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Abstract. Data Lakes (DLs) are large repositories of raw datasets from
disparate sources. As more datasets are ingested into a DL, there is an
increasing need for efficient techniques to profile them and to detect the
relationships among their schemata, commonly known as holistic schema
matching. Schema matching detects similarity between the information
stored in the datasets to support information discovery and retrieval.
Currently, this is computationally expensive with the volume of state-of-
the-art DLs. To handle this challenge, we propose a novel early-pruning
approach to improve efficiency, where we collect different types of content
metadata and schema metadata about the datasets, and then use this
metadata in early-pruning steps to pre-filter the schema matching com-
parisons. This involves computing proximities between datasets based
on their metadata, discovering their relationships based on overall prox-
imities and proposing similar dataset pairs for schema matching. We
improve the effectiveness of this task by introducing a supervised mining
approach for effectively detecting similar datasets which are proposed
for further schema matching. We conduct extensive experiments on a
real-world DL which proves the success of our approach in effectively
detecting similar datasets for schema matching, with recall rates of more
than 85% and efficiency improvements above 70%. We empirically show
the computational cost saving in space and time by applying our ap-
proach in comparison to instance-based schema matching techniques.

Keywords: Data Lake Governance, Holistic Schema Matching, Content Meta-
data Management, Early-pruning, Dataset Similarity Mining

1 Introduction

Today, it is more and more common for data scientists to use Data Lakes (DLs)
to store heterogeneous datasets coming from different sources in their raw format
[35]. Such data repositories support the new era of data analytics where datasets
are ingested in large amounts and are required to be analysed just-in-time [20].
However, it is a challenge for data wranglers [13,16,35] preparing the datasets
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for analysis to understand their structure and commonalities for DL governance
purposes [4]. They must extract those datasets which have related data to be
used together in data analysis tasks [20,23]. This is commonly referred to as
schema matching, where the aim is to find connection strengths between similar
concepts from different pairs of datasets [8,10,21,27]. The large-scale application
of such a task to big data repositories like DLs is referred to as holistic schema
matching [5,23,27,29], where the goal is to match multiple datasets together
considering them all in the matching task.

We focus on DLs having datasets storing data in flat tabular formats. Flat
datasets are organised as attributes and instances, such as tabular data, comma
separated values (CSV) files, hypertext markup language (HTML) tables, etc.
(see Section 3). It is a challenge with such DLs to efficiently process the datasets
to detect their common features, as schema matching tasks are generally ex-
pensive (involving huge amounts of string comparisons and mathematical cal-
culations) [7,8,17]. In this paper, we propose novel techniques to reduce those
comparisons using pre-filtering techniques that generate less comparisons. To
illustrate this, consider the different types of comparisons in Fig. 1. Tradition-
ally, schema matching makes many comparisons of data values of instances from
different datasets (see the instance-based matching box). With the rise of DLs,
previous research [5,12,7] recommended using early-pruning steps to facilitate
the task using schema matching pre-filtering. Here, only datasets detected to be
of relevant similarity are recommended for further fine-grained schema matching
tasks, and dissimilar ones are filtered out from further comparisons. Fig. 1 re-
flects this stratified approach that filters by means of extracted metadata at the
dataset and attribute level before going for expensive instance-based approaches.
For example, consider a DL with 1000 datasets, with 15 attributes and 1000 in-
stances each. Since schema matching techniques generate nx(n=1) comparisons,
it would result in 499500 comparisons at the dataset level, 113 million at the
attribute level and about 500 billion at the instance level. Clearly, fine-grained
comparisons do not scale and pre-filtering is necessary.

We propose a pre-filtering approach based on different levels of granularity, at
which we collect metadata using data profiling techniques. Our approach collects
metadata at two different levels: at the dataset and attribute level. This metadata
is then used in a supervised learning model to estimate prorimity among pairs
of datasets. Such proximity is then used for pruning out pairs less likely to be
related. This is illustrated in Fig. 1, where our goal is to filter candidate pairs
of datasets before conducting computationally intensive instance-based schema
matching techniques. The scope of this paper is the early-pruning at the top
two granularity tiers. We refer the interested reader to previous research about
classical instance-based schema matching which is outside the scope of this paper
[7,8,21,30,31].

It is a challenge to compute dataset similarities for pre-filtering tasks due to
the difficulty of finding adequate similarity metrics and features to use [5]. This
paper is an extension of our previous work [5], and it presents a novel proximity*

4 In this paper, we use proximity and similarity interchangeably.
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Fig.1: The stratified holistic schema matching approach at different levels of
granularity.

mining approach (see Section 4) between datasets. The similarity functions are
based on automatically extracted metadata and can be effectively used for pre-
filtering in a stratified approach (see the DS-Prox and Attribute-Prox boxes
attached to the matching steps in Fig. 1). To our knowledge, no other approach
uses automatically extracted metadata for this purpose.

To show the feasibility of our approach, we assess its performance by using it
on a real-world DL. Our approach was able to filter the number of fine-grained
comparisons by about 75% while maintaining a recall rate of at least 85% after
filtration. Our early-pruning approach also saves computational costs in terms
of space and time requirements by at least 2 orders of magnitude compared to
instance-based matching.

Contributions. We present an approach for pre-filtering schema matching
tasks. We propose techniques for detecting similar schemata based on meta-
data at different levels of granularity. This supports in early-pruning of the
raw-data instance-based schema matching tasks. We present an expanded and
cross-validated experiment for the DS-Prox technique from our previous work
[5] and comparisons against combining it with our new proposed attribute-level
proximity metrics to find the most appropriate metrics to assign similarities
between pairs of datasets. We demonstrate a detailed analysis of the different
proximity metrics based on different types of meta-features (name-based and
content-based). Our improvements outperform our previous work in terms of
effectiveness measures like recall and lift-scores.

The paper is organised as follows: Section 2 presents the related work,
Section 3 introduces the main concepts in our research, Section 4 presents our
proximity mining based approach for early-pruning tasks of holistic schema
matching, Section 5 presents our experimental evaluation, and finally, we con-
clude in Section 6.



4 A. Alserafi et al.

2 Related Work

State-of-the-art schema matching techniques either use schema-level metadata
(mainly names and data types of schema components) [10,11,25,27] or instance-
level values of data objects [8,10,12,14,21,25,33]. Some others use a hybrid ap-
proach utilising schema metadata and data instances [7,28]. At the schema-level,
these techniques usually use the syntactic similarity of the names of the schema
components for the matching task. At the instance-level, values are usually com-
pared using Jaccard similarity of intersecting exact values [23]. This can also be
achieved by first matching duplicate instances and finding the correspondences
between their schema components [8]. Further, these algorithms can be domain-
specific or generic [21].

Schema matching is a computationally intensive task that requires large
amounts of comparisons [4,5,7] because they typically generate a Cartesian prod-
uct between the values to be compared. Moreover, other approaches also exploit
the semantic or linguistic similarity of values, which requires further computa-
tions to translate data values (finding synonyms and hypernyms) or to map them
to ontologies [21].

The current focus of the schema matching research community is to imple-
ment efficient holistic schema matching that improves performance by reducing
the number of actual comparisons to conduct [23]. To handle this challenge,
multiple techniques were proposed. For example, several approaches use cluster-
ing techniques as a pre-filter of datasets to match [3,6,27]. Only datasets falling
in the same cluster are matched, or datasets from one cluster are only matched
against representative datasets from other clusters. This is similar to the concept
of “blocking” for record linkage [32], where items having equal data values in
some or all of their attributes are placed in the same bucket for comparison. The
work in [32] focuses on matching instances of data (rows in tabular data) rather
than attributes in schemata (columns in tabular data). We propose in this paper
a supervised learning technique that can classify dataset pairs (schemata) for a
decision whether they are related (should be compared) or not related, rather
than unsupervised techniques like blocking and clustering. In addition, we tackle
the similar schemata search problem (i.e., schema matching) rather than similar
records search (i.e., record linkage or entity resolution).

In [27], they cluster the schemata and attributes of datasets based on TF-IDF
similarity scores of their textual descriptions. In [3], they exploit the structural
properties of semi-structured XML documents, i.e., data elements embeddings
and hierarchies, to cluster the datasets before applying instance-based schema
matching. In [6], they use the textual descriptions and keywords of the datasets
to cluster them using TF-IDF and WordNet. In this paper, we do not con-
sider textual descriptions of datasets, which could be misleading or missing, but
rely on metadata that can be automatically extracted from any dataset. Meta-
data describing datasets, their schemata, and the information stored in them
can be collected using data profiling techniques [1,4,18,20,24]. Different types of
metadata can also describe the information inside datasets at different levels of
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granularity, e.g., overall dataset level [5] or attribute descriptions like we propose
in this paper.

The pre-filtering of dataset pairs which are less-likely to have interrelated
data before performing schema-matching is called early-pruning [4,12,7], and it
was implemented in previous research on semi-structured datasets, like XML, by
finding the similarity of hierarchical structures between named data objects [3].
Other works have investigated schema matching with semi-structured datasets
like XML [21,25] and JSON [14]. In the web of data, previous research like [26]
investigated recommendation of RDF datasets in the semantic web using pre-
defined annotations such as the sameAs property. In this paper, we consider
flat datasets without such a hierarchy of embedded data objects and without
pre-defined semantic linkages.

To facilitate the early-pruning tasks for schema matching, we can apply the
same approaches and concepts from collaborative filtering and adapt them to
the holistic schema matching problem [2,15]. The goal is to use profiling infor-
mation for comparison and recommendation, which was applied to multimedia
in [2] and semi-structured documents in [14]. Content-based metadata was also
used to predict schema labels [11]. They use minimum and maximum values for
numeric attributes, and exact values for nominal attributes, including the format
of values. We propose to apply similar techniques but at the dataset granularity
level. Accordingly, we adapt such techniques and find the appropriate similarity
metrics for tabular datasets.

