
This item is the archived peer-reviewed author-version of:

Unbiasedness and efficiency of non-parametric and UMVUE estimators of the probabilistic index and

related statistics

Reference:
Verbeeck Johan, Deltuvaite-Thomas Vaiva, Berckmoes Ben, Burzykowski Tomasz, Aerts Marc, Thas Olivier, Buyse Marc, Molenberghs Geert.- Unbiasedness

and efficiency of non-parametric and UMVUE estimators of the probabilistic index and related statistics

Statistical methods in medical research: an international review journal - ISSN 0962-2802 - 30:3(2021), p. 747-768 

Full text (Publisher's DOI): https://doi.org/10.1177/0962280220966629 

To cite this reference: https://hdl.handle.net/10067/1747920151162165141

Institutional repository IRUA



Verbeeck et al. 1

Unbiasedness and

efficiency of

non-parametric and

UMVUE estimators of

the probabilistic index

and related statistics

Journal Title

XX(X):3–42

c©The Author(s) 2020

Reprints and permission:

sagepub.co.uk/journalsPermissions.nav

DOI: 10.1177/ToBeAssigned

www.sagepub.com/

SAGE

Johan Verbeeck1, Vaiva Deltuvaite-Thomas2, Ben Berckmoes3,

Tomasz Burzykowski1,2, Marc Aerts1 , Olivier Thas1,4,5, Marc

Buyse 2,6 and Geert Molenberghs1,7

Prepared using sagej.cls



Abstract

In reliability theory, diagnostic accuracy, and clinical trials, the quantity

P (X > Y ) + 1/2P (X = Y ), also known as the Probabilistic Index

(PI), is a common treatment effect measure when comparing two

groups of observations. The quantity P (X > Y )− P (Y > X), a

linear transformation of PI known as the net benefit, has also

been advocated as an intuitively appealing treatment effect measure.

Parametric estimation of PI has received a lot of attention in the past

40 years, with the formulation of the Uniformly Minimum-Variance

Unbiased Estimator (UMVUE) for many distributions. However, the

non-parametric Mann-Whitney estimator of the PI, is also known

to be UMVUE in some situations. To understand this seeming

contradiction, in this paper a systematic comparison is performed

between the non-parametric estimator for the PI and parametric

UMVUE estimators in various settings. We show that the Mann–

Whitney estimator is always an unbiased estimator of the PI with

univariate, completely observed data, while the parametric UMVUE

is not when the distribution is misspecified. Additionally, the Mann-

Whitney estimator is the UMVUE when observations belong to an

unrestricted family. When observations come from a more restrictive

family of distributions, the loss in efficiency for the non-parametric

estimator is limited in realistic clinical scenarios. In conclusion, the

Mann-Whitney estimator is simple to use and a reliable estimator for

the PI and net benefit in realistic clinical scenarios.

Keywords

Completeness, Relative efficiency, Net benefit, Probabilistic Index,

UMVUE, Unbiased, Wilcoxon–Mann–Whitney.
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Verbeeck et al. 3

1. Introduction

In randomized clinical trials, much attention has been paid to measures

of treatment effect that use all pairwise comparisons between the two

groups of observations. These measures derive from the Mann-Whitney

formulation of the Wilcoxon test, in which the observations of a

continuous variable in a new treatment group (X) are paired with the

observations of the same variable in a reference treatment group (Y )1,2.

Using such pairwise comparisons, a natural measure of treatment effect

is the probability that the response of a random subject given the new

treatment is better than the response of a random subject given the

reference treatment, P (X > Y ) + 1/2P (X = Y )3,4. This measure, called

probabilistic index (PI) by Acion et al.5, has received various names

in the literature, depending on the field of application, including the

probability of a superior outcome6, concordance index c7, proportion of

similar responses6, among others8–11. The PI is extensively studied in

stress-strength models in reliability theory8,12,13 and Receiver Operating

Characteristics (ROC) curve analysis in diagnostic accuracy7,14. Recently,

the PI has gained renewed interest in medical applications15, and models

have been proposed for this measure16. Another closely related measure,

P (X > Y )− P (Y > X), called the net benefit, was proposed by Buyse17
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and advocated as a clinically meaningful and versatile treatment effect

measure18–20. This measure is the probability that the response of a

random subject given the new treatment is better than the response of a

random subject given the reference treatment, minus the probability of

the opposite situation. The advantage of this measure is that it does not

contain 1/2P (X = Y ). In diagnostic accuracy, this measure is known as

Somers’ D21. In the remainder of our paper, we will focus on the PI, given

the extensive literature on this measure, but all the developed results apply

to any linear transformation of the PI, including the net benefit.

In order to estimate the PI, both parametric and non-parametric

statistics have been proposed12. Since it was observed that a parametric

maximum likelihood estimator can be biased, several authors derived

the optimal uniformly minimum-variance unbiased estimator (UMVUE)

for many types of distributions of the observations12,22, including the

normal distribution23, the exponential distribution24,25, and the Poisson

distribution26.

On the other hand, a non-parametric estimator for the PI was proposed

by Mann and Whitney1. Consider two samples of observations Xi, . . . , Xn

and Yj, . . . , Ym (i = 1, . . . , n and j = 1, . . . ,m), with outcome vectors X

and Y . Additionally, consider the function h(Xi, Yj), which maps a pair

of observations, one observation of each group, to a score Uij , according

to the scoring algorithm:

h(Xi, Yj) = Uij =





1 Xi > Yj,

0 Xi < Yj,

1/2 otherwise.

The Mann–Whitney statistic is the sum of the Uij scores:

ÛXY =
n∑

i=1

m∑

j=1

Uij,
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Verbeeck et al. 5

and the PI is then estimated by:

P̂ Ie =
ÛXY

nm
=

1

nm

n∑

i=1

m∑

j=1

Uij, (1)

which is, additionally, a generalized U-statistic27.

While this non-parametric Mann–Whitney estimator of the PI does

not make any assumption about the distribution of the observations and

is thus generally applicable, it may be less efficient than a parametric

UMVUE. Despite the rich literature on the PI, however, this potential loss

in efficiency has not been formally evaluated.

Interestingly, several sources prove the unbiasedness, sufficiency, and

completeness for the Mann–Whitney statistic28,29. This suggests, upon

applying the Lehmann–Scheffé30,31 and Rao–Blackwell theorem32,33, that

the Mann–Whitney estimator is also the UMVUE of the PI. Moreover,

generalized U-statistics theory27 states that a U-statistic is the UMVUE in

a sufficiently large family of distributions. In other words, it must be true

that the Mann–Whitney estimator equals at least some of the parametric

UMVUE for the PI. It is unknown, however, for which distributions of

the observations this is true.

The goal of this paper is to systematically compare the basic statistical

properties and the efficiency of the parametric UMVUE and the non-

parametric Mann–Whitney estimator for the PI in a univariate outcome

data setting, without missing or censored observations. In Section 2,

unbiasedness, sufficiency, and completeness of the parametric UMVUE

and the Mann–Whitney estimator are compared for several distributions.

Next, in Section 3, the efficiency of the Mann–Whitney estimator is

compared to the UMVUE, both in theory, where feasible, and by means

of simulation otherwise. In Section 4, the consequences of our results

Prepared using sagej.cls
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for statistics related to the PI are reviewed. Finally, both the parametric

UMVUE and the Mann-Whitney estimator are applied to a real data set in

Section 5.

