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Abstract The fifth multistakeholder Paediatric Strategy Forum focussed on epigenetic modi-

fier therapies for children and adolescents with cancer. As most mutations in paediatric malig-

nancies influence chromatin-associated proteins or transcription and paediatric cancers are

driven by developmental gene expression programs, targeting epigenetic mechanisms is pre-

dicted to be a very important therapeutic approach in paediatric cancer. The Research to Accel-

erate Cures and Equity (RACE) for Children Act FDARA amendments to section 505B of the

FD&C Act was implemented in August 2020, and as there are many epigenetic targets on the

FDA Paediatric Molecular Targets List, clinical evaluation of epigenetic modifiers in paediatric

cancers should be considered early in drug development. Companies are also required to submit

to theEMApaediatric investigation plans aiming to ensure that the necessary data to support the

authorisation of a medicine for children in EU are of high quality and ethically researched.

The specific aims of the forum were i) to identify epigenetic targets or mechanisms of action

associated with epigenetic modification relevant to paediatric cancers and ii) to define the land-

scape for paediatric drug development of epigenetic modifier therapies. DNAmethyltransferase

inhibitors/hypomethylating agents andhistone deacetylase inhibitorswere largely excluded from

discussion as the aim was to discuss those targets for which therapeutic agents are currently in

early paediatric and adult development.

Epigenetics is an evolving field and could be highly relevant to many paediatric cancers; the

biology is multifaceted and new targets are frequently emerging. Targeting epigenetic mech-

anisms in paediatric malignancy has in most circumstances yet to reach or extend beyond clin-

ical proof of concept, as many targets do not yet have available investigational drugs

developed. Eight classes of medicinal products were discussed and prioritised based on the ex-

isting level of science to support early evaluation in children: inhibitors of menin, DOT1L,

EZH2, EED, BET, PRMT5 and LSD1 and a retinoic acid receptor alpha agonist. Menin in-

hibitors should be moved rapidly into paediatric development, in view of their biological

rationale, strong preclinical activity and ability to fulfil an unmet clinical need. A combination

approach is critical for successful utilisation of any epigenetic modifiers (e.g. EZH2 and EED)

and exploration of the optimum combination(s) should be supported by preclinical research

and, where possible, molecular biomarker validation in advance of clinical translation. A

follow-up multistakeholder meeting focussing on BET inhibitors will be held to define how

to prioritise the multiple compounds in clinical development that could be evaluated in chil-

dren with cancer.

As epigenetic modifiers are relatively early in development in paediatrics, there is a clear

opportunity to shape the landscape of therapies targeting the epigenome in order that efficient
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and optimum plans for their evaluation in children and adolescents are developed in a timely

manner.

ª 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The fifth multistakeholder Paediatric Strategy Forum

was organised by ACCELERATE [1] in collaboration

with the European Medicines Agency (EMA) with
participation of the Food and Drug Administration

(FDA) and focussed on epigenetic modifiers in children

and adolescents.

Previous multistakeholder Paediatric Strategy Fo-

rums [2e4] have been successful in evaluating pre-

clinical and clinical research and providing an

opportunity for constructive interactions between

relevant stakeholders (patient advocates, clinicians,
academic experts, biotechnology/pharmaceutical

companies, and regulators) on topics relatively late in

development. The aim of the forums is to share in-

formation and advance learning, in a precompetitive

setting, which may direct subsequent clinical investi-

gation strategies and inform regulatory decisions on

the development of medicines for children with cancer

[5]. This forum was held early in the stage of devel-
opment of epigenetic modifying drugs as a class with

the expectation that emerging science would aid in

understanding the landscape of development. The

goal of this meeting was to discuss the ongoing

development of epigenetic modifying drugs and pro-

vide recommendations to support their introduction

into the care of children with malignancies.

DNA methylation and covalent histone modifica-
tions are precisely and dynamically controlled by

various epigenetic modifying proteins and are critical

aspects of transcriptional regulation. Dysregulation of

these enzymes may result in cancer [6]. Epigenetic

changes are particularly important in paediatric cancers,

as most alterations in paediatric malignancies influence

chromatin-associated protein in the background of a

typically simple genomic landscape [7,8]. The goal of
epigenetic therapies is to disrupt the equilibrium created

by the initial alteration, restore the epigenetic balance,

and revert malignant cells to a more normal condition.

In recent years, epigenetic modifiers have become the

focus of many cancer clinical trials in adults. Currently,

several drugs have been approved for clinical use in

oncological practice and many more are on the horizon.

The full implementation of the Research to Accelerate
Cures and Equity (RACE) for Children Act and the

FDARA amendments to section 505B of the FD&C Act

in the United States of America (USA) in August 2020

requires that certain drugs and biological products be
assessed early in paediatric cancers if the drug or bio-

logical product is directed at a molecular target deter-

mined to be substantially relevant to the growth or

progression of a paediatric cancer [9]. The ongoing
evaluation by the EU on both the paediatric and orphan

regulations will potentially further enhance the regula-

tory environment in Europe.

