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Abstract

A study of inclusive four jet production in proton-proton collisions at a centre-of-mass
energy of 13 TeV is presented. The data sample was collected in 2016 with the CMS de-
tector at the LHC during a low intensity run, with an integrated luminosity of 0.042 pb−1.
Differential cross sections are measured as a function of the jet transverse momentum,
pseudorapidity, and several other observables that exploit angular correlations. The low-
est jet transverse momentum cuts required in this paper are 35, 30, 25, and 20 GeV for
the first, second, third and fourth leading jet respectively within |η| < 4.7, leading to a
fiducial cross section of σ = 2.77±0.02(stat.)+0.68

−0.55(syst.)µb. It is found that the data are
very sensitive to different aspects of the underlying event, parton showers, and matrix
element calculations. In particular the interplay between the de-correlations caused by
parton showers and double parton scattering contributions is shown to be important.
Models employing angular ordered parton showers, off-shell initial kinematics, as well
as models with higher order matrix element calculations provide a better description of
the data in certain observables, compared to standard leading-order models. The ∆S
observable, which characterizes the azimuthal angular difference between the hard and
soft jet pair, is used to extract a double parton scattering contribution by means of a
template fit method. Model dependent values of sigma effective are calculated and com-
pared to previous measurements. While all extracted values of the effective cross section
show agreement with measurements performed at lower centre-of-mass energies, a strong
model dependence of the double parton scattering contribution is found.
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Chapter 1

Introduction

The standard model of physics (SM) [1,2] is a theory describing the elementary particles
and three of the four fundamental interactions governing these particles in the universe.
Although, the SM is incomplete, it is widely considered one of the most successful theo-
ries in physics due to its elegance and predictive power. One of the three interactions is
the so-called “strong interaction”. It is the interaction that holds the nuclei of atoms to-
gether. The interaction is, as the name implies, the strongest of the fundamental forces.
Only elementary particles yielding a color charge or the quarks and gluons, participate in
the strong interaction. The mathematical description is provided by quantum chromo-
dynamics (QCD) and is studied through the measurement of high-energy proton-proton
collisions by the Compact Muon Solenoid (CMS) detector at the Large Hadron Col-
lider (LHC), operating at the Centre Européen pour la Recherche Nucléaire in Geneva.
However, quarks and gluons can not be measured directly by any detector, due to the
phenomenon that quarks and gluons cannot be isolated, also referred to as color con-
finement. As a direct consequence, clusters of colored particles or jets are observed in
detectors rather than the individual quarks or gluons.

QCD provides a good description of jets with large transverse momentum (pT) pro-
duced in high-energy proton-proton collisions. This is achieved by factorizing the cross
section in a perturbatively calculable matrix element (ME) for the scattering between
partons, on the one hand, and parton distribution functions (PDF) that describe the
probability to find a parton within the proton, on the other hand. The latter contain in-
formation on the proton, which can not be perturbatively calculated, and are obtained by
fitting available data. Measurements of the cross section for the production of inclusive
high-pT jets have been performed by the CMS collaboration at various centre-of-mass
energies [3–5] and show good agreement with perturbative QCD predictions at next-
to-leading order (NLO) accuracy. However, final states with multiple jets, and their
correlations, call for further studies of the strong interaction.

Multijet final states can be produced in a single parton scattering (SPS). Depending
on the order of the ME in the strong coupling factor, two or more jets can be produced
in SPS. Radiation before and/or after the interaction between the partons, as described
by parton shower models, can contribute additional jets to the final state. As such,
predictions for multijet SPS processes provide an important test of the matching between
fixed-order ME calculations and the parton shower formalism. An alternative approach,
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however, introduces a second hard scattering in the proton-proton collision, thus also
contributing a number of jets to the final state. Such processes are in general referred to
as double parton scattering (DPS), and represent the simplest case of multiple partonic
interactions (MPI). The cross section of a DPS process, σDPS

A,B , where A and B denote
two processes with their own respective cross sections σA and σB, can be expressed as:

σDPS
A,B =

m

2

σA · σB

σeff
. (1.1)

The factor m is a combinatorial factor, which is equal to one for identical processes and
equal to two for non-identical processes. The effective cross section (σeff) reflects how
strongly the occurrence of A and B is correlated. For fully uncorrelated production of
A and B, σeff tends to the total inelastic cross section, while a small σeff indicates an
enhanced simultaneous occurrence of A and B. For multijet production, SPS processes
often exhibit strong kinematic correlations between all jets, while DPS processes will
manifest a distinctly different behaviour. Indeed, the jets resulting from DPS are more
often than not produced in two independent pairs in a back-to-back configuration. The
DPS cross section rises with increasing centre-of-mass energy: at higher energy, smaller
values of the proton’s momentum fraction carried by the partons can be probed, resulting
in a strong increase of the gluon density and accordingly a larger probability for DPS. A
proper knowledge of DPS processes is therefore beneficial for a complete understanding
of hadronic interactions.

Several DPS measurements at different centre-of-mass energies and for various final
states have been performed. Studies including one or two photons in the final state have
been published in [6–11]. Final states involving one or two vector bosons have been
measured by the ATLAS and CMS collaborations [12–15]. Other studies have opted to
involve the production of heavy flavours [16–20]. Older measurements in the four jet
final state have been performed by the UA2 and CDF experiments [21, 22], while the
ATLAS and CMS collaborations have more recently also performed DPS measurements
with four jets [23–26]. The CMS collaboration additionally obtained a measurement for
the final state with two b-tagged jets in combination with two light-flavoured jets [27].

This thesis presents an analysis of the inclusive production of four jets in proton-
proton collisions at a centre-of-mass energy of 13 TeV. The data were collected with
the CMS detector at the CERN LHC in 2016, during a run with a low probability for
several proton-proton interactions occurring within the same or nearby bunch crossings
(henceforward referred to as “pileup”). This allows not only to mitigate effects of such
pileup, but also to reach down to low jet pT, albeit necessitating a custom calibration of
the jet energy scale. The collected data correspond to an integrated luminosity of 0.042
pb−1. Data are corrected for detector effects by means of an unfolding procedure applied
to the measured distributions.

Several aspects of multijet production are studied through the comparison of the dis-
tributions of “DPS-sensitive” observables predicted by various Monte Carlo (MC) models
and obtained from data. These observables all exploit the differences in the kinematic
correlations between the jets expected for SPS and DPS.

Two methods are used to extract the DPS cross section. A first estimate is ob-
tained with a template method: a pure DPS signal sample is reconstructed from data
by randomly mixing inclusive single jet events and is fitted along with several SPS-
only background MC models to the distributions obtained from data. In an alternative
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method, SPS-only MC models are normalized to data in a DPS-free region and the DPS
cross section is estimated from the differences between data and SPS-only MC models
in regions where a DPS contribution is expected. Finally, the effective cross section is
computed using eq. (1.1), with σA and σB measured from inclusive single jet production
in data.

The thesis is organized as follows: a more extensive overview of the mathematical
structure of the SM together with a more in-depth formulation of QCD is given in
Chap. 2. In Chap. 3, the hadron collisions and all its components are described. After
discussing the DPS pocket formula in detail, the chosen DPS-sensitive observables are
defined and all models used to study the observables are detailed next. Finishing with
a first simulation of all observables in order to justify the choices made. In Chap. 4,
the whole infrastructure of the LHC and the CMS detector are discussed in detail. The
data and simulated samples are specified in Chap. 5. The latter are used to correct
the detector level data to generator level, on which the predictions are independent of
any detector effects. Chap. 6 illustrates how different objects in proton-proton collisions
are reconstructed. Of the necessary objects, jets still need to be calibrated through
the sequential application of the jet energy corrections (JEC) factors, which had to be
derived for this specific analysis. The event selection, defined in Chap. 7, is applied
to the fully reconstructed and calibrated events. Next, the construction of a pure DPS
sample from data, along with the methods of extraction of the σeff parameter is presented
in Chap. 8. In Chap. 9, a full treatment of the detector effects is given. While the
unfolding procedure, meant to correct for the detector effects, is outlined in Chap. 10,
after which the detector level distributions are unfolded to obtain the generator level
curves. However, a measurement is not free of observational errors. Certain steps in
the analysis give rise to systematical uncertainties. All of them are treated in Chap. 11.
Once the error treatment has been performed a comparative study between the data and
different models is presented in Chap. 12, while the final conclusions are written down
in Chap. 13.
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Chapter 2

The Standard Model

In what follows the theoretical framework, together with core concepts and models needed
to describe high-energy collisions, are introduced. We will start with a broad description
of the Standard Model (SM) of physics. Afterward, the mathematical formulation of
the strong nuclear force or Quantum Chromodynamics (QCD) will be discussed in more
detail.

2.1 Introduction to the Standard Model

Throughout history continuous efforts have been made towards understanding the uni-
verse around us and towards formulating a fundamental and descriptive theory of all
matter. Historically famous examples of such ideas and theories include the concept of
atoms as indivisible building blocks of matter and the table of Mendeleev. The former
was first proposed by Democritus in the fifth century BCE, while the latter was pub-
lished in 1869. The strong ordering of the elements in the table of Mendeleev suggested
the presence of an underlying and more fundamental substructure. During the 19th and
the beginning of the 20th century, the substructure was probed and it was discovered
that atoms are composed of a vacuum in which negatively charged electrons encompass
a positive nucleus. The electrons, discovered by Thompson in 1898 [28], and nuclei are
bound together by the electromagnetic force. Later on during the 1920s, concepts such
as position and velocity had to be revisited due to the prominent role of the Heisenberg
uncertainty principle [29] and the wave-particle duality of matter in the formulation of
quantum mechanics. In 1932 [30], Chadwick discovered that the nuclei were not only
composed of positively charged protons, but neutrally charged neutrons as well. They
are “glued” together by the strong nuclear force, which effectively overcomes the elec-
tromagnetic repulsion between the positively charged protons. In turn the protons and
neutrons were found to be consisting of quarks. A third force, the so-called weak nuclear
force, allows for the decay of neutrons into protons accompanied by an electron through a
process called β-decay. The framework of quantum mechanics, based on the Schrödinger
equation [31], could not successfully describe the annihilation and creation of particles,
which was necessary for processes like β-decay. A specific type of relativistically invariant
gauge theories based on the concept of Quantum Field Theory (QFT), i.e. renormalizable
Yang-Mills theories [32], resolved the problems existing in quantum mechanics. Further
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exploration of these theories along with different experiments led to the formulation of
the SM during 1970-1973 [1, 2].

The SM succeeds in describing three of the four fundamental forces, all except grav-
ity, as well as classifying all elementary or fundamental particles, which are defined as
particles with no further substructure. An overview of all known elementary particles is
shown in Fig. 2.1. A first distinction between two main classes of elementary particles is
made within the SM. On the one hand, fermions are particles with a half-integer spin.
All leptons and quarks are fermions. Both groups of particles consist of three genera-
tions. The particles in each generation carry similar traits and properties, while their
mass increases with each generation. On the other hand, bosons are elementary particles
with an integer spin. The gauge bosons serve as the carriers of the three aforementioned
fundamental forces. The Higgs boson, discovered in 2012 by the ATLAS and CMS col-
laborations [33, 34], completes the SM. The Higgs mechanism was theorized as early as
1964 independently by François Englert and Robert Brout [35], and by Peter Higgs [36].
Its existence is essential to the SM, as without the Higgs mechanism massive particles
can not exist within the framework of the SM in a consistent manner.

The framework of QFT [1, 2] has provided the basis on which the SM is built. The
Lagrangian approach has been adopted throughout the SM. All particle dynamics of the
SM are contained in and describe by the Lagrangian function specific to the SM. The
theoretical framework of QFT is a quantum mechanical and relativistically invariant for-
mulation of classical field theory. In other words: each particle is treated as an excitation
of its underlying quantum field, which permeates throughout all of space-time, and is
described by a quantized wave function, where the whole framework is invariant under
Lorentz transformations. QFT effectively combines quantum mechanics, classical field
theory and special relativity [38]. Three types of quantum fields enter in the SM La-
grangian function. The fermions are described by spinor fields, while the force carrying
bosons and the Higgs boson are represented by vector fields and a scalar field, respec-
tively. A scalar field remains invariant under Lorentz transformations, while the vector
fields transform in the same manner as a four-vector. Both obey the Klein-Gordon equa-
tion of motion [39, 40]. The fermionic fields transform quite differently under Lorentz
boosts and are represented by spinor fields. In contrast to the bosons, the fermions fol-
low the Dirac equation of motion [41], opposed to the Klein-Gordon equation. A more
detailed discussion, however, would take us too far from the topic at hand but can be
found in [1, 2].

The interactions governing the quarks and leptons, are the direct result of the sym-
metries imposed on the SM. The particles in the SM obey three local symmetries, i.e. the
wave functions of particles remain invariant under local transformations of the Lie groups
U (1 )EM, SU (2 ) and SU (3 ) [1]. The subscript “EM” stands for the electromagnetic force.
In order to preserve the invariance of the quark and lepton fields under the local trans-
formations, additional gauge fields need to be included in the Lagrangian of the SM.
The gauge fields correspond to the gauge bosons that mediate the three aforementioned
fundamental forces. The photon γ is the force carrying boson of the electromagnetic
interaction, which corresponds to the invariance of the SM under transformations of the
U (1 )EM group. In the same manner, the gluon is connected to the strong nuclear force
and the SU (3 ) group. While the weak nuclear interaction is carried by the W+, W− and
Z0 bosons and exhibits invariance under transformations of the SU (2 ) group. The ele-
gance of the SM is highlighted here: the three fundamental forces and the force carrying

5



Figure 2.1: An overview of all the elementary particles of the SM, taken from [37].
Quarks, leptons and gauge bosons are shown in purple, green and red, respectively, while
the Higgs boson is depicted in yellow. The mass, charge and spin of each particle are
specified on the table.

gauge bosons described by the SM arise from the imposed local symmetries.
During the 1960s Sheldon Glashow observed similarities between the electromag-

netic force and the weak nuclear force and succeeded in laying the foundation for the
electroweak interaction [42]. Mohammed A. Salam and Steven Weinberg had the simi-
lar ideas [43, 44] and produced the same framework independently of Sheldon Glashow.
The electroweak interaction is the unified description of the electromagnetic and the
weak nuclear interaction, and is symmetric under transformations of the combined group
SU (2) × U (1)Y, where Y represents a newly conserved quantity, i.e. the weak hyper-
charge. A W bosons triplet (W0, W1 and W2) and the boson singlet B0 carry the
electroweak interaction. However, the newly defined gauge fields do not correspond to
the physical γ and Z0 boson fields, they are a rotation of the non-physical W0 and B0

fields. The relation between the physical and non-physical fields is written as
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(
|γ〉
|Z0〉

)
=

(
cos θW sin θW

− sin θW cos θW

)(
|B0〉
|W0〉

)
(2.1)

Where θW is the weak mixing angle, also called the Weinberg angle, which has been
determined through various experiments, e.g. the CMS collaboration found a value of
sin2 θW = 0.23101±0.00053 [45]. The remaining W1 and W2 bosons correspond with the
earlier defined W+ and W− bosons. That being said, two issues in the description of the
electroweak interaction still remained. On the one hand, the theory is not renormalizable,
which is a requirement of the SM. Renormalization aims to treat infinities arising in
perturbative calculations in a consistent manner. On the other hand, the four bosons of
the electroweak interaction are massless since mass terms can not naively be added to
the Lagrangian in a gauge invariant way. Both problems were resolved by spontaneous
symmetry breaking and the Brout-Englert-Higgs mechanism.

The Brout-Englert-Higgs mechanism introduces the scalar Higgs field φ and an as-
sociated potential V (φ) to the SM. The shape of the potential V (φ) is quite peculiar,
in the sense that it is shaped like a Mexican hat or sombrero, as depicted in Fig. 2.2.
The form of the potential allows for the spontaneous breaking of its symmetry. The
minimum of the potential is not centred at V (0), the local maximum of the Mexican
hat potential. Choosing a vacuum state, a state where the energy is minimal, results
in the spontaneous breaking of the electroweak symmetry group SU (2) × U (1)Y. The
direction of the symmetry breaking can be chosen in such a way that the photon remains
massless, while new gauge invariant mass terms for the Z0, W+ and W− bosons appear
in the Lagrangian. The remaining symmetry is described by the U (1)EM group of the
electromagnetic force.

Figure 2.2: A schematic depiction of the potential V (φ), used in the spontaneous sym-
metry breaking framework and the Brout-Englert-Higgs mechanism, taken from [46]. By
going from the point V (0), which is the local maximum of the potential, to a vacuum
state or minimum of the potential, the symmetry is spontaneously broken. The vacuum
state can be freely chosen in such a way that the remaining symmetry is the the one
described by the U(1)EM.

However, the story is not complete yet, as fermions are known to have masses as well,
which are introduced in the SM Lagrangian through the inclusion of the Yukawa coupling
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[47], named after Hideki Yukawa. As a new scalar field has been introduced to the
Lagrangian of the SM, additional interactions between the Higgs field and all other fields
should be added as long as they are not prohibited by the symmetries of the SM. The
Yukawa coupling defines a gauge invariant interaction between a spinor field ψ and a
scalar field φ. The interaction term brings forth a gauge invariant mass term for the
fermions once the symmetry is spontaneously broken. The existence of the Higgs field
saves the SM as a renormalizable Yang-Mills theory. The discovery of the Higgs boson
in 2012 by the ATLAS and CMS collaborations, almost 50 years afters its theoretical
conception, is therefore seen as a major triumph of the SM and will remain a landmark
in the history of modern physics.

Apart from all the success the SM has had, it is not seen as the final theory. Within
its framework the SM is consistent, but it still leaves major questions unanswered. One
of the largest hurdling blocks of the SM is the exclusion of the fourth fundamental force.
The SM model is incompatible with general relativity [48], the mathematical formula-
tion of gravity. Candidate unifying theories have been proposed, e.g. supergravity, which
combines principles from supersymmetry and general relativity [49]. However, effects of
such theories have yet to be observed. Other unexplained phenomena include the matter-
antimatter or so-called baryon imbalance [50], neutrino oscillations [51], the presence of
dark matter [52] and dark energy [53] in the universe. As a last unexplained phenomenon
we mention the hierarchy problem [54]. All aforementioned problems with the SM have
been encountered by various experiments, however, anomalous behavior within the SM
is bothersome as well. An example of the latter is the hierarchy problem. Earlier in the
text, the renormalizability of the SM was mentioned as a means to deal with infinities
in calculations. These infinities occur due to the fact that fundamental quantities, such
as the mass of the Higgs boson, can have a different effective and fundamental value.
The former is measured through experiments, while the latter is the quantity in the
Lagrangian. The renormalization procedure connects both through the application of
corrections to the fundamental values. Whenever a large discrepancy between the ef-
fective and fundamental values exists, an incredibly precise fine-tuning occurs between
the fundamental value and the corrections in order to obtain the effective value. Such
a precise fine-tuning does not seem natural. Arguments to justify the fine-tuning have
been made in the sense of the anthropic principle, but border on philosophy rather than
on physics. While theories beyond the SM aim to resolve the hierarchy problem through
the formulation of underlying physical principle of which we have no knowledge as of yet.

The general framework of high-energy physics has been outlined here. We will now
return to the strong nuclear force in more detail as this thesis will explore phenomena
thereof.

2.2 Quantum Chromodynamics

In the framework of the QFT and the SM, the strong nuclear force is described by
QCD [1]. Natural units will be used throughout this work; the numeric value of the
speed of light c and the Planck constant h̄ is set equal to one. The theory of the strong
interaction is invariant under transformations of the SU (3) gauge group. The Lagrangian
can be written as
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LQCD = ψ̄i

(
i (γµDµ)ij −mδij

)
ψj −

1

4
GaµνG

µν
a (2.2)

Where the quarks are represented by the spinor field ψ, along with their correspond-
ing mass m. The so-called gamma or Dirac matrices are represented by γµ, they are
essential for the description of spinor fields. The indices µ and ν indicate spacetime
dimensions, while the summation over the indices i and j is a summation of the elements
of a fundamental representation of the SU (3) group. A fundamental representation is an
irreducible finite-dimensional representation of a Lie group. Each element in a Lie group
can be produced by the repeated action of infinitesimal elements, called the generators
of the Lie group. In the case of the SU (3) group, the generators have a non-zero commu-
tator. Such Lie groups and QFTs are labeled as non-Abelian. An example of an Abelian
QFT is Quantum Electrodynamics (QED), which describes the electromagnetic force
and which is invariant under transformations of the U (1) group. The partial derivative
has been replaced by the covariant derivative Dµ in order to preserve the local gauge
invariance and is defined as

Dµ = ∂µ − igAaµta (2.3)

Where the covariant derivative is defined in terms of the representation matrices ta, while
the gluonic field tensor takes the following form

Gaµν = ∂µAaν − ∂νAaµ + gfabcAbµAcν (2.4)

The gluonic fields are indicated by Aaµ. In the case of an Abelian theory the third
term would be absent, as the structure constants, represented by fabc, that define the
commutation relations between the generators would all be equal to zero. The gluonic
fields are in the adjoint representation of the SU (3) group, indicated by the indices a,
b, c, . . . It is the irreducible representation to which the generators belong, therefore,
the representation matrices are given by the structure constants themselves. For further
details on Lie groups, Lie algebras and representations in the framework of QFT, we refer
too [1, 2].

A direct consequence of the non-Abelian character of QCD and the product of the
two gluonic field tensors in eq. (2.2), is the self-interaction of the gluons. All interac-
tion vertices of QCD are schematically depicted in Fig. 2.3. Due to the self-interaction
of the gluons, the range of the strong nuclear force is smaller compared to the elec-
troweak force, typically the size of the nucleus of an atom (∼ 10−15m). Resulting in the
prevention of colored particles from spreading out into the space around them. The anti-
screening brought forth by the self-interaction is referred to as color confinement or just
confinement, and is one of the two main properties exhibited by QCD. The second being
asymptotic freedom. The strong nuclear interaction, just like all interactions, is charac-
terized by a coupling constant αS. The strong coupling constant varies as a function of
the energy scale characterizing the interaction, often referred to as the renormalization
scale µR. Their lowest order relation is expressed below.
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αS =
12π

(33− 2Nf) ln
µ2
R

Λ2
QCD

(2.5)

Where the parameter ΛQCD is the QCD scale and Nf represents the number of quark
flavours. A more precise expression can be obtained through the inclusion of higher-order
corrections [55]. At high energies, the coupling constant decreases and the quarks and
gluons start behaving like quasi-free particles, which is often referred to as asymptotic
freedom and was discovered in 1973 by David Gross and Frank Wilczek [56], and inde-
pendently by David Politzer [57]. In electromagnetism, the exact opposite behavior is
observed, as the coupling constant α increases when the transferred momentum increases.

q

g

q

g

g

g

g

g

g

g

Figure 2.3: The three interaction vertices of QCD. From left to right: the quark-gluon,
the three-gluon and four-gluon interaction vertex.

2.2.1 Quark Parton Model and Scaling Violations
During the 1960s, the role of QCD started to grow, as higher and higher energies were
achieved at experiments, leading to the discovery that the proton is a composite object
rather than a point-like one. A first attempt at understanding the inner structure of the
proton was made by Feynman, Bjorken and Pachos in 1969 when they formulated the
Quark Parton Model (QPM) following observations of electron-proton collisions at the
SLAC experiment [58]. In the QPM, the proton is suggested to be composed of three
bound quarks. In an electron-proton collision, one of the quarks would interact with the
incoming electron, instead of the whole proton. The description of the collisions uses the
structure function F2(xBj , Q

2), defined below.

F2(xBj , Q
2) = xBj

∑
q

e2
qfq(xBj , Q

2) (2.6)

Where xBj is the so-called x-Bjorken, representing the fraction of the momentum of the
proton that the quark partaking in the interaction carries. While Q2 is defined as the
negative square of the four-momentum exchanged between the electron and the proton.
The fractional quark charge is denoted as eq. The function fq(xBj , Q

2) is the Parton
Distribution Function (PDF) of the quarks. The PDF expresses the probability that a
parton of the flavour q is involved in the interaction at the scale Q2, while carrying a
fraction xBj of the four-momentum of the proton from which it originates.

10



Figure 2.4: The results of a precision measurement of the structure function F2 as a
function of xBj and Q2, taken from [59]. Scaling violations are observed as the structure
function rises as a function of Q2 as xBj becomes smaller.

In the QPM as described above, the structure function is expected be independent of
the scale of the interactions Q2. However, precision measurements were performed over
many orders of magnitude of xBj and Q2. The structure function was found to be scale
dependent [59]. Measurements of the scale dependent structure function for different
values of xBj and Q2 are shown in Fig. 2.4. The scale dependence can be explained by
the inclusion of the gluon in the QPM. The gluon binds the different quarks together,
leading to a more fluent picture of the proton structure: a quark can emit a gluon at any
point inside the proton, which in turn can split into a quark-antiquark pair. These quarks
can interact with other quarks and gluons inside the proton and so on. However, the net
amount of quarks remains equal to three, these three quarks determine the properties of
the proton and are labeled as valence quarks. The additional quark-antiquark pairs and
gluons are referred to as sea quarks and gluons, respectively. In general, the structure
of the proton is probed more precisely at higher energies, resulting in the more complex
picture described above and schematically depicted in the left plot in Fig. 2.5. The right
plot shows the measurement of PDF as a function of x performed by the HERAPDF
collaboration [60]. At large values of x, the valence quarks uv and dv dominate, while at
lower values the gluon and the sea quark PDF start to contribute significantly.

When including the composite structure of the proton and the additional interactions
to the lowest order electron-proton interaction, the scaling violation was naturally ob-
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Figure 2.5: Left: a schematic depiction of the composite structure of the proton, taken
from [61]. The red, blue and green valence quarks determine the properties of the proton.
At high energies, the composite structure of the proton is probed further, revealing the
presence of sea quarks and gluons. Right: PDF obtained by the HERAPDF collaboration
at a scale Q2 = 10 GeV2, taken from [60]

tained. In Fig. 2.6, the electron-proton collision is shown without any corrections on the
top left. The diagram is the Leading Order (LO) contribution, while all other diagrams
are first order corrections, in other words: the diagrams are at Next-to-Leading Order
(NLO). The possible emission of quarks and gluons by any parton is handled by the so-
called splitting functions. However, one wants to include multiple emissions analytically,
which is achieved by sets of evolution equations. Three different sets of equations will
be discussed below. Each set is valid in a different kinematic region of the phase space,
schematically shown in Fig. 2.7. The sets of evolution equations are obtained through a
perturbative expansions in the strong coupling constant αS, resulting in terms dependent
on the momentum fraction x and the scale Q2. A resummation of the terms is performed
in three distinct manners, yielding the three sets of evolution equations. The approach to
the resummation in all three cases is the same. The Leading Log Approximation (LLA)
is used, so that the resummation only includes single logarithmic terms. To finish the
discussion on evolution, an alternative to the framework of evolution equations will be
discussed.

The DGLAP Evolution Equations

The Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution equations [62,63] are
obtained by performing a resummation of terms of the type (αS ln (Q2/Q2

0))m in the
LLA, where the evolution starts at the scale Q2

0 and ends at Q2. Therefore, the evolution
equations should be applied in a regime where Q2/Q2

0 � 1 and xBj is large enough to
justify the neglect of terms proportional to ln(1/xBj). The validity region of the DGLAP
evolution equations is sketched in Fig. 2.7. The DGLAP equations can be written as
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Figure 2.6: All possible contributions for electron-proton scattering, where the top left
diagram is the LO contribution, while all other diagrams are at NLO. The electron
before and after the emission of the photon γ is indicated with e and e′, respectively.
The proton before the interaction is marked as p, while the proton remnant is indicated
with X. On the top row from left to right: a quark coming from the proton interacts with
the electron, a quark emits a gluon prior to interacting with the electron, and the quark
emits a gluon after interacting with the electron. The bottom left and right diagrams
show the interaction of the photon with a sea quark.

Figure 2.7: The regions where the three sets of evolution equations are valid is schemat-
ically depicted.
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d

dt
fi(x, t) =

αS(Q2)

2π

∑
j

∫ 1

x

dx′

x′
fi(x, t)Pij

( x
x′

)
, (2.7)

where t = ln (Q2/Q2
0) (2.8)

Where x/x′ is the momentum fraction of the emitted parton with respect to the mother
parton, often denoted as z. The emission of the partons is governed by the splitting
functions Pij(z), representing the probability of a mother parton i radiating a parton of
the kind j with the momentum fraction z. The splitting functions can be written as a
perturbative expansion in αS.

Pij(z) = P 0
ij(z) +

αS

2π
P 1
ij(z) +

α2
S

(2π)2
P 2
ij(z) + . . . (2.9)

The splitting functions have been calculated up to the order α3
S [64]. Often in the LLA

approximation, only the lowest order terms of the perturbative expansion are considered.
The four splitting functions at LO are given below.

P 0
gg(z) = 6

[
z

1− z +
1− z
z

+ z(1− z)
]

(2.10)

P 0
qg(z) =

1

2

[
z2 + (1− z)2

]
(2.11)

P 0
gq(z) =

4

3

1 + (1− z)2

z
(2.12)

P 0
qq(z) =

4

3

1 + z2

1− z (2.13)

Two different divergences are present in the splitting functions. The first divergency
occurs for z → 1, and is both a collinear and a soft divergence. On the one hand, the
collinear singularity is cancelled through the inclusion of virtual corrections or loop dia-
grams. On the other hand, the soft divergence correspond to the emission of a soft parton
and is treated by introducing the so-called plus prescription to the splitting functions.

P 0
gg(z) = 6

[
z

(1− z)+
+

1− z
z

+ z(1− z)
]

(2.14)

P 0
qq(z) =

4

3

1 + z2

(1− z)+
(2.15)

where
∫ 1

0

dz
f(z)

(1− z)+

=

∫ 1

0

dz
f(z)− f(1)

1− z (2.16)

The need for the introduction of a soft cutoff is eliminated with the plus prescription.
The treatment of the divergence due to a soft emission can be generalized through the
use of the Sudakov form factor ∆s [65], defined below.

14



∆s(Q
2, Q2

0) = exp

(
−
∫ Q2

Q2
0

dq2

q2

∫ zmax

0

dz
αS

2π
P (z)

)
(2.17)

The Sudakov form factor represents the probability of no emission when a parton evolves
from one scale Q2

0 to another scale Q2. The Sudakov form factor takes all virtual correc-
tions of real emissions due to the divergence for z → 1 into account and allows for the
DGLAP equations to be rewritten into the integral form.

f(x,Q2) = fi(x,Q
2
0)∆s(Q

2, Q2
0) +

∫
dq2

q2

∫
dz

z

∆s(Q
2, Q2

0)

∆s(q2, Q2
0)
P (z)f

(x
z
, q2
)

(2.18)

In the part of the phase space where z → 0, or the low-x regime, a second divergence
arises, as the resummation of the terms of the type (αS ln (Q2/Q2

0))m in the LLA is no
longer valid. Dedicated evolution equations have to be formulated to resolve the second
divergence, which will be discussed in the sections to follow.

Due to the resummation in the LLA of the terms of the type (αS ln (Q2/Q2
0))m, a

strong ordering of the virtuality kt,i carried by the partons is obtained. An example of
multiple emissions of gluons by a mother gluon, often referred to as a gluon ladder, is
shown in Fig. 2.8. The strong ordering would mean that

|k2
t,0| � |k2

t,1| � . . .� |k2
t,n−1| � |kt,n2 | � Q2 (2.19)

By evolving a parton from an initial scale Q2
0 to Q2, each successive emitted parton will

carry a lower transverse momentum. Due to momentum conservation a second ordering,
although weaker compared to the ordering on the virtuality, is present. The momentum
fraction of the emitted partons decreases as well

x0 > x1 > . . . > xn−1 > xn (2.20)

A important assumption in the derivation the DGLAP evolution equations is that the
partons are assumed to travel in the same direction of the incoming proton. The trans-
verse momentum of the emitted partons can be neglected and together with the fact
that the virtuality of all partons is much smaller as Q2, the partons can be treated as
massless, effectively simplifying the calculations.

The BFKL Evolution Equation

Where the LLA approximation is made in terms of (αS ln (Q2/Q2
0)m for the DGLAP

equation, the Balitsky-Fadin-Kuraev-Lipatov (BFKL) evolution equation [66, 67] is ob-
tained by performing the LLA in terms of (αS ln (1/x))m. The validity region compared
to the other sets of evolution equations is shown in Fig. 2.7. The result is the presence
of a strong ordering of the momentum fractions of the emitted partons. For the gluon
ladder shown in Fig. 2.8 the ordering would entail that
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|x0| � |x1| � . . .� |xn−1| � |xn (2.21)

Due to the different LLA, a strong ordering of the momentum fraction has effectively
replaced the ordering of the transverse momentum of the emitted partons, obtained in
the DGLAP equation. The BFKL equation is expected to be valid in the low-x regime,
where ln (Q2/Q2

0) < ln(1/x). As the DGLAP evolution breaks down in the low-x region
of the phase space, the BFKL offers a better description of the evolution of the partons.

Since the virtuality of the partons does not have to follow the same ordering as
in the DGLAP evolution equations, the virtuality and the transverse momenta can no
longer be neglected. The PDF must have a dependence on transverse momentum of the
partons. The Transverse Momentum Dependent Parton Distribution Function (TMD) is
an extension of the PDF and resolves this issue, as the partons are treated off-shell. The
TMD relates to the PDF for the gluon in the following way

xfg(x,Q
2) =

∫
d2kt
π

xA(x, k2
t , Q

2)Θ(Q2 − k2
t ) (2.22)

Where A(x, k2
t , Q

2) is the TMD for the gluon and Θ is the Heaviside step function. The
BFKL evolution equation can be written as

d

d ln(1/x)
A(x, k2

t , Q
2) =

∫ ∞
0

d2k′tA(x, k′2t , Q
2)K(k2

t , k
′2
t ) (2.23)

The function K(k2
t , k
′2
t ) is the BFKL splitting kernel. Only the gluon is considered,

as the gluon density becomes dominant in the low-x regime compared to the quark
distributions, as shown on the right of Fig. 2.5. When going to higher centre-of-mass
energies in collisions, smaller values of x can be probed, resulting in a denser proton
content. Eventually saturation effects [68] are expected to occur in order to save the
unitarity, i.e. the interaction probability of two partons should always be smaller than
one. Whenever the proton reaches a critical density, it is expected that the partons will
start recombining. In calculations, the saturation of the gluon density is included by
limiting the gluon TMD. Apart from saturation effects, the increased gluon density is
expected to result in a larger probability for MPI. Therefore, the low-x regime is expected
to be more sensitive to DPS (and MPI) effects.

The CCFM Evolution Equations

The Ciafaloni-Catani-Fiorani-Marchesini (CCFM) evolution equation [69, 70] forms the
bridge between the two former sets of evolution equations. A resummation of leading
log terms of the type (αS ln (Q2/Q2

0)m and (αS ln (1/x))n is performed. Therefore, the
CCFM evolution is valid at both large Q2/Q2

0 and small x, effectively forming the bridge
between the DGLAP and the BFKL evolution, as schematically shown in Fig. 2.7. The
ordering of the emitted partons is not in |k2

t |, nor in x, but rather in the emission angle.
For the gluon ladder in Fig. 2.8, such an angular ordering would yield that
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ξ0 � ξ1 � . . .� ξn−1 � ξn � ξ̄ (2.24)

Where the angles ξi = 1− cos θi, with θi the emission angle of the i’th gluon, and ξ̄ the
maximum allowed value determined by the interaction. It can be shown that the angular
ordering condition above implies the ordering below.

q0z0 < z1, q1z1 < z2, . . . , qn−1zn−1 < qn (2.25)

The four momenta qi are defined as q2
i = −Q2

i and Q2
i the scale of the i’th emission. The

ordering is expressed by the Heaviside step function Θ and enters the CCFM equation,
which can be formulated as

xA(x, k2
t , Q

2) = xA0(x, k2
t , Q

2)∆s(q)

+

∫
dz

∫
d2q

πq2
Θ(Q− zq)∆s(Q, zq)P̃ (z, q, kt)A

(x
z
, k′2t , q

2
)

(2.26)

Where ∆s is the aforementioned Sudakov form factor. The function P̃ (z, q, kt) is the
CCFM splitting function, defined below, while all other definitions remain as before.

P̃ (z, q, kt) =
ᾱS

(
q2(1− z)2

)
1− z +

ᾱS(k2
t )

z
∆ns(z, q, kt) (2.27)

The running of the coupling is taken into account through ᾱS = 3αS/π, which takes the
scales q2(1 − z)2 and k2

t as input. The function ∆ns is the so-called non-Sudakov form
factor. Whereas the Sudakov form factor took all virtual corrections for the real emission
for the divergence z → 1 into account, the non-Sudakov form factor does the same but
for the z → 0 divergence.

The Color Dipole Model

Originally the Color Dipole Model (CDM) [71–73] was formulated to provide an alterna-
tive description for the evolution of partons for e+e− → qq̄ processes. The CDM allows
for the calculation of higher order corrections of QCD emissions, while not being based
on the framework of the evolution equations presented above. A color dipole is spanned
between the initial quark-antiquark pair, which is linked to a gluon emission probability.
Whenever a gluon is emitted, two new dipoles are formed between each of the initial
partons and the emitted gluon. The process is repeated until an avalanche or cascade of
particles is formed, where each emitted particle is softer compared to the previous one.
A visual representation of the workings of the CDM is depicted in Fig. 2.9. Later the
framework was extended to electron-proton and proton-proton collisions.
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Figure 2.8: A visual representation of an electron-proton interaction along with a gluon
ladder. A gluon coming from the proton emits multiple gluons with different transverse
momenta in succession before interacting with an electron through the exchange of a
photon. Each emission subsequently changes the transverse momentum and the momen-
tum fraction of the mother parton. The virtuality of each parton is indicated with k2

i

along with its momentum fraction xi, while the transverse momentum of the emitted
partons is indicated with pT,i.
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Figure 2.9: A visual representation of the workings of the CDM. The initial quark-
antiquark pair spanning the first color dipole is shown on the bottom of the figure. After
each gluon emission, new color dipoles are spanned between the particles. A possible
example of the color charges of the particles is given in the figure. The CDM provides
an alternative approach to higher order particle emissions and particle evolution.
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Chapter 3

Hadron Collisions

In the previous chapter, the underlying theory was discussed. However, the whole frame-
work in which measurements are performed and predictions are made still needs to be
highlighted. In this chapter, we will start by defining factorization, which effectively al-
lows a hadronic collision to be split into multiple parts that can either be measured and
modeled from experiments or can be calculated perturbatively. Next, we will introduce
the DPS formalism along with the observables chosen for this analysis. Afterward, all
models used to make DPS predictions will be introduced. Lastly, a generator level study
of the DPS-sensitive observable is performed.

