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Abstract—For eye tracking applications in Human Robot Collab-

oration (HRC), it is essential for the robot to be aware of where

the human gaze is located in the scene. Using feature detectors

and feature descriptors, the human gaze can be projected to

the image from which robot could know where a human is

looking at. The motion that occurs during the collaboration

may affect the performance of the descriptor. In this paper, we

analyse the performance of SIFT, SURF, AKAZE, BRISK and

ORB feature descriptor in a real scene for eye tracking in HRC

where different variances co-exist. We use a robotic arm and

two cameras to test the descriptors instead of directly testing

on eye tracking glasses in order that different accelerations can

be tested quantitatively. Results show that BRISK, AKAZE and

SURF are more favourable considering accuracy, stability and

computation time.
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I. INTRODUCTION

In computer vision, feature detectors and descriptors are

used to find interesting points in two images and match

the detected features to establish correspondence. Numerous

feature descriptors have been proposed in the past. SIFT (Scale

Invariant Feature Transform) [1] [2] and SURF (Speed Up

Robust Feature) [3] are among the most well known robust

feature descriptors. More recent work includes ORB (Oriented

FAST and Rotated BRIEF) [4], AKAZE (Accelerated-KAZE)

[5], BRISK (Binary Robust Invariant Scalable Keypoints) [6]

and FREAK (Fast Retina KeyPoint) [7]. Various applications

of detectors and descriptors include tracking [8] [9], SLAM

(Simultaneous localisation and mapping) [10] and eye tracking

for Human-Robot Collaboration (HRC). In [11], FREAK is

used to project gaze into a stationary coordinate system in

robotic eye-hand coordination. In [12], the authors use FAST

(Features from Accelerated Segment Test) [13] and HOG

(Histograms of Oriented Gradients) [14] to compensate the

effects of head movement with respect to gaze in a Human-

Robot shared manipulation.

Eye tracking glasses provides the human gaze information

and scene image, where human is looking. In lots of cases

robots also acquire visual information from a camera to

perform tasks like pick and place. In an eye tracking based

HRC scenario, it is also important for the robot to know where

human is looking at in the world. Using feature descriptor,

the gaze point can be projected from the image acquired

from eye tracking scene camera to the image acquired from

the robot camera. Therefore robot could know the human

gaze in the world. To use feature descriptor for eye tracking

based HRC, invariance is an important factor. During the

collaboration, a human may move head or body while wearing

eye tracking glasses which means the image from eye tracking

glasses will have scale, rotation and viewpoint changes. The

variances also exist between the eye tracking glasses and the

robot camera. Furthermore, also due to the human movement,

a fairly high accuracy of feature descriptor under motion

becomes essential. And the computation speed of the feature

descriptor is certainly another factor to consider, especially for

real time requirement.

Several evaluation works on descriptors have been carried

out. In [15], authors compared feature descriptors on a dataset

contains images with artificially introduced variances and

motion blur. They concluded that GLOH (Gradient Location

and Orientation Histogram) and SIFT outperforms other tested

descriptors in their experiments. Some more recent descrip-

tors, BRISK, BRIEF (Binary Robust Independent Elementary

Features) [16] and ORB are analysed in [17] with same

dataset. BRISK has better performance when rotation and

scale changes both exist. BRIEF has slightly more desirable

performance. Also in [18], the authors compared eight descrip-

tors with different scale, rotation, viewpoint and illumination

conditions. BRISK and FREAK perform almost equally well

for scale invariance. SIFT and ORB have the best results

for rotation invariance test. SIFT, SURF, FREAK and BRISK

have similar results for viewpoint changing test. All of them

perform better when the viewpoint change is small. The

performance decreases with the increasement of viewpoint

difference.

In real world cases, the complexity of the scene is se-

riously increased. All the variances mentioned before may

happen simultaneously as indicated in Fig.1. Although a lot of

evaluation work has been done previously, it is still tricky to

simply select one ”best” descriptor for real world application

based on the evaluation work on datasets. The comparison

work of descriptors specifically for eye tracking based HRC

is also less explored. Thus in this paper, we evaluate and

analyse the performance of SIFT, SURF, AKAZE, BRISK

and ORB during motion in a real scenario where different



types of variances exist at the same time. We use a RGB

camera to replace the eye tracking glasses for convenience and

we use a robotic arm to carry out experiment with different

acceleration. The paper is organised as follows: In section II, a

brief description of tested descriptors and how they are applied

for eye tracking based HRC is given. Section III describes the

setup of experiment and evaluation criteria. In section IV and

V, experimental results are discussed.

II. FEATURE DESCRIPTOR

Feature descriptors can be categorised into two categories

namely floating point descriptor and binary descriptor. SIFT

and SURF are floating point descriptors, AKAZE, ORB and

BRISK are binary descriptors. These descriptors and applica-

tion in eye tracking based HRC are explained briefly in this

section.

A. Floating Point Descriptor

SIFT creates a 16 × 16 kernel region around a keypoint

and this region is further divided into 4 × 4 sub kernels. For

each sub kernal, its orientation histogram is calculated. All

orientation histograms form a vector to describe the keypoint

feature.