2. Unbiasedness, sufficiency and completeness of the

Mann-Whitney estimator

A statistic is the UMVUE of a parameter when the statistic is an

unbiased estimator of the parameter and when the statistic is sufficient

and complete30–33. First we will evaluate the unbiasedness of the non-

parametric Mann–Whitney estimator (1) and compare it to the parametric

UMVUE of the PI. Next, we evaluate the sufficiency and completeness for

various distributions of the observations. If the UMVUE coincides with

the Mann–Whitney estimator, then the estimator in (1) is also complete

and has uniformly minimum variance. If the two estimators are different,

then the Mann–Whitney estimator is less efficient than the UMVUE.

To compute both estimators, assume Xi (i = 1, . . . , n) are independent

observations with common distribution P ∈ P and Yj (j = 1, . . . ,m) are

independent observations with common distribution Q ∈ Q. Additionally,

assume no dependence between Xi and Yj . The Mann–Whitney estimator

expressed in parameters of P and Q is then obtained by computing

the P (X > Y ) + 1/2P (X = Y ) for P and Q. The UMVUE of the

probabilistic index is obtained by taking an estimator (Kn, Lm) that is

sufficient and complete for P ×Q and by computing the conditional

expectation of the PI given the estimator:

̂UMV UE = E[1{X1>Y1} +
1

2
1{Y1>X1} | Kn, Lm].

Prepared using sagej.cls



Verbeeck et al. 7

Note that the Mann–Whitney estimator does not need any assumption for

the distribution of the observations, as P̂ Ie is distribution independent. On

the other hand, the ̂UMV UE, always requires a distributional assumption.

It is easy to see that the P̂ Ie in (1) is always an unbiased estimator of

the PI, in the sense that for all (P,Q) ∈ P ×Q

EP,Q

[
P̂ Ie

]
= PI.

Additionally, it should be clear that a parametric UMVUE estimator for

the PI is only unbiased, and thus the UMVUE, when the observations

follow indeed the assumed parametric distribution.

To evaluate the sufficiency and completeness of the Mann–Whitney

estimator, we make use of the results on the UMVUE for the PI in the

literature, which we have unified for various choices of P and Q, with

P = Q, in Appendix I. If the UMVUE = P̂ Ie, the estimator in (1) is

complete and has uniformly minimum variance over the family P ×Q
in the sense that, for any statistic T (Xi, Yj) that is unbiased for PI, it holds

for all P ∈ P and Q ∈ Q that

VarP,Q[P̂ Ie] ≤ VarP,Q[T ].

Calculations (Appendix I) show that if the family P = Q is unrestricted in

the sense that it consists of all distributions if the support is finite, or that

it consists of all absolutely continuous distributions if the support is the

entire real line, then the UMVUE = P̂ Ie and the Mann–Whitney estimator

is the UMVUE for the PI. The Bernoulli distribution is an example of

such an unrestricted family. Parametric families such as those consisting

of normal distributions or exponential distributions typically fail to be

unrestricted.

Prepared using sagej.cls
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However, if P = Q is a restricted parametric family, like, for example,

Poisson, normal, or exponential distributions, then the UMVUE in general

does not coincide with P̂ Ie, from which it follows that the Mann–Whitney

estimator cannot be complete nor sufficient.

3. Efficiency of the Mann-Whitney estimator

As shown in the previous section, whether the Mann–Whitney estimator

is the UMVUE or not depends on the assumed distribution of the

observations. The practical implication of the Mann–Whitney estimator

not being complete when observations come from certain specified

distributions, is investigated theoretically in this section and by comparing

the variances of the UMVUE and of the non-parametric estimator by

means of the relative efficiency (RE). The relative efficiency is defined

with the UMVUE in the numerator.

Theorem 1, presented in Appendix II, which holds for any assumed

distribution of the observations, shows that, when m and n are moderately

large, the extra variance of P̂ Ie on top of the variance of the UMVUE, is

negligible and vanishes with rate 1/n+ 1/m. Theorem 1 holds even if P

and Q belong to different families of distributions. In particular, for any

m,n > 1,

VarP,Q[P̂ Ie] ≤
1

4

(
1

mn
+

1

n

m− 1

m
+

1

m

n− 1

n

)
=

m+ n− 1

4mn
.

Given the invariance of Theorem 1 to the assumed distribution, it

follows that although the always unbiased Mann-Whitney estimator fails

to be the UMVUE in the restricted families of distributions, the loss in

efficiency as compared to the UMVUE, is bounded. On the other hand, the

parametric UMVUE is unbiased and the most precise estimator, only when

the observations come indeed from the specified distribution. Simulations

Prepared using sagej.cls



Verbeeck et al. 9

of 10,000 samples with sample size 200 and PI values ranging from

0.5 to 0.95 from exponential and Weibull distributions with the same

scale parameters (Figure 1) and simulations from a normal and lognormal

distribution (Figure 2) show that, in contrast to the Mann-Whitney

estimator, the parametric UMVUE is sensitive to misspecification of the

distribution.

(a) (b)

Figure 1. Average of 10,000 estimators (dot) ± standard deviation (error bars). (a) Bias and

standard deviation of the UMVUE based on an exponential distribution (Appendix I) and the

Mann–Whitney estimator for exponentially distributed simulated data (N = 200). (b) Bias and

standard deviation of the UMVUE based on an exponential distribution (Appendix I) and the

Mann-Whitney estimator for Weibull distributed simulated data with shape parameter equal to

2 (N = 200).

To quantify the loss in efficiency of the Mann–Whitney estimator when

the observations come from a particular restricted family distribution, the

relative efficiency is evaluated in this particular restricted family.

We will start with the simple setting of a univariate normal case with

known variance and treat subsequently the normal case with unknown

variance. In the univariate normal case with unit variance, the explicit

formulas for Var[UMV UE] and Var[P̂ Ie] can be derived (Appendix

Prepared using sagej.cls
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(a) (b)

Figure 2. Average of 10,000 estimators (dot) ± standard deviation (error bars). (a) Bias and

standard deviation of the UMVUE based on a normal distribution with unknown variance and

the Mann–Whitney estimator for normal distributed simulated data (N = 200). (b) Bias and

standard deviation of the UMVUE based on a normal distribution with unknown variance and

the Mann-Whitney estimator for lognormal distributed simulated data (N = 200).

III). This allows us to formulate the RE and study the properties of the

asymptotic relative efficiency (ARE). In the univariate normal case with

unit variance, the ARE equals

lim
m,n→∞

Var[UMV UE]

Var[P̂ Ie]
=

exp
[
−1

2
(µ1 − µ2)

2
]

8π
[
T
(

µ1−µ2√
2

, 1
)
− T

(
µ1−µ2√

2
, 1√

3

) ] , (2)

with T denoting Owen’s T-function34, (see Appendix IV).

From (2) it follows that if there is no treatment effect, that is if µ1 = µ2,

the ARE for the univariate normal case is maximal and equal to

ARE =
1

4
[
arctan(1)− arctan

(
1/
√
3
)] = 3

π
≈ 0.955.

Note that the ARE of the UMVUE relative to the Mann–Whitney

estimator is exactly equal to the efficiency loss of the Mann–Whitney

Prepared using sagej.cls



Verbeeck et al. 11

test relative to the t-test for normally distributed data35. With increasing

treatment effect, that is if |µ| = |µ1 − µ2| > 0, the ARE will decrease.

Thus, ARE ≤ 3/π.

