
This item is the archived peer-reviewed author-version of:

Application of visual servoing and eye tracking glass in human robot interaction : a case study

Reference:
Shi Lei, Copot Cosmin, Vanlanduit Steve.- Application of visual servoing and eye tracking glass in human robot interaction : a case study

23rd International Conference on System Theory, Control and Computing, (ICSTCC), OCT 09-11, 2019, Sinaia, ROMANIA - ISSN 2372-1618 - New york, Ieee,

(2019), p. 515-520 

Full text (Publisher's DOI): https://doi.org/10.1109/ICSTCC.2019.8886064 

To cite this reference: https://hdl.handle.net/10067/1743350151162165141

Institutional repository IRUA



Application of Visual Servoing and Eye Tracking

Glass in Human Robot Interaction: A case study

Lei Shi

Op3Mech

University of Antwerp

Antwerp, Belgium

lei.shi@uantwerpen.be

Cosmin Copot

Op3Mech

University of Antwerp

Antwerp, Belgium

cosmin.copot@uantwerpen.be

Steve Vanlanduit

Op3Mech

University of Antwerp

Antwerp, Belgium

steve.vanlanduit@uantwerpen.be

Abstract—Human gazes reveal a lot of information about
their intention, which could be used for intuitive Human Robot
Interaction(HRI). Using gaze as a modality to interact with
robots has huge value in increasing freedom for human. It
has a strong application potential in different domains. In this
paper, we propose a system for eye tracking based HRI with
which a human can select an object by his/her gaze and a
robot manipulator receives the intended object and waits for
the confirmation from the human before it starts the grasping
task. We use Image-based Visual Servoing (IBVS) to guide the
robot manipulator to perform the grasping automatically which
can also bring more robustness to the system. The first hand
results indicate that the use of both visual servoing features and
eye tracking technique can provide successful results in term
of human robot interaction.

Index Terms—Human Robot Interaction, eye tracking
glasses, gaze, visual servoing

I. INTRODUCTION

In the last years, Human Robot Interaction (HRI) has

drawn a lot of interests. Different kinds of modalities have

been proposed for HRI by researchers. Speech based HRI

allows human to control robot by voice commands [1] [2].

Hand and body gestures also allow human to interact with

robots. Different sensors are used to recognize gestures such

as camera [3], IMU unit [4] and wearable device [5]. Eye

tracking technology provides another modality for interacting

with robots in a wide range of applications. For instance, to

control UAV with gaze [6] [7], to control a robotics arm

[8] and in shared autonomy [9]. One of the advantages to

include eye tracking technology is the possibility to increase

freedom in the sense that, for instance, when a human is

doing a task and he or she needs to communicate with a

robot for another task, the human doesn’t have to stop the

current task and interacting with robots for the other task. In

[8], a camera is attached to a robotic manipulator to provide

image in a Laparoscopic surgery. The surgeon could control

the manipulator via eye gestures to move the camera while

he or she is still performing the surgical operation. Using eye

tracking device will also benefit the people with disability. In

[10], upper-limb rehabilitation robot is developed which al-

lows stroke patient to guide the movement of the exoskeleton

robot during a rehabilitation session.

As part of the HRI scenario, actions need to be taken

so that the robot can move. One of them is that robot

performs movements according to predefined actions. For

instance, a manipulator moves forward or backward when

it receives a command in the form of gaze gestures [8].

A robot can also calculate and plan the path according to

the destination appointed by human gaze and then move to

the destination autonomously [7]. In human robot shared

autonomy, the robot will consider the user input during

autonomous movement [9].

Visual servoing could also be used as a mean of action.

By using this technique, the robot will be kept guiding

toward the desired pose for further action by using visual

feedback. Based on the visual features used to define the

control law the servoing architectures can be classified in

two main categories named Position-based Visual Servoing

(PBVS) and Image-based Visual Servoing (IBVS). In the

case of PBVS architecture 3D information with respect to

the working environment and the visual sensor are used to

design the controller, while for the IBVS the control law is

designing using visual features (2D information) extracted

from the image. For further development in this paper, an

IBVS control structure is being considered. The main goal

of image-based visual servo is to find a control algorithm

capable to drive the robot arm so that a set of image features,

(composed of image coordinates of several Cartesian points

belonging to the tracked target) will reach the desired value.