The specific aims of the forum were i) to identify

epigenetic targets or mechanisms of action relevant to

paediatric cancer and ii) to define the landscape for

paediatric drug development of epigenetic modifying

drugs and iii) identify opportunities to further enable
their development in paediatric cancers. DNA methyl-

transferase inhibitors/hypomethylating agents and his-

tone deacetylase (HDAC) inhibitors were largely

excluded from discussion as the aim was to discuss the

targets which were earlier in development.

The Paediatric Strategy Forum was held over two

days in Philadelphia, Pennsylvania (USA), in January

2020. A comprehensive overview of the scientific ratio-
nale for epigenetic modifiers in paediatric leukaemia,

central nervous system tumours and solid tumours was

presented and potential epigenetic therapeutic targets

were identified. This was followed by a description of

pharmacological and clinical information on seventeen

compounds being developed as epigenetic modifiers and

provided a basis for overall conclusions and

recommendations.
The forum was advertised, and expressions of interest

were sought from the pharmaceutical/biotechnology

industry (if they wished to present data on relevant

medicinal products, a condition for their participation),

academic experts, international regulatory authorities

and patient advocates.

Seventy-two participants from both North America

and Europe including academic experts, patient advo-
cates (from Children’s Cancer Cause, Coalition Against

Childhood Cancer, KickCancer, Solving Kids’ Cancer

and the Andrew McDonough B þ Foundation), EMA

(including the Paediatric Committee [PDCO]) and FDA

regulators and representatives from 11 biopharmaceu-

tical companies discussed the scientific rationale for the

epigenome to be considered a valid therapeutic target,

with evidence explored across classes of paediatric
malignancies.

2. Epigenetic modifiers in paediatric malignancies

Paediatric cancers in general harbour few mutations in

the coding genome, suggesting that oncogenesis is at

least partly led by epigenetic mechanisms. As most

mutations that do occur in paediatric malignancies

http://creativecommons.org/licenses/by-nc-nd/4.0/
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influence chromatin-associated protein or transcription

factors, and paediatric cancers are driven by develop-

mental gene expression programs typically in the back-

ground of a low mutational burden, targeting epigenetic

mechanisms, chromatin-based control of gene expres-

sion is potentially a very important therapeutic

approach in paediatrics. Oncogenic mutations in genes

controlling epigenetic processes lead to dependence on
specific epigenetic pathways, and fusion oncoproteins

are frequently critically involved in epigenetic events.

One objective of epigenetic modifiers is to “reprogram”

cancer cells and facilitate their normal differentiation. In

addition, combination regimens that include an epige-

netic modifier may make cells more responsive to im-

munotherapies, prevent resistance to chemotherapy and

prevent lineage shifts. Epigenetic therapy is thought to
have several modes of anticancer action: i) increasing

expression of tumour suppressor genes and thereby

causing tumour cell death, ii) increasing differentiation

and thus reducing stemness and proliferation and iii)

enhancing the immune response (e.g. through enhanced

expression of immune related molecules such as MHC

class I on tumour cells, by inducing expression of

tumour antigens that the immune system can recognize,
or by a more direct effect on immune cells).
2.1. Scientific rationale for epigenetic modifying therapies

in paediatric leukaemia

Paediatric leukaemia frequently results from fusion

oncoproteins that involve transcription factors or

chromatin regulators (e.g. MLL-rearrangements, ETV6-

RUNX1, RUNXI1-RUNX1T1, PML-RARa) or other

abnormalities of transcription factors (e.g. PAX5,

NOTCH1, IKZF1) leading to an aberrant transcrip-
tional program and differentiation state. Moreover, the

success of therapies targeting PML-RARa in acute

promyelocytic leukaemia [10] and leukaemia with

IDH1/2 mutations in adults by inducing differentiation

[11] is a testament to the efficacy of therapeutically

modifying the epigenome. Homoeotic genes (including

Hox/Meis) are highly expressed in normal haemato-

poietic stem cells and subtypes of leukaemia and trans-
form haematopoietic cells. Homoeotic gene expression is

controlled by histone methylation [12]. MLL1

(KMT2A) is located at 11q23 and is consistently rear-

ranged in infant acute leukaemia (more than 70%)

[13,14] and in subtypes of acute myeloid leukaemia

(AML) [15]. MLL-rearranged acute lymphoblastic

leukaemia (ALL) has a particularly poor prognosis [13].

Leukaemic transformation is highly dependent on the
menin-MLL interaction as MLL1 maintains Hox gene

expression during development and is necessary for

appropriate haematopoietic development [16e18]. MLL

fusions perturb normal chromatin regulatory
complexes. The binding of menin to MLL1 leads to

upregulation of Hox gene transcription and leukaemia

in MLL-rearranged AML and ALL [16e24]. There are

a number of therapeutic opportunities for targeting

MLL-fusion-driven leukaemia by targeting enzymes

that are important for its activity (e.g. DOT1L and

CDK9) and through protein-protein interactions

(e.g. MLL-menin, BRD4-acetyl lysine and WDR5).
Inactivation of DOT1L leads to decreased MLL-AF9

target gene expression and inhibits leukaemia develop-

ment [25e29]. A phase I trial of a DOT1L inhibitor in

patients with MLL-rearranged leukaemia documented

minimal toxicity and inhibition of 60e70% of HOX/

MEIS expression, but also illustrated that responses,

when observed, may take time to occur and suggested

that meaningful antitumour activity would require deep
and consistent DOT1L inhibition and use in combina-

tion with other drugs [30,31]. Treatment of MLL-r cells

with a novel menin-MLL inhibitor, VTP-50469, leads to

loss of menin and DOT1L binding on chromatin, pro-

ducing substantial gene expression/protein changes and

dramatic responses in MLL-ALL PDX models [34].