3.1 Factorization

The factorization theorem [74] states that the cross section of a process can be separated
into two parts, the short-distance partonic cross section and universal long-distance func-
tions describing the other spectator partons. The cross section characterizing a hadron-
hadron interaction can be written as the product of the perturbatively calculable partonic
cross section and the non-perturbative PDF describing the hadron structure. Since the
scale of the perturbative part is in general larger compared to the scale of the non-
perturbative part, the former is referred to as the hard part of the interaction, while
latter is often labeled as the soft part. The general form of the hadronic cross section of
an interaction then takes the form of

σh1h2
=
∑
i,j

∫
dx1dx2fi/h1

(x1, µ
2
F )fj/h2

(x2, µ
2
F )
dσ̂ij→k
dx1dx2

(3.1)

where x1,2 is the longitudinal momentum fraction that the partons receive from their
respective mother hadron. The cross section σ̂ij→k is the partonic cross section for the
process where partons i, j form a given final partonic state k. Partonic cross sections
are perturbatively calculable, they consist of the Matrix Element (ME) and a Lorentz-
invariant phase space factor Φk. They are discussed in more detail in the next section.
The functions fi/h1

and fj/h2
are the PDF, which give the probability that a parton i, j,

coming from the hadron h1,2, takes part in the hard interaction. The PDF takes the
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factorization scale as a second input, µ2
F characterizes the scale at which the separation

between the hard and the soft part is made. It is often set equal to the scale of the hard
interaction, but no fixed or standard recipe exists. Since the PDF describes the soft or
non-perturbative part of the hadronic interaction, they can not be calculated and have
to be extracted from data. Many different sets of PDF have been developed. The PDF
sets used in this analysis will be listed when discussing the Monte Carlo (MC) models in
Sec. 3.7.

In the formulation of the hadronic cross section in eq. (3.1), the transverse momentum
of the partons in question has been neglected. This approach to factorization is referred to
as collinear factorization. The approximation is motivated by the fact that at high-energy
collisions the scale of the transversal momentum of the partons is much smaller compared
to the energy scale of the hard interaction. Collinear factorization can, therefore, fail
whenever the size of the transverse momentum vector of the partons becomes comparable
to the size of its longitudinal momentum, i.e. the low-x regime, which will be probed in
this analysis. The DGLAP evolution equations are used in the collinear factorization
scheme as the transverse momentum of the partons is neglected. Different approaches
to incorporate the transverse momentum exist, such as transverse momentum dependent
factorization [74] or high-energy factorization (kT-factorization) [75–77]. One has to
switch from the standard PDF to the TMD, which generally relate to the standard PDF
as

fi/h(xi, µ
2
F ) ∼

∫
d~kTfi/h(xi,~kT, µ

2
F ) (3.2)

An explicit example was given in the context of the BFKL evolution equation, however,
in the CCFM framework TMDs have to be used as well. The exact relation between the
PDF and the TMD for the gluon is given in eq. (2.22).

Both collinear factorization and kT-factorization, will be used to study four jet pro-
duction in proton-proton collisions. The models will be detailed in Sec. 3.7

3.2 Hard Interaction
The partonic cross section in the formula of the cross section (3.1) can be written as

σ̂ij→2+n =

∫
dΦ2+n |Mij→2+n|2 (3.3)

Where dΦ2+n is the Lorentz invariant differential phase space factor of the final state
containing 2 + n partons, which has been used instead k for reasons that will become
clear further down in the text. The hadronic cross section can be calculated through
perturbation theory where the MEMij→2+n can be written as the sum over all possible
Feynman diagrams or

σ̂ij→2+n =

∫
dΦ2+n

∣∣∣∣∣∑
l

F (l)
ij→2+n

∣∣∣∣∣
2

(3.4)
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Where F (l)
ij→2+n is a Feynman diagram with 2 + n partons in the final state and with

l additional loops. A loop is called a virtual correction since it does not add any real
partons to the final state. The number n can be seen as the number of additional legs to
the 2 → 2 ME which corresponds to the number of real corrections added to the 2 → 2
ME. When certain values for the numbers n and l are chosen, different processes are
included in the analytical calculation of the ME. It is often stated that the calculation
goes up to a fixed order in αS, which refers to the number of QCD vertices included in
the calculation of the Feynman diagrams. Each virtual correction increases the order in
αS with two units, while the real corrections add one unit to the order of αS. In Fig. 3.1,
a 2 → 2 ME is written as the perturbative series over all Feynman diagrams with an
increasing number of virtual corrections or loops l.

Figure 3.1: A 2 → 2 ME written as the perturbative series over all Feynman diagrams.
The ME from eq. (3.3) with n = 0, i.e. Mij→2, is shown on the top left side and is
written as a perturbative series over all 2 → 2 Feynman diagrams. The first term is
the LO diagram for which l = 0, while the second and third terms, the two groups of
diagrams between the parentheses, include the one- and two-loop corrections for which
l = 1 and l = 2 respectively. The second and third term represent the NLO and N2LO
corrections.

Three general classes depending on the choice of n and l can be defined and are listed
below.

• n, l = 0: production of the final state with 2 partons at LO. Only the 2 → 2
diagram at LO is included in the calculation, which corresponds to the LO diagram
in Fig. 3.1.

• n 6= 0, l = 0: production of a final state with 2 + n partons at LO. A number of n
real corrections to the LO 2 → 2 diagram is included in the analytical calculation
of the ME.

• n, l 6= 0: production of a final state with 2 +n partons at NlLO which also includes
the production of a final state with 2 + n + 1 partons at Nl−1LO, and so on until
the production of a final state with 2 + n+ l at LO.

In this work, MC event generators at LO and NLO will be used in combination with
2→ 2, 2→ 3 and 2→ 4 ME. All models will be discussed in detail in Sec. 3.7
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3.2.1 Parton Showers
To incorporate or to simulate the effect of the higher-order diagrams, parton shower
algorithms [78], are used. The showering algorithms are based on the different types
of parton evolution and evolve the initial and final state partons in general differently,
thus one distinguishes between Initial State Radiation (ISR) and Final State Radiation
(FSR).

The FSR is described by determining the maximum scale Q2, which is obtained
from the hard scattering, and letting it evolve down to a lower cutoff scale Q2

0. In MC
generators the evolution is performed by examining the probability that a parton does
not emit another parton while going one scale Q2

1 to another scale Q2
2, the probability

can be written as

Pi(Q
2
1, Q

2
2) = fi/h(xi, Q

2
2) exp

(
−
∫ Q2

2

Q2
1

fi(t)

)
dt (3.5)

The exponent is the aforementioned Sudakov form factor, which represents the proba-
bility of a parton i evolving from the initial scale Q2

1 to another scale Q2
2 without the

occurrence of a branching, i.e. without the emission of a parton.
For the description of the ISR, one uses a backward evolution. First the hard scat-

tering is selected, after which the parton shower that came before the scattering is re-
constructed. The reconstruction starts at the hard scale of the scattering Q2 and evolves
backwards to the initial softer cutoff scale Q2

0. The cutoff scale regulates the soft and
collinear divergences.

3.2.2 Matching Procedures
Since the analytical calculation of all order diagrams is not possible, the parton showers
are used to simulate the contribution from the missing diagrams. However, one cannot
match the ME with the parton shower in a naive manner since double counting can
occur. The matching procedure, to which different approaches exist, aims to resolve the
double counting. The so-called MLM matching scheme [78, 79] will be used to match
LO 2→ 2 + n ME with the partons shower. The method is based on an event rejection
method. Whenever a parton is emitted by the parton shower above the scale of the
partons in the ME, the event is discarded. Additional approaches have been developed
to perform the matching at NLO and will be used in this work, i.e. the powheg [80–82]
and MCNLO [83,84] methods. Both will be highlighted further when discussing the Monte
Carlo event generators, used to make predictions in Sec. 3.7.

3.3 Underlying Event
The Underlying Event (UE) is used to indicate a collection of phenomena apart from the
initial hard interaction, occurring in hadronic collisions. These phenomena are partonic
interactions, which underlie the hard interaction, hence the name. Generally, the partonic
interactions constituting the UE take place at a lower scale compared to the initial
hard interaction. Parts of the UE still fall into the perturbative framework, while other
phenomena need to be parametrized as their typical scales are too soft. The distinction
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between three types of phenomena is made: the aforementioned ISR and FSR, the Beam-
Beam Remnants (BBR) and Multiple Partonic Interactions (MPI). In Fig. 3.2, a sketch
of a complete hadronic interaction with the three groups of phenomena is shown, all
groups will be discussed below.

The ISR and FSR describe the emittance of quarks and gluons by the partons that
take part in the hard interaction, as described in Sec. 3.2.1. When examining final
states with more than two objects, the role of ISR and FSR becomes more important.
The parton shower can add real emissions to the incoming or outgoing particles of the
ME, effectively incorporating the contribution of higher-order diagrams to the ME. For
example, the role of the ISR and FSR can not be neglected in 2 → 2 processes since
at least two jets need to originate from the PS in order to obtain a four jet final state.
Generally, the scale of the jets produced by ISR and FSR is lower compared to the scale
of jets originating from the hard interaction.

Not all processes need both ISR and FSR, i.e. a process with a leptonic (hadronic)
initial state and a hadronic (leptonic) final state will only be susceptible to FSR (ISR).
Therefore, they can be studied independently: ISR can be studied through Drell-Yan
production1 in proton-proton collisions, while quark production in leptonic collisions
allows for the study of FSR effects. In Fig. 3.2, the ISR and FSR are depicted by the
blue lines, entering and leaving the hard interaction which is shown in red.

When protons interact, not all partons partake in the hard interaction, effectively
leaving colored groups of partons or the BBR behind. The remaining partons are often
referred to as spectator partons and can interact among themselves which needs to be
modeled. As the BBR move predominantly in the direction of the initial incoming par-
ticle beams, its effects can only be measured by detector parts close to the beamline.
Additionally, the typical scale of the BBR is much smaller compared to the hard inter-
action, therefore, the BBR mainly contributes to the soft part of the UE. In Fig. 3.2, the
BBR is depicted by the blue lines going to the center of the picture which originate from
the incoming partons without interacting with other partons.

A second possibility for the spectator hadrons is that they initiate additional hard
interactions inside the same hadronic collision which is described by MPI. The colliding
protons are composite objects containing partons of which the density can become large,
e.g. the low-x regime where the gluon density grows exponentially, increasing the prob-
ability for the occurrence of MPI. The scale of MPI is smaller compared to the scale of
the initial hard interaction. However, the scale of MPI can range from roughly the scale
of the hard interaction all the way down to very low scales, effectively contributing to
the hard and soft parts of the UE. In Fig. 3.2, MPI are shown in purple, on the bottom
of the sketch.

From an experimental point of view, the existence of MPI has been presupposed as
well. The total cross section of the hard interaction σhard is related to the generic partonic
cross section σ̂, introduced in eq. (3.1) as given below.

σhard(pT,min) ∼
∫ s/4

p2T,min

dσ̂

dp2
T

dp2
T ∼

1

p2
T,min

(3.6)

1In a Drell-Yan process, a quark-antiquark pair produces a virtual photon or Z boson which decays
into a lepton pair, e.g. qq̄ → Z → e+e−.
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Figure 3.2: A sketch of a hadron collision with all its components, taken from [85]. Two
partons coming from the inbound hadrons partake in the hard interaction (red). The
hadrons emit partons before and after the hard interaction in processes labeled as ISR
and FSR, both depicted in blue around the hard interaction. The BBR are the blue lines
coming from the hadrons which do not interact further, while the purple lines represent
MPI. The transition from the light green blobs to the dark green cascades represents the
hadronization, where colored particles are converted in color neutral hadrons.

Where pT,min is the minimal exchanged transverse momentum between the two partons,
introduced as a cutoff in order to regulate the total partonic cross section of the hard
interaction σhard. While the integrals over the momentum fractions x1,2 in eq. (3.1)
have been replaced by an integral over the transverse momentum squared. At values of
pT,min ≈ 2−5 GeV, the cross section σhard is found to be larger than the total inelastic
cross section σinel which has been measured to be around 70-80 mb at a centre-of-mass
energy of

√
s = 13 TeV [86–88]. However, this observation does not lead to contradictions

since σhard is a partonic cross section rather than the hadronic cross section. Hadrons
can be considered as bundles of partons, with a non-zero probability of MPI occurring
simultaneously in a single collision. In this framework, the ratio of both cross sections
can be larger than unity and can be viewed as the average number of parton interactions
as a function of pT:
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n̄ =
σhard(pT)

σinel
(3.7)

In the simplest models of MPI and DPS, the different interactions are assumed to be
completely independent of each other. Possible correlations between the partons coming
from the same hadron are ignored, see Sec. 3.6 for more details. The result of this
assumption is that n follows a Poisson distribution. However, the divergent behavior of
the cross section σhard still remains and is regulated by the pT cutoff. From a physical
point of view, the cutoff is motivated by the fact that at increasingly smaller pT of the
partons the corresponding transverse wavelength becomes longer, therefore, the partons
can no longer distinguish between the different color charges, effectively decreasing the
coupling. The effects of MPI are expected to become increasingly important as the
centre-of-mass energy of collisions rises since the low-x region becomes more accessible,
resulting in higher parton densities.

In order to model the phenomena described above, specific measurements are per-
formed at different centre-of-mass energies since the UE activity and the role played by
the UE event in collisions are expected to increase when the centre-of-mass energy is
raised. Measurements of the UE are performed in different channels due to the scale
dependency of the UE, such measurements at a centre-of-mass energy of

√
s = 13 TeV

include the study of leading particles and jets [89], of Drell-Yan processes [90] and of tt̄
pair production [91]. In turn, these measurements are used to model the UE. The MC
event generators pythia 8 [92, 93] and herwig [94, 95] have adjustable parameters to
control the behavior of their event modeling. The sets parameters are altered to make
the models fit some aspects of the data better, such a collection of parameters is referred
to as a tune, see Sec. 3.7 for more details.

3.4 Hadronization
The hard interaction, together with the parton shower and the UE description, do not
yet give the full description of hadronic interactions. Due to confinement, all formed
partons need to be converted into colorless hadrons. The conversion is referred to as
hadronization. In Fig. 3.2, the hadronization step is shown at the outer edges, where the
light green is converted into the dark green, representing colorless hadrons. Hadronization
is not perturbatively calculable and needs to be modeled as well. Two main classes of
models exist, the so-called string and cluster models.

The former class of models is based on the Lund model [96], which describes con-
finement linearly. Quarks are imagined to be encapsulated by a color flux tube. As
they move away from each other, the energy of the color flux tube will keep rising up
until the point that it becomes energetically favorable to form a quark-antiquark pair,
effectively breaking up the string into two shorter pieces. The process is repeated until
stable hadrons can be formed. The fragmentation function, defined below, represents the
probability of the splitting of a string where a hadron with momentum fraction z of the
original string is created.

f(z) ∼ (1− z)a
z

e−bm
2
T/z (3.8)
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Where mT is the transverse mass of the hadron, equal to
√
m2
h + p2

T. While a and b are
tune-able parameters. Baryon production can be incorporated by allowing the formation
of diquark pairs in the splitting of the strings.

The cluster model [97–100] is based on the so-called preconfinement property of parton
shower [101]. To initiate the hadronization process, the cluster model starts by non-
perturbatively splitting gluons, coming from the parton shower, into quark-antiquark
pairs in a color singlet state. Next, the neighboring partons are combined into singlet
clusters. These clustered partons then undergo isotropic decays into pairs of hadrons.
Compared to the string models, the cluster model has fewer parameters, however, it has
problems in dealing with the decay of more massive clusters.

Fig. 3.3, taken from [102], schematically depicts the working of the string models and
the cluster models.

Figure 3.3: Schematic depiction of the differences between the string models (left) and
the cluster models (right), taken from [102].

3.5 Defining a Jet
Once all partons from a collision have been hadronized, collections of hadrons in the
vicinity of the original direction of the partons remain. From both an experimental and
a theoretical point of view, it is advantageous to try and group these particles into a
single object, matching the initially produced partons. In an experiment, neighbouring
signals in the detector are recombined into one signal, while in theoretical calculations one
can avoid working with a multitude of hadrons, effectively desensitizing the calculations
from the hadronization process. The collections of particles, corresponding to an initially
produced parton, are referred to as jets. Different types of jet algorithms have been
developed over the years and are judged according to multiple criteria [103], given below.

• The infrared and collinear singularities should not appear in the perturbative cal-
culations, as well as the algorithm should find solutions independent of infrared
and collinear emissions.
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• The solutions found by the algorithm should not depend on the frame of reference.
If one were to boost the frame in the longitudinal direction, the same jet collections
should be found.

• The quantities used to define the boundaries of the jets, should not be dependent
on the exact final state. In this regard the total transversal energy would not be a
proper quantity, as it depends on the exact amount of particles taken into account.

• The same jet collections for a certain collision should be found at all levels, i.e.
parton, particle and detector level.

• A straightforward implementation of the algorithm is desired.

In this analysis, it is opted to use the anti-kt algorithm [104], which is a sequential recom-
bination jet algorithm that meets all of the criteria. In general, sequential recombination
algorithms use a fixed measure in the recombination of two objects into a new object
or jet. In regard to the clustering of the jets, the anti-kt algorithm uses the distances
defined below.

dij = min
(
p2p
T,i, p

2p
T,j

) ∆2
ij

R2
(3.9)

diB = p2p
T,i (3.10)

dmin = min (dij , diB) (3.11)

Where ∆ij = (yi−yj)2+(φi−φj)2 is the spatial distance between the partons i and j. The
angle φi represents the azimuthal angle of the objects and R is a constant representing the
jet cone radius. The parameter p is set equal to−1 for the anti-kt algorithm. The distance
measure of other sequential recombination algorithms differs only in their value of p. The
kt algorithm [105] uses p = 1, while the so-called Cambridge-Aachen algorithm [106] has
implemented a value of p = 0. Lastly, yi is a spatial coordinate defined as

y =
1

2
ln

(
E + pz
E − pz

)
(3.12)

The rapidity describes how forward/backward an object is with respect to the beam axis.
In the limit where the mass of the particles is negligible, the rapidity can be approximated
by the pseudorapidity which is defined below.

η =
1

2
ln

(
~p+ pz
~p− pz

)
= − ln

(
tan

(
θ

2

))
(3.13)

Where pz is the momentum in along the beam axis and θ is the polar angle. The
pseudorapidity itself is not invariant under Lorentz boosts along the z-axis, however,
differences in the pseudorapidity are.

The anti-kt algorithm uses the measure to calculate both distances for objects i and
j. Whenever dmin is equal to dij , then they are combined into an object through the
addition of the four-vectors of the momentum. If dmin is equal to diB , then the object i
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is seen as a new jet and removed from the objects over which the algorithm is performed.
The recombination procedure starts with the objects with the highest pT and continues
until objects cannot be combined any further. An example of the performance of the
anti-kt algorithm with a cone size R = 1 is given in Fig. 3.4. A more detailed discussion
on the performance compared to other jet algorithms can be found in [104].

Figure 3.4: A parton level event shown in the y − φ space, where the jets have been
clustered with the anti-kt algorithm with a parameter R = 1, taken from [104]. As the
algorithm starts with objects with the highest pT, the jets associated with these initial
objects tend to be circular. While the jets associated with the lower pT objects were
formed with the “leftovers”.

3.6 Double Parton Scattering

With the most important aspects of hadron collisions defined and discussed above, an
overview of the DPS formalism will discussed. In this section, an overview of the lowest
order theory on DPS will be given. Afterward, earlier measurements and the DPS channel
of choice will be highlighted. Lastly, multiple DPS-sensitive observables, used to study
DPS in this work, will be defined.

3.6.1 The Double Parton Scattering Cross Section

In the framework of collinear factorization [74], the hadronic DPS cross section can
be written as the product of two independent partonic cross sections and the so-called
Double Parton Distribution Function (dPDF) [107], as given below.
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σDPS
A,B =

m

2

∑
i,j,k,l

∫
dx1dx2dx

′
1dx
′
2d

2b Γij(x1, x2,b, µ
A
F , µ

B
F )Γkl(x

′
1, x
′
2,b, µ

A
F , µ

B
F )

σ̂A
ik(x1, x

′
1, µ

A
F )σ̂B

jl(x2, x
′
2, µ

B
F ) (3.14)

The x1,2 and x′1,2 are the longitudinal momentum fractions that the partons receive
from their mother hadron, while b represents the impact parameter. The scales µAF and
µBF characterize the processes A and B. They are their respective factorization scales.
Both scales serve as the input for the aforementioned dPDF, which contains correlations
between the two partons coming from each of the two hadrons. Both processes A and
B are described by their own perturbatively calculable partonic cross sections σ̂A and
σ̂B. An additional symmetry factor m is introduced to prevent double counting, as the
processes A and B can be identical. Whenever the two processes are distinguishable, the
symmetry factor is equal to two and one otherwise.

Two ansatzes are made in order to rewrite the DPS cross section. The first being
that the dependence on the transverse distance b factorizes with the rest of the dPDF in
the following way

Γij(x1, x2,b, µ
A
F , µ

B
F ) = Fij(x1, x2, µ

A
F , µ

B
F )G(b) (3.15)

where the function G(b) is assumed to be universal and describes the dependence of the
DPS cross section on the relative transverse distances between the partons. The second
ansatz neglects the correlation between the two partons coming from the same hadron,
allowing the function F to be formulated as the product of two PDF.

Γij(x1, x2, b, µ
A
F , µ

B
F ) = fi(x1, µ

A
F )fj(x2, µ

B
F )G(b) (3.16)

Applying these assumptions to the DPS cross section (3.14), results in the expression
below.

σDPS
A,B =

m

2

∑
i,j,k,l

∫
dx1dx2dx

′
1dx
′
2d

2bfi(x1, µ
A
F )fj(x2, µ

B
F )fk(x′1, µ

A
F )fl(x

′
2, µ

B
F )G2(b)

× σ̂A
ik(x1, x

′
1, µ

A
F )σ̂B

jl(x2, x
′
2, µ

B
F ) (3.17)

=
m

2

∫
d2b G2(b)

(∑
ik

∫
dx1dx

′
1fi(x1, µ

A
F )fk(x′1, µ

A
F )σ̂A
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′
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A
F )

)

×

∑
jl

∫
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2fj(x2, µ

B
F )fl(x
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B
F )σ̂B

jl(x2, x
′
2, µ

B
F )

 (3.18)

One can identify the hadronic cross sections of the process A and B separately, i.e. the
integral over the product of the partonic cross section together with the PDF for each
of the two processes. After defining the effective cross section σeff = (

∫
d2bG2(b))−1, the

so-called pocket formula of DPS is obtained.
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σDPS
A,B =

m

2

σAσB

σeff
(3.19)

Where the effective cross section σeff carries the information about the transverse distance
between partons, however, it is obtained in a rather naive description of DPS. The validity
of the DPS pocket formula and therefore the validity of the two ansatzes is discussed
in [108]. It was found that the formula upholds and remains process independent only
if inclusive scenarios are considered. Events cannot be vetoed due to the presence of
additional objects in the final state. However, efforts to improve the description of DPS
have been made, where the partons are not seen as completely uncorrelated. Although
significant consequences of the incorporation of the correlations have been found [109–
112], the models are still in an early stage.

The DPS cross section σDPS
A,B and the effective cross section σeff have been determined

for multiple final states at different centre-of-mass energies, using a range of different
extraction techniques. Regardless of which is applied, the cross sections of the processes
A and B in the DPS cross section need to be identified and measured. We will come back
to the DPS pocket formula and the definition of the processes A and B when discussing
the applied strategy for the extraction of the effective cross section σeff in Chap. 8.

3.6.2 DPS and σeff Measurements
Throughout the years, multiple measurements of DPS have been performed at varying
centre-of-mass energies, and evidence for DPS events has been observed in multiple chan-
nels or final states. An overview of DPS measurements using multiple final states has
been given in Chap. 1.

All measurements have provided DPS-sensitive distributions and have concluded that
the addition of DPS to the simulation helps to improve the description of the data. Most
of the studies have been able to extract a value for the parameter σeff in the framework
of the DPS pocket formula, described above. Two main techniques have been applied in
the extraction efforts: the template method and the tuning method. The former relies
on the measurement of the differential cross section as a function of observables that are
expected to be sensitive to DPS events in a certain region. Next, different background
and signal templates have to be constructed. The background template is to simulate
the SPS events, while the DPS processes are put in the signal template. The fraction of
DPS events is determined by fitting the two templates to the differential cross section of
the DPS-sensitive observable. Along with the measurement of the independent processes
A and B, the effective cross section can be determined from the DPS pocket formula
(3.19). While in the latter method varies parameters of the UE tune in order to make
the predicted differential cross section as a function of the DPS-sensitive observable(s)
fit the data better, effectively producing a new “DPS” tune. In this work, it is opted
the template method and perhaps a more naive method that compares the shape of the
predicted differential cross section as a function of DPS-sensitive observables with the
data. Both will be discussed more extensively in Chap. 8.

Additional measurements that test the framework of the DPS pocket formula in
different channels and at different energies are important from an experimental point
of view. If the values of the parameter σeff appear to differ for different channels or at
different centre-of-mass energies, it would indicate a clear need for improved DPS models.

31



This thesis aims to contribute to these previous measurements and to shed more light
on DPS. Multiple differential cross sections as a function of a multitude of DPS-sensitive
observables will be determined in the inclusive four jet channel. While the template
method will be implemented for the extraction of the σeff .

3.6.3 DPS in Inclusive Four Jet Production

At the LHC, jet production is one of the most abundant processes and can be particularly
relevant for DPS. Events with jets with low transverse momenta are of particular interest,
as the low-x region can be probed. The momentum fraction of the parton x is linked
to the transverse momentum pT, the pseudorapidity η and the centre-of-mass energy

√
s

through the formula below [113].

x ≈ pT√
s
· e±η (3.20)

Therefore, forward/backward jets with low pT can be used to probe the low-x regime. In
the discussion on the evolution equations in Sec. 2.2, it was mentioned that the distribu-
tion of sea quarks and gluons increases as the proton becomes denser at low-x, effectively
increasing the probability for DPS events. Additionally, it was shown in [108] that the
DPS pocket formula only upholds if inclusive scenarios in the final state are considered.
Therefore, it is opted to examine the inclusive four jet channel in this work.

Inclusive four jet events can be produced in either SPS and DPS, both schematically
depicted in Fig. 3.5 on the left and right, respectively. In both the SPS and the DPS case,
the four jets with the highest transverse momentum or leading jets will be considered.
For a SPS event, all four leading jets are produced in the same interaction, while in
the ideal DPS topology two jet pairs, often referred to as a dijet, are created. The
differences between the two jet topologies will generally result in stronger correlations
between the jets for events produced through SPS compared to DPS. By exploiting the
different correlations between the different jets, one can differentiate between the SPS
background and the DPS signal.

3.6.4 Choice of Observables

The proper choice of variables is essential in order to study DPS. One aims to measure
observables that are expected to display a sensitivity to the topology of DPS events in
certain areas of the phase space. The correlations between a dijet or four jets produced
in a hard scattering of a DPS event is expected to show distinctly different correlations
compared to the dijet or four jets originating from a SPS event. Observable aimed at
studying DPS, should therefore exploit these differences as much as possible. Many of
such variables have been defined and analyzed in data driven analysis [6–10,12–20,23–27]
before. Phenomenological studies have also been performed in the collinear factorization
formalism [114–116], as well as phenomenological studies in the kT-factorization formal-
ism [117–119]. Apart from the pT and η spectra of the four leading jets, six observables
have been chosen in order to study DPS in four jet production. All of them are listed
below.
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Figure 3.5: A schematic depiction of inclusive four jet production through SPS (left) and
DPS (right). In the case of SPS, one hard scattering produces the jets a through d, while
two independent hard scatterings create two jets each in the case of DPS. As the two
jet pairs are created independently in a DPS event, they are expected to show different
correlations compared to four jets originating from a SPS event.

• The azimuthal angular difference between the two jets with the lowest pT or the
two softest jets,

∆φsoft = |φ3rd − φ4th| (3.21)

The two softest jets are more likely to be in opposite directions in the azimuthal
plane due to the conservation of momentum whenever the jets are produced in a
DPS event. The difference between their azimuthal angles will approximately be
π. Such configurations are referred to as back-to-back configurations. The DPS
contribution is therefore expected to peak around ∆φsoft → π.

• The minimal combined azimuthal angle of three jets, defined as

∆φmin
3j = min {|φi − φj |+ |φj − φk||i, j, k ∈ [1, 2, 3, 4], i 6= j 6= k 6= i} (3.22)

DPS events are more prone to large values of ∆φmin
3j [119], as the two jet pairs

are more likely to be in back-to-back configurations in the azimuthal plane. The
topology where one jet recoils against the three other jets in the azimuthal plane
will occur on average more for SPS events compared to DPS topologies.

• The maximum pseudorapidity difference between two jets,

∆Y = max {|ηi − ηj ||i, j ∈ [1, 2, 3, 4], i 6= j} (3.23)

As the maximum separation in pseudorapidity becomes larger, there is a rising
possibility that the two jets come from two different interactions or a DPS event.
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• The azimuthal angular difference between the jets with the largest pseudorapidity
separation,

φij = |φi − φj | for ∆Y = |ηi − ηj | (3.24)

As the most remote jets, in terms of the pseudorapidity, are more prone to be
produced in DPS events, a decorrelation in the distribution of the angular difference
of the azimuthal angle of the most remote jets is expected. Whereas the jets are
predicted to show stronger correlations, whenever they come from a SPS event.

• The transverse momentum balance between the two softest jets,

∆pT,soft =
|~pT,3rd + ~pT,4th|
|~pT,3rd|+ |~pT,4th|

(3.25)

When the two softest jets originate from DPS, then they are more likely in a back-
to-back configuration rendering the value for ∆pT,soft small. A more decorrelated
picture for SPS is anticipated.

• The azimuthal angle between the hard and soft jet pair,

∆S = arccos

(
~pT(jet1, jet2) · ~pT(jet3, jet4)

|~pT(jet1, jet2)| · |~pT(jet3, jet4)|

)
(3.26)

Where ~pT(jeti, jetj) is the combined transverse momentum vector of the i’th and
j’th jet. A more decorrelated picture is expected for DPS compared to SPS, as both
jet pairs are independently produced, while the SPS distribution peaks around π,
therefore in the tail of ∆S→ 0 a sensitivity to DPS is projected to be present.

3.7 Monte Carlo Generators
Central to any model trying to describe data or trying to make predictions of certain
processes is the MC technique, which refers to the use of random numbers and the use
of probability statistics to solve problems. Any model that uses such methods to make
physical predictions, is referred to as a MC generator. Many different MC generators
exist, which produce different results, depending on the implemented evolution of the
partons, the factorization scheme that is used, . . . However, the core techniques or opera-
tions of these MC generators are the same, i.e. they need to be able to generate numbers
according to a certain distribution and they need to be able to calculate integrals. In
what follows we will make the distinction between three different groups of models, as
we will use the same three groups when discussing the results. The two MPI models
implemented by the pythia 8 and herwig MC event generators will be discussed at the
end of this section.

3.7.1 pythia 8 and herwig Models
The pythia 8 and herwig MC event generators can produce predictions for a wide
variety of processes. Multiple different tunes, i.e. predefined sets of parameters of a
generator, have been used with the MC event generators in order to examine the effect
of these tunes. All are listed below, along with additional information on the MC event
generators themselves.
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pythia 8

The pythia 8 MC event generator [92, 93] is a LO MC generator, its 2 → 2 ME is at
Born level. The ME is matched with a DGLAP evolution at Next-to-Leading Log (NLL)
for the simulation of the parton shower. The implementation of the DGLAP evolution
equations yields a strong ordering in pT, i.e. the pT carried by successively emitted
partons decreases when moving away from the hard interaction. For the description of
the UE, different tunes or sets of predetermined parameters exist. They are obtained by
tuning certain parameters in pythia 8 to fit data.

• Three different tunes have been used in pythia 8.240, they are listed below.

? The CUETP8M1 tune [120, 121] has been obtained by tuning the pythia 8
parameters to CDF data at

√
s = 900 GeV and 1.96 TeV together with CMS

data at
√
s = 7 TeV, using the NNPDF2.3 LO PDF [122,123].

? The CP5 tune [124] is a more recent tune, which uses the newer NNPDF3.1 nnlo
PDF set [125]. In order to determine the new tune, data at a centre-of-mass
energy of

√
s = 13 TeV has been used in addition to data at lower energies.

? The CDPSTP8S1-4j tune [121] has been obtained by fitting predictions to two
DPS-sensitive observables ∆S and ∆pT,soft at a centre-of-mass energy of

√
s =

7 TeV, starting from the standard Tune 4C [126]. The CTEQ6L1 PDF [127] has
been used in the tune.

All three samples have been generated with a minimal value of 15 GeV for the p̂T

parameter, which determines the range of the transverse momenta of each of the
produced partons in the rest frame. The last step in the generation of an event is
the hadronization where the colored partons coming from the parton shower are
converted into colorless hadrons. The pythia 8 MC event generator has imple-
mented the Lund model in this regard.

• A fourth sample has been generated with pythia 8.301 with Vincia 2.3.01 shower-
ing, which has implemented a dipole-antenna showering [128], based on the CDM.
The standard pythia 8.301 tune has been used for this sample along with the
NNPDF2.3 LO PDF set, as no CMS tune for the version 8.301 is available as of yet.
The p̂T parameter is larger than 15 GeV for this sample.

herwig

The herwig++ and herwig 7 event generators [94,95] are both LO MC generators that
have implemented a 2→ 2 ME at Born level. For the evolution of partons, the DGLAP
evolution equations have been implemented, however, they differ from the pythia 8 MC
generator in the ordering of the partons in the parton shower. Whereas pythia 8 uses an
ordering in the pT of the emitted partons, herwig++ and herwig 7 have implemented
an angular-ordering. The opening angle of subsequent emitted partons decreases when
moving away from the hard interaction. In analogy to pythia 8, different tunes are
determined by fitting the MC predictions to data. The different versions of herwig in
combination with the used tunes are listed below.
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• herwig++ 2.7.1 has been used in combination with the CUETHS1 tune [121]. The
tune has been obtained in the same manner as the pythia 8 CUETP8M1 tune, i.e.
by tuning parameters in order to make the herwig++ predictions fit the CDF
data at

√
s = 900 GeV and 1.96 TeV together with CMS data at

√
s = 7 TeV. The

CTEQ6L1 PDF has been used in the generation of the sample.

• Two tunes have been used in the herwig 7.1.5 MC event generator.

? The SoftTune is the default tune provided by the herwig 7 authors and uses
the MMHT2014lo68cl PDF [129].

? The CH3 tune is derived similar to the CP5 tune: the newer NNPDF3.1 nnlo
PDF set has been used in combination with data at centre-of-mass energies√
s = 0.9, 1.96 and 13 TeV.2

All herwig samples have been generated with a minimal value of 15 GeV for the pa-
rameter p̂T. The hadronization is handled by the cluster model, as opposed to the Lund
model in pythia 8.

3.7.2 Multijet Models
A second group of models uses higher order matrix elements. These MC event gener-
ators are interfaced to pythia 8.240, pythia 8.301 (with Vincia), herwig 7 or Cas-
cade 3.0.01-beta1 [130] to include a description of the underlying event, showering and
hadronization. Details of the generated event samples are given below.

MadGraph 5

The MadGraph 5 (version 2.6.5) [83] is a MC event generator with the ability to com-
pute tree-level and NLO MEs for arbitrary processes. The merging of several LO samples
with a parton shower can also be performed by the MadGraph 5 event generator, as
it has a MLM matching scheme [83, 84] implemented. The three different samples that
have been generated with MadGraph 5 all use the standard factorization and renormal-
ization scale, they are handled internally. One NLO sample and two merged LO samples
have been generated, they are listed below.

• A NLO sample with a 2 → 2 ME is interfaced with pythia 8.240, which handles
the showering and the hadronization. The CP5 tune has been used along with
the generation cuts of 25 GeV and 20 GeV for the leading and subleading parton,
respectively.

• A first LO sample that combines a 2 → 2, a 2 → 3 and a 2 → 4 ME, from now
on referred to as 2→ 2, 3, 4, has been interfaced with pythia 8.240, using the CP5
tune. The generation cut on the partons was HT > 50 GeV, where HT is defined
as the scalar sum of the transverse momenta of the produced partons.

• A second LO sample with 2 → 2, 3, 4 ME has been generated in exactly the same
way. The only difference being that parton shower is handled by pythia 8.301
with Vincia, which uses the standard NNPDF2.3 LO PDF.

2No official documentation exists as of yet, however, the paper is in the final reading stage of the
review procedure. The paper has internal handle of CMS-PAS-GEN-19-001.
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The two first samples have been generated with the NNPDF3.1 nnlo PDF. A more com-
prehensive overview on the MLM matching procedure of the matrix elements can be
found in Appendix A.

PowhegBox

The PowhegBox (version 3633, 2019.02.25) [80–82] is a computer framework for imple-
menting NLO corrections in MC event generators following the powheg method. Each
event is built by producing a so-called Born configuration, on which the real phase space
is constructed afterward. Two different powheg samples, listed below, have been gener-
ated. Both have been interfaced with pythia 8.240 for the showering and hadronization.

• A NLO sample with a 2 → 2 ME [131] has been generated. The factorization
and renormalization scale are taken as the minimum pT of the underlying born
configuration. In the generation of the sample the minimum pT is set to 10 GeV,
which also serves as a generation cut.

• A NLO sample with a 2 → 3 ME [132] has been generated. The generation cut
or minimal pT of the underlying Born configuration is set to 10 GeV, while the
factorization and renormalization scales are set to HT/2.

The NNPDF3.1 nnlo PDF have been used in the generation of both samples.

KaTie

KaTie version 23April2019 [133] is a fairly new LO parton level event generator, which
is based on kT-factorization as opposed to collinear factorization. Therefore, it is possible
to make on-shell and off-shell calculations, i.e. calculations where the initial state partons
have a zero and a non-zero transverse momentum, respectively. KaTie allows for the
production of final states with two or more partons as well. In this analysis, it was opted
to work with a 2→ 4 ME. All parton level kinematics, used for the generation of samples,
are listed below.