The behaviour of any visual servoing scheme is influenced

by two main aspects: the type of image features used to

derive the control law and the form of the control law. The

most common approach to generate the control signal for the

robots is to use a classical proportional controller [11], [12].

In this paper, we propose an eye tracking based HRI

system which enables the human be able to select an object

by looking at the object and let the robot pick up the selected

object automatically. We use a mobile eye tracking device

mounted on the head of a human and a robotic manipulator

using IBVS to robustly locate the grasp position. The paper

is organized as follows: in section II, the related work is

reviewed followed by the eye tracking based HRI method

presented in section III. The experimental setup and results

are given in section IV and conclusions are presented in

section V.

II. IMAGE BASED VISUAL SERVOING CONTROL: GENERAL

ASPECTS

A. Visual Control Law

Image-based visual servoing (IBVS) is a methodology

based on the use directly the image measurements as feed-

back to control the motion of a robot. The image based error



function (expressed as the robot’s positioning task) needs to

be minimized by employing an optimal control law. Given

that the IBVS is not solving the Cartesian pose explicitly, the

accuracy of the models does not influence the performance

of the IBVS. Anuhow, as the control law is in image space,

a direct control over the Cartesian or joint space trajectory

of the robot end-effector cannot be defined.

In Fig. 1 a general schematic of an image-based control

architecture of manipulator robots with 6 degrees of freedom

is illustrated.

Fig. 1. Visual servoing architecture to control manipulator robots

The core of the architecture is represented by the image-

based controller which requires apriori information related to

the system behavior in order to minimize the error between

the current configuration of the visual features f and the

desired configuration of the features f
∗:

e = f (r(t))− f
∗ (1)

where r represents the relative position between the visual

sensor and the object. If the visual features are defined with

respect to the camera coordinate system, then the variation

of visual features induced by the movement of the camera or

movement of the objects can be correlated with the camera

velocity:

ḟ =
∂f

∂r

dr

dt
+

∂f

∂t
= Lfvc +

∂f

∂t
(2)

where ∂f
∂t

represents the time variation of the visual features

with respect to the target motion (for static object ∂f
∂t

= 0),

Lf is the interaction matrix attach to f and vc is the camera

velocity with respect to the working space.

In a case of a static object (∂f
∂t

= 0), the relationship

between the time variation of the error and the camera

velocity is given by:

ė = Lfvc (3)

The classical servoing control laws employs an exponential

decrease of the error (ė = −λe), thus the visual control law

is defined as:

vc = −λL+

f
e (4)

where L
+

f
is the Moore-Penrose pseudoinverse of Lf .

The proportional controller is very easy to implement in

IBVS applications, but the unsatisfactory behavior and the

difficulty of constraint handling are the main drawbacks.

The classical proportional control law generates a robot

motion without considering the robot workspace, the joint

limitations, or the visibility constraints. The critical issue

can be solved by using advanced control algorithms. Among

these algorithms, model predictive control had a real success

in IBVS applications.

In order to overcome the problems of proportional con-

troller, while keeping its simplicity implementation, an adap-

tive gain controller was proposed in [13]. The adaptive gain

λ(x) of the visual servoing control law is calculated using:

λ(x) = (λ0 − λ∞) e−
λs

λ0−λ∞

x + λ∞ (5)

where x = ‖e‖ is the norm of feature errors; λ0 is the

expected gain when x = 0, which represents the gain when

‖e‖ it is very close to the desired features; λ∞ is the expected

gain when ‖e‖ is towards infinity, which represents the gain

at the beginning of the visual servoing. λs is the slope of

λ when ‖e‖ = 0. Fig. 2 illustrates the calculated values of

gain λ versus the feature error with different adaptive gain

parameters. λ is low while the norm of feature error is large

and it is high while the norm of feature error is small which

means close to convergence. The advantage of adaptive gain

is that, it can avoid high output velocity at beginning of

servoing and increasing the velocity while the robot is close

to the desired pose.

Fig. 2. Lambda profiles

Starting from the idea of adaptive controller presented in

[13], an automatic tuning methodology for visual servoing

system was presented in [14]. This methodology is based on

predictive model approach to enable an automatic selection

of control parameter (the adaptive gain) for the proportional

visual control law.

