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Abstract—An increase of Video on Demand (VoD) consumption
has occurred in recent years. Delivering high Quality of Experi-
ence (QoE) for users consuming VoD is crucial. Many methods
were proposed to estimate QoE based on network metrics, or
to obtain direct feedback from video players. Recent proposals
usually require monitoring tools installed in multiple network
nodes, instrumentation of client devices, updates on existing
network elements, among others. We propose a method based on
Internet Control Message Protocol (ICMP) probing to estimate
QoE for users consuming VoD. The method allows network
operators to estimate which QoE level can be delivered to the
user according to current network conditions using a Machine
Learning (ML) model. Our method does not require installation
of software at different network nodes, relying on ICMP probing
which is widely supported by existing devices. Our QoE inference
model estimates Mean Opinion Score (MOS) with Root Mean
Square Error (RMSE) of 0.98, with additional 27 Kbps of traffic
during probing. We evaluate the model’s generalization capacity
when estimating QoE for videos different from the one used for
training, which can speed up model’s creation process. In those
cases MOS was estimated with RMSE of 1.01.

Index Terms—quality of service, quality of experience, DASH
video

I. INTRODUCTION

Assessment of user satisfaction with networked services

gained prominence recently. Network and Over The Top

(OTT) operators have already acknowledged that users’ sat-

isfaction with services and connectivity is poorly expressed

using traditional Quality of Service (QoS) metrics [1]. Industry

and academia have turned to QoE, which indicates the users’

degree of satisfaction or annoyance when consuming services

or applications [2]. QoE assessment for VoD is a relevant

topic, as this kind of application will account for over 80 %

of global IP traffic by 2022 [3]. Most internet video traffic is

now delivered through HTTP Adaptive Streaming (HAS) [4],

[5]. HAS adapts video quality during playback according to

network conditions to avoid playback stalling and rebuffering

events. Standardization efforts have been carried to develop

an open standard for HAS, resulting in the Dynamic Adaptive

Streaming over HTTP (DASH).

Many works in the literature seek to estimate QoE for

DASH VoD [6]. The first group of methods monitors client

applications collecting data such as buffer usage and playback

stalls, providing reliable and accurate information. This kind

of method is commonly used for local tuning of player

applications, with no transmission of this information to the

network, which could raise privacy concerns. A second group

monitors network QoS such as throughput and Packet Loss

Rate (PLR), relying on information that can be extracted from

network flows or inspected from packet data. This type of

method can be costly according to the amount of information

needed to be extracted. It also raises privacy concerns and can

be infeasible for encrypted traffic. A third group of methods

combine application and network information, and can provide

accurate QoE information but suffers from privacy and limita-

tion problems found in both methods. While some proposals

use high-level QoS obtained using specialized tools [7], others

require inspection of TCP/HTTP headers [8], [9]. With no

consolidated solution to monitor QoE, the heterogeneity poses

an additional challenge for network operators.

Feedback-based extensions to DASH have been specified,

namely, Server and Network Assisted DASH (SAND) [10].

SAND gives the ability for clients and network elements to

exchange signaling messages to improve user QoE. SAND,

however, presents many hurdles for widespread adoption: it

requires network elements prepared to process the signaling

messages and perform eventual adjustments [11]; there is no

standard format or metrics to map between network QoS and

QoE [1]; existing network elements may be incompatible with

SAND.

We propose a method using ICMP probing to monitor

network QoS between DASH client and server. Being a well

supported protocol, it works out of the box on legacy network

equipment. We developed a simple algorithm to adjust probing

frequency and run multiple parallel probes to obtain the ap-

propriate granularity of measurements. Therefore, the operator

can obtain QoS conditions of Round-Trip Time (RTT), jitter

and PLR. Such measurements are passed to a ML model that

estimates the delivered QoE in terms of MOS according to the

ITU-T P.1203 Recommendation [12]. The dataset used to train

the model was created using a controlled environment with

a catalog of 19 videos with different contents and duration.

Samples from the video with shortest duration were used for

model training, while samples from the remaining videos were

used to evaluate generalization. The model provided inferences

of MOS with RMSE of 1.01.

The paper is organized as follows: Section II discusses

related work, focusing on those performing QoE inference for

VoD based on network QoS. Section III describes the proposed

method. Setup of experiments is detailed in Section IV. Results



are presented and discussed in Section V. Section VI presents

the conclusion and future work.

II. RELATED WORK

Costa et al. [7] propose the use of network measurements

to estimate Application QoS (AQoS), and from AQoS predict

user’s QoE. The first step is mapping delay, jitter, throughput

and PLR to startup time, stall count, and total stall time.