• Four partons are generated in the final state with a pT greater than 35 GeV, 30
GeV, 25 GeV, 20 GeV for the leading, subleading, third and fourth leading parton,
respectively. Since the cuts are introduced at parton level, the effective thresholds
on the resulting hadron level jets are typically 5 to 10 GeV lower.

• The pseudorapidity of all partons is limited to |ηi| < 5.0.

• The factorization and renormalization scales are set to HT/2.

Four different samples have been generated with these parton level kinematics, i.e. two
on-shell and two-off shell samples.

• The first on-shell KaTie sample has been interfaced with pythia 8.240, using the
CP5 tune for the UE description.

• An on-shell KaTie sample has been interfaced with herwig 7.1.5, together with
the CH3 tune.
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• Two off-shell KaTie samples have been generated with two different sets of TMD,
i.e. the MRW-CT10nlo TMD (MRWTMD) [134] and the PB-NLO-HERAI+II-
2018-set2 TMD (PBTMD) [135].

The NNPDF3.1 nnlo PDF has been used in the production of both on-shell samples. In the
case of the off-shell samples KaTie has been interfaced with Cascade 3.0.01-beta1 [130].
Where Cascade is a MC event generator based on the CCFM evolution equation. It is
able to handle particles with a non-zero transverse momentum in the initial state.

3.7.3 SPS+DPS Samples
The PYTHIA 8.240 and KaTie MC event generators both allow the generation of two
2→ 2 matrix elements per event, resulting in a pure DPS sample. In KaTie, the σeff is
a parameter that directly determines the size of the DPS contribution relative to the SPS
cross section. A value of 21.3 mb is adopted as in [121]. For pythia 8, it is not possible
to set the σeff as it is determined by the underlying event parameters, and therefore
the second 2 → 2 process is simply added with the same kinematic cuts, without any
additional scaling of the cross section. Four SPS+DPS samples are used in the analysis
in this thesis.

• A pythia 8.240 sample is generated with the CP5 tune and the NNPDF3.1 nnlo
PDF.

• The second pythia 8 sample uses the CDPSP8S1-4j tune. It is the same sample
described in Sec. 3.7.1.

• An on-shell KaTie sample is generated with an explicit DPS contribution, with
the exact same generation parameters as the on-shell KaTie LO sample from the
multijet models. The showering and hadronization are handled by pythia 8.240
with the CP5 tune and the NNPDF3.1 nnlo PDF set.

• Two off-shell KaTie samples with an explicit DPS contribution are generated using
the same TMD as before. Since Cascade can not handle two 2 → 2 matrix
elements, non-perturbative corrections have been derived from the on-shell SPS
and DPS KaTie samples, and are applied to the off-shell DPS KaTie parton level
sample. A more detailed description of the corrections can be found in Appendix B.

It is important to highlight the difference between the SPS+DPS pythia 8 sample using
the CP5 and the CDPSTP8S1-4j tunes. The former produces two 2→ 2 MEs, which both
have a harder scale compared to the softer UE. The UE parameters have been fitted to
DPS-sensitive observables in the latter with the goal that the UE would simulate DPS.
Therefore the pythia 8 sample with the CDPSTP8S1-4j tune should not need an explicit
DPS contribution in order to give a proper description of DPS-sensitive variables.

No SPS+DPS samples have been generated with herwig, as the MC event generator
is not able to process two 2→ 2 MEs in the same event file.

3.7.4 Models of MPI
In this analysis, the pythia 8 and herwig MC event generators have been used to
handle the description of the UE. Both have implemented different models, which will
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be discussed below. The study of models of MPI is crucial in order to better understand
the proton structure and to possibly improve the MPI models since MPI (and DPS) can
play an important role in many physics channels.

MPI in pythia 8

In the discussion of the UE in Sec. 3.3, the existence of MPI from an experimental
point of view was conjectured. The divergent behavior of the total partonic cross section
σhard was regulated by the introduction of the minimal exchanged transverse momentum
pT,min. In all MPI models implemented in pythia 8, the energy dependence of the
regularization parameter pT,min is modeled by the parameters pref

T,min, Eref and Epow as
given below.

pT,min = pref
T,min

(
E

Eref

)Epow

(3.27)

However, at values of pT,min ≈ 2−5 GeV, σhard becomes larger than the total inelastic
cross section σinel. In order to make sense of this observation, the ratio of the two cross
sections can be seen as the average number of partonic interactions in a collision n̄, as
defined in eq. (3.7).

The simultaneous interactions are assumed to be independent of each other, while
the dependence on the impact parameter b is neglected at first. The initial states of the
colliding hadrons are assumed to be the exact same for now. Analogue to the definition
of n̄ in eq. (3.7), the probability of a parton-parton interaction taking place at a given
xT = 2pT/

√
s given that two hadrons undergo an inelastic collision, can be defined as

f(xT) =
1

σinel(s)

dσ̂

dxT
(3.28)

All other objects are defined as before. In the framework of the evolution equations
and parton showers, the Sudakov form factor is defined as the probability of a parton i
evolving from an initial scale to a different scale without the occurrence of a branching,
see eq. 3.5. In the same way, the probability of the first and hardest interaction to occur
at a scale xT,1 can be written as

P (xT,1) = f(xT,1) exp

(∫ 1

xT,1

f(x′T)dx′T

)
(3.29)

Through iteration, one can find the probability of an i’th scattering taking place at the
scale xT,i which is given below

P (xT,i) =
f(xT,i)

(i− 1)!

(∫ 1

xT,i

f(x′T)dx′T

)i−1

· exp

(∫ 1

xT,1

f(x′T)dx′T

)
(3.30)

The scales of all the interactions are ordered from hardest to softest or
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1 > xT,1 > xT,2 > . . . > xT,i−1 > xT,i > xT,min (3.31)

No additional interactions can occur once the scale drops below the threshold xT,min =
2pT,min/

√
s, determined by the minimal exchanged transverse momentum. For the hard-

est scattering, the normal PDF should be used. However, for MPI produced through
this mechanism, the PDF should be rescaled in order to take the conservation of four-
momentum into account which is performed by rescaling the xT,i of the i’th scattering
as

x′T,i =
1

1−∑i−1
j=1 xT,j

(3.32)

The rescaled x′T,i takes the energy used in all previous interactions into account. After
each interaction and scaling, the size of the available phase space is reduced until no
room and energy are left for any additional interactions.

In the discussion on the hard scattering in Sec. 3.2, ISR and FSR were added in order
to obtain a more complete picture of the interaction. The same has to be done for each
MPI, as the partons can emit radiation before and after the interaction. In this regard,
the formalism described above, is implemented in an interleaved evolution of the hard
interaction, MPI, ISR and FSR. The master equation [136] is given below.

dP

dpT,i
=

(
dPMPI

dpT,i
+
∑ dPISR

dpT,i
+
∑ dPFSR

dpT,i

)
× exp

(
−
∫ pT,i−1

pT,i

(
dPMPI

dp′T
+
∑ dPISR

dp′T
+
∑ dPFSR

dp′T

)
dp′T

)
(3.33)

Where pT,i is the transverse momentum of the i’th interaction or parton branching.
The formula takes a similar form compared to Sudakov form factor and expresses the
probability that no interaction or parton branching occurs between the (i − 1)’th in-
teraction/parton branching and the current one. The inclusion of FSR in the master
equation, allows for the concept of rescattering [137] to be added the description of MPI.
An example of a rescattering process is given in Fig. 3.6; an outgoing parton from one
interaction serves as the initial or incoming parton of another scattering.

Up until this point, the incoming hadrons are assumed to be identical for every
collision, however, in reality this is not the case. The differences in the centrality of the
collision are modeled as a function of the impact parameter b. Whenever the parameter b
is small (large), a large (small) overlap is present between the colliding hadrons, effectively
increasing (decreasing) the probability for MPI. As the matter distribution for all partons
inside the hadron is assumed to display a spherical symmetry, the matter distribution
used to quantify the overlap of the colliding hadrons is represented by a double Gaussian,
given below.

ρ(r) ∼ 1− β
a3

1

exp

(
− r

2

a2
1

)
+
β

a3
2

exp

(
− r

2

a2
2

)
(3.34)
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Figure 3.6: A Feynman diagram of a DPS event where one of the outgoing partons of
one interaction serves as an incoming parton or initial state of the second interaction,
taken from [137]. Such an occurence is referred to as the rescattering of the parton.

The distribution corresponds to a small core region which contains a fraction β of the
total hadronic matter within a radius a2. The smaller core is embedded in a larger hadron
with radius a1.

A last ingredient that is added to the MPI model implemented in pythia 8, is the
so-called colour reconnection. As partons carry a colour charge, the colour reconnection
allows for colour strings originating from different interactions to connect and exchange
colour information. In MPI processes, many colour strings are often created that can
overlap in the physical space, whereafter they would naturally reconnect with each other.
The reconnection procedure uses the probability of a system reconnecting to a harder
one defined as

P =
p2

T,Rec

p2
T,Rec + p2

T

with pT,Rec = R · pT,min (3.35)

Where pT,min is the parameter regulating the cross section σhard and R is a parameter
of the model.

MPI in herwig

The same MPI mechanism has been implemented in both herwig++ and herwig 7
[138]. The model is based on the same observation as discussed in Sec. 3.3 but for
dijet production: the inclusive cross section for dijet production σinc will outgrow the
total cross section at high enough energies. The observation leads to the conjecture of
the occurrence of MPI in a hadron collision. Two main approximations are made to
obtain the MPI model. On the one hand, the different scatterings are assumed to be
independent at a fixed impact parameter ~b. On the other hand, it is reckoned that the
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PDF factorizes with respect to the ~b and x dependence. With these two assumptions in
mind, the average number of interactions in hadron collision n̄ can be expressed as

n̄(~b, s) = A(~b, µ2) · σinc(s, pT,min) (3.36)

Where the function A(~b, µ2) describes the overlap between the two incoming hadrons, the
parameter µ is interpreted as the inverse proton radius and pT,min is the same cutoff used
to regulate the cross section as before. Below the threshold a non-perturbative model of
MPI is implemented, see [138] for more details. In order to improve the model, colour
reconnection has been implemented as was done in the MPI model in pythia 8.

3.8 Generator Level Study of DPS
A first generator level study of the observables defined in Sec. 3.6.4 is performed with
the on-shell KaTie model, interfaced with the pythia 8 MC event generator. The
resulting SPS and DPS distributions on hadron level are shown in Fig. 3.7, Fig. 3.8 and
Fig. 3.9 for the pT spectra, the pseudorapidity spectra and the six DPS-sensitive variables,
respectively. The sum of the SPS and DPS samples (SPS+DPS) is also calculated and
depicted on the figure. On the bottem panel of the figures, the ratio of the SPS+DPS
distribution over the SPS curve is presented, indicating in which regions of the phase
space a larger DPS contribution is expected.

All the plots except for the ∆S distribution have been obtained by imposing the cuts
of 35-30-25-20 GeV on the four leading jets. The ∆S observable has been produced for
cuts of 50-30-30-30 GeV. The reason for the two sets of cuts will be made clear later on
in the analysis.

All the pT spectra of the four jets, depicted in Fig. 3.7, show the largest contribution
of DPS for low values of pT since the secondary scattering of DPS events is generally
softer as the first hard interaction. The pseudorapidity spectra in Fig. 3.8 display a
more homogeneous distribution of the DPS contributions, with the exception of the
most forward and backward bins. Jets in the most remote areas of the detector are
more likely to have a lower pT compared to jets in the central region of the detector.
Therefore a larger DPS contribution is expected in the forward and backward region.
All other variables shown in Fig. 3.9, are sensitive to DPS, i.e. show an increase in the
DPS contribution to the total cross section in the exact regions, as detailed in Sec. 3.6.4,
with the exception of the observable φij. The variable φij displays a more homogeneous
contribution over the whole interval, with a slight rise towards zero and π.
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Figure 3.7: The generator level results for the on-shell KaTie model, interfaced with
pythia 8, for the pT spectra for the leading (top left), subleading (top right), third
leading (bottom left) and fourth leading (bottom right) jets. The SPS, DPS and total
distributions are shown, together with the ratio of the total distribution compared to the
pure SPS sample.
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Figure 3.8: The generator level results for the on-shell KaTie model, interfaced with
pythia 8, for the η spectra for the leading (top left), subleading (top right), third
leading (bottom left) and fourth leading (bottom right) jets. The SPS, DPS and total
distributions are shown, together with the ratio of the total distribution compared to the
pure SPS sample.
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Figure 3.9: The generator level results for the on-shell KaTie model, interfaced with
pythia 8. The ∆S variable (bottom right) is subjected to different selection criteria, i.e.
the cuts on the pT of the jets are 50-30-30-30 GeV, respectively.
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Chapter 4

The Large Hadron Collider and
the Compact Muon Solenoid
Experiment

In this chapter, the Large Hadron Collider (LHC) and the Compact Muon Solenoid
(CMS) experiment are described. The machinery relevant to this work and the manner
in which collisions of interest are detected and stored will be highlighted.

4.1 The Large Hadron Collider
The LHC [139] is a ring accelerator with a circumference of 26.7 km at a depth ranging
from 45 m to 170 m below the surface, operating at Centre Européen pour la Recherche
Nucléaire (CERN), located near Geneva. The LHC consists of two rings in which counter-
rotating beams of protons or heavy ions are accelerated. At different interaction points
where different experiments are located, the beams are crossed.

Apart from the type of collider, linear or circular, and the colliding particles, the
centre-of-mass energy of the collision and the instantaneous luminosity characterize a
collider. The former is of the TeV scale, more precisely

√
s = 13 TeV for the 2016 run

period. The latter is the parameter that describes the number of particles in the beam
at the interaction point per unit of transverse area and per unit of time, and is defined
as

L =
N2

bnbfrev

πεnβ∗
F (4.1)

Where frev = c/r is the revolution frequency, equal to 11.25 kHz for the LHC and εn is the
normalized transverse beam emittance. Since the beams cross under a certain angle at
the interaction point, the geometric luminosity reduction factor function F is introduced,
while the β∗ function represents the focus of the beam at the collision point. Both F
and β∗ describe the interaction point. Lastly, the variables Nb and nb characterize
the proton beams, i.e. protons are bundled together in bunches when circulating. The
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variables Nb and nb represent the number of protons per bunch and the number of
bunches, respectively. A more detailed description can be found in [139].

The LHC has been designed to run at a centre-of-mass energy of 14 TeV along with
a peak instantaneous luminosity L ∼ 1034 cm−2s−1 and a maximum of 2808 proton
bunches, where each bunch consists of approximately 1.18·1011 protons. However, during
the year 2016 the centre-of-mass energy was 13 TeV, while the maximum number of
proton bunches achieved was 2220. The number of bunch crossings at the interaction
points were at a frequency equal to 40 MHz, corresponding to a separation between the
bunches of 25 ns or 7.5 meters, while the bunches themselves were approximately 8 cm
long and had a radius of 20 µm.

Multiple experiments are located along the LHC at different interaction point. The
two largest experiments are the A Toroidal LHC ApparatuS (ATLAS) [140] and CMS
[141, 142] experiments, both aim to achieve the peak luminosity of L ∼ 1034 cm−2s−1.
Two low luminosity experiments Large Hadron Collider beauty (LHCb) [143] and ToTal
Elastic and diffractive cross section Measurement (TOTEM) [144] aim at a peak lumi-
nosity of L ∼ 1032 cm−2s−1 and L ∼ 2× 1029 cm−2s−1, respectively. A fifth experiment
dedicated to lead-lead ion collisions has been named A Large Ion Collider Experiment
(ALICE) [145] with a peak luminosity of L ∼ 1027 cm−2s−1. Since the cross sections
of a process is measured in barn = 10−28 m2, the instantaneous luminosity is generally
expressed in units of barn−1. The instantaneous luminosity and the cross section of a
process are related in the following way

L =
1

σ
· dN
dt

(4.2)

Where dN/dt is the rate of the process with the cross section σ.

Before measurements can be performed at the different experiments, the protons need
to be accelerated and injected into the LHC, which happens in different stages as the final
energy of each proton beam is 6.5 TeV [139]. A schematic overview of all the machines
involved in the injection procedure is depicted in Fig. 4.1. The source of the protons is a
hydrogen gas. An electric field is used to ionize the hydrogen gas. The LINAC2 is the first
machine in the accelerator chain and brings the protons to an energy of 50 MeV. Next,
the protons enter the proton synchrotron booster, which is a small four-ring synchrotron
with a radius of 25 m. Once the proton synchrotron booster has brought the energy
of the proton beams up to 1.4 GeV, they are transferred to the proton synchrotron, a
synchrotron with a 100 m radius. In the proton synchrotron the final bunch structure of
the protons is obtained, along with a beam energy equal to 25 GeV. In the final before
injection into the LHC, the proton beams are passed on to the super proton synchrotron,
a synchrotron with a radius of 1 km. Once the beam energy reaches 450 GeV, the proton
beams are injected into the LHC, where they are accelerated up to their final beam energy
of 6.5 TeV. The LHC uses superconductive magnets, i.e. 1232 dipole and 392 quadrupole
magnets, to bend and focus the beams, respectively, whilst operating at a temperature
of 1.9 K.
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Figure 4.1: An overview of the whole accelerator complex at CERN. The proton beams
are accelerated by several facilities in succession before injection into the LHC. The
different interaction points and experiments are also shown. Taken from [146].

4.2 The CMS Detector

The CMS detector [141,142] is a multi purpose detector located at the interaction point
5 (IP5) of the LHC. Its central feature is a 6 m diameter superconducting solenoid, which
is able to generate a 3.8 T magnetic field. The CMS detector has a cylindrical symmetry
with an overall length of 28.7 m, a diameter of 15 m and a total weight of 14,000 tonnes.
The proton interaction point is situated at the centre of the detector. The tracker
is the sub-detector closest to the interaction point, around which the electromagnetic
and hadronic calorimeters are situated. All three sub-detectors are situated inside the
solenoid, except for some sub-systems of the hadronic calorimeter. While four layers
of muon chambers combined with the steel return yoke encompass the solenoid in the
barrel region and the endcaps. The structure of the detector is schematically depicted in
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Fig. 4.2.

SUPERCONDUCTING SOLENOID
Niobium titanium coil carrying ~18,000 A

PRESHOWER
Silicon strips ~16 m2 ~137,000 channels

SILICON TRACKERS

MUON CHAMBERS
Barrel: 250 Drift Tube, 480 Resistive Plate Chambers
Endcaps: 540 Cathode Strip, 576 Resistive Plate Chambers

FORWARD CALORIMETER
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STEEL RETURN YOKE
12,500 tonnes

HADRON CALORIMETER (HCAL)
Brass + Plastic scintillator ~7,000 channels

CRYSTAL 
ELECTROMAGNETIC
CALORIMETER (ECAL)
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Total weight
Overall diameter
Overall length
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CMS DETECTOR

Pixel (100x150 μm2) ~1 m2 ~66M channels
Microstrips (80–180 μm) ~200 m2 ~9.6M channels

Figure 4.2: An overview of the CMS detector at the LHC. All sub-detectors are propor-
tionally displayed in the sketch. Taken from [147].

4.2.1 Coordinate System of the CMS Detector

The CMS coordinate system is right-handed, where the x-axis points towards the centre
of the LHC ring, while the y-axis points upward. Therefore, the z-axis is aimed along the
anticlockwise direction of the beam. In the xy-plane, radial coordinates are used where
φ is defined as the azimuthal angle and ρ as the radial coordinate. Instead of the polar
angle θ defined in the ρz-plane, it is often preferred to use the pseudorapidity η, defined
in eq. (3.13). Objects are referred to as “central” when |η| < 2.5, while the adjective
“forward” is used for objects with |η| > 2.5. Generally objects are measured in quantities
of η, φ and pT.

4.2.2 The CMS Tracker

At the heart of the CMS detector, fully immersed in the magnetic field provided by the
CMS solenoid, lies the CMS tracker [148, 149]. The CMS tracker is a cylindrical sub-
detector with a length of 5.8 m and a diameter of 2.5 m, while covering a pseudorapidity
region up to |η| = 2.5. A sketch of the tracker is shown in Fig. 4.3. The sub-detector
is designed to provide precision measurements of charged particles with a pT as low as
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0.1 GeV, while having a high granularity and a fast response time, as ∼ 1000 particles
are expected to traverse the tracker per bunch crossing. A high resolution is essential
in the reconstruction process of interaction vertices, as well as for the identification of
heavy quark flavours. Furthermore, the information provided by the tracker is crucial for
a proper jet reconstruction and allows for the identification of electrons and muons when
combined with the calorimeters and muon chambers, respectively. Apart from the offline
event reconstruction, the tracker is also used in the CMS High-Level Trigger (HLT),
discussed in Sec. 4.2.6.

The pixel detector, located at the centre of the CMS tracker, consists of 1,440 modules
spanning a total area of 2 m2 with a total of 66 million pixels. Three cylindrical barrel
layers at radii of 4.4, 7.3 and 10.2 cm, and two endcap disks at 34.5 and 46.5 cm of
each side of the interaction point make up the pixel detector. The resolution of the pixel
detector is 10 and 20-40 µm in the transverse and longitudinal direction, respectively,
while a third coordinate is provided by the sensor plane position.

The silicone strip tracker encapsulates the pixel detector and is divided into four
subsystems, consisting 15,148 silicon modules, which have in total 9.3 million strips with
a total active area of 198 m2. The Tracker Inner Barrel (TIB) and the Tracker Outer
Barrel (TOB) form the central part of the strip tracker, where the strips are aligned
cylindrical along the beam pipe or x-axis. The TIB is composed of four barrel layers and
provides a resolution of approximately 13-38 µm on the position in the azimuthal plane,
while the TOB is made up from 6 layers with a slightly lower resolution of 18-47 µm
in the azimuthal plane. The endcap region is covered by two subsystems as well. The
Tracker Inner Disks (TID) and the Tracker EndCaps (TEC) consist of three and nine
disks, respectively, where the disks themselves contain three to seven concentric rings of
strip modules. The resolution in the azimuthal plane of the TID and TEC are of the
same range as the resolution of the TIB and TOB, respectively.

The performance of the tracker as a whole has been studied and the results have
been described in [149]. The resolution has been analyzed for simulated muons and
charged pions, using the five track parameters d0, z0, φ, cot θ and pT. The parameters
are defined at the impact point or the point of closest approach to the beam axis, where
d0 = x0 sinφ − y0 cosφ is the distance from the beam axis to the impact point in the
azimuthal plane. In Fig. 4.4 the resolution of all five parameters is shown as a function of
η for single isolated pions with a pT equal to 1, 10 and 100 GeV. The resolution in general
is calculated by examining the residual differences between the detector and generator
level observables. The full symbols correspond to the half-width of the distribution
containing 68%, while the open symbols represent the same half-width where 90% has
been used instead. The latter shows the impact of extreme values more clearly. The
resolution of the transverse impact parameter improves from 90 µm at 1 GeV to 25 µm
at 10 GeV, while for the longitudinal impact parameter an improvement of 150 to 45 µm
is observed from 1 to 10 GeV, respectively, both for central tracks. The resolution in
pT never exceeds 4% in the central region for tracks with a pT ranging up to 100 GeV.
Lastly, the resolution of φ and cot η are well behaved and remain smaller than 0.01 in
the central region of the tracker.
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Figure 4.3: An overview of the CMS tracker in the ρz-plane. The collision point is
indicated by a star. The pixel detector is represented by the red lines, while the black
and blue lines indicate single and double sided strip modules. The green dashed lines
indicate the boundaries of the different subsystems. Taken from [149].

4.2.3 The CMS Magnet

The central feature of the CMS detector is the CMS magnet [150], it has a length of
13 m and a diameter of 6 m. The 220 tons superconducting solenoid, operating at a
temperature of 4.5 K, is able to generate a uniform magnetic field of up to 4 T by
running a current of 18,000 A through the niobium titanium coil. A 12,500 tons weighing
steel return yoke consisting of five barrel rings and two endcaps, each made up of 3
layers, close the magnetic field. The field is used to bend charged particles since the
curvature is related to the transverse momentum of said particles. Due to the sheer force
of the magnetic field in combination with the high-precision position measurements of
the tracker, even the momentum of the high-energy particles created in collisions can be
accurately measured. A second advantage of the presence of a strong magnetic field is
that it allows for a relative “compact” design of the detector.

4.2.4 The CMS Calorimeter System

Around the tracker and for the most part inside the CMS solenoid, the CMS calorimeter
system is situated. Contrary to the tracker system, the calorimeter system relies on
the destructive measurement of particles to determine their respective energies, which is
achieved by initiating particle showers in the detector material. The distinction between
electromagnetic and hadronic calorimetry is made since showers produced by an electron,
a positron or a photon display different characteristics compared to hadronic showers.

Pair production and bremsstrahlung are the two dominant processes in the creation of
the electromagnetic showers. The former describes the splitting of photons in electron-
positron pairs through the interaction with a nucleus or electron in order to conserve
momentum. The latter process occurs when a high-energy electron or positron is decel-
erated through the emission of photons, which in turn can split into electron-positron
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Figure 4.4: Resolution, as a function of η, in the five track parameters for charged pions
with a pT equal to 1, 10 and 100 GeV. From top to bottom and left to right: the transverse
impact parameters d0, the longitudinal impact parameters z0, the transverse momentum
pT, the azimuthal angle φ and the cotangent of the polar angle cot θ. The solid symbols
correspond to the half-width that encompasses 68% of the residuals, while 90% of the
residuals is used for the open symbols. Taken from [149]

pairs. The interplay of the two processes continues until the energy of the photons does
not meet the pair production threshold anymore. Other energy loss processes of the
electrons and positrons will now start to dominate instead of bremsstrahlung. The elec-
tromagnetic showers are characterized by two material specific constants. On the one
hand, the radiation length X0 is the average distance needed for an electron to reduce its
initial energy by a factor of 1/e. On the other hand, the Molière radius RM is a measure
for the transverse profile of the electromagnetic shower, i.e. the radius defines a cylinder
containing on average 90% of the total energy deposition of the shower.

The hadronic showers are formed, contrary to electromagnetic showers, through in-
elastic scatterings of hadrons in the detector material. The incoming particles lose their
energy through nuclear excitation and hadron production. One can assume that all final
particles are pions, one third of which are neutral, while the remainder are charged pi-
ons. The former decays in two photons, forming the electromagnetic part of the hadronic
shower. The hadronic equivalent of the radiation length X0 is the interaction length λ.
In other words: the distance needed for an incoming hadron to lose a factor of 1/e of its
energy is equal to λ. On average hadronic showers are less compact and longer compared
to electromagnetic showers, which is reflected in the fact that λ is generally larger than
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X0 for a given material.

The CMS Electromagnetic Calorimeter

The CMS Electromagnetic CALorimeter (ECAL) [151,152] is a homogeneous calorimeter,
comprised of the ECAL Barrel (EB) and ECAL Endcaps (EE), each containing 61,200
and 7324 lead tungstate (PbWO4) scintillating crystals, respectively. In order to boost
the photon identification capabilities of the endcap crystals, a ECAL preShower dector
(ES) has been placed in front of them. The PbWO4 crystals have a high density (8.28
g/cm

3), a short radiation length (0.83 cm) and a small Molière radius (2.2 cm). The
construction of a “compact” calorimeter with a high granularity was possible due to
the fast response time and a good radiation tolerance of the PbWO4 crystals. The
scintillation light, originating from the electrons and positrons in the electromagnetic
shower, is transmitted through total internal reflection and is caught by photodetectors.

The EB crystals are 23 cm long with a 2.2 cm × 2.2 cm face, while the EE crystals
have a 2.85 cm × 2.85 cm face and a 22 cm length. The surface of the crystals in both
the EE and EB correspond to a 0.0174 × 0.0174 coverage in ∆η×∆φ. The barrel region
has an inner radius of 129 cm and is comprised of 18 supermodules on each side of the
interaction point. The supermodules cover the range of |η| < 1.479 and consist of four
modules along the η direction. The EE covers the range of |η| ∈ [1.653, 3.0], while being
at a distance of 314 cm from the interaction point. The crystals are grouped in the EE
in units of 5 × 5 to form an approximately circular shape. The ES has been placed in
front of the EE and cover the range of |η| ∈ [1.653, 2.6]. The silicon strip sensors of the
EE allow for a more exact position measurement and an enhanced photon identification.
A schematic overview of the ECAL is given in Fig. 4.5.

The energy resolution for electrons has been measured and is parametrized by the
function below [152].

σE
E

=
2.8%√
E

+
12%

E
+ 0.3% (4.3)

Where the energy E is measured in GeV. The first term is the stochastic term, receiving
contributions from the shower containment, the number of photo-electrons and fluctu-
ations in the gain process. The second term represents the contribution of the noise
due to the electronics. While the last and constant term is due to energy leakage, non-
uniformity of the light collection and calibration errors. For high energy electromagnetic
showers, the last term will dominate the energy resolution.

The CMS Hadronic Calorimeter

The CMS Hadronic CALorimeter (HCAL) [153] is a sampling calorimeter and is com-
prised of four subsystems: the HCAL Barrel (HB), the HCAL Endcaps (HE), the HCAL
Outer detector (HO) and the HCAL Forward detector (HF). Unlike the ECAL, not all
subsystems lie within the superconducting solenoid, i.e. only the HB and the HE are
inside the solenoid. A schematic overview of the HCAL detector is shown in Fig. 4.6.

The HB covers the pseudorapidity range up to |η| = 1.4. Along the beam line, the HB
has a cylindrical symmetry and is built of 18 wedges, each covering an azimuthal angle of
20 degrees. In turn, all wedges are divided into four 5 degree sectors in φ and are made
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Figure 4.5: An overview of the CMS ECAL. The structure of the modules and supermod-
ules of the barrel region is shown, together with the endcaps and the preshower detectors.
Taken from [152].

up from 14 flat brass absorber layers in between two steel plates. A second segmentation
in η is made, resulting in an overall division of the detector in ∆η×∆φ = 0.087× 0.087.
The hadronic interaction length λ ranges from 5.8 at the centre, up to a value of 10λ at
η = 1.2.

The HE is made of brass disks, bedded between scintillator wedges and has the same
azimuthal segmentation of 20 degrees in φ. The pseudorapidity range of the HE is
|η| ∈ [1.3, 3.0]. Both the HB and the HE cover the pseudorapidity range |η| ∈ [1.3, 1.4]
to minimize the effect of an uninstrumented gap at a polar angle of 57 degrees. The HE
has the same granularity as the HB except for |η| ≥ 1.74, where the φ segmentation is
10 degrees or 0.175 rad, while the segmentation in η varies from 0.09 up to 0.35.

The HO sub-detector lies outside the solenoid and consists of five rings, each covering
a different rapidity range. The central ring covers |η| ≤ 0.35, the rapidity range between
0.35 and 0.87 is contained in the rings ±1 , while the rings ±2 extend the rapidity range
from 0.87 up to 1.26. The HO is designed to catch any possible energy leakage from
the HB from penetrating hadron showers, while having a 12-fold symmetry, where each
component covers a 30 degree angle in φ. As each component is divided into six 5 degree
sectors and as the HO has the same rapidity segmentation, the overall segmentation of
the HO in ∆η ×∆φ is the same as for the HB or 0.087× 0.087

The last subsystem is the HF, covering a range of |η| between 3.0 and 5.2, and is
located further outward along the beamline at a distance of 11.15 m from the interaction
point. The HF is constructed from 20 degree wedges, which are in turn divided in
two 10 degree sectors in φ. The HF is constructed from quartz fiber interleaved with
steel absorber layers due to the high flux of particles in the forward directions. Both
electromagnetic and hadronic showers can be detected by the HF, where Cherenkov
radiation forms the basis of signal generation. The segmentation is 0.175× 0.175 except
for |η| > 4.7, where it is 0.175× 0.35.
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The performance in terms of the synchronization and timing is detailed in [154], while
the energy resolution of the HCAL subsystems has been studied in [155,156]. The energy
resolution is parametrized by the sum of a stochastic and constant term, given in the
function below.

σE
E

=
a√
E

+ b (4.4)

The values of a and b for the HB and HE are similar and equal to 8.47% and 7.4%,
respectively. The parametrization for HF is more complex and differentiates between
sections and the type of shower. For a more detailed discussion on the parametrization
of the energy response in HF and the values of a and b, we refer to [156].

Figure 4.6: An overview (quarter slice) of the CMS HCAL. The position of all sub-
detectors is shown, where FEE stands for front end electronics, indicated for HB and HE.
The signals of the tower segments with the same color are added optically to provide a
longitudinal segmentation. Taken from [155].

4.2.5 The Muon Chambers
The muon sub-detector system of the CMS experiment [157] is the outer most part of
the detector. It is situated completely outside of the CMS magnet. The muon chambers
are interleaved with the steel return yoke. The whole system is split up into five wheels,
making up the barrel region, and two endcap regions. Each wheel of the barrel region
consists of four layers of rectangular Drift Tube (DT) chambers, following the same 12-
fold segmentation in φ as the steel return yoke. The barrel region covers the range of
|η| < 1.2. More muons with a larger background flux are expected in the endcap region
compared to the barrel region. In this regard, Cathode Strip Chambers (CSC) are used
since they have a fast response time, a high radiation tolerance and allow for a fine
segmentation. The endcap regions also consist of four layers, while the pseudorapidity
range is equal to |η| ∈ [0.9, 2.4]. A third type of detector, i.e. Resistive Plate Chambers
(RPC), are intersected in both the barrel and the endcap region. The RPC are to aid
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with the measurement of the track path, allowing for a more precise measurement of the
deflection of the muons due to the magnetic field. A quarter slice of the muon system is
shown in Fig. 4.7.

Figure 4.7: An overview (quarter slice) of the CMS muon system. The position of all
sub-detectors is shown. The four layers of DT chambers are labeled by MB1 through
MB4, where MB stands for muon barrel. The RPC in the barrel region are indicated
with RB along with their layer number, while they are denoted as RE in the endcaps.
The label ME or muon endcap is used for the CSC detectors. Taken from [158].

The information harnessed by the muon chambers and the tracker are combined in
the muon reconstruction [159]. The reconstruction efficiency for muons with a pT of at
least a couple of GeV is greater than 95%, while the rate of misidentifying a hadron for
a muon is well below 1%. Depending on the detector region, the pT resolution varies
between 1% and 6% for muons with a transverse momentum smaller than 100 GeV. For
high-energetic muons in the central region with a pT smaller than 1 TeV, the resolution
is still better than 10%.

4.2.6 The Trigger System
The trigger system is used to filter out rare or interesting events and to suppress back-
ground events. At the LHC, proton bunches cross each other at the interaction point
of the CMS detector at a rate of 40 MHz, with a peak instantaneous luminosity of
L ∼ 1034 cm−2 · s−1 for the second period of data taking (Run II). The CMS experiment
uses a two-step trigger system in order to reduce the initial rate of events of 40 MHz to
100 Hz. A schematic overview of the trigger system is shown in Fig. 4.8.

The first of the two steps is the Level 1 (LV1) Trigger [160, 161], which is used to
reduce the rate of events to a maximum of 100 kHz, with a maximum latency time
of 3.8 µs. The LV1 Trigger uses custom electronics and a coarser segmentation of the
calorimeters and the muon chambers to lessen the amount of channels. The LV1 trigger
system uses input from the calorimeters and the muon chambers, and bases its decision
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Figure 4.8: A schematic sketch of the two-level trigger system used at the CMS experi-
ment. The two step trigger system is used to reduce the rate of 40 MHz at the interaction
point down to 100 Hz.

on the presence of particle candidates, e.g. electrons, muons, jets, . . ., above a set energy
or transverse momentum threshold.

If an event passes the LV1 Trigger, then the High-Level Trigger (HLT) [162, 163]
will reduce the event rate further down to 100 Hz. The HLT uses a processor farm to
perform a further selection for which the maximal processing time per event is 320 ms.
The selection process has implemented a light version of the offline reconstruction, which
has been optimized for online selection. All events selected by the HLT are stored by the
Data Acquisition (DAQ)

The data that has been selected by the trigger system undergoes online and offline
Data Quality Monitoring (DQM) [164]. The online DQM happens during the detector
operation Histograms are filled with data from the events and are monitored in order to
detect possible errors coming from the detector hardware of the reconstructions during
the run itself. While offline DQM goes into more detail in order to look for possible
errors. When this process is completed, the final data set files are produced along with
the JavaScript Object Notation (JSON) files. The JSON files hold all information on
which runs and luminosity sections contain good and certified data. The final data
samples are ready to be used in physics analyses.

Jet Triggers

Jets are often central objects in QCD analyses but also play an important role in searches
for new physics. Therefore CMS has dedicated jet triggers [165]. In this work, single jet
and dijet triggers will both be used. The former plays a central role in the physics analysis,
while the latter triggers are used in the determination of the Jet Energy Correction (JEC)
factors in Sec. 6.

The LV1 jet triggers use energy sums of the ECAL and HCAL in the central region
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and of HF in the forward region. In the central region the energy sums are computed in
a 4 by 4 Trigger Tower (TT) matrix located around a local maximum called the jet seed.
While in the forward region 4 or 6 TTs are used. Each TT consists of multiple adjacent
detector cells that have been combined into coarser detector segments. Whenever a
deposit of transverse energy in the calorimeters exceeds the seed threshold, the event
is selected by the LV1 Trigger system and passed on to the HLT. Next, the anti-kT
clustering algorithm [104] with a jet cone size R equal to 0.4 reconstructs the jets. If
the clustered jet passes the HLT, then the event is stored by DAQ and processed by the
DQM. As the whole process takes a rather significant amount of CPU resources and time,
while the rate of jet events is quite high, the jet triggers are assigned a LV1 and HLT
prescale. If a LV1 trigger with a LV1 prescale of N is fired a multitude of times, only
one per N events will be probabilistically chosen and passed on the the HLT. The HLT
prescale works in the same way. Generally the prescale is connected to the pT threshold:
a trigger with a high pT threshold will have a low prescale and vice versa.
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Chapter 5

Data Samples

In this chapter, all data samples collected by the CMS detector and used in the analysis
will be discussed. The simulation of the CMS detector will also be highlighted since
two MC samples have been produced at generator and detector level. Such simulated
samples are essential in order to correct data for detector effects because one wishes to
obtain detector independent results.

