
This item is the archived peer-reviewed author-version of:

Models in graphical user interface testing : study design

Reference:
Silistre Alper, Kilincceker Onur, Belli Fevzi, Challenger Moharram, Kardas Geylani.- Models in graphical user interface testing : study design

14th Turkish National Software Engineering Symposium (UYMS), OCT 07-09, 2020, Istanbul, Turkey - ISBN 978-1-7281-8541-5 - New york, Ieee, (2020), p.

171-176

Full text (Publisher's DOI): https://doi.org/10.1109/UYMS50627.2020.9247072

To cite this reference: https://hdl.handle.net/10067/1805860151162165141

Institutional repository IRUA

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Models Used in Graphical User Interface Testing:
Study Design

Grafiksel Kullanıcı Arayüzü Testinde Kullanılan
Modeller: Çalışma Tasarımı

Alper Silistre
International Computer Institute, Ege

University.

Izmir, Turkey.
alpersilistre@gmail.com

Moharram Challenger
University of Antwerp and Flanders

Make,
Belgium.

moharram.challenger@uantwerpen.be

Onur Kilincceker
University of Paderborn, Paderborn,

Germany.

Mugla Sitki Kocman University

Mugla, Turkey.
okilinc@mail.upb.de

 Geylani Kardas
International Computer Institute, Ege

University.

Izmir, Turkey.
geylani.kardas@ege.edu.tr

Fevzi Belli
University of Paderborn, Paderborn,

Germany.
Izmir Institute of Technology

Izmir, Turkey.
belli@upb.de

Abstract—Model-based GUI testing is an important concept

in Software GUI testing. Manual testing is a time-consuming

labor and heavily error-prone. It has several well-accepted

models that Software Testing community has been working and

contributing to them for many years. This paper summarizes,

reviews different models used in model-based GUI testing,

presents a case study with a proposed approach for how to

convert several well-accepted models to ESG (Event Sequence

Graphs) to generate test cases and execute them with an aim to

consolidate past and future works in a single model.

Keywords—GUI Testing, Model-Based Testing, Finite State
Machine, Event Sequence Graph, Event Flow Graph, Regular
Expression

Özet—Model tabanlı grafiksel kullanıcı arayüzü testi (GUI),
yazılım GUI testinde önemli bir kavramdır. Elle yapılan test
zaman alıcı bir iştir ve büyük ölçüde hataya açıktır. Yazılım testi
alanında çalışan insanların uzun yıllardır üzerinde çalıştığı ve
katkıda bulunduğu belli modeller vardır. Bu bildiride, model

tabanlı yazılım testinde kullanılan bu modelleri incelemenmiş ve

belirlenmiş bazı modellerin ana model olarak kabul ettiğimiz
Olay Sıra Çizgisi (ESG) modeline dönüştürülmesi, bunlardan
test dizileri üretip model tabanlı test senaryoları oluşturulması
ve çalıştırılması üzerine bir vaka çalışması sunulmuştur. Bu

çalışma yapılırken, geçmişte ve gelecekte yapılacak olan
çalışmaların birleştirilmesi amacı da güdülmektedir.

Anahtar Kelimeler—Grafiksel Kullanıcı Arayüzü Testi, Model
Tabanlı Test, Sonlu Durum Makinesi, Olay Sıra Çizgisi, Olay Akış
Çizgisi, Düzenli ifade

I. INTRODUCTION

GUI (Graphical User Interface) is an essential part of all
computer programs whether it is a web page, mobile, or
desktop application. We interact with all kinds of GUIs to
navigate or make programs to do their job. It’s essentially an
interface for us to communicate and interact with software
programs. A user can execute an action by clicking a button
or typing a text to an input field to interact with the
application. GUI Testing is a process of validating GUI widget
behavior and state based on preconditions that are decided by
GUI testers. In the current software ecosystem, validating the
business logic behind GUIs are often considered more

important. The importance of GUI testing is often neglected
by application developers due to a large number of possible
test cases that need to be tested even if the application has a
small number of widgets. Same action might put the program
in an error state depending on the state of the program. This is
hard to test manually and it leads applications to go into
production with bugs in it. Thus, testing and validating the
GUI of an application properly can reveal errors and defects,
which is as important as testing underlying business logic.
Additionally, the usability of an application is important in the
modern software world, especially for consumer programs
such as mobile applications in smartphones.