B. Visual Features

The input for the visual control architecture is represented

by the visual features extracted from images acquired using

visual sensors. These visual features are of importance in

terms of performance and accuracy of the servoing system

and therefore their selection is a key aspect in visual servoing

systems. The minimum number of visual features used in the

control architecture in order to drive the movement of a robot

manipulator depends on the number of degrees of freedom of

the robot. As such is required to have a correlation between

the visual features and the motion of the visual sensor. The

most common visual features which can be employed as

input to the control architecture are geometric features.

Geometric features are: i) 2D - used to described the

geometric contend of an working area and ii) 3D - used to

perform the correlation between the coordinate axes attach to



the robot and the coordinate axes attach to the object. Both,

2D features and 3D features, can be used simultaneously in

designing the control architecture and thus a hybrid control

architecture can be obtained. The 2D visual features are

extracted from the image plane and represents the coordi-

nates of the point features, parameters that defined lines or

ellipse, regoin of interest, contours [15]. In order to extract

the point features, algorithms such as Harris operator and

SIFT descriptor can be employed.

If we consider a point feature x = (x, y)T , with:
{

ẋ = −vx/Z + xvz/Z + xyωx − (1 + x2)ωy + yωz

ẏ = −vy/Z + yvz/Z + (1 + y2)ωx − xyωy − xωz

(6)

the interaction matrix for a 2D point x of coordinates (x, y)
can be calculated by:

Lx =

[

−1/Z 0 x/Z xy − (1 + x2) y
0 − 1/Z y/Z 1 + y2 − xy − x

]

(7)

where Z is the depth of the point relative to the camera

frame.

Another type of visual features that can be used in visual

servoing applications are image moments [11], [12]. Using

image moments as visual features, significant improvements

of the performance of servoing systems occur due to the

fact that these visual features allows a general representation

of the image and also allows the description of complex

object. Another advantage of these features is that it can

be used to design decoupled servoing system and in the

same time to minimize the non-linearities introduced by the

interaction matrix. Considering the image function I(x, y) as

a probability density of a 2D random variable and assuming

that the non-zero pixel values represent the object (image

regions), the image moments mij of order (i+j) are defined

as:

mij =

∞
∫

−∞

∞
∫

−∞

xiyjI(x, y)dxdy (8)

Assuming that an object in the image I is described by a

set of n point features of coordinates (x, y) with I(x, y) = 1,

then image moments mij of order (i+ j) are defined as:

mij =

n
∑

k=1

xi
ky

j
k (9)

whereas the centered moments µij of order (i + j) are

calculated as:

µij =
n
∑

k=1

(xk − xg)
i
(yk − yg)

j
(10)

where xg = m10

m00

and yg = m01

m00

represent the coordinate of

the gravity center attached to the object.

Considering a visual servoing application, a set of image

moments fm = [xn, yn, an, γ, δ, α] can be used to design

the image-based control law. The first three components of

fm are used to control the linear components of the camera

velocity vc and are defines as:

an = Z ∗

√

a∗

a
, xn = anxg, yn = anyg (11)

where Z∗ is the desired depth between the visual sensor

and the desired configuration, a = µ20 + µ02 is the object

area [12] and a∗ is the desired object area.

The angular camera velocities are controlled using the last

three components of fm which are calculated as [12]:

γ =
In1
In3

, δ =
In2
In3

, α =
1

2
arctan

(

2µ11

µ20 − µ02

)

(12)

where

In1 = (µ50 + 2µ32 + µ14)
2 + (µ05 + 2µ23 + µ41)

2

In2 = (µ50 − 2µ32 − 3µ14)
2 + (µ05 − 2µ23 − 3µ41)

2

In3 = (µ50 − 10µ32 + 5µ14)
2 + (µ05 − 10µ23 + 5µ41)

2

(13)

The analytical form of the interaction matrix for the

general case is given in [6]. For the discrete case the

time derivative of image moments µij is obtained from

differentiation of (2):

µ̇ij =
n
∑

k=1

i(xk − xg)
i−1

(yk − yg)
j
(ẋk − ẋg)

+j(xk − xg)
i(yk − yg)

j−1(ẏk − ẏg)
(14)

Using (14), the interaction matrix of the centred moments

µij is obtained

Lµij
= [µvx µvy µvz µωx µωy µωz] (15)

The detailed structure of the parameters from previous equa-

tion can be found in [12]. The interaction matrix Lfm for a

set of image moments fm can be calculated as:

Lfm=

























−1 0 0 ane11 −an(1 + e12) yn
0 −1 0 an(1 + e21) −ane11 −xn

0 0 −1 −e31 e32 0
0 0 0 γωx γωy 0
0 0 0 δωx δωy 0
0 0 0 αωx αωy −1

























(16)

The components of the interaction matrix are calculated as

described in [12].