SURF is designed to increase the speed of SIFT. A kernel

whose size is 20 times larger than the keypoint scale is con-

sidered. It is divided into 4×4 sub kernels. In each sub kernel,

Haar wavelet response in x direction (dx) and y direction(dy)

is calculated and a vector v = (Σdx,Σdy,Σ|dx|,Σ|dy|)
represents sub kernel. All vectors of sub kernels form the

keypoint descriptor.

B. Binary Descriptor

AKAZE is the accelerated version of KAZE [19] feature

descriptor. It uses a Modified-Local Difference Binary (M-

LDB) descriptor. LDB [20] calculates the average intensity,

gradient in x and y direction of same sized sub regions within

an image patch and compares them between subregion pairs.

For a rotated image patch, the sub regions are also rotated

by using the estimated orientation of keypoint in KAZE and

sub-sample the area of sub regions for binary test.

ORB makes improvement based on BRIEF descriptor.

BRIEF performs intensity binary test on pixels in an image

patch. ORB includes the orientation of keypoints to the binary

test to make it invariant to rotation.

BRISK uses its unique sampling pattern around a keypoint

to calculate the intensity of point pair and the local gradient.

Local gradient is used to get rotation information and all the

point pairs whose distance is smaller than a threshold form

the descriptor.

C. Application in Eye Tracking

Eye tracking glasses are usually equipped with eye cam-

era(s) and a scene camera. Eye camera(s) are used to capture

eye images to estimate gaze point and other eye activities(e.g.

fixation). Scene camera captures the image of the world. Gaze

point is represented as point gs = (x, y) in the image captured

by scene camera Is. Robot uses another camera to get the

location information of objects in a scene. If the gaze point

gs could be projected to the image of robot camera Ir, then

the robot will know where a human being is looking at in the

world. For the keypoints obtained by feature detector in Is
and Ir, their correspondence keypoints fs and fr are used to

calculate the homography matrix H between Is and Ir. From

a sequence of images Is ...I
n
s and Ir ...I

n
r , the gaze point is

projected by

gir = Hig
i
s, 0 < i < n (1)

where gir is the projected gaze at ith robot image, gis is gaze

point on Iis and Hi is ith homography matrix.

III. EXPERIMENT SETUP AND EVALUATION

A. Experiment Setup

In order to evaluate the effects of the motion to eye tracking

glasses quantitatively, a robotic arm is used instead of directly

testing with eye tracking glasses. The motion change can be

set via robot controller. For the purpose of convenience, we

use a RGB camera to instead of the scene camera of the eye

tracking glasses. The scene camera is mounted on the end

effector of robot. A second camera (robot camera) observes

the same scenario without movement. The setup of the robot

and camera is shown in Fig. 2a. The robotic arm makes

angular movement around the z-axis for 15°. The velocity

is set to 100°/s. 3 different accelerations, 50°/s2, 100°/s2

and 150°/s2, are tested with the same angular movement. The

angular motion is repeated ten times for each acceleration.

All the descriptors are implemented with OpenCV (Open

Source Computer Vision Library). The default feature detec-

tors for descriptors in OpenCV are used. Tuning parameters of

detectors and descriptors will lead to different performance, we

keep default parameter settings in our experiment. The image

sizes are 480× 360 and 720× 405.

In order to verify the projected gaze point intuitively, we use

an object in the scene as reference. As indicated in Fig. 2b and

2c, the green blocks detected are drawn with white bounding

box. This could be interpreted as gaze point is located on the

block all the time. The projected gaze point gr thus is replaced

by the projected bounding box. In a sequence of the images

of the moving scene camera Is ...I
n
s , the bounding boxes are

projected to the images of the robot camera Ir ...I
n
r using

Bi
r = HiB

i
s, 0 < i < n (2)

where Hi is homography matrix at ith image, Bi
s is the

bounding box from ith scene image and Bi
r is the projected

bounding box on robot image. The detected bounding boxes

Bi
g in robot images are considered as ground truth.



Fig. 1: An example of a sequence of images with viewpoint change during a camera movement. The viewpoint change from

left image to right image is 15° and acceleration is 100°/s2.

(a) Experimental setup. (b) An image taken from the scene camera. (c) An image taken from the robot camera.

Fig. 2: (a): The RGB camera attached on the robot end effector is the replacement of the scene camera of eye tracking glasses.

The camera on the right is the robot camera which observes the world. (b) and (c) are the example images taken from the

scene camera and robot camera respectively. The detected bounding boxes are drawn in white and the projected one is drawn

in red.