NPM1-mutant leukaemia, a subtype in about 8% of

childhood AML16, is also sensitive to the menin-MLL
inhibitor, VTP-50469. Similar to MLL-r, treatment

with VTP-50469 causes loss of menin-chromatin binding

and suppression of the leukaemic gene transcription

program which leads to decreased MLL-associated gene

expression. Dramatic activity in preclinical models of

AML (MLL-rearranged and NPM1 mutant) have been

observed [32,33,34].
2.2. Scientific rationale for epigenetic modifiers in

paediatric central nervous system tumours

Evidence has clearly shown that there is an association

between epigenetic events and the development of

several paediatric brain tumours [35]. It is postulated

that the driver event is often a genetic abnormality

leading to major epigenetic disorders that preclude early

embryonic cells from undergoing normal differentiation,

and therefore maintain some stemness, which make cells
very prone to proliferation and malignancy. Specifically,

it has been demonstrated that some embryonal tumours

including medulloblastomas [36], embryonal tumour

with multilayered rosettes [35], atypical teratoid rhab-

doid tumours (ATRT) [35], paediatric high-grade gli-

oma and posterior fossa group A ependymomas [36] are

driven by a prenatal oncogenic event [37]. Furthermore,

removal of the driver mutation, the lysine-to-methionine
amino acid substitution on histone 3 variants

(K27MH3) in diffuse intrinsic pontine glioma (DIPG),

directly promotes differentiation, suggesting the effect of

a differentiation blockade can be reversed [38].
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In particular, DIPG and glioblastomas in children

and young adults are developmental defects and involve

H3K27M and histone 3.3 G34R/V mutations (H3.3

G34R/VM). There is a topographical and age associa-

tion between different histone mutations and tumour

anatomical location, with cortical tumours often having

G34 mutations while midline tumours mostly have

K27M mutations [39e44]. H3 K27M mutations are
specific for midline high grade gliomas and lead to

drastic decrease in the levels of H3K27 dimethylation

and tri-methylation. Notably, abnormalities in H3 tri-

methylation are also observed in posterior fossa group

A ependymomas, where overexpression of EZH inhibi-

tor protein (EZHIP) mimics the effects of K27M [45].

They can also be a consequence of mutations in the

SWI/SNF complex in ATRT and of KDM6A loss, an
H3K27me3 demethylase, in subgroups of medulloblas-

tomas. Thus, abnormal methylation of H3K27 is a

general mechanism involved in brain tumour oncogen-

esis, either through mutation in H3.3/H3.1 genes, over-

expression of EZHIP, or through pathogenic imbalance

of histone methyl transferases and histone demethylases

in other brain tumour entities.

These central nervous system tumours with histone
mutation are examples of stalled development through

defective spread of major chromatin marks e inhibition

of methyltransferase activity. K27-mutated histones

inhibit methyltransferases and promote loss of methyl-

ation and H3 K27M is essential for tumour maintenance

[46,47].

H3 K27M cells are more vulnerable to DNA deme-

thylation triggering viral mimicry. High-grade gliomas
defined by H3 K27M exhibit global loss of H3 K27

trimethylation and reciprocal gain of H3 K27 acetyla-

tion, respectively, shaping repressive and active chro-

matin landscapes. H3 K27ac is enriched at repeat

elements, resulting in their increased expression, which

in turn can be further amplified by DNA demethylation

and HDAC inhibitors providing a potential therapeutic

vulnerability and unique opportunities for successful
monotherapy [48].

There are additional somatic mutations specific to

tumour locations, for example, gain-of-function muta-

tions in ACVR1 occur in tumours of the pons mainly in

conjunction with H3.1 K27M, whereas FGFR1 muta-

tions/fusions can occur in thalamic tumours associated

with H3.3 K27M [42] and BRAFV600E with H3K27M

mutations [49]. In addition, in glioblastoma, the pres-
ence of H3F3A mutations frequently occur concurrently

with TP53 and with ATRX (a-thalassaemia/mental

retardation syndrome X-linked), and mutations/genetic

alterations; the latter are strongly associated with

alternative lengthening of telomeres and specific gene

expression profiles [39]. These additional somatic mu-

tations substantially expand potential therapeutic stra-

tegies and offer opportunities for rational combination
therapies which are critically needed, for example,
enhancer of zeste homologue 2 (EZH2) and ACVR1

inhibitors or EZH2 with PDGFRA or FGFR inhibitors.
2.3. Scientific rationale for epigenetic modifiers in

paediatric nonecentral nervous system solid tumours

Rhabdoid tumours are the paradigm of epigenetically
driven cancers, as SMARCB1 loss occurs in more than

