factors determining nutrient availability: SOM, 

CEC, pH and concentrations of different nutrients (besides common macronutrients: N (C:N), 

P and K, other macronutrients Ca, Mg, Na, S, and micronutrients Fe, Mn, Zn, Cu and B were 

also included). We found that common fertility indicators – SOM and CEC, are important 

predictors of biomass productivity, but our findings also imply that much of the effect of SOM 

could be indirect through other soil properties and nutrients – CEC, C:N and particularly Zn. 

While Zn limitation is known to be widespread in agricultural systems (Alloway, 2009; Shukla 

et al., 2014), Zn has rarely been investigated as a potentially limiting nutrient in (semi)natural 

grasslands (but see e.g. Fay et al. (2015) who demonstrated that a combination of different 

nutrients, Zn included, can limit productivity in different grasslands), nor has it been used a 
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predictor of global grassland productivity. In this study, we found indications that when N and 

P are ample, Zn might be an important limiting factor in grasslands. 

Soil physicochemical properties as key predictors of local and global variability in 

grassland biomass production  

Chapter III (the study conducted within the HerbDivNet experiment) was focused on 

analysing the role of soil properties, many of which are well-known indicators of soil fertility 

(Bünemann et al., 2018), as predictors of both within-site (local-scale) and between-site 

(global-scale) plant productivity in worldwide distributed grasslands. The results demonstrated 

that the variation in soil properties (soil organic matter, percentage sand, calcium content and 

fine soil bulk density) consistently explained the local-scale variation in plant biomass across 

different grassland sites (R2 = 0.52) suggesting that the effect of soil properties was not strongly 

dependent on climatic conditions. Interestingly, these same soil factors were selected as best 

predictors of global-scale variation in AGB, together with growing season precipitation (R2
mean 

= 0.77). In this model, a large proportion of the variation was shared between precipitation and 

soil properties (25%), but soil properties could still explain 45% of non-shared variation 

compared to 7% of unique variation explained by precipitation. Even if all available climatic 

factors in this study (mean annual precipitation, growing season precipitation, mean annual 

temperature, potential evapotranspiration and aridity) would be included in the model with the 

four selected soil properties, climate would explain only 13% of unique variation compared to 

38% explained by the soil properties (with 32% of shared variation). This is another line of 

evidence that soil properties are stronger predictors of plant productivity than climatic factors 

in the HerbDivNet dataset.  

Comparison between the two studies and general conclusions 

Both studies examined the role of soil properties on global biomass production, but their 

findings were not entirely aligned, possibly due to the differences in site locations, available 

soil data and experimental setups. For instance, while HerbDivNet experiment contained sites 

with local productivity gradients where the variation in biomass could not be explained by 

climate, the NutNet experiments contained no such gradient in productivity, but it contained 

more sites with better global distribution.  
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One notable difference between the results of the two studies was that CEC was positively 

associated with biomass in the NutNet study, while Ca (which was tightly correlated with CEC) 

had a negative effect in the model explaining biomass productivity in the HerbDivNet study. 

In general, CEC is a measure of soil fertility, given that it indicates the capacity of soil to 

exchange cations that are important for plant growth (Ross & Ketterings, 1995). Therefore, a 

positive relationship between CEC/Ca and plant productivity would be expected. However, the 

HerbDivNet dataset included a higher proportion of sites with calcareous soils (indicated by 

high CEC, pH and the amount of exchangeable Ca) than the NutNet dataset. For instance, 36% 

of HerbDivNet sites had CEC > 25 meq/100g which is considered to be high (Hazelton & 

Murphy, 2019) compared to 14% of NutNet sites. Calcareous soils are known to be relatively 

infertile, among others due to the low P availability and/or decreased plant uptake of soil 

micronutrients (FAO, 2020). Interestingly, Zn availability is shown to be particularly low in 

calcareous soils, given that calcium carbonate precipitates Zn and makes it unavailable to plants 

(Chen et al., 2017). Therefore, low availability and uptake of Zn or other nutrients, such as P 

(Larcher, 2003) in Ca-rich soil could explain the negative effect of Ca (CEC) on biomass 

production in the HerbDivNet grasslands. 

Moreover, while in the HerbDiveNet study SOM was identified as the best predictor of 

aboveground biomass, the results of NutNet study indicate that its effect may be indirect, 

through other nutrients and particularly through soil Zn. Indeed, SOM determines nutrient 

availability by retaining and providing different nutrients (Kononova, 1966; Oldfield et al., 

2018) and is known to play a key role in the availability and transformation of soil Zn (Chen 

et al., 2017). Given that available Zn was not measured in the HerbDivNet study, it was not 

possible to test if it would also emerge as an important predictor in this dataset.  

Finally, a common pattern that emerges in both studies is that soil properties and nutrients 

explained a significant portion of the variation in global grassland productivity in addition to 

the variation explained by climate. In fact, soil properties explained more variation than climate 

in both cases (if the shared variation between them would be attributed to climate: 45% vs 32% 

for soil properties vs climate in the HerbDivNet study and 32% vs 16% in the NutNet study).   

Overall, these two studies identified the soil properties that can best explain the variation in 

plant productivity across globally-distributed grasslands (i.e. soil organic matter, soil texture, 

Ca as an indicator of calcareous soil, soil Zn and CEC) suggesting that they likely play a crucial 

role in driving global grassland productivity, even beyond the effect of climate. Taking these 

soil properties into account could thus significantly improve our capacity to understand global 

grassland productivity patterns and to predict the consequences of environmental changes on 

grassland ecosystems. 
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7.1.2 Limitations of the studies and future research 

The studies presented here are probably the first to test a comprehensive set of soil properties 

as potential predictors of plant productivity across a wide range of grassland sites. However, 

like all syntheses based on observations, our studies also come with limitations that need to be 

tackled in complementary research efforts. First, the correlations between biomass productivity 

and certain soil properties do not necessarily imply causation. For instance, as discussed in 

Chapter III, SOM which was identified as one of the best predictors of plant productivity, can 

both affect plant productivity and be affected by it. However, our structural equation models 

demonstrated that SOM likely had a stronger influence on biomass than the other way around. 

Secondly, given that many soil properties are correlated to each other, the one that emerges as 

the best predictor of biomass production model might not necessarily be the strongest causal 

driver. For example, while our models suggest that the effect of SOM may be indirect through 

Zn, it is not possible to fully disentangle these two effects in an observational study.  

Fertilization experiments are needed to demonstrate and fully unravel the effect of organic 

matter and different nutrients on plant productivity. While there have been numerous 

fertilization experiments in (semi)natural grasslands (Grogan & Chapin, 2000; Fay et al., 2015; 

You et al., 2017; van Dobben et al., 2017; Liu et al., 2018) there are very few that applied 

additions of individual macronutrients (other than main macronutrients N, P and K) and 

particularly micronutrients. This is because main macronutrients are widely recognized as the 

most limiting nutrients (Elser et al., 2007; Harpole et al., 2011) while other nutrients are 

expected to play a relatively minor individual role or to only have an effect in combination with 

other nutrients. However, one recent study, for example, found that boron was the main factor 

limiting productivity in Cerrado grassland in Brazil (Lannes et al., 2020) demonstrating that 

one single micronutrient can limit productivity in natural grasslands. Our findings, which point 

to a potentially important role of Zn, can be used to guide future experimental studies. For 

instance, based on our results, experiments could test the role of SOM additions versus Zn 

addition (or other nutrients) to assess and potentially disentangle their effect on grassland 

productivity. Moreover, N/P fertilization could be combined with Zn fertilization to test if 

grasslands with ample N/P indeed become Zn limited. It could also be interesting to explore 

thresholds of Zn deficiency for soil microorganisms and interactions between microorganisms 

and plants in Zn deficient grassland soils, which received little attention thus far (and this is 

poorly explored even in agricultural systems (Khan & Joergensen, 2010, 2015)). For instance, 

it has been demonstrated that AMF could further reduce plant-available Zn in Zn deficient soils 

(Tran et al., 2019). 

 

Finally, our studies emphasize the importance of collecting and reporting the data on different 

soil properties and nutrients (particularly those identified as important predictors) in 

experiments in grasslands and other ecosystems. For instance, when conducting fertilization 
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experiments, in addition to reporting the response of plant productivity, it would be interesting 

to measure and correlate the concentrations of soil nutrients with plant biomass. If these 

different measurements would be more commonly reported in studies, it would help to create 

comprehensive datasets covering currently underrepresented regions (e.g. the southern 

hemisphere) and test the generality of the current findings through synthesis analyses.  

7.1.3 Implications 

The importance of soil in predicting grassland carbon budget under global change 

Numerous studies have tried to estimate whether the changes in precipitation, CO2 levels or 

atmospheric N deposition will lead to an increase or decrease in grassland productivity 

(Hovenden et al., 2014, 2019; Stevens et al., 2015; Chang et al., 2017; Zheng et al., 2019) and 

how this will be reflected in total grassland carbon balance (Scurlock & Hall, 1998). For 

instance, the impact of elevated CO2 on grassland productivity might be strongly contingent on 

N availability (Reich et al., 2006). It is thought that increased N fertilization through 

anthropogenic N deposition could alleviate N limitation (Stevens et al., 2004) and promote the 

positive effect of elevated CO2 on grassland productivity (Hovenden et al., 2014). Indeed, 

Stevens et al. (2015) showed that already now, 16% of the variation in grassland productivity 

worldwide could be explained by N deposition and similar results were found in our study from 

the NutNet dataset. However, our findings also indicate that even if N limitation would be 

alleviated, overall plant productivity might not increase substantially if grassland productivity 

is or becomes limited by other nutrients (such as Zn) or by the amount of organic matter that 

affects multiple nutrient availability. For example, the fertilization study by Fay et al. (2015), 

already demonstrated that grasslands are often co-limited by multiple nutrients, and N additions 

alone were not able to increase productivity in several grasslands unless other nutrients were 

added. Besides nutrients, another important limiting factor for plant growth is water 

availability. The global-scale studies investigating the effect of precipitation changes on plant 

productivity, however, often neglect the fact the amount of plant-available water is not only 

determined by precipitation but also by soil texture and soil organic matter. Overlooking soil 

properties can thus lead to large uncertainties in the model predictions (Folberth et al., 2016). 