Network is monitored using NetMetric [13], requiring probes

in multiple points. The experiments use videos with fixed

resolutions (1080p and 720p). The authors in [8] reconstruct

a video session analyzing packets passing through an inter-

mediate node. They use this information to determine QoE

parameters such as rebuffering events and bit rate variation.

The system also requires extraction of the manifest file to

process the intercepted information.

The approach in [9] inspects packets of the video flow

to find those carrying video segments, also using an HTTP

proxy to overcome flow encryption. An algorithm estimates

initial playback delay, number and duration of rebuffering

events. Experiments were performed using a single video

with fixed quality. Khokhar et al. [14] present a method to

estimate QoE using network-level measurements on encrypted

YouTube traffic. In addition to features such as throughput,

packet interarrival times and chunk sizes, another 48 features

are used. QoE is estimated in terms of playback status, quality

switches and MOS. The work does not address how to obtain

all the input features in real networks.

Our method is based on simple ping tools, eliminating the

demand for specialized monitoring software. Further, active

probing provides better privacy than methods based on packet

inspection, and is applicable to encrypted VoD services. Our

method provides a more comprehensive indication of user

QoE, as it estimates more end-user metrics. It estimates MOS

based on ITU-T P.1203 Recommendation [12], comprising

metrics such as video stalls, video quality switches and video

resolution played. Model training is more streamlined than the

state of the art, because it employs data samples from a single

video, at the same time reaching similar accuracy levels.

III. PROPOSED METHOD

Our method is composed by an ICMP probing module that

estimates QoS conditions between VoD client and server, and

an MOS inference model based on decision trees. One way to

apply the method is shown in Figure 1. The Probing Module

(PM) is co-located with the VoD server, considering that the

monitoring takes place at the same network point as the VoD

server and takes the same route. This restriction is feasible in

the context of partnerships between Internet Service Providers

(ISPs) and OTT using CDN-ISP or Mobile Edge Computing

(MEC) [15], [16]. The resulting QoS is passed to the QoE

Model that estimates the MOS value.

A. Probing Module

An initial analysis of the collected data showed that the

MOS was strongly affected by PLR in downstream (server to

ISP’s Network

Probing 
Module

VoD 
Server

CDN-ISP

VoD 
Client

QoE Model

Fig. 1. Probing module deployed along the VoD server (CDN-ISP or MEC
context).

client). In our samples the sessions with 0 % of PLR had an

average MOS of 5, while those with 0.5 % PLR had average

MOS close to 3. Above 2.3 % PLR the average MOS was

approximately 2. Because of the strong influence of PLR we

defined that our PM must provide PLR with 0.1 % granularity,

requiring 1,000 samples to be able to achieve such granularity.

The amount of samples to be collected by the PM can be

relaxed to explore the trade-off between precision and traffic

overhead. The required samples must be collected within a

limited and recent window of time, in order to reflect the

current state of the network. This work uses a window of 30

seconds, which is twice the size of typical buffers in DASH

clients. The PM spawns multiple parallel and independent

ping probes. The probing frequency of all probes is adjusted

according to observed RTT and jitter, in order to obtain the

required amount of data during the time window.

Traffic overhead generated during probing can be estimated

using Odir = minSamples

timeWindow
× (Sicmp + Pov) where Odir is

the overhead per second on a given direction (downstream or

upstream). minSamples is the minimum amount of samples

to collect during a window of time, timeWindow is the

duration of the time window in seconds. Sicmp is the data

size of probe packets in bits and Pov is the protocol overhead

from underlying technologies.

B. MOS Inference Model

We use an ML model to perform MOS inferences from the

QoS input data provided by the PM. We selected eXtreme Gra-

dient Boosting (XGBoost) [17], as methods based on Decision

Tree (DT) have shown better results (predictions with lower

RMSE) when mapping QoS to QoE [18]. XGBoost requires

a labeled dataset, which was created instrumenting the DASH

client to collect three execution metrics: i) Representation,

indicating the resolution and bitrate of the video segment being

played; ii) Playback rate, that returns if the playback is running

or if the video is stalled; iii) Timestamp, to mark the time each

measurement was taken. All values were stored in intervals

of 0.5 seconds. These values are used to calculate the MOS

values based on the ITU-T P.1203 Recommendation.