Simulations of 10,000 samples (Figures 3a, 3b, and Appendix V) show

that the impact of the sample size on the RE is minimal compared to the

impact of the treatment effect. When observations come from a normal

distribution with unit variance, the RE remains, depending on the sample

size, between 83.5% and 86.5%, with a PI of 0.76 or an effect size equal to

117. In clinical trials, effect sizes are often not larger than the unit standard

deviation. In reliability studies and ROC curve analyses, the PI is however

much closer to 1, where the efficiency of the Mann–Whitney estimator

rapidly becomes very poor.

(a) (b)

Figure 3. (a) Relative efficiency of the empirical variance of the UMVUE for normally

distributed data with unknown variance versus the theoretical variance of the Mann–Whitney

estimator, with varying PI and sample size. (b) Relative efficiency of the empirical variance of

the UMVUE for exponentially distributed data versus the theoretical variance of the

Mann–Whitney estimator, with varying PI and sample size. Note that a smoothed line was

drawn through the empirical results for visual clarity.

Prepared using sagej.cls
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It is very tedious to derive the theoretical UMVUE variance for

other distributions. Therefore, we rely on simulations to evaluate the

variance and the RE in these settings. Since we are interested in a clinical

application, the distributions we focus on are distributions frequently

present in clinical data, such as a normal distribution with unknown

variance, exponential distribution, Weibull distribution, and Poisson

distribution. Varying the sample size and the PI, the variance is estimated

by the empirical variance of 10,000 samples of each combination.

In clinical trials often the variance is not known, so the evaluation of the

RE for the normal distribution is repeated, but now assuming an unknown

variance. The UMVUE for the normal case with unknown variance is

known22. With an unknown variance the RE is very stable and does not

decrease below 92%, except for values of the PI larger than 0.9 (Figure

3a, Appendix V). Neither the sample size nor the treatment effect impact

the RE much (Figure 3a, Appendix V).

The RE for exponential data is in general much lower than with normal

data and it does not exceed 78% (Figure 3b). Similar to the normal

case, the sample size does not seem to influence the RE for exponential

data, while increasing treatment effect decreases the RE (Figure 3b and

Appendix V). However, for values of the PI between 0.5 and 0.6, which

correspond to a reduction in hazard from 0 to 0.3317, the RE remains stable

between 70 and 78% (Figure 3b and Appendix V).

For the Weibull distribution the simulations could not be performed,

since calculation of the UMVUE of the PI supersedes the numerical

limitation of frequently used statistical software. The UMVUE of the

Weibull22 contains factorials, that take arguments that depend on the

sample size, but statistical software put limits on the argument that a

factorial can take. For total sample sizes of 100 observations, which

Prepared using sagej.cls



Verbeeck et al. 13

is unrealistically low for clinical trials, the numerical limit is already

surpassed. So, for observations belonging to the Weibull distribution, only

the non-parametric estimator can be used in practice for clinical trials.

When observations come from a Poisson distribution, the simulations

suffer as well from the numerical limitation for the UMVUE from total

sample sizes above 200 observations. Up until a total sample size of 200

observations, the relative efficiency follows a similar pattern as for normal

data (Appendix V).

The simulations show that the loss in efficiency for the always unbiased

Mann–Whitney estimator is limited to 30% in realistic clinical scenarios.

4. Related measures of treatment effect

Recently, measures of treatment effect related to the PI have been

suggested in the literature17,36,37. As mentioned in the introduction, the

net benefit (∆) was defined by Buyse17 as P (X > Y )− P (X < Y ). It is

a linear transformation of the probabilistic index:

∆ = 2P (X > Y )− 1.

Pocock et al.38 suggested the win ratio (Ψ), defined as P (X > Y )/P (X <

Y ). Very recently, Brunner39 proposed the success-odds, defined as

[P (X > Y ) + 1/2P (X = Y )]/[P (X < Y ) + 1/2P (X = Y )].

The proposed estimators for the net benefit and win ratio are, just

as the Mann–Whitney estimator, non-parametric statistics based on

pairwise comparisons. These estimators, however, use different functions

h(Xi, Yj), to map a pair of observations, again one observation of each

Prepared using sagej.cls
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group, to a score Uij (i = 1, .., n and j = 1, ..,m). The net benefit

estimator uses the function:

h(Xi, Yj) = Uij =





1 Xi > Yj,

−1 Xi < Yj,

0 otherwise.

The net benefit is then estimated by the following U-statistic:

∆̂e =
1

nm

n∑

i=1

m∑

j=1

Uij.

It is lineary related to the Mann–Whitney statistic (ÛXY ), and thus also to

the Wilcoxon statistic5, if X and Y are univariate and without missing or

censored data:

∆̂e = 2

(
ÛXY

nm

)
− 1. (3)

The PI ∈ [0, 1] and is centered around 1/2, while the ∆ ∈ [−1, 1] and is

centered around 0.

Alternatively, the net benefit estimator can be expressed as the

difference between two U-statistics ÛT and ÛC , where ÛT =

1/(nm)
∑n

i=1

∑m

j=1 U
T
ij and ÛC = 1/(nm)

∑n

i=1

∑m

j=1 U
C
ij , with UT

ij

equal to 1 if Uij is 1 and 0 otherwise, and UC
ij equal to 1 if Uij is −1 and 0

otherwise. Note that the non-parametric estimator of the PI for continuous

distributions equals ÛT .

An estimator of the win ratio is given by the ratio of two U-statistics ÛT

and ÛC :

Ψ̂ =

∑n

i=1

∑m

j=1 U
T
ij∑n

i=1

∑m

j=1 U
C
ij

. (4)
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Due to its linearity, the results on the basic properties and efficiency of

the Mann-Whitney estimator extend to the net benefit estimator. However,

they do not extend to a non-linear function such as the win ratio estimator.

Specifically, the win ratio statistic defined in (4) is not unbiased, because

the expectation of the win ratio is not equal to the ratio of the expectations.

The delta method approximation of the expectation of the win ratio equals

E

[
Ψ̂
]
= E

[
ÛT

ÛC

]
≈ E[ÛT ]

E[ÛC ]
− Cov[ÛT , ÛC ]

(
E[ÛC ]

)2 +
Var[ÛC ]E[ÛT ]
(
E[ÛC ]

)3 .

Hence, the win ratio is nearly unbiased only for large values of E[ÛC ].

This will only be the case when the sample size is sufficiently large and

the difference between the two sets of observations is not too large.

Inference for the net benefit can be based on its permutation

distribution17, bootstrap distribution, or on asymptotic U-statistic

theory37. Verbeeck et al.40 compared different inferential methods for the

net benefit and concluded that the exact permutation variance is a good

estimator for the variance under the null hypothesis ∆ = 0, even in very

small sample sizes. Under the alternative hypothesis, the exact bootstrap

variance is preferred. The notation ‘exact’ refers to the fact that there is a

relatively simple closed form formula for the variance of the distribution

of the Mann-Whitney or the net benefit estimators that one would obtain if

every possible permutation or bootstrap sample were considered once40.

Since the net benefit and PI are linearly related, the exact permutation and

bootstrap tests are also valid inferential methods for the PI. See Appendix

V for some simulated examples.
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5. Example

The Age Related Macular Degeneration (ARMD) trial was a random-

ized, multicentre, doubled-blind, placebo-controlled study evaluating

interferon-α versus placebo in age-related macular degeneration sub-

jects41. The disease causes progressively loss of vision in the subjects. The

progression of the disease is monitored by evaluating the visual acuity in

the subjects, which is measured in the trial by the ability of the subjects

to read lines of letters on standardized vision charts. We will evaluate

the difference between the visual acuity at 52 weeks and the baseline

visual acuity. The outcome can be expressed either by a continuous or

a binary variable. The difference in number of letters read at 52 weeks

versus baseline is the continuous outcome.