Therefore, understanding the role of soil in driving global grassland productivity is essential to 

improve the predictions of future carbon-storing potential in grasslands.  

Implications for the management of grassland biodiversity 

Grasslands can sustain large biodiversity and it has recently been urged that old-growth 

grasslands, in particular, should become a conservation priority (Nerlekar & Veldman, 2020). 

The factors that influence grassland productivity can also have an important effect on 
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biodiversity, e.g. N deposition is expected to increase productivity by favouring fast-growing 

plant species on the detriment of slow-growing species leading to a decrease in overall plant 

diversity (Stevens et al., 2004). However, it has been shown that increased amounts of N might 

cause a decrease in plant diversity only when P is not limiting (van Dobben et al., 2017). 

Further research in unravelling limitations by N and other possibly important nutrients such as 

Zn could be used to inform grassland management efforts aiming to protect or restore grassland 

biodiversity. For instance, knowing which nutrients are limiting in particular grasslands would 

help focus the efforts on strictly controlling the amount of these nutrients to prevent a decline 

in plant diversity. Moreover, this would help to estimate which management strategies are 

sufficient to restore and conserve grassland biodiversity by reducing the nutrient levels: e.g. 

mowing or top-soil removal. 

 

7.2 Part II – Soil microbial community assembly processes 

The importance of soil microbes cannot be overstated. They underpin all Earth’s 

biogeochemical cycles (Falkowski et al., 2008) and perform functions that impact every 

component of an ecosystem, including humans (Widder et al., 2016). While recent research, 

driven by the development of high-throughput sequencing technology, has significantly 

contributed to clarifying the mechanisms that determine microbial community assembly, many 

important questions still remain to be answered. In this work, we tackle two emerging 

questions: one concerning the role of different mechanisms structuring microbial community 

assembly (Chapter V) and the other examining whether there is generality in predictors of 

microbial community composition across different conditions (Chapter VI).  

7.2.1 Mechanisms driving the development of soil fungal community 

composition in restored heathlands  

Dispersal constraints, environmental filters, and biotic interactions (Belyea & Lancaster, 1999; 

Lortie et al., 2004) are thought to be the main processes structuring microbial community 

composition. However, there have been two opposing views on the importance of these 

processes: one assuming that biotic interactions only operate after environmental filtering has 

taken place (Belyea & Lancaster, 1999; Raevel et al., 2013), while the other suggests that 

priority effects determine biotic interactions which in turn significantly mediate species’ 

responses to the environment and determine the strength and extent of the environmental filter 

(Wisz et al., 2013; Cadotte & Tucker, 2017; Aguilar-Trigueros et al., 2017).   
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Our study in the heathland restoration experiment simultaneously investigated the importance 

of these three filters and demonstrated that fungal and plant communities from the soils 

inoculated by heathland soil and plant propagules formed similar links across differing abiotic 

conditions leading to the convergence of fungal community composition. We, therefore, argue 

that the early stage presence of heathland communities and the interactions they form can 

reinforce the development of a heathland system and alleviate the abiotic filter. If the system 

is exposed to natural dispersal, however, other incoming plant and fungal species establish their 

own, alternative interactions leading to an altered community trajectory that is more strongly 

influenced by the abiotic context. 

Moreover, the relationships observed between plant communities and both bacterial and fungal 

communities in globally distributed grasslands suggest that plant-microbial interactions might 

be universally important in shaping microbial community composition, particularly in the case 

of fungi. While these relationships could partially result from common environmental drivers 

(shared environmental niches) and shared evolutionary histories, we show that plant 

community composition explained more variation in fungal community composition than the 

most important environmental factors and geographical distances.  

Collectively, these findings support the theory that the influence of environmental filters, biotic 

interactions and historical legacies are not necessarily hierarchical and that microbial 

community assembly processes are much more complex than suggested by the common 

principle “the environment selects” (Figure 7.1) given that biotic interactions can alter the way 

in which the environment affects microbial community composition (Kraft et al., 2015; Cadotte 

& Tucker, 2017; Aguilar-Trigueros et al., 2017).  
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Implications and future research  

The findings of this study have clear implications for the restoration of heathland systems. In 

that context, we argue that plant-soil interactions formed at the beginning of system 

development can have long-term legacies on the further development of the system and that 

inoculation with plant and soil material from well-developed heathlands is the fastest way to 

steer the restoration of heathland systems on bare soil. On the other hand, leaving the system 

to natural colonization by dispersal leads to slow development of plant and fungal communities 

with an uncertain outcome which might largely depend on the dominant surrounding vegetation 

and soil abiotic conditions.  

Although heathlands are relatively simple systems, these mechanisms may apply to other 

systems, such as grasslands, as demonstrated in the soil inoculation experiment by Wubs et al. 

(2016). We suggest that similar inoculation experiments in different systems could reveal if 

plant-soil feedbacks are universally important in driving the early development of plant 

communities and their corresponding microbial communities. Longer-term monitoring would 

be needed to assess if the communities in the plots with and without inoculations would 

eventually converge or develop into completely distinct communities.  

7.2.2 Generality in predictors of soil microbial community composition in 

grasslands 

Context dependency (i.e. variability in the way processes operate under different conditions) 

appears to be common in nature (Maestre et al., 2005; Chamberlain et al., 2014; Tedersoo et 

al., 2016; Song et al., 2020) and it is thought to be a rule rather than the exception in community 

ecology (Lawton, 1999). Particularly in microbial ecology, with highly complex microbial 

communities and the interactions they form, it could be assumed the mechanisms that shape 

community composition are predominantly dependent on the context. Indeed, several studies 

investigating the drivers of microbial community composition under different contexts found 

a wide range of site- and spatial-scale specific predictors (Hendershot et al., 2017; Alzarhani 

et al., 2019; Gao et al., 2019; Chalmandrier et al., 2019) meaning that findings from one type 

of habitat or spatial scale cannot be successfully extrapolated to other environmental or spatial 

contexts. If there is no generality in drivers of microbial community composition, as these 

studies suggest, it is also impossible to predict the effect of environmental changes on microbial 

community composition.  

Contrary to this, the results of our study in different grasslands across the globe suggest 

considerable generality in the way microbial communities are structured. More specifically, 

our results for two different spatial scales (local and global) and two different plant productivity 

levels (low and high) consistently indicated a dominant role of soil base saturation and pH on 
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bacterial community compositions at both spatial scales, as well as at two plant productivity 

levels. In the case of fungal communities, the strongest and the most consistent relationships 

were found with plant community composition. These patterns are not surprising since it has 

previously been demonstrated that, for instance, bacterial communities are more strongly 

influenced by abiotic factors such as pH than fungal communities (Cassman et al., 2016; Zheng 

et al., 2019). However, the validity of these findings under different contexts over large spatial 

ranges has never been demonstrated before. Moreover, our study is the first to demonstrate a 

consistent relationship between plant productivity and soil microbial community composition 

across grasslands worldwide, where total fungal abundance was consistently increased and the 

relative abundance of Firmicutes was significantly decreased at low compared to high 

productivity level.  

While the “real” context-dependency of microbial community assembly processes clearly 

exists, as shown e.g. in our heathland experiment where abiotic filters played an important role 

in shaping fungal communities in the case where plant and soil communities were not 

simultaneously added (Figure 7.1) but had no influence when soil and plant propagules were 

present from the beginning (i.e. due to differences in historical legacies); in many studies, the 

“apparent“ context dependency could occur because some important drivers of microbial 

community composition were not measured. Since we measured numerous parameters in our 

grassland study (including different soil properties, plant biomass and plant community 

composition), it was possible to identify general predictors of microbial community 

composition. We thus argue that, despite numerous processes that could produce context-

dependency, such as historical legacies (Fukami, 2015), stochastic effects and ecological drift 

(Beck et al., 2015) and dispersal limitation (Peay et al., 2010), microbial communities can 

exhibit predictable patterns across different contexts.  

 

Implications and future research  

The majority of experimental studies, which are the only ones able to disentangle the 

mechanisms that underpin microbial community assembly processes, are conducted at one 

particular site and are rarely replicated under different contexts. If there would be strong 

context-dependency in drivers of microbial communities, the findings of each local-scale 

experiment would likely not be valid under different conditions (Alzarhani et al., 2019). 