Model-based testing is a popular method of black-box
testing of software. Creating the model of the system in a
higher abstraction layer leads us to formalize test cases based
on this model. In literature, there are different models such as
FSM [2], EFG [6], ESG [5][12], RE [27][28]. Model-based
testing allows us to generate test cases based on the
model(abstraction) of the SUT (System under test) and then
execute these tests on the model based on a defined oracle.
There are automated tools and processes studied and evolved
around this topic. Using model-based methods instead of
code-based allows us to generate and execute test sequences
more efficiently than to execute these tests with code.

In this study, we aimed to propose an approach for
converting other models to the ESG model to use it in the
complete test generation process and applying model-based
test execution using this unified model. The ESG model has
several advantages over other models that we want to take
advantage from such as simplicity, generality, and scalability.
Test sequences are generated automatically and execute them
on the ESG model to unify the model-based test generation
and execution processes. The main reason to convert existing
models to the ESG is that different models need different
processes and implementations to apply end-to-end model-
based testing. With our study, we want to consolidate these
efforts into a single unique model that is efficient to generate
and execute test sequences.

The work in this paper is a design study. We review the
literature in the related work section and present a proposed

approach that we plan to implement. Based on our experience
and deductions from the literature review, we decide to use the
ESG model for test generation and execution steps. We plan
to explain its advantages compared to other models in detail.
In the discussion section, we provide what we expect as the
results of the study. In the future, we have plans to extend this
study with larger models to find potential improvements to
make the study more robust.

The remaining of the paper is organized as follows:
Section 2 gives the related work within the scope of the
proposed approach that is presented in section 3. Section 4
discusses expected results and implications with possible
threats to the validity of the current work. Finally, Section 5
concludes the paper.

II. RELATED WORK

This section introduces related works with respect to
already existing models in GUI testing.

Memon et al. [14] focus on coverage criteria of GUIs and
define the GUI component term to structure GUI into a
hierarchy in order to identify important test sequences to be
tested. They represent the GUI component by using the Event-
Flow graph which identifies the interaction between GUI
widgets in a GUI component.

Memon [15] describes why traditional software
techniques and tools to test software applications are not the
best fit for GUI testing because GUIs are different from
application codes in terms of abstraction levels. He describes
the process of GUI testing and how GUI testers should
approach the process of GUI testing. Even though the given
examples in the article reflect its time of writing which is
2002, pitfalls and process are still applicable today.

Belli [5] proposes a new approach as he called the 'holistic'
approach. In this approach, testing GUI not only with correct
test cases but also with incorrect test cases to show that the
application should work as expected and cover cases even
when the input and events are illegal. With this, we have a
complete system coverage in terms of application behavior.

Shehady and Siewiorek [2], present a new formal model
called VFSM (Variable Finite State Machine) for the GUI
with a smaller number of states than an FSM while keeping
the system design equivalent. VFSM can be converted to an
equivalent FSM anytime in order to create test cases. Since the
total number of states is less, modeling a system with VFSM
is easier and in less time than FSM.

White and Almezen [4] utilize a concept they called
responsibility, an activity that involves one or more GUI
objects which results in an observable effect on the system.
For this defined responsibility, they created a term called CIS
(Complete Interaction Sequences), which is a combination of
all actions and GUI objects that can invoke the defined
responsibility.

Memon et al. [6] present a new technique, an AI-based
planning algorithm for automated test generation from the
EFG model. Based on the defined operators, the initial and
final steps are created to apply the planning algorithm on the
EFG model. The algorithm creates test sequences between the
initial and final states, taking into account GUI events and
interactions.