IV. EXPERIMENT SETUP

The infrastructure used to generate the dataset is shown in

Figure 2. We set up three Docker containers. The server runs

the NGINX Server [19] hosting 19 different videos and the

DASH player application. The client container accesses the

server and runs the player over Firefox. We used the reference



player provided by DASH Industry Forum1 version 3.0.0,

instrumented to collect playback metrics. The configurations

of the player were kept as default, except for buffer which

was changed to 12 seconds so network oscillations would be

reflected quicker in playback quality. A custom script in the

client stored the metrics locally to avoid generating additional

network traffic. The last container is the QoS Monitor, which

performs ping probing based on the fping tool2. Network

impairments were set using Traffic Control (TC). Server and

QoS Monitor are considered as deployed at the same network

point, therefore the same impairment values were set to their

interfaces.

Client

Server
Srv 

Iface

Cli 
Iface

NGINX HTTP 
DASH Server

DASH.js Client

Traffic Control

Session Logger

QoS Monitor

ICMP Probe Mon 
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Fig. 2. Experimental environment

TABLE I
SAMPLE VIDEOS

Video Duration Type
1Another World (another) 00:03:11 Nature
1Another World 2 (another2) 00:03:06 Nature
1Football Barcelona (barcelona) 00:03:14 Sports
1The Fountains Of Bellagio (bellagio) 00:03:43 Arts
1La Boheme (boheme) 00:04:29 Music Video
1Power of Curve (curve) 00:03:15 Promotional
1The Quiet Czech (czech) 00:03:24 Documentary
1Phantom Flex (flex) 00:03:07 Promotional
1Garden (garden) 00:03:05 Promotional
1Jimix Put Your Hands Up (jimix) 00:03:56 Music Video
1Landscape (landscape) 00:03:10 Nature
1Lumix (lumix) 00:03:07 Documentary
1Slam Dunk (slam) 00:02:56 Sports
1Surfing (surfing) 00:02:59 Sports
1Lovely Swiss (swiss) 00:03:41 Documentary
1Travel With My Pet (travel) 00:02:35 Documentary
1See the Unexpected (unexpected) 00:03:18 Sports
1Life Untouched (untouched) 00:03:18 Nature
17 Wonders Of The World (wonders) 00:03:51 Documentary

1http://4kmedia.org

The sample videos are described on Table I. A short name

in parenthesis, used as reference throughout this paper, is

shown for each video. The table also shows the duration

and type of each video. All videos were prepared following

a standard process. Each original video was encoded in 10

representations (a version of the video with a specific reso-

lution and bitrate), then, each version is split into segments

of short duration (4 seconds in our work). Finally, a Media

1https://dashif.org/
2https://fping.org/

Presentation Description (MPD) file is generated containing all

information needed for the client application to download and

properly adapt playback quality according to observed network

conditions. Our videos were encoded using the H.264 codec,

without an audio track. The 10 representations used were:

320x180 (200 Kbps), 320x180 (400), 480x270 (600), 640x360

(800), 640x360 (1,000), 768x432 (1,500), 1024x576 (2,500),

1280x720 (4,000), 1920x1080 (8,000), 3840x2160 (12,000).

The MPD bandwidth field was fixed for each representation

in all videos, in order to the client operate consistently. The

values (in bits per second) used were, respectively: 256K,

512K, 760K, 1,020K, 1,260K, 1,900K, 3M, 4M, 10M, 20M.

Bandwidth and delays set in TC were taken from a uni-

form distribution between 0 and 400 Mbps, and 0 and 800
ms, respectively. Jitter was uniformly taken between 0 and

half of the delay used in the session. PLR values were set

according to a Gamma distribution with shape k = 0.3,

and scale θ = 1, derived to achieve a similar distribution

to measurements provided by Measurement Lab (M-Lab)3.

For MOS calculation and dataset labeling according to ITU-

T P.1203 Recommendation we used the software4 provided

by [20], [21]. The operation mode used was 0, combining

video resolution (and resolution switches), and occurrence and

duration of playback stalls. Other parameters for the software

were device type (PC), display resolution (3840x2160), and

viewing distance (150 cm).

V. RESULTS

A. Data Analysis

We performed over 60,000 video sessions. Approximately

25,000 sessions were executed with the “travel” video due

to its shorter duration, which allowed us to experiment a

wider range of network impairments. Approximately 2,000

sessions were executed for each other video. Table II shows

the Spearman correlation between QoS and MOS. The first

eight rows show the correlations with parameters set using

TC and the last three with measured QoS. Although the table

shows a weak correlation between Downlink Bandwidth and

MOS, it occurs due to range of values used for experiments.