5.1 Data Samples
The CMS detector accumulated data of proton-proton collisions at a centre-of-mass en-
ergy of

√
s = 13 TeV during the Run II program of the LHC in the year 2016. The

LHC delivered an integrated luminosity of 40.99 fb−1, while the CMS detector effectively
recorded an integrated luminosity of 37.80 fb−1 [166]. Where the integrated luminosity
is equal the instantaneous luminosity integrated over time or

Lint =

∫
L dt (5.1)

The integrated luminosity is a measure for the total amount of recorded data. Small
sub-samples of the entirety of the available data have been selected, i.e. low pileup runs
from the run period Run2016B with low pT collisions where the HF sub-detector of the
HCAL was active. Pileup refers to the additional proton-proton collisions, which are
either coming from the same bunch crossing (in-time pileup) or from different bunch
crossings (out-of-time pileup).

The jets created in a SPS event and in a DPS event exhibit different correlations in
certain regions of the DPS-sensitive observables since the jets originating from the two
different interactions in a DPS event can be approximated as completely uncorrelated.
Jets originating from different interactions in the bunch crossing, i.e. jets coming from
pileup interactions, are uncorrelated as well and can possibly mimic a DPS signature
in the data. Sub-samples of all the available data with low pileup have been selected
as to avoid further necessary pileup corrections and possible fake DPS signatures in
the data. Of the low pileup data, events with low pT jets have been selected further.
Forward/backward jets combined with small values of pT, allow for the low-x region to

59



be probed, see eq. 3.20, in which the gluon density rises exponentially. The probability
of the occurrence of a DPS event in this region of the phase space is expected to rise due
to a much denser proton. In general, DPS is expected to play a more significant role in
the low pileup, low pT data compared to data containing high pT jets.

From the sub-samples, the data taken in good operation conditions is selected through
the use of the JSON file1 provided by the CMS collaboration. Afterwards, the event
information of runs and luminosity sections selected by the JSON file is processed in
the Common FSQ Framework (CFF)2, within the cmssw 8.0.29 framework3. All samples
are in the mini Analysis Object Data (miniAOD) format, from which a so-called skim
is created, i.e. the information necessary to perform the analysis is extracted from the
events and stored separately in order to reduce the total amount of information and
to analyze the samples more efficiently. When extracting the skim from the totality of
data, the global tag 80X_dataRun2_2016SeptRepro_v7 is used. The global tag is a set
of database tags which together define the offline conditions data are collected in. In
this manner, the conditions database is decoupled from the cmssw release and different
global tags can be used with a given cmssw release. An overview of the data samples is
shown in Tab. 5.1.

Table 5.1: An overview of the data samples used in the analysis, along with the integrated
luminosity and the number of raw events, which is the amount of events before the
information contained in the JSON file has been taken into account.

Data sample Lint (pb−1) Raw events
HINPFJets/Run2016B-PromptReco-
v2/MINIAOD

0.041855118 6, 034, 698

FSQJets/Run2016B-03Feb2017_ver2-
v2/MINIAOD

0.041855118 5, 416, 877

L1MinimumBiasX/Run2016B-PromptReco-
v2/MINIAOD, X ∈ [0, . . . , 9]

0.041855118 ∼ 42, 000, 000

5.2 Simulation of the CMS Detector

As mentioned in the discussion on the simulation of hadron collisions, different MC
generators will be used to study the data at generator level. However, detector effects
need to be corrected for. To this extent, generated MC samples are used to produce MC
samples on detector level, i.e. the response of the whole CMS detector is simulated and
the effects of all different parts are applied to a generator level MC sample. A subgroup
of the CMS collaboration is responsible for the complete mapping and simulation of
the detector response. The Geant4 software package [167, 168] is used. The different
steps entailing the simulation of the CMS detector, which happen within the cmssw
framework, are listed below.

1/afs/cern.ch/cms/CAF/CMSCOMM/COMM_DQM/certification/Collisions16/13TeV/ReReco/Final-
/Cert_271036-284044_13TeV_23Sep2016ReReco_Collisions16_JSON_LowLowPU.txt

2https://twiki.cern.ch/twiki/bin/viewauth/CMS/FSQCommonFW
3https://twiki.cern.ch/twiki/bin/view/CMSPublic/WorkBook
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• GEN-SIM: the first step produces the events of a MC sample on generator level,
where all stable particles are in the final state. The simulated hits of these particles
in the detector are produced as well.

• RAW-DIGI: the second step produces the raw detector information by converting
the simulated hits into detector response.

• RECO-MINIAOD: the last and third step converts the raw detector information
into reconstructed objects. The miniAOD data format is used as it is a subset of
the RECO format while still holding all necessary information whilst being smaller
in size.

The subsequent MC samples on detector level can therefore be processed in the same
manner as the data samples throughout the analysis.

The CMS collaboration has provided two samples fit for this analysis, i.e. a pythia
8 and a herwig++ sample using the CUETP8M1 and the CUETHS1 tune, respectively.
Both samples have been generated without pileup. The samples, listed in Tab. 5.2, are
processed in the CFF before they are analyzed with the global tag 80X_mcRun2_asymp-
totic_2016_TrancheIV_v8.

Table 5.2: The MC samples used to correct for the detector effects in the analysis, along
with their respective cross sections and the raw number of simulated events.

MC sample σ (pb) Raw events
/QCD_Pt-15to1000_TuneCUETP8M1_Flat_-
13TeV_pythia8/RunIISummer16MiniAODv2-NoPU_-
80X_mcRun2_asymptotic_2016_TrancheIV_v6-v2/-
MINIAODSIM

1976000000 9, 998, 200

/QCD_Pt-15to1000_TuneCUETHS1_Flat_13TeV_-
herwigpp/RunIISummer16MiniAODv2-NoPU_80X_-
mcRun2_asymptotic_2016_TrancheIV_v6-v2/-
MINIAODSIM

1369000000 9, 993, 000

CMS collaboration has provided two samples fit for this analysis, i.e. a pythia 8 and a
herwig++ sample using the CUETP8M1 and the CUETHS1 tune, respectively. Both samples
have been generated without pileup. The samples, listed in Tab. 5.2, are processed in
the CFF before they are analyzed with the global tag
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Chapter 6

Event Reconstruction

Before any collected data samples can be analysed, the collisions themselves need to
be reconstructed from the detector readout. The reconstruction procedure of the three
main physics objects (jets, missing transverse energy and vertices) in this analysis will
be discussed. Afterwards, the reconstructed jets need to be corrected for detector effects
in order to obtain fully calibrated jets. The calibration is performed by sequentially
multiplying the four-momentum of the jet with the Jet Energy Correction (JEC) factors.
However, the JEC factors were not readily available for low pileup, low pT data and had
to be derived. The determination of the proper JEC factors is fully detailed in the text
below and will be the bulk of this chapter.

6.1 Analysis Objects

The Particle-Flow (PF) algorithm [169] aims to reconstruct and identify each individual
particle in an event with an optimized combination of information from the various
elements of the CMS detector. The energy of photons is obtained from the ECAL
measurement. The energy of electrons is determined from a combination of the electron
momentum at the primary interaction vertex as determined by the tracker, the energy
of the corresponding ECAL cluster and the energy sum of all bremsstrahlung photons
spatially compatible with originating from the electron track. The energy of muons is
obtained from the curvature of the corresponding track. The energy of charged hadrons
is determined from a combination of their momentum measured in the tracker and the
matching ECAL and HCAL energy deposits, which are corrected for zero-suppression
effects and for the response function of the calorimeters to hadronic showers. Finally,
the energy of neutral hadrons is obtained from the corresponding corrected ECAL and
HCAL energies.

After the reconstruction and identification of the particles in the event, the informa-
tion is used to reconstruct different objects that are needed to perform this measurement.
The central objects in this work are jets, the missing transverse momentum ~pmiss

T and
vertices.
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6.1.1 Jets

After the reconstruction and identification of the particles by the PF algorithm, the
infrared and collinear safe anti-kT algorithm [104, 170] with a distance parameter of
0.4 is used to cluster hadronic jets. The momentum of the jets is determined as the
vectorial sum of the momentum of all particles in the jet. Tracks and calorimetric energy
depositions originating from pileup can contribute to the momentum. Therefore, the
Charged Hadron Subtraction (CHS) is made, removing contributions from particles that
have been identified as coming from pileup vertices. The collection of reconstructed jets
obtained in this manner, is be labeled as the AK4PFCHS jets.

Further corrections need to be made since the jets are not yet fully calibrated. A
schematic view of the different corrections is given in Fig. 6.1. Generally, the JEC are
provided by the JetMet subgroup of the CMS collaboration, however, the corrections
were not readily available for low pileup and low pT data from the year 2016, and will
be calculated in what follows.

6.1.2 Missing Transverse Momenta

The raw Missing Transverse Momentum (MET) vector ~pmiss
T,RAW is computed as the neg-

ative vector sum of the transverse momenta of all the PF candidates in an event [171].
The MET is needed in the calculation of the L2L3 residual corrections, as detailed in
Sec. 6.2.2. The MC-truth corrections, derived in Sec. 6.2.1, will have been applied to
the jets at this point in the analysis. To take the corrections into account, the MET is
rewritten as follows

~pmiss
T,RAW = −

∑
i∈all

~pT,i (6.1)

= −
∑
i∈jets

~pT,i −
∑

i∈uncl.

~pT,i (6.2)

= −
∑
jet

~p raw
T,jet −

∑
i∈uncl.

~pT,i (6.3)

First, the distinction between particles clustered in jets and unclustered particles is made.
Next, the summation over the transverse momentum of all particles in jets is replaced by
the summation over the uncorrected transverse momentum of all jets. Next, the effect
of the MC-truth corrections has to be included through the use of the so-called type-I
correction factor given below.

~CType−I
T =

∑
jet

~p raw
T,jet −

∑
jet

~p L123
T,jet (6.4)

All of the MC-truth corrections together are often denoted as L123, where the abbreviated
notation refers to the L1 offset and L2L3 MC truth corrections. The correction factor
is the difference between the total uncorrected transverse momentum of all jets with the
total transverse momentum of all jets where the MC-truth corrections have been applied.
Adding the type-I correction factor to the raw MET, yields the type-I corrected MET or
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~pmiss
T,Type−I = ~pmiss

T,RAW + ~CType−I
T (6.5)

= −
∑
jet

~p L123
T,jet −

∑
i∈uncl.

~pT,i (6.6)

6.1.3 Vertices

Vertex reconstruction is performed in three steps. First, tracks are selected. afterwards,
the tracks that seem to originate from the same interaction vertex are clustered together.
As the last step, a fit is performed in order to determine the position of each vertex
associated with the tracks. A more detailed description can be found in [149]. The
candidate vertex with the largest value of summed physics-object pT is taken as the
primary interaction vertex. The physics objects are the jets and the associated missing
transverse momentum.

6.2 Jet Energy Corrections

The AK4PFCHS jets need to be calibrated to compensate for detector effects. The CMS
collaboration has adopted a factorized approach. The detector effects are corrected for
by different levels of JEC applied sequentially. The effect of each of the different JEC is a
scaling of the four momentum of the jet, where the scaling factor is dependent on the jet
quantities such as pT, η and pileup. Once the correction has been applied, the resulting
four-momentum is taken as the input for the next correction. The different corrections
and their order are schematically depicted in Fig. 6.1. The flavor correction in the figure
is of no importance in this study. Only jets originating from an up, down or strange
quark, the so-called light jets, are considered in this analysis. Events with heavy jets, i.e.
jets initiated by a charm or bottom quark, are not excluded, however, their contributions
are negligible for the interaction process of this analysis.

Figure 6.1: Diagrammatic representation of the application of JEC for data and MC.
The flavor corrections are not applied in this analysis. Only light jets initiated by an up,
down or strange quark are considered. Taken from [172].

The jets will undergo the so-called jet ID selection criteria before any of the corrections
are applied. The jet ID criteria are based on the composition of the reconstructed jets.
In Tab. 6.1 and Tab. 6.2, the jet ID criteria are shown for jets in the central and forward
regions of the detector, respectively. The quality criteria are applied in order to reject fake
jets, which can arise from detector noise or wrongly reconstructed particles. All values
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are provided by the CMS collaboration for the data of Run2016B1. In this analysis it
was opted to use the tight ID throughout.

Starting on the left side of Fig. 6.1, the first set of corrections to be applied to the jets
passing the jet ID criteria are meant to correct for additional energy coming from pileup
events. The corrections are generally referred to as the L1 offset corrections and are set
to one in this analysis for two reasons. First, the data are low pileup data, while in Sec. 7
it will be highlighted that events with only one proper vertex will be used. Second, both
detector level MC samples have been generated without any pileup.

The L2L3 MC-truth corrections aim to correct the non-uniformity of the jet response
as a function of η and pT by comparing the transverse momentum on generator and
detector level. The pythia 8 sample using the CUETP8M1 tune will be used in this
regard. The derivation of the corrections is outlined in Sec. 6.2.1

The third and last set of corrections needed in this analysis are the L2L3 residual
corrections. The simulation of the detector level MC samples is not perfect, therefore,
small residual differences remain between the MC and data samples. The residual correc-
tions are meant to compensate for the remaining differences and are discussed in detail
in Sec. 6.2.2.

Table 6.1: Jet ID criteria for the central region of the detector.

PF Jet ID Loose Tight TightLepVeto
jet ID criteria for |η| ≤ 2.7
Neutral Hadron Fraction < 0.99 < 0.90 < 0.90
Neutral EM Fraction < 0.99 < 0.90 < 0.90
Number of Constituents > 1 > 1 > 1
Muon Fraction - - < 0.8
Additional jet ID criteria for |η| ≤ 2.4
Charge Hadron Fraction > 0 > 0 > 0
Charged Multiplicity > 0 > 0 > 0
Charged EM Fraction < 0.99 < 0.99 < 0.90

Table 6.2: The jet ID criteria for the forward region of the detector.

PF Jet ID Loose Tight
Jet ID criteria for 2.7 ≤ |η| ≤ 3.0
Neutral Hadron Fraction > 0.01 > 0.01
Neutral EM Fraction < 0.98 < 0.98
Number of Constituents > 2 > 2
Jet ID criteria for |η| ≥ 3.0
Neutral Hadron Fraction > 0.01 > 0.01
Neutral EM Fraction < 0.98 < 0.98
Number of Constituents > 2 > 2

1https://twiki.cern.ch/twiki/bin/view/CMS/JetID13TeVRun2016
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6.2.1 L2L3 MC-truth Corrections
For the determination of the L2L3 MC-truth corrections, the JetMet group has provided
a framework, i.e. the JetMetAnalysis/JetUtilities and JetMetAnalysis/JetUtili-
ties packages2. The L2L3 MC-truth corrections are meant to correct the non-uniformity
of the jet response, defined as

Response(pT, η) =
preco

T

pgen
T

(6.7)

Where the response function is taken in bins of pT and η. The response is calculated
for all matching detector and generator level jets, resulting in peaked distributions for
each bin in pT and η. The distributions are approximated by and fitted with a Gaus-
sian function. For all bins, the median and the error on the median of the response
distributions are taken as the correction and error on the correction, respectively. The
whole calculation along with the production of the JEC files is handled by the provided
framework. However, some alterations to the JetMetAnalysis/JetUtilities package
have been made

• In the file L2Creator.cc the minimum number of entries for the response distri-
butions in line 235 has been changed from 4 to 100 in order to combat a possible
lack in statistics and the resulting bias thereof.

• In the file HistogramUtitlities.cc the lines 125-137 have been removed, where
the calculation of the error on the median has been changed to

σmedian = 1.253 · σ√
N

(6.8)

Where σ is the standard deviation of the Gaussian distribution andN is the amount
of entries. The definition is valid as the distribution is approximated with a Gaus-
sian distribution and enough statistics are present in each bin, in this case at least
100 events.

After the implementation of these changes the total L2L3 MC-truth corrections have
been calculated using the pythia 8 sample using the CUETP8M1 tune. The resulting
corrections are shown as a function of η for different values of pT in Fig. 6.2. A complete
overview of the corrections in the (pT, η)-plane can be found in Fig. 6.3. Note that not
for all values of pT and η corrections have been calculated due to a lack in statistics. In
this analysis, almost no jets exceed 800 GeV and very few jets with a high pT lie out of
the central area of |η| < 2.5. However, if and when a jet with a certain pT lies out of
the rapidity region for which corrections are available, then it receives the correction for
a jet with the same pT but with the closest value of η for which a correction has been
calculated.

Closure Test

A closure test is performed as a cross check. The newly obtained corrections are applied
to the same sample used to derive them. Afterwards, the whole calculation is repeated.

2https://github.com/cms-jet/JetMETAnalysis/tree/master/JetAnalyzers
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Figure 6.2: L2L3 MC-truth correction factors as a function of the η for different values
of pT.

Figure 6.3: Overview of the L2L3 MC-truth corrections in the (pT, η)-plane.
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If the corrections are precise, then the average of the response distributions (6.7) should
be approximately equal to one. As a rule of thumb, closure of the L2L3 MC-truth
corrections is achieved whenever the average does not deviate more than 0.01 from unity.
The averages are plotted as a function of the pseudorapidity of the reconstructed jets
ηreco and per bin in the transverse momentum at generator level pptcl

T . The results are
shown in the appendices in Fig. C.1, Fig. C.2, Fig. C.3 and Fig. C.4. Closure is achieved
throughout the plots except for a few forward/backward rapidity bins at high pT, which
is due to a lack of statistics in these bins. Therefore, it can be concluded that the
newly derived corrections display the proper behavior and have the desired effect on the
response functions.

The corrections have been approved by the JetMet group and have been published
in their online JEC database3. From hence on forth these corrections will be applied to
all data and MC samples, that contain events at detector level.

6.2.2 L2L3 Residual Corrections

The remaining differences between the jet response in data and MC are corrected for
by the L2L3 residual corrections. Dijet and multijet events are used in the derivation
following methods outlined in [172–175]. One of the jets, also called the tag jet, is required
to be in the well calibrated barrel region |η| ≤ 1.3. The so-called probe jet is used to
calculate the L2L3 residual corrections relative to the barrel jet. The pseudorapidity
window of the probe jet is limited to |η| < 4.7. Therefore, the corrections will be relative
to the barrel region as a whole. The corrections are derived as function of η and pT,Ave,
where pT,Ave is given by

pT,Ave =
1

2
(pT,tag + pT,probe) (6.9)

In the ideal dijet topology, the tag and probe jets are back-to-back in the azimuthal plane.
However, the momentum balance of the dijet can be affected by additionally radiated
jets. The presence of the jets will be corrected for by performing an extrapolation of the
parameter α→ 0, where α is defined below.

α =
pT,3rd

pT,Ave
(6.10)

The perfect dijet topology is approximated since the transverse momentum of the third
and lower leading jets is negligible when α → 0. The derivation of the L2L3 residual
corrections is done for the AK4PFCHS jet collection.

Data Sample and Event Selection

For the derivation of the L2L3 residual corrections, the FSQJets data sample and the
pythia 8 MC sample using the CUETP8M1 tune have been used. The FSQJets data sample
is preferred over the HINPFJets data sample. The reason for this choice is threefold.
First, the PFJet triggers and the DiPFJet triggers yield more statistics in the FSQJets

3https://github.com/cms-jet/JECDatabase/tree/master/textFiles/Summer16_lowPU_V1_MC
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sample compared to the HINPFJets sample. Second, the DiPFJetAve triggers, especially
designed for studies of the L2L3 residual corrections, have non-zero rates in the FSQJets
sample, which is not the case for the HINPFJets data sample. Third, the PFJet and
DiPFJet triggers have lower pT thresholds. A larger region of the phase space at low pT

can be probed, compared to the AK4PFJet triggers used in the four jet analysis.
The various triggers become efficient at different values of pT and have different

prescales, see Sec. 9.1 for additional information. The phase space is divided in disjunctive
areas as a function of the triggers to avoid selecting an event more than once. Generally,
the prescale of a trigger is higher when the pT threshold of the trigger is lower, making
triggers with a high threshold more effective when filtering out events with high-pT jets.
The exact division of the phase space as a function of the pT of the two leading jets is
outlined below.

• The PFJet and DiPFJet triggers will be used whenever |ηprobe| < 2.7. The exact
division of the phase space as a function of the pT of the two leading jets is given
in Fig. 6.4.

• If the probe jet lies in the forward region, i.e. |ηprobe| > 2.7, the DiPFJetAve triggers
will be used. The phase space is divided as a function of pT,Ave in the following
way:

? HLT_DiPFJetAve_15_HFJEC_v1: 15 GeV ≤ pT,Ave ≤ 35 GeV

? HLT_DiPFJetAve_25_HFJEC_v1: 35 GeV ≤ pT,Ave ≤ 55 GeV

? HLT_DiPFJetAve_35_HFJEC_v1: pT,Ave ≥ 55 GeV

In both cases the tag jet is situated in the barrel region (|η| < 1.3). A correction due
to the trigger efficiency, see Sec. 9.1, is applied wherever necessary. Further selection
criteria are applied to all selected events, they are given below.

• At least one good vertex is present in the events:

? The Number of Degrees of Freedom (NDF) of a vertex is strictly larger than
four.

? Spatial constraints on the vertex position are |z| ≤ 24 cm and ρ ≤ 2 cm, where
ρ is the radial coordinate.

? Fake vertices are discarded. They can be produced by secondary interactions
with the detector material, by weak decays or by tracks coming from the beam
spot.

• At least two jets passing the jet ID selection criteria are present.

• At least one of the two jets is situated in the barrel region |η| ≤ 1.3.

• The jets are approximately in a back-to-back configuration or |φ1 − φ2| ≥ 2.7.

• A binning in the maximum allowed value of the parameter αmax is introduced,
where α ≤ αmax and αmax ∈ {0.05, 0.10, . . . , 0.40, 0.45}.

The last two selection criteria were introduced as a perfect dijet topology is rarely ob-
served due to ISR and FSR.
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Figure 6.4: The division of the phase space as a function of the pT of the two leading jets.
The division is made so that the triggers do not overlap and events can not be selected
twice.

Methodology

Two different methods have been used and are compared to one another in the calculation
of the L2L3 residual corrections. The first method is the pT-balance method, which has
been used for the CMS jet energy corrections in the past [172–174]. The pT-balance
method evaluates the asymmetry variable A and the corresponding jet energy response
RpTrel , defined as

RpTrel =
1 + 〈A〉
1− 〈A〉 , where (6.11)

A =
pT,probe − pT,tag

2pT,Ave
(6.12)

The second method is the Missing transverse momentum Projection Fraction (MPF)
method [172,173,175], where jet energy response function is defined as

RMPF
rel =

1 + 〈B〉
1− 〈B〉 , where (6.13)

B =
~pmiss

T,Type−I · (~pT,tag/pT,tag)

2pT,Ave
(6.14)
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The ~pmiss
T,Type−I is the type-I corrected MET, described in Sec. 6.1.2, and is also referred to

as the MET corrected in the (L123(L23)-L1RC) scheme4. The MPF method is expected
to be less sensitive to additional jet activity compared to the pT-balance method. The
full hadronic recoil of the event is taken into account through the use of ~pmiss

T,Type−I in the
response function, whereas the pT-balance method only considers the two leading jets as
a dijet system.

The pT-balance and MPF response will both be calculated as a function of pT in
each |ηprobe| bin for a value of αmax = 0.3 for the data and MC samples. The residual
differences between the data and MC samples are studied as a function of the ratio of
the response functions given below.

(
RMC

rel

RData
rel

)
α≤0.3

(6.15)

Through fitting a linear logarithmic function p0 + p1 log(pT), the pT dependence of the
response functions is extracted. However, both responses need to be corrected for the
additional jet activity. In this regard, the kFSR correction factor needs to be obtained.
The first step is to determine the factors kFSR(αmax, |ηprobe|) defined below.

kFSR(αmax, |ηprobe|) =

(
RMC

rel

RData
rel

)
α≤αmax

/(
RMC

rel

RData
rel

)
α≤0.3

(6.16)

with αmax ∈ [0.05, 0.10, . . . , 0.45] (6.17)

The kFSR(αmax, |ηprobe|) factors are determined as a function of αmax in each |ηprobe|
and pT,Ave bin. Next, the weighted mean over pT,Ave is taken for each value of αmax and
|ηprobe|. The final correction factor kFSR for each ηprobe bin is obtained by extrapolating
the fitted functions to αmax = 0.

kFSR(|ηprobe|) = lim
αmax→0

kFSR(αmax, |ηprobe|) (6.18)

The kFSR(|ηprobe|) factor is determined as an average correction factor in pT,Ave. The
L2L3 residual corrections relative to the barrel region can then be written as the product
of the kFSR(|ηprobe|) factor multiplied with the pT dependent linear logarithmic function
extracted from the ratio in eq. (6.15).

L2L3Res(|ηprobe|) = kFSR(|ηprobe|) ·
(
RMC

rel

RData
rel

)
α≤0.3

(6.19)

Where the linear logarithmic fit will be used to include the pT dependence of the L2L3
residual corrections. Dividing by the average correction over the barrel region will result
in the absolute L2L3 residual corrections for the AK4PFCHS jet collection.

4https://twiki.cern.ch/twiki/bin/viewauth/CMS/METType1Type2Formulae#3_The_Type_I_
correction
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Calculation of the L2L3 Residual Corrections

To start the calculation of the L2L3 residual corrections, the variables A and B have
been measured in bins of pT,Ave and αmax. Fig. C.5, Fig. C.6, Fig. C.7 and Fig. C.8
in the appendices show the resulting distributions for the FSQJets and the pythia 8
samples, where αmax = 0.3 has been used. In comparing the two variables, one observes
that the distributions obtained by the MPF method are narrower than the distributions
for the pT-balance method.

From the distributions of A and B, the responses (6.11) and (6.13) can be calculated.
Next, the ratio of the responses of the MC and data samples is taken. Fig. C.9 and
Fig. C.10 in the appendices show the results for all |ηprobe| bins for both the pT-balance
and MPF method, respectively. The η-dependent corrections are studied in bins of
pT,Ave and fitted by a linear logarithmic function in order to extract the pT dependence.
Generally, the results obtained through the MPF method have smaller statistical errors
compared to the ratios from the pT-balance method. The observation is directly linked
to the observed difference in width of the distributions of the variables A and B. The size
of the statistical error is limited due to the amount of selected events of the data sample.
The amount of statistics of the pythia 8 sample greatly surpasses that of the FSQJets
data sample. In general the pT dependence becomes stronger for the more forward bins
in |ηprobe| for both methods. Fig. 6.5 shows the same results for the response ratios but
as a function of |ηprobe| for different values of pT,Ave for the pT-balance (left) and MPF
method (right).

Figure 6.5: The response ratios for the pT-balance (left) and MPF (right) method, shown
as a function of |ηprobe| for different values of pT,Ave. The nominal pT,Ave is taken as the
mean value of the pT,Ave spectrum in each corresponding rapidity bin.

The next step in the calculation of the L2L3 residual corrections is to correct for
the additional jet activity. First, the kFSR(αmax, |ηprobe|) factor, given by eq. (6.16), is
calculated for each bin in |ηprobe|, αmax and pT,Ave. The results are shown in Fig. C.11 and
Fig. C.12 in the appendices for the pT-balance and MPF method, respectively. Second,
the weighted average over all pT,Ave bins per bin in ηprobe and per αmax is taken. However,
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before the average curves are fitted, the fitting range has to be determined. As the
kFSR(|ηprobe|) factor is meant to correct for additionally radiated jets, the correlation
between 〈(pgen

T,1st − pgen
T,2nd)/pT,Ave〉 and αmax is examined. If the difference in pT of the

two leading jets is proportional to the pT of the third leading jet (pT,3rd), then the ratio
will be linear in α due to its definition in eq. (6.10). However, if no linear behavior is
found, then the fourth, fifth, . . . leading jets will have a non-negligible pT, which could
affect the extrapolation of αmax → 0 in a negative manner.

The distribution is displayed in Fig. 6.6 and illustrates the correlation between addi-
tional radiation in the event and αmax [173]. As the discrepancy between the pT of the
two leading jets grows, the additional radiation grows linearly with it up to αmax = 0.32.
Due to limited available statistics, the fitting interval needs to be shortened to [0.11, 0.32].
The outliers in the first two bins of αmax would yield unstable results with large uncertain-
ties and are, therefore, omitted from the rest of the calculation. The weighted averages
of kFSR(αmax, |ηprobe|) as a function of αmax, are shown in Fig. C.13 and Fig. C.14 in
the appendices for the pT-balance and MPF method, respectively. The histograms have
been fitted by a linear and a constant fit. When examining the fits compared to the
histograms, it becomes apparent why the first two bin have been omitted. The values of
the kFSR(|ηprobe|) factor for each rapidity bin is then the value of the constant fit or the
linear fit evaluated at αmax = 0.

Figure 6.6: The distribution of 〈(pgen
T,1st − pgen

T,2nd)/pT,Ave〉 vs. αmax for the pythia 8
sample. The distribution shows linear behavior for αmax ∈ [0.00, 0.32].

The resulting kFSR(|ηprobe|) factors have been bundled in Fig. 6.7, where the left
and right panel display the results for the pT-balance and MPF method, respectively.
The results of the linear fit for the pT-balance method show a notable difference in the
forward region compared to the constant fit. While the MPF method shows little to no
significant differences between the results from both fits. For both methods the constant
fit yields smaller statistical errors. Since the uncorrected ratios in Fig. 6.5 already yield
large errors, it is opted to continue with the constant fit for both methods. If more
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statistics were available, a more precise linear fit could have been performed.

Figure 6.7: The factor kFSR(|ηprobe|) for the pT-balance method (left) and MPF (right)
method as a function of |ηprobe|. The results from both the constant and linear fit are
shown.

The L2L3 residual corrections relative to the barrel region are obtained by multiplying
the value of the linear logarithmic fit evaluated at the centre of the |ηprobe| bins with
the corresponding value of the kFSR(|ηprobe|) factor for both methods, respectively. The
final L2L3 residual corrections are obtained after the normalization to the barrel region.
The relative L2L3 residual corrections are divided by the average over the first two bins.
Fig. 6.8 shows the final L2L3 residual corrections as a function of |ηprobe| for different
values of pT,Ave for both methods, respectively.

The final corrections are acquired after multiple iterations where the binning in pT

and |ηprobe| was adapted in each step with the intention of reducing the errors on the
corrections, while simultaneously trying to keep the pT,Ave sensitivity. The re-binning
in |ηprobe| was done in such a manner that the rapidity intervals consist of detector
parts that are expected to show similar behavior, while the binning in pT was largely
determined by the limited available statistics.

Closure of the L2L3 Residual Corrections

For the L2L3 residual corrections, the closure test is performed in the same manner
as it was done for the L2L3 MC-truth corrections. The corrections are applied to the
data sample used to derive the corrections, after which the whole analysis is repeated in
exactly the same manner. The closure plots for the pT-balance and MPF method are
shown in Fig. 6.9.

The derived L2L3 residual corrections do not exhibit closure. The spread of the
closure test for different values of pT,Ave for the MPF method is smaller compared the
spread for the closure test for the pT-balance method in general. None of the two sets
of corrections show full closure, however, the closure plot for the MPF method shows a
more stable behavior in combination with smaller errors. Therefore, the L2L3 residual
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Figure 6.8: The L2L3 residual corrections for the pT-balance (left) and MPF (right)
method shown as a function of |ηprobe| for different values of pT,Ave. The nominal pT,Ave

is taken as the mean value of the pT,Ave spectrum in each corresponding rapidity bin.

Figure 6.9: The closure plots of the L2L3 residual corrections for the pT-balance (left)
and MPF (right) method. The nominal pT,Ave is taken as the mean value of the pT,Ave

spectrum in each corresponding rapidity bin.

corrections that were obtained by the MPF method will be applied to the data in this
analysis.

Ideally, the re-derived corrections would be equal to unity within their respective
uncertainty. However, due to only a small amount of data being available in the low pT

and low pileup regime, large bins in pT,Ave and |ηprobe| had to be used in order to obtain
results with statistical errors that were manageable. Preferably, one would like to use a
binning in |ηprobe| that examines every detector segment individually as in [172]. More
statistics could alter the pT dependence of the ratios in Fig. C.9 and Fig. C.10. In regard
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to the determination of the kFSR(|ηprobe|) factor, a smaller fitting range had to be used
as well as a constant fit instead of a linear fit. Both can yield meaningful differences
in the calculation of the L2L3 residual corrections. The combination of the reliance on
fits in the computation of the L2L3 residual corrections and the large statistical errors,
result in the non-closure of the corrections.

A consistent way of dealing with the non-closure is to treat it as a systematic uncer-
tainty. A detailed description of the handling of the non-closure can be found in Chap. 11.
All results have been discussed with and were approved by the JetMet group. The final
L2L3 residual corrections, that have been used in this analysis, have been added to the
JEC database5.

5https://github.com/cms-jet/JECDatabase/tree/master/textFiles/Summer16_lowPU_V4a_DATA
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Chapter 7

Event Selection

As the jets and events as a whole have been reconstructed and calibrated, the detector
level data is ready to be analyzed. The first main step is to filter out the events with the
desired four jet topology. In this regard, selection criteria have been put into place, all
of which will be discussed below.

The events that make up the data samples, given in Tab. 5.1, have passed an online
trigger selection. The AK4PFJetXX triggers select events with at least one jet above the
pT threshold XX. Four different triggers have been used in succession in order to maximize
the statistics and to prevent the selection of an event more than once. The phase space
has been divided in four disjunctive regions based on the pT of the leading jet, specified
below. The efficiency due to detector effects of the different triggers, will be examined
in Sec. 9.1.

• HLT_AK4PFJet30_v3 for 35 GeV ≤ pT,1st ≤ 65 GeV

• HLT_AK4PFJet50_v3 for 65 GeV ≤ pT,1st ≤ 100 GeV

• HLT_AK4PFJet80_v3 for 100 GeV ≤ pT,1st ≤ 130 GeV

• HLT_AK4PFJet100_v3 for pT,1st ≥ 130 GeV

After the online selection, the samples have been subjected to multiple offline selection
criteria in order to filter out events with the inclusive four jet topology. First, the jets
in each event are required to pass the Jet ID criteria before the newly derived JEC are
applied, as described in Sec. 6.2. If a jet does not pass the criteria, it is discarded from
the analysis. Second, exactly one proper reconstructed primary vertex is required to be
present in the event. The average vertex multiplicity per event is ∼ 1.3, as we are working
with low pileup data. The uncorrected detector level cross section as a function of the
vertex multiplicity is shown in Fig. 7.1. A vertex is deemed proper, when the following
criteria are met.

• The NDF of a vertex is equal to or larger than 5.

• Spatial constraints on the vertex position are |z| ≤ 24 cm and ρ ≤ 2 cm.

• Fake vertices are discarded. They can be produced by secondary interaction with
the detector material, by weak decays, or by tracks coming from the beamspot.
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The reason for the requirement of exactly one proper vertex is two-fold. On the one hand,
no further pileup corrections need to be made to the data. The L1 offset corrections have
been set to one, justified by the vertex selection criterion. On the other hand, additional
jets not coming from the primary vertex, can survive further kinematic cuts, resulting
in a possible bias in DPS-sensitive areas of the observables. The DPS event topology
is especially sensitive to jets coming from different interaction vertices. However, the
luminosity needs to be corrected due to this selection criterion in order to ensure the
proper normalization of the data.

Figure 7.1: The uncorrected detector level cross section as a function of the vertex
multiplicity. Roughly 70% of events have exactly one good reconstructed vertex.

The third and final set of cuts focuses on the kinematic properties of the jets. The
four leading jets of all events, which have passed all the previous selection criteria, are
subjected to the kinematic cuts given below.

• The pseudorapidity of all jets: |ηi| ≤ 4.7

• The pT of the leading jet: pT,1st ≥ 35 GeV

• The pT of the second jet: pT,2nd ≥ 30 GeV

• The pT of the third jet: pT,4th ≥ 25 GeV

• The pT of the fourth jet: pT,4th ≥ 20 GeV

The wide pseudorapidity window in combination with low pT jets, allows for the low-x
regime to be probed, see eq. 3.20. While a phenomenological study [117] has suggested
that asymmetrical cuts could boost the DPS-sensitivity, therefore, it is opted to use these
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cuts as opposed to symmetrical cuts in contrast to previous studies, e.g. cuts of 50, 50,
20 and 20 GeV on the four leading jets ,respectively, in [26]. A second set of cuts on
the jet pT has been applied for the ∆S variable. The second set of cuts are 50, 30, 30
and 30 GeV on the first to last leading jet ,respectively. The exact reasons for these cuts
will be detailed in Sec. 8.1 and Sec. 9.2. From hence on forth, the phase space region
determined by the softer cuts will be referred to as region I, while region II indicates
the phase space determined by the harder cuts.
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Chapter 8

Extraction Strategy of σeff

In literature, measurements of DPS and the effective cross section σeff have been per-
formed using two distinct methods.

The first set of techniques can be labeled as the template method, where the DPS
contribution is extracted from the measured differential cross section as a function ofone
or more DPS-sensitive observables by performing a fit with a signal and a background
template. Therefore, the results depend completely on the definition of both templates.
The background template is generally constructed from simulation, while for the signal
template two approaches have been applied. The signal can be estimated in a data-driven
manner or through simulation as well. In the data-driven approaches, events from the
process A and B are selected independently from data and are randomly mixed together
as to mimic the occurrence of a DPS event. A recent DPS study in the four jet channel
performed by the ATLAS collaboration [25] has adopted this approach. When the signal
template is is produced through simulation, the preciseness of the predictions of the
processes A and B of the used model plays an essential role. For example, W-boson
production is a well understood process and has been used in DPS searches in the W +
2-jets channel [13]. Therefore, the signal template was determined from simulation. Let
us now return briefly to the background template. As most models include a description
of MPI, the background template will have a MPI contribution. MPI is part of the
description of the UE, described by the various tunes, and is generally much softer
compared to the hard interaction or the two hard scatterings sought after in DPS searches.
Therefore, MPI should still be included in the models, as they are less realistic without
MPI.

A second method for the extraction of σeff was introduced in [121]. The differen-
tial cross section as a function ofmultiple DPS-sensitive observables was determined as
well, but rather than making the distinction between signal and background events the
variables are fit inclusively. One requirement is that one should be able to tune the
parameters characterizing the UE of the MC event generator. Parameters of the Tune
4C were altered in this manner in order to obtain the CDPSTP8S1-4j tune. However, it
was concluded that the description of the UE and DPS are not compatible. The DPS
tunes fail to give a proper description of the UE-sensitive observables and vice versa.