However, we argue in this work that there is generality in the way microbial community 

assembly processes operate across different grassland systems and that the findings from one 

study system in grasslands can likely be generalised and used to predict microbial community 

composition in other grassland systems. These findings have very important implications for 

modelling of grassland soil microbial community composition under environmental changes 

over larger spatial ranges. 
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Further research should be done to clarify whether this ‘universality’ in the way microbial 

communities are shaped holds also across contrasting systems: such as temperate and tropical 

forests, peatlands, heathlands, etc. As demonstrated with our grassland experiment, within-site 

gradients (e.g. soil fertility gradient) along which the changes in community composition can 

be estimated, are very valuable for testing both local-scale and global scale predictors. The 

observational studies would ideally be accompanied by experiments where the influence of soil 

abiotic factors and plant communities on microbial community assembly could be 

disentangled. These experiments could, for example, include manipulations of plant 

community composition under the same environmental conditions across different sites. Given 

that the grasslands included in our study were already very diverse, with different climates, 

hydrology, historical legacies, etc. it is expected that some general patterns would also be 

observed across different systems.  

7.2.3 Limitations of the studies  

As discussed previously, we cannot infer causality from the correlations between soil 

factors/plant communities and microbial community composition. For instance, plants can 

structure microbial communities by selecting for particular species (Bezemer et al., 2010; 

Wubs & Bezemer, 2018), but soil microbial communities can in turn influence plants by 

providing limiting nutrients and helping seedlings to establish or by decreasing plants’ fitness 

through parasitism (van der Heijden & Hartmann, 2016; Wubs et al., 2016). Therefore, plant-

microbe relationships are likely a result of complex feedback processes between them. This is 

also clear from our experimental study in heathlands where we concluded that plant-fungal 

interactions probably drive both plant and fungal community assembly. Nonetheless, the 

existence of the relationships between plant and microbial communities can indicate an 

important role of plants in shaping microbial community composition, either directly or 

through feedback loops. 

Secondly, in our grassland study, it was not possible to fully disentangle the effect of the soil 

properties and plant community composition because much of the variation they explained was 

shared. This could be either because microbial and plant communities are both driven by the 

same factors (following the environmental filter theory) or because plant-microbe interactions 

change with the change in the environmental factors (Cadotte & Tucker, 2017). Disentangling 

the exact mechanisms requires experiments such as the one performed in the heathland study 

where it was demonstrated that fungal community composition was strongly driven by plant-

soil interactions. However, even if the mechanisms that drive microbial community 

composition in grasslands were not fully disentangled, it was possible to discern important 

general patters; e.g. that soil abiotic factors affect bacterial community composition more 

strongly and more consistently than fungal, be it through pure environmental filtering or 

through a mix of community structuring mechanisms. 
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7.3 Conclusion 

Plant productivity shapes microbial communities in soil which in turn can influence plant 

biomass production. This feedback loop between plant productivity and microbial communities 

is strongly affected by the balance of plant-derived organic matter inputs to the soil and 

degradation of organic matter to nutrients available for plant growth (van der Heijden et al., 

2008; Waldrop et al., 2017) i.e. by the amount of soil resources. In this work, we showed that 

microbial groups at low plant productivity might be more dependent on soil resources and more 

tightly connected with plant functional groups than the communities at higher productivity 

levels which typically have access to ample resources. This could lead to a mutual 

reinforcement between plants at low productive grasslands (typically slow-growing, 

specialized for the acquisition of limited water and nutrients) and soil microbes with 

comparable traits (e.g. many fungi specialized in the decomposition of recalcitrant plant 

material and microbes forming symbiotic interactions with plants) resulting in microbial 

communities that are clearly distinct from those from high-productive grasslands. This is in 

line with the results by Delgado-Baquerizo et al. (2018) showing that there is a particular cluster 

of globally dominant soil bacterial taxa significantly associated with low-productivity regions 

around the globe. Based on our results, low-productive grasslands could be associated with 

increased overall fungal abundance while the members of Firmicutes bacterial phylum might 

be a good indicator of high productive grasslands.  

 

These findings collectively suggest that considering key soil physicochemical properties 

determining soil fertility and nutrient availability (soil texture, soil organic matter, the amount 

of certain soil nutrients) when forecasting the effect of environmental changes on grassland 

productivity, would not only improve grassland productivity models but could also help predict 

the shifts in soil microbial community composition and/or microbial abundances. Further 

research is now needed to pinpoint which specific dominant taxa might be the best indicators 

of low vs high productive grasslands while examining physiological attributes of these taxa is 

crucial to comprehend microbial controls of soil processes and feedbacks to plant productivity. 

A better understanding of which soil microbial taxa and functions are associated with low vs 

high grassland productivity across the globe could help tackle long-standing questions 

regarding future C budget in grasslands; such as how environmental changes will alter the 

balance between productivity and decomposition and hence grassland C sequestration.  

 

The tractability of this task is critically aided by the observation that some of the factors and 

interactions predicting both grassland plant productivity and microbial community composition 

were found to be universal across contrasting climates, meaning that predictions of processes 

going on in unmeasured sites are possible even if there is quite large environmental variation. 

Similar general patterns might also hold in other systems. While this remains to be explored, 

the universal patterns observed in this study provide hope that making general predictions 
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regarding future changes in plant productivity, soil microbial community composition and 

resulting changes in ecosystem functioning is a less daunting task than often assumed.   
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Supplementary material  

 

Chapter II 

 

 

Figure S2.1 a) The correlation between MAP measured by local weather stations and MAP derived from 

the CHELSA database for 41 NutNet sites; b) The same correlation after correcting the values derived 

by CHELSA based on the values measured in the weather stations from 9 sites. 
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Figure S2.2 Linear regression analyses of AGB against the variables with the direct effect on AGB in 

the final SEM model: MAPgs, N deposition, Zn, CEC and C:N. Variables were log-transformed to 

improve normality and linearity.       
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Figure S2.3 Histograms showing the distribution of values of four most important soil variables (SOM 

– soil organic matter [%], CEC – cation exchange capacity [meq/100g], C:N and available Zn [ppm]) 

across grassland sites. 
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Figure S2.4 Pairwise correlation matrix between different soil factors and AGB. All variables, except 

pH, were log-transformed. The asterisks indicate the levels of significance (* P < 0.05, ** P < 0.01, *** 

P < 0.001) and the numbers indicate Pearson correlation coefficient. 

 



171 

 

     
 

 
 

Figure S2.5 Top: ‘Core’ SEM depicting the direct (black lines) and indirect (grey lines) influence of 

different predictors of that were hypothesised to be the most important drivers of AGB. Full lines indicate 

significant paths and dashed non-significant paths. Factor loadings are indicated for each significant 

path. SRMR = 0.035, RMSEA = 0.000, CFI = 1.00, TLI = 1.024 , P (χ2) = 0.5, df = 4, R2 (AGB) = 0.47. 

The model has a good fit based on each of the goodness-of-fit criteria. Bottom: The best model after the 

second step when the main macronutrients were added. SRMR = 0.062, RMSEA = 0.042, CFI = 0.99, 

TLI = 0.98, P (χ2) = 0.344, df = 8, R2 (AGB) = 0.53.This model remained the best after the first step 

(addition of other macronutrients).  
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Table S2.1 72 NutNet sites included in this study: latitude, longitude, MAT (mean annual temperature), 

MAP (mean annual precipitation), the concentration of extractable Zn, AGB (aboveground biomass) and 

disturbance scores based on the presence of management practices (burning, mowing, grazing).  

Site Longitude Latitude Year MAT 

[°C] 

MAP 

[mm] 

Zn 

[ppm] 

AGB 

[g/m2] 

Disturbance 

score 

amcamp.us -123.01 48.47 2007 11.2 629 2.1 441.0 0 

arch.us -81.1833 27.15 2015* 22.8 1249 3.3 275.3 4 

azi.cn 101.87 33.67 2007 1.8 492 13.3 369.2 2 

badlau.de 11.88 51.39 2015 9.6 475 67.3 578.0 1 

bari.ar -71.1532 -41.0064 2015* 8.8 601 8.3 257.4 0 

barta.us -99.65 42.24 2007 9.2 598 1.6 205.8 0 

bldr.us -105.23 39.97 2008 9.2 390 1.3 167.0 1 

bnch.us -121.97 44.28 2007 6.5 2101 1.4 142.0 0 

bogong.au 147.25 -36.87 2009 5.6 1636 3.5 415.7 0 

bttr.us -121.96 44.28 2007 6.2 2046 2.5 231.3 0 

bunya.au 151.61 -26.89 2013 15.5 959 24.1 1233.2 0 

burrawan.au 151.14 -27.73 2008 19.1 710 1.5 272.4 0 

burren.ie -8.99262 53.07202 2015* 9.7 1197 5.6 227.8 2 

cbgb.us -93.39 41.79 2009 9.8 895 1.8 243.2 1 

cdcr.us -93.21 45.43 2007 7.1 764 2.2 196.9 0 

cdpt.us -101.63 41.2 2007 10.4 442 1.6 120.4 0 

cereep.fr 2.66 48.28 2012 11.4 614 9.2 508.7 1 

chilcas.ar -58.27 -36.28 2013 15.5 917 7.7 422.2 0 

comp.pt -8 38 2014 16.9 555 6.4 230.4 4 

cowi.ca -123.38 48.46 2007 11.1 862 2.5 528.6 0 

derr.au 144.79 -37.81 2007 14.8 570 3.4 117.7 2 

elliot.us -117.052 32.875 2009* 17.9 334 4.9 328.7 0 

ethass.au 138.4 -23.64 2013 24.9 228 1.5 75.9 2 

fnly.us -123.28 44.41 2007 12.3 1251 1.1 257.5 0 

frue.ch 8.54 47.11 2008 7.4 1986 2.5 616.9 2 

gilb.za 30.29 -29.28 2010 12.6 1016 2.0 280.5 2 

glac.us -123.03 46.87 2007 11.8 1255 1.5 164.7 0 

hall.us -86.7 36.87 2007 14.6 1261 2.3 441.1 1 

hart.us -119.5 42.72 2007 8.6 287 1.1 175.7 0 

hnvr.us -72.14 43.42 2007 7.6 992 3.7 442.2 0 

hogone.us -75.686 37.417 2017* 14.9 1071 1.4 313.3 0 

hopl.us -123.06 39.01275 2013* 12.4 1188 5.7 154.2 0 

jena.de 11.53 50.93 2014 8.5 554 84.9 696.2 1 

jorn.us -106.81 32.54 2013 17.9 211 3.1 237.4 0 

kbs.us -85.39 42.41 2013 9.2 907 4.1 405.9 0 

kidman.au 130.95 -16.11 2014 27.8 735 9.0 336.6 0 

kilp.fi 20.83 69.05 2013 -2.7 503 4.0 224.7 1 
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kiny.au 143.75 -36.2 2007 15.7 398 0.7 151.5 0 

