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ABSTRACT

Conventional approaches to recommendation often do not explicitly

take into account information on previously shown recommenda-

tions and their recorded responses. One reason is that, since we do

not know the outcome of actions the system did not take, learn-

ing directly from such logs is not a straightforward task. Several

methods for off-policy or counterfactual learning have been pro-

posed in recent years, but their efficacy for the recommendation

task remains understudied. Due to the limitations of offline datasets

and the lack of access of most academic researchers to online ex-

periments, this is a non-trivial task. Simulation environments can

provide a reproducible solution to this problem.

In this work, we conduct the first broad empirical study of coun-

terfactual learning methods for recommendation, in a simulated

environment. We consider various different policy-based methods

that make use of the Inverse Propensity Score (IPS) to perform

Counterfactual Risk Minimisation (CRM), as well as value-based

methods based onMaximum Likelihood Estimation (MLE).We high-

light how existing off-policy learning methods fail due to stochastic

and sparse rewards, and show how a logarithmic variant of the

traditional IPS estimator can solve these issues, whilst convexifying

the objective and thus facilitating its optimisation. Additionally,

under certain assumptions the value- and policy-based methods

have an identical parameterisation, allowing us to propose a new

model that combines both the MLE and CRM objectives. Extensive

experiments show that this łDual Banditž approach achieves state-

of-the-art performance in a wide range of scenarios, for varying

logging policies, action spaces and training sample sizes.
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1 INTRODUCTION

Traditional approaches to recommendation are often based on some

form of collaborative filtering on the user-item matrix containing

organic user-item interactions [24, 38, 42]. These are generally user-

item-timestamp triplets, indicating item purchases, clicks, views, et

cetera. From rating- to next-item-prediction, such methods have

known widespread success [41]. Generally, they are oblivious to

whether actual recommendations were being shown to users in the

data they learn from. In a parallel research direction, computational
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advertising applications often frame recommendation as an optimal

decision-making problem, where the learning step aims to build an

explicit reward model for all (user, recommendation)-pairs and the

inference step chooses the best recommendation for the user given

the learnt model. Existing work on modelling the probability of

clicking on recommendations falls into this class, and publications

on the subject traditionally originate from advertising research

labs (see [28] for an overview). These approaches focus on bandit

feedback: interactions between users and recommendations being

shown. Therefore, this data is conditioned on the policy describing

the existing recommender system.

For both existing frameworks, the majority of new recommen-

dation algorithms presented in academic papers are evaluated on

an offline dataset of logged user-item interactions, with results re-

ported for some offline ranking metric. Recent work has shown

repeatedly that offline evaluation results tend to diverge from online

performance [8, 14, 35]. Additionally, existing offline evaluation

results are often even contradictory over different runs and datasets,

or extremely hard to reproduce in a robust manner [5, 32]. From a

practical or industrial point of view, a need arises for offline evalua-

tion methods that are robust, reproducible and closely related with

the actual online objectives of the deployed recommender system.

The reinforcement learning literature has long dealt with similar

issues. Based on logged data from a certain policy (recommender),

we want to predict what the performance would have been if an-

other policy had been deployed. Counterfactual estimators, often

based on importance sampling [30], are at the heart of this type of

evaluation. Recent work has shown that they can accurately reflect

online performance in recommendation use-cases [9, 10].

We believe that the main reason why the value of bandit feed-

back is not further explored in most recommendation research, lies

in the datasets we use: the vast majority of available offline datasets

simply do not include information about the recommendations that

were shown, and whether the user interacted with them. Naturally,

we cannot learn from what we do not know. Some datasets contain-

ing logs of historical recommendations and their outcomes do exist,

mostly for the specific task of click-through-rate (CTR) prediction.

Nevertheless, they either do not include propensity scores produced

through adding randomisation at recommendation time, which is

often a requirement for unbiased learning and evaluation [2, 9], or

the variance induced by the propensities prohibits effective learn-

ing and evaluation [20]. Recently, several simulation environments

have been proposed for the recommendation setting, allowing on-

line experiments such as A/B-tests to be simulated [12, 34]. They

enable us to explore the use of bandit feedback for learning and

evaluation of recommender systems in a reproducible manner, and

have opened up promising new research directions. The value of

such simulation frameworks has steadily gained more attention in

recent research [16, 29, 36].
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Moving on from evaluation, recent work [2, 15, 17, 27, 47, 48]

explores the problem of learning a new and optimal recommenda-

tion policy based on a dataset consisting of logged bandit feedback.

However, real-world recommender systems tend to differ from the

assumptions made in the existing work that studies the use of ban-

dit feedback for the problem off-policy learning or Counterfactual

Risk Minimization (CRM), in terms of the stochasticity and sparsity

of rewards. Furthermore, the size of the action space in real-world

scenarios makes the choice of problem formulations that result in

convex objectives very attractive (due to the existence of mature

fast large-scale optimisation algorithms, such as L-BFGS [19]). The

technical contributions we present in this paper are the following:

(1) Analysis of the Convex Policy Lower-bound for Stochastic Re-

wards. We show where existing off-policy learning approaches fall

short, especially due to the inherent stochasticity and sparsity of

the reward process. We introduce a logarithmic variant of the tradi-

tional Inverse Propensity Scoring (IPS) estimator that allows us to

map the objective to a convex problem, yielding a weighted multi-

nomial log-likelihood that lower bounds the original. Recent related

work has introduced a similar objective as a Policy Improvement

Lower-bound (PIL) and a variance reduction technique [27]; we

focus on its practicality in stochastic environments and empirically

show how it can improve performance. As the logarithmic trans-

formation convexifies the objective, it facilitates its optimisation.

(2) Joint Policy-Value Optimisation. By presenting value- and

policy-based methods in a common framework, we show that they

have an identical parameterisation under certain assumptions. This

allows us to propose Dual Bandit (DB), a hybrid learning objective

that combines both Maximum Likelihood Estimation (MLE) and

Counterfactual Risk Minimisation (CRM) without introducing addi-

tional parameters, effectively unifying the value- and policy-based

families. We show how it effectively alleviates well-known prob-

lems such as propensity overfitting. Moreover, standard off-policy

learning methods do not take into account negative evidence (i.e.

non-clicked recommendations), which is solved through the value-

based cross-entropy term. Finally, we show that the DB approach

achieves state-of-the-art performance in a wide range of recommen-

dation settings, for varying logging policies, training sample and

action space sizes. The most interesting and realistic results deal

with large action spaces, finite samples, and limited randomisation,

which is exactly where the Dual Bandit shows its superiority.