Memon [7] presents a new method for model-based testing
by using event-space exploration strategies. He combines all
models for model-based testing into one scalable model,
called the event-flow model. He automates the procedure to
reduce the cost and effort of the model creation steps.

Xie and Memon [8] define a new concept by using their
previous works on EIG and EFG called Minimal Effective
Event Context (MEEC) which are the shortest event
sequences needed to show the error on the GUI model.
Because you can naturally traverse through a combination of
events to detect the fault (since the response to an event may
defer based on the current state of a system) in a GUI system
which would make the test sequence unnecessarily long.
Instead, MEEC shows the shortest path to detect the fault.

Huang et al. [9] develop a method to repair GUI test cases
that are useless for the GUI testing because of the possibilities
like premature termination of the test. They use a genetic
algorithm to correct these problematic test series and increase
coverage.

Belli et al. [10] present a case study on the reliability of
GUIs and the selection of a GUI's reliability model in human-
machine systems to gain experimental insights about them.
They state that choosing an appropriate modeling technique
for the GUI test affects the quality of the evaluation process
and therefore the software.

Banerjee et al. [11] survey about GUI testing studies and
matched the related papers with a systematic mapping
technique. They identify selection criteria for studies from the
pool of 230 articles written between 1991 and 2011 about the
GUI testing. They categorize the studies and provide an
overview of current approaches and areas which require
further study and research. They provide examples from
traditional and modern techniques for model-based GUI
testing.

Belli et al. [12] review existing work on model-based GUI
testing in detail by considering modeling and test case
generation techniques. They examine the optimization of
these techniques while giving real-world examples of these
models and their usages.

Belli et al. [13] perform a study that reduces the number
and cost of test cases by recommending the layered-centric
test method and the associated test creation system in case the
system under test grows too large. Using this methodology,
they demonstrate that many faulty states can be found even
with a small number of test cases.

Kilincceker et al. [24] introduce regular expression for
modeling and testing GUI. They also generate random test
sequences from regular expression and evaluate their random
test generation algorithm on a case study.

Mercan et al. [25] present finite state maching for
modeling and testing GUI of mobile application. They also
propose a methodology for testing presence and absence of
faults with respect to the finite state machine model.

Kilincceker and Belli [26] propose a novel coverage
criteria for GUI testing by means of an analysis based on the
regular expression. After analysis of regular expressions, they
obtain contextual tables from which they present coverage
criteria. These coverage criteria are used in [28] for test
generation and testing including quality evaluation based on
mutation testing.

Kilincceker and Belli [30] present a unified modeling
method for both hardware design and software GUI testing.
They also utilize holistic testing approach combined with
mutation testing. They evaluate their modeling and testing
method in two cases studies taken from hardware design and
software GUI domain.

The current study uses ESG as a unified model based on
comparison with other models in terms of their effectiveness.

III. PROPOSED APPROACH

The proposed approach provides a way to create an ESG
presentation in any of the open-standard file formats such as
JSON or XML to represent the model of the system. The ESG
model should be able to be converted from a Finite State
Machine (FSM), Hierarchical Finite State Machine (HFSM),
Regular Expression (RE), and Event Flow Graph (EFG).
These are all existing models in the literature that allow us to
model a GUI system. For example, this can be a sign-up form
on a website or a screen that accepts user interactions in a
mobile application.

A. Used Notations

Used notions are defined formally in this section. These
notions are Finite State Machine (FSM), Hierarchical Finite
State Machine (HFSM), Regular Expression (RE), and Event
Flow Graph (EFG).

For each formal notation, we will demonstrate an example
GUI system including corresponding models. The example
system is a simplified version of the ISELTA [23] website’s
Special module:

Fig. 1: ISELTA [23] website’s Special module

I. Finite State Machine (FSM)
Definition 1: Following 5-tuple defines an FSM [22] <Q, Σ,
δ, q0, F> with

 Q: a finite set of states

 Σ: a finite set of input symbols (alphabet)

 δ: a state transition function

 q0: an initial (starting) state belongs to Q

 F: a finite set of final states belongs to Q

Example 1: Following 5-tuple defines the FSM of ISELTA
[23] website’s Special module (see Fig. 2).