koffler.ca -79.5359 44.02405 2013* 7.2 968 4.3 636.5 0 

lake.us -95.1864 43.37913 2015* 7.7 728 13.3 482.4 1 

lancaster.uk -2.63 53.99 2008 8.6 1308 5.1 156.5 3 

lead.us -124.05 46.61 2007 11.6 1951 3.8 467.4 0 

look.us -122.13 44.21 2007 5.3 2469 2.4 98.1 0 

mcla.us -122.406 38.86427 2013* 12.9 875 5.2 258.0 0 

mitch.au 143.3235 -22.4836 2013 24.9 397 2.1 459.3 0 

mtca.au 117.6109 -31.7821 2008 17.9 347 4.8 130.2 0 

nilla.au 146.007 -36.896 2017 14.3 699 0.8 262.3 4 

pape.de 7.47 53.09 2007 9.7 766 22.0 917.8 0 

pich.ec -79 -0.08 2013 22.3 2813 7.6 1037.3 0 

ping.au 116.97 -32.5 2013 16.5 459 2.3 226.8 3 

pinj.au 152.92 -27.53 2013 20.4 1004 126.1 781.6 2 

potrok.ar -70.4074 -51.916 2015* 6.9 257 3.7 75.0 2 

saana.fi 20.8433 69.0368 2014* -1.8 499 67.7 230.1 0 

sage.us -120.24 39.43 2007 7.3 795 9.4 121.1 0 

sava.us -81.65 33.34 2007 17.6 1091 0.9 58.1 1 

sedg.us -120.02 34.7 2007 15.3 399 1.9 197.3 0 

sereng.tz 34.51 -2.25 2008 22.5 839 3.0 308.1 1 

sevi.us -106.69 34.36 2007 14.7 262 0.4 95.4 0 

sgs.us -104.77 40.82 2007 9.2 370 0.9 127.0 0 

shps.us -112.2 44.24 2007 6.8 349 2.4 101.5 1 

sier.us -121.28 39.24 2007 16.8 860 4.3 180.9 0 

smith.us -122.62 48.21 2007 11.4 594 3.5 392.7 0 

spin.us -84.5 38.14 2007 13.1 1171 1.7 468.4 2 

summ.za 30.72 -29.81 2010 18.0 1007 1.3 313.1 2 

temple.us -97.35 31.04 2007 19.9 936 2.5 317.3 0 

trel.us -88.829 40.075 2011* 11.5 956 27.0 1609.0 0 

tyso.us -90.56 38.52 2007 13.2 1104 4.0 440.7 0 

ufrec.us -81.92 27.43 2013 22.3 1368 3.2 149.5 1 

ukul.za 30.4 -29.67 2009 17.2 882 1.5 469.0 1 

unc.us -79.02 36.01 2007 15.5 1114 2.4 304.2 0 

valm.ch 10.37 46.63 2008 0.6 809 13.7 322.0 0 

yarra.au 150.73 -33.61 2014 17.6 906 6.8 108.8 1 

* For these sites, measurements were taken at control plots. For all others they were taken from pre-

treatment plots. 
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Table S2.2 The results of the linear regression analyses between soil Zn concentrations 

and AGB under different C:N - N deposition levels (low-low; low-high; high-high, high-

low; respectively) and different P availability levels (low and high). 

C:N - N deposition level Slope Standard error t-value P-value R2 

low-low 0.378 0.112 3.351 0.004 0.43 

low-high 0.330 0.100 3.286 0.004 0.39 

high-high 0.389 0.124 2.804 0.013 0.34 

high-low 0.022 0.108 0.203 0.842 0.01 

P availability level Slope Standard error t-value P-value R2 

low 0.193 0.098 1.959 0.058 0.10 

high 0.368 0.083 4.424 0.000 0.36 

 

Table S2.3 The results of the linear regression between soil Zn concentrations and AGB under different 

C:N and N deposition levels (low- low; low-high; high-high, high-low). The threshold between the levels 

was chosen based on the mean values. 

C:N - N dep. level slope st_error t-value P-value R2 

low-low 0.313 0.157 3.427 0.002 0.31 

low-high 0.237 0.083 2.836 0.01 0.33 

high-high 0.525 0.224 2.347 0.057 0.48 

high-low -0.038 0.092 -0.411 0.687 0.01 

P availability level slope st_error t-value P-value R2 

low 0.201 0.097 2.078 0.044 0.09 

high 0.363 0.078 4.621 0.000 0.48 

 

Table S2.4 The relationship between Zn and AGB in the subset of NutNet sites for which the effect 

nutrient additions was assessed in the study by Fay et al. (2015). The relationship in the soils that were 

shown to be (co)limited by N was contrasted to the relationship in the soils that did not respond to N 

addition (alone or in the combination with P). 

Response R2 p-value slope st_error t-value 

N limitation 

No (n = 9) 0.36 <0.001 0.46 0.11 3.88 

Yes (n = 29) 0.02 0.73 -0.11 0.30 -0.37 

NP co-limitation 

No (n = 23) 0.48 0.01 0.44 0.14 3.07 

Yes (n = 15) 0.06 0.26 0.21 0.18 1.15 
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Figure S3.2 Correlations between different soil properties. Values indicate the Pearson correlation 

coefficient. Red indicates negative correlations, blue positive correlations and white no significant 

correlations (P > 0.05). 
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Figure S3.3 The number of the best models explaining global-scale variation in AGB (out of 1000 best 

models selected for each of the subsets of the dataset) in which different a) climatic variables occur, b) 

soil variables occur. The vertical line indicates the threshold above which the influence of variables on 

AGB was considered to be potentially important and these variables were included in further analyses.  

 

 

 

 

 
 

Figure S3.4 Variance partitioning between the most important climatic (MAPgs) and soil variables  

(SOM, Ca, % sand, BD) explaining the global-scale variation in AGB. 
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Figure S3.5 Structural equation model including the path from AGB to SOM (red arrow). Dashed lines 

indicate non-significant paths (P > 0.05). Indicators of model fit: SRMR = 0.15, RMSEA = 0.6, CFI = 

0.55, TLI = -1.1, P (χ2)  = 0.00, df = 3, R2 
(AGB) = 0.44, R2 

(SOM) = 0.34. This model had a poor fit according 

to the goodness-of-fit criteria. AGB had a substantially lower effect on SOM than the effect of SOM on 

AGB (Figure 3.4). 
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Table S3.1 Information about 21 sites included in the analyses (MAP – mean annual precipitation, MAT 

– mean annual temperature). The mean values of MAT and MAP per site are reported along with the 

standard deviation. 

 

site 

ID 

site name country # of 

plots 

year: AGB 

sampling 

year: soil 

sampling 

mean 

MAP (sd) 

mean  

MAT (sd) 

Aus Pitztal Austria 6 2012 2017 796 (50) 4.6 (0.9) 

Arg Córdoba Argentina 4 2012 2017 995 (0) 12.9 (0) 

Can.e 

Elginfield 

Observatory Canada 2 2012 2018 1001 (0) 7.9 (0) 

Can.k Kinsella Canada 4 2017 2017 429 (16) 2.5 (0.1) 

Can.l Lac du Bois Canada 6 2012 2018 379 (18) 6.5 (0.5) 

Can.o Onefour, AB Canada 2 2012 2017 301 (10) 6.7 (0.1) 

Ch1 Inner Mongolia  China 2 2017 2018 340 (0) 1.5 (0) 

Ch2 Inner Mongolia China 2 2017 2018 290 (0) 2.5 (0) 

Ch3 Inner Mongolia China 2 2017 2018 180 (0) 2.4 (0) 

Ger.b Bayreuth Germany 6 2012 2017 721 (38) 8.5 (0.2) 

Ger.r Rostock Germany 4 2015 2017 668 (0) 8.7 (0) 

Hun 

Soroksár, 

Fülöpháza, 

Battonya Hungary 6 2012 2018 561 (5) 11.0 (0.4) 

Ir.d Damavand Iran 2 2012 2017 435 (16) 7.0 (0.5) 

Ir.j Javaherdeh Iran 3 2012 2017 1230 (13) 5.3 (1.3) 

Ir.m Masuleh Iran 2 2012 2017 843 (54) 5.5 (0.1) 

Ir.n 

North Khorasan, 

Golestan Iran 6 2012/2017 2017 398 (65) 8.6 (2.5) 

It 

Torricchio Nature 

Reserve Italy  6 2012 2017 1057 (21) 8.3 (0.1) 

Ken Laikipia Kenya 6 2012 2018 562 (67) 19.9 (0.3) 

NZ 

Waitati South 

Island New Zealand 2 2012 2018 689 (0) 10.3 (0) 

SA Loskopdam South Africa 6 2012 2017 699 (96) 16.6 (1) 

USA Fort Keogh USA 6 2016 2017 333 (16) 8.9 (0.1) 
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Table S3.2 Aboveground biomass (AGB) [g/m2] and the subset of important soil properties measured 

at each plot within different sites: pH (KCl), Ca [meq/100g], cation exchange capacity (CEC) 

[meq/100g], base saturation (BS) [%], available P (Olsen) [ppm], P total [ppm], C:N, soil organic matter 

(SOM) [%], fine-soil bulk density [kg/m3], sand [%]. 