(3) Reproducible Simulation Study. The empirical performance of

counterfactual learning methods has mainly been studied in multi-

class [17, 27, 47] and multi-label [48] classification environments

where the bandit setting is simulated. Recent work that focuses

on the recommendation use-case adopts a supervised-to-bandit

conversion on existing datasets and custom simulated datasets

that assume deterministic rewards [26], or shows empirical success

through live experiments [4]. We conduct the first broad simulation

study of both value-based methods based on MLE, and policy-based

methods that rely on IPS to perform CRM in stochastic recom-

mendation environments. In order to aid in the reproducibility of

the research presented in our work, we adopt the RecoGym envi-

ronment in our experiments [34]. All source code is available at

https://github.com/olivierjeunen/dual-bandit-kdd-2020.

2 BACKGROUND AND RELATED WORK

In what follows, we present an overview of themethods we consider

in our comparison. As we focus on so-called bandit feedback, these

methods make use of action-reward pairs: recommendations that

were shown and whether they were interacted with. We discern

two broad families: value- and policy-based methods. The first aims

to model the reward a certain action will yield, relying on classical

supervised learning approaches [11]. The latter directly models

the actions that should be taken in order to maximise the total

cumulative reward a policy will collect. This line of research is

more closely related to the reinforcement learning (RL) field [45].

Value-based models and their variations are often referred to as

Q-learning in the RL community.

We assume to have access to a dataset of logged bandit feedback

D, consisting of𝑁 tuples (x𝑖 , 𝑎𝑖 , 𝑝𝑖 , 𝑐𝑖 ). This data has been collected

under some stochastic logging policy 𝜋0 that describes a probability

distribution over actions (recommendations), conditioned on some

context. Here, x𝑖 ∈ R
𝑛 describes the user state or context vector.

Although this vector can be of arbitrary dimension, we will assume

it to be a vector of length 𝑛 containing counts of historical organic

interactions with items for fair comparison and simplicity. 𝑎𝑖 ∈

{1, 2, . . . , 𝑛} is a scalar identifier representing the action that was

taken (i.e. the item that was shown when the system was presented

with context x𝑖 ), we denote the corresponding one-hot encoded

vector as a𝑖 . The probability with which that action was taken

by the logging policy is denoted by 𝑝𝑖 ≡ 𝜋0 (𝑎𝑖 |x𝑖 ) ∈ [0, 1]. The

observed reward (whether the user interacted with the presented

recommendation) is represented as 𝑐𝑖 ∈ {0, 1}.

2.1 Value-based Approaches

The most straightforward method is to first perform statistical

inference through Maximum Likelihood Estimation (MLE) and

then do decision making in a separate step, bypassing the em-

pirical/counterfactual risk minimisation principles. If the reward is

a binary variable, then a logistic regression model is appropriate, as

shown in Equation 1. This formulation can be naturally extended

to include more advanced likelihood-based models such as deep

neural networks.

𝑃 (𝐶 = 1|x, 𝑎, 𝜷) = 𝜎 ((x ⊗ a)⊺ vec(𝜷) + 𝑏) = 𝜎 (x⊺𝜷 ·,𝑎 + 𝑏) (1)

Here, 𝜷 ∈ R𝑛×𝑛 are the model parameters where 𝜷 ·,𝑎 are those

corresponding to predictions for action𝑎.𝜎 (·) is the logistic sigmoid,

⊗ is the Kronecker product and vec(·) vectorises the matrix into a

column vector.1 The intercept or bias-term is denoted by 𝑏. As it

is a single constant scalar for all context-action pairs, it does not

have any impact on the ranking of competing actions or the actual

decision making process. Nevertheless, it positively impacts the

quality of the fitted model [11]. We ensure fair comparison with the

other approaches: all consist of exactly 𝑛2 parameters that impact

the resulting decision rule (excluding hyper-parameters, that is).

Optimising the binary cross-entropy or negative log-likelihood of

this model with respect to a historical dataset yields the objective

shown in Equation 2.

1We implement the rightmost formula as it is equivalent to, but computationally
significantly less expensive than explicitly computing the Kronecker product.
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Family Method 𝑃 (𝐶 |𝑥, 𝑎) 𝑃 (𝐴|𝑥) Neg. IPS SVP IML Equivariant Ref.

Value learning
Likelihood ✓ ✓ [11]

IPS Likelihood ✓ ✓ ✓ [43]

Policy learning

Contextual Bandit ✓ ✓ [2]

POEM ✓ ✓ ✓ [47]

BanditNet ✓ ∼ ✓ ✓ [17]

PIL-IML ✓ ✓ ✓ [27]

Joint learning Dual Bandit ✓ ✓ ✓ ✓ This work.

Table 1: An overview of the methods we discuss in this paper, and how they relate to one another in terms of the target

they optimise and whether they exploit negative samples, make use of Inverse Propensity Scoring (IPS), Sample Variance

Penalisation (SVP), an Imitation Learning (IML) term, or whether the approach is invariant to translations of the reward.

𝜷∗
= argmax

𝜷

𝑁∑

𝑖=1

𝑐𝑖 ln
(
𝜎 (x

⊺

𝑖 𝜷 ·,𝑎𝑖 + 𝑏)
)

+(1 − 𝑐𝑖 ) ln
(
1 − 𝜎 (x

⊺

𝑖 𝜷 ·,𝑎𝑖 + 𝑏)
) (2)

Once the model parameters have been fitted, we can obtain a

greedy decision for a given context x by performing the action

𝑎∗ with the highest probability of leading to a positive reward.

Naturally, this requires 𝑛 model evaluations followed by an arg-

max operation:

𝑎∗ = argmax
𝑎

𝑃 (𝐶 = 1|x, 𝑎, 𝜷) = argmax
𝑎

x
⊺𝜷 ·,𝑎 . (3)

We often fit simpler (for example, linear) models to capture more

complex relationships. When doing this, the model underfits the

data as it is unable to capture the true relationship. When a standard

MLE approach is used, the error due to the underfitting will be

minimised around common occurrences of (x, 𝑎). If the distribution

of (x, 𝑎)-pairs in the historical training data differs from those in

the test set, this leads to a phenomenon widely known as covariate

shift [39]. As we generally wish to learn a new policy that improves

upon the logging policy, it will take different actions by definition,

and covariate shift is inevitable.

One general solution to this issue is to make use of importance

sampling [30], and reweight samples to adjust for the difference in

the distribution of past actions (as per the logging policy) and future

actions (which we will evaluate uniformly in this case, as that is

exactly what we dowith the argmax-operation over actions in Eq. 3).

Practically, this is achieved by reweighting samples (x𝑖 , 𝑎𝑖 , 𝑐𝑖 ) in

Equation 2 by the inverse propensity score of the logging policy

during maximum likelihood estimation:𝑤𝑖 =
1

𝜋0 (𝑎𝑖 |x𝑖 )
.