in 90% of these tumours [50e52]. Other rare paediatric

SMARCB1-deficient cancers include undifferentiated

chordomas [53], renal medullary carcinomas [54],

epithelioid sarcomas [55], fibromyxoid chondrosarcoma

and myoepithelial carcinomas. Fusion-driven sarcomas

(e.g. Ewing’s sarcoma) and synovial sarcomas also act

through SWItch/Sucrose Non-Fermentable (SWI/SNF)
dysfunction [56]. Malignant peripheral nerve sheath

tumour (MPNST) is a rare and very aggressive cancer

which is driven by epigenetic events and in 90% there is

inactivation of SUZ12 or EED [57]. Genetic alterations

in epigenetic modifiers are obviously the key oncogenic

drivers in a few paediatric extracranial solid tumours,

such as rhabdoid tumour (inactivating mutations or

deletions in SMARCB1 and SMARCA4), synovial
sarcomas (translocation disrupting the BAF complex)

and MPNSTs [7] (deleterious genetic variants in the

polycomb repressive complex 2 [PRC2] complex); ge-

netic alterations are also recurrently reported in lower

proportion in other tumour types, where they are

thought to play oncogenic roles as “second actors”, such

as neuroblastoma (deletions of CHD5, mutations in the

BAF complex genes) [58,59], osteosarcoma (mutations
in ATRX and PRC2 genes) [60], Ewing’s sarcoma

(mutations in EZH2) [6] and Wilms’ tumour (alterations

in BCOR, CHD4, ARID1A) [61]. SMARCB1-deficient

cancers are good candidates for EZH2 inhibition [62],

but in most instances, EZH2 inhibition is not sufficient

and combinations are required. EZH2 inhibition may

also be effective in ATRX-mutated and MYCN-ampli-

fied neuroblastoma [63]. BET inhibitors need to be
further evaluated inMYCN-driven [64e66], as well as in

BRD3- and BRD4-fusion positive midline NUT carci-

nomas, and synergy with other drugs including PI3K

inhibitors in neuroblastoma and JAK2 inhibitors needs

to be investigated further [67,68].
3. Epigenetics and immunotherapy

Many epigenetic modifiers (DNMTs, HDAC, lysine-

specific demethylase 1 [LSD1], EZH2, SETDB1, G9a

and CDK9 inhibitors) induce viral mimicry in preclini-

cal studies [69]. Antitumour effects include upregulation
of endogenous retroviruses, activation of the viral

defence response and induction of cell death; this in turn

increases an adaptive immune response [70,71]. Viral

mimicry comprises DNA demethylation leading to

reactivation of repeats (endogenous retroviruses,



Key conclusions of the Paediatric Strategy Forum

� As most mutations in paediatric malignancies influence

chromatin-associated protein or transcription factors and

paediatric cancers are driven by developmental gene

expression programs, targeting epigenetic mechanisms,

chromatin-based control of gene expression, is predicted to

be a very important therapeutic approach in paediatrics,

which has in most circumstances yet to reach or extend

beyond clinical proof of concept, as many targets do not yet

have drugs available.

� Epigenetics is an evolving field, and new targets continue to

emerge.

� As there are many epigenetic targets on the RACE for

Children Act FDARA amendments to section 505B of the

FD&C Act Paediatric Molecular Target List, paediatric

development of epigenetic modifying drugs should be

considered early.

� Preclinical studies are critically needed to support early

clinical evaluation of epigenetic modifiers in paediatrics.

� A combination approach is critical for the majority of

epigenetic modifiers, either with other epigenetic modifiers or

molecularly targeted agents.

� Eight classes of medicinal products were discussed and pri-

oritised, based on the level of science to support early eval-

uation in children: inhibitors of menin, DOT1L, EZH2,

EED, BET, PRMT5 and LSD1 and retinoic acid receptor

alpha agonists.

� Menin inhibitors should be moved rapidly into paediatric

development, in view of their biological rationale, strong

preclinical activity and ability to fulfil an unmet clinical

need.

� A follow-up multistakeholder meeting focussing on BET

inhibitors will be held to define how to prioritise the multiple

compounds in clinical development that may be evaluated in

children and to prioritise subsets of childhood cancer for

initial testing.

� The importance of combinations of EZH2 inhibitors with

other products, for example EED inhibitors, was clearly

evident and it was proposed that early phase studies of

EZH2 inhibitors have a short monotherapy component

leading on to a combination phase.

� Other potential combinations include DOT1 and menin-

MLL inhibitors.

� New exciting approaches to target fusion proteins are by

“degraders” through proteolysis targeting chimeras (PRO-

TAC) and CRISPR-Cas9.

� An LSD1 inhibitor has demonstrated significant preclinical

activity in cell lines and mouse xenograft model of Ewing’s

sarcoma and the results of early phase study are awaited

with interest.