 Q: = {q0, q1, q2, q3, q4, q5, q6, q7, q8}

 Σ: = {t, a, p, d, s}

 δ: = {δ(q0, t)=q2, δ(q2, a)=q7, δ(q2, p)=q3, δ(q2,
d)=q8, δ(q7, p)=q4, δ(q3, a)=q4, δ(q3, d)=q5, δ(q8,
p)=q5, δ(q4, d)=q6, δ(q5, a)=q6, δ(q6, s)=q1}

 q0: = {q0}

 F: ={q1}

Where “t”, “d”, “p”, “a”, and “s” represent set title, set
departure, set price, set arrival add button events respectively.

Fig. 2: ISELTA Special Module FSM

II. Hierarchical Finite State Machine (HFSM)
Definition 2: Following 6-tuple defines an HFSM [6] <Q, Σ,
δ, q0, F> with

 Q: a finite set of states

 Σ: a finite set of input symbols (alphabet)

 δ: a state transition function

 q0: an initial (starting) state belongs to Q

 F: a finite set of final states belongs to Q

 L: a finite set of layers

Example 2: Following 6-tuple defines the HFSM of ISELTA
[23] website’s Special module.

 Q: = {q0, q1, q2, q3, q4, q5, q6, q7, q8}

 Σ: = {t, a, p, d, s}

 δ: = {δ(q0, t)=q2, δ(q2, a)=q7, δ(q2, p)=q3, δ(q2,
d)=q8, δ(q7, p)=q4, δ(q3, a)=q4, δ(q3, d)=q5, δ(q8,
p)=q5, δ(q4, d)=q6, δ(q5, a)=q6, δ(q6, s)=q1}

 q0: = {q0}

 F: = {q1}

 L: = {Ø}

III. Event Sequence Graph (ESG)
Definition 3: Following 4-tuple defines an ESG [12] <E, A,
S, F> with

 E: a finite set of nodes representing events

 A: A ⊆ N×N a finite set of directed arcs representing
follows relation between events

 S: non-empty set of events representing start event

 F: non-empty set of events representing final event

Example 3: Following 4-tuple defines an ESG [12] of
ISELTA [23] website’s Special module (see Fig. 3).

 E: = {[, set title, set arrival, set price, set departure, click
add,]}

 A: = {([, set title), (set title, set arrival), (set title, set
price), (set title, set departure), (set arrival, set price),
(set arrival, set departure), (set arrival, click add), (set
price, set arrival), (set price, set departure), (set price,

click add), (set departure, set arrival), (set departure,
set price), (set departure, click add), (click add,])}

 S: = {[}

 F: = {]}

Fig. 3: ISELTA Special Module ESG

IV. Event Flow Graph (EFG)
Definition 4: Following 4-tuple defines an EFG [14] <V, E,
B, I> with

 V: a set of vertices that represent all events

 E: a set of directed edges between vertices

 B: a set of vertices that are available at the start of a
modeled GUI

 I: a set of restricted-events (events that are not possible
to occur) for the GUI component

Example 4: Following 4-tuple defines an EFG [14] of
ISELTA [23] website’s Special module (see Fig. 4).

 V: = {set title, set arrival, set price, set departure, click
add}

 E: = {([set title, set arrival), (set title, set price), (set
title, set departure), (set arrival, set price), (set
arrival, set departure), (set arrival, click add), (set
price, set arrival), (set price, set departure), (set price,
click add), (set departure, set arrival), (set departure,
set price), (set departure, click add)}

 B: = {set title, set arrival, set price, set departure}

 I: = {Ø}

Fig. 4: ISELTA Special Module EFG

V. Reqular Expression (RE)

Definition 5: Regular Expression (RE) [22]: A RE by means
of rules is defined by the sequence of symbols x, y, z, ...
Symbols can occur zero or more times related to the following
rules which define the RE.