Value-based methods estimate the likely reward for each action.

Due to the logging policy, the quality of this estimate can vary

dramatically. The estimation uncertainty will be low for actions

performed often by the logging policy, but poor otherwise. As the

action is selected by selecting the maximum value, the policy may

be disrupted badly by a single erroneously optimistic estimate; a

phenomenon known as optimiser’s curse [40]. In recommender

systems, the action space can be large and the size of the training

sample and amount of randomisation are often limited. Because of

this, these problems are very tangible in a real-world setting.

2.2 Policy-based Approaches

Value-based methods model the probability of a click (value), given

a context-action pair. Policy-based methods, on the other hand,

bypass this step and directly map a context to a decision rule.

Contextual bandits are one example of such a method, directly

modelling the probability of an action, conditioned on a context

vector. This is shown in Equation 4, where 𝜽 ∈ R𝑛×𝑛 are the model

parameters.

𝑃 (𝐴 = 𝑎 |x, 𝜽 ) = 𝜋𝜽 (𝑎 |x) =
exp(x⊺𝜽 ·,𝑎)∑𝑛

𝑗=1 exp(x
⊺𝜽 ·,𝑎 𝑗

)
= [softmax(x⊺𝜽 )]𝑎

(4)

Consistent with the work of Bottou et al. [2] and Swaminathan

and Joachims [47], this formulation focuses on learning policies

that are parametrised as exponential models (i.e. going through

a softmax). The goal at hand is to learn a policy that chooses the

optimal action given a context x, i.e. the policy that maximises the

reward we would have gotten when 𝜋𝜽 was deployed instead of

the logging policy 𝜋0. In our setting, this reward can be interpreted

as the absolute number of clicks. Equation 5 formalises this coun-

terfactual objective, which can be optimised directly. Essentially,

contextual bandits try to replay decisions that worked in the train-

ing sample. From a learned stochastic policy 𝜋𝜽 , a deterministic

decision rule can easily be deduced as shown in Equation 6.

𝜽 ∗ = argmax
𝜽

𝑁∑

𝑖=1

𝑐𝑖
𝜋𝜽 (𝑎𝑖 |xi)

𝜋0 (𝑎𝑖 |xi)
(5)

𝑎∗ = argmax
𝑎

𝑃 (𝐴 = 𝑎 |x, 𝜽 ) = argmax
𝑎

x
⊺𝜽 ·,𝑎 (6)

Note that if we let 𝜷 ≡ 𝜽 , the decision rule in Equation 3 is iden-

tical to the decision rule in Equation 6. Although the optimisation

problems given in Equations 1 and 4 are quite different: maximum

likelihood ignores the IPS score, and the contextual bandit ignores

the non-clicks. The likelihood-based approach attempts to model

the click for every action, whereas the contextual bandit simply

attempts to identify the best action. This common parameterisation

will motivate the łDual Banditž method we present later in this

work, a principled approach to jointly optimise these two objectives.

Inverse Propensity Scoring (IPS) is a powerful technique that

allows for counterfactual optimisation. When the target policy

𝜋𝜽 and the logging policy 𝜋0 diverge, however, IPS-based estima-

tors tend to have very high variance and be unreliable for policy
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learning. Several extensions to the classical estimator have been

proposed, trading variance for bias. Clipping the propensity ratios

to a maximum value or self-normalising them are common prac-

tices. The most notable recent extensions to this formulation are

POEM [47], BanditNet [17] and PIL-IML [27]. They respectively

include additional terms for sample variance penalisation (SVP),

self-normalisation (SNIPS) or imitation learning (IML). Conceptu-

ally, they all restrict the newly learned policy to not stray too far

from the logging policy, as the uncertainty on rare actions brings

along high variance on the performance. Originally introduced

by Swaminathan and Joachims, we refer to these approaches as

performing some form of Counterfactual Risk Minimisation (CRM).

Recent related work has linked IPS techniques to policy gra-

dient methods such as REINFORCE [50]. These approaches aim

to maximise the expected cumulative reward over a certain time

horizon, and were extended to handle specific cases such as top-𝐾

recommendation [4] and two-stage recommendation pipelines [26].

For the binary, immediate reward use-case we tackle in this paper,

maximising the expected reward via REINFORCE yields the same

result (that is the same policy) as optimising the IPS objective given

in Eq. 5. Ma et al. draw further connections between their objec-

tive and natural policy gradients; we refer the interested reader to

Appendix E in their work [27]. Table 1 shows an overview of the

discussed methods.

Several additional counterfactual estimators have been proposed

in the literature, such as the Direct Method (DM) and Doubly Robust

(DR) [6], More Robust Doubly Robust (MRDR) [7], Continuous

Adaptive Blending (CAB) [44] and others [49, 52]. These works

either focus on evaluation instead of learning (as they are non-

differentiable), or they include an additional regression model that

estimates the reward 𝛿 (x, 𝑎) for a given context-action pair. As

such, they are out of scope for this study. Additionally, contextual

and multi-arm bandit approaches with online model updates have

been thoroughly studied. Some notable approaches are [3, 22, 23].

In contrast with these methods, the models we discuss in this work

are entirely off-policy and lack any interactive component.

As we will discuss in depth in the following section, recom-

mender system logs are stochastic in nature. Probabilistic models

propose a way of naturally handling uncertainty. When sophisti-

cated priors are used, Bayesian methods can perform well in mod-

elling complex relationships with small samples. For the related

recommendation task of rating prediction, Bayesian approaches

have recently been shown to robustly obtain state-of-the-art perfor-

mance [33, 37]. In the case of top-𝑁 recommendation from organic

user-item interaction data, recent variational methods consistently

attain impressive results as well [5, 24, 38]. Sakhi et al. propose a

probabilistic approach to combine both organic and bandit signals

in order to improve the estimation of recommendation quality in a

Bayesian latent factor model [36]. Further exploring such models

and their applicability in off-policy recommendation settings is a

promising avenue for future research.

3 LEARNING FOR RECOMMENDATION

The performance of most methods discussed in this work has been

empirically validated for multi-class [17, 27, 47] or multi-label [48]

classification environments, which simulate a łBatch-Learning from

Bandit-Feedbackž (BLBF) context. The policy performs an action

(guesses a class or label), and observes the reward (the guess is either

correct or incorrect). Other work has adopted these supervised-to-

bandit conversions to mimic the recommendation task as well [26].

Assuming we have more than one item in the catalogue that is of

interest to the user, the recommendation use-case is indeed most

closely aligned with the multi-label setup. Several key differences

remain, which we tackle throughout the rest of this section:

(1) Stochastic vs Deterministic Rewards. Previous work has always

assumed deterministic rewards: if a model makes decision 𝑎 when

presented with context x, the observed reward 𝑐 will always be

exactly the same. This assumption does not hold in real-world

recommendation settings: users may click (or conversely, refuse to

click) on shown recommendations for any number of reasons. As it

is intractable for all factors on which the reward 𝑐 is dependent to

be included in the context-vector x, the resulting model will always

be misspecified, and rewards stochastic as a result.