� It is envisioned that the discussions in the Forum will inform

academics and companies in their future plans and help

define the landscape for paediatric drug development of

epigenetic modifying compounds.
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dsRNA formation, pattern recognition activation
(MDA5/MAVS/IRF7), interferon response, which de-

creases cancer cell “fitness” and increases adaptive im-

mune response (CD8 T celledependent). The best
strategy to exploit viral mimicry in paediatric malig-

nancy needs to be determined. INFORM2 NivEnt is

combining HDAC inhibition to augment the response to

checkpoint inhibition aiming to create an immunogenic

tumour microenvironment through viral mimicry [72].

In addition to their potential antitumour effect,

epigenetic modifier therapies may also influence the

immune response. For instance, it has recently been
shown that MHC class I presentation is dependent on

PRC2-mediated silencing; therefore, EZH2 inhibition

may also act by increasing MHC class I presentation

and enhancing the T-cell antitumour response [73];

EZH2 inhibition could thereby act on the immune

escape of tumour cells to immunotherapy [74].
4. Future directions including targeting fusion proteins

A challenge for the future is to directly target abnormal

transcription factors in childhood cancers, a class of

proteins that are often critical disease drivers but are
notoriously difficult to target with small molecules. In

Ewing’s sarcoma, 80e90% of tumours have the EWS/

FLI1 fusion and 5e10%, the EWS/ERG fusion, and

there are few other recurrent mutations [75]. Accord-

ingly, EWS/FLI1 is a clear dependency in EWS/FLI1-

positive cell lines [76] and has been shown to recruit

chromatin regulators such as the BAF complex to con-

trol enhancer activation states. In the case of very poor
prognosis, group 3 medulloblastoma amplifications of

both c-Myc and the homoeobox transcription factor

OTX2 have been described. Furthermore, OTX2 is

overexpressed in most group-3 medulloblastomas and is

present at most active enhancers in these tumours,

suggesting that OTX2 itself or its downstream targets

may represent opportunities for therapeutic develop-

ment [77].
Numerous other paediatric solid tumours also

harbour transcription factor fusions in an otherwise

simple genomic background, such as alveolar rhabdo-

myosarcoma (PAX-FOXO1) and desmoplastic small

round cell tumour (EWS-WT1). An approach to target

fusion proteins is by “degraders” through natural “glue-

like” molecules. For example, studies have shown that

the mechanism by which immunomodulatory drugs,
such as thalidomide, lenalidomide and pomalidomide,

exert antitumour effects in multiple myeloma is by

binding to the CRL4(CRBN)E3 ubiquitin ligase and

redirecting its substrate specificity to bind and degrade

IKZF1 and IKZF3, essential transcription factors in

multiple myeloma [78,79]. Another degrader approach is

through the development of engineered molecules

known as proteolysis-targeting chimeras (PROTACs)
[80e82]. PROTACs are heterobifunctional molecules

comprising two distinct chemical moieties: a small

molecule that can bind to the target protein of interest,

linked to a second small molecule that binds to an E3



Table 1
Medicinal products discussed at the Paediatric Strategy Forum.

Class of

medicinal

product

Product Target Company

Menin inhibitor SNDX-5613 Menin Syndax

Pharmaceuticals

DOT1L

inhibitors

EPZ-5676

(pinometostat)

DOT1L Epizymea

EZH2 inhibitors EPZ-6438

(tazemetostat)

EZH2 Epizymea

PF-06821497 EZH2 Pfizer-

CPI-1205 EZH2 Constellation

Pharmaceuticals

CP0209 EZH2 Constellation

Pharmaceuticals

EED inhibitors MAK683 EDD Novartis

BET inhibitors GSK525762

(Molibresib/)

BET GlaxoSmithKline

CC-90010 BET Celgene

CC-95775 BET Celgene

BMS-986158 BET Bristol Myers Squibb

BI 894999 BET Boehringer

Ingelheim

International GmbH

CPI 0610 BET Constellation

Pharmaceuticals

AZD5153 BET AstraZeneca

LSD1 SP-2577

(Seclidemstat)

LSD1 Salarius

PRMT5

inhibitors

PF-06939999 PRMT5 Pfizer

GSK3326595 PRMT5 GlaxoSmithKline

Retinoic acid

receptor alpha

agonist

SY-1425 Retinoic acid

receptor

alpha

Syros

a Publicly available data reviewed by independent presenter.
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ligase, such as cereblon. Degraders act by bringing the

target protein (e.g. EWS-FLI1) and an E3 ligase com-

plex in close proximity, resulting in ubiquitination of the

target protein followed by proteasome-mediated degra-

dation. The first PROTACs targeting androgen and

oestrogen receptors have just entered clinical trials. This

approach has substantial potential as a therapeutic

strategy for fusion-driven paediatric cancers which
hitherto have been very challenging to target.

5. Relevance of the FDA Molecular target list for

epigenetic modifiers and paediatric investigation plans

There are many epigenetic targets on the FDA Paedi-

atric Molecular Targets List, including ACVR1, BRD3-

NUTM1, BRD4-NUTM1, CDK12, DDX3X, DOT1L,

ETS gene fusion, EWSR1-FLI1, EZH2, H3 G34R/V,

Hi3 K27M, IDH1 and IHD2, menin, MLL, MYC,

NFkappaB, NSD3-NUTM1, NTRK, PAX-FOXO1x
SYT-SSX, TERT, ZNF532-NUTM1, BCOR, MAGE-
A3, WT1 and YAP1.

