
SoftwareX 11 (2020) 100426

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

Original software publication

Connecting the CoppeliaSim robotics simulator to virtual reality
Boris Bogaerts ∗, Seppe Sels, Steve Vanlanduit, Rudi Penne
Faculty of Applied Engineering, University of Antwerp, Antwerp, Belgium

a r t i c l e i n f o

Article history:
Received 22 July 2019
Received in revised form 8 January 2020
Accepted 18 February 2020

Keywords:
Virtual reality
Robot simulation
Human–robot interaction
Prototyping
Interface

a b s t r a c t

The CoppeliaSim VR Toolbox provides a set of tools to experience CoppeliaSim robot simulation
software in Virtual Reality and to return user interactions. Its primary focus is to create a platform that
enables the fast prototyping and verification of robotic systems. Moreover, the generality of the toolbox
ensures that it can be valuable in other contexts like robotics education, human–robot interaction or
reinforcement learning. The software is designed to have a low entry threshold for moderately complex
use cases, but can be extended to perform very complex visualizations for more experienced users.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Code metadata

Current code version v2.2
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX_2019_247
Legal Code License BSD-3 Clause
Code versioning system used git
Software code languages, tools, and services used C++, vtk, eigen, openvr, CoppeliaSim
Compilation requirements, operating environments & dependencies VS2015, VTK 8.2, eigen, openvr, CoppeliaSim remote API
If available Link to developer documentation/manual
Support email for questions boris.bogaerts@uantwerpen.be

Software metadata

Current software version 2.2
Permanent link to executables of this version https://github.com/BorisBogaerts/CoppeliaSim-VR-Toolbox/releases
Legal Software License BSD-3 Clause
Computing platforms/Operating Systems Windows
Installation requirements & dependencies V-REP, Steam
If available, link to user manual - if formally published include a reference to the
publication in the reference list

https://github.com/BorisBogaerts/CoppeliaSim-VR-Toolbox

Support email for questions boris.bogaerts@uantwerpen.be

1. Motivation and significance

CoppeliaSim is a robot simulation environment used for the
prototyping, development and verification of robot systems and
algorithms. A robotic system can be a complex mechatronic sys-
tem that is nontrivial to construct and use. The offline program-
ming of the motion of a robot can furthermore be cumbersome,

∗ Corresponding author.
E-mail address: boris.bogaerts@uantwerpen.be (B. Bogaerts).

time-consuming and requires a high level of expertise [1]. In this
work we developed a virtual reality interface for CoppeliaSim.
While the importance of virtual reality in virtual prototyping and
validation has long been understood [2–4], there are only very
few software tools that meet the requirements of the robotics
community [5].

The developed CoppeliaSim VR Toolbox aims to be more ac-
cessible to members of the robotics community than other soft-
ware solutions. During the development we have focused on
the following priorities: lowering the entry threshold for new

https://doi.org/10.1016/j.softx.2020.100426
2352-7110/© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.softx.2020.100426
http://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2020.100426&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://github.com/ElsevierSoftwareX/SOFTX_2019_247
mailto:boris.bogaerts@uantwerpen.be
https://github.com/BorisBogaerts/CoppeliaSim-VR-Toolbox/releases
https://github.com/BorisBogaerts/CoppeliaSim-VR-Toolbox
mailto:boris.bogaerts@uantwerpen.be
mailto:boris.bogaerts@uantwerpen.be
https://doi.org/10.1016/j.softx.2020.100426
http://creativecommons.org/licenses/by/4.0/


2 B. Bogaerts, S. Sels, S. Vanlanduit et al. / SoftwareX 11 (2020) 100426

Fig. 1. The user sees the V-REP scene (right) in VR (top-left). The user can interact with a robot to teach paths.

users, simplifying the software setup, and minimizing the time
to develop and test user interactions.

The software’s efficacy has already been proven in the human
guided design of camera networks [6] and robot path planning
for optical inspections [7]. With this software, it was easy and
quick to create new design scenarios that could be used to test
human performance in a wider range of problems. The VR Tool-
box proved its extensibility by allowing the implementation of
advanced volume rendering, which was used to augment user
performance.1

The VR Toolbox uses a commonly used robot simulator, namely
CoppeliaSim. This simulator is used as usual to model the ex-
perimental scene, and to define the scene control logic. The
VR Toolbox contains an application that visualizes this scene in
openVR compatible devices, and returns user interactions. These
can than be used in the robot simulator to modify the scene logic.
The toolbox also contains a standard set of interactors in which
a common set of interactions are preprogrammed. These interac-
tors are used directly, or as building blocks for more advanced
interactors or can serve as an example in the development of
specific custom interactions (see Fig. 1).