Another line of research aims at optimising the schema matching process by
using computational improvements [12,28]. This can be done using partitioning
techniques that parallelise the schema matching comparison task [28]. Another
approach uses efficient string matching comparisons. Such techniques are very
useful in the case when schema components are properly named in the datasets.
However, such techniques fail when the components are not properly named (e.g.,
internal conventionalism, like sequential ID numbering of the components). In
[12], they introduce intelligent indexing techniques based on value-based signa-
tures.

Schema matching can also be automated using data mining techniques [10,11,14].
In [10], they use hybrid name-based and value-based classification models to
match dataset attributes to a mediated integration schema. Their approach is
focused on one-to-one mediation between two schemata, while our approach tar-
gets all datasets in a DL by holistic schema matching using coarser meta-features.
In [11], they use content-based meta-features in multi-value classification mod-
els to match schema labels of attributes across datasets. Decision trees were
also used to profile semi-structured documents before schema matching [14]. In
this paper, we also use data mining classification models, however the goal dif-
fers from [10], [11] and [14] as it tackles the early-pruning and pre-filtering task
rather than instance-based schema matching.

We summarise the state-of-the-art in Table 1. This table gives a compari-
son of the most relevant techniques discussed with our approach based on the
main features discussed in this section. As a result, we can see that we propose
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an approach based not only on string matching, but also on content metadata
matching involving statistics and profiles of data stored in the datasets. Con-
tent metadata are matched based on approximate similarities and not just exact
value-matches at the instance-level [20,23]. We focus on proposing novel early-
pruning techniques that use supervised learning to pre-filter irrelevant dataset
pairs and to detect likely-to-be similar pairs. Finally, the table shows that our
technique makes a novel contribution to the schema matching pre-filtering prob-
lem that is not achieved by other state-of-the-art techniques.

Table 1: Schema matching techniques state-of-the-art comparison

COMA++ [PARIS [33][LOD Data[XML Ontology [Proximity
[28] Linking [6] |[Semantic- |Clustering |Mining
based [3] [this
Matching paper]
[17]
Type of Data |Tabular, RDF Semantic Semi- Semi- Tabular
semi- RDF structured |structured,
structured, XML Semantic
Semantic OWL
OWL
Instance-based |[v v v v X X
Metadata used |Attribute- X Ontology Attribute- |Attribute- |Dataset-
level schema mappings, |level schemal|level struc-|level content
names RDF schema|names and|tural meta-{and name,
names, structural data Attribute-
Textual metadata level content
descriptions and name
Data  Mining| X X Clustering | X Clustering |[Supervised
based learning
Approximate |x X v X v v
Matching
3 Preliminaries
Attributes

Instances

Att1

Att2 A

tt3

Fig.2: A flat dataset with attributes and instances.
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We consider DLs with datasets having tabular schemas that are structured
as attributes and instances like Fig. 2. We formally define a dataset D as a set
of instances D = {I1, I», ...I,}. Each dataset has a schema S = {A1, 43, ...A,,},
where each attribute A; has a data type and describes a single property of the in-
stances in the dataset. We focus on two types of attributes: numeric attributes
(consisting of real numbers) and nominal attributes (consisting of discrete cat-
egorical values). We differentiate between those two types of attributes, similar
to previous research like [10,11,25], because we collect different profiling meta-
data for them. The resulting statistics collected are called content meta-features,
and are as follows:

— Nominal attributes: frequency distributions of their distinct values.
— Numeric attributes: aggregated statistical value distributions like mean,
min, max, and standard deviations.

For pairs of datasets and attributes, we compute the functions in Table 2
and describe them in the rest of this section.

Table 2: Schema matching pre-filtering functions

Relationship [Function Type |[Output Object Type Description

Rel(A;, Aj) Binary Z € {0,1} [Attribute pair Related attributes storing data
about the same real-life concept
which contain overlapping informa-
tion in their values. 1 means posi-

tively related and 0 means not.

Szm(AI, AJ)

Continuous

R € [0, 1]

Attribute pair

A value R to measure the attribute
similarity in the range [0,1].

Rel(Dy, D7)

Binary

Z € {0,1}

Dataset pair

Related datasets which contain in-
formation about the same real-life
object. 1 means positively related
and 0 means not.

Stm(Dy, D)

Continuous

R € [0,1]

Dataset pair

A value R to measure the dataset

similarity in the range [0,1].

We aim at finding the relationship between a pair of datasets Rel(D,, D.).
We determine such relationship directly using dataset-level meta-features and
by computing the relationships between their pairs of attributes (A4;, A4;), being
A; from D, and A; from D,, as could be seen in Fig. 3. The figure shows an
overview of our proposed proximity mining approach.

The goals of the approach is to use efficient and effective techniques to
accurately predict Rel(Dy,D.) for the pre-filtering task. As could be seen in
Fig. 3, this can be done using metadata and similarity collected at the dataset
level (right-side) or by using the attribute level Sim(A;, A;) to predict it (left-
side). The figure shows the steps required for combining attribute-level similar-
ity with the dataset-level similarity to predict Rel(D,,D.). Here, we only use
Sim(A;, A;) as an auxiliary step that supports us in the main task of predicting
Rel(D,, D). This is possible because the attribute metadata are of finer gran-
ularity which can be aggregated to a single similarity score at the dataset-level
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Attribute-level Dataset-level
Proximity Proximity

Attribute Content Attributes Names Dataset Content Datasets Names
Meta-features Meta-features
Pm Levenshtein Pm Levenshtein
computation distance computation distance

Meis-num-attr/
Meis-nom-attr

Fig. 3: The dependencies of components in the metadata-based proximity mining
approach for pre-filtering schema matching.

with an aggregation function Agg like averaging Sim(A;, A;) scores. When pre-
dicting Rel(D,, D), typically the dataset pair will have information contained in
some of their attributes which are partially overlapping, satisfying Rel(A;, A;),
where 34, € D, AN A; € D, = Rel(A;,A;) = 1. An example would be a
pair of datasets describing different human diseases, (e.g., diabetes and hyper-
tension). The datasets will have similar attributes (partially) overlapping their
information like the patient’s age, gender, and some common lab tests like blood
samples.

The intermediate output leading to Rel(A;, A;) and Rel(D,, D) in our pro-
posed proximity-based approach, seen in Fig. 3, is a similarity score consisting
of a real number in the range of [0, 1], which we indicate using Sim(A;, A;) and
Sim(D,, D) respectively.

The similarity scores are computed based on proximity models we construct
using ensemble supervised learning techniques [34], which we denote as M54
for models handling dataset-level metadata and M js—num—attr O Meis—nom—attr
for models handling attribute-level metadata (depending on the attribute type,
numerical or nominal respectively). The models take as input the distance be-
tween the meta-features describing content of each object pair, whether dataset
pair or attribute pair for Sim(D,, D) and Sim(A;, A;) respectively, and we call
the distance in a specific meta-feature ‘m’ a proximity metric which is denoted
as P2(D,, D,) for dataset pairs or P2 (A;, A;) for attribute pairs. The names of
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objects can also be compared using Levenshtein string distance comparison [22]
to generate a distance score. The output from the models is a score we compute
using the positive class distribution (see Section 4.2).

We convert the intermediate similarity scores to the final output consisting
of a boolean value for the binary relationships using Equations (1) and (2). The
sim score computed for each relationship type is checked against a minimum
threshold in the range of [0, 1] to indicate whether the pair involved is overall
related ‘1’ or unrelated ‘0’, and therefore whether they should be proposed for
expensive schema matching or otherwise filtered out. Using cut-off thresholds
of similarity rankings for the collaborative filtering task and schema matching
is a common practice [12,15,20]. We can use different thresholds ‘cy’ and ‘c,’
for each of the relationship evaluated at the dataset level and attribute level
respectively. This means that we only consider a pair similar if their similarity
score is greater than the threshold as in Equations (1) and (2).

1, Sim(Dy,D.) > cq
0, otherwise

1, Sim(A;, Aj) > cq
0, otherwise

Rel(Dy, D:) = { (1) Rel(A;, A;) = { (2)
To summarise Fig. 3, the hierarchy to compute the final output is: Rel is
based on Sim similarity scores, which in turn are based on P,, proximity metrics
of meta-features. To convert from P,, to Sim we use an ensemble supervised
model M.;s which takes the P,, proximity metrics as input. The output Sim
is compared against a minimum threshold, and those passing the threshold are
positive cases for Rel to be considered for further detailed schema matching.

D,: 1992_city_data Rel(D,,D,) =1 D,: census_data Rel(D,,D3) = 1 Ds: health_data

Al: salary {25k<A1<600k} x| Rel(A AL ) =1 j A6: type {f,m} A1l1: gender {female,male}
Rel(AgA) =1

A2: age { 20<A2<97} A7:age { 0<A2<100} << A12: Ethnicity {AS,AF,ER,LT}
— A3: family_Size { 2<A3<11} — AS8:race {01,02,03,04} /x‘ A13: age { 30<A3<60} —
~

A4: identity {w,m,t} A9: Household { 0<A4<16} ™ Al4: Temp { 35<A4<42}

AS5: house_type {h,t,v,s,p,l} A10: income { 50k<A5<300k} A15: H_rate { 40<A5<160}

Fig. 4: Final output of our approach consisting of similarity relationships between
two pairs of datasets.