(2) Sparse Rewards and Low Treatment Effects. CTRmeasurements

in real-world systems can be notoriously low, skewing the estimates.

When the training logD contains tuples for the same context-action

pairs with different observed rewards, however, the information

embedded in the clicks is often more valuable than the non-clicks,

although the latter will make up the vast majority of the logged

samples. Furthermore, the difference between the empirical best

and second best arms might not always be large. As such, solely

focusing on the empirically best action is not an optimal strategy.

(3) Large Action Spaces. Recommender systems typically deal

with vast item catalogues. Previous experimental validation of these

methods has focused on setups where the number of actions (classes,

labels, documents, . . . ) is at most a few dozen. Their practicality in

very large action spaces remains understudied.

3.1 Logarithmic IPS for Stochastic Rewards

Rationally, we could assume the true reward to be drawn from some

Bernoulli-distribution with parameter 𝑞 relative to the relevance of

the taken action; but relevant actions will not always lead to clicks,

and a click does not necessarily imply that the performed action

was the most relevant option. Estimating this parameter 𝑞 is an

indubitably harder task than the deterministic case, requiring larger

training samples and leaving us vulnerable for common pitfalls such

as the optimiser’s curse [40].

The counterfactual objective function in Equation 5 describes

an empirical IPS-estimate of the reward that 𝜋𝜽 would incur based

on data collected under 𝜋0, given a historical dataset D. We denote

this estimator as 𝑅IPS (𝜋𝜽 ,D), and drop parentheses and arguments

when they are clear from context.

𝑅IPS (𝜋𝜽 ,D) =
1

𝑁

𝑁∑

𝑖=1

𝑐𝑖
𝜋𝜽 (𝑎𝑖 |x𝑖 )

𝜋0 (𝑎𝑖 |x𝑖 )
(7)

This objective leads to a łwinner takes it allž scenario, where the

optimal policy puts all its mass on the actions that obtained the

highest empirical reward in the finite training sample. We argue

that this can lead to sub-optimal policies in the stochastic scenario,

as positive samples for the empirically łsecond bestž actions are

simply ignored. This behaviour has recently been studied in top-𝐾

recommendation scenarios [4]; we focus on top-1 recommendation.
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In supervised learning, it is common practice to optimise a sur-

rogate loss function instead of a direct metric (hard classification

error, for example). Through Jensen’s inequality, we can derive a

lower bound of the traditional IPS estimator (𝑅IPS) that uses a loga-

rithmic transform on the likelihood.2 Intuitively, this is equivalent

to optimising the log-likelihood of a multinomial logistic regression

model where each observation has been weighted by𝑤𝑖 =
𝑐𝑖

𝜋0 (𝑎𝑖 |x𝑖 )
.

We refer to this logarithmic estimator as 𝑅ln(IPS) and present it in

Equation 8. Recent related work introduced this equivalently as a

policy improvement lower-bound [25, 27]. These works primarily

focus on model misspecification and multiple iterations of logging

and learning, whereas we study the impact of the transformation

in stochastic environments.3

𝑅ln(IPS) (𝜋𝜽 ,D) =
1

𝑁

𝑁∑

𝑖=1

𝑐𝑖
ln(𝜋𝜽 (𝑎𝑖 |x𝑖 ))

𝜋0 (𝑎𝑖 |x𝑖 )
(8)

In combination with the exponential parameterisation in Equa-

tion 4, this logarithmic objective leads to a proportional allocation

of probability mass. It can be readily plugged into existing policy

learning methods described in Section 2. As it forces the model to

include positive samples for all actions instead of the empirically

best action only (lim𝑃→0 ln(𝑃) = −∞), we expect and empirically

observe that this leads to (1) less overfitting, and (2) more robust

performance. Furthermore, computations in the log-space improve

the numerical stability of the optimisation procedure. Negative log-

likelihood or cross-entropy (as also used in Equation 2 and widely

adopted in classification and deep learning) is commonly used in

these settings, as it transforms the objective to be convex, and thus

easy to optimise at large scale.

In policy gradient methods such as REINFORCE, a common way

to optimise the objective consists of performing a gradient step

involving the logarithm of the policy [46]. Also called the łlog-trickž

or łlog derivative trickž, this technique is by nature very different

from ours. Indeed, the łlog derivative trickž is a way to compute

an unbiased estimate of the gradient of the expected reward under

the new policy. Hence, using this trick does not change the opti-

mised objective. In our case, the logarithmic transform changes the

objective and moves the global optimum. Figure 1 visualises how

this transforms the objective when the reward is stochastic, or the

model misspecified.

3.2 Joint Policy-Value Optimisation

Policy-based approaches can suffer from so-called propensity over-

fitting, where the learning objective is trivially optimised bymissing

the observed data [48]. To see this, suppose we would transform

Eq. 5 to a minimisation of non-clicks instead of a maximisation of

clicks. The result of this transformation would be that putting 0

probability mass on all observed 𝜋0 (𝑎 |x) trivially minimises the

objective, although it would clearly not lead to better generalisa-

tion capabilities. Indeed, learning to avoid actions does not imply

learning which actions to take. These types of issues are generally

avoided through the use of a SNIPS estimator, which includes a

2A derivation can be found in the reproducibility appendix.
3See [27] and its appendices to link the logarithmic estimator to existing variance
reduction techniques such as capped IPS, SVP, SNIPS, and others.
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Figure 1: 𝑅ln(IPS) penalises the learned policy for missing

actions that led to positive rewards in the training sample.

Maximising this empirical estimator for a toy example train-

ing sample with 2 clicks on action 𝑎 and 1 click on action

𝑏 leads to more proportional allocation compared to 𝑅IPS
(assuming a uniform 𝜋0). For deterministic multi-class or

multi-label settings, both estimators share optima.

multiplicative control variate in the IPS estimator that heavily pe-

nalises this behaviour. BanditNet optimises a Lagrangian form of

this estimator and achieved promising results in a deterministic

multi-class bandit setting [17]. By introducing translations to the

binary reward, it opens up opportunities for learning from nega-

tive samples; as can be seen from Eq. 5, probabilities for 0-reward

actions (𝑐𝑖 = 0) have no direct impact on the objective. However, as

the optimal Lagrange multiplier𝛾 could be 0, this is not a guarantee;

which is exactly what we observed in our empirical results.

Another way of limiting the issue of propensity overfitting is by

introducing an IML term to the objective, as done in PIL-IML [27].