The binary outcome is obtained by assigning a negative outcome when

less letters are read at 52 weeks then at baseline and a positive outcome

when equal or more letters are read. Equal letters read is considered

positive, since there is no further degeneration of the vision.

The ARMD dataset contains 481 patients, but here we consider

only 240 patients randomized equally to interferon-α administered

subcutaneously at 6 million international units (MIU) three times a week,

or corresponding placebo. Only 195 patients are used in our analyses (90

on interferon-α, 105 on placebo) since 45 subjects did not have a visual

acuity measurement at 52 weeks. The hypothesis test is based on the exact

permutation method and the confidence interval (CI) is obtained from

the exact bootstrap method. We use the two-sided significance level of 5%.

The Mann–Whitney estimator of the PI for the continuous visual

acuity outcome is equal to 0.4135 (95%CI [0.3321,0.4950], p = 0.038),

while the parametric UMVUE based on a normal distribution of the

observations is equal to 0.4239 (95%CI [0.3449,0.5029], p = 0.059).

Thus, the non-parametric estimator suggests some harm of interferon-α
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in terms of visual acuity, while the parametric UMVUE just fails to

show a difference between interferon-α and placebo. The variance of

the parametric UMVUE is indeed smaller than the variance of the

non-parametric estimator (0.00162 respectively 0.00173), although the

difference is minimal. The net benefit estimator, obtained from the Mann–

Whitney statistic by (3), is equal to -0.1729 (95%CI [-0.0100,-0.3358],

p = 0.038). It is worth noting that the estimated value of the net benefit,

unlike for the PI, is negative, which immediately signals the negative

effect of interferon-α.

To understand the difference between the non-parametric estimator and

the parametric UMVUE, it is important to remember, that the parametric

UMVUE is based on the assumption that the data are normally distributed.

Formal tests (the p-values of Shapiro-Wilk tests for the interferon-α and

placebo arm are respectively p = 0.02 and p = 0.18) and QQ-plots (Figure

5) and boxplot of the data suggest modest deviations from normality.

Moreover, the Mann-Whitney estimator for the PI is always unbiased with

complete data. This means that the non-parametric test and estimator may

be preferred to the parametric test.

Figure 4. Box-plot for the placebo and interferon alpha arm of the contiunuous difference in

visual acuity at 52 weeks and baseline of the ARMD trial.
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Using the relationship between the PI and the difference in means (Table

1, Appendix II), a treatment difference of -4.92 letters (95%CI [-9.8, -

0.28], p = 0.038) is obtained from the Mann-Whitney estimator. The non-

parametric analysis thus shows that interferon-α significantly worsens the

mean visual acuity at 52 weeks. For comparison, a t-test, which also

assumes a normal distribution of the data, fails to detect a treatment effect,

with a difference in visual acuity of -4.30 letters (95%CI [-8.79, 0.20], p=

0.061).

(a) (b)

Figure 5. (a) Normal QQ-plot for the interferon alpha arm of the ARMD trial. (b) Normal

QQ-plot for the placebo arm of the ARMD trial.

The PI for the binary visual acuity outcome does not show any

statistically-signifcant effect of interferon-α on the visual acuity after

52 weeks (PI = 0.4683 [0.4129, 0.5236], p = 0.26). This PI is much

closer to the null value of 0.5, which reflects the loss of information

when dichotomizing the continuous outcome. This loss is clearly noted

by evaluating the number of pairs that contribute to the resulting PI.

In the continuous outcome analysis, 3819 pairs indicate a benefit for

interferon-α, 5453 pairs a better outcome for placebo, while only 178
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pairs are tied. For the binary outcome a lot more pairs are evaluated as a

tie (6554 pairs), while 1148 pairs favor interferon-α and 1748 pairs favor

placebo. The net benefit for the binary visual acuity outcome is equal

to -0.0635 [-0.1730, 0.046], p = 0.26. Interestingly, the net benefit for a

binary outcome is exactly equal to the difference in proportions between

the treatment groups17: 15.56% of patients lost at least 1 letter of visual

acuity in the interferon-α group versus 21.90% in the placebo group.

The Chi-squared test for the difference in proportions (-0.0635 [-0.1724,

0.045], p = 0.26) coincides well with the test based on the net benefit.

6. Discussion

We have studied the efficiency, unbiasedness, sufficiency, and

completeness of the non-parametric and parametric estimators for the PI

and net benefit, in the case of complete and uncensored observations. It

has been shown that when observations come from an unrestricted family

of distributions, such as the Bernoulli distribution, the non-parametric

Mann–Whitney estimator for the PI is the UMVUE. In contrast, when

observations come from a restricted parametric family of distributions,

such as a normal, Poisson, or exponential distribution, the Mann–Whitney

estimator is unbiased, but neither sufficient nor complete.

The additional variance due to the non-parametric estimator not being

complete, converges to zero with rate 1/n+ 1/m. In contrast, the

UMVUE depends on the assumed distribution and is only unbiased and

has minimal variance when the observations come from the specified

distribution. The Mann–Whitney estimator is thus robust against

misspecification of the distribution and its loss in efficiency compared to

the UMVUE is limited.
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When observations do come from the assumed distribution, the relative

efficiency of the UMVUE and the non-parametric estimator is shown to

be acceptable in common clinical scenarios, where the PI is often close

to 0.5. For reliability studies and ROC curve analyses, the efficiency of

the Mann–Whitney estimator is worse, since the PI is often much closer

to 1. When observations come from a normal or Poisson distribution and

the PI is not larger than 0.76, which corresponds to the unit effect size

(difference in means equals the standard deviation), the RE is between

85 and 95.5%. In clinical trials, an effect size is usually not larger

than the standard deviation, and thus the Mann–Whitney estimator will

generally have acceptable precision. Moreover, when the variance is

considered unknown for the normal distribution, the loss in efficiency

is not larger than 8%. When observations come from an exponential

distribution, which is linked to survival data, the reported PI is not larger

than 0.620,42–44, corresponding to a hazard reduction of 0.33. In clinical

practice, the expected hazard reduction often does not exceed 30%, for

which simulations show that the expected maximum loss in efficiency,

will be between 22-30%. Note however that the work presented here

ignores the impact of censoring.

The decision to use the UMVUE or the non-parametric estimator thus

depends on the underlying distribution, the expected treatment effect,

and the complexity of the UMVUE. The variance for the non-parametric

statistic has always the same structure, while for the UMVUE it differs per

the underlying distribution and it can be quite cumbersome to calculate.

For some distributions, such as the exponential distribution, no closed

form expression for the variance is available. In this case, the variance

can be obtained by re-sampling techniques or numerical integration.
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In practice, the variance of the Mann–Whitney estimator is estimated

and not based on a distributional assumption. Consequently, the efficiency

of the Mann–Whitney estimator will deviate minimally from the

theoretical values. In reliability and diagnostic accuracy studies, many

inferential methods have been proposed45,46 to estimate the variance

of the Mann–Whitney estimator. Due to the linearity between the net

benefit and the Mann-Whitney estimator, the exact permutation and exact

bootstrap tests are additional very precise inferential methods for the PI.

The general results on the properties of the non-parametric estimator

for the PI presented in this paper coincide with the evidence found in the

literature. The proofs that the Mann–Whitney estimator is the UMVUE

for the PI are either based on ranks28 or restricted to the Bernoulli

setting29, while in the U-statistics theory the unrestricted family setting is

exploited to prove that U-statistics are UMVUE. As such, all evidence in

the literature falls in the unrestricted family setting, where it is shown in

this paper that the non-parametric estimator is the UMVUE.