Examples. Consider the relationships between the three datasets in Fig. 4
which presents the final output of our approach. Each dataset has a set of at-
tributes. An arrow links attributes having similar data profiles. We label this
as a Rel(A;, A;) = 1. For example, attributes ‘A6’ and ‘A11’ from Dy and Ds
are nominal attributes with two unique values which we included as a meta-
feature called ‘number of unique values’. The proximity metric is the distance
(difference) in the meta-feature of number of unique values, which in this case
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PA =0, because they are identical (i.e., 2 — 2 = 0), thus making the attribute
pair similar (in this case, by their number of distinct values). If we consider this
proximity metric of ‘number of unique values’ alongside other collected content-
based meta-features using an ensemble supervised learning model M5, we can
compute a Sim(Ag, A11) score based on the positive-class distribution (see Sec-
tion 4.2). This can lead to Sim(Ag, A;1) = 0.95 and if we use a threshold of
¢q = 0.75 then the final output for Rel(Ag, A11) = 1. A numeric attribute like
‘AT in Dy holds similar data as attributes ‘A13’ and ‘A14’ from Djs, as ex-
pressed by the intersecting numeric ranges. For such numeric attributes we can
consider a meta-feature like ‘mean value’. On the other hand, attributes ‘A1’
and ‘A7’ have different data profiles (different numeric ranges) and therefore are
not labelled with an arrow and do not satisfy the Rel(A;, A7) relationship, as
they will have large differences in their meta-features, leading to high proximity
metric and a low similarity scores. In those examples, we collect attribute level
meta-features from the datasets (in this case, the number of distinct values for
nominal attributes and means for numeric attributes) to assess the similarity
between attributes of a given pair of datasets. In our approach, we compute the
similarity between attributes Sim(A;, A;) using real number proximity metrics
in the range of [0, 1] and we use it to predict Rel(D,, D) instead of using the
binary output of Rel(A;, A;). We should aggregate the individual attribute pairs’
similarities with an aggregation function agg to obtain a single value proximity
metric for the overall dataset level similarity. We discuss this in the description
of our approach in Section 4.

Furthermore, we extract higher-granularity dataset level meta-features (e.g.,
‘number of attributes per attribute type’) from the datasets for the task of di-
rectly computing the Sim(D,, D) similarity relationships. For example, Rel(D2, D3)
returns ‘1’ in the case we use ¢, = 0.67 because they have 2 nominal and 3 nu-
meric attributes each, so overall they can have Sim(Ds, D3) = 0.7 passing the
minimum threshold. Based on Rel(Ds, D3) =‘1’, our approach indicates that
these two datasets are possibly related and should be considered for further
scrutinising by schema matching.

4 Approach: Metadata-based Proximity Mining for
Pre-filtering Schema Matching

Our goal is to effectively apply early-pruning for holistic schema matching in
a DL setting. Such pre-filtering is based on novel proximity mining techniques.
Those techniques evaluate similarity among pairs of datasets using automatically
extracted meta-features and utilising a data-mining ensemble supervised model
to select highly similar pairs. We apply this using the stratified approach (Fig.
1). An overview of the approach is summarised in Fig. 3, which shows the steps
required to compute the schema matching pre-filtering functions from Table 2.
We explain how we build and apply those models in this section.

In the remaining subsections, we describe the details of our ap-
proach as follows: profile the datasets to extract the meta-features and pair-
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wise proximity metrics in Subsection 4.1, use supervised proximity mining to
build the ensemble models for Rel(A;, A;) and Rel(D,,D,) in Subsection 4.2,
then apply the models on new pairs of attributes and datasets in the DL to com-
pute their Sim(A;, A;) and Sim(D,, D,) scores in Subsection 4.2, and finally
using the Sim(Dy, D) to predict Rel(D,, D) for pairs of datasets and applying
the pre-filtering step for schema matching in Subsection 4.3.

4.1 Proximity Metrics: Meta-features distances

Our approach gathers metadata at two levels of granularity: at the I. dataset
level and II. attribute level. Further, at each of these levels, we gather A.
content-based meta-features with profiling statistics and B. name-based
meta-features with the naming of datasets and their attributes. The name-based
techniques are the most commonly used metadata in previous research [14,30,31].
We propose other content-based meta-features at the two levels of granularity
as follows:

— Dataset level (DS-Prox): We collect overall meta-features summarising
the dataset content: overall statistics concerning all the attributes collec-
tively, the attribute types found and the overall number of instances. The
meta-features used are described in our previous work [5], which includes a
detailed list of meta-features that proved to be effective in predicting related
datasets for schema matching pre-filtering, e.g., number of instances, number
of attributes per attribute type, dimensionality, number of missing values,
etc.

— Attribute level (Attribute-Prox): The set of meta-features used for both
types of attributes, nominal and numeric, is described in Table 3. For each
attribute A; in dataset D, we profile it based on its type by computing the
appropriate features.

Table 3: Attribute level content meta-features

Attribute Type|Meta-feature Description

All distinct_values_cnt | The number of distinct values

All distinct_values_pct|The percentage of the distinct values from number of instances

All missing_values_pct [The percentage of missing values from number of instances

Nominal val_size_avg The average number of strings in values from the attribute

Nominal val_size_min The minimum number of strings in values from the attribute

Nominal val_size_max The maximum number of strings in values from the attribute

Nominal val_size_std The standard deviation of number of strings in values from the attribute
Nominal val_pct_median The median percentage of instances per each value of the attribute
Nominal val_pct_min The minimum percentage of instances per each value of the attribute
Nominal val_pct_max The maximum percentage of instances per each value of the attribute
Nominal val_pct_std The standard deviation of the percentage of instances per each value of the attribute
Numeric mean The mean numeric value of the attribute

Numeric std The standard deviation of the numeric value of the attribute

Numeric min_val The minimum numeric value of the attribute

Numeric max_val The maximum numeric value of the attribute

Numeric range_val The numeric range of the values of the attribute

Numeric co_of_var The numeric coefficient of variance of the attribute

Equation 3 shows the proximity metric computed for a pair of attributes (or
datasets), denoted as O;, O;. Using the meta-features described, we compute the
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z-score distance for each meta-feature m. The result is a real number, P,,. The
z-score is a normalisation where we use the mean ‘i’ and standard deviation ‘o’
of each meta-feature considering its value from all datasets in the DL. A value
of 0 is the most similar, while larger negative or positive number means more
different. The z-score is used to standardise the comparisons of attributes in a
holistic manner that considers all datasets and attributes in the DL. Most pairs
of attributes and dataset will have a value falling in the range of [—3, 3].

0;) — 0;) —
Py, = zscore_distance(O;,0;) = 'm( ill — m™(0;) #’
o

o

(3

For the name-based metadata we compute the proximity metric P,, with a
Levenshtein string comparison function [22], as in Equation 4.

P,,, = levenshtein_distance(name(O;), name(O;)) (4)

4.2 Supervised Proximity Mining

After the different proximity metrics of meta-features are generated by profil-
ing the datasets, a representative sample (an adequate sample size should be
similar to the sample in our experiments in Section 5) of dataset and attribute
pairs should be selected by a human annotator and should be labelled whether
they satisfy Rel(D,, A,) and Rel(A;, A;) respectively. The dataset and attribute
pairs with their proximity metrics and labels are fed to a supervised learning
algorithm to create a proximity scoring model. We propose supervised ensem-
ble models based on different dataset level and attribute level proximity metrics
for computing overall similarity between pairs of datasets. The models decide
on the number of attributes to consider in order to evaluate a pair of datasets
as ‘related’ by using different aggregation functions agg for the attribute level
metrics, giving different weights to a different number of attribute linkages of
different similarity ranks. This will be explained in detail in this section.

Our approach builds supervised ensemble models Ms_q4s for Rel(D,, D),
and Mes—nom—attr & Meis—num—attr for Rel(A;, A;) whether the attribute type
is nominal or numerical respectively. Model-based learning for pre-filtering has
been applied before in the collaborative filtering field [2]. In such scenarios, item
pairs are recommended or filtered out using model-based learning algorithms
where a learnt model is used to assign the similarities and rankings of item pairs
based on previously annotated examples. We give details of how we learn the
models and how we use them in our approach in the subsections below.

Building the models from annotated samples An overview process for
building the supervised models in our approach can be seen in Fig. 5. In the
build phase, we take the pairs of datasets and profile them by computing their
dataset level and attribute level meta-features, followed by computing the prox-
imity metrics for those extracted features. We take different dataset pair samples
for building the attribute level models and the dataset level models as seen in
the split into samples OMLO1 and OMLO02 (how to build such samples is given in
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Fig.5: An overview of the process to build the supervised ensemble models in
our proposed datasets proximity mining approach using previously manually
annotated dataset pairs.

Section 5.1). The pairs in sample OMLO1 should be already annotated to indicate
whether their attributes match (i.e., Rel(A;, A;) for attribute level models) or
whether the datasets are relevant for schema matching or not in sample OML02
(i.e., Rel(D,, D,) for dataset level models). Initially, we start with the attribute
level supervised learning procedure as it is only an auxiliary subcomponent used
for the dataset level, where an aggregation step is used to compute dataset level
proximities. First, we divide the pairs into training and test sets, we train a su-
pervised learning ensemble model for each attribute type (nominal and numeric
types) using the training sample, and we test the performance of the model on
the test set (evaluation distinguished by dotted lines and circles in the figure).
We conduct this test to guarantee that the models generated are accurate in
detecting Rel(A;, A;). Similarly, we do the same with the dataset level super-
vised models which generate Rel(D,,D.). We use the dataset level proximity
metrics and the attribute level aggregated proximity metrics together to train
a supervised model using a training sub-sample of dataset pairs from OMLO02.
Finally, we evaluate the generated dataset level supervised models to guarantee
their accuracy in detecting Rel(D,, D).