In this analysis, the template method with a data-driven signal template will be used
for the extraction of σeff . A second method will be introduced as well, where the shape
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of the observable is directly compared in order to estimate the DPS contribution. Both
will be detailed below.

8.1 Template Method

The construction of the signal template will be the main challenge and is detailed be-
low. For the background template, the different SPS MC models can be used, i.e. the
MC models without an explicit DPS contribution. All the SPS MC models contain a
description of MPI, specific to the used UE tune. However, the scale of the MPI is lower
compared to the scale of the hard interactions. After the construction of the signal tem-
plate, the technique used for the template fit and the extraction of the DPS cross section
will be highlighted.

8.1.1 Construction of the Signal Template

Let us now come back to the DPS pocket formula given in eq. (3.19). Before the extraction
of the DPS cross section σDPS

A,B can be attempted, the processes A and B need to be
identified. In the simplest and ideal topology, the processes A and B would both be dijet
production, resulting in a four jet final state with uncorrelated jet pairs, as depicted in
Fig. 3.5. However, ISR and FSR, and higher-order interactions can produce final states
with more than two jets, effectively dismantling the ideal dijet configuration. Therefore,
the processes A and B are both defined as inclusive single jet production. Both processes
contribute a number of jets in order to form an inclusive four jet DPS events. If one, two
or three of the four leading jets originate from the process A, then the process B has to
deliver three, two or one of the four leading jets, respectively.

The threshold of 30 GeV of the lowest single jet trigger imposes further restrictions on
the two inclusive single jet processes. The region I can not be used since the trigger does
not allow for the detection of a single jet with a transverse momentum below 30 GeV.
Therefore the region II is used, allowing us to define the processes A and B as the
inclusive single jet cross sections given below.

σA = σjet(pT ≥ 50) (8.1)
σB = σjet(pT ≥ 30) (8.2)

The cross sections can not be plugged into the DPS pocket formula just yet. Not all
combinations of two inclusive single jet events will yield at least four jets in total. In this
regard, the “4-jet efficiency” ε4j is introduced. It represents the fraction of all cases for
which the combination of two inclusive single jet events result in at least four jets in the
final state, passing all the selection criteria of the four jet analysis.

Events that meet the online and offline selection criteria for the two inclusive single
jet processes are selected and stored in two disjunct data sets. Each event with at least
one jet with a transverse momentum larger than 50 GeV is randomly mixed with an event
where at least one jet has a pT above 30 GeV. To prevent any possible form of double
counting, each event with at least one jet with a pT above 30 GeV is used at most once.
After such an event is selected, it is omitted from the sample. A veto condition is put
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in place in order to exclude events where two or more jet axes overlap. The condition is
formulated below.

Rij =
√
|φi − φj |2 + |ηi − ηj |2 ≤ 0.4 (8.3)

with jeti ∈ A, jetj ∈ B

The newly constructed pure DPS sample is subjected to the selection criteria of region II.
A 4-jet efficiency of ε4j = 0.32441± 0.00053(stat.) is found.

Afterwards, a cross check is performed to ensure that the veto condition does not
affect the distributions of the observables. The ∆S observable is expected to be one of
the more DPS-sensitive observables. Therefore, the detector level ∆S distribution with
the veto condition is compared the same distribution where a “naive” re-clustering of the
jets has been performed instead of the removal of the event. The re-clustering affects the
pT, η and φ of the jets. The vectorial combination of the transverse momentum vectors
of the overlapping jets is calculated, determining the pT and φ of the re-clustered jet.
While the pseudorapidity of the overlapping jets is calculated by inverting the definition
of the pseudorapidity in eq. (3.13) and by taking the average of the angles θi and θj . The
pseudorapidity of the re-clustered jets is given below.

{
θi = 2 arctan(e−ηi)

θj = 2 arctan(e−ηj )
⇒ ηij = − ln

(
tan

(
1

2

θi + θj
2

))
(8.4)

The detector level ratio of the ∆S distribution with the veto condition in place versus
the naive clustering is shown in Fig. 8.1. Both distributions have been normalized to one
before the ratio was taken. The relative bin-to-bin differences will be of interest, since the
∆S observable is expected to exhibit a sensitivity to DPS in the tail of the distribution.
From the ratio one can conclude that the relative size of the bins does not deviate more
than 3%. It is sufficient to continue with the veto condition. A formal re-clustering of
the jets is not expected to contribute in a significant way.

One last remark has to be made, before the DPS pocket formula can be rewritten
to a workable form. The cross sections of the two processes σA and σB are not always
distinguishable. The cross section of the process B is split in the two disjunct cross
sections σA and σB−σA in order that the symmetry factor can be unambiguously defined.
Taking all of the considerations above into account, one obtains the expression for the
DPS pocket formula given below.

σDPSA,B =
ε4j
σeff

(
1

2
σ2

A + σA · (σB − σA)

)
=
ε4jσAσB

σeff

(
1− 1

2

σA

σB

)
(8.5)

The cross sections σA and σB will be determined from the pseudorapidity spectra of the
leading jet for both inclusive single jet processes. The distributions will be corrected to
generator level in Chap. 10, for which the proper corresponding MC samples are needed.
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Figure 8.1: The ratio of the detector level ∆S distribution with the veto condition and
with the naive re-clustering of the jets. Both distributions have been normalized to one,
as the relative bin-to-bin differences are of interest.

The exact same mixing procedure has been applied to the pythia 8 and herwig++
samples using the CUETP8S1 and CUETHS1 tunes, respectively.

A more workable form of the DPS cross section has been obtained. However, both
σDPSA,B and σeff are unknown. The DPS cross section still needs to be extracted from the
data, before any prediction of σeff can be made.

8.1.2 Template Fit

The fraction of DPS events fDPS can be extracted by performing a template fit to the
fully corrected ∆S distribution. The MC models that do not contain an explicit DPS
contribution are taken as the background or SPS templates. The signal template is
constructed from the earlier mentioned pure DPS data sample. The distribution of the
∆S observable will be determined from the pure DPS data sample and will be corrected
to generator level. From hence on forth we will make the distinction between ∆S and
∆SDPS, where the subscript DPS indicates that the ∆S distribution has been extracted
from the pure DPS data sample.

The signal and background template are normalized to the cross section of the ∆S
distribution obtained from the four jet data sample. The optimal value of the DPS
fraction fDPS is determined by performing a template fit based on a maximum likelihood
technique using Poisson statistics [176]:
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σData(∆S) = fDPS · σData
DPS (∆SDPS) + (1− fDPS) · σMC

SPS(∆S) (8.6)

With the DPS fraction fDPS known, the cross section σDPS
A,B is determined from the

integral of the integral of the differential cross section as a function ofthe ∆S observable,
scaled with fDPS or

σDPS
A,B = fDPS ·

∫
σData(∆S)d(∆S) (8.7)

The result in combination with the rewritten DPS pocket formula in eq. (8.5) allows for
the extraction of the effective cross sections σeff .

8.2 Shape Comparison Method
The DPS cross section σDPS

A,B can be estimated through comparison of the normalized
distributions of the variable ∆S from data and SPS MC models. The distributions are
both normalized to the last bin at π where the least DPS-sensitivity is expected. The
difference in shape between the SPS MC models and the data, respectively, can be seen
as the missing DPS fraction needed to improve the models. However, in this approach
one implicitly assumes that the DPS contribution in the bin at π is negligible. In the
generator level study performed in Sec. 3.8, a DPS contribution of ∼ 6% has been found in
the bin at π, compared to a 35% DPS contribution in the first bin of the ∆S distribution.
The ratio of the cross sections of the MC models over the cross section of the fully
corrected data for the normalized histograms can be seen as the fraction of SPS events.
The fraction of DPS events fDPS is written in terms of these normalized distributions as

fDPS = 1− σMC
Norm(∆S)

σData
Norm(∆S)

(8.8)

The subscript “Norm” indicates the usage of the normalized ∆S distributions. The DPS
cross section σDPS

A,B is estimated as the product of the fraction of DPS events with the
integral over the differential cross section as a function ofthe ∆S observable or

σDPS
A,B = fDPS ·

∫
σData(∆S)d(∆S) (8.9)

As with the template method, the combination of the result with the rewritten DPS
pocket formula in eq. (8.5) allows for the extraction of the effective cross section σeff .

The shape comparison method is more straightforward and perhaps more naive com-
pared to the template method or the tuning method. The results are expected to be more
sensitive to small bin-to-bin differences in the distributions, not only in the DPS-sensitive
area, but in the SPS-dominated region of the observable as well.

84



Chapter 9

Study of Detector Effects

In this chapter, the remaining detector effects are examined. The first effect is the trigger
inefficiency, which needs to be corrected for. Afterwards, the resolution of all the variables
is measured in order to determine an optimal binning for the final distributions. Lastly,
the variables are compared with the pythia 8 and herwig++ MC models at detector
level, using their optimized binning.

9.1 Trigger Efficiency Correction
Whenever a jet is properly reconstructed in the whole trigger system, while meeting the
pT thresholds for a given jet trigger, the trigger is fired. If an event is deemed of proper
quality by the DQM, the event is written to tape. However, it can be that an event of
interest is not properly detected or reconstructed, leading to the trigger not being fired
and the event of interest being discarded. This is referred to as the trigger inefficiency.
The regions in the phase space where the trigger is not fully efficient need to be corrected
for the observed inefficiencies.

The trigger efficiency εtrig of all the jet triggers has been studied as a function of the
jet pT. The efficiency of all the triggers has been calculated by the so-called reference
trigger method. Given a certain trigger of which one wants to determine the efficiency,
one compares the firing of the trigger with that of a trigger with a lower pT threshold
or a Minimum Bias (MB) trigger. Where a MB trigger is used to select MB events,
defined as single diffractive events, double diffractive events and non-diffractive events.
The efficiency can be written as

εtrig =
N (trig + trigref fired)

N (trigref fired)
(9.1)

Where N(. . .) is the amount of events selected by the given trigger(s). Important to note
is that the N(trig + trigref fired) has been corrected for the prescale of the considered
trigger. Whereas a correction for the prescale of the reference trigger is not necessary
since the prescale cancels in the numerator and the denominator.

The HLT_L1MinimumBiasHF_OR_partX_v1 triggers have been used as the reference
trigger in combination with the L1MinimumBiasX data samples, where X ∈ {0, . . . , 9}.
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Each efficiency curve has been fitted with the error function given below.

εtrig =
1

2

(
1 + Erf

(
pT − p0√

2 · p1

))
(9.2)

Where the parameters p0 and p1 are determined through the fitting procedure for each
trigger individually. A trigger is considered to be fully effective when the efficiency
becomes larger than 0.99. This point has been determined for all the triggers and is
shown in Tab. 9.1 along with the pT threshold of all triggers. The resulting efficiency
curves for all the triggers are shown in Fig. 9.1 and Fig. 9.2.

It is preferred to use a trigger where it is fully efficient. However, the analysis of
the JEC uses a pT,Ave as low as 20 Gev and the inclusive four jet analysis puts a lower
boundary on the leading jet pT of 35 GeV. The triggers used in the low pT regions are
not always fully efficient, therefore, a trigger correction needs to be applied in the low
pT regions of the phase space, effectively altering the weight of the events. The regions
of the phase space where the different triggers have been used can be found in Sec. 6.2.2
and Sec. 7 for the determination of the JEC and for the inclusive four jet analysis,
respectively.

Table 9.1: List of all the triggers with their respective pT thresholds and the values where
they become fully efficient. The threshold for the DiPFJet triggers is the pT threshold for
the second leading jet instead of the leading jet, while the threshold for the DiPFJetAve
triggers is the pT,Ave of the two leading jets.

Trigger pT threshold
(GeV)

Full efficiency
threshold (GeV)

Triggers used for the JEC
HLT_PFJet15_NoCaloMatched_v3 15 30
HLT_PFJet25_NoCaloMatched_v1 25 35
HLT_DiPFJet15_NoCaloMatched_v1 15 26
HLT_DiPFJet25_NoCaloMatched_v1 25 37
HLT_DiPFAveJet15_HFJEC_v1 15 24
HLT_DiPFAveJet25_HFJEC_v1 25 34
HLT_DiPFAveJet35_HFJEC_v1 35 52

Triggers used in the 4-jet analysis
HLT_AK4PFJet30_v3 30 43
HLT_AK4PFJet50_v3 50 64
HLT_AK4PFJet80_v3 80 97
HLT_AK4PFJet100_v3 100 125
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Figure 9.1: The trigger efficiencies as a function of the pT of the leading jet for the PFJet
(left) and AK4PFJet (right) triggers.

Figure 9.2: The trigger efficiencies for the different DiPFJet (left) and DiPFJetAve (right)
jet triggers. The efficiency is as a function of the pT of the sub-leading jet for the DiPFJet
triggers, while the efficiency curves for the DiPFJetAve triggers (right) are as a function
of the pT,Ave.
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9.2 Detector Resolution

The CMS detector, just as any measuring device, has a finite resolution. A detector
is never able to determine or measure the exact value of an angle, energy deposit, . . .
Measurements performed by the CMS detector are affected by such effects as calibration
uncertainties, the non-linearity of the detector response, . . . A particle with a true energy
E can be measured with a different energy E∗ by the detector. In general, the measured
energies E∗ will form a peaked distribution centered around the true energy E. The
half-width of the distribution is referred to as the resolution, which is a measure of the
preciseness and accurateness of the detector.

The resolution of a variable plays an important role in the determination of the
binning of the histogram for said variable. Due to a non-zero resolution, measured
values can migrate to a different bin compared to the bin of their true value. Migrations
should be avoided as they can complicate the unfolding procedure, i.e. correcting for the
remainder of detector effects. The procedure is detailed in Sec. 10. As a rule of thumb to
counter bin-to-bin migrations, the bin width is taken to be at least 2 times the resolution
of the bin. The smearing into neighboring bins will be smaller than 5% in the case of a
Gaussian distributions.

The pythia 8 sample has been used for the determination of the resolution of all
observables. Apart from the standard event selection, additional matching criteria are
put in place. Jets at detector and generator level are matched and the resolution of
the variables is calculated only for events with at least 4 matched jets. The matching
procedure varies for different observables as described below.

• pT-based observables: The jets are matched in φ and η where√
|φgen − φdet|2 + |ηgen − ηdet|2 ≤

√
R2
φ +R2

η (9.3)

The maximum separations in φ and η are Rφ = 0.1 and Rη = 0.1. The pT-based
observables are the pT spectra of the four leading jets, ∆pT,soft and ∆S.

• φ-based observables: The jets are matched in pT and η where∣∣∣∣pgen
T − pdet

T

pgen
T

∣∣∣∣ ≤ RpT and
∣∣ηgen − ηdet

∣∣ ≤ Rη (9.4)

The maximum separations in pT and η are RpT = 0.3 and Rη = 0.1. The φ-based
observables are ∆φsoft, ∆φmin

3j , φij.

• η-based observables: The jets are matched in pT and φ where∣∣∣∣pgen
T − pdet

T

pgen
T

∣∣∣∣ ≤ RpT and
∣∣φgen − φdet

∣∣ ≤ Rφ (9.5)

The maximum separations in pT and η are RpT = 0.3 and Rη = 0.1. The η-
based observables are all the pseudorapidity spectra, i.e. the four leading jets of
the inclusive four jet production and the leading jets of the inclusive single jet
processes, and ∆Y.
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The resolution of the pT of the jets is relative since the pT of the jets ranges from 20 GeV
up to around 450 GeV. The radii Rφ, Rη and RpT have been determined individually
by examining the difference of the azimuthal angle, of the pseudorapidity and of the
transverse momentum, respectively, between all detector and generator level jets in each
event, resulting in three peaked distributions centered around zero. The radii correspond
to where the distributions started to rise in order to assure that jets correlated on detec-
tor and generator level were being compared to one another. The values of RpT , Rη and
Rφ have been varied up and down to justify their value. The result was a decrease in
statistics while the resolution remained the same, if smaller values were used. Whereas
the resolution decreased if the matching conditions were loosened since more and more
decorrelated jets would be allowed in the calculation of the resolution. By implement-
ing the matching procedure, the resolution of the observable in question is determined
independent of the matching procedure. In other words, if the matching for pT-based
observables would entail a matching in pT, then correlations between the pT of the jets
and the radius RpT can occur. The resolution would not be independent of the matching
procedure.

The resolution together with an appropriate detector level binning have been deter-
mined for all variables. The generator level binning will always be coarser compared to
the detector level binning. The algorithm of the unfolding procedure requires that the
number of detector level bins is strictly larger than the number of generator bins, see
Sec. 10. If the rule of thumb is met at detector level, it will automatically be met at
generator level. Fig. 9.3, Fig. 9.4 and Fig. 9.5 depict the resolution for all observables.

The resolution of the pT spectra of the four leading jets varies between 7-15% and
increases when the pT of the jet increases. For the pseudorapidity spectra of all the jets,
the maximum observed resolution is 0.06. A small increase is seen when comparing the
resolution of the first to the last leading jet, which is related to the differences in the
pT spectra. More low pT jets enter the pT spectrum of the fourth leading jet compared
to the last leading jet, resulting in a slightly worse resolution. As the differences in
resolution between the jets are small, the same pseudorapidity binning will be used for
all the pseudorapidity spectra. The inclusive single jet cross sections σA and σB will be
measured from their pseudorapidity spectra ηA and ηB and will use the same binning as
all other pseudorapidity spectra.

All variables that are not matched in pT, i.e. ∆φsoft, ∆φmin
3j , φij and ∆Y, exhibit a

resolution between 0.04 and 0.06. The resolution of the variable ∆pT,soft increases as
∆pT,soft increases, which can be understood from its definition in eq. (3.21). When the
two softest jets lie in a back-to-back topology the numerator will be small. The value of
∆pT,soft will be more susceptible to variations between the pT of the two jets on detector
and generator level, resulting in a broader distribution.

The resolution of ∆S is much larger than for all other variables even with the stricter
cuts on the pT of the jets. The ∆S variable is the only one for which the rule of thumb is
not met in all bins. The reason why this detector level binning is chosen and not further
altered in order to meet the rule of thumb, is two-fold. First, the pT of all four jets
enters the definition of ∆S in eq. (3.26), yielding a high sensitivity to any small deviation
between the pT of the jets on detector and generator level. Increasing the cuts on the
pT of the jets further, will result in a better resolution but fewer statistics, affecting the
stability of the unfolding procedure. Second, reducing the number of bins on detector
level will result in a loss of sensitivity. The final binning for the variable ∆S has been
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determined by balancing the increase in resolution from raising the cuts with the amount
of statistics necessary for a stable unfolding procedure. The ∆SDPS observable, extracted
from the pure DPS sample, will use the same binning as the ∆S observable since both
observables will be used in an effort to extract the DPS cross section and the effective
cross section.

The final binning of all observables at detector level is detailed below.

• pT,1st = [35, 45, 60, 75, 95, 120, 150, 200, 250, 300, 375, 450]

• pT,2nd = [30, 45, 60, 75, 95, 120, 150, 200, 250, 300, 375]

• pT,3rd = [25, 32.5, 45, 60, 80, 105, 150, 200, 250, 350]

• pT,4th = [20, 27.5, 35, 45, 60, 80, 105, 150, 200, 280]

• ηi, ηA, ηB = [−4.716,−3.839,−3.489,−2.964,−2.5,−2.172,−1.93,−1.74,
− 1.566,−1.305,−1.131,−0.957,−0.609,−0.261, 0.261, 0.609, 0.957, 1.131,
1.305, 1.566, 1.74, 1.93, 2.172, 2.5, 2.964, 3.489, 3.839, 4.716]

• ∆φsoft,∆φ
min
3j , φij = [0, 0.020, 0.039, 0.059, 0.079, 0.098, 0.118, 0.137, 0.157,

0.177, 0.196, 0.216, 0.236, 0.255, 0.275, 0.295, π]

• ∆Y = [0, 0.4, 0.8, 1.15, 1.5, 2.1, 2.6, 3.1, 3.6, 4.1, 4.6, 5.1, 5.7, 6.3, 6.9, 7.8, 9.4]

• ∆pT,soft = [0, 0.175, 0.35, 0.475, 0.6, 0.675, 0.75, 0.825, 0.9, 0.95, 1]

• ∆S,∆SDPS = [0, 0.6, 1.2, 1.7, 2.1, 2.4, 2.65, 2.85, 3.00, π]
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Figure 9.3: The relative resolution for the pT spectra of the leading to the last leading
jet are shown from the top left to the bottom right plot, respectively.
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Figure 9.4: The resolution for the pseudorapidity spectra of the leading to the last leading
jet are shown from the top left to the bottom right plot, respectively.
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Figure 9.5: The resolution for the DPS-sensitive observables. The resolution of the ∆S
variable (bottom right) has been determined in region II, compared to region I for all
other observables.
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9.3 Detector Level Study

As an appropriate detector level binning has been determined, all variables have been
plotted at detector level together with the pythia 8 and herwig++ samples using the
CUETP8M1 and CUETHS1 tunes, respectively, to cross check the reliability of the detector
simulation. The data has been corrected for the vertex selection criterion, in other
words: the luminosity is corrected for the fraction of events with exactly one proper
vertex relative to the total amount of events. The weight of events is further multiplied
with an additional factor due to possible trigger inefficiencies. Tab. 9.2 lists the number
of selected events after the application of the online and the offline selection criteria in
succession. The second to last column is the total amount events used in this analysis
for all variables except ∆S, which is given in the last column.

Table 9.2: The number of events surviving the online and offline selection criteria applied
in succession from left to right. Once the soft (hard) kinematic cuts have been applied,
the phase space region corresponds to region I (region II).

Sample Trigger Total num-
ber of events

Trigger
selection

Vertex selec-
tion

Soft kinematic cuts
(region I )

Hard kinematic
cuts (region II )

HINPFJets AK4PFJets30 5,905,759 4,433,002 3,173,906 52,731 5,552
AK4PFJets50 5,905,759 170,818 121,940 20,526 6,494
AK4PFJets80 5,905,759 29,253 20,579 6,580 3,094
AK4PFJets100 5,905,759 15,917 11,114 5,009 3,068

pythia 8 - 9,700,000 - 9,421,695 3,567,120 3,303,214
herwig++ - 9,993,000 - 9,730,687 3,558,557 3,255,406

The pT and η spectra are shown in Fig. 9.6 and Fig. 9.7, respectively, while the observables
are depicted in Fig. 9.8 and Fig. 9.9.

Apart from an overall difference in cross section, the pT spectra of the data show a
different behavior at low pT compared to the MC samples. The MC samples overshoot
the data in the low pT region of phase space. At high pT, the ratio of the MC samples
over the data becomes constant. In this region of the phase space the only difference
between the models is the overall cross section. For the pseudorapidity spectra of the
four leading jets, a difference in shape is observed in the forward and backward regions.
The discrepancy is linked to the overshoot of low pT jets. Forward and backward jets
carry on average a lower transverse momentum compared to central jets.

The shape of the variables ∆φsoft, ∆pT,soft and ∆S is relatively well described by the
pythia 8 and herwig++ MC samples as the ratios remain rather homogeneous. The
shape of the observable ∆φmin

3j lies somewhere in between the two MC models as the
ratios relative to both models cross each other around ∆φmin

3j equal to 2 rad. A large
deviation in shape is observed between the data and the models for the variable ∆Y.
Due to an excess of forward and backward jets in the MC models, the average maximum
separation in pseudorapidity is larger as in the data, resulting in the large overshoot at
high values of ∆Y. The observable φij is relatively well described by the herwig++
model, while the pythia 8 sample greatly overshoots the shape of the distribution at
low values of φij.

The pseudorapidity spectra of the inclusive single jet cross sections of the MC samples
overshoot the data. The discrepancy is larger for the process B compared to process A
since jets with a lower pT are included in σB compared σA. The detector level ∆SDPS

distribution, shown in the bottom plot of Fig. 9.9, displays a much more decorrelated

94



picture as the ∆S observable obtained from the data. All the ∆SDPS distributions have
been scaled to the uncorrected detector level cross section of the observable ∆S. The
cross sections of the ∆SDPS observable obtained from the pure DPS data and MC samples
are not known.

Both MC samples use a 2 → 2 ME, therefore at least two of the selected jets will
come from the parton shower. The main difference between the pythia 8 and herwig++
models is the type of parton shower. Whereas pythia 8 has implemented a pT-ordered
shower, herwig++ uses an angular ordered shower. The different treatment of partons
in the parton showers could lie at the root of the discrepancies observed in the spectra
of the ∆φmin

3j and φij observables for example.
The pythia 8 and herwig++ models fail to describe the complete phase space at

detector level, however, they will still be used to fully correct the data to generator level.
Additional steps will be undertaken in Sec. 10 to assure that the migrations relative to
the data are properly described by the MC models.

Figure 9.6: The detector level data along with the pythia 8 and herwig++ MC pre-
dictions of the pT spectra for the leading to the last leading jet are shown from the top
left to the bottom right plot, respectively.
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Figure 9.7: The detector level data along with the pythia 8 and herwig++ MC pre-
dictions of the η spectra for the leading to the last leading jet are shown from the top
left to the bottom right plot, respectively.
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Figure 9.8: The detector level data along with the pythia 8 and herwig++ MC pre-
dictions for the DPS-sensitive observables. The ∆S observable (bottom right) has been
determined in region II, compared to region I for all other observables.
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Figure 9.9: The detector level data along with the pythia 8 and herwig++ predictions
for the pseudorapidity spectra of the inclusive single jet processes A and B are shown
on the top left and top right plots, respectively. The detector level ∆SDPS distribution
for the mixed data and mixed MC samples is depicted on the bottom plot. The ∆SDPS

distribution has been determined in region II and has been scaled to the detector level
cross section of the ∆S observable.
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Chapter 10

Unfolding the Data

Ameasurement is subjected to inevitable detector effects, causing differences on generator
and detector level, characterized by the migrations. Different unfolding procedures can
be used to correct for these migrations. It is opted to use an unfolding method based
on the Singular Value Decomposition (SVD) of a matrix [177] along with Tikhonov
regularization [178]. First, an overview of the unfolding method and all elements that
come into play will be discussed. Next, the migrations are studied, after which the
unfolding procedure is performed. Finally, the unfolded plots will be shown together
with multiple cross checks of the whole procedure.

10.1 General Formulation of the Unfolding Problem
In general the problem of unfolding may be formulated as

ỹ = Ax̃ + b (10.1)

where

• x̃ is the truth vector at generator level, which is approached by the optimal esti-
mator x.

• ỹ is the vector of the average expected event count per bin at detector level.

• A is the matrix of probabilities that describes the migrations within the phase
space and effectively couples the detector and generator level to one another, see
Sec. 10.2.2.

• b is the background vector, which will be discussed in detail in the study of the
into and out of phase space migrations in Sec. 10.2.3.

One wishes to obtain the best possible estimate x of the truth vector x̃. The equation is
solved for x, after the average expected distribution ỹ is replaced by the measured distri-
bution y. However, inverting the problem is not guaranteed to work due to instabilities
in the inversion of the matrix A. The instabilities can be understood from the SVD of a
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matrix [177]. The SVD is a generalization of the eigendecomposition of a square matrix
and allows any real or complex m× n matrix to be written as

A = USVT (10.2)

Where U and V are m and n dimensional orthogonal matrices, respectively. The matrix
S is a m× n rectangular diagonal matrix with positive real numbers σi on its diagonal.
The diagonal elements are the so-called singular values. It is important to note that m
and n are the number of bins of the detector and generator level, respectively, as the
matrix A relates both levels to one another.

As the inverse of an orthogonal matrix is its own transpose, the problem of the
inversion of the matrix A is directly connected to the inverse of the determinant of the
matrix S or detS =

∏
σi. The problem of the inversion of the matrix A through the

SVD can be ill-posed in two cases.

• If the number of bins on generator level n exceeds the number of bins on detector
level m. In this case, an infinite number of solutions that fit the data equally well
exist.

• If the ratio of the largest and smallest singular value is large, then the matrix
inversion is dominated by the small singular values, yielding an unstable inversion.
The stability of the inversion or how well-/ill-posed the problem is, can be quantified
by the condition number defined below.

cond(A) =
σmax

max(0, σmin)
(10.3)

Where σmax and σmin represent the largest and smallest singular values of the
SVD. Singular values can become negative due to a finite precision in calculations.
Therefore, the maximum between the smallest value and zero is taken in the denom-
inator. If the condition number is small, i.e. of the order of 10, then the problem
of inversion is well-posed. Whenever the condition number takes on values of 105,
it is considered large and the problem becomes ill-posed.

In order to deal with the possibility of an ill-posed problem where n ≤ m, the unfolding
algorithm [179, 180] has implemented a least-square minimization with Tikhonov regu-
larization [178] which is discussed in detail in Sec. 10.3. A schematic overview of the
unfolding procedure is depicted in Fig. 10.1.
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Figure 10.1: Schematic representation of the unfolding procedure and the relation be-
tween the different components, taken from [179].

10.2 Study of the Migrations
In the formal discussion of the unfolding problem, the matrixA, linking the generator and
detector level, and the background vector b have been introduced. Both are described
by the migrations, i.e. differences between the detector and generator level observables.
The distinction between two different types of migrations is made. On the one hand,
the matrix A describes the migrations within the phase space. On the other hand, the
background vector b is determined by the migrations into or out of the phase space.

10.2.1 Reweighting of the MC Samples
The pythia 8 and herwig++ MC samples will be used to correct for the remaining
detector effects in the unfolding procedure. Therefore, it is important that the samples
represent the data properly. If the MC samples do not describe the data accurately in
shape, then the data can be overcorrected or undercorrected due to a mishandling of the
migrations. In order to assure that the MC samples match the data well, a reweighting
of the MC samples is performed.

The ratios between the MC samples and the data at detector level are shown in
Fig. 9.6, Fig. 9.7, Fig. 9.8 and Fig. 9.9 for all observables. The reweighing function
wO for each observable O is defined as the ratio of the differential cross section as a
function of the observable on detector level for the MC predictions over the one obtained
from data. For each event, the reweighing function of all observables is evaluated at the
observable on generator level Ogen. The additional weight for each observable of each
event is then determined by the equation below.

wO(Ogen) =

(
dσdet

MC

dOdet

)/(
dσdet

data

dOdet

)
(Ogen) (10.4)

The full weight factor of the MC samples now becomes the generated event weight times
the factor above for each observable in each event.
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A comparison of the reweighted detector level MC distributions with the data is
shown in Fig 10.2, Fig. 10.3, Fig. 10.4 and Fig. 10.5. The reweighted samples will be
used throughout the whole unfolding procedure. The original MC samples will only be
compared to the final unfolded curves when discussing the results in in Chap. 12.

Figure 10.2: The detector level data along with the reweighted pythia 8 and herwig++
MC predictions of the pT spectra for the leading to the last leading jet are shown from
the top left to the bottom right plot, respectively.
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Figure 10.3: The detector level data along with the reweighted pythia 8 and herwig++
MC predictions of the η spectra for the leading to the last leading jet are shown from
the top left to the bottom right plot, respectively.
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Figure 10.4: The detector level data along with the reweighted pythia 8 and herwig++
MC predictions for the DPS-sensitive observables. The ∆S observable (bottom right) has
been determined in region II, compared to region I for all other observables.
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Figure 10.5: The detector level data along with the reweighted pythia 8 and herwig++
predictions for the pseudorapidity spectra of the inclusive single jet processes A and B
are shown on the top left and top right plots, respectively. The detector level ∆SDPS

distribution for the mixed data and mixed reweighted MC samples is depicted on the
bottom plot. The ∆SDPS distribution has been determined in region II and has been
scaled to the detector level cross section of the ∆S observable.
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10.2.2 Migrations within the Phase Space
The first type of migrations are within the considered phase space. They correspond to
events that pass the selection criteria on both generator and detector level, but of which
the observables have significantly different values.

Depending on the unfolding procedure, the migrations within the phase space are
studied in different ways. In what follows, it is opted to use an unfolding method based
on the SVD. The method makes use of the matrix of migrations A, effectively connecting
the detector and generator level. The migration matrices are expected to be diagonal
whenever a strong correlation exists between the detector and the generator level. The
largest values of the migration matrix are expected to be where the values of the detector
and generator level observables are approximately the same.

Jet Matching Procedure

Before the proper migration matrices can be obtained, an additional spatial matching
of the jets on detector and generator level needs to be performed. If one would naively
fill the migration matrices without the matching, a significant background is found in all
migration matrices. In Fig. 10.6, the migration matrices without any additional spatial
matching for the pseudorapidity spectra are shown as an example. The large background
finds it origin in the fact that the jets on detector and generator level are ordered in pT.
Due to the detector simulation, variations in the pT of the jets can alter their order.
The leading detector level jet does not necessarily correspond to the leading generator
level jet. Both jets can be the leading jets in pT but lie in vastly different regions of
the detector. The background is created when measuring the observables for jets with
different spatial coordinates at detector and generator level.

Through a spatial matching procedure of all jets on detector and generator level, the
background can be removed from the migration matrices. The spatial matching criterion
is given below.

R2
ij =

(
ηgen
i − ηdet

j

)2
+
(
φgen
i − φdet

j

)2 ≤ R2
η +R2

φ (10.5)

Where the indices i and j iterate over the generator and detector level jets of the event.
The cone radii Rη and Rφ are equal to 0.5. The radii are roughly ten times larger
compared to the resolution in η and φ. Smaller radii would prohibit the matching of a
fraction of corresponding detector and generator level jets due to resolution effects. While
moving to larger cone radii would result the formation of a background. A detector level
jet is matched to every generator level jet. If no match is found, the jet is omitted from
the event. The jet with the smallest radius Rij is taken as the match whenever multiple
detector level jets match the generator level jet. Once a detector and generator level
jet are matched, they are omitted from the rest of the matching procedure. The four
leading jets on generator level, matched to a detector level jet, are taken as the input for
all observables.

Migration Matrices of the Jet Matched Samples

The migration matrices for the pT spectra, the η spectra and all observables are shown
in Fig. 10.7, Fig. 10.8, Fig. 10.9 and Fig. 10.10 for the pythia 8 sample, while Fig. 10.11,
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Figure 10.6: The migration matrices of the η spectra for the leading (top left), sub-
leading (top right), third leading (bottom left) and fourth leading (bottom right) jets for
the pythia 8 MC sample without the spatial jet matching are shown.

Fig. 10.12, Fig. 10.13 and Fig. 10.14 depict the migration matrices for the herwig++
sample. The general shape of the migration matrices are comparable for both MC sam-
ples, apart from small bin-to-bin differences.

The pT spectra show migrations between distant bins, however the off-diagonal bins
rapidly decrease and are multiple orders lower compared to the bins on the diagonal. The
pseudorapidity spectra of the four leading jets as well as the pseudorapidity spectra of
the leading jet of the single inclusive jet processes show much fewer migrations compared
to the pT spectra. The background of the η spectra without any spatial matching, shown
in Fig. 10.6, has been removed.

The angular variables ∆φsoft and ∆φmin
3j show very few migrations, the value of off-

diagonal bins immediately drops several orders, which can be attributed to the good
resolution in φ. Diagonal behavior of the migration matrix for ∆Y is also observed. It
is a pseudorapidity-based observable and has a good resolution. The migration matrices
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for the pT-based observables show wider spread migrations. The two softest jets enter
the definition of ∆pT,soft in eq. (3.25), while all four jets enter in eq. (3.26) for the ∆S
observable. The bad resolution for low pT jets make the observables highly sensitive to
any differences in pT and φ between detector and generator level, ∆S even more so as
∆pT,soft. The same non-diagonal behavior is observed in the migration matrices of the
∆SDPS observable.

Although the spatial matching has been performed, the variable φij shows a back-
ground throughout the phase space. The presence of the pedestal is due to the definition
of the variable in eq. (3.24). It is the angular difference between the most forward and
backward jet. Even though all four leading generator level jets have been matched to
a detector level jet, the most forward (backward) jet on generator level does not al-
ways correspond the the most forward (backward) detector level jet. Therefore these
most remote mismatched jets can lie in a completely different region of the azimuthal
plane, effectively producing the background in the migration matrix of φij. Any addi-
tional matching criteria, e.g. additional matching in pT, would create a more artificial
migration matrix.

The importance of the model reweighing and the spatial matching can be highlighted
here. If the reweighing procedure is not performed, the bin-by-bin differences in the
migration matrices can differ, leading to an overcorrection or undercorrection of the
data in the unfolding procedure. The removal of the background through the spatial
matching procedure, apart from the φij observable, will be beneficial for the stability of
the unfolding procedure.
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Figure 10.7: The migration matrices of the pT spectra for the leading (top left), sub-
leading (top right), third leading (bottom left) and fourth leading (bottom right) jets for
the pythia 8 MC sample are shown.
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Figure 10.8: The migration matrices of the η spectra for the leading (top left), sub-
leading (top right), third leading (bottom left) and fourth leading (bottom right) jets for
the pythia 8 MC sample are shown.
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Figure 10.9: The migration matrices from the pythia 8 sample for the DPS-sensitive
observables are shown here.
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Figure 10.10: The migration matrices for the pseudorapidity spectra of the inclusive
single jet cross sections, obtained from the pythia 8 sample, are shown on the top left
and top right plots. The migration matrix for the ∆SDPS observable from the pure DPS
pythia 8 sample is depicted on the bottom plot.
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Figure 10.11: The migration matrices of the pT spectra for the leading (top left), sub-
leading (top right), third leading (bottom left) and fourth leading (bottom right) jets for
the herwig++ MC sample are shown.
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Figure 10.12: The migration matrices of the η spectra for the leading (top left), sub-
leading (top right), third leading (bottom left) and fourth leading (bottom right) jets for
the herwig++ MC sample are shown.
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Figure 10.13: The migration matrices from the herwig++ sample for the DPS-sensitive
observables are shown here.
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Figure 10.14: The migration matrices for the pseudorapidity spectra of the inclusive
single jet cross sections, obtained from the herwig++ sample, are shown on the top left
and top right plot. The migration matrix for the ∆SDPS observable from the pure DPS
herwig++ sample is depicted on the bottom plot.

116



10.2.3 Migrations into and out of the Phase Space
The second type of migrations are into or out of the considered phase space. Meaning
that the events either pass the selection criteria on detector or generator level, but not
the criteria on both levels. The migrations are labeled as fakes and misses and are defined
below.

• The fake rate of an observable measures the ratio of events in the i’th detector level
bin, which are selected only at detector level, compared to all events that pass the
detector level.