By penalising the objective with the Kullback-Leibler divergence

between the learned and logging policies, it effectively favours

those policies that imitate 𝜋0. In most of their experimental setup,

𝜋0 is a value-based linear model. Therefore, 𝜋0 holds information

on the non-clicked training samples and learning to imitate 𝜋0
indirectly transfers this signal to the learned policy. It is clear to see

that the quality of the policy learned through such an optimisation

procedure is highly dependent on the quality of 𝜋0, and that it

might have adverse effects for highly skewed logging policies (e.g.

an 𝜖-greedy based approach).

As pointed out in Section 2, value- and policy-based methods can

be formulated such that they have an identical parameterisation

(Equations 6 and 3). This allows us to present a combinedMLE-CRM

objective that optimises a weighted average of the two. Due to the

softmax-formulation from CRM, the model will be less prone to

over-estimate under-explored actions. The logistic likelihood term

can be seen as a regularisation term that ensures the dot-product be-

tween x and 𝜽 ·,𝑎 is low for un-clicked (x, 𝑎) samples in the training

data, information that standard policy-based methods fail to exploit.

We call this joint objective łDual Banditž, as it provides a principled

way to combine the best of the value- and policy-based worlds,

whilst alleviating their individual weaknesses. Equation 9 shows

the novel objective, where 0 ≤ 𝛼 ≤ 1 is a hyperparameter that

controls the influence of the log-likelihood on the final estimate.

As such, both the contextual bandit and likelihood approaches can

be seen as special cases of the dual bandit model, for 𝛼 = 0 and

𝛼 = 1 respectively. The contextual bandit aims to learn a probability
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distribution over 𝑛 items, and its objective can be interpreted as

the expected number of clicks under the new policy. The likelihood

approach aims to learn whether an action led to a click, where the

objective reflects whether the training sample supports the model

parameters. Due to this disparity, 𝛼 will act as a rescaling factor

on top of a blending parameter. Keeping this in mind, higher val-

ues of 𝛼 don’t map linearly to higher importance of the likelihood

approach compared with the contextual bandit.

𝜽 ∗ = argmax
𝜽

(1 − 𝛼)

(
𝑁∑

𝑖=1

𝑐𝑖
𝑃 (𝐴 = 𝑎𝑖 |x𝑖 , 𝜽 )

𝜋0 (𝑎𝑖 |x𝑖 )

)

+𝛼

(
𝑁∑

𝑖=1

𝑐𝑖 ln (𝑃 (𝐶 = 1|x𝑖 , 𝑎𝑖 , 𝜽 )) + (1 − 𝑐𝑖 ) ln (1 − 𝑃 (𝐶 = 1|x𝑖 , 𝑎𝑖 , 𝜽 ))

)

= argmax
𝜽

(1 − 𝛼)

(
𝑁∑

𝑖=1

𝑐𝑖
[softmax(x

⊺

𝑖 𝜽 )]𝑎𝑖

𝜋0 (𝑎𝑖 |x𝑖 )

)

+𝛼

(
𝑁∑

𝑖=1

𝑐𝑖 ln
(
𝜎 (x

⊺

𝑖 𝜽 ·,𝑎𝑖 + 𝑏)
)
+ (1 − 𝑐𝑖 ) ln

(
𝜎 (x

⊺

𝑖 𝜽 ·,𝑎𝑖 + 𝑏)
))

(9)

As minimising 𝜋𝜽 (𝑎 |x) for all seen (x, 𝑎)-pairs will negatively

impact the cross-entropy until it dominates the objective, this solves

propensity overfitting as well. Unlike the NormPOEM-objective

introduced by Swaminathan and Joachims [48], our objective de-

composes into a sum over the observed samples. Because of this, it

is perfectly suitable for optimisation through stochastic methods

such as SGD and, as a consequence, applicable to large-scale prob-

lems and training deep neural networks. In this sense it is similar to

BanditNet [17], but the Dual Bandit formulation additionally guar-

antees the inclusion of un-clicked samples in the model. Naturally,

the IPS estimator in the first term can be replaced by the logarithmic

IPS estimator introduced in Equation 8, or any other counterfactual

estimator provided they are continuous and differentiable. SVP or

IML terms could be naturally included in the objective, but our ex-

periments show that the Dual Bandit is already highly competitive

without them.

4 EXPERIMENTAL RESULTS

In what follows, we experimentally validate the efficacy of counter-

factual learning approaches presented in previous and this work,

with a focus on the task of recommendation. In order to eval-

uate these approaches effectively, we need a dataset containing

logged feedback for context-action pairs, along with the logging

propensity for the action performed. Related work has evaluated

counterfactual learning methods on multi-class, multi-label or LTR

tasks [13, 17, 47, 48], synthetically generating bandit feedback sam-

ples for a certain logging policy and existing datasets. What makes

the recommendation task fundamentally different from the afore-

mentioned settings, is that access to the true labels (i.e. how likely

a user is to click on a given recommendation) becomes impractical,

and effective offline evaluation thus much less straightforward. Re-

cent work that focuses on the recommendation use-case adopts a

supervised-to-bandit conversion on existing datasets, and custom

simulated datasets that assume deterministic rewards [26], or shows

empirical success through live experiments [4]. In order to aid in the

reproducibility of the research presented in our work, we adopt the

RecoGym simulation environment in our experiments [34]. Reco-

Gym provides functionality to generate offline logs under a given

logging policy (for training and/or evaluation), and allows for the

opportunity to simulate online experiments such as A/B-tests. More

information regarding the specific setup of our experiments can be

found in the reproducibility appendix. All the methods discussed

throughout this work are optimised with the full-batch L-BFGS

algorithm, in order to avoid the choice of optimiser to be a con-

founding factor. Although some of the objectives presented in this

work are non-convex and non-smooth, the choice of L-BFGS is the-

oretically well-supported [21, 51] and has been empirically shown

to yield good performance in previous work [19, 48]. We aim to

answer the following research questions:

RQ1 How does the logarithmic IPS (or PIL) estimator 𝑅ln(IPS) im-

pact existing off-policy learning methods?

RQ2 How do the various methods presented in this paper compare

in terms of performance in a recommendation setting?

RQ3 How sensitive is the performance of the learned models with

respect to the quality of the initial logging policy 𝜋0?

RQ4 How do the number of items 𝑛 and the number of available

samples 𝑁 influence performance?

4.1 Logging policies

We now describe the logging policies that we employ to generate

logged bandit feedback samples that serve as the training datasets

to our methods.