Supervised learning. To build the models, we use classical supervised
learning to create the proximity models. The meta-features are used as input to
the models as seen in Fig. 6, where an object could be an attribute for attribute-
level models or a dataset for dataset-level models. First, for each object we
extract its meta-features (i.e., ‘m1’, ‘m2’; ...). Then, for each object, we gener-
ate all pairs with each of the other objects and compute the proximity metrics
between their meta-features using either Equation 3 for content-based meta-
features or Equation 4 for the name-based comparison. We then take a sample
of pairs of objects which are analysed by a data analyst; a human-annotator
who manually decides whether the pairs of objects satisfy (assign ‘1’) or not
(assign ‘0’) the Rel properties (see Section 3). This can be achieved by simply
labelling the objects with their respective subject-areas and those falling under
the same one are annotated as positively matching ‘1’, otherwise all others are
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Fig. 6: Proximity Mining: supervised machine learning for predicting related data
objects.

labelled with ‘0’ (see Section 5.1). We then use supervised learning techniques
and 10-fold cross-validation over the proximity metrics to create two types of
independent models which can classify pairs of datasets or pairs of attributes
according to Rel(D,, D,) and Rel(A;, A;) respectively. This is the final output
consisting of the two auxiliary supervised models M js—nom—attr, Meis—num—attr
for Rel(A;, A;) and the main dataset level model Ms—_qs for Rel(D,, D). The
positive-class distribution from the generated models is used to score new pairs
of objects (unseen in the training process) with a similarity score Sim(D,, D.)
U.Sil’lg Mcls—dsa and Szm(AuA]) USing Meis—nom—attr OF Meis—num—attr-

We use a random forest ensemble algorithm [9,34] to train the supervised
models in predicting related attribute and dataset pairs as it is one of the most
successful supervised learning techniques. The algorithm generates a similarity
score based on the positive-class distribution (i.e., the predicted probability of
the positive-class based on weighted averages of votes for the positive class from
all the sub-models in the ensemble model) to generate a score in [0, 1] for Sim.
For example, if Random Forest generates 1000 decision trees, and for a pair of
datasets [Dy,D.] we get 900 trees vote positive for Rel(D,,D,) then we get
0= 0.9 for Sim(D,, D.) score.

We feed the supervised learning algorithm the normalised proximity metrics
of the meta-features for pairs of datasets [D,, D,]|. For attribute level meta-
features, we feed the M.s_4s model with all the different aggregations of the
meta-features after computing their normalised proximity metrics (i.e., after
applying Equation 7, which we describe later in this section).
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ALGORITHM 1: Attribute Level Top-Similarity Matching

Input: Sets of the attribute meta-features of each type Att,ominai and Attnymeric containing
the proximity metrics of the meta-features of each attribute in the pair {A;, A;} for
each dataset in the pair {D,, D.}, the model M¢js—nom—attr for nominal attributes,
the model M js—num—attr for numeric attributes, an aggregation function Agg for
aggregating attribute links to compute dataset level proximity

Output: The partially ordered set SP of proximity metrics Pg (Dy, D) for each pair of

{D,,D.}

SPgataset < 0;

SPattribute < 0;

SPtop,attribute — 0;

foreach {D,,D.} C DL and y # z do

foreach {A;, A;} C Attnominar and A; € Dy and A; € D, do
Slm(A77 A7) = Mcls—nomfattT(Aiv Aj);
SPattribute < SPattrivute U {[As, Aj, Sim(A;, Aj)]};
end
foreach {A;, A;} C Attnumeric and A; € Dy and Aj € D, do
Sim(Ai, Aj) = Meis—num—attr(Ai, Aj);
SPuttribute < SPattribute U {[Au Aj, SZm(A1, A7)]}1
end
\\Iterate on the set of attribute pairs SP,itribute to find top matching pairs
while more attribute pairs {A;, A;} can be picked do
Pick pair {A;, A;} from SPattribute that maximises Sim(A;, Aj) where A; and A;
were not picked before;
SPiop_attrivute < SProp_attrivute U {[Ai, Aj, Sim(Ai, Aj)]};
end
PR(Dy, D) < Agg(SPiop_attrivute);
SPgataset < SPdataset U {[Dyv D., PE(Dyv DZ)]};
end

Attribute-level proximity. To compute the overall proximity of datasets
using their attribute level meta-features we use Algorithm 1, which first com-
pares the proximity metrics from the meta-features of each attribute of a specific
type against all other attributes of the same type in the other dataset using
M1 nom—attr for nominal attributes and M js_ pum —attr fOr numeric attributes.
The algorithm then finds top matching attribute pairs where we match each
attribute to the most similar attribute in the other dataset using a greedy ap-
proach [19]. For each pair of datasets, we match each attribute only once (we
do not allow many-to-many matching). We rank attribute pairs by proximity
top-to-least, then we assign matching pairs on the top of the list where each
attribute did not appear in a previous higher ranking pair (i.e., both attributes
need to be unmatched by any higher ranking pair in the list, otherwise the al-
gorithm skips to the next pair until all the list of pairs is traversed). Finally, in
order to summarise the attribute linkages to predict the overall proximity of the
dataset pairs, we compute an aggregation of the top-matching attribute linkages
found between a pair of datasets using an function Agg to convert the multi-
ple Sim(A;, A;) scores to a single proximity metric PZ for their dataset pair.
We use different types of attribute level aggregation functions. Those functions
assign different weights ‘W’ (which is an indicator of relevance, a bigger weight
means more relevant) to the attribute links to consider. The different aggrega-
tions should have the goal of giving less weight to attribute links which could be
considered as noise; i.e., those pairs which are too strongly correlated without
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any meaning (e.g., discrete ID numbers) or those attribute pairs with too low
proximity to be significant.

Thus, the top-matching pairs of attributes are sorted by proximity weights
and are fed to the aggregation function which allocates a weight between [0, 1]
for aggregation in the summation of weights. The total sum of weights should
add up to 1.0. The different aggregations we use are as follows:

— Minimum: we allocate all the weight (i.e., W = 1.0) to the single attribute
pair link with the minimum similarity, and we consider this as the overall
proximity between the dataset pair. Therefore, all top-matching attribute
pair links need to have a high similarity score to result into a high proximity
for a dataset pair.

— Maximum: we allocate all the weight (i.e., W = 1.0) to the single attribute
pair link with the maximum similarity, and we consider this as the overall
proximity between the dataset pair. Therefore, only one top-matching at-
tribute pair link needs to have a high similarity score to result into a high
proximity for a dataset pair.

— Fuclidean: a Euclidean aggregation of the similarities Sim of all matching
pairs of attributes without any weighting as in Equation 5. Here we consider
all the attribute pair links in the aggregation and we assign equal weights to
all the links.

P, = J " [Sim(An 4,2 ()

i=1,j=2

— Awverage: a standard averaging aggregation of the pairs of attributes without

any weighting, where all attribute links are equally weighted in the average.

— Weighted function: a normal distribution function to assign different prox-

imity weights W for all attribute linkages found, and then summing up all
the weighted similarities as the overall proximity as in Equation 6.

pD _ 2": [Wi = Sim(A;, Aj)] ©)

m
i=1,j=2

This is visualised in Fig. 7. Here the weight 0.0 < W < 1.0 for each top-
matching attribute linkage is assigned based on ordering the linkages top-
to-least in terms of their similarity scores, and the weight allocated varies
according to a normal distribution. We use different p-parameters (proba-
bility of success) of {0.1,0.25,0.5,0.75,0.9}, where a parameter of 0.5 leads
to a standard normal distribution of weights allocated for the sorted pairs
of attributes. A lower parameter value leads to skewness to the left, allo-
cating more weight to highly related pairs, and a higher parameter leads to
skewness to the right, allocating higher weights to pairs with lower ranked
relationships. This means that with lower p we expect similar datasets to
have a few very similar attributes and a higher p value means we expect
most of the attributes to be strongly similar.
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Fig. 7: Different normal distributions for assigning weights to ranked attribute
linkages.

As can be seen from their descriptions, each aggregation leads to a different
meaning of similarity based on the number of attribute linkages to consider and
which attribute linkages are considered more important (having higher weights
assigned). All the dataset proximity metrics generated by the different aggrega-
tions listed above are finally normalised using Equation 7. The proximity metric
PP for two datasets D, and D, is computed by multiplying the number of match-
ing attributes found (), and divided by the minimum number of attributes of
both datasets (Min(|Attry|, |Attr.])). This is done to prevent an inaccurate sim-
ilarity score for two datasets having few very similar attributes of a single type,
and many other attributes of different types. For example, if dataset D; has
1 nominal attribute and 10 numeric attributes and D5 just has 8 nominal at-
tributes, then if the single nominal attribute in D is highly similar to a nominal
attribute in Dy (e.g., Sim(A1, A2) = 0.9) then the overall outcome without nor-
malisation will be a high proximity metric between both datasets although they
have many disjoint attribute types. The resulting proximity metric after nor-
malisation for the datasets would be calculated as follows: P12 = 0.9 % 1 = 0.1,

so overall they will have a low proximity compensating for all the unmatched
attributes without corresponding types.

N
P2 = pP 7
m m ¥ Min(|Attry|, |Attr.|) (7

Applying the models on the DL In the second phase, after building the
ensemble models, we apply them to each new pair of previously unseen datasets
to achieve a measure of the similarity score. When applying the models, we
compute for each pair of datasets the similarity score of Sim(D,, D,) and for
each attribute pair Sim(A;, A;) using the supervised models extracted in the
previous phase. The Sim score is the positive-class distribution value generated
by each ensemble model [34]. For the attribute level scoring, we complete the
proximity mining task by aggregating the sim scores between pairs of datasets
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(as seen in the last steps of Algorithm 1). To compare dataset pairs, we use
Algorithm 2, and the M_s_4s model generated by the previous build phase.

ALGORITHM 2: Dataset level Matching

Input: Dataset-level proximity metrics for each pair of datasets {D,, D.}, the model M¢s_4s
Output: The set SP of similarity score [D,, D., Sim(D,, D.)] for each pair of {D,, D}
SP « 0;
foreach {D,,D.} C DL and i # j do
Sim(Dyv Dz) = Mcls—ds(Dvaz)§
SP «+ SPU{[Dy, D.,Sim(D,, D.)]};
end
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Fig.8: An overview of the process to apply the learnt supervised models in our
approach for pre-filtering previously unseen dataset pairs independent of the
build process.