Our VR Toolbox links CoppeliaSim [8], to the Visualization
Toolkit (VTK) [9,10]. VTK provides an extensive library of state-
of-the-art scientific visualizations and also links to openVR com-
patible virtual reality devices. A different approach that combines
the Robot Operating System (ROS) with Unity is also available [5].
This solution, however, is less accessible to the robotics commu-
nity since Unity is more challenging to set up, and is less intuitive
to use for roboticists than CoppeliaSim [11]. Furthermore, the
separation between scene logic in ROS and scene modeling in
Unity increases the time to develop specific cases. This separation
between scene logic and modeling environment is deliberately
avoided in our software solution. A disadvantage that is not to be
underestimated is that this extra complexity makes user studies
more challenging to set up.

2. Software description and functionalities

The CoppeliaSim VR toolbox builds around a core module
that converts CoppeliaSim scene data to VTK actors that can be

1 A video that shows volume rendering with the VR Interface is available
online: https://youtu.be/Dsh8oyN4sD0.

visualized in VTK. This module is used in two separate included
applications. The first application renders any CoppeliaSim scene
in openVR compatible hardware, and returns user action to the
simulator. We will refer to this application as the VR-Interface.
The second application renders omnidirectional stereo images
from CoppeliaSim scenes. These can be used to create compelling
visualizations of research that was carried out with the VR-
Interface.2 We explicitly created a separate application for the VR
rendering, instead of integrating these into the simulator, to guar-
antee a consistent and fast framerate of the VR visualization, even
when the simulation speed of the simulator is inconsistent. This
is important in user-studies for the comfort of subjects, and it is
necessary in order to not bias results. This set of tools (i.e. module
and applications) is completed with CoppeliaSim models which
program standard interactions (we call these interactors). These
interactors are entirely programmed in CoppeliaSim, in its native
format (i.e. LUA) and also act as examples.

2.1. Software architecture

The most important component of the toolbox is the trans-
lation module (schematic version of the software architecture in
Fig. 2). This module transforms CoppeliaSim data in VTK actors. To
do this, the module interfaces with CoppeliaSim by calling script
functions. These script files are located in a CoppeliaSim model
that must be added to the scene by the user. After object loading,
between renders, all information (e.g. positions) of the actors are
updated, based on the scene logic in CoppeliaSim. This translation
module is used to build a VTK application (in c++) which can be
augmented with custom visualizations. By default, the VR Toolbox
features two such applications, one which performs visualizations
in VR, and one that renders omnidirectional stereo images. How-
ever, users can freely add custom visualizations based on these
examples.

The easiest, and most common way of working with the VR
Toolbox is by using or programming interactors. These interac-
tors are CoppeliaSim child scripts that modify the scene logic
based on interactions from the VR device. The programming of
interactors is completely analogous to programming traditional
logic in CoppeliaSim, or even in robot simulators in general. The
graphical user interface of CoppeliaSim is designed to quickly and
efficiently develop and debug such scripts.

2 An example VR360 video can be found here: https://youtu.be/pFAptrCYhaQ.

https://youtu.be/Dsh8oyN4sD0
https://youtu.be/pFAptrCYhaQ


B. Bogaerts, S. Sels, S. Vanlanduit et al. / SoftwareX 11 (2020) 100426 3

Fig. 2. A high level schematic overview of the software architecture.

Fig. 3. Sample code that lets the user control the end-effector of a robot with a virtual reality controller.

2.2. Sample code snippets analysis

in Fig. 3 an interactor is programmed in a child script in
CoppeliaSim (LUA). This script allows a user to control the robot
end-effector with a virtual reality controller. The state of the
trigger button of the right controller is stored in the integer signal
R_trigger_press. If this button is pressed, the robot target (target
of the tip–target combination of an IK object) becomes a child
of the controller. This parent–child link will ensure that the rel-
ative transformation between the right controller and the robot
target remains fixed. The IK calculation module in CoppeliaSim
will ensure that the robot tip will match the robot target. As a
result, the target will follow the movements of the controller. The
parent–child link is broken if the user releases the trigger button
of the right controller. This code snippet shows how easy it is to
integrate virtual reality interactions in CoppeliaSim scene logic.
(see Fig. 4).