In practice, the PI or net benefit can be used in much more complex

settings than those presented here. Data may be incomplete or censored,

several outcomes may be of interest, and thresholds of clinical relevance

can be used in generalized pairwise comparisons17. The same theoretical

properties should be investigated in these more realistic scenarios to get

a full picture of the theoretical properties of the Mann-Whitney estimator

for the PI or net benefit.
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31. Lehmann E and Scheffé H. Completeness, similar regions, and unbiased estimation. ii.

Sankhya 1955; 15(3): 219–236.

32. Blackwell D. Conditional expectation and unbiased sequential estimation. Annals of

Mathematical Statistics 1947; 18(1): 105–110.

33. Rao C. Information and accuracy attainable in the estimation of statistical parameters. Bulletin

of the Calcutta Mathematical Society 1945; 37(3): 81–91.

34. Owen D. Tables for computing bivariate normal probabilities. Annals of Mathematical

Statistics 1956; 27: 1075–1090.

35. Lehmann E. Elements of Large-Sample Theory. Springer, 1999.

36. Finkelstein D and Schoenfeld D. Combining mortality and longitudinal measures in clinical

trials. Statistics in Medicine 1999; 18: 1341–1354.

37. Ramchandani R, Schoenfeld D and Finkelstein D. Global rank tests for multiple, possibly

censored, outcomes. Biometrics 2016; 72: 926–935.

38. Pocock S, Ariti C, Collier T et al. The win ratio: a new approach to the analysis of composite

endpoints in clinical trials based on clinical priorities. European Heart Journal 2012; 33:

176–182.

39. Brunner E. Success-odds: An improved win-ratio. arXiv:200209273 [statME] 2020; .

40. Verbeeck J, Ozenne B and Anderson W. Evaluation of inferential methods for the net

benefit and win ratio statistics. Journal of Biopharmaceutical Statistics 2020; DOI:10.1080/

10543406.2020.1730873.

41. Pharmacological therapy for macular degeneration study group. Interferon α-iia is

ineffective for patients with choroidal neovascularization secondary to age-related macular

degeneration. results of a prospective randomized placebo-controlled clinical trial. Archives

of Ophthalmology 1997; 115: 865–872.
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Appendix I. Explicit formulas for the PI and the UMVUE in various

univariate cases

Let A ⊂ R be a Borel set and P a family of probability measures on

A. Furthermore, X1, . . . , Xn are independent observations with law P ∈
P and Y1, . . . , Ym independent observations with law Q ∈ P , with no

dependence between Xi and Yj . Here we will derive explicit formulas for

the Probabilistic Index

PI(P,Q) = PP,Q[X1 > Y1] +
1

2
PP,Q[Y1 = X1]

and its UMVUE

UMV UE(X1, . . . , Xn, Y1, . . . , Ym)

for various choices of A and P . Table 1 summarizes all the formulas. The

calculations follow below.

The cases where P is unrestricted

We will call a family P of probability measures on A unrestricted if

a) either A = R and P consists of all absolutely continuous distributions

on A, that is the distributions with a continuous density with respect to the

Lebesgue measure on A,

b) or A is finite and P contains all probability distributions on A.
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Notice that parametric families such as those consisting of normal

distributions or exponential distributions typically fail to be unrestricted.

Throughout, we fix a Borel set A ⊂ R and an unrestricted family P of

probability measures on A.

Consider the crude statistic

T (X1, . . . , Xn, Y1, . . . , Ym) = U11,

with

U11 = 1{X1>Y1} +
1

2
1{Y1=X1}.

It is easily seen that T is unbiased for PI(P,Q).

Now consider the order statistics
(
X(1), . . . , X(n)

)
and(

Y(1), . . . , Y(m)

)
. Then, because the family P is unrestricted,(

X(1), . . . , X(n);Y(1), . . . , Y(m)

)
is complete and sufficient for the

family P × P p. 327,28 p. 37 and p. 118.

Then, the Lehmann-Scheffé theorem shows that

UMV UE(X1, . . . , Xn, Y1, . . . , Ym) =

EP,Q

[
T |
(
X(1), . . . , X(n)

)
,
(
Y(1), . . . , Y(m)

)]

is the unique UMVUE of PI(P,Q).

Recall that the PI can be estimated by

P̂ Ie(X1, . . . , Xn, Y1, . . . , Ym) =
1

mn

n∑

i=1

m∑

j=1

Uij,

with

Uij = 1{Xi>Yj} +
1

2
1{Yj=Xi}.

It is a function of
(
X(1), . . . , X(n)

)
and

(
Y(1), . . . , Y(m)

)
because it

is symmetric in the Xi and symmetric in the Yj . More formally,

it is a generalized U-statistic27 p. 37. Finally, for an event E ⊂
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σ
((
X(1), . . . , X(n)

)
,
(
Y(1), . . . , Y(m)

))
,

E[P̂ Ie1E] =
1

mn

n∑

i=1

m∑

j=1

E [Uij1E] = E[U111E] = E[T1E],

from which it follows that UMV UE = P̂ Ie.

The case where P is the Poisson family

Now we consider the Poisson family by taking A = N and P ={
Pois(λ1) | λ1 ∈ R

+
0

}
. So the Xi have distribution Pois(λ1) and the Yj

distribution Pois(λ2).

So the PI can be estimated by

PI(λ1, λ2)

= Pλ1,λ2
[X1 > Y1] +

1

2
Pλ1,λ2

[Y1 = X1]

=


 ∑

i∈N,0≤j<i

λi
1λ

j
2

i!j!
+

1

2

∑

(i=j)∈N

λi
1λ

j
2

i!j!


 exp(−(λ1 + λ2)).

Put

Kn =
n∑

i=1

Xi

and

Lm =
m∑

j=1

Yj.

Then it follows from classical theory that the estimator (Kn, Lm) is

complete and sufficient for (λ1, λ2).

As before it now follows from the Lehmann-Scheffé theorem that the

UMVUE for PI(λ1, λ2) is given by

̂UMV UE(X1, . . . , Xn, Y1, . . . , Ym) = Eλ1,λ2
[1{X1>Y1} +

1

2
1{Y1>X1} | Kn, Lm],
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which, by sufficiency, does not depend on λ1 and λ2.

It is well known47 that, for 0 ≤ x ≤ k and 0 ≤ y ≤ l, the following

explicit expression holds for the conditional density:

P[Xi = x, Yj = y | Kn = k, Lm = l] =
(
k

x

)(
1

n

)x(
1− 1

n

)k−x(
l

y

)(
1

m

)y (
1− 1

m

)l−y

.

We conclude that

UMV UE(X1, . . . , Xn, Y1, . . . , Ym)

=
∑

0≤x≤Kn,0≤y<min{x−1,Lm}

(
Kn

x

)(
1

n

)x(
1− 1

n

)Kn−x(
Lm

y

)(
1

m

)y

(
1− 1

m

)Lm−y

+
1

2

∑

0≤y=x≤min{Kn,Lm}

(
Kn

x

)(
1

n

)x(
1− 1

n

)Kn−x

(
Lm

y

)(
1

m

)y (
1− 1

m

)Lm−y

is the UMVUE of PI(λ1, λ2).

The case where P is a normal family

Now consider the normal setting by taking A = R and P = {N(µ, 1) |
µ ∈ R}. Thus the Xi have distribution N(µ1, 1) and the Yj distribution

N(µ2, 1).