In the apply phase visualised in Fig. 8, we take the pairs of datasets from
sample OML02 which have not been used in the build phase and we compute
the proximity metrics for the dataset level and attribute level meta-features.
First, we profile the attribute level meta-features from this new dataset pairs
sample. Then, we apply the attribute level supervised models resulting from the
previous sub-process to score the attribute pairs similarities from the different
dataset pairs. Then, we aggregate the resulting attribute pairs similarities to
the dataset level using the aggregation functions. Once we have the dataset level
proximity metrics generated from dataset level and attribute level meta-features,
we feed them all to the dataset level supervised models from the build phase to
unseen testing set pairs, not used in the training of the models, which assigns a
proximity score to the pairs. If a pair exceeds a certain proximity threshold, we
consider that pair as a positive match to propose for further schema matching,
otherwise the pair is considered as a negative match and is pruned out from
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further schema matching tasks (we evaluate this by pruning effectiveness metrics
in Section 5.2). This is described in the next subsection.

4.3 Pre-filtering Dataset Pairs for Schema Matching

For the final step of pre-filtering pairs of datasets before applying detailed
instance-based schema matching, we check whether the pairs of datasets are
overall related or not, and therefore whether they should be filtered out or pro-
posed for expensive schema matching. We analyses the final Sim(D,, D) score
generated by the model M ;4 for each dataset pair in the DL to decide whether
they satisfy the Rel(D,, D,) or not. We consider the relationship of each dataset
with each of the other datasets existing in the DL. Each dataset must pass the
similarity threshold c¢; with each individual dataset to be proposed for detailed
schema matching (as in Equation 1).

If we choose a high cut-off threshold we restrict the supervised model to re-
turn less pairs of high proximity, leading to lower recall but also less comparisons,
thus helping to reduce the computational time at the expense of possibly miss-
ing some misclassified pairs. Alternatively, if we choose a lower cut-off threshold,
we relax our model to return pairs of lower proximity. This leads to more pairs
(i.e., more work for further schema matching tasks) yielding positive matches
and higher recall of positive cases, but, with more pairs marked incorrectly as
matching. We propose how to select an appropriate threshold that optimises this
trade-off empirically in Section 5.

The complexity of our approach is quadratic in the number of objects (at-
tributes or datasets) compared, and therefore runs in polynomial time, however,
it applies the cheapest computational steps for early-pruning (just computing
distances in Equations 3 and 4 and applying the model to score each pair). This
way, we save unnecessary expensive schema matching processing per each value
instance of the attributes in later steps, reducing the computational workload
at the detailed granularity schema matching level by pre-filtering the matching
tasks. We demonstrate this empirically in Section 5.5.

5 Experimental Evaluation

In this section, we present the experiments which evaluate our approach by
using a prototype implementation. We evaluate the following components of our
approach in predicting Rel(D,, D,) for pre-filtering schema matching:

— Proximity metrics: we evaluate the different individual dataset level and
aggregated attribute level meta-features.

— Supervised models: we also evaluate the ensemble supervised models,
which consume the proximity metrics, in the pre-filtering task.

In addition, we evaluate the sub-components of our approach which in-
clude the attribute level models M js—nom—attr a0d Mjs—num—ater in predicting
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Rel(A;, A;). We test the attribute level model in experiment 1, the dataset level
pruning effectiveness against the ground-truth in experiment 2, and the compu-
tational performance in experiment 3.

In experiments 2 and 3, we compare the performance of our proposed prox-
imity mining models against traditional instance-based schema matching tech-
niques. Those are the most expensive techniques which compare values from
instances in the datasets to for computing schema similarity. We benchmark
our results against a naive averaging of attribute similarity from a prototype
called Probabilistic Alignment of Relations, Instances, and Schema (PARIS),
which is one of the most cited schema matching tools [33]. PARIS was found
to be best performing with large datasets when compared against other tools
[19] and does not need collection of extra metadata (see Table 1). PARIS does
exact value-string matching based on value-frequency inverse functionality [33].
We implement a prototype [4] which compares pairs of attributes from differ-
ent datasets using PARIS and generates an overall score for Sim(D,,D,) by
averaging Sim(A;, A;) generated by PARIS from the top-matching attribute-
pairs (similar to Algorithm 1, where PARIS replaces the supervised models). It
converts tabular datasets to RDF triples, and executes a probabilistic match-
ing algorithm for identifying overlapping instances and attributes. We selected
PARIS because of its simplicity and ease of integration with Java-based APIs
and its high performance in previous research [19]. We parametrised the pro-
totype with the top performing settings from experiments in [4] sampling 700
instances per dataset, 10 iterations comparisons, with identity and shingling
value strings matching. This will be a baseline pre-filtering heuristic approach
we shall compare against in the experiments.

The rest of this section describes the datasets used in the experiments, the
evaluation metrics used and the different experiments implemented. We present
the results from our experiments and discuss their implications.

5.1 Datasets

We use the OpenML DL? in our experiments [36], which has more than 20,000
datasets intended for analytics from different subject areas. OpenML is a web-
based data repository that allows data scientists to upload different datasets,
which can be used in data mining experiments. OpenML stores datasets in the
ARFF tabular format which consist of diverse raw data loaded without any
specific integration schema. This allows us to evaluate our approach in a real-life
setting where datasets come from heterogeneous domains.

We use two subsets of manually annotated datasets from OpenML as our
ground-truth (gold standard) for our experiments. Those two subsets have been
generated using two different independent processes, and therefore provide in-
dependently generated ground truths that do not overlap. As the research com-
munity is lacking appropriate benchmarking gold standards for approximate
(non-equijoins) dataset and attribute similarity search [23], we published those

® https://www.openml.org
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datasets online to support in future benchmarking tasks®. The experimental
datasets are described as follows:

— OMLO1 - The attribute level annotated 15 DS: consists of 15 datasets
from different domains as described in Table 4. The total number of at-
tributes is 126 (61 nominal and 65 numeric), and the average number of
attributes per dataset is 8. There is a total of 3468 pairs of attributes to be
matched (1575 nominal pairs and 1892 numeric pairs). All the pairs of at-
tributes in this subset were manually scrutinised by 5 annotators consisting
of post-graduates with an average age of 28, where 4 are pharmacists and 1
is a computer scientist. They checked the attributes in the datasets and an-
notated all the pairs of attributes from different datasets with related data,
Rel(A;, A;). It took on average 3 hours by each annotator to complete the
task. Annotators assign a single value from {0, 1}, where ‘1’ means a related
attribute, and the majority vote is taken for each pair, where the average
Kappa coefficient for the inter-rater agreement is 0.59, the maximum is 0.80
and the minimum 0.37. Annotators were given the following to judge if the
attribute pair is related: attribute name, OpenML dataset description, top
10 values, and the mean and standard deviation for numeric attributes. We
didn’t give instructions on how to use the provided information to judge,
but we described that “related attributes should store data related to sim-
ilar real-world properties, e.g., car prices, specific body size measurements
like height, etc., and should contain similar data”. Examples of the anno-
tations can be seen in Table 5. There are only 56 positively matching pairs
(19 nominal and 37 numeric). This subset is used in training the attribute
level models for computing the similarity between attributes from different
datasets and predicting related attributes, Rel(A;, A;).

Table 4: Description of the OMLO1 datasets

Domain|Datasets IDs |Datasets
Vehicles |21,455,967,1092 | car,cars,cars,Crash

Business [223,549,841 Stock,strikes,stock

Sports 214 baskball

Health |13,15,37 breast-cancer,breast-w,diabotes
Others 48,50,61,969 tae,tic-tac-toe,Iris,Iris

Table 5: Example Cross-dataset Attribute Relationships from OMLO1

No.|Dataset 1 Dataset 2 Attribute 1|Attribute 2|Relationship
T |37 (diabetes)|214 (baskball)|age age related

2 455 (cars) 549 (strikes) [model.year [year related

3 |455 (cars) 967 (cars) all all duplicate

4 455 (cars) 1092 (Crash) |[name model related

5 455 (cars) 1092 (Crash) [weight Wt related

5 https://github.com/AymanUPC/all_prox_openml
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— OMLO2 - The dataset level annotated 203 DS: consists of 203 datasets
different from those in the OMLO01 subset. To collect this sample, we scraped
the OpenML repository to extract all datasets not included in the OMLO1
sample and having a description of more than 500 characters. Out of the 514
datasets retrieved, we selected 203 with meaningful descriptions (i.e., exclud-
ing datasets whose descriptions do not allow to interpret the content and to
assign a topic). The datasets have a total of 10,971 attributes (2,834 nomi-
nal, 8,137 numeric). There are 19,931 pairs of datasets with about 35 million
attribute pairs to match. According to Algorithm 1, there are 3.7 million
comparisons for nominal attributes (leading to 59,570 top matching pairs)
and 31.5 million numeric attribute pairs (leading to 167,882 top matching
pairs). We try to prevent the value-based schema matching on all possible
pairs of values between datasets, where there are 216,330 values which would
lead to 23.4 billion comparisons at the value level. A domain expert with a
background in pharmaceutical studies and one of the authors collaborated
to manually label the datasets”. They used the textual descriptions of the
datasets to extract their topics, which is common experimental practice in
dataset matching assessment, similar to the experimental setup in [6]. The
annotators sat together in the same room and discussed each dataset with
its description and decided on its appropriate real-life subject-area (e.g., car
engines, computer hardware, etc.). To group similar datasets in the same
subject-area grouping, annotators had to discuss and agree together on a
single annotation to give to a dataset. This was done by discussing the
specific real-world concept which the dataset describes, e.g., “animal pro-
files”, “motion sensing”, etc. The annotators were only allowed to scrutinise
the textual descriptions of the datasets and did not receive the underlying
data stored in their attributes to prevent any bias towards our proposed
algorithms. It took the annotators about 15 hours in total to annotate the
datasets. Pairs of datasets falling under the same subject-area were positively
annotated for Rel(D,,D.). The sample consists of 543 positive pairs from
the 20,503 total number of pairs. The details of the sample is summarised
in Table 6, which lists the number of datasets, the number of topics, top
topics by the number of datasets, and the number of related pairs. Some of
the pairs from the sample can be seen in Table 7. We can see, for example,
that dataset with ID 23 should match all datasets falling under the topic of
‘census data’ like dataset 179. Both datasets have data about citizens from
a population census. In row 4, we can see an example of duplicated datasets
having highly intersecting data in their attributes. Duplicate pairs like those
in row 4 have the same number of instances, but described with different
number of attributes, which are overlapping. We consider all duplicate pairs
of datasets as related pairs. We aim to detect and recommend such kind

" Those dataset annotations were reviewed by 5 independent judges, and the results
of this validation are published online at:
https://github.com/AymanUPC/all_prox_openml/blob/master/OML02/oml02_revalidation_results.pdf
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of similar dataset pairs as those in Table 7 for schema matching using our
proximity mining approach.