3. Illustrative examples

3.1. Robotic inspection planning

We used the VR-Interface to investigate if inexperienced users
are capable of generating high quality robotic inspection paths [7].
Users could move the end-effector of the robot by moving the VR
controller. To help them in the process of recording inspection
paths, we visualized the inspection quality on the geometry
that needed to be inspected. This was achieved by programming
custom vertex colors in VTK. A 360VR video was generated with
the omnidirectional render tool that is also available in the VR

toolbox to explain the experimental procedure.3 This path can
naturally be used for inspections on a real robot.4

3.2. Camera network design

Recently, we used the developed VR Toolbox to investigate
how well users could design camera networks compared to auto-
mated algorithms5 [6]. To do this we implemented an interactive
volume visualization in VTK. This interactive volume showed the
users which parts of the scene was invisible to a camera system,
as an interactive red cloud. The users could move the cameras of
the camera system by a dragging motion of the VR controllers.
This is shown in Fig. 5. Upon the movement of the cameras, the
interactive volume changed based on the new camera positions.
With this visualization, camera network design, corresponds to
placing cameras, such that there are no red areas in the environ-
ment. With this software we demonstrated that the gap between
user performance, and the performance of automated algorithms
is limited. The flexibility of the software allowed us to investigate
this in a wide range of different (dynamic) environments.

4. Impact and conclusion

The CoppeliaSim VR Toolbox provides a set of tools that add
VR support to a powerful robot system prototyping environ-
ment. CoppeliaSim itself is known for its flexibility and ability
to prototype every robot system [8]. Interactors can easily be
programmed in the same way and with the same flexibility.

3 The video is available online: https://youtu.be/pFAptrCYhaQ.
4 A video of a real inspection based on a path generated using the VR

interface is available here: http://www.youtube.com/watch?v=A7E7H54v9ec&t=
31m28s.
5 An explanatory video is available online: https://youtu.be/Dsh8oyN4sD0.

https://youtu.be/pFAptrCYhaQ
http://www.youtube.com/watch?v=A7E7H54v9ec&t=31m28s
http://www.youtube.com/watch?v=A7E7H54v9ec&t=31m28s
https://youtu.be/Dsh8oyN4sD0


4 B. Bogaerts, S. Sels, S. Vanlanduit et al. / SoftwareX 11 (2020) 100426

Fig. 4. The user can control the end-effector of a robot by moving a VR controller, and gets feedback on the inspection quality of an attached measurement system.
This visualization allows the user to generate high quality inspection paths [7].

Fig. 5. The user can move virtual cameras, and see which areas of the scene are
visible, here shown as a green cloud. This visualization allows users to effectively
design camera networks. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

The complexity of extending the CoppeliaSim VR Toolbox is
layered. The most common extension, making new interactors,
can be performed with standard tools, which have a low en-
try threshold. However, more experienced users can build their
own applications, in which they can unleash all the visualiza-
tions that VTK offers, to aid users in performing their tasks.
This extensibility has already been shown with advanced volume
rendering [6].

This software solution is significantly easier and faster to set
up than other software solutions. This is important since it is
common to perform pilot studies in human–computer interac-
tion to guide the design process, and to eliminate experimental
errors [12]. The complexity of setting up and installing all the
required software is minimized which reduces the effort to set
up user studies. Furthermore, all the required data that makes
up a test scene, is stored in a single file. This further reduces the
effort to set up user studies.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

B.B was funded by Fonds Wetenschappelijk Onderzoek (FWO,
Research-Foundation Flanders), Belgium under Doctoral (PhD)
grant strategic basic research (SB) 1S26216N.

References

[1] Campeau-Lecours A, Côté-Allard U, Vu D, Routhier F, Gosselin B, Gosselin C.
Intuitive adaptive orientation control for enhanced human–robot interac-
tion. IEEE Trans Robot 2019;35(2):509–20. http://dx.doi.org/10.1109/TRO.
2018.2885464.

[2] Gibson I, Cobb S, Eastgate R. Virtual reality and rapid prototyping: Con-
flicting or complimentary? In: 1993 international solid freeform fabrication
symposium, 1993.

[3] De Sa AG, Zachmann G. Virtual reality as a tool for verification of assembly
and maintenance processes. Comput Graph 1999;23(3):389–403.

[4] Mujber TS, Szecsi T, Hashmi MS. Virtual reality applications in manufac-
turing process simulation. J Mater Process Technol 2004;155:1834–8.

[5] Krupke D, Starke S, Einig L, Steinicke F, Zhang J. Prototyping of immersive
HRI scenarios. In: International conference on climbing and walking robots
and the support technologies for mobile machines. World Scientific; 2017,
p. 537–44.