 Concatenation: represented by ‘.’ or ‘’(blank). For
example, ‘ab’ refers to ‘a’ is followed by ‘b’

 Selection: represented by ‘+’. For example, x + y refers
to ‘x (exclusive) or y’.

 Iteration: represented by ‘*’. For example, ‘x*’ refers
to ‘x is iterated a desired time'.

Example 5: Following RE defines ISELTA [23] website’s
Special module.

R: = (tdpas+tapds+(tpda+tpad)s)

B. Approach

The proposed approach is divided into three steps (see Fig.
5), which are test preparation, test generation, and test
execution. We aim to automate these three steps to derive a
complete model-based test automation tool.

In test preparation, the FSM, HFSM, RE, and EFG models
are converted into the ESG model due to simplicity,
generality, and scalability advantages. Users are also able to
directly import ESG into the system. In test generation, a test
suite containing a valid set of test sequences is generated from
the ESG model utilizing a graph traversal algorithm. Also, the
mutants of ESG models are obtained from original ESG on
which to apply insertion, replace, and omission mutation
operators. Finally, the test suite is executed on all mutant
models to calculate the mutation score for measuring the
quality of the test suite.

During our study whose design is described above, we will
briefly compare these models and present their advantages and
disadvantages. After creating test sequences from the ESG
model, we will demonstrate how to apply model-based test
execution into the model to test the system. We will use
ISELTA [23] website’s forms inside the case study of our
approach to show the results.

IV. DISCUSSION

A. Expected results and implications

We aim to provide an end to end model-based test
generation and execution approach of the example system
(ISELTA website form) that we present in this paper. A
unified model (ESG) that is generated from other models or
provided directly will be the main input of this approach.
Algorithms to make conversions possible will be presented in
the study. With this, a unified test generation approach will be
studied by using the unified ESG model. The quality of the
test suite that is generated from the test generation approach
will be evaluated by utilization of mutation testing. We expect
these efforts will make model-based testing more available to
a broader mass of people who are working in the GUI testing
field of Software Engineering. Depending on the quality of the
approach, the existing models of the systems can use this
approach by converting their model representations to the
ESG and hence the applying the end to end test generation and
execution approach would be the best outcome of our study.
Another possible expected result would be to show the
software testing community about the ease of usage of model-
based testing and its evaluation.

Fig. 5: The overview of the proposed approach

B. Threats to validity

I. Conclusion Validity
The sample size of our case study is a potential threat to

generalize the methodology. We need large size of case
studies for each model (FSM, HFSM, EFG, ESG, RE) to
validate the approach and find any potential problem that we
might miss due to the small size of our sample. We plan to
extend our work with bigger test cases to cope with this
potential problem. This will let us find issues when the sample
size similar in size to real-life systems.

II. Internal Validity
The nature of model-based testing is a threat to internal

validity because the entire approach runs on models rather
than the actual GUI program. It's not possible to fully cover
and test a system with model-based testing as if running tests
in the software code with a white box testing approach. A
model is just a representation and description of the actual
software behavior. Depending on the complexity of the
software under test, creating a correct model to represent the
system properly might be hard. Hence, the correctness of the
initial model of the system is important and it is a threat to our
approach. If a model represents the system in the wrong way,
all conversions and test generation/execution approach will
not cover the system as it should be. We will create our models
for an example system to make sure the proposed approach
can be applied in appropriate models that fully represent the
system.

III. External Validity
Applying the approach outside of context is a threat to

external validity. Current work aims to detect functional and

operational faults rather than other types of faults such as
visual attributes and their semantics as mostly used in GUI of
games. This is related to what model-based testing is created
for. Since models functionally represent systems, wanting to
test a system's visual elements on the screen might not be
suitable for the approach. Normally, a white box code-based
testing approach might be more suitable for these kinds of
validations. However, when sequential and behavioral models
used in a testing method rather than Petri-Nets modelling, this
proposed approach is practicable.