Table 6: Description of the OMLO02 datasets

Datasets

Topics

Top Topics

Rel(Dy, Dz)

203

T4

computer software defects (16), health

measurements (13),

digit handwriting

recognition (12), robot motion sensing
(11), plant and fungi measurements (9),

citizens census data

(8), diseases (8)

543

Table 7: An example of pairs of datasets from the OML02 sample from OpenML

No. DID 1 |Dataset 1 DID 2 |Dataset 2 Topic Relationship
1 23 cmc 179 adult Census Data related

2 14 mfeat-fourier 1038 gina_agnostic Digit Handwriting Recognition related

3 55 hepatitis 171 primary-tumor | Disease related

4 189 kin8nm 308 puma32H Robot Motion Sensing duplicate

5.2 Evaluation Metrics

We use different evaluation metrics to assess the effectiveness of our approach.
We use the traditional recommendation and information retrieval evaluation
metrics similar to other research [15,22], including precision, recall and ROC
measurements. For the supervised models, we use traditional data mining clas-
sification effectiveness metrics [34]. We evaluate the computational costs of our
approach vs. traditional schema matching for baseline comparison. Those metrics
are categorised per the experiment types and granularities:

— Classification effectiveness
o Granularity: Attribute level Rel(A;, A;) and Dataset level Rel(D,, D)
e Models evaluated: Mclsfnomfatt’m Mclsfnumfattr; Mclsfds
e (Classification measures: Classification accuracy, Recall, Precision, ROC,

Kappa

— Pre-filtering (pruning) effectiveness
o Granularity: Dataset level Rel(D,, D)
e Model evaluated: Mys_q5, PARIS
e Retrieval measures: Recall, Precision, Efficiency Gain, Lift Score

— Computational performance
o Granularity: Attribute level Rel(A;, A;) and Dataset level Rel(D,, D)
e Model evaluated: Mys_nom—attrs Meis—num—attr, Mes—ds, PARIS
e Computational measures: computational processing time (milliseconds),

metadata size (megabytes)
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Table 8 T_‘h? significance of the pup10 9. The significance of the ROC
Kappa statistic - statistic

Kappa Significance
<0 Disagreement
0.0 - 0.10 |No significance
0.0 - 0.20 |Slight

0.21 - 0.40|Fair

0.41 - 0.60|Moderate

0.61 - 0.80|High

0.81 - 1.0 |Excellent

ROC |[Significance
<0.5 Disagreement
0.5 - 0.6|No significance
0.6 - 0.7|Slight

0.7 - 0.8|Moderate

0.8 - 0.9|High

0.9 - 1.0|Excellent

For the classification effectiveness measures, the classification accuracy is
given in our results as a percentage. The recall and precision rate are also per-
centages. For the ROC (area under the curve) and Kappa statistic, they are
a real value between 0 and 1, where the value significance is evaluated in our
results according to Tables 8-9.

For the pruning effectiveness measures, we evaluate our approach using the
measurements described in Equations (8),(9), (10) and (11). Here, TP means
true-positives which are the pairs of datasets correctly classified by the models.
FN are false negatives, FP are false-positives, TN are true-negatives, and N
indicates the total number of possible pairs of datasets (which is a sum of all pairs
TP + FP + TN + FN). The efficiency gain measures the amount of reduction in
work required, in terms of number of pairs of datasets eliminated by our models.
The lift score measures the capability of the model in filtering out more pairs
than randomly removing pairs for the recall rate achieved. A higher amount is
better, where a value of 3.0 would mean that the model is capable of retrieving
3 times more positive pairs than the expected amount of positive pairs from a
random sample without using the model.

TP TP TN + FN

recall = TP+ FN (8) precision = TP+ FP (9) efficiency-gain = -~ (10)
)
lift-score = T?C'? - (11)
.0 — ef ficiency-gain
(1L.O—eff )

5.3 Experiment 1: Attribute-level Models

Our goal in this experiment is to evaluate the supervised models we build for
detecting the relationship between related attributes Rel(A;, A;) using attribute
level content meta-features as follows:

Dataset: OMLO01

Evaluation metrics: Classification effectiveness

— Relationship evaluated: Rel(A;, A;)

— Input: the attribute level meta-features matching for pairs of attributes.

— Output: a supervised model to predict related attributes per type.

— Goal: select the most appropriate models for predicting related attributes
by evaluating their effectiveness for each type (nominal or numerical).
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— Description: we take two subsets of attribute pairs and their meta-features,
depending on the attribute type: nominal attributes and numeric attributes.
The subsets are annotated by a human to decide whether Rel(A;, 4;) is 1
or 0. We build a proximity model using a supervised learning algorithm.

Experimental Setup we evaluate the model using the leave-one-out approach
(where we exclude one pair from training in each run, and use it to test the
output model, therefore having a cross-validation where the number of folds is
equal to the number of pairs). As the number of positive pairs to negative pairs
are imbalanced, we create a balanced training set for each type, nominal or nu-
meric, which consists of all the positive pairs of attribute matches and an equal
number of negative unmatching pairs. To make the training set representative
of all the different negative cases, we cluster the negative cases using the Expec-
tation Maximisation (EM) algorithm [34] and we select a representative sample
of negative cases from each cluster.

Results The attribute level models were evaluated for both nominal attribute
pairs and numeric attribute pairs. We evaluate the M s nom—attr and Mejs —num—attr
models which assign the Sim(A,, A;) for attribute pairs. As could be seen in Ta-

ble 10, we created two supervised models; one for each type of attribute pairs.
Both models achieved excellent ROC performance and highly significant results

on the Kappa statistic (see Tables 8-9 results significance). The models had
good accuracy, recall, and precision rates. This is important because the dataset
pairs pre-filtering step depends on this attribute proximity step, so we have to
achieve a good performance at this level to minimise accumulation of errors for
the following tasks.

Table 10: Performance evaluation of attribute pairs proximity models
Model |[ROC|Kappa|Accuracy |Positive Recall|Positive Precision
Nominal|0.957 [0.65  |82.5% 89.5% 77.3%
Numeric[0.915 [0.7 84.8% 89.2% 80.5%

5.4 Experiment 2: Dataset-level Models

In this experiment, we evaluate the effectiveness of the dataset level models in
pre-filtering dataset pairs for further schema matching. Our goal is to evaluate
how good is our approach in retrieving related datasets Rel(D,, D) and filter-
ing out unrelated datasets from the schema matching process. We evaluate the
effectiveness of correctly proposing related datasets for schema matching using
the different types of models we describe later in this section. The evaluation is
as follows:

— Dataset: OML02
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Evaluation metrics: Classification effectiveness, Pre-filtering effectiveness

— Relationship evaluated: Rel(D,, D)

Input: Pairs of datasets with different types of meta-features matching

[dataset level names, dataset level content meta-features, attribute level

names, attribute level meta-features, all meta-features|.

— Output: a supervised model M.s_q4s to predict related datasets based on
proximity mining and PARIS baseline.

— Goal: select the best proximity model to predict related datasets and the

proximity threshold ¢4 to use with that model.

Description: we take annotated pairs of datasets and their meta-features’

normalised metrics. The pairs are annotated by a human annotator to decide

whether Rel(D,, D) is 1 or 0. We build a proximity model using a supervised

learning algorithm.

We create different types of dataset pairs ensemble models to score Sim(D,, D,

by using different combination of meta-feature types. We create different models
depending on the meta-feature type(s) used as input (namely those are dataset
content meta-features, dataset name similarity, attribute content meta-features,
and attribute name similarity). We can combine the meta-feature types used to
build the model or use each type separately to lead to the following model types
depending on which meta-features are used:

— DS-Prox-Content: uses the dataset level content meta-features, without
considering the dataset name distance.

— DS-Prox-Name: uses the dataset name Levenshtein distance as the only
predictor of dataset pairs similarity.

— Attribute-Prox-Content: uses the attribute level content meta-features,
not considering the attribute name meta-features.

— Attribute-Prox-Name: uses the attribute level name meta-features only,
not considering the attribute content meta-features.

— Name-Prox: uses dataset level and attribute level name-based meta-features
only.

— Content-Prox: uses dataset level and attribute level content-based meta-
features only.

— All-Prox: uses all the dataset level and attribute level meta-features, in-
cluding both name-based and content-based meta-features.