Uniform. The uniform logging policy chooses its actions uni-

formly at random. Thus, every item’s probability of being recom-

mended is 𝜋uniform (𝑎 |x) =
1
𝑛 , independent of the context. As a

consequence, IPS reweighting does not have any impact, because

all the weights would be identical. Data logged uniformly at random

contains no biases, and learning from it is a considerably easier task

than otherwise. Nevertheless, real-world data will usually not be

logged under this type of policy, as complete randomisation can sig-

nificantly impair user satisfaction. It is an idealised and unrealistic

setting, but it provides interesting insights nonetheless.

Popularity-based. A simple yet effective baseline policy is to

sample actions with probabilities proportionate to the occurrence

frequency of the item in the user’s historical organic interactions.

In a toy setting with 3 products and a user state of [3, 1, 0], this

means we sample item 1 with probability 3
4 , item 2 with probability

1
4 , and we don’t sample item 3. In general, for a user history x,

𝜋pop (𝑎 |x) =
x𝑎∑𝑛
𝑖=1 x𝑖

. This policy does not have full support over the

item catalogue, violating the assumptions that guarantee impor-

tance sampling to yield an unbiased estimate [30]. As a consequence,

learning an effective policy from data logged under such a policy

can become problematic (especially for value-based methods). This

can be mitigated by adopting an 𝜖-greedy scheme: with probabil-

ity 𝜖 , take an action uniformly at random; with probability 1 − 𝜖 ,

sample from the original probability distribution. Clearly, when

𝜖 = 0, this reverts to the original policy. Although learning from

data logged under a policy that does not have full support over the

item catalogue loses some theoretical guarantees, we believe it to

be closer to a realistic environment. In many real-world use-cases,

various items may be non-recommendable, due to recency, stock,
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licensing, business rules, et cetera. Furthermore, as real-world item

catalogues are usually vast, it is realistic to randomise over a smaller

set of candidate items. To reflect these real-world constraints, we

include both variants in our experiments.

4.2 Discussion

We simulate A/B-tests for varying amounts of training data logged

under the different policies presented in the previous subsection,

and report the approaches’ attained CTR measurements in Figure 2.

A more in-depth overview of our experimental setup can be found

in the reproducibility appendix. The logging policy is denoted as

𝜋0, an oracle policy that always performs the action with the high-

est probability of leading to a click is shown as 𝜋∗. While such a

skyline is unattainable, it is interesting to analyse the regret of the

competing methods. We do not show the horizontal skyline on the

row corresponding to 𝑛 = 100 as it skews the y-axis limit of the

plots, but it occurs around 2.44%. All reported results are averaged

out over multiple runs, and show the 95% confidence interval.

As discussed in Section 2, the łCBž objective is equivalent to a

policy gradient method with a single-step horizon. łLog-CBž cor-

responds to the PIL-IML objective [27], without an accompanying

IML term. As we don’t suffer from propensity overfitting in this

setup, and most logging policies are severely skewed, our hyper-

parameter tuning procedure showed the optimal weight for this

term to be 0. This was also the case for the Lagrange multiplier 𝜆

from BanditNet [17], reverting it back to the CB formulation. łLog-

POEMž is POEMwith the logarithmic estimator, łDBž and łLog-DBž

are the Dual Bandit objective for the traditional and lower-bound

estimators respectively. Every column represents a different log-

ging policy. From left to right, these plots can be interpreted as

going from the łmostž to łleastž realistic settings. Every row repre-

sents a differently sized action space, going up to 100. Larger action

spaces are very relevant to the recommendation use-case, and we

wish to study the generalisability of our results to them in future

work. From a scalability perspective, this would require several

adaptations to be made to the model formalisation in Section 2.

Effects of the Convex Policy Lower-bound (RQ1). We observe that

the logarithmically transformed estimator positively influences

results for both the popularity-based and the uniform logging policy.

Moreover, we observed much more stable learning behaviour over

various runs when using 𝑅ln(IPS) . As we increase the number of

users in the training data, the performance of methods trained using

𝑅ln(IPS) consistently improves. Methods using 𝑅IPS showed far less

consistent behaviour, as well as more variance across runs. This is

consistent with the findings from Ma et al., as they primarily use

the logarithm as a variance reduction technique. Aside from that,

the logged estimator forces the model to take positive samples for

all actions into account, leading to less overfitting on solely the

best empirical actions.

While still improving over the logging policy and showing con-

sistent behaviour, 𝑅ln(IPS) hurts performance for the 𝜖-greedy log-

ging policy. Because it does not allow a single clicked sample to

be missed, it is all the more sensitive to clicks on rare actions that

might actually be suboptimal recommendations. Recent work on

addressing click noise due to trust bias might provide a way of

handling noisy training data in policy learning too [1].

Our experiments deal with the setting where the logging propen-

sities 𝜋0 (𝑎 |𝑥) are known and exact. As a consequence, there isn’t

always a need to be conservative, which is what the convex lower

bound does. Related work addresses settings where the logging

propensities are unknown, learning an approximate 𝜋0 alongside

their new policy [4]. In combination with highly stochastic rewards

and small treatment effects, distinguishing the empirically optimal

action becomes even more troublesome and noisy (see Fig. 1, for

larger sample sizes, small variations on 𝜋0 may entirely flip the

optimum). We expect the conservative logarithmic estimator to

prove its worth even further in these settings.

Performance comparison (RQ2-4). Key observations from these

results are the following: (1) In virtually all settings, the Dual Ban-

dit approach achieves the best performance. Gains are the most

tangible in cases where the logging policy does not randomise

over the entire action space, as this is where classical value-based

methods tend to fail. Policy-based methods can still improve upon

the logging policy in these cases, but their performance does not

seem to greatly improve with the size of the training sample. The

Dual Bandit exhibits significant benefits over solely using value- or

policy-based approaches. This suggests these families are comple-

mentary, and capture different relationships from the data. (2) As

the logging policy randomises more uniformly, the performance

of competing methods tends to converge. A logging policy with

support over the entire action space positively influences the per-

formance of the value-based approaches, but the Dual Bandit either

improves or reproduces their performance (for 𝛼 = 1). (3) In many

cases, SVP as used in POEM has a positive impact on the traditional

contextual bandit approach, but the regularisation strength 𝜆 is not

straightforward to tune. The parameter is essentially unbounded

and highly dependent on the variance in the data. An SVP term

could straightforwardly be added to the DB objective. IPS reweight-

ing for MLE disturbs the stability of the method, providing mixed

results. In the majority of the cases, it causes a significant drop in

performance. (4) Most of the compared methods gain significantly

in performance when the size of the training sample increases.

For sufficiently large enough samples, we expect all methods to

slowly converge to the optimum. The most interesting and realistic

results deal with large action spaces, finite samples, and limited

randomisation, which is exactly where the Dual Bandit shows its

superiority.