[6] Bogaerts B, Sels S, Vanlanduit S, Penne R. Interactive camera network
design using a virtual reality interface. Sensors 2019;19(5):1003.

[7] Bogaerts B, Sels S, Vanlanduit S, Penne R. Enabling humans to plan
inspection paths using a virtual reality interface. 2019, arXiv preprint
arXiv:1909.06077.

[8] Rohmer E, Singh SP, Freese M. V-REP: A versatile and scalable robot simu-
lation framework. In: 2013 IEEE/RSJ international conference on intelligent
robots and systems. IEEE; 2013, p. 1321–6.

[9] Hanwell MD, Martin KM, Chaudhary A, Avila LS. The visualization toolkit
(VTK): Rewriting the rendering code for modern graphics cards. SoftwareX
2015;1:9–12.

[10] Schroeder W, Martin K, Lorensen B. The Visualization Toolkit–An
Object-Oriented Approach To 3D Graphics. 4th ed.. Kitware, Inc.; 2006.

[11] Nogueira L. Comparative analysis between gazebo and v-rep robotic
simulators. In Seminario interno de cognicao artificial, 2014, 2014, p. 5.

[12] Livatino S, Koffel C. Handbook for evaluation studies in virtual reality.
In: 2007 IEEE symposium on virtual environments, human-computer
interfaces and measurement systems. IEEE; 2007, p. 1–6.

http://dx.doi.org/10.1109/TRO.2018.2885464
http://dx.doi.org/10.1109/TRO.2018.2885464
http://dx.doi.org/10.1109/TRO.2018.2885464
http://refhub.elsevier.com/S2352-7110(19)30251-1/sb3
http://refhub.elsevier.com/S2352-7110(19)30251-1/sb3
http://refhub.elsevier.com/S2352-7110(19)30251-1/sb3
http://refhub.elsevier.com/S2352-7110(19)30251-1/sb4
http://refhub.elsevier.com/S2352-7110(19)30251-1/sb4
http://refhub.elsevier.com/S2352-7110(19)30251-1/sb4
http://refhub.elsevier.com/S2352-7110(19)30251-1/sb5
http://refhub.elsevier.com/S2352-7110(19)30251-1/sb5
http://refhub.elsevier.com/S2352-7110(19)30251-1/sb5
http://refhub.elsevier.com/S2352-7110(19)30251-1/sb5
http://refhub.elsevier.com/S2352-7110(19)30251-1/sb5
http://refhub.elsevier.com/S2352-7110(19)30251-1/sb5
http://refhub.elsevier.com/S2352-7110(19)30251-1/sb5
http://refhub.elsevier.com/S2352-7110(19)30251-1/sb6
http://refhub.elsevier.com/S2352-7110(19)30251-1/sb6
http://refhub.elsevier.com/S2352-7110(19)30251-1/sb6
http://arxiv.org/abs/1909.06077
http://refhub.elsevier.com/S2352-7110(19)30251-1/sb8
http://refhub.elsevier.com/S2352-7110(19)30251-1/sb8
http://refhub.elsevier.com/S2352-7110(19)30251-1/sb8
http://refhub.elsevier.com/S2352-7110(19)30251-1/sb8
http://refhub.elsevier.com/S2352-7110(19)30251-1/sb8
http://refhub.elsevier.com/S2352-7110(19)30251-1/sb9
http://refhub.elsevier.com/S2352-7110(19)30251-1/sb9
http://refhub.elsevier.com/S2352-7110(19)30251-1/sb9
http://refhub.elsevier.com/S2352-7110(19)30251-1/sb9
http://refhub.elsevier.com/S2352-7110(19)30251-1/sb9
http://refhub.elsevier.com/S2352-7110(19)30251-1/sb10
http://refhub.elsevier.com/S2352-7110(19)30251-1/sb10
http://refhub.elsevier.com/S2352-7110(19)30251-1/sb10
http://refhub.elsevier.com/S2352-7110(19)30251-1/sb12
http://refhub.elsevier.com/S2352-7110(19)30251-1/sb12
http://refhub.elsevier.com/S2352-7110(19)30251-1/sb12
http://refhub.elsevier.com/S2352-7110(19)30251-1/sb12
http://refhub.elsevier.com/S2352-7110(19)30251-1/sb12

	Connecting the CoppeliaSim robotics simulator to virtual reality
	Motivation and significance
	Software description and functionalities
	Software architecture
	Sample code snippets analysis

	Illustrative examples
	Robotic inspection planning
	Camera network design

	Impact and conclusion
	Declaration of competing interest
	Acknowledgments
	References