We differentiate between the meta-feature types in our experiments so we can
test if a specific subset of meta-features is better in predicting Rel(D,, D) or
whether it is necessary to use all of them together to build an effective proximity
mining model for the pre-filtering task. We also investigate if there is a difference
in performance with regards to the types of meta-features extracted: classical
name-based meta-features vs. the newly proposed content-based meta-features,
and whether using both types together in combination leads to better results.
We also separate the types so we can distinguish if purely content-based meta-
features can be used as an alternative to name-based meta-features, especially in
the case when the datasets and their attributes are not properly named. The most

~
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comprehensive of all models is the All-Pror model which uses all the possible
meta-features we collect from the data profiling step. The DS-Proz-Name is
the most generic of all models as it just considers a single meta-feature at the
most abstract-level, therefore it will be used as our baseline for our performance
comparisons in the experiments.

Experimental Setup To evaluate our approach and models, we consider in our
experiments a 10-fold cross-validation experimental setup using different subsets
of datasets from a real-world DL. The purpose of a cross-validation setup is to
select the best supervised model for the pre-filtering task by evaluating the
different models on test-sets separate from the training-sets, which is commonly
used in recommendation assessment experiments [2,15] and schema matching
tasks [10]. Such an experimental setup increases the validity and generalisability
of our experiments and approach. This is only achieved if the training set is
representative of the cases found in the real-life population.

We make sure that the folds do not include intersecting dataset pairs. We
create a balanced training set with all the positive cases and an equal number of
negative cases similar to experiment 1. As the number of negative cases is much
higher in the OMLO02 subset too, we also follow the clustering of negative cases
approach to select a representative sample from each cluster (see Section 5.3).
We iterate 10 times using an alternating fold as the test set, and the remain-
ing folds as the training set. We evaluate the models in accurately predicting
Rel(Dy, D) with 9 different cut-off thresholds in [0.1-0.9] for ‘cy’ from Equation
(1) in order to cover a wide range of values. Finally, we evaluate the performance
of each model by averaging the evaluation metrics from all 10 iterations. We also
compute standard deviations in performance between different folds to evaluate
the stability and consistency of the models evaluated. For the PARIS baseline
implementation, it does not need to train any models, so we simply run it on all
pairs of datasets and compare its results to our approach.

Results Classification effectiveness. First, we created the models for the
dataset pairs which assign Sim(D,, D) and check if they satisfy Rel(D,, D)
by passing the minimum threshold. We evaluated the classification effectiveness
measures for each proximity model after the 10-fold cross-validation. The re-
sults are summarised in Figures 9-11. The figures show a plot of results (from
10 folds) and interquartile ranges of accuracy, kappa statistic and ROC statistic
for each model type. The distribution between folds can also be seen to assess
the stability of the models. For our comparison, we use the name-based models,
which are common in previous research, as our baseline comparison. As could
be seen, all models were stable with very close values for the different evaluation
metrics, indicating the versatility of our approach. However, still the All-Prox
and Attribute-Prox models consistently had slightly better stability (lower devi-
ations) than Name-Prox and other models. It can be seen from the results that
the All-Prox and Attribute-Prox models are consistently performing better than
the name-based model in terms of accuracy, ROC and Kappa statistic. This indi-
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cates that our proposed content-based and name-based combined meta-features
models perform best with schema matching pre-filtering.

Model Type Model Type
All-Prox ¢—ammIe»-$78.18 All-Prox ¢—aEDIIIe»-40.56
Attribute-Prox b-cllmNIe 75.51 Attribute-Prox belmneS 0.51
Name-Prox = 74.29 Name-Prox = 0.49
Content-Prox - ——=$73.72 Content-Prox - —=$0.47
DS-Prox -o—@an—+73.29 DS-Prox ¢-o—amn—40.47
7172 73 74 75 76 77 78 79 80 81 82 0.44 0.46 0.48 0.50 0.52 0.54 0.56 0.58 0.60 0.62
Classification Accuracy Kappa Statistic

Fig.9: Classification accuracy from 10- Fig. 10: Kappa statistic from 10-fold
fold cross-validation of dataset pairs cross-validation of dataset pairs pre-

pre-filtering models. filtering models.
Model Type
All-Prox bollSd—o90.86
Attribute-Prox o ¢@ue+0.83

Name-Prox +—<EEEEESTH 0.81
Content-Prox ¢-edEsbe—40.81
DS-Prox “ESSTTee40.81
0.80 0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88
Roc Score

Fig.11: ROC statistic from 10-fold
cross-validation of dataset pairs pre-
filtering models.

The different models used for the schema matching pre-filtering task achieve
different results because the meta-features used in the different models are not
correlated, therefore contain different information about the datasets leading
to the different performance of each model. We evaluated the Spearman rank
correlation [15] between the different types of meta-features, which is presented
in Table 11. The Spearman rank correlation ranks the dataset pairs according
to the proximity metrics of the meta-features. If the dataset pairs have the same
identical rankings between two different meta-features then we get a perfect
correlation. If the rankings produced in descending order by the two proximity
metrics are different (e.g., a dataset pair can be ranked in the 100th position by
one meta-feature and in the 9th position by the other, which have a difference
of 81 ranks) then we get a lower correlation, with completely uncorrelated meta-
features. We evaluated the average, standard deviation, minimum, and maximum
of the correlation between the meta-features falling under the different types
of meta-features. Recall that each type will have multiple meta-features (see
Section 4.1), like attribute content will include all the meta-features in Table 3
with all their different proximity metrics according to the aggregations described
in Section 4.2. We calculate the correlation between each individual meta-feature
pair and we calculate aggregates per type. As can be seen in Table 11, all the
correlation values are low.
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Table 11: Spearman rank correlation for the different meta-features. We aggre-
gate minimum (Min.), average (Avg.), maximum (Max.), & standard deviation
(Std. Dev.) for different meta-feature types.

Type 1 Type 2 Min. Correlation|Avg. Correlation/Max. Correlation|Std. Dev. Correlation
Attribute Name |Attribute Content|-0.12 -0.01 0.19 0.04
Attribute Name |Dataset Content |0.02 0.04 0.10 0.02
Attribute Name |Dataset Name 0.06 0.07 0.13 0.02
Dataset Content|Attribute Content|-0.01 0.09 0.15 0.04
Dataset Content|Dataset Name -0.02 0.00 0.02 0.02
Dataset Name |Attribute Content|0.00 0.01 0.04 0.01
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Pre-filtering effectiveness. We compare the effectiveness of our approach
against the baseline implementation of PARIS. We change the cut-off thresholds
for Equation 1, and we aim to maximize the efficiency-gain while maintaining
the highest recall for all candidate dataset pairs satisfying Rel(Dy, D,). The ef-
fectiveness is also evaluated by lift scores. The results from our approach and
from the ‘baseline’ PARIS prototype are presented in Figures 12-15. Figures 12-
13 show the results for the different supervised models and PARIS, and Figures
14-15 show the results of the same evaluation metrics but for the individual meta-
features in our approach, where we use the individual proximity metrics of the
meta-features directly as an indicator of Rel(D,, D.) without using any super-
vised learning models. We evaluate the dataset level meta-features from Section
4.1. The graphs show the average performance for all the individual metrics per
specific type. We use a different minimum threshold with each proximity model
or meta-feature in Figures 12-15 leading to the different plotted results per model
or meta-feature. The aim of comparing both models and individual metrics is
to be able to detect if the proposed supervised proximity models perform any
better than simply using single independent metrics for the pre-filtering task.

For each evaluation of the models or the individual metrics, we evaluate the
efficiency gain against recall first. We set a minimum target recall of 80% and
a minimum target efficiency gain of 60% (i.e., filtering out at least 60% of the
pairs of datasets while still proposing 80% of the true positive pairs), which are
the grey shaded areas in the graphs. The minimum thresholds can be selected
differently according to the requirements of the data analyst. Good performing
models or proximity metrics are those that fall in this shaded area. The numbers
annotated to some of the points in the graphs indicate the lift score (higher values
are better). Similarly, we compare the precision against the recall in the second
graphs for each evaluation (models or metrics). We also annotate some selected
lift scores for some points in the graph.

When comparing our new proposed proximity models with the proximity
model (DS-Prox) from our previous work [5], it can be seen that our Attribute-
Prox model and the All-Prox model perform consistently better. This is expected
because we are collecting finer granularity metadata to describe the datasets
which makes it easier in the supervised learning task to differentiate between
positive pairs and negative pairs. Although our new proposed techniques out-
perform our previous work in the DS-Prox model in terms of recall rates and lift
scores, it comes at the price of a more computationally expensive algorithm (Al-
gorithm 1). The complexity of the dataset level Algorithm 2 is O([n* (n—1)]/2)
while the complexity of the attribute level Algorithm 1 is O([n* (n — 1) x a?]/2)
where ‘n’ is the number of datasets and ‘a’ is the number of attributes in each
dataset (we can use the average number of attributes per dataset as an approx-
imation for ‘e’ when estimating the number of computations required).

If we would compare the content meta-features only model (Content-Prox)
with the name meta-features only model (Name-Prox), we would see that both
models perform equally the same in the pre-filtering task, although combining
them in the All-prox model leads to the best results capturing the similarity of
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difficult pairs that can not be retrieved by any single type individually. There-
fore, it is possible to solely depend on content-based proximity models as a
replacement of name-based proximity models to achieve similar results. This
will be important in the cases of DLs which are not well maintained and do
not have properly named datasets and attributes. We investigate in detail the
performance of the All-Prox proximity model based on its true positives, false
positives and false negative pairs in the Appendix®, where we present the exact
cases, we discuss the reasons of discrepancies and we give a comparative analysis
of the underlying proximity metrics which led to those cases.

For each of the pruning effectiveness evaluation metrics listed above, we com-
pute the average and standard deviation of the measure between the different
folds of evaluation for our approach. The average is plotted in the graphs in
Figures 12-15, and the standard deviations of each model for the threshold 0.5
(we chose the mean threshold) are given in Table 12. The standard deviation
indicates the stability of our proposed metrics and models with different subsets
of datasets. We aim for a low standard deviation to prove the high adaptability
of our approach.