Straightforward calculation shows that the PI is

PI(µ1, µ2) = Pµ1,µ2
[X1 > Y1] +

1

2
Pµ1,µ2

[Y1 = X1] = Pµ1,µ2
[X1 > Y1]

= Φ

(
µ1 − µ2√

2

)
,

with Φ the standard normal CDF.
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Put

Xn =
1

n

n∑

i=1

Xi

and

Y m =
1

m

m∑

j=1

Yj.

Then it follows from classical theory that the estimator (Xn, Y m) is

complete and sufficient for (µ1, µ2).

As before it now follows from the Lehmann-Scheffé theorem that the

UMVUE for PI(µ1, µ2) is given by

̂UMV UE(X1, . . . , Xn, Y1, . . . , Ym) = Eµ1,µ2
[1{X1>Y1} | Xn, Y m],

which, by sufficiency, does not depend on µ1 and µ2.

It is well known47 that, for n,m ≥ 2, the following explicit expression

holds for the conditional density:

fXi,Yj |Xn,Y m
(x, y | k, l) =

√
n

n− 1
φ


 x− k√

n−1
n



√

m

m− 1
φ


 y − l√

m−1
m


 ,

with φ the standard normal density. It follows that, for n,m ≥ 2,

Eµ1,µ2
[1{X1>Y1} | Xn, Y m]

= Pµ1,µ2

[
X1 > Y1 | Xn, Y m

]

=

∫ ∞

−∞

∫ s

−∞

√
n

n− 1
φ


 s− k√

n−1
n



√

m

m− 1
φ


 t− l√

m−1
m


 dtds,
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which is calculated to equal

Φ


 Xn − Y m√

n−1
n

+ m−1
m


 .

We conclude that, for n,m ≥ 2,

UMV UE(X1, . . . , Xn, Y1, . . . , Ym) = Φ


 Xn − Y m√

n−1
n

+ m−1
m


 .

The case where P is the exponential family

Now consider the exponential family setting by taking A = R+ and P ={
Exp(λ) | λ ∈ R

+
0

}
. Thus the Xi have distribution Exp(λ1) and the Yj

distribution Exp(λ2)

A straightforward calculation shows that the PI is given by

PI(λ1, λ2) = Pλ1,λ2
[X1 > Y1] +

1

2
Pλ1,λ2

[Y1 = X1] = Pλ1,λ2
[X1 > Y1]

=
λ2

λ2 + λ1

.

Put

Xn =
1

n

n∑

i=1

Xi

and

Y m =
1

m

m∑

j=1

Yj.

Then (Xn, Y m) is complete and sufficient for (λ1, λ2).

Again the Lehmann-Scheffé theorem entails that the UMVUE for

PI(λ1, λ2) is given by

UMV UE(X1, . . . , Xn, Y1, . . . , Ym) = Eλ1,λ2
[1{X1>Y1} | Xn, Y m],
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which, by sufficiency, does not depend on λ1 and λ2.

It is well known47 that, for n,m ≥ 2, the following explicit expression

holds for the conditional density:

fX1,Y1|Xn,Y m
(x, y | k, l)

=

{
n−1
kn

(1− x
kn
)n−2m−1

lm
(1− y

lm
)m−2 if 0 ≤ x ≤ nk, 0 ≤ y ≤ lm

0 elsewhere

It follows that, for n,m ≥ 2,

Eµ1,µ2
[1{X1>Y1} | Xn, Y m]

= Pµ1,µ2

[
X1 > Y1 | Xn, Y m

]

=

∫ ∞

−∞

∫ s

−∞

n− 1

kn
(1− s

kn
)n−2m− 1

lm
(1− t

lm
)m−2dtds,

which is calculated to equal





1− 2F1

(
1−m, 1;n; nXn

mY m

)
if nXn < mY m

1− n−1
n

Y m

Xn
· 2F1

(
2− n, 1;m+ 1; mY m

nXn

)
if nXn > mY m

,

with 2F1 the hypergeometric function, i.e.

2F1(a, b; c; z) =
1

B(b, c− b)

∫ 1

0

tb−1(1− t)c−b−1(1− zt)−adt,

where B denotes the beta function.

We conclude that, for n,m ≥ 2,

UMV UE(X1, . . . , Xn, Y1, . . . , Ym)

=





1− 2F1

(
1−m, 1;n; nXn

mY m

)
if nXn < mY m

1− n−1
n

Y m

Xn
· 2F1

(
2− n, 1;m+ 1; mY m

nXn

)
if nXn > mY m

.
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Appendix II. Proof of Theorem 1: The variance of P̂ Ie vanishes

with rate 1/n+ 1/m

Theorem 1. For all P ∈ P and Q ∈ Q and for all n and m,

VarP,Q

[
P̂ I
]
≤ 1

4

(
1

mn
+

1

n

m− 1

m
+

1

m

n− 1

n

)
. (5)

Proof. We have

VarP,Q

[
P̂ I
]

= VarP,Q

[
1

mn

∑

i,j

Ui,j

]

=
1

m2n2


∑

i,j

VarP,Q[Ui,j] + 2
∑

(i,j) 6=(i′,j′)

CovP,Q[Ui,j, Ui′j′ ]




=
1

m2n2

∑

i,j

VarP,Q[Ui,j] +
2

m2n2

∑

i,j 6=j′

CovP,Q[Ui,j, Ui,j′ ]

+
2

m2n2

∑

i 6=i′,j

CovP,Q[Ui,j, Ui′,j]

=
1

mn
VarP,Q[U1,1] +

2n

m2n2

(
m

2

)
CovP,Q[U1,1, U1,2]

+
2m

m2n2

(
n

2

)
CovP,Q[U1,1, U2,1]. (6)

Because Ui,j takes values between 0 and 1, we have, by Popoviciu’s

inequality,

VarP,Q[Ui,j] ≤
1

4
[1− 0]2 = 1/4, (7)

which, by the Cauchy-Schwarz inequality, leads to

|CovP,Q[Ui,j, Ui′,j′ ]| ≤
√

VarP,Q[Ui,j]VarP,Q[Ui′,j′ ] ≤ 1/4. (8)
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Table 1. Formulas for PI and UMV UE in various univariate cases

X1, . . . , Xn ∼ P

and Y1, . . . , Ym ∼ Q

support family P = Q Probabilistic UMVUE

of P and Q of distributions Index of the Probabilistic Index

A ⊂ R P,Q ∈ P(A) PI(P,Q) UMV UE(X1, . . . , Xn, Y1, . . . , Ym)

finite = P[X1 > Y1] + 1
2
P[Y1 = X1] = P̂ Ie(X1, . . . , Xn, Y1, . . . , Ym))

P = Pois(λ1), PI(λ1, λ2) UMV UE(X1, . . . , Xn, Y1, . . . , Ym)

N Q = Pois(λ2) =




∑

i∈N,0≤j<i

λi
1λ

j
2

i!j!
+

1

2

∑

i=j∈N

λi
1λ

j
2

i!j!