 

Site Plot AGB pH Ca CEC BS Pav Ptot C:N SOM BD Sand 

Aus A1 284.7 4.3 6.8 17.9 0.5 5.3 488 16.7 13.7 0.70 47 

Aus A2 278.4 4.2 8.6 22.0 0.5 4.7 654 15.9 15.7 0.60 73 

Aus A3 375.2 5.0 14.4 22.9 0.7 13.4 777 12.6 13.1 0.70 67 

Aus A4 331.1 4.6 13.0 23.2 0.7 8.0 391 13.0 15.1 0.60 57 

Aus A5 276.7 4.8 17.8 33.7 0.7 12.4 921 11.5 26.8 0.30 54 

Aus A6 333.1 4.7 22.6 44.7 0.6 25.7 2403 11.6 30.0 0.20 54 

Arg Ar1 240.8 4.9 9.0 15.1 0.8 3.2 341 11.5 6.4 0.90 73 

Arg Ar2 236.7 4.8 9.1 16.8 0.9 3.7 348 12.5 6.0 0.60 73 

Arg Ar3 1032.2 5.0 7.8 12.9 0.8 4.7 395 11.1 6.2 1.30 62 

Arg Ar4 1037.6 5.0 7.0 11.3 0.8 5.5 524 12.1 5.9 1.20 74 

Can.e C.e1 239.7 7.1 29.2 31.6 1.0 7.3 825 13.3 11.3 1.10 20 

Can.e C.e2 240.3 7.2 28.3 30.3 1.0 4.9 651 15.0 9.0 1.20 22 

Can.k Ca.k1 376.4 5.1 13.6 23.6 0.8 0.7 828 12.0 16.2 1.00 37 

Can.k Ca.k2 361.9 5.6 15.0 22.3 0.9 0.7 803 12.0 14.2 0.90 42 

Can.k Ca.k3 398.5 5.1 12.4 21.3 0.8 0.6 872 11.9 13.2 0.70 42 

Can.k Ca.k4 369.0 4.6 10.4 18.2 0.8 0.7 843 12.5 11.1 0.90 53 

Can.l Ca.l1 126.6 5.5 10.6 16.7 1.0 15.2 1107 12.2 7.2 0.80 52 

Can.l Ca.l2 607.9 7.7 23.9 53.7 1.0 35.6 1270 11.5 16.4 0.70 43 

Can.l Ca.l3 106.3 5.8 16.5 25.1 1.0 19.7 1464 11.6 10.9 0.60 50 

Can.l Ca.l4 371.1 5.9 17.8 27.6 1.0 25.9 1308 12.2 15.0 0.50 46 

Can.l Ca.l5 199.2 5.4 15.2 24.6 0.9 20.7 1418 12.1 11.0 0.60 50 

Can.l Ca.l6 175.9 5.6 20.5 28.8 0.9 26.1 1436 11.8 14.7 0.60 50 

Can.o Ca.o1 121.3 5.9 9.0 13.5 0.9 2.0 335 12.9 3.9 1.20 47 

Can.o Ca.o2 106.8 5.5 5.2 8.8 0.9 2.8 377 11.2 2.7 1.40 68 

Ch1 Ch11 181.7 6.2 9.0 10.8 1.0 3.9 169 11.1 3.5 1.30 72 

Ch1 Ch12 151.0 6.2 5.8 7.5 1.0 4.2 205 10.7 2.8 1.40 84 

Ch2 Ch21 152.2 5.9 11.8 16.7 1.0 8.9 354 10.9 4.9 1.20 55 

Ch2 Ch22 185.5 5.9 11.2 15.5 0.9 9.0 384 9.7 4.4 1.30 52 

Ch3 Ch31 24.0 7.6 5.3 6.8 1.0 4.5 135 8.7 1.2 1.40 86 

Ch3 Ch32 13.3 7.8 18.2 20.0 1.0 4.1 141 13.7 1.2 1.60 83 

Ger.b G.b1 421.4 5.9 18.7 26.5 0.9 15.2 787 12.7 10.9 0.60 22 

Ger.b G.b2 588.6 5.8 29.1 42.4 0.9 18.7 1042 13.1 19.4 0.50 9 

Ger.b G.b3 356.8 4.2 7.4 14.5 0.7 6.5 422 12.4 5.9 1.00 56 

Ger.b G.b4 254.4 4.5 5.1 10.1 0.7 26.3 442 11.7 3.5 1.20 73 
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Ger.b G.b5 82.5 7.3 20.6 25.4 1.0 3.9 228 18.8 6.9 1.10 55 

Ger.b G.b6 207.7 4.6 3.3 6.5 0.6 12.8 480 11.7 3.6 1.00 83 

Ger.r G.r1 188.5 4.2 1.8 4.5 0.5 21.5 505 11.5 2.9 1.30 87 

Ger.r G.r3 756.1 4.5 3.0 6.5 0.6 16.2 488 13.9 4.1 1.10 84 

Ger.r G.r2 398.8 3.9 1.0 4.9 0.3 35.2 501 11.3 3.3 1.30 89 

Ger.r G.r4 513.4 4.6 3.8 7.8 0.6 14.0 574 11.6 5.2 1.20 78 

Hun H.bg1 476.3 7.7 31.9 37.0 1.0 16.2 699 19.1 14.4 1.30 30 

Hun H.bg2 459.8 7.5 32.3 37.3 1.0 14.4 626 20.2 13.4 1.50 28 

Hun H.s1 40.4 8.2 14.7 15.2 1.0 1.8 280 40.3 1.2 1.04 95 

Hun H.s2 30.2 8.4 15.1 15.9 1.0 2.0 224 36.0 1.1 1.21 94 

Hun H.s3 357.8 8.5 25.2 29.4 1.0 2.7 669 10.8 11.1 0.69 20 

Hun H.s4 366.8 6.2 18.1 22.7 1.0 4.1 739 12.1 10.7 0.76 26 

Ir.d I.d1 428.2 5.8 9.9 13.4 0.9 20.6 1035 10.9 6.8 0.85 11 

Ir.d I.d2 310.1 6.1 18.8 23.8 1.0 26.6 1261 6.7 7.2 0.92 18 

Ir.j I.j1 800.0 5.3 19.9 25.4 0.9 16.0 646 10.5 12.5 0.76 31 

Ir.j I.j2 793.7 5.7 17.3 21.5 1.0 13.0 626 10.5 9.7 0.83 10 

Ir.j I.j3 625.7 6.0 19.3 25.9 1.0 53.2 1438 10.1 12.6 0.80 36 

Ir.m I.m1 203.8 6.9 33.9 35.5 1.0 9.7 523 11.1 8.0 0.90 46 

Ir.m I.m2 149.3 6.8 30.1 31.9 1.0 13.5 622 10.1 8.5 0.86 32 

Ir.n I.n1 122.6 8.0 28.0 30.5 1.0 6.9 489 20.9 5.8 0.82 14 

Ir.n I.n2 152.8 7.8 22.3 23.8 1.0 5.5 375 10.6 4.1 0.73 23 

Ir.n I.n3 283.8 6.9 31.7 34.1 1.0 19.7 779 11.8 11.1 0.77 16 

Ir.n I.n4 257.4 7.4 32.7 36.1 1.0 12.4 505 11.4 8.8 0.82 11 

Ir.n I.r1 444.5 5.7 17.2 21.6 1.0 21.4 735 10.1 11.5 0.82 18 

Ir.n I.r2 230.8 6.0 19.1 24.0 1.0 18.9 710 9.8 11.4 0.78 19 

It It1 498.4 6.5 30.9 34.1 1.0 9.2 1080 10.8 15.0 0.74 32 

It It2 510.7 6.9 39.2 42.0 1.0 5.3 977 10.2 17.5 0.71 52 

It It3 274.2 6.8 50.1 53.3 1.0 8.4 1246 13.0 24.2 0.34 46 

It It4 243.7 6.8 42.9 45.9 1.0 7.0 1009 13.6 20.8 0.58 27 

It It5 224.9 6.3 31.5 36.6 1.0 5.5 909 12.5 20.0 0.54 40 

It It6 238.7 6.6 36.9 40.9 1.0 5.4 889 12.2 17.5 0.63 38 

Ken K1 1187.3 7.2 6.0 10.5 0.9 25.5 499 11.7 3.2 1.72 65 

Ken K2 974.8 6.7 4.1 8.7 0.9 8.0 258 10.8 3.9 1.99 64 

Ken K3 656.8 6.9 6.3 12.2 0.9 5.2 277 11.1 4.3 2.15 53 

Ken K4 676.4 6.7 2.4 6.0 0.8 6.4 219 10.9 3.8 1.76 74 

Ken K5 409.7 6.9 4.7 8.3 0.9 6.3 235 11.2 5.2 1.43 69 

Ken K6 509.2 6.8 5.5 9.5 0.9 9.0 267 10.2 3.6 1.73 67 

NZ NZ1 935.4 4.2 7.8 13.1 0.8 26.1 920 10.4 10.5 1.01 28 

NZ NZ2 1041.5 4.3 8.4 14.1 0.9 32.2 1165 10.5 7.0 0.69 20 
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SA SA1 511.0 4.9 2.6 8.3 0.7 1.9 274 14.1 5.8 0.62 58 