In accordance with EMA Paediatric Regulation (EC)

No 1901/2006, all applications for marketing author-

isation for new medicines must have either a product-

specific waiver or a paediatric investigation plan (PIP)

agreed, which could also be deferred for studies planned

to be commenced or completed after the marketing

authorisation in adults. A PIP is a development plan
aimed at ensuring that the necessary data to support the

authorisation of a medicine for children are of high

quality and ethically researched. In terms of clinical

measures, a PIP must include studies generating data on

early development (dose finding and efficacy signal

seeking) as well as studies generating pivotal evidence.

There are currently (January 2020) only 6 published

PIPs agreed for medicines known to have an epigenetic
mechanism of action: decitabine, azacitidine, guadeci-

tabine, enasidenib, ivosidenib and molibresib. None of

these PIPs have yet been completed. Epigenetic modi-

fiers as a class are at a much earlier stage of development

even for adults and hence requirement for a PIP/paedi-

atric study plan has not been triggered yet for most of

the compounds.

6. New medicinal products

Eight classes of medicinal products were discussed at the

forum: menin, DOT1L, EZH2, EED, BET, protein
arginine methyltransferase 5 (PRMT5), LSD1 inhibitors

and RARa agonist (Table 1).

7. Discussion

The epigenetic landscape is an evolving field and is

highly relevant to many paediatric cancers as most al-

terations in paediatric tumours influence chromatin-
associated proteins or transcription factors and paedi-

atric cancers are strongly driven by developmental gene

expression [6,7]. Furthermore, paediatric malignancies

otherwise tend to have relatively simple genomes with

few mutations in readily druggable targets such as ki-

nases. Targeting epigenetic mechanisms is thus predicted
to be a very important therapeutic approach in paedi-

atric malignancies, but it has yet to achieve its full po-

tential. Many targets do not yet even have inhibitory

drugs available. There is a clear opportunity to exploit

the cellular vulnerability in select cell populations,

potentially restricted to specific windows of develop-

ment because of the epigenetic/microenvironmental

states. The challenge is to rationally screen for vulner-
abilities of specific oncogenic cellular states. The devel-

opment of epigenetic modifying drugs in paediatric

malignancies must be driven by scientific evidence to

provide the best therapeutic approaches for children

with cancer. Genome-wide characterisation of chro-

matin states in cancer, in addition to genome-wide

functional dependency screening with technologies

such as CRISPR-Cas9 [83], can uncover cellular
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dependencies on transcription factors and their target

genes that may be exploited for future cancer thera-

peutic approaches.

DNA methyltransferase inhibitors/hypomethylating

agents and HDAC inhibitors were not discussed in this

forum as they have been evaluated in paediatrics.

Recurrent mutations affecting IDH1/2, TET2 or

DNMT3a, in central nervous system tumours and
leukaemia, cause DNA methylation, resulting in aber-

rantly hypomethylated or hypermethylated genomes.

The use of inhibitors of DNA methyl transferases has

proved to be efficient in some myeloid leukaemias with a

hypermethylated genome. Beyond adult leukaemias

with mutations in DNA methylating enzymes, hyper-

methylated tumours were considered to be potential

good candidates for hypomethylating agents, such as
DNMT inhibitors. In children, for example, posterior

fossa ependymomas with cpG island methylator

phenotype (“CIMPþ“) [84] and SHH-ATRT [85] have

hypermethylated chromatin, suggesting a potential for

hypomethylating agents. However, the use of such me-

dicinal products in conventional doses and as single

agents in adult solid tumours has not met expectations

and has remained disappointing. Similarly, inhibition of
HDAC activity prompts tumour cells to enter apoptosis;

therefore, the utility of HDAC inhibitors for the treat-

ment of cancer has been investigated and several HDAC

inhibitors have been developed. Haematological malig-

nancies seem to be particularly sensitive, and vorinostat,

for instance, has been approved for the treatment of

cutaneous lymphomas. More recent classes of HDAC

inhibitors such as panobinostat have also shown
promising preclinical results in paediatric cancers such

as DIPG [86].

It was agreed by participants that as i) the biological

rationale for the menin-MLL interaction driving the

malignant transformation of MLL-rearranged or

NPM1 acute leukaemias is very strong, ii) there is sub-

stantial documented pre-clinical activity of menin

inhibitors and iii) there is a substantial unmet clinical
need as the prognosis of leukaemias with MLL1 rear-

rangement is poor with no approved therapies specif-

ically targeting MLL, the paediatric development of

menin inhibitors should be accelerated [33,34]. Early

phase trials of menin inhibitors should commence in

paediatrics now, in parallel to, and incorporating data

from, ongoing adult studies.

DOT1L mediates histone H3 K79 methylation in
MLL-rearranged leukaemia and is an important target.

Although trials to date of DOT1L inhibitors in paedi-

atrics have not produced substantial responses and the

need for a continuous infusion regimen has been logis-

tically challenging [31], the participants of the forum

believed further evaluation of DOT1L inhibitors was

warranted. The maximum tolerated dose was not ach-

ieved in previous early phase trials and further dose
escalation may result in an improved pharmacodynamic
effect or new molecules with better pharmacokinetic

properties might demonstrate improved efficacy.