 =

∑

0≤x≤Kn,0≤y<min{x−1,Lm}

(
Kn

x

)( 1

n

)x (
1 −

1

n

)Kn−x (
Lm

y

)( 1

m

)y (
1 −

1

m

)Lm−y

exp(−(λ1 + λ2)) + 1
2

∑

0≤x=y≤min{Kn,Lm}

(
Kn

x

)( 1

n

)x (
1 −

1

n

)Kn−x (
Lm

y

)( 1

m

)y (
1 −

1

m

)Lm−y

R P,Q PI(P,Q) UMV UE(X1, . . . , Xn, Y1, . . . , Ym)

absolutely continuous = P[X1 > Y1] = P̂ Ie(X1, . . . , Xn, Y1, . . . , Ym)
R P = N(µ1, 1), PI(µ1, µ2) UMV UE(X1, . . . , Xn, Y1, . . . , Ym)

Q = N(µ2, 1) = Φ

(
µ1−µ2√

2

)
= Φ


 Xn−Y m√

n−1
n

+m−1
m




R
+ P = Exp(λ1), PI(λ1, λ2) UMV UE(X1, . . . , Xn, Y1, . . . , Ym)

Q = Exp(λ2) =
λ2

λ2+λ1
=





1 − 2F1

(
1 − m, 1;n;

nXn
mY m

)
if nXn < mY m

1 − n−1
n

Y m
Xn

· 2F1

(
2 − n, 1;m + 1;

mY m
nXn

)
if nXn > mY m

P
rep

a
red

u
sin

g
s
a
g
e
j.c

ls
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Combining (6), (7) and (8), finishes the proof.

Appendix III. Explicit formulas for the variance of UMVUE and P̂ Ie

The variance of P̂ Ie

Let Xi ∼ N(µ1, 1), iid, i = 1, . . . , n and Yj ∼ N(µ2, 1), iid, j =

1, . . . ,m.

P̂ Ie =
1

mn

n∑

i=1

m∑

j=1

Uij

It folows that

E[P̂ Ie] = E[Uij] = Φ

(
µ1 − µ2√

2

)
.

Moreover,

Var[P̂ Ie] =
1

mn

n∑

i=1

m∑

j=1

Var[Uij] +
n∑

i=1

m∑

j=1

∑

i′ 6=i

∑

j′ 6=j

Cov[Uij, Ui′j′ ].

It can be shown that:

• Var[Uij] = Φ
(

µ1−µ2√
2

)
− Φ

(
µ1−µ2√

2

)2

• Cov[Uij, Ui′j′ ] = 0

• Cov[Uij, Uij′ ] = Φ
(

µ1−µ2√
2

)
− Φ

(
µ1−µ2√

2

)2
− 2T

(
µ2−µ1√

2
; 1√

3

)

• Cov[Uij, Ui′j] = Φ
(

µ1−µ2√
2

)
− Φ

(
µ1−µ2√

2

)2
− 2T

(
µ1−µ2√

2
; 1√

3

)

Then, based on the property of Owen’s T-function:

T (a, 1) =
Φ(a)− Φ2(a)

2
,
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we have that:

Var[P̂ Ie] =
2(m+ n− 1)

nm
T

(
µ1 − µ2√

2
; 1

)
− 2(m− 1)

nm
T

(
µ2 − µ1√

2
;
1√
3

)

− 2(n− 1)

nm
T

(
µ1 − µ2√

2
;
1√
3

)
.

The variance of the UMVUE estimator

Let Xi ∼ N(µ1, 1), iid, i = 1, . . . , n and Yj ∼ N(µ2, 1), iid, j =

1, . . . ,m.

̂UMV UE = Φ


 X̄n − Ȳm√

2−
(
1
n
+ 1

m

)




Denote:

X̄n − Ȳm = z

1

n
+

1

m
= x

Let:

X̄n − Ȳm = z ∼ N(µ1 − µ2,
1

n
+

1

m
)

= N(µz, x)

Var[ ̂UMV UE] = E[ ̂UMV UE
2
]− E[ ̂UMV UE]2

1.

E[ ̂UMV UE] = Φ

(
µz√
2

)

2.

E[ ̂UMV UE
2
] = Φ

(
µz√
2

)
− 2T


 µz√

2
;

1√
2+x
2−x




The overall variance for ̂UMV UE is then:
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V ar[ ̂UMV UE] = 2T

(
µz√
2
; 1

)
− 2T

(
µz√
2
;

√
2− x

2 + x

)

Appendix IV. Explicit formulas for the relative efficiency and

asymptotic relative efficiency of the UMVUE and the

non-parametric estimator in the univariate normal case

Relative Efficiency

Assume Xi follows N(µ1, 1) and Yj follows N(µ2, 1). Let T be Owen’s

T-function, µ = µ1 − µ2, and x = 1
n
+ 1

m
. We denote

τµ(x) = T

(
µ√
2
,

√
2− x

2 + x

)
.

It was shown in Appendix III that

Var[P̂ Ie] = 2x [τµ(0)− τµ(1)] +
2

mn
[2τµ(1)− τµ(0)]

and

Var[ ̂UMV UE] = 2 [τµ(0)− τµ(x)] .

Then, the inverse of the relative efficiency is given by

Var[P̂ Ie]

Var[ ̂UMV UE]
= [τµ(1)− τµ(0)]

x

τµ(x)− τµ(0)
+R(m,n)

with

R(m,n) = [τµ(0)− 2τµ(1)]
1

mn

τµ(x)− τµ(0)
.
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Asymptotic relative efficiency

The asymptotic relative efficiency (ARE) studies the asymptotic behavior

if m,n → ∞, or equivalently, x → 0. Notice that

0 ≤ 1

mn
≤ x2.

Thus,

|R(m,n)| ≤ |τµ(0)− 2τµ(1)|
∣∣∣∣

x

τµ(x)− τµ(0)

∣∣∣∣ x.

Now, since
x

τµ(x)− τµ(0)
→ 1

τ ′µ(0)
when x → 0,

we infer that

R(m,n) → 0 when m,n → ∞,

and
Var[P̂ Ie]

Var[ ̂UMV UE]
→ τµ(1)− τµ(0)

τ ′µ(0)
when m,n → ∞.

Recalling that

T (h, a) =
1

2π

∫ a

0

exp
[
−1

2
h2(1 + x2)

]

1 + x2
dx,

it is easily calculated that

τ ′µ(0) = − 1

8π
exp

[
−1

2
µ2

]
.

The inverse of the asymptotic relative efficiency (ARE) is thus

lim
m,n→∞

Var[P̂ Ie]

Var[ ̂UMV UE]
= 8π

T
(

µ1−µ2√
2

, 1
)
− T

(
µ1−µ2√

2
, 1√

3

)

exp
[
−1

2
(µ1 − µ2)2

] .
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Appendix V. Simulations of the variances and relative efficiency

(RE)

We provide simulations of the variance and the relative efficiency

(RE) of UMVUE variance P̂ IUversus the theoretical variance of the

non-parametric estimator P̂ Ie, versus the exact permutation distribution

variance P̂ Ip, versus the exact bootstrap distribution variance P̂ Ib or

versus the asymptotic U-statistic distribution variance P̂ Iu.
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Table 2. Variance and relative efficiency in the univariate normal case with unknown means

and unit variance, for varying total sample size (N) and Probabilistic Index (PI).