5 CONCLUSION

In this work, we have motivated the use of methods that exploit

bandit feedback for recommendation tasks. Due to the limitations

of offline datasets, we introduced simulation environments as an al-

ternative and reproducible evaluation approach. We have presented

an overview of the state-of-the-art in counterfactual learning, re-

viewing commonalities and key differences in existing algorithms.

In doing so, we highlighted the fact that value- and policy-based ap-

proaches can be formulated with an identical parameterisation. This

insight enabled us to propose a new combined MLE-CRM objective,

aiming to unify both families. Various experiments underline the

superiority of this Dual Bandit approach, excelling the most in the

presence of finite samples and limited randomisation. Additionally,

we discussed specific properties of the recommendation task such
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Figure 2: Experimental results from a range of A/B-tests for different settings in the RecoGym environment. Every column

corresponds to a different logging policy, rows correspond to action spaces with 𝑛 ∈ {10, 25, 100}. The size of the training sample

is increased over the x-axis, the y-axis shows the average attained CTR over 5 runs, along with the 95% confidence interval.

as stochastic and sparse rewards, small treatment effects, and large

action spaces. To effectively deal with some of these issues, we

introduced a logarithmic variant of the conventional IPS estimator

and empirically show how it can further improve performance in

the right environments but hurt in the wrong ones, connecting it to

analogous findings in related work. Our findings represent the first

general empirical study of the use of counterfactual techniques in

a bandit-feedback recommendation scenario.

We believe that our work opens up many interesting directions

for future research. First, we wish to include additional recent an

advanced policy learning and evaluation methods in our compari-

son, such as DM, DR, MRDR, CAB and others. We specifically wish

to further explore the relation between DR and our Dual Bandit

approach. Second, the limitations of value-based approaches can

be handled in other ways than we presented. Probabilistic models

and Bayesian approaches that incorporate priors are a way forward

in this aspect, as they can naturally handle the uncertainty that

arises in recommendation scenarios. All the models discussed in

this work require O(𝑛2) parameters. By using latent embeddings

for the user-state, we could significantly reduce the parameter space

to O(𝑘𝑛). This would enable much larger action spaces to be con-

sidered, and is very relevant to the recommendation use-case. As

the quality of the learned models is then also dependent on the

quality of the embeddings, we leave this for future work. Finally,

we can extend the value-based methods we compare in this work

to higher-order models with non-linearities such as deep neural

networks, and extend our analysis to include recent advances in

counterfactual learning for top-𝐾 recommendations [4], two-stage

recommendation pipelines [26], or multiple iterations of logging

and learning, touching on the exploration-exploitation trade-off.
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A REPRODUCIBILITY APPENDIX

In what follows, we describe our experimental set-up in further

detail. We make use of publicly available simulators to aid in the

reproducibility of our work. Implementations of all methods are

written in Python3.7, using PyTorch [31].4

A.1 Derivation of 𝑅IPS lower bound

We derive the lower bound for the empirical IPS estimator as fol-

lows:

𝑅IPS (𝜋𝜽 ,D) =

𝑛∑

𝑖=1

𝑐𝑖

𝜋0 (𝑎𝑖 |x𝑖 )
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𝜋𝜽 (𝑎𝑖 |x𝑖 )

Subsequently taking the logarithm and applying Jensen’s in-

equality (that says log(𝐸 (𝑥)) ≥ 𝐸 (log(𝑥)), we have that:

log(𝑅IPS (𝜋𝜽 ,D)) ≥ log
( 𝑛∑

𝑖=1

𝑐𝑖

𝜋0 (𝑎𝑖 |x𝑖 )

)

+

𝑛∑

𝑖=1

𝑐𝑖

𝜋0 (𝑎𝑖 |x𝑖 )

1∑𝑛
𝑖=1

𝑐𝑖
𝜋0 (𝑎𝑖 |x𝑖 )

log(𝜋𝜽 (𝑎𝑖 |x𝑖 ))

A.2 The RecoGym Environment

We make use of the RecoGym simulation environment in our ex-

periments [34].5 An OpenAI Gym-inspired framework, it provides

a standard, robust and reproducible way of evaluating recommen-

dation approaches through simulation. It provides functionality

to generate offline logs under a given logging policy (for training

and/or counterfactual evaluation), and additionally allows for the

opportunity to simulate online experiments such as A/B-tests [16].

Below, we provide an overview of the actual simulation framework

behind RecoGym. Note that this is not our contribution, and all

merit should go to the authors of the original paper [34]. We merely

aim to provide a comprehensive overview of its inner workings for

the interested reader, as the original paper only presents it from a

higher level perspective.

Users and items are modelled via an underlying latent-factor

model, as is widely accepted in the literature [18].When the environ-

ment is set up, the system generates an embedding consisting of 𝑘

latent factors for every item. These embeddings are represented in a

real-valued matrix Γ ∈ R𝑛×𝑘 and drawn from a multivariate Gauss-

ian distribution centred around 0 with unit variance: Γ ∼ N(0, 1).

A notion of item popularity is modelled as an additive bias per

item: 𝜇 ∈ R𝑛 , normally distributed with a configurable variance:

𝜎2𝜇 . Γ and 𝜇 directly impact how users organically interact with

these items. The RecoGym authors argue that a given user’s bandit

behaviour for an item would be different, but similar to the organic

behaviour between that user and item. The rationale being that

4Source code available at https://github.com/olivierjeunen/dual-bandit-kdd-2020.
5https://github.com/criteo-research/reco-gym

Parameter 𝑘 𝜎𝜇 𝜎𝑢 n

Value 5 3 0.1 {10,25,100}

Table 2: Parameter configurations for the RecoGym environ-

ment we used for our experiments.

users’ natural browsing behaviour and reactions to recommenda-

tions are related, but not an exact one-to-one mapping. As such,

bandit embeddings and popularities are obtained by performing

a transformation 𝑓 on the organic parameters: 𝐵, 𝜇
′
= 𝑓 (Γ, 𝜇). We

will not go further in-depth on how this transformation 𝑓 is per-

formed, and refer interested readers to the RecoGym source code

for further information.

Users are described by vectors that conceptually reside in the

same latent space as the items. That is, a user embedding 𝜔 ∈ R𝑘

is sampled from a multivariate Gaussian distribution with config-

urable variance: 𝜔 ∼ N(0, 𝜎2𝑢 ). Users are simulated sequentially

and independently. The behaviour of a single user is modelled as a

Markov chain, being either in an łorganicž or łbanditž state. The

organic state implies the user is currently browsing the item catalog,

and generates organic user-item interactions. The bandit state on

the other hand requires interventions from the agent, and generates

the labeled training data we use for learning throughout this work.

We use the default values for the state transition probabilities.