SA SA2 524.5 4.4 2.0 7.5 0.6 1.8 273 16.0 5.9 0.56 58 

SA SA3 706.1 4.2 1.6 8.2 0.4 1.3 340 17.3 8.7 0.75 38 

SA SA4 776.2 4.1 1.1 6.3 0.4 0.8 372 16.4 6.8 0.93 41 

SA SA5 105.0 4.3 1.9 9.2 0.5 2.2 349 13.3 7.1 0.74 64 

SA SA6 150.3 4.4 2.2 9.6 0.5 3.4 383 14.7 8.6 0.47 55 

USA U1 560.7 5.8 28.7 52.0 1.0 20.2 706 15.6 11.8 0.50 8 

USA U2 356.3 7.0 19.1 28.2 1.0 3.5 731 16.2 4.5 0.87 33 

USA U3 104.3 7.3 24.4 28.1 1.0 8.9 691 16.1 4.6 0.89 58 

USA U4 103.9 7.3 23.4 27.7 1.0 4.8 598 15.4 4.2 1.00 54 

USA U5 177.4 5.4 6.7 12.5 0.9 8.6 554 13.8 4.7 0.90 49 

USA U6 154.5 5.7 6.3 10.4 0.9 5.6 500 15.0 3.4 0.96 60 

 

 

Table S3.3 Parameters of the best multiple regression models (with ‘site’ as a random effect) using: 1) 

variables measured at soil depth 1 (0-10 cm); and, for comparison, the same model where high Ca plots 

are excluded; 2) variables measured at depth 1 where plots with very shallow soils (< 20 cm) were 

removed; 3) variables measured at depth 2 (10 – 20 cm). 

 

Best 

model 

(depth 1) Coeff. P-value   

High Ca 

soils 

removed Coeff. P-value   

SOM 0.72 < 0.001 n = 85 SOM 0.84 < 0.05 n = 35 

Ca -0.59 < 0.001 Sites = 21 Ca -0.31 0.24 Sites = 12 

BD 0.38 < 0.01 *R2 (m) = 0.51 BD 0.66 < 0.01 R2 (m) = 0.40 

Sand -0.31 < 0.01 **R2 (c) = 0.74 Sand -0.22 0.42 R2 (c) = 0.62 

P (total) 0.27 < 0.05   P (total) 0.38 0.14   

Best model (depth 1) - no shallow soils 

      

SOM 0.81 < 0.001 n = 68     

Ca -0.56 < 0.001 Sites = 21     

Sand -0.23 < 0.05 R2 (m) = 0.51     

   R2 (c) = 0.87     

Best model (depth 2) 

        

SOM 0.67 < 0.001 n = 84 ***     

Ca -0.65 < 0.001 Sites = 21     

Sand -0.34 < 0.01 R2 (m) = 0.45     

   R2 (c) = 0.79     

* R2 (m) = marginal R2 
** R2 (c) = conditional R2 
*** One plot contained a missing value, therefore n = 84 
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Figure S5.2 Fungal community composition sampled at the experimental site each year over five years 

(2012 – 2016) and stored before the DNA isolation in 2017 compared to the fungal community 

composition from five well-developed grasslands sampled each year over four years (g2012 – g2015 ) 

from which DNA was isolated simultaneously with heathland soils in 2017. Samples from the two sites 

were handled and stored in the same manner. There is a clear directional change in fungal community 

composition at the experimental site, while the is no difference between grassland communities from 

different years. This indicates that the storage effect was not a driver of the observed changes in fungal 

community composition at the experimental site.  
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Figure S5.3 NMDS ordination (first and second axis) showing the distance between technical replicates 

(shown in different colours and connected with a line of the same colour). Grey dots represent other 

samples in the study. Dotted lines connect the samples within the group (combinations of biotic 

treatments and year) to which the replicates belong and their colour corresponds to the colour of the 

respective replicates.  Relatively closely clustered replicate samples compared to the variation within the 

groups show the reproducibility of sample preparation and the sequencing procedure. 
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Figure S5.4 Rarefaction curves for all samples in the study; top – before rarefaction, bottom – after 

rarefaction to 1,275 reads. Different colours represent samples from different biotic treatments (black 

=control, red = hay additions, blue = sod additions).   
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Figure S5.5 Correlations between pair-wise Euclidean distances of the full sample x sample matrix with 

the currently used cut-off (OTUs with more than 500 reads, 25 most abundant plant species, only the 

combination of taxa with Pearson r greater than 0.2) and the sample x sample distance matrix with 

alternative cut-offs. For each biotic treatment-year combination, we calculated the strength of the 

connection between taxa using the original cut-off and the alternative cut-offs. Then we calculated 

Euclidean distances between samples (based on the number and strength of connections of their taxa) to 

obtain sample x sample distance matrices, both for original and alternative cut-offs. The distance matrix 

with the original cut-offs was correlated with the distance matrices of different alternative cut-offs.  

Alternative cut-off 1: OTUs with more than 100 reads and all plant species in the study (36); cut-off 2: 

OTUs with more than 200 reads and all plant species; cut-off 3: OTUs with more than 1000 reads and 

20 most abundant plant species; cut-off 4: no correlation criterion included; cut-off 5: Pearson r greater 

than 0.3; cut-off 6: Pearson r greater than 0.4 (if a higher Pearson r  threshold was imposed, very few 

pairs of taxa would pass the filter).  
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Figure S5.9 Change in fungal community composition over the course of six years (from 2012 to 2017) 

compared to the reference heathland communities. First and third dimensions are shown. First and 

second dimensions are presented in the main text (FigureS1) 

 

Figure S5.10 Change in fungal community composition over the course of six years (from 2012 to 2017) 

where different biotic and abiotic treatments are differentiated. First and third dimensions are shown. 

First and second dimensions are presented in the main text (Figure2a) 
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Table S5.1 The mean proportion (with standard deviation) of the total diversity in a sample covered by 

the rarefaction threshold (1,275 reads) for different biotic treatments (control, hay, sod) according to the 

Chao index.  

Control Hay Sod 

0.975 ± 0.01 0.975 ± 0.009 0.979 ± 0.01 

 

 

Table S5.2 The results of PERMANOVA analyses using different types of transformations of OTU data.  

  Untransformed log Hellinger Wisconsin+sqrt 

Model: OTU_full ~ year, strata= plot 

year 

r2 = 0.11 

P = 0.001 

r2 = 0.12 

P = 0.001 

r2 = 0.12 

P = 0.001 

r2 = 0.06 

P = 0.001 

Model: OTU_full ~ abiotic_treat * biotic_treat, strata = year 

abiotic_treat 
r2 = 0.04 

P = 0.001 

r2 = 0.05 

P = 0.001 

r2 = 0.05 

P = 0.001 

r2 = 0.03 

P = 0.001 

biotic_treat 

r2 = 0.05 

P = 0.001 

r2 = 0.06 

P = 0.001 

r2 = 0.06 

P = 0.001 

r2 = 0.04 

P = 0.001 

interaction 

r2 = 0.04 

P = 0.001 

r2 = 0.04 

P = 0.001 

r2 = 0.04 

P = 0.001 

r2 = 0.04 

P = 0.001 

Model: OTU_2017 ~ abiotic_treat * biotic_treat 

abiotic_treat 

r2 = 0.11 

P = 0.02 

r2 = 0.13 

P = 0.001 

r2 = 0.12 

P = 0.001 

r2 = 0.11 

P = 0.001 

biotic_treat 

r2 = 0.14 

P = 0.001  

r2 = 0.15 

P = 0.001 

r2 = 0.15 

P = 0.001 

r2 = 0.12 

P = 0.001 

interaction 

r2 = 0.14 

P = 0.324  

r2 = 0.17 

P = 0.02 

r2 = 0.16 

P = 0.035 

r2 = 0.17 

P = 0.006 
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Table S5.3 Proportion of plant cover / fungal reads included in the network analysis out of the total 

cover / number of fungal reads, averaged for different biotic treatments each year. As can be seen, the 

taxa included in the network analysis cover the majority of fungal reads and almost all of the total plant 

cover while rare fungal OTUs and plant species were excluded. 

 2013 2014 2015 2016 2017 

Treat. Plants Fungi Plants Fungi Plants Fungi Plants Fungi Plants Fungi 

Control 0.95 0.60 0.98 0.74 0.96 0.71 0.96 0.81 0.97 0.76 

Hay 0.94 0.72 0.96 0.70 0.96 0.82 0.84 0.87 0.95 0.84 

Sod 0.97 0.67 0.99 088 0.98 0.91 0.80 0.90 0.99 0.92 
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Table S5.4 The list of heathland-related and non-heathland plant species included in the network 

analysis. 