Furthermore, these agents should potentially be com-

bined with menin-MLL inhibitors.

Activating enhancers of EZH2 mutations or aberra-

tions of the SWI/SNF complex (e.g. mutations or de-

letions of the subunits SMARCB1 or SMARCA4) can

lead to aberrant histone methylation, oncogenic trans-
formation, and a proliferative dependency on EZH2

activity. PRC2 is an epigenetic regulator primarily

responsible for trimethylation of histone H3 on lysine 27

(i.e. H3 K27me3). It is made up of 3 subunits: EED,

EZH2 and SUZ12. EZH2 catalyses the mono-

methylation, dimethylation and trimethylation of H3

K27. PRC2 is the only human protein methyltransferase

that can methylate H3K27, and H3K27 is thought to be
the primary substrate for PRC2. Abnormal trimethyla-

tion of H3K27 is tumourigenic in a broad spectrum of

human cancers; however, aggressive tumours appear less

sensitive to histone methyltransferase inhibition (at least

from EZH2 inhibition) than slower growing tumours

[87e91]. Patient selection by EZH2-activating muta-

tions identifies more responsive tumours, although in

follicular lymphoma; a subset of patients without acti-
vating mutations was also reported to respond. Unlike

HDAC and BRD proteins, which have more global ef-

fects, EZH2 typically regulates lineage-specific tran-

scription programs critical for cell identity. The EZH2

inhibitor tazemetostat recently received FDA-approval

for epithelioid sarcoma [55] and has had clinical activ-

ity in other BAF (SWI/SNF-A) mutant tumours such as

malignant rhabdoid tumour [52]. Based on data from a
number of research groups, there is also preclinical ev-

idence to support the exploration of EZH2 inhibitor

therapy in neuroblastoma.[58,59]

EED has a dual role of binding H3 K27me3: PRC2

recruitment and allosteric activation. There is a poten-

tial and interesting role for combining EZH2 and EED

inhibitors, although toxicity may be increased. Impor-

tantly, in K27M-mutant gliomas or EZHIP-over-
expressing posterior fossa group A ependymomas where

H3K27me3 levels are already very low, further decrease

in these levels through increased EZH [38,92] and/or

EED inhibition may result in tumour-specific cell death,

while normal cells with high H3K27me3 levels would be

relatively spared. It was proposed that early combina-

tion clinical trials of EZH2 inhibitors with EED in-

hibitors are designed and executed, with short
monotherapy phases of the EZH2 and EDD inhibitors

leading to evaluation of the combination.

BET inhibitors [64,65] have at least three areas of

interest in paediatric malignancies in i) NUT midline

tumours [93], ii) MYCN-amplified malignancies [94,95]

and iii) fusion-driven malignancies. There is however

controversy relating to their role in MYCN-amplified

malignancies, as it is uncertain if the drug concentra-
tions necessary to achieve a biological effect in vivo can
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be reached in clinical practice due to toxicity, notably

thrombocytopaenia [66,96] and there is limited evidence

for tumour-regressing activity. Furthermore, the pan-

BET inhibitors have been challenging to administer in

adults and monotherapy has resulted in modest anti-

tumour activity and class toxicity effects such as bone

marrow and gastrointestinal tract toxicity, transaminitis

and fatigue. The focus should be on BET inhibitors with
broader therapeutic index, which will make it possible to

use them with various combination partners and on

those BET inhibitors with blood-brain barrier pene-

trance allowing the targeting of paediatric central ner-

vous system malignancies. The situation is further

complicated by the presence of at least seven pan-BET

inhibitors in clinical development. There is interest in

second-generation BET inhibitors that, in contrast to
dual-bromodomain BET inhibitors that bind with

similar affinities to the first (BD1) and second (BD2)

bromodomains, show selective inhibition of the BD2

bromodomain [97]. The more limited impact of BD2-

selective inhibition on global transcription patterns

may lead to an enhanced therapeutic window for

selected cancers. The relevant paediatric population is

not large enough to accommodate pivotal clinical trials.
It was therefore proposed to hold a multistakeholder

follow-up meeting focussing on BET inhibitors to define

how to prioritise investigation of BET inhibitors in

children and evaluate their specific roles.

PRMT5 is another relevant potential target [98e101].

Early preclinical and human genetic data suggest that

PRMT5 inhibitors may have a role in the treatment of a

variety of tumour types including gliomas and lym-
phomas in children. First-generation PRMT5 inhibitors

are currently undergoing clinical testing. However, it

needs to be determined if these early generation com-

pounds have the appropriate antitumour, safety and

pharmacodynamic properties (e.g. ability to cross the

blood-brain barrier) for development in paediatric can-

cers. More adult clinical and preclinical data in paedi-

atrics are needed to support testing and development of
PRMT5 inhibitors in children.