IV. Construct Validity
Conversion of the models to the ESG model may result in

a threat to construct validity due to their different expressive
powers. After conversion, we increase or decrease their
expressiveness to the unified model’s expressive power that
might result in missing functionalities. This needed to be
tested with bigger sample size and with different cases to
understand in what level this expressive power might be lost
during the conversion. As we mentioned before, we plan to
extend our work with bigger sample sizes to cope with this
issue to prevent the loss of expressive power beyond a
reasonable point.

V. CONCLUSION

We aim to analyze well-known models in GUI testing in
the current work whose design is given in this paper. The
initial analysis shows that the utilization of different models
requires distinct abilities and results in different syntax and
semantics. These differences affect abilities of the models
with respect to representing systems and further processes
such as test generation and test execution. Based on our

experiences, ESG stands out as the most suitable of these
models in terms of both test generation and test execution.
This is the main reason for choosing ESG in the proposed
approach.

In the proposed approach, these models will be converted
automatically to unified ESG in the test preparation step and
then test sequences will be generated from ESG in the test
generation step. Finally, the generated test sequences will be
executed on mutants of the ESG model to evaluate quality of
test sequences. With this, we will have the ability to use its
advantages for our model-based test generation and
implementation process, which potentially will have
capabilities to be upgraded as needed in the future work.
Studying test generation and execution on different
implementations hold us to improve our processes with future
studies because the model-based testing is segmented with
different efforts on these different models. A system can be
modelled directly with ESG or can be converted from other
models to broaden our reach in the model-based testing area.
One of our goals for the future is that existing systems that are
modelled with present models (FSM, HFSM, EFG, etc.) can
benefit from our study and test their system with our model-
based test generation and execution process.

REFERENCES

[1] Banerjee, Ishan, Bao Nguyen, Vahid Garousi, and Atif Memon.
"Graphical user interface (GUI) testing: Systematic mapping and
repository." Information and Software Technology 55, no. 10 (2013):
1679-1694.

[2] R.K. Shehady, D.P. Siewiorek, A method to automate user interface
testing using variable finite state machines, in: Proceedings of the 27th
Annual International Symposium on Fault-Tolerant Computing (FTCS
1997), IEEE Computer Society, Washington, DC, 24–27 June, 1997,
pp. 80–88.

[3] Chow, T. S. (1978). Testing software design modeled by finite-state
machines. IEEE transactions on software engineering, (3), 178-187.

[4] L. White, H. Almezen, Generating test cases for GUI responsibilities
using complete interaction sequences, in: Proceedings of the 11th
International Symposium on Software Reliability Engineering (ISSRE
2000), IEEE Computer Society, Washington, DC, 2000, pp. 110–121.

[5] Belli, F., Finite state testing and analysis of graphical user interfaces.
Software Reliability Engineering, 2001. ISSRE 2001. Proceedings.
12th International Symposium on. IEEE, (2001).

[6] A.M. Memon, M.E. Pollack, M.L. Soffa, Hierarchical GUI test case
generation using automated planning, IEEE Trans. Software Eng. 27
(2) (2001) 144–155.

[7] Memon, Atif M. "An event‐flow model of GUI‐based applications for
testing." Software testing, verification and reliability 17.3 (2007): 137-
157.

[8] Q. Xie, A.M. Memon, Using a pilot study to derive a GUI model for
automated testing, ACM Trans. Software Eng. Methodol. 18 (2)
(2008), 1–35.

[9] S. Huang, M.B. Cohen, A.M. Memon, Repairing GUI test suites using
a genetic algorithm, in: Proceedings of the 2010 3rd International
Conference on Software Testing, Verification and Validation (ICST
2010), IEEE Computer Society, Washington, DC, 6–10 April, 2010,
pp. 245–254.

[10] Belli, F., Beyazit, M., Güler, N., Event-Oriented, Model-Based GUI
Testing and Reliability Assessment—Approach and Case Study.
Advances in Computers, 85, 277-326, (2012).

[11] Banerjee, Ishan, Bao Nguyen, Vahid Garousi, and Atif Memon.
"Graphical user interface (GUI) testing: Systematic mapping and

repository." Information and Software Technology 55, no. 10 (2013):
1679-1694.