Heathland plant species Non-heathland plant species 

1. Calluna vulgaris L. 

2. Erica tetralix L. 

3. Betula pendula Roth 

4. Molinia caerulea L. 

5. Carex pilulifera L. 

6. Juncus effusus L. 

7. Juncus bufonius L. 

8. Juncus squarrosus L. 

9. Rumex acetosella L. 

 

1. Gnaphalium uliginosum L. 

2. Cerastium fontanum Baumg.  

3. Trifolium repens L. 

4. Ranunculus repens L.  

5. Plantago major L. 

6. Salix cinerea L. 

7. Plantago lanceolate L.  

8. Persicaria maculosa Gray 

9. Leontodon autumnalis L. 

10.  Hypochaeris radiacata L. 

11.  Hypericum perforatum L. 

12.  Holcus lanatus L. 

13.  Veronica serpyllifolia L. 

14.  Sagina procumbrens L. 

15.  Agrostis stolonifera L. 

16. Agrostis capillaris L. 
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Table S5.5 Mean OTU richness for each combination of biotic and abiotic treatments throughout the 

years (standard deviation is indicated). 

Biotic    control     hay     sod   

Abiotic acid control lime acid control lime acid control lime 

2012 

61.7 ± 

11 

76 ± 

23 

78 ± 

27 

74.7 ± 

12 

76.7 ± 

1 

108.7 ± 

30 

90 ±   

30 

132 ±  

8 

97.5 ± 

70 

2013 

90.3 ± 

12 

86.7 ± 

13 

93 ± 

10 

88.3 ± 

12 

76 ±  

23 

97.7 ± 

18 

100.8 

± 24 

90.7 ± 

19 

84.5 ± 

5 

2014 

67.7 ± 

12 

79 ±  

11 

98.7 

± 38 

71.7 ± 

45 

90 ±    

6 

87 ±    

18 

63.3 ± 

18 

72.7 ± 

8 

50.7 ± 

11 

2015 

82.3 ± 

6 

137 ±  

26 

111 

± 10 

93.7 ± 

42 

80.3 ± 

24 

107 ±   

28 

57.3 ± 

23 

37.7 ± 

11 

36.3 ± 

11 

2016 

58.7 ± 

18 

62.7 ± 

11 

97 ± 

34 

65.7 ± 

16 

57 ±    

6 

47.7 ± 

30 

44.5 ± 

1 

31.3 ± 

16 

56.7 ± 

6 

2017 

29.7 ± 

15 

66.7 ± 

11 

54.7 

± 23 

61.3 ± 

7 

58.7 ± 

25 

61.7 ± 

28 

48.7 ± 

21 

43 ±    

9 

34.3 ± 

6 

 

Table S5.6 The percentage of plant and fungal taxa (out of the total number included in the network 

analyses) that were found in at least one plot exposed to one of the three biotic treatments (control, hay 

addition, sod addition) each year. Most fungal and plant taxa included in the network analysis were 

present in each of the treatments in 2013, suggesting that there was no absolute dispersal limitation. See 

Figure S5.8 for the mean frequency of heathland-associated plant and fungal taxa in each biotic 

treatment. 

 2013 2014 2015 2016 2017 

Treat. Plants Fungi Plants Fungi Plants Fungi Plants Fungi Plants Fungi 

Control 92 80 96 80 84 89 96 84 77 84 

Hay 92 71 92 75 88 87 84 80 88 69 

Sod 84 75 88 83 84 80 80 71 68 63 

 

  



196 

 

Table S5.7 Soil pH (in NaCl) and percentage of soil organic matter (SOM) measured at each plot from 

2012 to 2016. 

Abiotic 

treatment  

Biotic 

treatment  

Replicate # Year pH (NaCl) SOM [%] 

Acidification Control 1 2012 4.9 1.1 

Acidification Control 2 2012 4.9 1.3 

Acidification Control 3 2012 5.0 2.6 

Acidification Hay 1 2012 4.8 1.7 

Acidification Hay 2 2012 4.6 1.9 

Acidification Hay 3 2012 5.2 2 

Acidification Sod 1 2012 4.7 2 

Acidification Sod 2 2012 4.9 5.1 

Acidification Sod 3 2012 4.8 3.9 

Control Control 1 2012 4.8 1.8 

Control Control 2 2012 5.3 2.3 

Control Control 3 2012 5.2 1.5 

Control Hay 1 2012 5.0 2.2 

Control Hay 2 2012 5.1 2.1 

Control Hay 3 2012 4.9 2.6 

Control Sod 1 2012 5.1 2.4 

Control Sod 2 2012 5.3 1.1 

Control Sod 3 2012 5.1 2.1 

Liming Control 1 2012 5.2 1.8 

Liming Control 2 2012 5.9 NA 

Liming Control 3 2012 6.3 2 

Liming Hay 1 2012 5.9 1.3 

Liming Hay 2 2012 5.2 1.7 

Liming Hay 3 2012 6.1 1.9 

Liming Sod 1 2012 5.2 2.8 

Liming Sod 2 2012 6.4 2.2 

Liming Sod 3 2012 5.3 NA 

Acidification Control 1 2013 4.8 1.7 

Acidification Control 2 2013 5.0 2.4 

Acidification Control 3 2013 5.0 2.4 

Acidification Hay 1 2013 5.0 2.3 

Acidification Hay 2 2013 5.0 2 

Acidification Hay 3 2013 5.0 2.5 

Acidification Sod 1 2013 4.6 2.1 

Acidification Sod 2 2013 4.8 1.5 

Acidification Sod 3 2013 4.7 1.8 

Control Control 1 2013 5.0 2.1 
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Control Control 2 2013 5.1 1.3 

Control Control 3 2013 5.3 2.2 

Control Hay 1 2013 4.9 1.8 

Control Hay 2 2013 5.1 1.7 

Control Hay 3 2013 4.8 3.7 

Control Sod 1 2013 4.8 2.4 

Control Sod 2 2013 5.1 1.3 

Control Sod 3 2013 4.8 2 

Liming Control 1 2013 5.9 2.1 

Liming Control 2 2013 5.6 1.4 

Liming Control 3 2013 5.4 2.8 

Liming Hay 1 2013 5.8 2.5 

Liming Hay 2 2013 5.2 2.2 

Liming Hay 3 2013 5.4 2.4 

Liming Sod 1 2013 5.7 5.2 

Liming Sod 2 2013 5.7 1.4 

Liming Sod 3 2013 5.1 2.8 

Acidification Control 1 2014 4.5 1.7 

Acidification Control 2 2014 4.9 1.5 

Acidification Control 3 2014 4.7 2.7 

Acidification Hay 1 2014 4.5 1.7 

Acidification Hay 2 2014 4.1 1.7 

Acidification Hay 3 2014 4.6 2.8 

Acidification Sod 1 2014 4.4 3 

Acidification Sod 2 2014 4.8 1.9 

Acidification Sod 3 2014 3.8 3.8 

Control Control 1 2014 4.9 2.9 

Control Control 2 2014 5.1 1.3 

Control Control 3 2014 5.4 2 

Control Hay 1 2014 4.8 2.2 

Control Hay 2 2014 5.1 1.1 

Control Hay 3 2014 4.7 2.9 

Control Sod 1 2014 5.1 1.4 

Control Sod 2 2014 5.0 1.7 

Control Sod 3 2014 4.9 2.2 

Liming Control 1 2014 5.4 1.6 

Liming Control 2 2014 5.4 1.5 

Liming Control 3 2014 5.5 3.3 

Liming Hay 1 2014 5.6 1.8 

Liming Hay 2 2014 5.4 1.9 

Liming Hay 3 2014 5.9 4.2 
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Liming Sod 1 2014 5.0 3.6 

Liming Sod 2 2014 5.7 1.8 

Liming Sod 3 2014 5.0 4.1 

Acidification Control 1 2015 4.8 1.4 

Acidification Control 2 2015 4.7 1.3 

Acidification Control 3 2015 4.5 2.6 

Acidification Hay 1 2015 4.7 2.7 

Acidification Hay 2 2015 4.4 1.1 

Acidification Hay 3 2015 4.7 2.5 

Acidification Sod 1 2015 4.6 1.6 

Acidification Sod 2 2015 4.8 2 

Acidification Sod 3 2015 4.5 2.4 

Control Control 1 2015 4.9 1.7 

Control Control 2 2015 5.1 1.6 

Control Control 3 2015 5.1 1.8 

Control Hay 1 2015 4.9 2.1 

Control Hay 2 2015 5.1 1.3 

Control Hay 3 2015 4.8 2.5 

Control Sod 1 2015 5.0 1.5 

Control Sod 2 2015 5.2 2.1 

Control Sod 3 2015 4.9 1.7 

Liming Control 1 2015 5.3 1.6 

Liming Control 2 2015 5.4 2.5 

Liming Control 3 2015 5.6 2.1 

Liming Hay 1 2015 5.8 2.4 

Liming Hay 2 2015 5.1 2 

Liming Hay 3 2015 5.6 2.8 

Liming Sod 1 2015 5.4 2.3 

Liming Sod 2 2015 5.6 1.8 

Liming Sod 3 2015 5.3 3.2 

Acidification Control 1 2016 4.3 1.7 

Acidification Control 2 2016 4.9 0.9 

Acidification Control 3 2016 5.1 3 

Acidification Hay 1 2016 4.8 2.3 

Acidification Hay 2 2016 4.7 1.1 

Acidification Hay 3 2016 4.7 1.9 

Acidification Sod 1 2016 4.7 1.6 

Acidification Sod 2 2016 4.9 1.9 

Acidification Sod 3 2016 4.8 3 

Control Control 1 2016 4.9 2.5 

Control Control 2 2016 5.2 1.3 
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Control Control 3 2016 5.2 1.5 