N PI V ar
P̂ Ie

V ar
P̂ IU

RE
P̂ IU

P̂ Ie
RE

P̂ IU

P̂ Ip
RE

P̂ IU

P̂ Ib
RE

P̂ IU

P̂ Iu

50 0.50 0.0068 0.0064 0.9365 0.9365 0.9469 0.9080

0.60 0.0065 0.0060 0.9254 0.8788 0.9175 0.8806

0.70 0.0055 0.0049 0.8902 0.7160 0.8795 0.8496

0.80 0.0039 0.0032 0.8201 0.4677 0.8014 0.7878

0.90 0.0019 0.0013 0.6832 0.1879 0.6570 0.6866

100 0.50 0.0034 0.0032 0.9455 0.9455 0.9502 0.9309

0.60 0.0032 0.0030 0.9341 0.8868 0.9293 0.9110

0.70 0.0027 0.0024 0.8978 0.7210 0.8911 0.8765

0.80 0.0019 0.0016 0.8256 0.4690 0.8173 0.8112

0.90 0.0009 0.0006 0.6855 0.1868 0.6738 0.6900

200 0.50 0.0017 0.0016 0.9502 0.9502 0.9523 0.9427

0.60 0.0016 0.0015 0.9385 0.8909 0.9364 0.9273

0.70 0.0013 0.0012 0.9016 0.7236 0.8996 0.8925

0.80 0.0009 0.0008 0.8284 0.4697 0.8269 0.8241

0.90 0.0005 0.0003 0.6868 0.1862 0.6811 0.6897

400 0.50 0.0008 0.0008 0.9526 0.9526 0.9536 0.9489

0.60 0.0008 0.0007 0.9408 0.8929 0.9389 0.9344

0.70 0.0007 0.0006 0.9036 0.7249 0.9021 0.8986

0.80 0.0005 0.0004 0.8298 0.4701 0.8283 0.8269

0.90 0.0002 0.0002 0.6874 0.1859 0.6860 0.6904
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Table 3. Variance and relative efficiency in the univariate normal case with unknown means

and unknown unequal variances for each group, for varying total sample size (N) and

probabilistic index (PI). Note, that the variance for the UMVUE statistic in this case cannot be

derived and thus the average empirical variance was used.

N PI V ar
P̂ Ie

V ar
P̂ IU

RE
P̂ IU

P̂ Ie
RE

P̂ IU

P̂ Ip
RE

P̂ IU

P̂ Ib
RE

P̂ IU

P̂ Iu

50 0.50 0.0070 0.0064 0.9227 0.9432 0.9386 0.8989

0.60 0.0065 0.0061 0.9331 0.8907 0.9097 0.8721

0.70 0.0056 0.0053 0.9337 0.7748 0.9276 0.8944

0.80 0.0040 0.0037 0.9452 0.5502 0.9118 0.8936

0.90 0.0020 0.0019 0.9208 0.2722 0.9103 0.9447

100 0.50 0.0034 0.0032 0.9271 0.9492 0.9348 0.9152

0.60 0.0033 0.0030 0.9276 0.9028 0.9215 0.9027

0.70 0.0028 0.0026 0.9372 0.7800 0.9369 0.9206

0.80 0.0020 0.0019 0.9454 0.5636 0.9401 0.9310

0.90 0.0010 0.0009 0.9304 0.2706 0.9256 0.9444

200 0.50 0.0017 0.0016 0.9303 0.9316 0.9122 0.9027

0.60 0.0016 0.0015 0.9364 0.9186 0.9388 0.9294

0.70 0.0014 0.0013 0.9413 0.7879 0.9461 0.9380

0.80 0.0010 0.0010 0.9585 0.5725 0.9637 0.9594

0.90 0.0005 0.0005 0.9340 0.2702 0.9252 0.9345

400 0.50 0.0009 0.0008 0.9340 0.9779 0.9541 0.9491

0.60 0.0008 0.0008 0.9325 0.9221 0.9419 0.9372

0.70 0.0007 0.0006 0.9203 0.7685 0.9246 0.9207

0.80 0.0005 0.0005 0.9574 0.5645 0.9495 0.9474

0.90 0.0002 0.0002 0.9380 0.2711 0.9324 0.9372
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Table 4. Variance and relative efficiency in the univariate exponentional case, for varying

total sample size (N) and probabilistic index (PI). Note, that the variance for the UMVUE

statistic in this case cannot be derived and thus the average empirical variance was used.

N PI V ar
P̂ Ie

V ar
P̂ IU

RE
P̂ IU

P̂ Ie
RE

P̂ IU

P̂ Ip
RE

P̂ IU

P̂ Ib
RE

P̂ IU

P̂ Iu

50 0.50 0.0067 0.0050 0.7478 0.7364 0.7443 0.7137

0.60 0.0063 0.0047 0.7437 0.6936 0.7259 0.6966

0.70 0.0055 0.0036 0.6643 0.5332 0.6500 0.6277

0.80 0.0040 0.0021 0.5256 0.3063 0.5143 0.5045

0.90 0.0021 0.0007 0.3187 0.1001 0.3200 0.3300

100 0.50 0.0033 0.0025 0.7540 0.7477 0.7513 0.7361

0.60 0.0032 0.0023 0.7249 0.6831 0.7148 0.7007

0.70 0.0028 0.0018 0.6480 0.5332 0.6553 0.6444

0.80 0.0020 0.0010 0.5323 0.3110 0.5251 0.5202

0.90 0.0010 0.0003 0.3297 0.1003 0.3193 0.3244

200 0.50 0.0017 0.0013 0.7421 0.7541 0.7558 0.7482

0.60 0.0016 0.0012 0.7298 0.7025 0.7363 0.7291

0.70 0.0013 0.0009 0.6538 0.5207 0.6404 0.6352

0.80 0.0010 0.0005 0.5214 0.3096 0.5249 0.5227

0.90 0.0005 0.0002 0.3241 0.0985 0.3180 0.3205

400 0.50 0.0009 0.0006 0.7538 0.7724 0.7732 0.7693

0.60 0.0008 0.0006 0.7280 0.6894 0.7241 0.7206

0.70 0.0007 0.0004 0.6570 0.5262 0.6488 0.6462

0.80 0.0005 0.0003 0.5296 0.3095 0.5255 0.5244

0.90 0.0003 0.0001 0.3198 0.0964 0.3136 0.3149
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Table 5. Variance and relative efficiency in the univariate Poisson case, for varying total

sample size (N) and Probabilistic Index (PI). Note, that the variance for the UMVUE statistic

in this case cannot be derived and thus the average empirical variance was used.

N PI V ar
P̂ Ie

V ar
P̂ IU

RE
P̂ IU

P̂ Ie
RE

P̂ IU

P̂ Ip
RE

P̂ IU

P̂ Ib
RE

P̂ IU

P̂ Iu

50 0.50 0.0065 0.0061 0.9408 0.9244 0.9566 1.0025

0.54 0.0066 0.0062 0.9397 0.9300 0.9711 1.0183

0.62 0.0069 0.0061 0.9292 0.8542 0.9478 0.9969

0.71 0.0052 0.0046 0.8965 0.6940 0.9119 0.9680

0.92 0.0015 0.0010 0.6454 0.1469 0.5973 0.7066

100 0.50 0.0033 0.0031 0.9427 0.9489 0.9652 0.9880

0.54 0.0032 0.0030 0.9444 0.9177 0.9418 0.9643

0.62 0.0030 0.0028 0.9344 0.8543 0.9318 0.9555

0.71 0.0026 0.0023 0.8908 0.6852 0.8912 0.9182

0.92 0.0008 0.0005 0.6657 0.1500 0.6393 0.6974

200 0.50 0.0017 0.0016 0.9464 0.9691 0.9774 0.9890

0.54 0.0016 0.0015 0.9480 0.9357 0.9523 0.9636

0.62 0.0015 0.0014 0.9322 0.8623 0.9346 0.9465

0.71 0.0013 0.0012 0.8996 0.6992 0.9044 0.9180

0.91 0.0004 0.0002 0.5191 0.1165 0.5132 0.5363
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