For sessions with bandwidth up to 4 Mbps, the observed

correlation was 0.61. However, correlations between Downlink

Bandwidth and MOS quickly drop as we evaluate sessions

with higher bandwidth values (e.g. 0.15 for sessions with up to

40Mbps). It should be noted that TC bandwidth configuration

is not directly reflected in throughput, therefore, even sessions

configured for 400 Mbps can experience low throughput due

to delay, jitter and PLR. Different from bandwidth, Downlink

PLR and MOS show a strong correlation for the entire

evaluated range. Correlations with the measured metrics also

show a strong influence of PLR on MOS, followed by RTT.

B. Model Training

For model training we used samples of the video with

shortest duration (“travel”), from which we had more ses-

3https://www.measurementlab.net/
4https://github.com/itu-p1203/itu-p1203



TABLE II
QOS AND MOS SPEARMAN CORRELATION

QoS Condition Correlation to MOS p-value

Downlink Bandwidth 0.0226 p < 0.001

Uplink Bandwidth 0.0007 0.0182

Downlink Delay −0.1872 p < 0.001

Uplink Delay −0.1354 p < 0.001

Downlink Jitter −0.1825 p < 0.001

Uplink Jitter −0.1128 p < 0.001

Downlink PLR −0.7752 p < 0.001

Uplink PLR 0.0093 p < 0.001

RTT −0.2021 p < 0.001

Jitter −0.1456 p < 0.001

PLR −0.4567 p < 0.001

sions with different network conditions. We used data of

20,000 sessions of “travel” for hyperparameter tuning, training

and Cross Validation (CV). Approximately 5,000 sessions of

“travel” and all sessions of the other videos were used for

evaluation. Hyperparameter tuning was done using 100 trials

of random search [22]. The hyperparameter values selected for

XGBoost were: colsample bytree of 0.85, colsample bylevel

of 0.8, subsample of 0.91, learning rate of 0.02, alpha of 1,

and max depth of 20. The maximum number of trees was set

to 1,000, and we used early stopping to interrupt training after

20 successive rounds of no accuracy improvement.

C. Inference Results

The RMSE obtained in 5-fold CV was 0.8965 with stan-

dard deviation of 0.0003. Over the generalization dataset, the

RMSE for the “travel” video using the final model was 0.9887.

For sessions of videos different than “travel”, the overall

RMSE was 1.0131. Table III shows the RMSE obtained for

each individual video. These results show slightly different

RMSE values for each video, with an average o 1.0052 and

standard deviation of 0.0231. Minor differences are possibly

caused by video content differences, which make the file

size of video segments to vary between videos. Nevertheless,

RMSE values were similar to those obtained with “travel”,

with an RMSE oscillation between −0.02 and +0.06. With

such small differences, an operator can use a single model to

infer MOS for all videos on the server. The creation of the

model is accelerated as the short-duration video allows more

sessions with distinct network impairments to be executed.

Also, retraining is needed only when a new video format (e.g.

different resolutions or codecs) is added.

TABLE III
INFERENCE RMSE BY VIDEO

Video RMSE Video RMSE Video RMSE

another 0.98 another2 0.98 barcelona 1.02

bellagio 1.01 boheme 1.04 curve 1.02

czech 1.01 flex 0.97 garden 1.01

jimix 1.03 landscape 1.03 lumix 1.00

slam 0.96 surfing 0.99 swiss 1.03

travel 0.98 unexpected 1.00 untouched 1.01

wonders 1.03 - - - -

Figure 3 shows the error according to MOS range. Higher

errors occurred when the MOS was high (between 4 and 5).

On the other hand, when MOS was below 4 the distribution

of RMSE values is similar for all classes of MOS, with errors

below 1 in approximately 80 % of samples. This shows a

pessimistic behavior of the system, inferring a low QoE when

the client is actually receiving a high QoE. On the other hand,

higher accuracy is achieved for lower QoE levels. This result is

a consequence of the PM’s inability to differentiate downlink

from uplink packet loss.
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Fig. 3. MOS inference error by MOS class

VI. CONCLUSION AND FUTURE WORK

We proposed a practical method for QoE inference for

DASH VoD that does not require instrumentation of client

devices, changes on existing network elements, deep flow

inspection or proprietary tools. Monitoring is done using

widely supported ICMP. An ML model was trained to infer

MOS based on the ITU-T P.1203. For model training we used

data from sessions of the shortest video of the catalog, and

evaluated model’s accuracy for the other ones, achieving an

RMSE of 1.01. Probing overhead was minimal, taking 1.4 %

of traffic if the video were served in lowest quality. In future

work we will use this method as feedback for network control.
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