Control Hay 1 2016 4.7 1.7 

Control Hay 2 2016 4.9 1.5 

Control Hay 3 2016 4.9 3.2 

Control Sod 1 2016 5.1 1.7 

Control Sod 2 2016 5.2 1.3 

Control Sod 3 2016 4.9 2.2 

Liming Control 1 2016 5.1 1.7 

Liming Control 2 2016 5.2 1.8 

Liming Control 3 2016 5.1 2.7 

Liming Hay 1 2016 5.6 1.8 

Liming Hay 2 2016 5.1 1.5 

Liming Hay 3 2016 5.1 4.3 

Liming Sod 1 2016 5.7 3.2 

Liming Sod 2 2016 5.7 2.1 

Liming Sod 3 2016 5.3 2 

 

 

Appendix S5.1 Testing the effect of storage conditions 

 

In order to test for the effect of storage conditions on the fungal community composition, we additionally 

analysed the soil samples from 4 different Nardus stricta L. grasslands (located in the vicinity of the 

plots) that were not part of this study. These samples were taken each year in the period between 2012 

and 2016 and they were handled and stored in the same manner as the samples from our experimental 

site. The rationale was that because these grasslands were developed and thus relatively stable (unlike 

the experimental plots) eventual substantial changes in their soil biotic community composition through 

time would be caused by the storage time/conditions (while natural interannual variations would likely 

produce random rather than directional variation). However, we detected no significant consistent trend 

in community composition between the soils collected in different years, especially not when compared 

to the strong effect observed in the developing heathlands (Figure S5.2). This suggests that the 

differences in the storage time likely did not have a substantial effect on soil fungal community 

composition at our experimental site, at least not in such a manner to be confounded with the effect of a 

succession of fungal communities in a developing system. Another line of evidence that the storage 

conditions did not significantly alter the soil fungal community composition is that the communities 

from 2017 (where the DNA was extracted shortly after the sampling) followed the pattern of change 

observed in the previous years (Figure 5.1) which would likely not occur if the pattern was caused by 

differing storage times. 
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Chapter VI 

 

     
 

        

 

Figure S6.1 Rarefactions curves for bacteria (top) and fungi (bottom). The graphs on the left 

show the curves for non-rarefied data, while the graphs on the right show the curves after 

rarefactions at 6046 and 1231 reads for bacteria and fungi, respectively.  
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Figure S6.3 The percentage of reads belonging to particular bacterial phyla (top) and fungal functional 

groups (bottom) in all the samples included in the study.  



203 

 

Table S6.1 Information about 18 sites included in the analyses. The sites shaded in grey contained a 

productivity gradient. 

 

Site ID Site name Country # of plots 

Year: biomass 

sampling 

Year: soil 

sampling 

Aus Pitztal Austria 6 2012 2017 

Arg Córdoba Argentina 4 2012 2017 

Can.e 

Elginfield 

Observatory Canada 2 2012 2018 

Can.l Lac du Bois Canada 6 2012 2018 

Can.o 

Onefour, 

AB Canada 2 2012 2017 

Ch 

Inner 

Mongolia  China 6 2017 2018 

Ger.b Bayreuth Germany 6 2012 2017 

Ger.r Rostock Germany 4 2015 2017 

Hun 

Soroksár, 

Fülöpháza, 

Battonya Hungary 6 2012 2018 

Ir.d Damavand Iran 2 2012 2017 

Ir.j Javaherdeh Iran 3 2012 2017 

Ir.m Masuleh Iran 2 2012 2017 

Ir.n 

North 

Khorasan, 

Golestan Iran 6 2012/2017 2017 

It 

Torricchio 

Nature 

Reserve Italy  6 2012 2017 

Ken Laikipia Kenya 6 2012 2018 

NZ 

Waitati 

South 

Island New Zealand 2 2012 2018 

SA Loskopdam South Africa 6 2012 2017 

USA Fort Keogh USA 6 2012 2017 
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Table S6.2 The coefficients and P values of selected environmental predictors in the best multiple 

regression model explaining bacterial and fungal community composition at high and low productivity 

levels. 

 

 Bacterial communities 

Low productivity    High productivity 

R2 = 0.81                 R2 = 0.73 

Fungi  communities 

Low productivity    High productivity 

R2 = 0.48                 R2 = 0.55  

 Coeff.  P-value Coeff. P-value Coeff. P-value Coeff.  P-value  

Geo. distance - - - - 0.01 0.001 0.009 0.001 

MAT 0.02 0.003 0.02 0.012 0.02 0.001 0.02 0.001 

MAP 0.02 0.02 - - - - - - 

N deposition 0.04 0.001 0.05 0.001 0.02 0.001 0.03 0.001 

Plant biomass 0.02 0.004 - - - - - - 

pH 0.05 0.001 0.03 0.005 0.03 0.001 0.03 0.001 

CEC - - 0.04 0.001 - - - - 

C:N - - 0.03 0.001 0.009 0.01 0.01 0.017 

BS 0.06 0.001 0.04 0.002 - - - - 

Sand - - 0.04 0.007 0.01 0.004 - - 

SOM - - - - 0.01 0.003 0.01 0.21 

Silt - - -0.04 0.005 - - - - 

Mg - - - - - - - - 

Ca 0.03 0.003 - - 0.02 0.009 - - 

P(avail) - - - - - - 0.01 0.009 

 

 

  



205 

 

 

Table S6.3 The percentage of reads belonging to different bacterial and fungal phyla in the study. 

 

Bacterial phyla % of total reads Fungal phyla % of total reads 

Actinobacteria 41.6730 Ascomycota 62.3605 

Firmicutes 16.4703 Basidiomycota 20.6830 

Proteobacteria 13.7921 Glomeromycota 7.2779 

Chloroflexi 7.8897 Unknown 5.8253 

Acidobacteria 6.2957 Mortierellomycota 2.4193 

Verrucomicrobia 3.0793 Chytridiomycota 0.4171 

Bacteroidetes 2.9213 Olpidiomycota 0.4162 

Planctomycetes 2.2374 Rozellomycota 0.2707 

Thaumarchaeota 1.6295 Entorrhizomycota 0.1831 

Gemmatimonadetes 1.5125 Mucoromycota 0.0627 

Tectomicrobia 0.5941 Zoopagomycota 0.0324 

Saccharibacteria 0.5819 Blastocladiomycota 0.0140 

Armatimonadetes 0.4865 Kickxellomycota 0.0093 

Nitrospirae 0.1723 Aphelidiomycota 0.0077 

Elusimicrobia 0.1121 Monoblepharomycota 0.0071 

Cyanobacteria 0.0676 Entomophthoromycota 0.0067 

Latescibacteria 0.0610 Basidiobolomycota 0.0038 

Unknown 0.0586 Fungi_phy_Incertae_sedis 0.0021 

Parcubacteria 0.0549 Calcarisporiellomycota 0.0011 

FBP 0.0522    

Chlorobi 0.0393    

Ignavibacteriae 0.0362    

TM6 0.0292    

Fibrobacteres 0.0256    

Euryarchaeota* 0.0207    

Omnitrophica 0.0165    

Chlamydiae 0.0139    

Candidatus 0.0118    

BRC1 0.0101    

Deinococcus.Thermus 0.0094    

Spirochaetae 0.0083    

FCPU426 0.0083    

Peregrinibacteria 0.0058    

Woesearchaeota* 0.0044    

Microgenomates 0.0041    

BJ.169 0.0027    

WS2 0.0023    
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Tenericutes 0.0015    

Hydrogenedentes 0.0011    

GAL15 0.0010    

RBG.1 0.0009    

WWE3 0.0008    

Fusobacteria 0.0007    

CPR2 0.0005    

Gracilibacteria 0.0004    

SBR1093 0.0004    

Bathyarchaeota* 0.0004    

Nitrospinae 0.0003    

Aenigmarchaeota* 0.0003    

SR1 0.0003    

Deferribacteres 0.0002    

Parvarchaeota* 0.0002    

Lentisphaerae 0.0001    

PAUC34f 0.0001    

Aminicenantes 0.0000    

WS1 0.0000    

Synergistetes 0.0000     

* Archaea 

 

 

Appendix 6.1 – Microbial community composition predictors at different productivity levels 

 

At high productivity, environmental factors (including climate, soil, geographical distance and plant 

biomass) explained 72% of the variation in bacterial community composition, and the most influential 

individual predictor was base saturation explaining alone 35% of the variation. Plant communities 

explained 34% of the variation alone and when added to the best model of environmental factors they 

increased the variation explained to 77%. Environmental factors explained 82% of variation at low 

productivity, where the most important individual factor was again base saturation (R2 = 0.58). Plant 

communities added 5% of variation when included to the selected model (and alone they explained 34% 

of the variation). 

 

At high productivity, environmental factors explained 55% of the variation in fungal community 

composition and the most influential individual predictor was geographical distance (R2 = 0.24). Plant 

communities alone explained 67% of the variation and when added to the model with abiotic factors the 

total variance explained increased from 55% to 76%. At low productivity, 48% of the variation was 

explained by the best model with environmental factors, where geographical distance explained the most 

individual variation (R2 = 0.18). When plant community composition alone explained 78% of the 

variation and when added to the best mode with environmental variables, the total amount of variation 

increased from 48% to 78%.  
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