Fi =
Nonly det(O

det ∈ bini)

Ndet(Odet ∈ bini)
(10.6)

Where O represents the observable in question. The subscript “det” indicates the
more inclusive selection. Where the subscript “only det” refers to events that pass
the detector level selection but not the generator level criteria.

• The miss rate is the same ratio as the fakes but defined at generator level, yielding:

Mi =
Nonly gen(Ogen ∈ bini)

Ngen(Ogen ∈ bini)
(10.7)

The subscripts are defined analogue to the subscripts in the definition of the fake
rate.

From the definitions of the fake and miss rates, it should be clear that the fake (miss)
rate will use the detector (generator) level binning.

The fakes and misses need to be accounted for in the whole unfolding procedure.
The fakes are detector level events or measurements with no corresponding generator
level event or truth entry. The fakes are essentially causeless-effects and correspond
to the background vector b from the formal discussion of the unfolding procedure in
Sec. 10.1. The misses are the opposite of fakes, i.e. truth entries with no corresponding
measurement. They can be viewed as inefficiencies in the simulation procedure and
are in essence effectless-causes. The fakes will be subtracted from and relative to the
detector level distribution of the observables obtained from the data sample. The misses,
however, will be scaled and added to the unfolded distribution of the observables, in
order to compensate for the inefficiencies of the simulation procedure.

The fake and miss rate for all observables is shown in Fig. 10.15, Fig. 10.16, Fig. 10.17
and Fig. 10.18 for the pythia 8 sample. While Fig. 10.19, Fig. 10.20, Fig. 10.21 and
Fig. 10.22 show the same distributions for the herwig++ sample.

The fake and miss rate for all observables, apart from the pT spectra, are distributed
quite uniformly. For the fake (miss) rate, it is observed that the probability that a
generator level jet below (above) the pT threshold is simulated at detector level above
(below) the pT threshold decreases as the pT of the detector (generator) level jet increases.
The result is a steep drop of the fake and miss rate when moving away from the pT

thresholds in the pT spectra. The fraction of the fakes and misses for the pT spectra
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of the jets starts around 70% for the lowest bins in pT and diminishes quickly to values
smaller than 20%. Apart from the pT spectra and the ∆SDPS observable, the fake rate
ranges from 20% to 55%, while the miss rate lies between 30% and 60%. The miss rate
is in general larger than the fake rate. The difference between the two rates is overall
larger for the pythia 8 sample compared to the herwig++ sample.

For the inclusive single jet processes, the fake and miss rate as a function of the pT

of the jets is also presented in Fig. 10.18 and Fig. 10.22. From these plots, it becomes
clear that the size of the fake and miss rate observed in the η spectra is due the same
boundary effect as observed in the fake and miss rate of the inclusive four jet production
in Fig. 10.15 and Fig. 10.19. The fake rate ranges from 55% at low values of pT down to
a negligible amount at large transverse momenta, while the miss rate starts at 40% and
drops down to 5%. For the pT spectra, a similar binning compared to the binning of the
four leading jets has been used, however, the spectra are only introduced here to show
the origin of the fake and miss rate. They will not be unfolded or used elsewhere in the
analysis.

A larger fake and miss rate is observed for the ∆SDPS observable. The fake and miss
rate varies between 55% and 80%. The high fake and miss rate compared to all other
observables can be understood from the mixing procedure. Two separate inclusive single
jet events are combined into an inclusive four jet event. Whenever one of the two or
both events are a fake (miss), the combined event will also be a fake (miss), effectively
increasing the probability of a pure DPS event to be a fake (miss).
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Figure 10.15: The fake and miss rate for the pT spectra of the leading (top left), sub-
leading (top right), third leading (bottom left) and fourth leading (bottom right) jets for
the pythia 8 MC sample are shown.
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Figure 10.16: The fake and miss rate for the η spectra of the leading (top left), sub-
leading (top right), third leading (bottom left) and fourth leading (bottom right) jets for
the pythia 8 MC sample are shown.
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Figure 10.17: The fake and miss rate for the DPS-sensitive observables for the pythia 8
sample. The ∆S observable (bottom right) has been determined in region II, compared
to region I for all other observables.
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Figure 10.18: The fake and miss rate for the η and pT spectra of the inclusive single
jet cross sections for the pythia 8 MC sample together with for the ∆SDPS observable
determined for the pure DPS pythia 8 sample.
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Figure 10.19: The fraction of fakes and misses for the pT spectra of the leading (top left),
sub-leading (top right), third leading (bottom left) and fourth leading (bottom right) jets
for the herwig++ MC sample are shown.
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Figure 10.20: The fraction of fakes and misses for the η spectra of the leading (top left),
sub-leading (top right), third leading (bottom left) and fourth leading (bottom right)
jets for the herwig++ MC sample are shown.
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Figure 10.21: The fake and miss rate for the DPS-sensitive observables for the herwig++
sample. The ∆S observable (bottom right) has been determined in region II, compared
to region I for all other observables.
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Figure 10.22: The fake and miss rate for the η and pT spectra of the inclusive single jet
cross sections for the herwig++ MC sample together with for the ∆SDPS observable
determined for the pure DPS herwig++ sample.
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10.3 The TUnfold Algorithm
The TUnfold algorithm [179–181] has been used for the unfolding of all the observables
and has implemented a least-squares minimization with Tikhonov regularization [178].
The stationary point or the minimum of the Lagrangian given below, is determined and
will give the corresponding optimal estimator of the truth vector.

L(x, λ) = L1 + L2 + L3, with (10.8)

L1 = (y −Ax)
T
Vy
−1 (y −Ax) , (10.9)

L2 = τ2 (x− fbx0)
T (

LTL
)

(x− fbx0) , (10.10)

L3 = λ
(
Y − eTx

)
, (10.11)

where Y =
∑
i

yi and ej =
∑
i

Aij (10.12)

The first term L1 of the full Lagrangian originates from the least-squares minimization,
where

• The vector y has n rows and corresponds to the measurement.

• Vy is the covariance matrix of y.

• The matrix A is the matrix describing the migrations which is obtained from the
migration matrix M that in turn contains the total events counts from the MC
sample used in the unfolding procedure. The matrix A is normalized to its rows or

Aij =
Mij∑n
i=0Mij

(10.13)

The elements Aij can now be interpreted as the probability of an observable in bin
i at generator level migrating to a bin j at detector level.

• The vector x is the estimator of the truth vector x̃, which is returned by the
algorithm.

One assumes that y obeys a multivariate Gaussian distribution, where the mean ỹ and
the set of truth parameters x̃, obey ỹ = Ax̃.

The second part L2 of the full Lagrangian describes the regularization. Imposing
regularization conditions is necessary to dampen the statistical fluctuations of y since
they are amplified in the calculation of x. In the Lagrangian L2 one defines the parameters
as below.

• The parameter τ is the regularization strength. The stationary point or minimum
of the whole Lagrangian is determined for a fixed value of τ .

• The matrix L is the n×nR regularization matrix, where nR is the amount of rows
and is equal to the number of regularization conditions.
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• The bias vector fbx0 is the product of a normalization factor fb and a vector x0

defined as

(x0)j =

n∑
i=0

Mij (10.14)

The role of fbx0 is to suppress large deviations of the best estimator x from fbx0,
where x0 is a generator level distribution determined by the MC sample.

Three different types of regularization are possible: regularization by the size of x, by the
first derivative of x and by the second derivative of x or the curvature of x. Each type of
regularization corresponds to a different regularization matrix L. A complete discussion
on these different regularization methods can be found in [179].

The third and last Lagrangian L3 is an area constraint. The presence of the La-
grangian multiplier λ ensures that the integral of optimal estimator x is equal to the
integral of the input distribution y. In the TUnfold algorithm, the inclusion of the third
Lagrangian is optional and can be left out of the whole unfolding procedure.

10.4 The Regularization Strength

The unfolding algorithm determines the best estimator x given a certain value of τ .
However, the size of the regularization strength can impact the result heavily. A value
that is too small or too large can lead to overfitting or underfitting, respectively, which is
schematically depicted in Fig. 10.23. The optimal value of τ is determined in an iterative
procedure, the so-called L-curve scan. The two functions below are considered in the
procedure.

Lcurve
x = logL1 and Lcurve

y = log
L2

τ2
(10.15)

If the regularization strength is too small or τ2 → 0, then Lcurve
x will be minimal and

Lcurve
y is maximal. The total Lagrangian in eq. (10.8) will be dominated by L1 since L2

is negligible. The estimator x will not be affected by the regularization and will lie close
to the exact solution of inverted problem in eq. (10.1) or

x = A−1y (10.16)

Where y is the measured distribution. As a result none of the possible fluctuations
have been dampened, leaving room for the possibility of overfitting. The other extreme
is where τ2 is too large. The total Lagrangian in eq. (10.8) will be dominated by the
regularization term L2. Fluctuation will be dampened, but often too hard, resulting in
an underfitting of the data. The optimal value of τ2 lies in between these two cases and is
situated where the curvature of both functions is maximal. The curvature of the L-curve
in the TUnfold package is determined by the derivative given below.
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C =
dLcurve

x d2Lcurve
y − d2Lcurve

x dLcurve
y(

(dLcurve
x )2 + (dLcurve

y )2
) 3

2

(10.17)

In an iterative procedure the unfolding is repeated for a range of values of log τ . The
curvature is determined for each point and is parametrized by a cubic spline. The point
yielding the the largest curvature corresponds to the approximated value of the optimal
regularization strength τ2.

Figure 10.23: Illustration of the importance of the size of the regularization strength. A
non-optimal choice can lead to overfitting or underfitting of the problem, as depicted on
the left and right plot, respectively.

10.5 Unfolding of the Data

Two free parameters remain in the whole unfolding procedure: the type of regularization
and the use of the additional area constraint. In an effort to determine the optimal
combination of the free parameters, the unfolding is repeated for all possible choices of
the two parameters. The optimal choice is determined by folding the distributions back
to detector level and by minimizing the the corresponding χ2-test. The χ2-test compares
the original detector level distribution with the backfolded distribution, where χ2

backf is
defined below.

χ2
backf =

n∑
i=1

(
yi − ybackf

i√
σ2
i + (σbackf

i )2

)2

, (10.18)

where ybackf
i =

m∑
j=1

Aijxj + bi (10.19)

Where xj is the best estimator of the true distribution x̃j , determined by the L-curve
scan. Due to substantial regularization, the NDF can differ from the number of bins.
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The true NDF is given by the rank of the matrix AVyVy
TAT. The reduced χ2

backf , i.e.
χ2

backf/NDF, is minimized. The procedure is repeated for all observables individually.
The whole unfolding procedure, along with the determination of the optimal config-

uration, entails the following steps:

• The fake rate is handled as a background and is subtracted from the detector
distribution. The TUnfold package subtracts and deals with the error propagation
accordingly.

• An iterative procedure entailing the L-curve scan is performed. The optimal regu-
larization strength τ2 and the corresponding unfolded distribution are determined.

• The miss rate is taken into account by a bin-by-bin addition relative to the unfolded
spectrum.

• The first three steps are repeated for different regularization conditions and with
the area constraint turned on and of. For each combination, the corresponding
χ2

backf/NDF is calculated.

• The unfolded distribution with a minimal χ2
backf/NDF is chosen as the optimal

unfolded distribution.

• All the previous steps are repeated. The pythia 8 and herwig++ sample are
both used for the unfolding. Both sets of optimal unfolded curves are kept.

• The average of the observables unfolded by both the pythia 8 and herwig++
sample is taken as the final unfolded curve.

Since the unfolding procedure relies on a MC model determining the migrations, the
results will be model dependent. The two final steps are performed in an effort to reduce
the model dependence and the bias towards a certain model. The usage of two different
models will be addressed again when discussing the systematical errors of the whole
analysis in Chap. 11.

The unfolded distributions of the pT spectra, the pseudorapidity spectra and the
different observables are given in Fig. 10.24, Fig. 10.25, Fig. 10.26 and Fig. 10.27, respec-
tively. The observables unfolded with both MC samples are given as well as the average
of the two distributions. The difference between the observables unfolded with pythia 8
and herwig++ is at most 10%, except for the first bin of the pT spectrum of the leading
jet.

The backfolded distributions for data unfolded with pythia 8 and herwig++ are
shown in Fig. 10.28, Fig. 10.29, Fig. 10.30 and Fig. 10.31. The pT spectra are only folded
back for the generator level range since the information of the higher pT bins is lost in
the unfolding procedure. All backfolded distributions are in agreement with the original
detector level distributions within their respective statistical uncertainty for almost all
bins. Only the second bin for the pT spectrum of the last leading jet shows a deviation.

The exact values of the minimal χ2
backf/NDF, the regularization condition and whether

or not the additional area constraint is used, are given in Tab. 10.1 for the pythia 8 and
herwig++ samples, along with the condition number which never exceeds 102. There-
fore, the unfolding of all observables is a well-posed problem and only little regularization
is needed in the procedure itself. All observables yield the lowest values for χ2

backf/NDF
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with the size regularization condition and with the additional area constraint turned on,
except the pT spectrum of the second leading jet when unfolded with the pythia 8 sam-
ple. In order to obtain a minimal χ2

backf/NDF, the regularization by the first derivative
and no extra area constraint is needed in the unfolding procedure for the pT spectrum
of the second leading jet.

Figure 10.24: The pT spectra unfolded with the pythia 8 and herwig++ samples, along
with the average unfolded pT spectrum for the leading (top left), sub-leading (top right),
third leading (bottom left) and fourth leading (bottom right) jets, are shown.
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Figure 10.25: The η spectra unfolded with the pythia 8 and herwig++ samples, along
with the average unfolded η spectrum for the leading (top left), sub-leading (top right),
third leading (bottom left) and fourth leading (bottom right) jets, are shown.
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Figure 10.26: The DPS-sensitive observables unfolded with the pythia 8 and herwig++
samples, along with the average unfolded distributions, are shown. The ∆S observable
(bottom right) has been determined in region II, compared to region I for all other
observables.
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Figure 10.27: The η spectra of the inclusive single jet cross sections and the ∆SDPS

observable unfolded with the according pythia 8 and herwig++ samples, alongside
the average unfolded distribution, are shown.
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Figure 10.28: The backfolded pT spectra are shown and compared to the detector level
pythia 8 and herwig++ distributions for the leading (top left), sub-leading (top right),
third leading (bottom left) and fourth leading (bottom right) jets.
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Figure 10.29: The backfolded η spectra are shown and compared to the detector level
pythia 8 and herwig++ distributions for the leading (top left), sub-leading (top right),
third leading (bottom left) and fourth leading (bottom right) jets.
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Figure 10.30: The backfolded DPS-sensitive observables are shown and compared to
the detector level pythia 8 and herwig++ distributions are shown here. The ∆S
observable (bottom right) has been determined in region II, compared to region I for
all other observables.
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Figure 10.31: The backfolded η spectra for the inclusive single jet spectra and the ∆SDPS

observable are shown and are compared to the according detector level pythia 8 and
herwig++ distributions.
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10.6 Cross Checks for the Unfolding Algorithm

The unfolding procedure is an indispensable part of the whole analysis. Any possible
bias in the procedure could affect the unfolded results, therefore, a multitude of cross
checks have been performed to ensure the robustness of the unfolding procedure.

A first cross check is a closure test of the unfolding procedure. The detector level
pythia 8 distribution is unfolded with the pythia 8 sample itself. The unfolded pythia 8
curve should agree quite well with the generator level distribution. If not, then something
fundamental in the procedure has gone awry. The whole unfolding procedure is repeated
as detailed in the previous section, where only the input distribution is changed to the
detector level pythia 8 distribution. The results are shown in Fig. 10.32, Fig. 10.33,
Fig. 10.34 and Fig. 10.35. All distributions show perfect closure.

A second cross check is performed by unfolding the detector level pythia 8 distribu-
tion with the herwig++ sample. One wishes for the unfolding procedure to be as model
independent as possible. Agreement of the unfolded pythia 8 curves with the generator
level pythia 8 distributions would indicate the robustness of the unfolding procedure.
Substantial deviations would point towards a more significant model dependence, result-
ing in larger systematic errors due to the unfolding procedure. The systematic uncer-
tainty will be revisited later on in Sec. 11.3. The results for all observables are shown in
Fig. 10.36, Fig. 10.37, Fig. 10.38 and Fig. 10.39.

The pT spectra of the four jets never deviate more than 10% from unity, except for
the first bin of the second leading jet and the fourth bin of the last leading jet. The
pseudorapidity spectra for the four leading jets show agreement within their statistical
uncertainty in the central region. In the forward region, some outliers can be observed.
Their deviations never exceed 20%, while the pseudorapidity spectra of the inclusive
single jet spectra show perfect agreement throughout the whole pseudorapidity range.
Of all other observables, the ∆S observable is the only one that does not show agree-
ment within statistical uncertainty between the unfolded curve and the generator level
distribution. The differences in the ∆S spectra are due to a broader migration matrix
and due to the higher pT cuts needed in order to obtain results with manageable errors.
Overall one can conclude that the unfolding algorithm is quite robust. A model depen-
dence is only observed in some bins of the pT spectra and the ∆S observable and will
be handled accordingly when calculating the systematic uncertainty resulting from the
unfolding procedure.

A third and last cross check is performed by examining the reduced χ2 of the smeared
and unfolded space in the so-called bottom-line test. The χ2 values are defined as

χ2
sm =

(
y − b−Ax′

)T
Vy
−1
(
y − b−Ax′

)
(10.20)

χ2
unf = (x− x′)

T
Vx
−1 (x− x′) (10.21)

Apart from x′, which is the generator level prediction by the MC model, all the definitions
of the vectors and matrices are the same as before. The bottom-line test expresses that
the unfolding procedure can only preserve the information about the model present in
the data at best. In other words: the agreement between the models and the data can
not become worse after the unfolding. Meaning that the inequality below should hold
for all unfolded distributions.
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χ2
sm/NDFsm ≥ χ2

unf/NDFunf (10.22)

Where NDFsm and NDFunf are the number of degrees of freedom in the smeared and
unfolded space, respectively. They are in turn determined by the rank of the matrices
AVyVy

TAT and AVxVx
TAT, respectively.

All reduced χ2 values for all the observables are given in Tab. 10.1. The NDF is the
same for the χ2

backf and the χ2
sm sine they are both at detector level. From the calculation

of the rank of the matrices AVyVy
TAT and AVxVx

TAT, it appears that the rank of
both matrices is the same and equal to the number of generator bins. One can also
conclude that the bottom-line test is always fulfilled.

Figure 10.32: The closure test for the unfolding procedure for the pT distributions for the
leading (top left), sub-leading (top right), third leading (bottom left) and fourth leading
(bottom right) jets is shown.
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Table 10.1: The values of the NDF in the smeared and unfolded space, together with the
minimal reduced χ2 values for the backfolding and with the associated reduced χ2 values
of the smeared and unfolded space are all shown in the table below. The condition
number, whether or not the additional area constraint is used and the regularization
method are also given for all unfolded distributions.

Observable NDFsm Min.Red.
χ2

backf

cond(A) Area
Const.

Reg.
Cond.

Red.
χ2

sm

NDFunf Red.
χ2

unf

Unfolded with the pythia 8 sample
pT,1st 8 0.0166 5.76 Yes Size 16.5102 8 16.2167
pT,2nd 7 0.0007 13.59 No Der. 20.2665 7 8.9505
pT,3rd 6 1.5426 23.48 Yes Size 96.8042 6 60.0743
pT,4th 6 0.9405 81.85 Yes Size 120.2859 6 61.2052
η1 17 0.0039 8.40 Yes Size 0.4083 17 0.3744
η2 17 0.0404 5.98 Yes Size 3.1776 17 2.8358
η3 17 0.0305 5.72 Yes Size 3.5137 17 3.0968
η4 17 0.0426 6.33 Yes Size 3.4488 17 2.9382
∆φsoft 12 0.0352 2.81 Yes Size 0.5395 12 0.2856
∆φmin

3j 12 0.0008 71.00 Yes Size 0.3722 12 0.3669
∆Y 12 0.0142 10.79 Yes Size 1.0708 12 1.0321
φij 12 0.0134 4.55 Yes Size 3.2838 12 3.1658
∆pT,soft 8 0.0105 4.28 Yes Size 0.9724 8 0.8460
∆S 7 0.1079 32.12 Yes Size 1.3929 7 0.7184
∆SDPS 7 0.0234 8.46 Yes Size 34.3008 7 34.1627
ηA 17 0.0284 6.23 Yes Size 1.6404 17 1.1321
ηB 17 0.0511 4.44 Yes Size 154.7417 17 148.6421

Unfolded with the herwig++ sample
pT,1st 8 0.0525 5.64 Yes Size 85.5236 8 82.3845
pT,2nd 7 0.3148 14.38 Yes Size 69.8411 7 29.2084
pT,3rd 6 1.2485 21.71 Yes Size 153.0023 6 60.7456
pT,4th 6 0.6857 85.37 Yes Size 106.2534 6 46.6522
η1 17 0.0135 7.98 Yes Size 1.5272 17 1.2242
η2 17 0.0654 5.83 Yes Size 1.7157 17 1.0028
η3 17 0.0401 5.91 Yes Size 2.2637 17 0.9845
η4 17 0.0595 6.17 Yes Size 2.5032 17 1.2591
∆φsoft 12 0.0363 2.77 Yes Size 1.2991 12 0.9432
∆φmin

3j 12 0.0106 70.82 Yes Size 1.2024 12 0.9957
∆Y 12 0.0173 10.42 Yes Size 1.8080 12 1.4310
φij 12 0.0209 4.45 Yes Size 0.7883 12 0.4216
∆pT,soft 8 0.0041 4.35 Yes Size 1.0853 8 0.9481
∆S 7 0.0409 29.94 Yes Size 1.1566 7 0.6435
∆SDPS 7 0.0245 8.31 Yes Size 24.5340 7 24.3878
ηA 17 0.0188 6.07 Yes Size 2.3252 17 1.8330
ηB 17 0.0312 4.11 Yes Size 112.4995 17 108.6421
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Figure 10.33: The closure test for the unfolding procedure for the η distributions for the
leading (top left), sub-leading (top right), third leading (bottom left) and fourth leading
(bottom right) jets is shown.
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Figure 10.34: The closure test for the unfolding procedure for the DPS-sensitive observ-
ables is shown. The ∆S observable (bottom right) has been determined in region II,
compared to region I for all other observables.
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Figure 10.35: The closure test for the unfolding procedure for the η spectra for the
inclusive single jet spectra and the ∆SDPS observable is shown.
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Figure 10.36: The model dependence cross check of the unfolding procedure of the pT

spectra for the leading (top left), sub-leading (top right), third leading (bottom left) and
fourth leading (bottom right) jets is shown.
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Figure 10.37: The model dependence cross check of the unfolding procedure of the η
spectra for the leading (top left), sub-leading (top right), third leading (bottom left) and
fourth leading (bottom right) jets is shown.

146



Figure 10.38: The model dependence cross check of the unfolding procedure of the DPS-
sensitive observables is shown. The ∆S observable (bottom right) has been determined
in region II, compared to region I for all other observables.
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Figure 10.39: The model dependence cross check of the unfolding procedure of the η
spectra for the inclusive single jet spectra and the ∆SDPS observable is shown.
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Chapter 11

Systematic Uncertainties

Any analysis is subjected to additional uncertainties besides the statistical uncertainty.
The systematic uncertainties all result from certain operations performed in the analysis.
All sources of systematic uncertainties will be discussed in what follows, except the
systematic uncertainty due to the measurement of the luminosity. It is a fixed value for
each data taking period and is determined by the CMS experiment. For all of the data
taken in 2016, the uncertainty on the luminosity is 2.5% [182]. After discussing all other
sources of systematic uncertainties, the total systematic uncertainty for each observable
will be determined and discussed.

11.1 Jet Energy Scale Uncertainty
The first systematic uncertainty is the Jet Energy Scale (JES) uncertainty. The recon-
structed jets undergo a series of sequential corrections in the form of a scaling of their
four-momentum vector in order to obtain the calibrated jets, schematically shown in
Fig. 6.1. The corrections carry an uncertainty themselves. Additionally, a non-closure of
the L2L3 residual corrections was found due to the limited available statistics. Therefore,
it was opted to apply the L2L3 residual corrections and to treat the possible non-closure
as an additional uncertainty. If a jet with a given pT and η exhibits non-closure, the
total error on the JEC becomes

sfull
JEC(pT, η) =

√
s2

JEC(pT, η) + s2
non-cl(pT, η) (11.1)

Where sJEC is the total error of all the JEC factors combined. The magnitude of the
non-closure snon-cl is equal to the deviation from unity in the closure plot for the MPF
method in Fig. 6.9. In order to determine the JEC uncertainty, the JEC factors are varied
up and down by their respective uncertainty. Afterwards, the whole analysis is repeated.
Next, the varied distributions are determined and compared to the nominal distributions.
Lastly, the difference between the varied and nominal distributions is taken as the JES
uncertainty. As the upward and downward variation of the JEC factors differs, the JES
uncertainty is an asymmetric uncertainty.

The resulting JES uncertainties for all the observables are shown in Fig. 11.6, Fig. 11.7,
Fig. 11.8 and Fig. 11.9. The JES uncertainty for the upward (downward) variation of
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the JEC factors is labeled as the upper (lower) JES uncertainty. Looking at the JES
uncertainty for the pT spectra of the jets, one observes large values at low pT, up to 39%
for the leading jet, while the JES uncertainty decreases to values as low as 8% for high
values of the pT. The JES uncertainty for the pseudorapidity spectra and for the other
observables do not show as much variation compared to the pT spectra. Generally, the
upper uncertainty is larger as the lower uncertainty. Both range between 2% and 39% for
all observables. As stricter pT cuts are in place for the variable ∆S, the JES uncertainty
is lower in comparison to all the other variables.

In order to understand the effect of the non-closure, the same uncertainties have been
calculated without taking the non-closure into account. In Fig. 11.1 the relative JES
uncertainties of the pT spectrum of the two leading jets are shown with and without the
non-closure quadratically added to the uncertainty of the JES factors. The effect of the
non-closure compared to the size of the systematical uncertainties is small throughout the
pT spectra. The non-closure is not the main contributing factor to the JES uncertainty.

Figure 11.1: The relative JES uncertainty for the pT spectrum of the two leading jets with
and without the non-closure taken into account. The uncertainties have been obtained
by varying the pT of the jets up and down by the total error of the JEC factors.

11.2 Jet Energy Resolution Uncertainty

The Jet Energy Resolution (JER) from MC simulations differs from the one estimated for
data, which would lead to a wrong estimation of the bin-to-bin migrations. An additional
smearing of the pT of the jets at detector level is applied to the MC samples, used in
the unfolding. The two smearing methods used to perform the additional smearing are
detailed below.

• The scaling method: the method only works properly when a jet on detector
and generator is matched in pT with the criteria given below.
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(
(φgen − φdet)2 + (ηgen − ηdet)2

) 1
2 <

Rcone

2
(11.2)

and

∣∣∣∣pgen
T − pdet

T

pgen
T

∣∣∣∣ < 3 · σJER (11.3)

Where Rcone is the cone radius of the jets, which is equal to 0.4, and σJER is the
relative pT resolution as measured in the simulation. If the criteria are met then
jets are smeared with the smearing factor cJER, defined as

cJER = 1 + (sJER − 1)
pdet

T − pgen
T

pdet
T

(11.4)

The factor sJER is the data-to-simulation scale factor, provided by the CMS Col-
laboration [183] and obtained from the global tag which is specified in Chap. 7.

• The stochastic method: the scale factor is determined by using a random number
sampled from a normal distribution N . The smearing factor is given by

cJER = 1 + N (0, σJER)
√

max((sJER − 1), 0) (11.5)

If no match is found for the generator level jet on detector level, then the stochastic
method is used. Both methods combined form the hybrid smearing method and are
truncated at zero.

The uncertainty of the data-to-simulation scale factor sJER gives rise to the JER
uncertainty. In order to obtain the JER uncertainty, the data-to-simulation scale factor
sJER is varied up and down with its respective uncertainty, resulting in migration matrices
that differ from their nominal counterparts. The newly obtained matrices are used to
unfold the distributions, which are then compared to the nominal distributions for all
observables. The JER uncertainty is taken as the maximum deviation of the varied
distributions compared to the nominal distribution.

The resulting JER uncertainties are shown in Fig. 11.6, Fig. 11.7, Fig. 11.8 and
Fig. 11.9. The JES uncertainty never exceeds 9% for all observables, except for the pT

spectrum of the leading jet, where it reaches a maximum of 26%.

11.3 Model Uncertainty
The unfolding procedure is model dependent since the migration matrix is determined
by the MC models. As discussed in the previous chapter, the data is unfolded using two
independent models. The average of both unfolded curves is taken as the final distribution
in order to reduce the bias of the unfolded data towards one model or another. The
systematic error due to the model dependence of the unfolding procedure is taken as half
of the difference between the two unfolded distributions.

In Fig. 11.6, Fig. 11.7, Fig. 11.8 and Fig. 11.9, the relative model uncertainties for all
observables are shown. The model uncertainty varies between 1% and 16%, depending
on the variables.
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11.4 Trigger Uncertainty
The trigger efficiency curves have been determined in Sec. 9.1 since the event weight
needs to be corrected for possible trigger inefficiencies as a function of the pT of the jets.
The curves have been parameterized and fitted by an error function given in eq. (9.2).
However, the fitting parameters have a non-zero uncertainty. The trigger uncertainty
is estimated by varying the parameters up and down with their respective uncertainty,
whereafter, the whole analysis is repeated with the varied efficiency curves. Lastly, the
varied unfolded distributions are compared to their nominal distributions.

The nominal and varied efficiency curves for the AK4PFJetXX triggers are shown in
Fig. 11.2. Only small deviations in the slope of the curves are observed compared to the
nominal efficiency function. In Sec. 7, the trigger configuration was laid out. All triggers,
except the AK4PFJet30 trigger, are used in the regions where they have become fully
efficient. The uncertainty on the fitting parameters are the smallest for the AK4PFJet30
trigger. Therefore, the effect of the varied efficiency curves on the distributions of the
observables will be minimal. The systematic uncertainties due to the trigger efficiency
are shown in Fig. 11.3 for the pT spectrum of the two leading jets. The uncertainties are
of sub-percent level and are negligible compared to the other uncertainties. In Fig. 11.6,
Fig. 11.7, Fig. 11.8 and Fig. 11.9, the trigger uncertainties are omitted for clarity’s sake,
however, they are included in the calculation of the total uncertainty.

Figure 11.2: The trigger efficiency curves together with the curves for which the fitting
parameters have been varied up and down with their respective uncertainty. The nominal
efficiency curves are the middle ones for each of the triggers.
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Figure 11.3: The trigger uncertainty for the pT spectrum of the two leading jets.

11.5 Vertex Selection Uncertainty

When the offline selection is performed on the data, the presence of exactly one proper
vertex is required. If an event contains zero or more than one proper vertex, it is dis-
carded. The offline selection carries an uncertainty with it because the probability that
two vertices are reconstructed as one is non-zero. The CMS detector has a high resolu-
tion and can differentiate between two distinct vertices as long as they are further apart
than the minimal vertex separation, defined below.

∆zmin = min
i6=j
{|zi − zj |} (11.6)

Where zi and zj are the z-coordinates of the distinct vertices in the same event. In
Fig. 11.4, the ∆z distribution determined from the data at detector level is shown. The
distribution of the vertex separation confirms an older measurement, where a ∆zmin of
0.06 cm [184] was measured. To be more conservative, however, a value of 0.12 cm is
used since the curve exhibits a turning point at that value.

The effect of merging vertices in events needs to be mimicked in order to estimate
the vertex selection uncertainty. First, the vertex merging rate is determined. The z-
coordinate distribution of the vertices, depicted in Fig. 11.5, is fitted with a Gaussian
function of which the mean and the variance are equal to zero and 3.906 cm, respectively.
The Gaussian distribution of the distance between two vertices along the z-axis is deter-
mined by combining the initial distribution with itself. The mean and variance of the
combined Gaussian distribution is equal to zero and

√
2 · 3.906 = 5.52 cm, respectively.

The probability of encountering an event where two vertices have been merged, i.e. the
vertex merging rate, can be expressed as
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Figure 11.4: The ∆z distribution determined from data at detector level. Whenever
there are two or more reconstructed vertices present in an event, the difference between
their z-coordinates is taken, to obtain the separation between the distinct vertices.

P(|vtx1 − vtx2| ≤ 0.12 cm) =
0.23

0.71

1√
2π · 5.52

∫ +0.06

−0.06

exp

( −z2

2 · 5.522

)
dz

= 0.0028 (11.7)

The first fraction expresses the conditional probability of the presence of a second vertex
whenever a first vertex is present in the event. It is obtained from the vertex multiplicity
distribution, shown in Fig. 7.1. In 71% and 23% of all events, one and two vertices have
been reconstructed, respectively. Next, the whole analysis is repeated with an altered
offline vertex selection criterion. Two proper vertices are required to be present in an
event instead of one. All altered distributions are unfolded in exactly the same manner
as before. Finally, combining the vertex merging rate with the one and two vertex
distributions, allows for the estimation of the effect of the vertex merging by considering
the expression below.

σ(1 vtx)− 0.0028 · σ(2 vtx)

σ(1 vtx)
(11.8)

Where the two vertex cross sections have been scaled to the one vertex cross section
before the multiplication with the vertex merging rate. The vertex selection uncertainty
is the absolute value of the deviation of the ratio to one.
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The resulting uncertainties are shown in Fig. 11.6, Fig. 11.7, Fig. 11.8 and Fig. 11.9
for all observables. The vertex selection uncertainty never exceeds 1% and is negligible
compared to other uncertainties.

In the calculation of the vertex merging rate, the x- and y-coordinates have been
omitted for two reasons. First, they are much smaller as the z-coordinate. The selection
criterion on the radial coordinate ρ =

√
x2 + y2 demands that ρ ≤ 2 cm. Second, if

the x- and y-coordinates would have been taken into account, the integral boundaries in
eq. (11.7) would be closer to zero, effectively reducing the merging probability.

Figure 11.5: The vertex z-coordinate distribution used in the calculation of the vertex
selection uncertainty.

11.6 Additional Uncertainty on the 4-Jet Efficiency

In Chap. 8, the 4-jet efficiency ε4j was introduced as a ratio on detector level in order
to reformulate the DPS pocket formula in terms of the inclusive single jet processes A
and B. Possible differences between detector and generator level could affect the 4-jet
efficiency. The pythia 8 and herwig++ samples using the CUETP8M1 and CUETHS1
tunes, respectively, are used in this regard. The inclusive single jet cross sections are
extracted from the samples. Afterwards, a two-dimensional reweighing is performed as
a function of the pT of the leading jet and of the jet multiplicity in order to let the
MC samples be more representative of the data. Both the pT spectrum of the leading
jet and jet multiplicity play a crucial role in the whole mixing procedure. On the one
hand, if the average pT is larger in the MC sample compared to data, then more jets
will surpass the pT cuts, effectively increasing the 4-jet efficiency. On the other hand, a
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higher jet multiplicity will result in a rise of the 4-jet efficiency as well since events with
multiple jets passing the pT cuts will be prevalent. The generator and detector level 4-jet
efficiencies are given in Tab. 11.1 for the reweighted pythia 8 sample.

Table 11.1: The generator and detector level values of the 4-jet efficiencies determined
from the pythia 8 and herwig++ samples using the CUETP8M1 and CUETHS1 tunes,
respectively. Before the values have been determined, both samples have been reweighted
to the pT spectrum of the leading jet and the jet multiplicity of the data sample.

Model Tune εgen
4j εdet

4j

pythia 8 CUETP8M1 0.4120 0.4039
herwig++ CUETHS1 0.4029 0.3923

For all 4-jet efficiencies, the statistical error is negligible. The residual difference between
the 4-jet efficiencies obtained from the pythia 8 and herwig++ samples, and the 4-jet
efficiency determined from data is due to residual differences between the pT spectra of
the sub-leading and third leading jets of the inclusive single jet processes. However, the
important result is the difference between the detector and generator level 4-jet efficiency.
The deviation between the two levels is of sub-percent level and is an indication for
an additional systematic uncertainty on the 4-jet efficiency. It is opted to use a more
conservative error of 2% instead of an additional systematic uncertainty equal to 1%.

11.7 Systematic Uncertainty Summary
The total uncertainty can be calculated by taking the squared sum of all systematic
uncertainties and the statistical uncertainty. The distinction between a lower and upper
total uncertainty is made since the JES uncertainty is asymmetric. The systematic
uncertainty is calculated for all observables in terms of their absolute cross section.

An overview of all systematic uncertainties is given in Tab. 11.2. Fig. 11.6, Fig. 11.7,
Fig. 11.8 and Fig. 11.9 show the uncertainties visually for all observables in terms of
the absolute cross section. The trigger, vertex selection and luminosity uncertainties are
not shown in the plots. The latter is equal to 2.5% in all bins of all observables, while
the two former uncertainties are of sub-percent level. The JES uncertainty is dominant
for the observables in terms of the absolute cross section. Depending on the observable,
significant contributions from the JER, model or statistical uncertainties can occur. The
total upper and lower uncertainties never exceed 35%, except for the first bin of the pT

spectrum of the leading jet. Generally, the lower total uncertainty is smaller than the
upper total uncertainty.

In order to perform a more qualitative study of the different models, the DPS-sensitive
observables are normalized to one or the average of multiple bins in the region where
the lowest DPS-sensitivity is expected. The different systematic uncertainties largely or
completely cancel by performing the normalization, reducing the total uncertainty of the
observables. Normalizing to the average of multiple bins aims to reduce the effect of
statistical fluctuations, which is necessary for the ∆φsoft, ∆φmin

3j and ∆Y observables.
The ∆φsoft observable has been normalized to its first five bins, covering the tail of the
distribution, which is dominated by effects of the jet cone size. Jets that lie close to
each other in the azimuthal plane of the detector can be reconstructed as one, effectively
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yielding the observed bump in the ∆φsoft distribution. The ∆φmin
3j and ∆Y observables

are normalized to their first four bins. The calculation of the systematic uncertainties for
the bin-normalized distributions is performed in the exact same manner as before. The
resulting uncertainties are tabulated in Tab. 11.2 and are visually shown in Fig. 11.10.
The normalization has to most profound effect on the JES uncertainty. The dominant
uncertainty has become the statistical uncertainty for most of the observables.