B. Evaluation Criteria

To evaluate the accuracy of the projected data, we first

calculate the ratio of the overlapping area of the bounding

box Br and Bg,

O =
α(Br) ∩ α(Bg)

α(Br) ∪ α(Bg)
(3)

where α(B) is the area of bounding boxes. For a sequence

of calculated overlapping ratio O = {O...On},

C(Oi, B
i
s, B

i
r) =











True Positive if Oi > T

False Postive if Oi ≤ T

False Negative Bi
s 6= 0 ∩Bi

r = 0

(4)

where C is classifier function, T is threshold value and 0 <
i < n. T can be set to different values [21], we use 0.6 for out

experiment. The F1 score is used to evaluate the projection,

Precision =
True Positive

True Positive + False Positive
(5)

Recall =
True Positive

True Positive + False Negative
(6)

F1 = 2×
Precision × Recall

Precision + Recall
(7)

To better evaluate the performance during motion, the over-

lapping areas at the motion start position and end position are

taken into account. Since different detectors and descriptors

have different performances even at the same viewpoint, a

better understanding of the effect of motion could be obtained

by also considering the performance during standstill. The

standstill overlapping area ratio at start position Ostart is

obtained by (3). The standstill overlapping area ratio at the

end position Oend is calculated in the same way. They are

considered as the baseline with respect to Omotion, which is

the overlapping area ratio during motion.

To evaluate the speed of the descriptor, average process time

of feature detector and descriptor and the frame loss rate l is

used,

l = 1−
Np

Nc

(8)

where Np is the number of images processed during the

motion and Nc is the number of images captured during the

motion.

IV. RESULT

Fig. 3 shows the F1 score of all descriptor used in the

experiment and Table I gives the recall. When the camera

is standing still at the start and end position, all descriptors

have high F1 values. It is desirable that the bounding box is

accurately projected. With motion introduced, the F1 scores

drop significantly which suggests that motion has a huge im-

pact on the distinctiveness. Fig. 4 shows the overlapping ratio



of descriptors in both standstill and motion. All descriptors

have a comparable overlapping ratio when the scene camera

is standstill at start and end position, which is consistent with

the observation from Fig. 3. The median of overlapping ratios

is around 0.7. AKAZE, BRISK and SIFT are more stable

than others. All the descriptors are affected by the motion.

With the increasing acceleration, the overlapping ratio drops in

general and becomes more unstable. One exception is AKAZE

at accelaretion= 50°/s2, it still has comparable result to the

standstill case but slightly less stable. ORB is severely affected

by the motion. AKAZE is affected least among all descriptors.

SURF and BRISK is less sensitive towards the change in

acceleration.

Table II indicates the loss rate of descriptors and average

process time of feature detection and description. ORB and

BRISK can potentially meet the real-time requirement. Reduce

image resolution could decrease the processing time, but a

more promising solution is to use GPU accelerated detector

and descriptor to achieve real-time performance [9] [22].

In a HRC scenario, when there is no head or body movement

from human, all the descriptors will correctly project the

gaze. When motion occurs, the F1 score drops due to the

increasing number of False Negative and False Positive. False

Negative represents the gaze point in the scene camera of eye

tracking glasses which could not be projected to the robot

camera. As indicated in Table I, only a small amount of

False Negative presents for BRISK, ORB and SIFT during

motion. The minor loss of the projected gaze point is tolerable.

False Positive means an incorrectly projected gaze point onto

the image of robot camera. An extremely small overlapping

ratio means the projected gaze is severely distorted which

is not desired. Fig. 5 shows some examples of the distorted

bounding box in robot image. In addition, if the values of the

overlapping ratio locate in a wide range, the projected gaze

becomes very unstable, such as in Fig. 4c. This generates

high frequency noise over time. Considering both accuracy

and processing speed, BRISK, AKAZE and SURF appears to

meet the requirement better.

TABLE I: Recall

Recall AKAZE BRISK ORB SIFT SURF

start position 1.0 1.0 1.0 1.0 1.0

50°/s2 1.0 0.99 0.975 1.0 1.0

100°/s2 1.0 0.95 0.967 1.0 1.0

150°/s2 1.0 0.847 0.852 0.962 1.0

end position 1.0 1.0 1.0 1.0 1.0

TABLE II: Descriptor Loss Rate

AKAZE BRISK ORB SIFT SURF

loss rate 0.179 0.03 0.02 0.481 0.399

average
process
time (detec-
tor+descriptor
in ms)

63.06 35.69 20.79 106.39 81.85

Fig. 3: The F1 score of descriptors. For each descriptor, the F1

score at the start and end position, with acceleration 50°/s2,

100°/s2 and 150°/s2 are displayed.

(a) AKAZE (b) BRISK

(c) ORB (d) SIFT

(e) SURF

Fig. 4: The overlapping ratio of descriptors. For each descrip-

tor, the overlapping ratio at the start and end position, with

acceleration 50°/s2, 100°/s2 and 150°/s2 are displayed.

V. CONCLUSION

In this paper, we analyse the AKAZE, BRISK, ORB, SIFT

and SURF feature descriptor for application in eye tracking

based HRC. We perform the experiment in a real world

scenario where variances in scale, rotation and viewpoint co-

exist. We focus on how accurate and how fast can gaze be

projected from image of eye tracking glasses to an image of

the robot camera. BRISK, AKAZE and SURF are seemingly

more desirable than other descriptors by considering accuracy

and processing time. However, both AKAZE and SURF cannot

meet real-time requirement. Using GPU accelerated detectors

and descriptor could possibly solve the problem of computa-

tion time.



Fig. 5: Examples of incorrectly projected bounding box on robot image.
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