LSD1 is an epigenetic eraser and demethylates

monomethylated and dimethylated H3K4 (activating

mark) and H3K9 (repressive mark) [102,103]. EWS/FLI

(11; 22) is the most common fusion in Ewing’s sarcoma

resulting in the repression of vital tumour suppressor

genes by the activity of LSD1. LSD1 is overexpressed in

60% of Ewing’s tumours [104,105] and is correlated with
poor overall survival [106]. LSD1 possesses not only

FAD-dependent enzymatic histone demethylase activity

through its amine oxidase domain but also interacts

with a myriad of proteins and protein complexes [103].

Studies suggest that catalytic inhibition of LSD1 is

insufficient to impact tumour cell viability and that

disruption of LSD1 protein-protein interactions may be

required in certain tumour types, such as Ewing’s sar-
coma [107]. Seclidemstat is a small molecule inhibitor of
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both LSD1’s catalytic and protein-rotein interaction

capacity and has significant preclinical activity in cell

lines and mouse xenograft models of Ewing’s sarcoma
[108]. The results of the ongoing early phase study

(NCT03600649) which is also open to recruitment for

adolescents aged 12 years and older are awaited with

interest.

SY-1425 (tamibarotene), a potent and selective

RARa agonist has been developed to overcome selec-

tivity and pharmacokinetic liabilities associated with all-

trans retinoic acids [109]. A subset of non-APL AML
patients (30%) have an alteration in the regulatory re-

gion of the genome that drives increased RARA

expression and are RARA-positive by a novel blood-

based biomarker test that predicts sensitivity to SY-
1425 [109,110]. SY-1425 is being developed in combi-

nation with azacitidine in RARA-positive adult AML.

Early results demonstrated high complete response rates

and a rapid onset of clinical responses in RARA-

positive newly diagnosed unfit AML [111]. The high

clinical unmet need, strong preclinical rationale and

favourable safety profile in adults supports development

in RARA-positive paediatric AML, where a proportion
of paediatric AML is RARA-positive. SY-1425 has

antiproliferative, proapoptotic and on-target prodiffer-

entiation effects in RARA-positive paediatric AML

in vitro and marked antileukaemia activity in vivo [111].

In view of the rarity of the population, it was proposed

to approach paediatric development through collabo-

ration with the PedAL/EUPAL [112].

A combination approach is important for most
epigenetic modifiers, either with other epigenetic modi-

fiers (e.g. EZH2 and EED) or molecular targeted agents

(ACVR1, PDGFRA or FGFR inhibitors) or immuno-

therapies, and exploration of the optimum combination

should be underpinned by extensive preclinical research

in advance of clinical translation. Early phase clinical

studies should be designed with this perspective in mind

and have a short monotherapy component leading on to
a combination phase in the same trial.

Preclinical studies are needed to support early clinical

evaluation of epigenetic modifiers in paediatrics, and

this theme was consistent for all medicinal products

discussed. The extent and depth of the preclinical studies

depend on the strength of the underlying biological

hypothesis. For example, if the target is a well-defined

oncogenic driver, then less preclinical evidence is
required. As a combination approach is likely to be

required to achieve meaningful antitumour activity for

the vast majority of epigenetic modifiers, it is important

that preclinical studies investigate the utility of epige-

netic modifiers with other drugs. There remains a

shortage of facilities for these preclinical investigations;

hopefully, the international preclinical testing initiatives

(Innovative Therapies for Children with Cancer Paedi-
atric Preclinical Proof-of-concept Platform [ITCC-P4]

[113], National Cancer Institute’s Paediatric Preclinical

Testing Consortium [PPTC] [114] and the Foundation

for the National Institutes of Health [FNIH]) [115]will

fulfil these requirements.

It is anticipated that this Paediatric Strategy Forum,

which was held early in the paediatric development of

epigenetic modifiers in children, when most companies
had not yet clarified their plans for paediatric develop-

ment and before reaching agreement with regulatory

authorities on these plans, will be beneficial. It is envi-

sioned that the discussions in the forum will inform

academics regarding the design of clinical investigation

strategies and companies in their future plans and help

to define the landscape for paediatric drug development

of epigenetic modifiers.
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8. Conclusion

The epigenetic landscape is an evolving field and is

highly relevant to many paediatric cancers; the biology

is innovative and new targets are frequently emerging.

Targeting epigenetic mechanisms is potentially a very

important therapeutic approach in paediatric malig-
nancy, one that in most circumstances has yet to reach

or extend beyond proof of concept. One reason for this

is that many targets do not yet have drugs available. As

there are many epigenetic targets on the FDA’s Rele-

vant Paediatric Molecular Target List, the new regula-

tory landscape should benefit children with malignancy.

A combination approach is important for many epige-

netic modifiers and exploration of the optimum combi-
nation will need to be supported by extensive preclinical

research. Menin inhibitors should be moved rapidly into

paediatric development, in light of their biological

rationale, strong preclinical activity and ability to fulfil

an unmet clinical need. A follow-up multistakeholder

meeting focussing on BET inhibitors will be held to

define how to prioritise the multiple compounds that

might be evaluated in children and to determine which
molecular subtypes to prioritise for testing. As epige-

netic targeted drugs are early in development, there is a

major opportunity to define the landscape of epigenetic

modifiers to develop efficient and optimal plans for their

evaluation in children and adolescents.
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