Table 11.2: An overview of systematic uncertainties of all the observables, along with
the statistical and the total uncertainties. All uncertainties are given in percentages.
The JES uncertainty leads to asymmetric errors, therefore, an upper and lower uncer-
tainty is tabulated. All other systematic uncertainties and the statistical uncertainty are
symmetric. The systematic uncertainties were determined for all observables in terms of
their absolute cross section and for the bin-normalized distributions. Due to the division
in the bin-normalized cross sections, the systematic uncertainties partially or completely
cancel, i.e. the φij, ∆pT,soft and ∆S distributions have systematic uncertainties equal
to zero in the bin the histogram is normalized to. The systematic uncertainties for the
inclusive single jet cross sections, the ∆SDPS distribution and the 4-jet efficiency, which
are needed in for the extraction of the σeff , are added as well. The 4-jet efficiency ε4j has
no JER or model uncertainty as it is defined as a ratio on detector level. The additional
uncertainty on the ε4j due to possible differences between generator and detector level is
2%, which is taken into account in the calculation of the total systematic uncertainties.

Observable JES JER Model Trigger Vertex Lum. Stat. Total
Upper Lower Upper Lower

Absolute Cross Section
pT,1st 11-39 9-30 2-26 0-16 < 1 < 1 2.5 1-10 11-51 10-44
pT,2nd 11-31 10-24 0-2 0-7 < 1 < 1 2.5 1-8 14-33 11-26
pT,3rd 1-31 7-24 1-3 2-7 < 1 < 1 2.5 2-15 13-33 13-25
pT,4th 10-25 0-21 1-8 2-7 < 1 < 1 2.5 4-31 14-34 13-32
η1 22-33 18-28 < 1 1-9 < 1 < 1 2.5 3-5 22-34 19-29
η2 22-30 18-26 < 1 0-6 < 1 < 1 2.5 3-6 23-31 18-26
η3 21-29 18-24 < 1 0-7 < 1 < 1 2.5 3-5 22-30 19-25
η4 19-29 16-24 < 1 1-8 < 1 < 1 2.5 3-4 19-30 17-25
∆φsoft 21-24 19-20 < 1 1-7 < 1 < 1 2.5 3-4 22-25 20-22
∆φmin

3j 21-28 18-24 < 1 1-6 < 1 < 1 2.5 3-7 21-29 19-25
∆Y 22-25 16-33 < 1 0-6 < 1 < 1 2.5 3-6 23-26 17-34
φij 23-26 19-22 < 1 0-7 < 1 < 1 2.5 3-4 24-27 19-22
∆pT,soft 22-25 19-20 0-3 2-6 < 1 < 1 2.5 3-4 23-26 19-21
∆S 4-34 13-20 < 1 0-5 < 1 < 1 2.5 3-13 12-37 15-22

Bin-normalized Cross Section
∆φsoft 0-1 0-1 < 1 0-4 < 1 < 1 - 3-4 3-6 3-6
∆φmin

3j 0-5 0-4 < 1 0-4 < 1 < 1 - 3-7 4-8 3-8
∆Y 0-2 0-18 < 1 0-5 < 1 < 1 - 3-6 3-10 3-21
φij 0-3 0-2 < 1 0-4 < 1 < 1 - 3-4 3-6 3-6
∆pT,soft 0-2 0-2 0-2 0-2 < 1 < 1 - 3-4 3-5 3-5
∆S 0-16 0-7 < 1 0-7 < 1 < 1 - 3-13 3-22 3-15

σeff Extraction
ε4j 11 20 - - < 1 < 1 - < 1 11 20
ηA 7-28 6-24 < 1 0-6 < 1 < 1 2.5 2-4 9-29 8-25
ηB 1-11 1-14 < 1 0-6 < 1 < 1 2.5 2-3 5-11 5-24
∆SDPS 7-19 15-24 < 1 0-3 < 1 < 1 2.5 1-2 7-19 15-25
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Figure 11.6: Visual representation of all systematic uncertainties of the pT spectrum for
the leading (top right), sub-leading (top left), third leading (bottom right) and last lead-
ing (bottom left) jets is shown. The trigger, vertex selection and luminosity uncertainties
are left out for clarity’s sake.
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Figure 11.7: Visual representation of all systematic uncertainties of the η spectrum for the
leading (top right), sub-leading (top left), third leading (bottom right) and last leading
(bottom left) jets is shown. The trigger, vertex selection and luminosity uncertainties
are left out for clarity’s sake.

159



Figure 11.8: Visual representation of all systematic uncertainties of the DPS-sensitive
observables is shown. The trigger, vertex selection and luminosity uncertainties are left
out for clarity’s sake.
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Figure 11.9: Visual representation of all systematic uncertainties of the η spectra of the
inclusive single jet processes and the ∆SDPS observable is shown. The trigger, vertex
selection and luminosity uncertainties are left out for clarity’s sake.

161



Figure 11.10: Visual representation of all systematic uncertainties of the bin-normalized
DPS-sensitive observables is shown. The trigger, vertex selection and luminosity uncer-
tainties are left out for clarity’s sake.
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Chapter 12

Results

The observables have been corrected to generator level, and their respective systematic
uncertainties have been determined. Next, the cross section of the inclusive four jet
production in both region I and region II will be determined, along with the cross
sections of the inclusive single jet processes. Afterwards, the data distributions will be
compared to the models introduced in Sec. 3.7. The models are divided in the three
classes as before. The pythia 8 and herwig models are all based on a LO 2 → 2 ME
combined with different tunes, while the multijet models have implemented LO 2 → n
with n > 2, NLO 2 → 2 or NLO 2 → 3 ME. The third and last class are the so-called
SPS+DPS samples. They include the SPS models with an explicit DPS contribution,
simulated by overlaying two 2→ 2 ME in one event. The final section of the chapter will
use the different SPS models in order to extract the fraction of DPS events fDPS, the
DPS cross section σDPS

A,B and the effective cross section σeff by applying the techniques
laid out in Chap. 8.

12.1 Determination of the Cross Section

The different cross sections are extracted from the corresponding pseudorapidity spectra
of the leading jet, except for the inclusive four jet cross section in the phase space domain
region II, where the ∆S observable has been used. The systematical uncertainties are
determined by varying the distributions accordingly and calculating the varied cross
sections, while taking correlations into account. The squared sum of the discrepancies
between the varied and nominal cross sections gives the total systematical uncertainty.

The cross sections for the inclusive four jet production in the phase space domains
region I and region II are given below, respectively.

σI (pp→ 4j + X) = 2.77± 0.02 (stat.) +0.68
−0.55 (syst.) µb, (12.1)

σII (pp→ 4j + X) = 0.61± 0.01 (stat.) +0.12
−0.10 (syst.) µb. (12.2)

Tab. 12.1, Tab. 12.2 and Tab. 12.3 compare the values of the cross sections measured
from data with the cross sections for all different models.

The cross sections for the inclusive single jet processes A and B are shown below.
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σA = 15.9± 0.1 (stat.) +1.8
−1.6 (syst.) µb (12.3)

σB = 106± 1 (stat.) +10
−11 (syst.) µb (12.4)

The cross sections will be used as an input in the DPS pocket formula together with
the 4-jet efficiency ε4j = 0.324 +0.037

−0.065 (syst.) for the determination of fDPS, σDPS
A,B and

σeff . The statistical uncertainty on the 4-jet efficiency is negligible compared to the
systematical uncertainty.

12.2 pythia 8 and herwig Models

pythia 8, herwig++ and herwig 7 are the three main generators used for the models
based on a LO 2→ 2 ME. The event generators will abbreviated as P8, H++ and H7 in
the legends of the plots. Not all model predictions will be shown in terms of the absolute
cross section for clarity’s sake. However, in the ratio plots all models will be shown, and
the distinction will be made between models with a pT-ordered shower versus an angular-
ordered/dipole-antenna shower. All details regarding the event generators and the used
tunes can be found in Sec. 3.7.1. An overview of the models is shown in Tab. 12.1
along with their respective cross sections for both phase space domains region I and
region II. All pythia 8 and herwig models overestimate the cross sections compared
to those measured from the data, especially pythia 8 using the CDPSTP8S1-4j tune,
which predicts cross sections roughly three times as large.

The pT spectra in Fig. 12.1 show an abundance of low pT jets, resulting in a much
larger cross section. At pT values larger as ∼ 100 GeV, the models show agreement
within 50% of the data and even within the total uncertainty for the herwig 7 models.
From the pseudorapidity spectra, shown in Fig. 12.2, one may conclude that the excess
in low pT jets is unevenly distributed. The ratio of the cross sections rises in the forward
and backward regions.

Table 12.1: Cross section measurements for the data and all the pythia 8 and herwig
models. The second cross section is for the variable ∆S specifically, as the variable is
measured in region II, compared to region I for all other observables.

Sample ME Tune PDF σI (µb) σII (µb)
Data - - - 2.77± 0.02 +0.68

−0.55 0.61± 0.01 +0.12
−0.10

pythia 8 LO 2→ 2 CUETP8M1 NNPDF2.3 LO 5.03 1.07
pythia 8 LO 2→ 2 CP5 NNPDF3.1 nnlo 4.07 0.84
pythia 8 LO 2→ 2 CDPSTP8S1-4j CTEQ6L1 7.06 1.28
pythia 8
+Vincia

LO 2→ 2 Standard
pythia 8.3

NNPDF2.3 LO 4.66 0.97

herwig++ LO 2→ 2 CUETHS1 CTEQ6L1 4.35 0.83
herwig 7 LO 2→ 2 CH3 NNPDF3.1 nnlo 4.82 0.98
herwig 7 LO 2→ 2 SoftTune MMHT2014lo68cl 5.34 1.07

The distributions of the DPS-sensitive observables are shown in Fig. 12.3, Fig. 12.4
and Fig. 12.5. The distributions on the left are in terms of the absolute cross section,

164



while the distributions on the right have been normalized to one or multiple bins where
a much reduced DPS-sensitivity is expected. The exact normalization is detailed in
Sec. 11.7. The same large discrepancy between the cross section of the data and the
pythia 8 and herwig models becomes immediately apparent just as in Tab. 12.1.

The shape of the ∆φsoft and ∆pT,soft observables in Fig. 12.3 and 12.5, respectively,
is relatively well described by all pythia 8 and herwig models compared to other the
other observables. No deviations larger than 20% are found, albeit being larger than the
total uncertainty on the data points.

When examining the ∆φmin
3j and φij observables, a clear distinction can be made be-

tween the models interfaced with a pT-ordered shower compared to the models interfaced
with an angular-ordered/dipole-antenna shower. The former gives an accurate descrip-
tion of the ∆φmin

3j observable, but overshoot the DPS-sensitive tail of the φij distribution.
The latter models are too correlated in the DPS-sensitive peak of the ∆φmin

3j observable,
while a good agreement is found with the shape of the φij observable. The predictions
made by pythia 8 interfaced with Vincia confirm that the parton shower lies at the
base of the distinct behavior between the two groups of models. The sensitivity to the
type of parton shower of both observables makes them less suitable to study DPS and to
perform a possible extraction of the DPS cross section.

The pythia 8 and herwig models all fail to describe the shape of the ∆Y observable.
The predictions are far too decorrelated in the DPS-sensitive tail since the ratio rises when
going to higher values of ∆Y. The overshoot is due to the abundance of low pT jets in
the forward and backward pseudorapidity regions of the models compared to the data.

The predictions of the ∆S observable exhibit the most consistent behavior for all
models. The observable shows no large dependence on the type of parton shower. Most
models undershoot the slope going to zero, leaving room for a DPS contribution to
improve the description of the shape. Only the pythia 8 models using the CUETP8M1
and the DPS tune CDPSTP8S1-4j overshoot the slope, indicating a possible overestimation
of the DPS contribution. The former is an older tune, while the latter is expected to
perform well in the DPS-sensitive regions.
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Figure 12.1: Comparison of the unfolded pT spectra of the data with the pythia 8 (P8),
herwig++ (H++) and herwig 7 (H7) models for the leading (top left), sub-leading (top
right), third leading (bottom left), and fourth leading (bottom right) jet. The error bars
represent the statistical uncertainties, and the yellow band indicates the total uncertainty
on the measurement.
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Figure 12.2: Comparison of the unfolded η spectra of the data with the pythia 8 (P8),
herwig++ (H++) and herwig 7 (H7) models for the leading (top left), sub-leading
(top right), third leading (bottom left), and fourth leading (bottom right) jet. The error
bars and bands are shown similarly to Fig. 12.1.
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Figure 12.3: Comparison of the unfolded ∆φsoft and ∆φmin
3j observables of the data with

the pythia 8 (P8), herwig++ (H++) and herwig 7 (H7) models. The left-hand plots
are in terms of the absolute cross section, while the right-hand plots are normalized to
the region where reduced DPS-sensitivity is expected. The error bars and bands are
shown similarly to Fig. 12.1.

168



CMS  (13 TeV)-10.042 fb

 Y∆
0 1 2 3 4 5 6 7 8 9

M
C

/D
at

a

2

4

6
H7 - CH3 H7 - SoftTune
H++ - CUETHS1 P8 - Vincia

 Y∆
0 1 2 3 4 5 6 7 8 9

M
C

/D
at

a

2

4

6 P8 - CP5 P8 - CUETP8M1 P8 - CDPSTP8S1-4j DeltaY
0 1 2 3 4 5 6 7 8 9

 Y
 [p

b]
∆

/dσd

410

510

610

710

810 P8 - CP5 P8 - CDPSTP8S1-4j

P8 - Vincia H7 - CH3
CMS Data

20≥
T,4

25,p≥
T,3

30,p≥
T,2

35,p≥
T,1

p

→DPS Sensitivity 

CMS  (13 TeV)-10.042 fb

 Y∆
0 1 2 3 4 5 6 7 8 9

M
C

/D
at

a

1

2

3 H7 - CH3 H7 - SoftTune
H++ - CUETHS1 P8 - Vincia

 Y∆
0 1 2 3 4 5 6 7 8 9

M
C

/D
at

a

1

2

3 P8 - CP5 P8 - CUETP8M1 P8 - CDPSTP8S1-4j DeltaY
0 1 2 3 4 5 6 7 8 9

 Y
 [a

.u
.]

∆
dN

/d

1−10

1

10

210 P8 - CP5 P8 - CDPSTP8S1-4j

P8 - Vincia H7 - CH3
CMS Data

20≥
T,4

25,p≥
T,3

30,p≥
T,2

35,p≥
T,1

p

→DPS Sensitivity 

CMS  (13 TeV)-10.042 fb

 [rad]
ij

φ
0 0.5 1 1.5 2 2.5 3

M
C

/D
at

a

1

2

3
H7 - CH3 H7 - SoftTune
H++ - CUETHS1 P8 - Vincia

 [rad]
ij

φ
0 0.5 1 1.5 2 2.5 3

M
C

/D
at

a

1

2

3

4
P8 - CP5 P8 - CUETP8M1 P8 - CDPSTP8S1-4j DeltaPhiY

0 0.5 1 1.5 2 2.5 3

 [p
b/

ra
d]

ijφ
/dσd

610

710
P8 - CP5 P8 - CDPSTP8S1-4j

P8 - Vincia H7 - CH3
CMS Data

20≥
T,4

25,p≥
T,3

30,p≥
T,2

35,p≥
T,1

p

 DPS Sensitivity←

CMS  (13 TeV)-10.042 fb

 [rad]
ij

φ
0 0.5 1 1.5 2 2.5 3

M
C

/D
at

a

0.8

1

1.2

1.4

1.6 H7 - CH3 H7 - SoftTune
H++ - CUETHS1 P8 - Vincia

 [rad]
ij

φ
0 0.5 1 1.5 2 2.5 3

M
C

/D
at

a

1

1.5

2 P8 - CP5 P8 - CUETP8M1 P8 - CDPSTP8S1-4j DeltaPhiY
0 0.5 1 1.5 2 2.5 3

 [a
.u

.]
ijφ

dN
/d 1

P8 - CP5 P8 - CDPSTP8S1-4j

P8 - Vincia H7 - CH3
CMS Data

20≥
T,4

25,p≥
T,3

30,p≥
T,2

35,p≥
T,1

p

 DPS Sensitivity←

Figure 12.4: Comparison of the unfolded ∆Y and φij observables of the data with the
pythia 8 (P8), herwig++ (H++) and herwig 7 (H7) models. The left-hand plots are
in terms of the absolute cross section, while the right-hand plots are normalized to the
region where reduced DPS-sensitivity is expected. The error bars and bands are shown
similarly to Fig. 12.1.

169



CMS  (13 TeV)-10.042 fb

T,Soft
 p∆

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
C

/D
at

a

1

2

3
H7 - CH3 H7 - SoftTune
H++ - CUETHS1 P8 - Vincia

T,Soft
 p∆

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
C

/D
at

a

1

2

3

P8 - CP5 P8 - CUETP8M1 P8 - CDPSTP8S1-4j DeltaPtSoft
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 [p
b]

T
,S

of
t

 p∆
/dσd

610

710

P8 - CP5 P8 - CDPSTP8S1-4j

P8 - Vincia H7 - CH3
CMS Data

20≥
T,4

25,p≥
T,3

30,p≥
T,2

35,p≥
T,1

p

 DPS Sensitivity←

CMS  (13 TeV)-10.042 fb

T,Soft
 p∆

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
C

/D
at

a

0.8

1

1.2

1.4 H7 - CH3 H7 - SoftTune
H++ - CUETHS1 P8 - Vincia

T,Soft
 p∆

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
C

/D
at

a

0.8

1

1.2

1.4 P8 - CP5 P8 - CUETP8M1 P8 - CDPSTP8S1-4j DeltaPtSoft
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 [a
.u

.]
T

,S
of

t
 p∆

dN
/d

1−10

1

P8 - CP5 P8 - CDPSTP8S1-4j

P8 - Vincia H7 - CH3
CMS Data

20≥
T,4

25,p≥
T,3

30,p≥
T,2

35,p≥
T,1

p

 DPS Sensitivity←

CMS  (13 TeV)-10.042 fb

 S [rad]∆
0 0.5 1 1.5 2 2.5 3

M
C

/D
at

a

1

2

3 H7 - CH3 H7 - SoftTune
H++ - CUETHS1 P8 - Vincia

 S [rad]∆
0 0.5 1 1.5 2 2.5 3

M
C

/D
at

a

1

2

3

4 P8 - CP5 P8 - CUETP8M1 P8 - CDPSTP8S1-4j DeltaS
0 0.5 1 1.5 2 2.5 3

 S
 [p

b/
ra

d]
∆

/dσd

410

510

610

P8 - CP5 P8 - CDPSTP8S1-4j

P8 - Vincia H7 - CH3
CMS Data

30≥
T,2,3,4

50 and p≥
T,1

p

 DPS Sensitivity←

CMS  (13 TeV)-10.042 fb

 S [rad]∆
0 0.5 1 1.5 2 2.5 3

M
C

/D
at

a

0.5

1

1.5
H7 - CH3 H7 - SoftTune
H++ - CUETHS1 P8 - Vincia

 S [rad]∆
0 0.5 1 1.5 2 2.5 3

M
C

/D
at

a

0.5

1

1.5

P8 - CP5 P8 - CUETP8M1 P8 - CDPSTP8S1-4j DeltaS
0 0.5 1 1.5 2 2.5 3

 S
 [a

.u
.]

∆
dN

/d

2−10

1−10

1 P8 - CP5 P8 - CDPSTP8S1-4j

P8 - Vincia H7 - CH3
CMS Data

30≥
T,2,3,4

50 and p≥
T,1

p

 DPS Sensitivity←

Figure 12.5: Comparison of the unfolded ∆pT,soft and ∆S observables of the data with
the pythia 8 (P8), herwig++ (H++) and herwig 7 (H7) models. The left-hand plots
are in terms of the absolute cross section, while the right-hand plots are normalized
to the region where reduced DPS-sensitivity is expected. The observable ∆S has been
determined in region II, compared to region I for all other observables. The error bars
and bands are shown similarly to Fig. 12.1.
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12.3 Multijet Models

The second group of models are the so-called multijet models. They all have higher order
ME at LO and/or NLO corrections implemented. Three different event generators have
been used to produce predictions. Four samples have been generated by the KaTie event
generator at LO with a 2→ 4 ME, two on-shell and two off-shell samples. Three sets of
predictions were produced with the MadGraph 5 event generator, two LO predictions
effectively combining a 2→ 2, a 2→ 3 and a 2→ 4, and one sample with NLO corrections
using a 2 → 2 ME. The combined matrix element will be denoted as 2 → 2, 3, 4 from
hence on forth. The powheg event generator is used for the last two sets of NLO
predictions with a 2→ 2 and a 2→ 3 ME, respectively. The KaTie, MadGraph 5 and
powheg event generators will be abbreviated in the legends of the distributions as KT,
MG5 and PW, respectively, for clarity’s sake. The type of tune or TMD will be added,
allowing for a clear indication of all the models. Not all distributions will be shown in
terms of the absolute cross section as there are simply too many. However, three different
ratio plots for the KaTie, the LO 2 → 2, 3, 4 and NLO models will hold all the ratios.
Further details and specifications of the models can be found in Sec. 3.7.2. In Tab. 12.2
an overview of all the MC samples with their respective tune or TMD along with their
cross sections for both phase space domains region I and region II is given.

The cross sections of both the on-shell KaTie models interfaced with pythia 8 using
the CP5 and CH3 overshoot the data and are up to three times as large as the cross
sections obtained from data. The cross sections predicted by the off-shell KaTie models
are significantly lower, where the cross section in region I shows agreement within the
data uncertainty. Apart from the off-shell KaTie models, the MadGraph 5 LO sample
interfaced with pythia 8 using the CP5 tune and the powheg NLO 2→ 3 sample agree
with the data within uncertainty. All other MadGraph 5 and powheg models predict
cross sections much lower compared to the data.

The pT spectra of the different models in comparison to the data are shown in
Fig. 12.6. The on-shell KaTie models agree with the data in the first bin of each of
the pT spectra, however, they are all to hard when going to higher values of pT, which
is caused by the fact that all jets are most likely to originate from the 2 → 4 ME
and not from the parton shower. The same effect, but less pronounced, can be seen
for the off-shell KaTie curves. The different TMD sets for the off-shell KaTie models
only result in small variations. A better description of the pT spectra is given by the
MadGraph 5 LO sample, with a pT-ordered shower. Jets can originate from the par-
ton shower, yielding a softer pT spectrum. The combination of the MadGraph 5 LO
2 → 2, 3, 4 sample with the dipole-antenna showering from pythia 8+Vincia, results
in a lowering of the total cross section. All NLO models give an analogue description
compared to the MadGraph 5 sample, where the virtual corrections included in the
higher-order ME can effectively lower the cross section. Comparing the multijet samples
to the standard pythia 8 and herwig curves from the previous section, one can conclude
that NLO corrections and the inclusion of multi-leg ME improve the description of the
pT spectra.

The pseudorapidity spectra are shown in Fig. 12.7. The central region is well described
by all models, even the on-shell KaTie models. The overall cross section is to large but
the ratio remains more or less constant for |η| ≤ 3.0. An excess of jets in the forward
and backward regions is be observed as the ratio rises, however, it is less pronounced
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than in the case of the pythia 8 and herwig models. The excess is also strongest for
the leading jet and diminishes when going to the second, third and fourth leading jet,
yielding a good description of the shape of the last leading jet.

Table 12.2: Cross section measurements for the data and all the multijet models. The
second cross section is for the variable ∆S specifically, as the variable is measured in
region II, compared to region I for all other observables.

Sample ME Tune PDF/TMD σI (µb) σII (µb)
Data - - - 2.77± 0.02 +0.68

−0.55 0.61± 0.01 +0.12
−0.10

KaTie on-shell +
pythia 8

LO 2→ 4 CP5 NNPDF3.1 nnlo 4.23 2.87

KaTie on-shell +
herwig 7

LO 2→ 4 CH3 NNPDF3.1 nnlo 3.56 2.25

KaTie off-shell +
Cascade

LO 2→ 4 - MRW 2.40 1.46

KaTie off-shell +
Cascade

LO 2→ 4 - PBTMD 2.57 1.56

MadGraph 5 +
pythia 8

LO 2→ 2, 3, 4 CP5 NNPDF3.1 nnlo 2.69 1.26

MadGraph 5 +
pythia 8+Vincia

LO 2→ 2, 3, 4 Standard
pythia 8.3

NNPDF2.1 LO 1.93 0.90

MadGraph 5 +
pythia 8

NLO 2→ 2 CP5 NNPDF3.1 nnlo 2.12 1.03

powheg +
pythia 8

NLO 2→ 2 CP5 NNPDF3.1 nnlo 3.50 1.62

powheg +
pythia 8

NLO 2→ 3 CP5 NNPDF3.1 nnlo 2.55 1.22

All differential cross sections of the DPS-sensitive observables are shown in Fig. 12.8,
Fig. 12.9 and Fig. 12.10. The plots on the left show the distributions in terms of the
absolute cross section, while the distributions on the right display the bin-normalized
observables.

Let us first focus on the observables in terms of the absolute cross section. The
observables ∆φsoft, ∆φmin

3j , ∆pT,soft and φij are described well by the off-shell KaTie
models, the MadGraph 5 LO 2→ 2, 3, 4 with a pT-ordered shower and all powheg NLO
models. The on-shell KaTie models, the MadGraph 5 LO 2 → 2, 3, 4 model with the
dipole-antenna showering from Vincia and the MadGraph 5 NLO model predictions do
not match the data. Their total cross sections are either too high or too low with respect
to the total uncertainty of the measurement. The best description is given by the off-
shell KaTie and powheg NLO 2→ 3 models. They agree within uncertainty with the
data for these variables, except for the bins where a DPS contribution is expected. The
MadGraph 5 LO 2 → 2, 3, 4 prediction with a pT-ordered shower, displays agreement
with the data within the uncertainty even in the DPS-sensitive areas.

The off-shell KaTie predictions for the ∆Y variable show good agreement with the
data, except for the last bin. All other models fail to describe the data by either under-
estimating the cross section at low values of ∆Y or overestimating it for large values of
∆Y.

The ∆S observable is well described by the off-shell KaTie models and the Mad-
Graph 5 LO 2→ 2, 3, 4 with a pT-ordered shower. The latter performs well throughout
the whole domain, while the former two models perform well in the peak but less so in
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the slope of the distribution.
Switching to the bin-normalized distributions, the shape of the observables ∆φsoft

and ∆pT,soft deviates strong between the different models in the DPS-sensitive areas.
The MadGraph 5 LO 2→ 2, 3, 4 samples tend to overestimate the data, while all other
models underestimate the data, indicating a need for DPS.

The ∆Y observable is only properly described by the off-shell KaTie models, except
for the last bin, confirming the observation made earlier.

In contrast to the predictions of the ∆φmin
3j observable made by the pythia 8 and

herwig models on the bottom left plot in Fig. 12.3, no clear distinction between the
different types of parton shower can be made. The different models overestimate and
underestimate the data indicating a more complex interplay between the order of the ME
and the type of parton shower model. All models, except the MadGraph 5 predictions,
show a sudden drop at higher values of ∆φmin

3j , indicating the need for a DPS contribution.
When examining the bin-normalized distribution of the φij observable, one does ob-

serve a correlation between how well the models describe the shape of the data and the
used type of parton shower model. The description of the shape of the data for the
on-shell KaTie models drastically improves when the angular-ordered shower from her-
wig 7 is used. Agreement between the herwig 7 model and the data is found within
the uncertainty of the data. The off-shell KaTie samples with parton showers modeled
by Cascade are the only models that undershoot the data and leave room for a DPS
contribution in the tail of the variables φij.

The observable ∆S shows again a consistency as it did for the pythia 8 and herwig
models, except for the KaTie models. They are the only predictions that overestimate
the DPS-sensitive tail of the ∆S distribution. The reason for the overestimation of the
pedestal is linked to the pT spectra. The four leading jets generally originate from the
2 → 4 ME, resulting in pT spectra that are too hard. All other predictions undershoot
the pedestal and leave room for a DPS contribution.
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Figure 12.6: Comparison of the unfolded pT spectra of the data with the KaTie (KT),
MadGraph 5 (MG5) and powheg (PW) models for the leading (top left), sub-leading
(top right), third leading (bottom left), and fourth leading (bottom right) jet. The
error bars represent the statistical uncertainties, and the yellow band indicates the total
uncertainty on the measurement.
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Figure 12.7: Comparison of the unfolded η spectra of the data with the KaTie (KT),
MadGraph 5 (MG5) and powheg (PW) models for the leading (top left), sub-leading
(top right), third leading (bottom left), and fourth leading (bottom right) jet. The error
bars and bands are shown similarly to Fig. 12.6.
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Figure 12.8: Comparison of the unfolded ∆φsoft and ∆φmin
3j observables of the data with

the KaTie (KT), MadGraph 5 (MG5) and powheg (PW) models. The left-hand plots
are in terms of the absolute cross section, while the right-hand plots are normalized to
the region where reduced DPS-sensitivity is expected. The error bars and bands are
shown similarly to Fig. 12.6.
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Figure 12.9: Comparison of the unfolded ∆Y and φij observables of the data with the
KaTie (KT), MadGraph 5 (MG5) and powheg (PW) models. The left-hand plots are
in terms of the absolute cross section, while the right-hand plots are normalized to the
region where reduced DPS-sensitivity is expected. The error bars and bands are shown
similarly to Fig. 12.6.
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Figure 12.10: Comparison of the unfolded ∆pT,soft and ∆S observables of the data with
the KaTie (KT), MadGraph 5 (MG5) and powheg (PW) models. The left-hand
plots are in terms of the absolute cross section, while the right-hand plots are normalized
to the region where reduced DPS-sensitivity is expected. The observable ∆S has been
determined in region II, compared to region I for all other observables. The error bars
and bands are shown similarly to Fig. 12.6.
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12.4 SPS+DPS Models
The third and last group of models are the so-called SPS+DPS samples. All details can
be found in Sec. 3.7.3. These predictions have been generated with the pythia 8 and
KaTie MC event generators since both generators allow for the production of a pure
DPS sample which is added to its SPS counterpart. Note that the predictions from the
pythia 8 model using the CDPSTP8S1-4j tune are also included in this group of models
and are the same compared to the predictions in Sec. 12.2. No explicit DPS contribution
is needed in the model since the UE parameters have been specifically tuned to account
for DPS contributions. In the legends of the figures, all models will be abbreviated in
the exact same manner as before. An overview of all the SPS+DPS samples with their
respective integrated cross sections is given in Tab. 12.3. Only the values of the off-shell
KaTie models agree within the uncertainty with the measured cross section of the phase
space domain region I.

Fig. 12.11 and Fig. 12.12 show the pT and pseudorapidity spectra of the four leading
jets, respectively. In comparison to the spectra of the pure SPS samples from the previous
sections, one can conclude that the DPS samples mainly contribute in the low pT region
of the pT spectra and mostly in the forward/backward regions of the pseudorapidity
spectra.

Table 12.3: Cross section measurements for the data and all SPS+DPS models. The
second cross section is for the ∆S observable specifically since the variable is measured
in region II, compared to region I for all other observables.

Sample ME Tune PDF/TMD σI (µb) σII (µb)
Data - - - 2.77± 0.02 +0.68

−0.55 0.61± 0.01 +0.12
−0.10

SPS+DPS KaTie on-
shell + pythia 8

LO 2→ 4 CP5 NNPDF3.1 nnlo 5.04 2.14

SPS+DPS KaTie off-
shell + Cascade

LO 2→ 4 - MRW 3.11 0.95

SPS+DPS KaTie off-
shell + Cascade

LO 2→ 4 - PBTMD 3.12 0.99

SPS+DPS pythia 8 LO 2→ 2 CP5 NNPDF3.1 nnlo 4.76 0.94
pythia 8 LO 2→ 2 CDPSTP8S1-4j CTEQ6L1 7.06 1.28

All other variables are shown in Fig. 12.13 and Fig. 12.14. The observables on the left
show the distributions in terms of the absolute cross sections, while the bin-normalized
observables are displayed on the right. The predictions made by the off-shell KaTie
samples mostly agree with the data within the uncertainty for all the observables, except
for ∆S. However, excesses are observed compared to the data in the DPS-sensitive regions
of the observables, while the pure SPS predictions underestimate the same regions in
Fig. 12.8 and Fig. 12.9. The results indicate the need for a DPS contribution for a proper
description of the data. However, a value for σeff equal to 21.3 mb, taken from [121], is
too small for these models.

The bin-normalized distributions are shown on the right in Fig. 12.13 and Fig. 12.14.
Only small increases of at most ∼ 5% are observed in the DPS-sensitive regions when
laying the pure SPS pythia 8 model using the CP5 tune from Fig. 12.3, Fig. 12.4 and
Fig. 12.5 next to its SPS+DPS counterpart. The increase in the on-shell and off-shell
KaTie curves is more noticeable and is the largest for the off-shell samples.
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Both SPS+DPS pythia 8 samples give a good shape description of the observables
∆φsoft, ∆φmin

3j , ∆pT,soft and ∆S. The CDPSTP8S1-4j tune performs slightly better com-
pared to the CP5 tune. These results might have been expected as the CDPSTP8S1-4j tune
was obtained by fitting a pythia 8 sample to the ∆φsoft, ∆pT,soft and ∆S observables
measured from data taken at a centre-of-mass energy of 7 TeV, as detailed in [121].

The pedestal of the ∆S variable is greatly overestimated towards the DPS-sensitive
region by the on-shell and off-shell KaTie predictions, while the variable ∆φmin

3j is well
described by the pythia 8 samples and by the off-shell KaTie sample, which uses the
MRW-CT10nlo TMD.

All models, except the off-shell KaTie models, fail to describe the shape of the ∆Y
observable. For the φij observable, the models show the same tendencies as found in the
previous two sections. The LO 2→ 2 pythia 8 models show too large of a decorrelation,
while predictions using higher order matrix element calculations perform better, as seen
in the shape of the KaTie curves.
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Figure 12.11: Comparison of the unfolded pT spectra of the data with different SPS+DPS
KaTie (KT) and pythia 8 (P8) models, for the leading (top left), sub-leading (top
right), third leading (bottom left), and fourth leading (bottom right) jet. The error bars
represent the statistical uncertainties, and the yellow band indicates the total uncertainty
on the measurement.
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Figure 12.12: Comparison of the unfolded η spectra of the data with different SPS+DPS
KaTie (KT) and pythia 8 (P8) models, for the leading (top left), sub-leading (top
right), third leading (bottom left), and fourth leading (bottom right) jet. The error bars
and bands are shown similarly to Fig. 12.11.
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Figure 12.13: Comparison of the unfolded ∆φsoft, ∆φmin
3j and ∆pT,soft observables of the

data with the SPS+DPS KaTie (KT) and pythia 8 (P8) models. The left-hand plots
are in terms of the absolute cross section, while the right-hand plots are normalized to
the region where reduced DPS-sensitivity is expected. The error bars and bands are
shown similarly to Fig. 12.11.

183



CMS  (13 TeV)-10.042 fb

 Y∆
0 1 2 3 4 5 6 7 8 9

M
C

/D
at

a

1

2

3

4
 DeltaY

0 1 2 3 4 5 6 7 8 9

 Y
 [p

b]
∆

/dσd

410

510

610

710

810

20≥
T,4

25,p≥
T,3

30,p≥
T,2

35,p≥
T,1

p

KT Onshell+CP5 P8 - CP5

KT Offshell+MRW P8 - CDPSTP8S1-4j

KT Offshell+PBTMD CMS Data

→DPS Sensitivity 

CMS  (13 TeV)-10.042 fb

 Y∆
0 1 2 3 4 5 6 7 8 9

M
C

/D
at

a

0.5

1

1.5

2

2.5  DeltaY
0 1 2 3 4 5 6 7 8 9

 Y
 [a

.u
.]

∆
dN

/d

1−10

1

10

210

20≥
T,4

25,p≥
T,3

30,p≥
T,2

35,p≥
T,1

p

KT Onshell+CP5 P8 - CP5

KT Offshell+MRW P8 - CDPSTP8S1-4j

KT Offshell+PBTMD CMS Data

→DPS Sensitivity 

CMS  (13 TeV)-10.042 fb

 [rad]
ij

φ
0 0.5 1 1.5 2 2.5 3

M
C

/D
at

a

1

2

3

4  DeltaPhiY
0 0.5 1 1.5 2 2.5 3

 [p
b/

ra
d]

ijφ
/dσd

610

710

20≥
T,4

25,p≥
T,3

30,p≥
T,2

35,p≥
T,1

p

KT Onshell+CP5 P8 - CP5

KT Offshell+MRW P8 - CDPSTP8S1-4j

KT Offshell+PBTMD CMS Data

 DPS Sensitivity←

CMS  (13 TeV)-10.042 fb

 [rad]
ij

φ
0 0.5 1 1.5 2 2.5 3

M
C

/D
at

a

1

1.5

 DeltaPhiY
0 0.5 1 1.5 2 2.5 3

 [a
.u

.]
ijφ

dN
/d

1

20≥
T,4

25,p≥
T,3

30,p≥
T,2

35,p≥
T,1

p

KT Onshell+CP5 P8 - CP5

KT Offshell+MRW P8 - CDPSTP8S1-4j

KT Offshell+PBTMD CMS Data

 DPS Sensitivity←

CMS  (13 TeV)-10.042 fb

 S [rad]∆
0 0.5 1 1.5 2 2.5 3

M
C

/D
at

a

2

4

6  DeltaS
0 0.5 1 1.5 2 2.5 3

 S
 [p

b/
ra

d]
∆

/dσd

410

510

610

710

30≥
T,2,3,4

50 and p≥
T,1

p

KT Onshell+CP5 P8 - CP5

KT Offshell+MRW P8 - CDPSTP8S1-4j

KT Offshell+PBTMD CMS Data

 DPS Sensitivity←

CMS  (13 TeV)-10.042 fb

 S [rad]∆
0 0.5 1 1.5 2 2.5 3

M
C

/D
at

a

1

2

3  DeltaS
0 0.5 1 1.5 2 2.5 3

 S
 [a

.u
.]