III. EYE TRACKING BASED HRI

Fig. 3 indicates the scene of the HRI. The human is

wearing a pair of eye tracking glasses which has a camera

to observe the world. A manipulator robot is equipped

with a camera which is attached to the end effector of the

manipulator. Both the human and the robot are observing the

same scene. A human will assign an object for the robot by

looking at it and the robot will pick up the object.

Eye gaze contains a lot of information about the hu-

man intention. One approach to model the human in-

tention is classifying raw gaze data into different gaze

events. The simplest classification will recognize Fixation

and Saccade. The most common algorithms to identify

fixation include Velocity-Threshold Identification(I-VT) and

Dispersion-Threshold Identification(I-DT) [16]. I-DT classi-

fies the fixation based on the location of the gaze point. For

a set of consecutive gaze points, the dispersion, which is the

sum of the maximum differences of the coordinates of the

gaze points in x and y direction, is calculated. A fixation

event f is considered recognized if the total dispersion is



Fig. 3. Overview of the an eye tracking based HRI scenario.

below the dispersion threshold, otherwise it is not considered

as a fixation. I-VT simply detect fixation events according

to the velocity of the gaze. It is based on the characteristic

that the gaze velocity during a saccade is much higher than

the velocity during a fixation. A velocity threshold is used

to classify fixation and saccade.

More recently, other approaches are proposed to detect eye

movement events. In [17], Bayesian Decision theory is used

to detect fixation, sacadde and smooth pursuit on the basis

that the three events have different gaze velocity patterns.

Machine learning is another track of research for identifying

eye movement events. In [18], random forest algorithm is

used by the authors to identify different gaze events including

fixation and saccade with different gaze data acquired by

different device fps and with different noise levels.

In [19], the authors propose a solution to infer the car

driver’s intention during driving. They assume that the

driver’s intention always locates on one of the detected

interesting points in the scene and they use Markov Random

Field as inference model which considering both current and

past gaze points and interest points. An energy function is

built so that the intention is referred by minimizing it.

IV. EXPERIMENT AND RESULT

This section presents the experimental results that were

conducted in order to illustrate the synergy between the

eye tracking glass and visual servoing in the context of

HRI . In the conducted experiments, a mobile eye tracking

device for eye tracking system was used. I-DT is used for

detecting fixations, all other eye movements are considered

as saccades. An object in the scene is selected if the gaze

is fixating within the bounding box of the object. After the

object is selected, the robot manipulator uses IBVS to go to

the pose for grasping.

Pupil Labs eye tracking glasses [20] is used for eye

tracking, while for I-DT fixation detection the algorithms

implemented by Pupil Labs were considered. The object

manipulation is done using a Universal Robot UR10 [21] and

the visual servoing task is implemented using the adaptive

control law presented in [22]. In order to communicate with

the UR10 robot, the Robotics System Toolbox of Matlab®

and the ROS platform were used.

Fig. 4 shows the results of selecting the object by fixation.

On the left is the image acquired by the scene camera of eye

tracking glasses. The yellow circle represents the gaze point.

On the right is the image captured from the camera mounted

on the end effector of the manipulator. The green solid circle

represents the projected gaze from the image on the left and

the green bounding box represents the detected object.

Fig. 5 shows the feature errors of the IBVS. The IBVS

starts when an object is selected and it takes 290 iterations

for the errors to converge. Fig. 6 shows the camera output

velocity, the translational camera velocity and the rotational

camera velocity.

V. CONCLUSION

In this paper the hypothesis of using eye tracking based

HRI to send a command to the robot to execute a certain

task was presented. The idea is that the human can select

an object by his/her gaze then the information is received by

the manipulator robot and once the human confirms the robot

can take action and grasp the selected object. To achieve the

goal of our investigation the image based visual servoing

technique has been employed. The first hand results indicate

that the use of both visual servoing features and eye tracking

technique can provide successful results in terms of human

robot interaction.
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