Table 12: The standard deviation of each evaluation measure for 10-fold cross-
validation of each dataset pairs pre-filtering model, where ¢4 = 0.5

Proximity SD Recall|SD Efficiency Gain|SD Precision|SD Lift Score
All-Prox 5.4 0.61 0.58 0.32
Attribute-Prox|[6.5 1.0 0.7 0.24
Content-Prox 6.8 1.0 0.38 0.35
DS-Prox 7.86 0.85 0.29 0.28
Name-Prox 6.3 1.1 0.47 0.24

Dataset Pairs Pre-filtering Meta-features First, we assess if the super-
vised learning models perform better than a simpler approach based on the
sub-components they are dependant on, which are the individual meta-features
used in the models. The supervised models use multiple features in combination
to score the similarity of pairs of datasets. Here, we assess the individual features
as a baseline to compare against, and whether simply using a proximity metric
of an individual meta-feature without any models can lead to any good result.
We aggregated an average for the pruning evaluation metrics per each type of
meta-feature. The results comparing recall against efficiency gain is given in Fig.
14. In our experiments, no single meta-feature was able to individually predict
related pairs of datasets to achieve optimum recall and efficiency gain, as can
be seen by the lack of any plotted result in the top-right box. As seen in Fig.
15, the pre-filtering task using the meta-features can not have a precision better
than 10% for the higher recall rates.

8 The appendix could be found online at https://aymanupc.github.io/all_prox_openml
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We note here that the different types of meta-features are able to model
different information about the datasets and their attributes as seen by the
low correlations in Table 11. That is the main reason we used the combination
of different types of meta-features in our proximity models which are able to
combine the meta-features to give better results.

Dataset Pairs Pre-filtering Efficiency Gain Vs. Recall We also eval-
uated the different supervised proximity models by testing their pre-filtering
performance with different proximity thresholds. As can be seen in Fig. 12,
all of the proximity models were able to optimise recall and efficiency gain to
achieve results in the top-right shaded area, compared to the baseline PARIS
implementation that was not successful. This shows the value of approximate
proximity matching and the supervised models in our approach compared to
exact instance-based string matching in the baseline. The best performing mod-
els were the All-Prox and Attribute-Prox models which achieved better results
than DS-Prox from our previous work [5] and better results than Name-Prox
which are more common in other previous research. This means that combining
both name-based meta-features and content-based meta-feature in a supervised
model achieves best results in the schema matching pre-filtering task. For ex-
ample, a good result can be achieved using the All-Prox model (combining all
meta-feature types) with a threshold of 0.4 which achieves a recall rate of 85%,
an efficiency gain of 73% and a lift score of 3.14. This means that the model
is able to effectively propose most of the pairs of datasets for schema matching
with the least effort possible (only proposing 27% of pairs for comparison), while
achieving this with a performance that is three times better than naive random
selection of dataset pairs for schema matching (as expressed by the lift score of
3.14 achieved by the All-Prox model).

Dataset Pairs Pre-filtering Precision Vs. Recall As seen in Fig. 13, the
precision of the proximity models improved the performance of the schema
matching pre-filtering as seen by the higher precision rates compared to the
individual meta-features in Fig. 15. By combining the meta-features in a su-
pervised model we were able to achieve higher precision rates with the same
recall rates, for example, a precision of 17% with a recall rate of 75% using
the All-Prox model. This is better than the best achievable precision with the
individual meta-features, which can achieve a precision of 4% with the same
recall rate for the attribute level meta-feature type. However, we acknowledge
that the precision rates are low for all types of models and meta-features. We
can therefore conclude that our proposed proximity mining approach can only
be used as an initial schema matching pre-filter which is able to prune unneces-
sary schema matching comparisons from further steps. Our approach can not be
used for the final schema matching task because it will produce false positives.
Therefore, dataset pairs should be further scrutinised with more comparisons to
assess their schema similarity (as seen in Fig. 1 bottom instance-based matching
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layer). Such comparisons use instance-based matching similar to our previous
work [4].

5.5 Experiment 3: Computational Performance Evaluation

In this experiment, we evaluate the computational performance in terms of time
and storage space consumption as follows:

— Dataset: OML02

— Evaluation metrics: Computational performance

Relationship evaluated: all

Input: All the pairs of datasets from OMLO02, a model (Ms_qs) and the
PARIS schema matching prototype.

— Output: attribute-level and dataset-level metadata.

— Goal: test the comparable computational costs of running the different com-
ponents of our proximity mining approach vs. traditional instance-based
schema matching techniques. We show the value of pre-filtering by means of
computational costs saving.

Description: we take all the annotated pairs from OMLO02 and we do a
complete run which collects the required meta-features and metrics, and we
run the algorithms to compute Sim(D,, D). We measure the amount of
time and storage space it takes to process the pairs.

We ran the experiments for our approach using a computer running on Linux
Debian, 8GB main memory, a dual-core Intel i7 processor running at 2.4GHz
and 4MB cache, Java v8 for the implementation of our algorithms, and Postgres
database v9.5.12 for the metadata storage and management. For the PARIS
baseline implementation, we used a server with more resources as recommended
by the developers. The server runs on Linux Debian, Java v8, 24GB of memory
and a quad-core processor at 2.4 GhZ and 4MB cache. We present the results
below.

Results We compare the computational performance by evaluating the amount
of time and storage space for running our approach and the PARIS-based im-
plementation with the DL sample OML02. The results can be seen in Table 13.
We list the tasks from our approach and compare to the baseline in the last row.
We compute the time for each task, the average time it takes, and the storage
space used. For the attribute matching, we keep the output in memory and do
not materialise it. We only materialise top-matching attribute pairs.

Based on the results in Table 13, our approach needs a total of 112 minutes
and 100MB storage space for the OML02 DL sample datasets of a total size of
2.1GB (i.e., 5% metadata space overhead). This is at least 2 orders of magnitude
less than the time and space consumption of the baseline PARIS implementation.
The most expensive steps in our approach were those for the numeric matching
tasks as they were much greater in amount than nominal attributes. Still, our ap-
proach is more efficient in terms of computational performance and pre-filtering
effectiveness as shown by our results.
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Table 13: The computational performance of our approach vs. the PARIS im-
plementation in terms of time and storage space

Task Timing Average Time Storage Space
Dataset Profiling 263,019ms (4:23 minutes) |1,295ms per dataset 31.25MB
Numeric Attribute Matching 1,184,000ms (19:44 min-|0.04ms per attribute pair |In memory
utes)
Nominal Attribute Matching 160,000ms (2:40 minutes) [0.04ms per attribute pair [In memory
Numeric Attribute Top Matching 3,250,000ms (54:10 min-|0.1ms per attribute pair | 7MB
utes)

208ms per dataset pair
(15,576 dataset pairs)

Nominal Attribute Top Matching 313,000ms (5:13 minutes) [0.08ms per attribute pair [2.33MB

19ms per dataset pair
(16,290 dataset pairs)

Dataset-level All Aggregations of At-[500,000ms (8:20 minutes) [25ms per dataset pair[35MB

tribute Similarities (19,931 dataset pairs)

Dataset-level Name Matching 202ms (0 minutes) 0.0lms per dataset pair|Part of Top Matching
(20,503 pairs) metadata

Dataset-level Content Matching 5,100ms (5.1 seconds) 0.25ms per dataset pair[3.25MB

(20,503 pairs)

Attribute-level Name Matching, top|1,018,663ms (16:58 min-|0.03ms per attribute pair|12.5MB
pairs computation, and aggregation |utes) (35,283,824 attribute pair)

51lms per dataset pair
(19,931 dataset pair)

Apply the proximity models on the|l,665ms (1.66 seconds) 0.08ms per dataset pair|8.5MB
dataset pairs to score their similari- (20,503 dataset pair)
ties

PARIS Alignment Implementation 743,077,431ms (12,384:37(36,241ms per dataset pair|[15,450MB (15.1GB)
minutes) (0:36 minutes per dataset
pair)

5.6 Generalisability

In our experiments, we have used the OpenML DL to create a 10-fold cross-
validation experimental setup. OpenML stores datasets representing heteroge-
neous subject-areas. Thus, we expect our proposed techniques to achieve similar
results with different heterogeneous DLs. We tested our approach with differ-
ent heterogeneous DL subsets covering randomly selected subject-areas in each
cross-validation fold. This further improves the generalisability of our results as
the results achieved proved to be stable between the different cross-validation
folds. Therefore, our approach is recommended in the early-pruning and schema
matching pre-filtering task in a DL environment with heterogeneous subject-
areas. Under different settings, the data scientist should first test the perfor-
mance of our approach on a test sample and then select the best performing
cut-off thresholds accordingly. It is also crucial that the training samples se-
lected for creating the supervised models are representative of the specific DL
setting they are used for. We also note, that although our experiments were done
over binary approximation for the Rel(D,, D) function in the ground truth due
to the difficulty to find a ground truth with a similarity continuum, still our ap-
proach can be useful in dataset pairs ranking problems using the Sim(D,, D,)
continuous function.

6 Conclusion

We have presented in this paper a novel approach for pre-filtering schema match-
ing using metadata-based proximity mining algorithms. The approach is able to
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detect related dataset pairs containing similar data by analysing their meta-
data and using a supervised learning model to compute their proximity score.
Those pairs exceeding a minimum threshold are proposed for more detailed, more
expensive schema matching at the value-based granularity-level. Our approach
was found to be highly effective in this early-pruning task, whereby dissimilar
datasets were effectively filtered out and datasets with similar data were effec-
tively detected in a real-life DL setting. Our approach achieves high lift scores
and efficiency gain in the pre-filtering task, while maintaining a high recall rate.
For future research, we will investigate the different techniques to improve the
scalability of our approach by improving attribute level matching selectivity. We
also want to investigate the possibility of detailed semantic schema matching at
the attribute level. We will also investigate our proximity mining approach in
effectively clustering the datasets into meaningful groupings of similarity.
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