∆
dN

/d

2−10

1−10

1

10

30≥
T,2,3,4

50 and p≥
T,1

p

KT Onshell+CP5 P8 - CP5

KT Offshell+MRW P8 - CDPSTP8S1-4j

KT Offshell+PBTMD CMS Data

 DPS Sensitivity←

Figure 12.14: Comparison of the unfolded ∆Y, φij and ∆S observables of the data with
the SPS+DPS KaTie (KT) and pythia 8 (P8) models. The left-hand plots are in terms
of the absolute cross section, while the right-hand plots are normalized to the region
where reduced DPS-sensitivity is expected. The observable ∆S has been determined in
region II, compared to region I for all other observables. The error bars and bands are
shown similarly to Fig. 12.11.
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12.5 Extraction of the Effective Cross Section

The DPS cross section is determined, and the effective cross section σeff is extracted
through the use of the SPS MC models while following the two methods laid out in
Chap. 8. The pythia 8 and herwig samples using the CUETP8M1 and the CUETHS1 are
omitted since the newer and improved CP5 and CH3 tunes are available. The extraction is
also performed with the pythia 8 sample using the CDPSTP8S1-4j tune, which already
contains a DPS contribution. In this manner, the performance of the tune at a centre-
of-mas energy of

√
s = 13 TeV is tested. The ∆S observable has proven to be the

most robust of the DPS-sensitive observables since it is least affected by the type of
parton shower. The difference between the ∆S observable and the other DPS-sensitive
observables lies in its definition. All the information of the four leading jets enters the ∆S
definition, which is not the case for all other DPS-sensitive observables. In the extraction
procedure, the multijet KaTie models will not be considered; they greatly overshoot the
DPS-sensitive slope of the ∆S observable which would result in non-convergent results.

12.5.1 Template Method

The pure DPS sample, which has been constructed from the data as described in Sec. 8.1.2,
is used to obtain the ∆S distributions for pure DPS events, denoted as ∆SDPS. The
∆SDPS distribution is corrected through the unfolding procedure in exactly the same
manner as the other observables. The corrected ∆SDPS distribution is shown in Fig. 12.15,
along with the ∆SDPS distributions of the DPS contribution from the pythia 8 and on-
shell KaTie models, both interfaced with pythia 8 using the CP5 tune. All distributions
have been normalized to unity. The DPS data sample exhibits a larger decorrelation
compared to the DPS MC samples. The differences can be attributed to the disparities
between the pT spectra of the data and the MC samples.
The template fitter object [176] takes the SPS MC distributions along with the DPS data
sample as an input and determines the fraction of DPS events fDPS. Through the use of
eq. (8.5) and eq. (8.7), the DPS cross section and the effective cross section are extracted.
The results for the considered models are given in Tab. 12.4 and are summarized for σeff
in Fig. 12.16. The fitted distributions for the different models along with their statistical
and systematical uncertainties are shown in Fig. 12.17 and in Fig. 12.18 for the pythia 8
and herwig, and the multijet models, respectively.

The systematic uncertainties on the DPS fraction fDPS have been determined through
the use of the template fitter. The correlations of the systematic uncertainties have been
taken into account. The ∆S and ∆SDPS distributions are simultaneously varied for each
systematic uncertainty individually. Next, the varied fractions are compared to their
nominal value. Afterwards, the difference is taken as the systematic uncertainty due to
the considered source. Finally, the total systematic uncertainty is calculated by taking
the squared sum of all systematic uncertainties. The systematic uncertainties of the
DPS cross section σDPS

A,B and the effective cross section σeff have been determined in the
same manner. Each varied DPS fraction enters eq. (8.7) to obtain the varied DPS cross
section, which in turn is used as input in eq. (8.5), along with all the other varied objects.
The remainder of the steps in the calculation include comparing the varied objects to
their nominal values and taking the squared sum of all differences to obtain the total
systematical uncertainty.
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Figure 12.15: Comparison of the unfolded ∆SDPS observable of the pure DPS data
sample with the DPS MC models. The distribution has been determined in the phase
space domain region II, while the distributions are normalized to unity. The error bars
represent the statistical uncertainties, and the yellow band indicates the total uncertainty
on the measurement.

The fraction of DPS events ranges from 0.0241 up to 0.1036, ignoring the value
of -0.01294 obtained with the pythia 8 sample using the CDPSTP8S1-4j tune. When
examining the values for the DPS fraction fDPS, the DPS cross section σDPS

A,B and the
effective cross section σeff , a clear distinction between four groups of models can be made.

• A first group consists of the pythia 8 model with the dipole-antenna showering
and the herwig 7 model using the SoftTune. Both models use an older PDF and
tune, resulting in smaller DPS fractions.

• The second group of models are the pythia 8 and the herwig 7 samples using
the CP5 and CH3 tunes, respectively. The effective cross section σeff obtained with
these models agrees within the total uncertainty with the four jet measurement
performed by the CMS collaboration at a centre-of-mass energy of

√
s = 7 TeV

where a value of σeff = 21.3+1.2
−1.6 mb was found [121].

• The two MadGraph 5 LO 2 → 2, 3, 4 samples form the third distinct group
of models. The value of σeff shows agreement with the four jet measurements
performed by the ATLAS collaboration at a centre-of-mass energy of

√
s = 7 TeV,

where the value of σeff = 14.9+1.2
−1.0(stat.)+5.1

−3.8(sys.) mb was extracted [24].

• The fourth and last category consists of the NLO models for which the highest
DPS fraction and lowest values of σeff are extracted.
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Figure 12.16: Comparison of all the extracted values of σeff for the template method
for different models, along with the results from prior four jet measurements, performed
at lower centre-of-mass energies. The values of the σeff of the older measurements are
taken from [21], [22], [25] and [121] for the UA2, CDF, ATLAS and CMS collaborations,
respectively.

All measurements agree with the lower bound of σeff = 8.3 mb, set by the measurement
performed by the UA2 collaboration [21]. While all models, except the pythia 8 model
with the dipole-antenna showering provided by Vincia and the herwig 7 model using the
SoftTune, agree with the measurement performed by the CDF collaboration at a centre-
of-mass energy of

√
s = 1.96 TeV, where a σeff equal to 12.1+10.7

−5.4 mb was found [22].
Two other DPS measurements have been performed at a centre-of-mass energy of√

s = 13 TeV. A value of σeff equal to 12.7+5.0
−2.9 mb has been extracted from the same-sign

WW measurement [15]. while the J/Ψ pair production measurement found a σeff = 7.3±
0.5(stat.) ± 1.0(sys.) mb [20]. Although, completely different processes are measured in
the two aforementioned studies, it is noteworthy that rather low values of σeff were found
compared to measurements at lower centre-of-mass energies. The former measurement
agrees within uncertainty with all predictions made by the NLO and MadGraph 5 LO
models, except for σeff predicted by the MadGraph 5 NLO model, which is the only
model to agree with the J/Ψ pair production measurement. The results are extracted
from three completely different DPS channels, however, the parameter σeff is expected to
be universal and process independent when considering the fully inclusive scenarios [108].

The interplay between the parton shower and the models using different matrix el-
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ements is apparent, just as it was for the DPS-sensitive variables. The pythia 8 and
herwig 7 models all use a 2 → 2 ME for which the two softest jets will always orig-
inate from the parton shower. These soft jets exhibit correlations similar to those of
jets from DPS events, therefore, resulting in a significantly smaller discrepancy with the
data compared to the other models, effectively yielding high values of the effective cross
section σeff . The MadGraph 5 LO 2 → 2, 3, 4 samples experience the same effect as
the pythia 8 and herwig 7 models. A large fraction of events will be produced with a
2→ 2 ME. Due to the inclusion of higher order ME, the correlations between the softest
jets will differ from those solely arising from jets coming from the parton showers. Lastly,
the difference between the MadGraph 5 LO 2→ 2, 3, 4 and NLO samples is due to the
inclusion of the NLO corrections. These three models allow for ME of higher order than
the 2 → 2 ME at LO and include first order loop diagrams, which are absent from all
other models.

The pythia 8 model using the CDPSTP8S1-4j tune already contains a DPS contri-
bution and uses a value of σeff equal to 21.3 mb [121]. In this analysis, an excess of
DPS events is found, yielding a negative DPS fraction fDPS = −0.0129± 0.0008 +0.0047

−0.0081.
Through the combination of eq. (8.5) and eq. (8.7), along with a value of 21.3 mb for
the σeff parameter, the corresponding DPS fraction f tune

DPS can be extracted. A value of
f tune

DPS = 0.0393± 0.0009 +0.0047
−0.0066 was found. The corrected fraction of DPS events needed

by the model can now be defined as

f true
DPS = f tune

DPS + fDPS (12.5)

Resulting in a true DPS fraction of f true
DPS = 0.0263±0.001 +0.007

−0.010. The corrected effective
cross section corresponding to the newly determined fraction of DPS events is equal to
31.76 ± 1 +5

−19. This value is consistent with the results obtained from the pythia 8
model with the dipole-antenna showering from Vincia and the herwig 7 model using
the SoftTune. To better fit the four jet measurement at 13 TeV the pythia 8 sample
using the CDPSTP8S1-4j would need a higher σeff .
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Table 12.4: The values of the DPS fraction fDPS, the DPS cross section σDPS
A,B and

the effective cross section σeff for the different LO and NLO models, along with their
statistical and systematical uncertainties. All results have been obtained through the
template method.

MC Model Tune fDPS ± (stat.)± (syst.) σDPS
A,B ± (stat.) ±

(syst.) (nb)
σeff ± (stat.) ±
(.syst.) (mb)

pythia 8 and herwig Samples
pythia 8 CP5 0.0377± 0.0008 +0.0045

−0.0068 22.9± 0.7 +5.7
−7.3 22.2± 0.7 +1.2

−0.8

pythia 8 CDPSTP8S1-4j −0.0129± 0.0008 +0.0047
−0.0081 / /

pythia 8+Vincia Standard
pythia 8.3

0.0241± 0.0007 +0.0041
−0.0068 14.6± 0.6 +4.4

−5.9 34.8± 1.3 +1.0
−3.5

herwig 7 CH3 0.0372± 0.0007 +0.0038
−0.0068 22.6± 0.7 +5.1

−7.3 22.5± 0.7 +1.7
−0.7

herwig 7 SoftTune 0.0267± 0.0007 +0.0042
−0.0071 16.2± 0.6 +4.6

−6.3 31.4± 1.1 +1.1
−2.4

Multijet Samples
MadGraph 5 LO,
pythia 8

CP5 0.0488± 0.0007 +0.0036
−0.0064 29.6± 0.8 +5.7

−8.2 17.2± 0.5 +1.8
−1.5

MadGraph 5 LO,
pythia 8+Vincia

Standard
pythia 8.3

0.0543± 0.0007 +0.0033
−0.0060 33.0± 0.8 +5.9

−8.6 15.4± 0.4 +1.8
−1.7

MadGraph 5 NLO,
pythia 8

CP5 0.1036± 0.0006 +0.0026
−0.0050 63± 1 +9

−13 8.1± 0.2 +1.3
−1.4

powheg NLO 2 →
2, pythia 8

CP5 0.0857± 0.0004 +0.0030
−0.0052 52± 1 +8

−11 9.8± 0.2 +1.4
−1.5

powheg NLO 2 →
3, pythia 8

CP5 0.0862± 0.0007 +0.0030
−0.0058 52± 1 +8

−12 9.7± 0.2 +1.4
−1.5
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Figure 12.17: The results of the template fit for the different pythia 8 (P8) and herwig 7
(H7) models. The yellow bands represent the total uncertainty of the distribution. The
ratio of both the fitted MC model and the total fitted result relative to the data are
show. As the ∆SDPS carries a statistical and systematical uncertainty, so does the total
fitted sample. The results for the pythia 8 model using the CDPSTP8S1-4j tune has
been scaled with a factor −10 since a negative DPS fraction fDPS was found.
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Figure 12.18: The results of the template fit for the different multijet models. All error
bands and bars on both subplots for each model are similarly to Fig. 12.17.
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12.5.2 Shape Comparison Method

The second method, detailed in Sec. 8.2, aims to exploit the bin-to-bin differences between
the data distribution and the predictions from the MC models of the ∆S observable. The
bin-normalized distributions are used since they allow for a direct shape comparison,
while having smaller uncertainties compared to the distributions in terms of the absolute
cross section. In Fig. 12.19, the bin-normalized distributions for the pythia 8 and
herwig (left), and multijet (right) models are bundled together along with the data for
clarity’s sake. The fraction of DPS events fDPS can be estimated by considering the
difference between the bin-normalized distributions as shown in eq. (8.8). Together with
eq. (8.5), eq. (8.8), the DPS cross section σDPS

A,B and the effective cross section σeff are
determined. The results for all the considered models are given in Tab. 12.5.

Figure 12.19: Comparison of the predictions of the different SPS MC models for the
bin-normalized ∆S observable along with the distribution obtained from the data.

The systematic uncertainties on fDPS, σDPSA,B and σeff have been determined in a
similar manner compared to the results of the template fit in the previous section. For
each systematic uncertainty, all distributions are varied accordingly in order to take the
correlations into account. The varied results are compared to their nominal results. The
total uncertainty is the squared sum of all discrepancies between the varied and nominal
values of the objects.

When examining the results in Tab. 12.5, it immediately stands out that the statis-
tical and systematical errors are of the same order, which is due to the limited available
statistics in the phase space domain region II. A second remarkable result is the sen-
sitivity to small bin-to-bin differences. A first example of this sensitivity is shown by
the predictions made by the pythia 8 model with a dipole-antenna showering provided
by Vincia. Some of the bin values of the bin-normalized distributions of the SPS MC
models have a larger value compared to those from the data plot. Therefore, the resulting
DPS fraction is small and the uncertainties are larger than the values for fDPS, σDPS

A,B

and σeff . A second and more subtle example is found when examining the powheg NLO
2 → 2 predictions. The second to last bin of the model overshoots the data, while all
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bins in the DPS-sensitive tail lie lower compared to the MadGraph 5 LO 2 → 2, 3, 4
models. Nonetheless, the predicted values of σeff of the powheg NLO 2 → 2 and the
MadGraph 5 LO 2→ 2, 3, 4 models agree with each other but not with the other NLO
predictions.

The results for multijet models, except the powheg NLO 2→ 2 model, agree with the
results obtained from the template method. Taking the two observations into account,
along with the fact that a DPS contribution can be present in the bin the distributions
are normalized to, it is opted to consider the results of the template method as the main
outcome of the whole extraction effort.

Increased statistics will most certainly benefit the stability of the shape comparison
method. Another workaround would be to implement more asymmetrical cuts, as it is
expected to boost the DPS signature. In the extraction of σeff , cuts of 50-40-30-20 GeV
or of 35-30-25-20 GeV were not possible due to constraints imposed by the available
triggers.

Table 12.5: The values of the DPS fraction fDPS, the DPS cross section σDPS
A,B and

the effective cross section σeff for the different LO and NLO models, along with their
statistical and systematical uncertainties. All results have been obtained through the ∆S
shape comparison method.

Sample Tune fDPS ± (stat.)+U.sys.
-L.sys. σDPS

A,B ± (stat.)+U.sys.
-L.sys.

(nb)
σeff ± (stat.)+U.sys.

-L.sys.
(mb)

pythia 8 and herwig Samples
pythia 8 CP5 0.086± 0.019+0.018

−0.022 53± 12+12
−12 9.7± 2.2+3.6

−1.1

pythia 8 CDPSTP8S1 −0.016± 0.020+0.023
−0.026 \ \

pythia 8+Vincia Standard
pythia 8.3

0.008± 0.021+0.016
−0.012 5± 13+16

−1 (11± 28+14
−6 )× 10

herwig 7 SoftTune 0.047± 0.020+0.019
−0.028 29± 12+12

−10 117.7± 7.6+7.5
−1.9

herwig 7 CH3 0.080± 0.020+0.019
−0.026 49± 12+12

−14 10.5± 2.6+4.2
−1.1

Multijet Samples
MadGraph 5 LO,
pythia 8

CP5 0.058± 0.020+0.020
−0.027 35± 12+12

−9 14.3± 4.9+6.6
−1.5

MadGraph 5 LO,
pythia 8+Vincia

Standard
pythia 8.3

0.054± 0.020+0.020
−0.022 33± 12+12

−9 15.4± 5.7+6.9
−1.7

MadGraph 5 NLO,
pythia 8

CP5 0.157± 0.018+0.017
−0.020 95± 11+13

−12 5.34± 0.6+1.3
−0.6

powheg NLO 2 →
2, pythia 8

CP5 0.061± 0.020+0.020
−0.020 36± 12+13

−9 13.8± 4.6+4.6
−1.7

powheg NLO 2 →
3, pythia 8

CP5 0.126± 0.019+0.018
−0.022 77± 11+13

−12 6.62± 1.0+1.8
−0.7

193



Chapter 13

Summary

In this thesis, a measurement of the inclusive four jet cross section in proton-proton colli-
sions at a centre-of-mass energy of

√
s = 13 TeV has been performed. The measurement

aims to improve the understanding of the strong interaction, described by the theory
of Quantum Chromodynamics, and is especially relevant from the perspective of dou-
ble parton scattering (DPS), being the simplest form of multiple partonic interactions
(MPI). The four leading jets are divided in a hard and soft jet pair, whose correla-
tions are exploited in an effort to disentangle single parton scattering (SPS) events from
DPS events through specifically chosen observables besides the transverse momentum and
pseudorapidity spectra of the jets. The absolute cross sections have been measured for all
observables. Additionally, the normalized differential cross sections for the DPS-sensitive
observables have been determined in order to perform a more qualitative study of DPS.
The differential cross sections have been normalized to the region of the observables that
is expected to be insensitive to DPS.

The measurement was compared to three different sets of models, the first of which
are the pythia 8 and herwig models. The predicted cross sections of these models
based on LO 2 → 2 matrix elements greatly overshoot the data, due to an excess of
very forward/backward, low pT jets. None of the individual models stands out, however
a clear distinction between the models interfaced with a pT-ordered shower and with
an angular-ordered/dipole-antenna shower is observed in the ∆φmin

3j and φij observables.
The angular-ordered/dipole-antenna showered models predict a too large correlation in
the ∆φmin

3j observable, while accurately describing the φij observable. The opposite is
true for the pT-ordered shower. As the deviations from the data are much larger for
models interfaced with a pT-ordered shower compared to the models interfaced with an
angular-ordered/dipole-antenna shower, one can conclude that the latter performs better
throughout the phase space.

A second class of models consist of event generators using multi-leg and/or NLO ma-
trix elements. The NLO and MadGraph 5 LO 2 → 2, 3, 4 samples generally provide
a good description in terms of the absolute cross section, leaving room for a DPS con-
tribution. However, differences between the models become apparent in the normalized
distributions, in which the effect of different parton showers can again be observed. All
NLO and MadGraph 5 LO 2 → 2, 3, 4 samples fail to give a good description of the
shape of ∆Y, indicating room for improvement in the description of the pseudorapidity
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of the jets. A difference between the NLO models and the MadGraph 5 LO 2→ 2, 3, 4
models is seen in the normalized distributions. The NLO samples show a need for DPS
events, whereas the correlations between the jets in the MadGraph 5 LO 2 → 2, 3, 4
samples seem to simulate similar correlations as expected from DPS events. The off-shell
KaTie models perform similarly in terms of the absolute cross section and in the nor-
malized distributions, giving a good description of the data throughout the phase space,
except for the pT spectra, which might be related to the use of a single 2 → 4 matrix
element. The off-shell KaTie models looks promising and are expected to give an even
better description of the pT spectra, as soon as it is possible to mix matrix elements with
a different number of final state partons using the KaTie MC event generator.

The third and last group of models are the models which have an explicit DPS
contribution. From the normalized distributions one can conclude that the pythia 8
models perform fairly well throughout the phase space, except for the φij observable.
While the total KaTie samples, generated with a σeff equal to 21.3 mb−1 [121], overshoot
the data in the DPS-sensitive region, indicating that the value used for σeff is too small.
This might also be a consequence of using a single single 2 → 4 matrix element in the
SPS sample.

The DPS pocket formula allows for the extraction of the effective cross section σeff ,
however, a workable form of the formula had to be derived first. In this regard, the two
independent processes in a DPS event A and B have been defined as inclusive single jet
processes and the 4-jet efficiency ε4j had to be incorporated in the formula, resulting
in eq. (8.5). The ∆S observable was most robust against parton shower effects and is,
therefore, used in the extraction. Two independent methods have been implemented: the
template method and the shape comparison method. Values of the effective cross section
σeff have been extracted for all SPS models with both methods, except for the KaTie
models. The shape comparison method yielded a much larger statistical uncertainty due
to the limited available statistics compared to the template method. Additionally, a high
sensitivity to small bin-to-bin differences was found, even in the region where only a
small DPS contribution is expected. Therefore, the results of the template method are
considered as the main outcome of the extraction effort. A clear model dependence is
observed. Models where more jets originate from the parton shower tend to yield a larger
σeff . A large effect due to the inclusion of NLO calculations is also observed, as the NLO
models need the largest DPS contribution out of all models studied in this analysis.

Although, a wide range of values of the effective cross section σeff have been measured,
it is notable that the predictions from the MadGraph 5 LO and powheg NLO samples
agree within the uncertainty with the σeff extracted from the same-sign WW and the
J/Ψ pair production DPS measurements, which have been performed at a centre-of-mass
energy of

√
s = 13 TeV as well. The predictions from the MadGraph 5 NLO sample

show agreement within the uncertainty with the J/Ψ pair production measurement. All
measurements performed at a centre-of-mass energy of

√
s = 13 TeV, including this one,

point to a value of σeff at the lower end of the spectrum since the DPS pocket formula
is expected to be universal and process independent in the inclusive picture.

Overall no single model stands out in the description of DPS as many aspects of
proton-proton collisions have subtle effects on the predictions. The effect of the parton
shower is evident since DPS correlations can be simulated depending on the type of
parton shower. The mixing of matrix elements or NLO calculations yield an improved
description compared to LO 2→ 2 models, but can overestimate and underestimate the
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correlations in the data, respectively. The effect of the inclusion of off-shell initial states
in the matrix elements looks promising, but leaves room for improvement as the mixing
of different matrix element is not yet possible in such models.
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Appendix A

Optimisation of MLM matching
scale value

The MadGraph 5 LO samples that generates parton-level QCD processes with up to
four partons in the final state, by combining 2 → 2, 2 → 3, 2 → 4 matrix elements, use
a MLM matching scheme to take double counting effects into account. Such matching
algorithms require to set a proper cutoff value (the matching scale) that should distinguish
between jets from the ME and from the PS. However, that parameter does not have any
physical meaning and its choice should not influence the final state observables in a
significant way. A common way to check this is by analysing the differential jet rate
(DJR) distributions. These show the transition from the region below the matching
scale to the region above. The distributions of DJR have to be independent from the
chosen cutoff, and the transition at the cutoff has to be as smooth as possible. More
precisely the DJR plots are obtained by getting the distribution of the variable log(

√
dij)

where dij is the scale in a parton-level event where j jets are clustered into i = j − 1
jets using the kT-algorithm. It thus measures the transition scale from (n+1)-jet to n-jet
events and approximately reproduces the merging scale phase space.

The produced sample for this analysis uses the MLM scheme with kT jet match-
ing that has the following two main parameters that determine the performance of the
matching algorithm:

• xqcut: minimum jet measure (pT/kT) for QCD partons used during the kT jet
matching. This value should be related to the hard scale (in our case HT, required
to be above 50 GeV) in the process, and set to 1/6th to 1/3th of the hard scale.
This parameter is set in MadGraph 5.

• Qcut: This is the jet measure cutoff used by pythia 8 when it executes the
matching algorithm after the parton showers have been created, and is set to
max(xqcut+5, xqcut*1.2).

In our study, we will then vary these two parameters and see how the DJR plots
behave. The values for which the plots are smooth and an efficient matching performance
is obtained are chosen for the final sample production. Note that for this analysis the
MPI and hadronization steps in pythia 8 have to be turned off in order to see the
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transition regions. As we are interested in the performance of combining 2 → 2, 2 → 3,
2→ 4 ME events we will focus on the DJR distributions of d23 and d34, which represent
the transition scales to go from 3 to 2 jets, and 4 to 3 jets, respectively.

The following sets of parameters have been tested:

• xqcut = 10 GeV Qcut = 14 GeV

• xqcut = 12 GeV Qcut = 20 GeV

• xqcut = 14 GeV Qcut = 25 GeV

• xqcut = 18 GeV Qcut = 32 GeV

• xqcut = 36 GeV Qcut = 75 GeV

In figure A.1, we can see the results for the d23 (left) and d34 (right) distributions
for the first three choices of the xqcut parameter (10, 12, 14 GeV in first, second, and
third row). In figure A.2 we can see the remaining choices of xqcut, 18 (first row) and 36
(second row) GeV, for d23 (left) and d34 (right). The black curves in the figures contain
all events in the sample, while the other curves only contain 2 → 2 (red), 2 → 3 (blue),
and 2→ 4 (green) ME events.

We clearly see that for the d23 differential jet rate plots the total event sample (black
curve) is mostly populated by 2 → 2 events (red) below a certain scale, and populated
by 2 → 3 events (blue) above. The region of this transition is close to the value of the
corresponding Qcut cutoff used in pythia 8 during the matching (e.g. for Qcut = 14
GeV we have log(

√
(14)2) = 1.15). A similar behaviour is seen for the d34 differential

jet rate plots, where the event sample is mostly populated by 2 → 2 and 2 → 3 events
below the matching scale, and populated by 2→ 4 events (green) above.

It is also clear that the d23 DJR distributions show a discrepancy around this matching
scale for too low values of a chosen xqcut and Qcut value, which implies that the matching
is not optimal. For a xqcut value of 14 GeV the d23 distribution starts to improve, but a
visible change in slope around the matching scale is still present. For a choice of xqcut
= 18 GeV (first row in figure A.2), a more smooth DJR distribution is obtained for both
d23 and d34 and, therefore, this value has been chosen to produce the final MadGraph 5
sample. Finally, we also had a look at the DJR distributions when a deliberately high
value of xqcut and Qcut were set, i.e. 36 and 75 GeV, respectively. This is shown in the
second row of figure A.2 and also leads, maybe surprisingly, to continuous distributions.
However, the number of events surviving the matching algorithm is much smaller, and
dominated by 2 → 2 events. This smaller matching efficiency is due to the too high
kinematic cuts.

The choice of the matching scale value does not have a physical meaning and should
not influence the final state observable in a significant way, but it is clear from the DJR
distributions that when the value of xqcut and Qcut increases the relative contribution
of lower jet multiplicity events (2 → 2 and 2 → 3) increases. This will lead to a higher
contribution of jets from parton showers, and that can influence certain observables in
our 4-jet study. This is illustrated in figure A.3, which shows several observables used
in the analysis. Predictions of a KaTie 2 → 2 and 2 → 4 sample are compared with
predictions of MadGraph 5 2→ 2, 3, 4 samples with different choices of matching scale
parameters.
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As expected, the φij variable (especially sensitive to parton shower effects) shows a
dependence on the matching scale value. With increasing values of the cutoff parameters,
the contribution of jets from parton showers increases, leading to a change in the tail of
the distribution. In such way we see that for a rather low matching scale value (xqcut
= 10) the behaviour of the mixed Madgraph 2→ 2, 3, 4 sample lies more close to a pure
2→ 4 sample from KaTie, while with the chosen higher cut (xqcut = 18) the behaviour
comes somewhat closer to a pure 2→ 2 sample.

The ∆φsoft variable that is in particular sensitive to DPS contributions shows a rather
stable behaviour with respect to the matching scale value. So the choice of this cutoff
parameter does not have an impact on our extractions of a potential DPS contribution.
Finally, we also show the leading jet pT,1st, and fourth jet pT,4th spectra in the bottom
row of figure A.3. While there is a small dependence on the choice of xqcut at low leading
jet pT,1st, the fourth jet pT,4th spectrum is stable with respect to the different values of
xqcut and Qcut.

The following references were used to write down the content in this section: the
MadGraph 5 online manual, the pythia 8 online manual and [84].
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Figure A.1: DJR distributions for d23 (left) and d34 (right) for three choices of xqcut =
10, 12, and 14 GeV presented in the first, second, and third row, respectively. The black
curve contains all events in the sample, while the other curves only contain 2→ 2 (red),
2→ 3 (blue), and 2→ 4 (green) ME events.
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Figure A.2: DJR distributions for d23 (left) and d34 (right) for two choices of xqcut = 18
and 36 GeV presented in the first and second row, respectively. The black curve contains
all events in the sample, while the other curves only contain 2 → 2 (red), 2 → 3 (blue),
and 2→ 4 (green) ME events
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Figure A.3: The φij (DeltaPhiY, top left), ∆φsoft (DeltaPhiSoft, top right), leading jet
pT,1st (JetPt1, bottom left), and last leading jet pT,4th (JetPt4, bottom right) distribu-
tions for different predictions of KaTie (with either 2 → 2 or 2 → 4 ME events) and
MadGraph 5 2→ 2, 3, 4 with different choices of matching scale.
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Appendix B

KaTie off-shell DPS
contributions at hadron level

In this section, we will briefly describe how we calculated the KaTie off-shell MRW-CT10nlo
and PB-NLO-HERAI+II-2018-set2 curves where both explicit SPS and DPS contributions
are added to compare with unfolded data. The LHE files containing SPS predictions,
where 2 → 4 matrix element calculations are used, obtained by KaTie can be fed into
the Cascade MC to add initial state radiation, final state radiation and finally hadroniza-
tion. The LHE files from KaTie containing DPS predictions, where two times 2 → 2
matrix element calculations are used, can unfortunately not be read out by Cascade with
the current available program version. The main problem that arises here is that the
color reconnection information is different and without any adjustment to treat such DPS
events the existing Cascade MC framework is not able to process this information and
will throw fatal event reconstruction errors. To calculate off-shell DPS contributions at
hadron level we thus have to follow a different approach: we will use KaTie on-shell
SPS and DPS predictions showered and hadronized with pythia 8.240 to calculate the
non-perturbative corrections, which are then applied to parton level off-shell KaTie DPS
predictions. More precisely we will apply this to the relative DPS contributions, i.e. the
ratio (SPS+DPS)/SPS. We will perform the following steps for this:

• Generate KaTie on-shell SPS and DPS predictions with NNPDF31 nnlo PDF and
CP5 tune at parton level, and gradually include initial state radiation, final state
radiation, soft MPI and hadronization effects.

• Generate KaTie off-shell SPS and DPS predictions at parton level with MRW-CT10nlo
and PB-NLO-HERAI+II-2018-set2 TMD.

• Compare all these samples using the relative DPS contribution: R = (SPS+DPS)/SPS.

• Calculate the non-perturbative corrections by taking the ratio: CNP =Ron−shell
had /Ron−shell

ISR ,
using the on-shell KaTie samples, where the showering is handled by pythia 8.

• Correct the relative DPS contribution of the parton level off-shell KaTie predictions
Roff−shell

parton with the non-perturbative corrections: Roff−shell
had = CNP×Roff−shell

parton .
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• Multiply the hadron level SPS KaTie off-shell prediction with Roff−shell
had to get a

curve that represents the off-shell SPS+DPS predictions at hadron level.
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Figure B.1: Comparison of different on-shell KaTie predictions for the ∆φsoft

(DeltaPhiSoft) observable, and the parton level off-shell sample (for MRW-CT10nlo TMD).
For the on-shell samples: black curves represent SPS+DPS predictions, and green curves
DPS only predictions. The bottom panel presents the ratio (SPS+DPS)/SPS used to
calculate the non-perturbative corrections.

In figure B.1, we can see the comparison of all the on-shell samples and the parton
level off-shell sample with MRW-CT10nlo TMD for the observable ∆φsoft (the azimuthal
angle difference between the two soft jets) taken as example. The black curves represent
the on-shell SPS+DPS predictions, and the green curves show the on-shell DPS only
predictions. The solid lines are parton level samples, while the other line styles each
present a different configuration of ISR, FSR, MPI and hadronization steps included.
The parton level off-shell samples are presented by the red (SPS+DPS) and blue (DPS
only) curves. The bottom panel shows the ratio R = (SPS+DPS)/SPS used to calculate
the non-perturbative corrections.

It is directly clear that the DPS contribution of the on-shell parton level KaTie
sample is concentrated in the last bin at pi, consistent with what we can expect from the
kinematic limitations, whereas the DPS contributions becomes continuous when initial
state radiation is included. Adding final state radiation, MPI and hadronization does
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not change the relative DPS contribution significantly for this observable. It is exactly
this small difference that will be taken as the non-perturbative corrections: CNP =
Ron−shell

had /Ron−shell
ISR .

It is also interesting to see that the relative DPS contribution of the off-shell parton
level sample (Roff−shell

parton , red solid curve in the bottom panel of figure B.1) is already con-
tinuous even without the presence of any initial state radiation. This is due to the initial
kT present in the used TMD. The red dashed curve shown in the bottom panel of figure
B.1 is then the result of applying the derived non-perturbative corrections to the relative
DPS contribution of the off-shell parton level samples (Roff−shell

had = CNP×Roff−shell
parton ).
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Figure B.2: Hadron level predictions of KaTie on-shell and off-shell samples, compared
to standalone pythia 8 predictions for the ∆φsoft (DeltaPhiSoft) observable. The solid
line curves present the total cross sections (SPS+DPS) and the dashed lines present
the SPS only predictions. The off-shell KaTie SPS+DPS curves are obtained with the
method described in the text. The bottom panel shows the relative DPS contribution:
(SPS+DPS)/SPS.

The SPS off-shell KaTie samples generated at hadron level are then multiplied
with this relative DPS contribution, Roff−shell

had , to construct a total SPS+DPS curve
that should approximate the hadron level effects and can be compared with unfolded
data. The final results for the off-shell KaTie samples with both the MRW-CT10nlo and
PB-NLO-HERAI+II-2018-set2 TMD are shown in figure B.2 and compared to the on-shell
KaTie sample and two standalone pythia 8 samples interfaced with the CDPSTP8S1-4j
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and CP5 tunes.
The above explained procedure is finally repeated for every observable to be compared

with data. One effect that we can not take into account is the potential extra smearing,
or de-correlation, due to adding initial state radiation on top of the parton level off-shell
(SPS+DPS)/SPS curve. This could further smear out the relative DPS contribution and
e.g. decrease the DPS fraction for the ∆φsoft observable near pi.
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Appendix C

Additional JEC Plots

In Sec. 6.2, the L2L3 MC-Truth and L2L3 residual corrections have been derived. For
clarity’s sake, many of the control and closure plots were moved to this section.

All closure plots for each bin of the reconstructed pT at particle level (pptclT ) in function
of the reconstructed pseudorapidity ηReco are shown in appendix C.1 for the L2L3 MC-
Truth corrections.

The control distributions of the variables A and B, defined in eq. (6.12) and eq. (6.14),
respectively, are given in appendix C.2. In appendix C.3, the double ratios of the relative
responses defined in eq. (6.11) and eq. (6.13) for the pythia 8 sample relative to the data
for both methods. The linear logarithmic fit, used to extract the pT dependence of the
double ratio, is also drawn on the plots. Before the corrections could be calculated, the
radiation correction factor kFSR(|ηprobe|) needed to be determined. The first step was to
calculate kFSR(αmax, |ηprobe|) for each bin in pT. The results are shown in Fig. C.11 and
Fig. C.12 in appendix C.4 for the pT-balance and MPF method, respectively. Next, the
weighted mean over all pT bins in each |ηprobe| and αmax bin was calculated and fitted
with a constant and linear fit for the interval αmax ∈ [0.11, 0.32]. Both fits are presented
in Fig. C.14 and Fig. C.14, where it becomes clear why the fits have been restricted to
the interval determined in Fig. 6.6. On the one hand, the two lowest bins vary wildly due
to the limited amount of statistics. On the other hand, the three last bins were omitted
from the fit as 〈(pgen

R,1st − pgen
R,2nd/pT,Ave)〉/pT,Ave was found not to be linear in αmax.
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C.1 L2L3 MC-Truth Closure Plots

Figure C.1: The average of the response distributions in function of the reconstructed
pseudorapidity ηReco for the first 6 bins in pgenT for the closure test of the L2L3 MC-truth
corrections.
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Figure C.2: The average of the response distributions in function of the reconstructed
pseudorapidity ηReco for the 7th up until the 12th bin in pgenT for the closure test of the
L2L3 MC-truth corrections.
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p

Figure C.3: The average of the response distributions in function of the reconstructed
pseudorapidity ηReco for the 13th up until the 18th bin in pgenT for the closure test of the
L2L3 MC-truth corrections.
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Figure C.4: The average of the response distributions in function of the reconstructed
pseudorapidity ηReco for the 19th and 20th bin in pgenT for the closure test of the L2L3
MC-truth corrections.
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C.2 Distributions of A and B
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Figure C.5: Distributions of the variable A for each of the different pT and ηprobe bins
for the FSQJets data sample.
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Figure C.6: Distributions of the variable B for each of the different pT and ηprobe bins
for the FSQJets data sample.
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Figure C.7: Distributions of the variable A for each of the different pT and ηprobe bins
for the Pythia 8 data sample.
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Figure C.8: Distributions of the variable B for each of the different pT and ηprobe bins
for the Pythia 8 data sample.

215



C.3 Double Ratios of MC over Data

Figure C.9: The ratio RMC
rel /R

DATA
rel for the pT-balance method in function of the pT,Ave

per bin in ηprobe, where a maximum value of αmax = 0.3 has been used. A linear
logarithmic function has been fitted in order to extract the pT dependence is expected.
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Figure C.10: The ratio RMC
rel /R

DATA
rel for the MPF method in function of the pT,Ave

per bin in ηprobe, where a maximum value of αmax = 0.3 has also been used. A linear
logarithmic function has been fitted in order to extract the pT dependence is expected.
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C.4 The kFSR Extrapolation
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Figure C.11: Each plot represents a different rapidity bin, while the factor
kFSR(αmax, |ηprobe|) for the pT-balance method is plotted for all pT bins and in func-
tion of αmax
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Figure C.12: Each plot represents a different rapidity bin, while the factor
kFSR(αmax, |ηprobe|) for the MPF method is plotted for all pT bins and in function of
αmax
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Figure C.13: Each plot represents a different rapidity bin, while the weighted average
of the factor kFSR(αmax, |ηprobe|) for the pT-balance method is plotted. The weighted
average over all pT-bins for each value of αmax is fitted with a constant and a linear fit
for αmax ∈ [0.11, 0.32].
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Figure C.14: Each plot represents a different rapidity bin, while the weighted average
of the factor kFSR(αmax, |ηprobe|) for the MPF method is plotted. The weighted average
over all pT-bins for each value of αmax is fitted with a constant and a linear fit for
αmax ∈ [0.11, 0.32].
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