The next item a user views organically is sampled from a cat-

egorical distribution, where the individual probabilities for every

item are proportional to how similar the user and the respective

item’s latent organic embeddings are. Formally, given 𝑢 we draw

𝑖 ∼ Categorical(𝜌), where 𝜌𝑖 ∝ exp(𝜔Γ
⊺

𝑖, · + 𝜇𝑖 ) .

When an action 𝑎 is performed by an agent, the probability

of it actually leading to a click is Bernoulli-distributed, with the

probability of success being dependent on the similarity between

the user and the recommendation’s bandit embedding:

𝑐 ∼ Bernoulli(𝑝), where 𝑝 ∝ 𝜎 (𝜔𝐵
⊺

𝑎, · + 𝜇
′

𝑎).

Naturally, consistently taking the action 𝑎∗ with the highest prob-

ability of leading to a click leads to an optimal recommendation

policy:

𝑎∗ = argmax
𝑎

𝜔𝐵
⊺

𝑎, · + 𝜇
′

𝑎 .

This is exactly the skyline policy 𝜋∗ shown in Figure 2. Naturally,

none of these parameters are accessible to the learning algorithms

we consider in our work: all they observe and learn from are the

(x, 𝑎, 𝑝, 𝑐)-samples as introduced in Section 2. Furthermore, the

relation between the user history of organic interactions x and the

probability of a click for a given action is non-linear, whereas all

the approaches we study model them as such.

A.3 Experimental Setup

Here, we list the details for the experimental setup used throughout

Section 4. We vary the number of items 𝑛 ∈ {10, 25, 100}. As we

model users in a bag-of-word fashion and our models consist of 𝑛2

parameters, this prohibits us to increase 𝑛 significantly. Modelling

users with latent embeddings is a solution for this, but falls outside

the scope of this work. Our experimental observations are general

and translate to larger action spaces, with the exception that effect
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Figure 3: Behaviour of the objective functions corresponding to the 𝑅IPS (blue, leftmost y-axis) and 𝑅ln(IPS) (red, rightmost

y-axis) estimators for the toy examples presented in Section 3.1. We see that both estimators agree on an optimal policy in the

case of deterministic rewards, but this is no longer true in the case of a stochastic reward process.

sizes typically diminish. The number of unique users in the train-

ing sample varies in {1 000, 2 000, 4 000, 6 000, 8 000, 10 000 12 000,

14 000, 16 000}. These settings lead to anywhere 80 000 and 1 280 000

bandit feedback samples. The empirical CTR for the logging pol-

icy in the training data varies from 1.1% to 1.4%, yielding a wide

spread between roughly 10 and 1 800 positive samples per item

on average. Every contending method was trained until conver-

gence and subsequently tested in a simulated A/B-test with 10 000

users. This process was repeated with 5 different random seeds,

aggregating results to provide a robust CTR estimate with a tight

confidence interval. We report the 95% confidence interval with

error bars on the plot. Hyper-parameters were optimised through

a grid-search where the training set consisted of 5 000 users, and

validated through simulated A/B-tests with 10 000 users as outlined

above, albeit with different random seeds as to ensure the training,

validation and test users to be disjoint. Grid searches were analo-

gously repeated and results averaged out over 5 runs to reduce the

inherent noise of the simulation. Note that results from the grid-

search with only 5 000 users for training might not yield the optimal

hyper-parameters for smaller or larger training samples. Further-

more, optimising hyper-parameters through online experiments

might not accurately reflect a real-world situation, but it ensures a

fair comparison among algorithms. We varied the SVP-strength for

POEM 𝜆 ∈ {.0, 0.05, .1, .25, .5, 1.0, 1.5, 2.0} and DB’s CRM-MLE bal-

ance 𝛼 ∈ {.0, .8, .85, .925, .95, .975, 1 − 1e2, 1 − 1e3, 1 − 1e4, 1.0}, and

report results only for the optimal values. However, we observed

much more stable results for varying 𝛼 than for varying 𝜆. 𝛼 = 0

corresponds to the (Log-)CB objective, 𝛼 = 1 to MLE. Analogously,

𝜆 = 0 corresponds to (Log-)CB, whereas 𝜆 → ∞ goes to the logging

policy. As we mentioned in Section 4, none of the weights 𝜖 for the

IML-term used in PIL-IML improved performance. We varied the

weight 𝜖 ∈ {.0, .05, .1, .15, .20, .25, .50, 1.0}, and observed a steady

decrease in attained CTR. The Lagrange multiplier 𝛾 for BanditNet

was varied over {.0, .125, .25, .5, .75, .875, 1.0}, and was equally unable

to improve results. Note that for 𝛾 = 1.0, the model only learns from

the non-clicks and ignores the clicks. In this setting, propensity

overfitting occurs. We observed that adding an additional IML term

to BanditNet was then indeed able to prevent this, but the quality

of the learned models remained subpar to those optimised for the

original objectives.
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Figure 4: Impact of the SVP term on both the 𝑅IPS (left) and

𝑅ln(IPS) (right) estimators, for varying strengths 𝜆 and the

stochastic example setup in Figure 1. The logarithmic esti-

mator penalises degenerate policies, and SVP encourages im-

itation of the logging policy.

A.4 Behaviour of Convex Policy Lower-Bound

Section 3.1 and Figure 1 discuss how the logarithmic IPS lower

bound penalises policies that miss a single positive action in the

training sample, leading to an allocation of probability mass that

is proportional to the observed reward per action. Figure 3 shows

how this only impacts the optimum of the objective function when

rewards are stochastic. In the deterministic multi-class example,

only class 𝑎 is correct. In the deterministic multi-label example,

labels 𝑎 and 𝑏 are both equally correct and 𝑅IPS becomes indifferent.

In the stochastic multi-label case, actions 𝑎 and 𝑏 are not equally

likely to lead to a positive reward, and the optimum for 𝑅ln(IPS)
diverges from that of 𝑅IPS.

Figure 4 shows the impact of adding an additional SVP term to the

optimisation objectives with varying strengths 𝜆, for the stochastic

multi-label setup. 𝜆 is the SVP strength, 𝜎2 an empirical estimate

of the variance. Naturally, as 𝜆 → ∞, the objective is increasingly

dominated by the SVP term and the optimal policy moves towards

the logging policy (the uniform distribution in this toy example).

Intuitively, we can see that adding an SVP term to the original

estimator 𝑅IPS has similar effects as using the logarithmic variant:

extreme values (0 and 1) are increasingly penalised, making the

objective better behaved. Adding the SVP term to the logarithmic

estimator 𝑅ln(IPS) has less dramatic effects and does not change the

shape of the objective function as much, as it was concave to begin

with. It shifts the optimum towards imitating the logging policy

(𝑃 (𝑎) = 𝜋0 (𝑎)).
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