[12] Belli, Fevzi, Mutlu Beyazıt, Christof J. Budnik, and Tugkan Tuglular.
"Advances in model-based testing of graphical user interfaces." In
Advances in Computers, vol. 107, pp. 219-280. Elsevier, 2017.

[13] Belli, Fevzi, Nevin Güler, and Michael Linschulte. “Layer-centric
testing.” FERS-Mitteilungen: Vol. 30, No. 1 (2012)

[14] Memon, Atif M., Mary Lou Soffa, and Martha E. Pollack. "Coverage
criteria for GUI testing." Proceedings of the 8th European software
engineering conference held jointly with 9th ACM SIGSOFT
international symposium on Foundations of software engineering.
2001.

[15] Memon, Atif M. "GUI testing: Pitfalls and process." Computer 8
(2002): 87-88.

[16] Chow, Tsun S. "Testing software design modeled by finite-state
machines." IEEE transactions on software engineering 3 (1978): 178-
187.

[17] Lee, David, and Mihalis Yannakakis. "Principles and methods of
testing finite state machines-a survey." Proceedings of the IEEE 84.8
(1996): 1090-1123.

[18] Fujiwara, S., Bochmann, G. V., Khendek, F., Amalou, M., &
Ghedamsi, A. (1991). Test selection based on finite state models. IEEE
Transactions on software engineering, (6), 591-603.

[19] Utting, Mark, Alexander Pretschner, and Bruno Legeard. "A taxonomy
of model‐based testing approaches." Software testing, verification and
reliability 22.5 (2012): 297-312.

[20] Belli, Fevzi. "Finite state testing and analysis of graphical user
interfaces." Proceedings 12th international symposium on software
reliability engineering. IEEE, 2001.

[21] Belli, Fevzi, Mutlu Beyazit, and Atif Memon. "Testing is an event-
centric activity." 2012 IEEE Sixth International Conference on
Software Security and Reliability Companion. IEEE, 2012.

[22] Hopcroft, John E., Rajeev Motwani, and Jeffrey D. Ullman. Automata
theory, languages, and computation." International Edition 24.2.2
(2006).

[23] ISELTA website, Available online: http://iselta.ivknet.de

[24] Kilincceker, O., Silistre, A., Challenger, M., & Belli, F. (2019, July).
Random test generation from regular expressions for graphical user
interface (GUI) testing. In 2019 IEEE 19th International Conference on
Software Quality, Reliability and Security Companion (QRS-C) (pp.
170-176). IEEE.

[25] Mercan, G., Akgündüz, E., Kılınççeker, O., Challenger, M., & Belli, F.
(2018). Android uygulaması testi için ideal test ön çalışması. CEUR
Workshop Proceedings.

[26] Kilincceker, O., & Belli, F. (2017). Grafiksel kullanıcı arayüzleri için
düzenli ifade bazlı test kapsama kriterleri. CEUR Workshop
Proceedings.

[27] Kilinccceker, O., Turk, E., Challenger, M., & Belli, F. (2018, July).
Regular expression based test sequence generation for HDL program
validation. In 2018 IEEE International Conference on Software
Quality, Reliability and Security Companion (QRS-C) (pp. 585-592).
IEEE.

[28] Kilincceker, O., Turk, E., Challenger, M., & Belli, F. (2018, April).
Applying the Ideal Testing Framework to HDL Programs. In ARCS
Workshop 2018; 31th International Conference on Architecture of
Computing Systems (pp. 1-6). VDE.

[29] Kilincceker, O., & Belli, F. (2019, November). Towards Uniform
Modeling and Holistic Testing of Hardware and Software. In 2019 1st

International Informatics and Software Engineering Conference
(UBMYK) (pp. 1-6). IEEE.

[30] Kilincceker, O., & Belli, F. (2019, November). Towards Uniform
Modeling and Holistic Testing of Hardware and Software. In 2019 1st

International Informatics and Software Engineering Conference
(UBMYK) (pp. 1-6). IEEE.

